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Abstract. We present some new consequences of the hypothesis that P
can be computed by fixed polynomial-size circuits since [Lipton SCTC 94].
For instance, we show that the hypothesis implies that some small circuit
family and BPP machines cannot be fooled by any complexity-theoretic
pseudorandom generator G : {0, 1}Θ(log n) to {0, 1}n, which means the
known derandomization argument of BPP = P no longer works. It also
implies the existence of 2-round public-coin zero-knowledge proofs forNP.

1 Introduction

Proving non-uniform general circuit lower bounds for complexity classes is one of
the most fundamental and challenging tasks in complexity theory. Let SIZE(nc)
denote the class of languages that can be determined by O(nc)-size circuit fam-
ilies. Let P/poly = ∪cSIZE(nc). With the notions of SIZE(nc) and P/poly, a
typical lower bound result is of the form that some uniform class C cannot be
compute by SIZE(nc)) or P/poly.

For P/poly lower bounds, the best separation result we do know so far is
the exponential-time version of Merlin-Arthur games is not in P/poly due to
Buhrman et al. [3]. Karp and Lipton [13] showed that if NP ⊂ P/poly, the poly-
nomial hierarchy collapses. However, currently we do not have any techniques
for proving NEXP � P/poly. Williams [21] showed any algorithm for Circuit-
SAT or for Circuit Acceptance Probability Problem slightly faster than exhaustive
search implies NEXP � P/poly.

As for SIZE(nc) lower bounds, Kannan [12] showed that Σ2∩Π2 � SIZE(nc)
for any constant c, Vinodchandran [20] showed PP � SIZE(nc) and Santhanam
[17] showed promiseMA � SIZE(nc) for any c ∈ N. When considering lower
bounds for P and NP, however, currently the best known lower bound is 5n −
o(n) due to Iwama and Morizumi [11].

After long-time failure to present non-linear lower bounds for P, some resear-
chers thought possibly P ⊆ SIZE(nc). As mentioned in [16] Levin pointed out
that Kolmogorov even believed P ⊆ SIZE(n), and Lipton then investigated
what can be implied if P ⊆ SIZE(nc) and provided some interesting results e.g.
P ⊆ SIZE(nc) implies NP �= P. Two decades passed since then and we still
cannot prove or disprove the hypothesis.
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Our Results. We continue the research of [16] by presenting some new conse-
quences of the hypothesis P ⊆ SIZE(nc), some of which are about the topics
emerging posterior to [16]. More concretely, our results are as follows.

Basic Consequences. If P ⊆ SIZE(nc), we have the following two conclusions
(which are elementary but did not appear in literature to our knowledge).

1. E ⊆ SIZE(2o(n)). It follows from this result that the assumption that E has
a language that requires 2Ω(n) circuit lower bound is false. Recall that the
known derandomization argument of BPP = P in many works e.g. [10,18,19]
requires this assumption. So our result means the known derandomization of
BPP = P no longer works under the hypothesis.

2. BPP ⊆ SIZE(nc+ε) for any constant 0 < ε < 1 if one-way functions exist.

P ⊆ SIZE(nc) vs Pseudorandom Generators. We show P ⊆ SIZE(nc)
implies the following negative results on complexity-theoretic pseudorandom
generators G : {0, 1}l(n)=d log n to {0, 1}n in polynomial-time for any d ∈ N.
This kind of generators is used to derandomize BPP in literature.

1. General such pseudorandom generators fooling small circuits do not exist.
That is, there is no such G such that for all circuits D of size n, |Pr[D(G
(Ul(n))) = 1] − Pr[D(Un) = 1]| ≤ 1

n . Note that such generators are required
in many works e.g. [10,18,19].

2. Some small circuit family {Dn}n∈N is unfoolable against all G. That is, for
each such G it holds for any constant 0 < ε < 1, |Pr[Dn(G(Ul(n))) = 1] −
Pr[Dn(Un) = 1]| ≥ ε for infinitely many n. Note that this result is stronger
than the first one.

3. Some BPP machines are unfoolable against all G if one-way functions exist.
That is, for each L ∈ BPP, there is a BPP machine M for L such that for each
G there are instances x satisfying M(x,G(Ul(n))) outputs wrong decisions
with high probability (but in contrast M(x,Un) outputs wrong decisions with
small probability).

The first result eliminates the existence of such general G which can fool all
small circuits, but it does not eliminate the possibility that for any specific small
circuit, there may exist a specific G which can fool the circuit (and may not
fool other small circuits). However, the second result eliminates such possibility.
Despite these two results, there is still a possibility that for each L ∈ BPP and
some BPP machine M for L, there is such G such that we can derandomize
M with G. The third result says for any L ∈ BPP, some BPP machine for it
cannot be derandomized by any G.

2-round Public-coin Zero-knowledge Proofs for NP. Zero-knowledge
proofs [8] are of extreme importance in cryptography. Currently we have a 5-round
construction in [6] and some impossibilities on fewer round numbers in [6,7,14].
There is no constant-round public-coin zero-knowledge proof for NP ever known.
We show under the hypothesis there is a 2-round public-coin zero-knowledge proof
for NP. The simulator of the protocol is non-uniform. The non-triviality of such
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a simulator is despite being non-uniform, it is able to simulate the interaction for
all public inputs.

Then we present a witness-extractor for the protocol from program obfusca-
tion, i.e. indistinguishability obfuscators recently proposed by e.g. [5,15], which
can work for all bounded-size provers.

Our Techniques. Basically, the core technique in each consequence is to first
define a problem/function and then show it is in P and thus gain an O(nc)-
size circuit family solving the problem which can then be used to establish the
consequence. Here we sketch it in more detail with respect to unfoolable circuits
against all pseudorandom generators.

Recall that our goal is to present some circuit family that can tell Un from
G(Ul(n)) for any G. So we first define a problem Li: given an n-bit string r,
decide if there is a string s with length |s| ≤ i log n such that there is a G among
the first ni machines (in lexicographical order, say) within n/2-bit size such that
G(s) halts in ni-time and r = G(s). It can be seen Li ∈ P for any i. So there is
an O(nc)-size circuit family {Ci

n}n∈N determining Li, i ∈ N.
Let us investigate the output of Ci

n on input Un or G(Ul(n)). First we can
show Ci

n’s output is almost always 0 when the input is Un. On the other hand,
for G(Ul(n)), for large enough i Ci

n can indeed output 1, indicating it can tell
G(Ul(n)) from Un. Lastly, we carefully choose such circuits over infinitely many
n such that the circuit family can tell Un from G(Ul(n)) for all G.

Organizations. Section 2 presents very short preliminaries. In Sects. 3 to 5 we
present the consequences of the three parts respectively.

2 Preliminaries

Let T : N → N be some function. A language L is in DTIME(T (n)) iff there
is a Turing machine that runs in time O(T (n)) and determines L. Let P =
∪c≥1DTIME(nc) and E = ∪c≥1DTIME(2cn).

Let SIZE(T (n)) denote the class of languages satisfying for each L in it there
is a circuit family {Cn}n∈N such that |Cn| = O(T (n)) and for every x ∈ {0, 1}n,
x ∈ L ⇔ Cn(x) = 1.

Let L(x) denote the indicator function that outputs 1 if x ∈ L and outputs
0 otherwise. Let BPP denote the class in which each language L admits a PPT
machine M such that for each x, Pr[M(x) = L(x)] > 1

10 where the probability
is taken over all choices of the coins of M . We call M a BPP machine for L.

3 Some Basic Consequences of P ⊆ SIZE(nc)

3.1 E and SIZE(2o(n))

Theorem 1. If P ⊆ SIZE(nc) for some c ∈ N, then E ⊆ SIZE(2o(n)).

Proof. We use the padding argument to show this. Suppose E−SIZE(2o(n)) �= φ
and L is a language in it. This means L ∈ DTIME(2c1n) for some c1 ∈ N, but
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there exists 0 < ε < 1 such that L requires circuit lower bound Ω(2εn) for
infinitely many n. Choose a sufficiently small constant δ satisfying ε/δ > c.

Consider the language L′ that consists of all instances of form x ◦ 02
δn−n

for x ∈ L where n ← |x|. Then L′ can be determined in O(2δn·c1/δ)-time when
inputs are of 2δn bits. Thus by translation L′ ∈ DTIME(nc1/δ) ⊆ P. On the
other hand, L′ requires circuit lower bound Ω(2εn) when inputs are of 2δn bits for
infinitely many n. Thus by translation L′ requires circuit lower bound Ω(nε/δ)
for infinitely many n and so it is not in SIZE(nc). This is a contradiction. ��

The theorem immediately asserts the following assumption is conditionally
false which is used to establish the derandomization result BPP = P.

Assumption 2. E has a language of deterministic circuit complexity 2Ω(n).

Corollary 1. If P ⊆ SIZE(nc) for some c ∈ N, then Assumption 2 is false.

3.2 BPP and SIZE(nc+ε)

Theorem 3. If P ⊆ SIZE(nc) for some c ∈ N and one-way functions exist,
then BPP ⊆ SIZE(nc+ε) for any constant 0 < ε < 1.

Proof. First if one-way functions exist, for any constant 0 < δ < 1 there exists a
pseudorandom generator G : {0, 1}nδ → {0, 1}poly(n) such that G is computable
in time poly(n) and for all polynomial-size circuits D, |Pr[D(Upoly(n)) = 1] −
Pr[D(G(Unδ )) = 1]| ≤ 1/poly(n) [9]. Thus for any L ∈ BPP and a BPP machine
for L, there is another BPP machine for L which uses only nδ coins: The machine
first runs G with nδ coins to get polynomial pseudorandom coins and then feeds
the original BPP machine the pseudorandom coins to make decisions. Let M1

denote such a BPP machine using nδ coins with error 1
n .

Let M denote a machine that runs M1 8n times independently and outputs
the majority. Then there exists a specific value for all the coins used by M ,
denoted rn, such that Mrn

(x) outputs the correct decision for all x ∈ {0, 1}n (as
the proof of BPP ⊂ P/poly shows). Note that |rn| = 8n1+δ.

Now we define a language L1 which consists of all instances (x, y) satis-
fying My(x) = 1. Thus L1 ∈ P. Then there is an O(mc)-size circuit family
{Cn}n∈N deciding m = |(x, y)| = O(n1+δ)-bit instances of L1. Then we con-
struct an O(n(1+δ)c)-size circuit family {C ′

n}n∈N determining L. Actually, C ′
n

has rn hardwired and on input x outputs Cn(x, rn). Since Cn(x, rn) = Mrn
(x)

that equals the correct decision and |C ′
n| = O(nc+ε) for ε = cδ, L ∈ SIZE

(nc+ε). ��

4 P ⊆ SIZE(nc) vs Pseudorandom Generators

In this section we investigate the relations between the hypothesis and complexity-
theoretic pseudorandom generators. We focus on the polynomial-time generators
G : {0, 1}Θ(log n) to {0, 1}n, which are used to derandomize BPP and can result
in BPP = P.
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4.1 On General Pseudorandom Generators Fooling Small Circuits

Recall the derandomization argument of BPP in [10,18,19] that basically pro-
ceeds in two steps: first assume Assumption 2 to deduce Assumption 4 in the
following is true; second use the pseudorandom generator G to derandomize any
BPP machine for a language in BPP. Conversely, we also know Assumption 4
implies Assumption 2.

Assumption 4. There exists a pseudorandom generator G : {0, 1}l(n) → {0, 1}n

such that G maps inputs of length l(n) = Θ(log n) to length n in time poly(n), and
for all circuits D of size n, |Pr[D(G(Ul(n))) = 1] − Pr[D(Un) = 1]| ≤ 1

n .

However, due to Corollary 1, we immediately have the following result.

Proposition 1. If P ⊆ SIZE(nc) for some c ∈ N, Assumption 4 is false.

Proposition 1 eliminates the existence of such general G which can fool all
small circuits. However, it does not eliminate the possibility that for any specific
small circuit, there may exist a specific G which can fool the circuit (and may not
fool other small circuits). So a further question is whether for each small circuit
there is such a specific generator G that can fool it. In the next subsection,
unexpectedly, we will answer this question negatively.

4.2 Unfoolable Circuit Families Against All Pseudorandom
Generators

We now present a circuit family that cannot be fooled by any pseudorandom
generator that stretches Θ(log n)-bit coins to n-bit pseudorandom coins.

Theorem 5. If P ⊆ SIZE(nc) for some c ∈ N, there is an nc+1-size circuit
family {Dn}n∈N such that for any pseudorandom generator G that maps inputs
of length l(n) = d log n for arbitrary d ∈ N to length n in time poly(n), it holds
for any constant 0 < ε < 1, |Pr[Dn(G(Ul(n))) = 1] − Pr[Dn(Un) = 1]| ≥ ε for
infinitely many n.

Proof. To present the circuit family {Dn}n∈N such that for any generator G the
result holds, we first define the following problems.

Problems Li. For each i ∈ N, we define problem Li as follows. Given r ∈ {0, 1}n,
decide if there is s of length no more than i log n such that for at least one
machine G among the first ni machines (in lexicographical order, say), G is at
most n/2-bit long and G(s) halts in ni-time and r is equal to G(s).

It can be seen that an exhaustive search algorithm can run each one of the
first ni machines at most ni steps on input a string s of length no more than
i log n and check if there are G and s satisfying the requirement. Since we only
need to check the first ni machines and emulate G(s) ni steps and the number
of all s is O(ni), the algorithm can output a correct decision in polynomial-time.
So Li is in P for all i ∈ N. Thus if P ⊆ SIZE(nc), there is an O(nc)-size circuit
family {Ci

n}n∈N determining Li, i ∈ N.
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Note that Ci
n is of O(nc)-size. Set k = c + 1, which means the size of Ci

n, i ∈
N, is bounded by nk for sufficiently large n. Let n1 denote the least integer
satisfying |C1

n| < nk for each n ≥ n1 and for i = 2, 3, · · · , let ni denote the
least integer satisfying |Ci

n| < nk for each n ≥ ni and ni > ni−1. Define the
following distinguisher {Dn}n∈N: for each n ∈ {n1, · · · , ni, · · · }, let Dn be Ci

ni
;

for all other n, let it be any nk-size circuit. Thus |Dn| ≤ nk.
For {Dn}n∈N, let us consider an arbitrary pseudorandom generator G which

stretches d log n bits to n bits in polynomial-time for some d. It can be first
seen that for all machines of length n/2 and all inputs s of length no more than
i log n, there are at most poly(n)·2n/2 different outputs of all these machines with
input s. So for truly random Un, Un /∈ Li except for probability poly(n)/2n/2

for any i. Thus Pr[Dn(Un) = 1] = poly(n)/2n/2.
On the other hand, for this G, the order number of G in the enumeration

of all machines is a constant and G’s running-time is a fixed polynomial. When
the input is r = G(Ud log n), we have for each large enough i and for each n ∈
{ni, ni+1, · · · } the order number G is less than ni and G(s) outputs r for some s
of length d log n (no more than i log n) in ni-time, which shows Ci

ni
(r) outputs

1 always. Thus |Pr[Dn(G(Ul(n))) = 1]−Pr[Dn(Un) = 1]| ≥ ε for infinitely many
n for any constant 0 < ε < 1. The theorem holds. ��

4.3 Unfoolable BPP Machines Against All Pseudorandom
Generators

The previous subsections show under the hypothesis, not only the general pseudo-
random generator for all small circuits, but also specific generators for all specific
circuits do not exist. But for the purpose of derandomizing BPP, both the two-
type generators are not necessary. Actually, a specific pseudorandom generator
that can fool a specific BPP machine for any language in BPP suffices. More pre-
cisely, let L ∈ BPP and M be a BPP machine for L. A pseudorandom generator
G satisfying for any instance x, G(Ul(n)) can fool M with x suffices to induce a
deterministic polynomial-time machine for L. Since intuitively M(x) could not
be the {Dn}n∈N in Theorem 5, there is a possibility that for each L ∈ BPP and
some M for L, there is such G such that we can derandomize M with G.

However, to do this we need to select a derandomizable one instead of any
BBP machine for L, since the following theorem says that some M for L cannot
be derandomized by any generator G, in the sense that on one hand M with
truly random coins can decide all instances correctly with high probability and
on the other hand M with pseudorandom coins from any G will output wrong
decisions for some instances with high probability. When errors occur, we cannot
be aware of this.

In the following for any BPP machine M , we use notation M(x,Upoly(n)) to
denote the computation of M with input instance x and coins Upoly(n).

Theorem 6. If P ⊆ SIZE(nc) for some c ∈ N and one-way functions exist,
then for all L ∈ BPP there is a BPP machine M for L which needs no more
than nk coins for k ∈ N such that for any pseudorandom generator G that maps



Some New Consequences of the Hypothesis 81

inputs of length l(n) = d log n for arbitrary d ∈ N to length nk in time poly(n),
there is an instance serial {xn}n∈N satisfying Pr[M(xn, G(Ul(n))) �= L(xn)] ≥
1 − poly(n)

2n − 1
n for all sufficiently large n.

Proof. Let ML be a BPP machine for L with error ε = 1
n which uses no more

than n coins (using a cryptographically pseudorandom generator constructed
from one-way functions to generate poly(n) coins). We construct a BPP machine
M for L that uses nk coins and cannot be derandomized. On input any instance
x ∈ {0, 1}nc+1

and coins Unk , M does the following.

1. If x cannot be parsed to the form (C, r, r′) where C denotes a boolean circuit
of n-bit input and |C| = nc+1/2 and |r| = n and |r′| = n, output ML(x, r′⊕r1)
where r1 denotes n coins in Unk . Otherwise, move to the next step.

2. Set t = n3 and let r1, · · · , rt, rt+1, rt+2 be the first t + 2 n-bit blocks in Unk .
Compute C(r1), · · · , C(rt) and count the fraction of 1 among all outputs. If
the fraction is less than 1 − ε, output ML(x, r′ ⊕ rt+2). Otherwise, output
ML(x, r′ ⊕rt+2) if C(r⊕rt+1) = 1 and output 1−ML(x, r′ ⊕rt+2) otherwise.

We now show M is indeed a BPP machine for L. First consider x that is
not of form (C, r, r′). Then M outputs ML(x,Un). Thus it has error ε. Second
consider x = (C, r, r′) with Pr[C(Un) = 1] < 1 − 2ε. Due to the Chernoff bound,
1
t

∑t
i=1 C(ri) < 1−2ε+δ < 1−ε except for probability e−2δ2t = e−2n for δ = 1

n .
This shows M ’s error is at most ε+e−2nε < 2ε. Third consider x = (C, r, r′) with
Pr[C(Un) = 1] ≥ 1 − 2ε. Then M ’s error is at most ε + Pr[C(Un) = 0] + ε < 4ε.
So for any instance M ’s error is at most 4ε. That shows M is a BPP machine
for L.

Consider an arbitrary G that maps inputs of length d log n to length nk in
time poly(n). We now define the following function.

Function f . Given r ∈ {0, 1}n, output 1 if there is s ∈ {0, 1}d log n such that r
equals any one of the first n3 n-bit blocks in the output of G(s), and output 0
otherwise.

Similarly, viewed as a language, f−1(1) is in P. Thus there is an O(nc)-size
circuit family {Cn}n∈N computing f . Note that |Cn| < nc+1/2 and can be padded
to nc+1/2-size for large enough n. Similarly, G(s) has at most poly(n) different
outputs, one of which happens to contain Un as a block with probability poly(n)

2n .
Thus Pr[Cn(Un) = 1] = poly(n)

2n .
First consider the instance xn = (Cn, r, r′) for uniformly random r, r′. When

the coins for M is G(Ud log n), letting r1, · · · , rt+1 denote the first n3 + 1 n-bit
blocks in the output of G(Ud log n), we have Cn(r1) = · · · = Cn(rt) = 1 and
Pr[Cn(r ⊕ rt+1) = 0] = 1 − poly(n)

2n since r is uniformly random. Due to M ’s
strategy, M(xn, G(Ud log n)) outputs 1 − ML(xn, r′ ⊕ rt+2) almost all the time.
Thus Pr[M(xn, G(Ud log n)) �= L(xn)] ≥ 1 − poly(n)

2n − ε. Thus there exist specific
r, r′ such that fixing xn = (Cn, r, r′), the probability formula still holds. The
theorem holds. ��
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We remark that even in the case BPP = P, L which admits a deterministic
polynomial-time machine still admits a BPP machine that cannot be derandom-
ized. Actually with a similar argument to that of Theorem6 (where ML changes
to be a deterministic polynomial-time machine for L and consider x of form
(C, r)) we have the following proposition which does not need one-way functions
and achieves stronger probability result.

Proposition 2. If P ⊆ SIZE(nc) for some c ∈ N, then for all L ∈ P there is
a BPP machine M for L which needs no more than nk coins for k ∈ N such
that for any pseudorapndom generator G described in Theorem 6, there is an
instance serial {xn}n∈N satisfying Pr[M(xn, G(Ul(n))) �= L(xn)] ≥ 1 − poly(n)

2n

for all sufficiently large n.

5 Two-Round Public-Coin Zero-Knowledge Proofs

In this section we investigate the question of constructing constant-round public-
coin zero-knowledge proofs for NP if P ⊆ SIZE(nc). An interactive proof is
zero-knowledge if for any polynomial-time verifier there is a polynomial-time
simulator such that what the verifier sees, i.e. random coins, the public input
and prover’s messages, can be computationally indistinguishably reconstructed
by the simulator [8].

Currently we have a 5-round private-coin construction due to [6] and some
impossibilities on fewer round numbers in e.g. [6,7,14]. Reference [2] presents a
negative result on 2-round public-coin zero-knowledge proofs, but it assumes
that E has a language of non-deterministic circuit complexity 2Ω(n), which
is even stronger than Assumption 2. So due to the hypothesis P ⊆ SIZE(nc),
this assumption is false and the negative result in [2] no longer works.

So there is no constant-round public-coin zero-knowledge proofs for NP ever
known. However, we show that based on the hypothesis there exists a 2-round
public-coin zero-knowledge proof for NP with respect to a relaxed requirement
that the simulator can be non-uniform. Despite being non-uniform the simulator
is able to simulate the interaction for all public inputs.

5.1 The Protocol

We first present some preparations as follows.

Definition 1. For each polynomial-time machine M , we define a function fM

as follows. Given x ∈ {0, 1}n, u ∈ {0, 1}n, i ∈ [1, nc+2], output ri that is the ith
bit of r ← M(x, u).

Note that in the definition i can be represented by a �(c+2) log n�-bit string.
The function fM induces a problem LM that consists all instances (x, u, i) satis-
fying fM (x, u, i) = 1. Since M is polynomial-time, LM ∈ P. Due to the hypoth-
esis, LM can be determined by an O(nc)-size circuit family {Cn}n∈N. Namely,
fM can be computed by {Cn}n∈N.

Let L be any language in NP. Then we define the following language Λ.
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Public input: x;
Prover’s auxiliary input: w, (a witness for x ∈ L).

1. V → P : Send r ∈R {0, 1}nc+2
, ZAP1.

2. P → V : Send ZAP2 generated using witness w for the statement that (x, r) ∈ Λ.

Protocol 1 The 2-round public-coin zero-knowledge proof for L.

Definition 2. We define the following language Λ: (x, r) ∈ Λ where |x| =
n, |r| = nc+2 iff either there is a witness w for x ∈ L or there are a boolean
circuit C of size at most nc+1 and u ∈ {0, 1}n such that C(x, u, i) = ri for all
1 ≤ i ≤ nc+2.

Then Λ ∈ NP and a witness for (x, r) ∈ Λ is either w for x ∈ L or a circuit
C and u satisfying the second condition.

Let ZAP denote the 2-round public-coin witness-indistinguishable (WI) proof
for NP in [4], (ZAP1,ZAP2) denote the two messages of ZAP. Let PRG denote
a cryptographically pseudorandom generator in [9]. Our protocol for L is shown
in Protocol 1.

Theorem 7. Assuming P ⊆ SIZE(nc) for some c ∈ N and the existence of
ZAP, PRG, Protocol 1 is a 2-round public-coin zero-knowledge proof for L.

Proof. We show the completeness, soundness and zero-knowledge properties are
satisfied.

Completeness. For x ∈ L P can always convince V using w.

Soundness. For each x /∈ L and all possible nc+1-size boolean circuits C and
u ∈ {0, 1}n, the string of C(x, u, 1) ◦ · · · ◦ C(x, u, nc+2) in which “◦” means con-
catenation has at most 2nc+1+n different values. Now r is randomly chosen from
{0, 1}nc+2

. So one of these values equals r with probability 2−Ω(nc+2), which
shows (x, r) /∈ Λ with probability 1 − 2−Ω(nc+2), i.e. the statement that ZAP
proves is false. Thus the soundness follows from the soundness of ZAP.

Zero-Knowledge. For each PPT verifier V ∗, we present a polynomial-size sim-
ulator S which is constructed as follows.

1. Consider the following machine M . On input (x, u), M(x, u) runs V ∗(x) and
when V ∗ needs random coins, run PRG(u) and provide the output to it. For
this machine M , let fM and LM be defined previously. Then there is an
O(nc)-circuit family {Cn}n∈N computing fM .

2. Sample coins u ∈ {0, 1}n. Let S have V ∗, Cn, u hardwired. S(x) runs as
follows. It runs V ∗(x) to output r ∈ {0, 1}nc+2

and ZAP1 in which when V ∗

needs coins, run PRG(u) and provide the pseudorandom coins to it. Then S
computes ZAP2 using witness (Cn, u) and sends it to V ∗.
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We first show that (Cn, u) is a witness for (x, r) ∈ Λ. It can be seen that
r is the output of V ∗(x) with coins from PRG(u). This means r = M(x, u).
Due to the definition of Cn, we have Cn(x, u, i) = ri for all 1 ≤ i ≤ nc+2. And
|Cn| < nc+1 for large enough n. This shows (Cn, u) is a witness for (x, r) ∈ Λ.
So S can finish the interaction.

Then we show S can reconstruct indistinguishably V ∗’s view (random tape,
prover’s messages). Since V ∗’s coins are now PRG(u) and S differs from P (w)
only in the witnesses they use, the indistinguishability is ensured by the pseudo-
randomness of PRG and WI of ZAP. The zero-knowledge property holds. ��

5.2 Obtaining Witness Extraction from Program Obfuscation

In this subsection we consider an enhanced property of witness extraction, which
claims an extractor E such that for any polynomial-time prover P ′ that can
convince V some x ∈ L, then E(P ′, x) can output a witness for x ∈ L in
polynomial-time. A proof system admitting an extractor is called a proof of
knowledge in cryptography. Our result is that we present a witness extractor
from program obfuscation for Protocol 1 which works for bounded-size provers.
For lack of space, we only sketch the construction.

Informally a program obfuscator is a PPT algorithm that given a program can
output a new program such that the output program is of same functionality as
the input program but hides some secrets. In particular, an indistinguishability
obfuscator, denoted iO, which was first introduced by [1] and which candidate
constructions were recently proposed by [5,15] etc. is such that for any two
machines (M1,M2) of same functionality (and same size and same running-time),
iO(M1) and iO(M2) are computationally indistinguishable. We will employ iO
to achieve our result.

We modify Protocol 1 with iO. That is, we let P send a random r1 ∈
{0, 1}poly(n) for a sufficiently large poly(n) (e.g. ≥ nc+3) and Q̃1 ← iO(Q1)
in Step 2, where Q1 denotes the program that on input a program Π with
|Π| < |r1|/2 outputs w for x ∈ L if Π outputs r1 within nlog log n steps and out-
puts 0n otherwise. And accordingly, the first condition in Definition 2 changes
to that Q̃1 is honestly generated. The modified protocol is shown in Protocol 2.

It can be seen that Protocol 2 is complete and sound. Moreover, the simulator
S needs slight modification. That is, it samples r1 and computes Q̃2 ← iO(Q2) in
Step 2, where Q2 is equal to Q1 except that it always outputs 0n, and computes
ZAP2 as before. Note that Q1, Q2 are of same functionality except on input a
program Π satisfying Π outputs r1. However, for random r1, since |Π| < |r1|/2,
the Π does not exist except for exponentially small probability. Thus the two
programs are of same functionality and thus Q̃1, Q̃2 are indistinguishable. So the
zero-knowledge property still holds.

Finally, let us sketch the construction of the extractor. Actually, as shown in
the soundness, if some prover P ′ can convince V x ∈ L, then due to the soundness
of ZAP, Q̃1 is honestly generated. If P ′’s size is bounded by |r1|/2, basically its
code is a valid input Π such that Q̃1(Π) outputs w. So an extractor E can adopt
V ’s strategy to send the message of Step 1 and emulates P ′’s computation where
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Public input: x;
Prover’s auxiliary input: w, (a witness for x ∈ L).

1. V → P : Send r ∈R {0, 1}nc+2
, ZAP1.

2. P → V : Send r1 ∈R {0, 1}poly(n), ˜Q1,ZAP2.

Protocol 2 The 2-round public-coin zero-knowledge proof of knowledge for L.

providing P ′ pseudorandom coins from PRG(u′) for random u′ ∈ {0, 1}n. Thus
P ′’s code, u′ and PRG constitute a valid Π which size is bounded. On receiving
P ′’s message, E runs Q̃1(Π) to gain w. Thus we have the following result.

Theorem 8. Assuming P ⊆ SIZE(nc) for some c ∈ N and the existence of
ZAP,PRG, iO, Protocol 2 is a 2-round public-coin zero-knowledge proof for L

which admits an extractor for all bounded-size provers (< |r1|
2 ).
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