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Abstract. We present a quantitative analysis of random combinatory
logic terms. Our main goal is to investigate likelihood of semantic prop-
erties of random combinators. We show that asymptotically almost all
weakly normalizing terms are not strongly normalizing. Moreover, we
present a proof that asymptotically almost all strongly normalizing terms
are not in normal form. We also prove that asymptotically almost all nor-
mal forms in combinatory logic are not typeable.
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1 Introduction

Over the last decade quantitative aspects of logic have attracted increasing
attention from researchers working on the border of combinatorics, logic, and
computer science. Probabilistic methods used in the paper appear to be very
powerful in computer science investigations. From a point of view of these meth-
ods we study typical objects chosen from a given set. In recent years we have
investigated sets of syntactic objects of logical flavor in order to estimate like-
lihood of the fact that a randomly chosen syntactic object belongs to a given
set. There is a long history of using this kind of asymptotic approach applied to
logic and computability. Probability of truth of logical formulas has been inves-
tigated in several papers. For the purely implicational logic of one variable (and
at the same time simply typed system), the likelihood of finding true formulas
was computed by Moczurad, Tyszkiewicz, and Zaionc in [14]. The classical logic
of one variable and two connectives of implication and negation was studied in
Zaionc [20]; over the same language, the exact proportion between intuitionistic
and classical logics was determined by Kostrzycka and Zaionc in [11].

Asymptotic id entity between classical and intuitionistic logic of implication
has been proved in Fournier, Gardy, Genitrini, and Zaionc in [6]. Some variants
involving expressions with other logical connectives have also been considered.
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Genitrini and Kozik in [9] have studied asymptotic behavior of full proposi-
tional system. For two connectives again, the and/or case has already received
much attention—see Lefmann and Savický [13], Chauvin, Flajolet, Gardy, and
Gittenberger [2], Gardy and Woods [8], Woods [19] and Kozik [12]. Let us also
mention the survey [7] of Gardy on probability distributions on Boolean func-
tions induced by random Boolean expressions.

In [4] investigations of computational objects from lambda calculus and com-
binatory logic were started. It was shown that a randomly chosen λ-term is
strongly normalizing. In the case of combinatory logic (the equivalent translation
of the λ-calculus), the situation is exactly opposite—a random combinator does
not strongly normalize. Since every strongly normalizing term (in both models) is
weakly normalizing, the obtained results imply that a random lambda term satis-
fies the weak normalization property, however, they do not allow us to claim any-
thing about weakly normalizing combinators. The counting problem for lambda
terms is still a very hot open research subject. Some variants of lambda calculus
have also been considered. Bodini, Gardy, Gittenberger and Jacquot in [15] stud-
ied enumeration of BCI lambda terms. John Tromp in [17], as well as Grygiel
and Lescanne in [10], considered the enumeration problem in the so called binary
lambda calculus.

The syntax of combinators is very simple, as the terms in question can be
uniquely represented by finite binary planar trees whose leaves are labeled by
constants. In contrast to lambda calculus terms, whose unusual tree representa-
tion makes the combinatorial analysis very difficult (see, e.g. [4]), the analysis of
combinators satisfying a given syntactic property is usually simple. However, in
the case of properties that are undecidable, the enumeration problems become
hard or even impossible, as for any nonrecursive set it is impossible to find a
finite pattern collection defining the whole set. For example, any nonrecursive
set of combinators cannot be defined by a context-free grammar. Therefore the
only possible approach to find asymptotic behavior of nonrecursive sets of com-
binators is to construct proper recursive subsets and proper recursive supersets.

In this paper we give a simple argument that the density of weakly normal-
izing combinators is neither zero nor one. Moreover, we present lower and upper
bounds for the density in question. This result allows us to compare two basic
nonrecursive sets of combinators, one being the subset of another: the set of all
weakly normalizing combinators and its proper subset—the set of all strongly
normalizing combinators. It turns out, that the set of strongly normalizing terms
can be seen as a tiny fragment of the set of weakly normalizing combinators. In
other words, we prove that the asymptotic probability of finding strongly nor-
malizing terms chosen from the set of weakly normalizing ones is zero.

Another part of the paper is oriented toward terms in so called normal forms.
At the same time we are interested in typeable terms in combinatory logic which
form an important subclass motivated by programming languages. Both typeable
terms (in the simple type system) and terms in normal forms form recursive sets
of combinators. In the paper we present a result concerning typeable normal
forms in the setting of all normal forms.
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Fig. 1. Partition of combinatory logic

Figure 1 illustrates the topography of all major classes of combinatory logic
terms used in this paper. C denotes the set of all combinators, WN stands for
weakly normalizing terms, SN for strongly normalizing ones, N for normal forms
and, finally, T YP stands for typeable terms.

2 Combinators

The set C of combinators is defined inductively as follows. Constants K and S are
combinators. If M and N are combinators, then (M N) is a combinator. Terms
built as in the third case are called applications. Following standard notational
conventions, we omit outermost parentheses and drop parentheses from left-
associated terms, e.g., instead of ((MN)(PQ)) we write MN(PQ). We define
a one-step reduction relation → on the set of combinators in the following way.
Let P,Q,R be arbitrary combinators. Then

– KPQ → P ,
– SPQR → PR(QR),
– if P → Q then PR → QR and RP → RQ.

Let P be a combinator. If there exists no combinator Q such that P → Q, then
P is said to be in normal form. If there exists a finite sequence of combinators
P0, P1, . . . , Pk such that P = P0 → P1 → . . . → Pk and Pk is in normal form,
then P is weakly normalizing. If there does not exist an infinite sequence of com-
binators P0, P1, . . . such that P = P0 → P1 → . . ., then we say that P is strongly
normalizing. Of course, strong normalization implies weak normalization.

3 Densities of Sets of Combinators

With the set of all combinators C we associate the size function defined as the
number of all applications occurring in a given combinator, i.e.,

|S| = |K| = 0 and |PQ| = 1 + |P | + |Q|.
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Given a subset X ⊆ C of combinators we define the asymptotic density μ(X ) as

μ(X ) = lim
n→∞

#{t ∈ X : |t| = n}
#{t ∈ C : |t| = n}

if the limit exists. The number μ(X ) is an asymptotic probability of finding a
combinator from the class X among all combinators. It can be immediately seen
that the density μ is finitely additive, but not countably additive. Finally, we
define:

μ−(X ) = lim inf
n→∞

#{t ∈ X : |t| = n}
#{t ∈ C : |t| = n}

μ+(X ) = lim sup
n→∞

#{t ∈ X : |t| = n}
#{t ∈ C : |t| = n}

These two numbers are well defined for any set X of combinators, even when
the limiting ratio μ(X ) is not known to exist. Given two classes of combinators
X and Y, assuming that X is a subset of Y, we define relative density μ

(X
Y

)
in

the usual way by allowing:

μ

(
X
Y

)
= lim

n→∞

#{t ∈ X : |t| = n}
#{t ∈ Y : |t| = n}

The relative μ− (X
Y

)
and μ+

(X
Y

)
functions are defined in the very same way as

in general case, i.e.,

μ−
(

X
Y

)
= lim inf

n→∞

#{t ∈ X : |t| = n}
#{t ∈ Y : |t| = n}

μ+

(
X
Y

)
= lim sup

n→∞

#{t ∈ X : |t| = n}
#{t ∈ Y : |t| = n}

For technical reasons, we assume 0
0 := 1. Given any subclass X ⊆ C and n ∈ N,

we denote by Xn the set of all combinators from X that are of size n. Obviously
Xn is always finite.

4 Generating Functions

Many questions concerning the asymptotic behavior of sequences of real non-
negative numbers can be efficiently resolved by analyzing the behavior of their
generating functions (see [18] for introductory reference). This is the approach
we take to determine the asymptotic fraction of certain combinatory logic terms.
Let (an)n∈N be a sequence of non-negative numbers. The power series A(z) =∑

n∈N
anzn is called the generating function enumerating the sequence (an)n∈N.

We denote by [zn]{A(z)} the coefficient of zn in the expansion of A(z). We
say that two sequences (An)n∈N and (Bn)n∈N are asymptotically equivalent if
limn→∞

An

Bn
= 1. In such a case we write An ∼ Bn. The following theorem is

a well-known result in the theory of generating functions. Its derivation from
Szegö Lemma (see [16]) can be found, e.g., in [21, Theorem 22].
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Theorem 1 (Generating Function Method via Szegö Lemma). Let A,B
be functions satisfying the following conditions:

1. A,B are analytic in |z| < 1 with z = 1 being the only singularity on the circle
|z| = 1,

2. A,B have the following expansions in the vicinity of z = 1:

A(z) =
∑

p≥0

ap(1 − z)
p
2 , B(z) =

∑

p≥0

bp(1 − z)
p
2 ,

where b1 �= 0.

Let Ã and B̃ be functions satisfying Ã(
√

1 − z) = A(z) and B̃(
√

1 − z) = B(z).
Then

lim
n→∞

[zn]{A(z)}
[zn]{B(z)} =

a1

b1
=

Ã′(0)
B̃′(0)

.

Theorem 2 (Pringsheim, see [5, Theorem IV.6]). If A(z) is representable
at the origin by a series expansion that has non-negative coefficients and radius
of convergence R, then the point z = R is a singularity of A(z).

Theorem 3 (Exponential Growth Formula, see [5, Theorem IV.7]). If
A(z) is analytic at 0 and R is the modulus of a singularity nearest to the origin
in the sense that

R = sup{r ≥ 0 : A is analytic in |z| < r},

then the coefficient an = [zn]{A(z)} satisfies

an = R−nθ(n) with lim sup |θ(n)| 1
n = 1.

By Tn we denote n-th Catalan number, i.e., the number of expressions (or equi-
valently trees) containing n pairs of parentheses which are correctly matched. It
is well-known that Tn = 1

n+1

(
2n
n

)
and that

lim
n→∞

Tn+1

Tn
= 4. (1)

Since the set of all combinators is defined by a very simple grammar, we can
easily count all combinators of a given size.

Fact 1 (see, e.g. [4]). Let C be the generating function enumerating combina-
tors of a given size. Then

C(z) =
1 −

√
1 − 8z

2z
and |Cn| = [zn]{C(z)} = 2n+1 · Tn
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5 Weakly Normalizing Combinators

Let us start with the well-known classical fact observed already in [3].

Theorem 4 (Standarization Theorem). If a combinator is weakly normal-
izing, then the leftmost outermost reduction always leads to a normal form.

Another classical observation is that the set of weakly normalizing combinators
WN is undecidable. It follows that there is no purely syntactic formula enumer-
ating WNn and thus we cannot find the cardinality of WNn explicitly. For that
reason we take the following approach. We find feasible subclasses of WN and
C \ WN and use them to bound the density of WN in C.

Lemma 1. Asymptotically at least 1
32 of combinators are weakly normalizing

i.e., μ− (WN
C

)
≥ 1

32 .

Proof. Let L be the class of combinators which are either of the form KKM
or KSM , where M ∈ C is an arbitrary combinator. Let us notice that in just
one reduction step every combinator from this class is reducible either to K or
to S. Therefore L is a subset of all weakly normalizing combinators. Moreover,
we have |Ln| = 2|Cn−2| for n ≥ 2 and so

μ

(
L
C

)
= lim

n→∞

|Ln|
|Cn| = lim

n→∞

2|Cn−2|
|Cn| = lim

n→∞

2n · Tn−2

2n+1 · Tn

(1)
=

1
2

· 1
42

=
1
32

. 	


Lemma 2. Asymptotically at most 1 − 1
218 of combinators are weakly normal-

izing, i.e., μ+
(WN

C
)

≤ 1 − 1
218 .

Proof. Let ω1 = S(SS)SSSS and ω2 = SSS(SS)SS. Consider the class U of
combinators that are in form of ω1M1 . . . Mk or ω2M1 . . . Mk for arbitrary k ≥ 0
and M1, . . . ,Mk ∈ C. In [1] it was shown that ω1 is not normalizable, which
implies that so is ω2 since ω1 reduces to ω2. By the standarization theorem for
combinatory logic, we obtain that U ⊆ (C \ WN ). Since both ω1 and ω2 are of
size 6, we get |Un| = 2n−6 · Tn−6 for n ≥ 7. Finally,

μ

(
U
C

)
= lim

n→∞

|Un|
|Cn| = lim

n→∞

|Cn−6|
|Cn| = lim

n→∞

Tn−6

26 · Tn

(1)
=

1
26

· 1
46

=
1

218
. 	


The two above lemmas show that the density of weakly normalizing combinators,
provided it exists, is neither zero nor one. In [4] it was shown that a random
combinator is not strongly normalizing. This immediately implies the following
result.

Theorem 5. Asymptotically almost all weakly normalizing terms are not stron-
gly normalizing i.e., μ

( SN
WN

)
= 0.
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6 Combinatorial Results

Lemma 3. Let N be the set of combinators in normal form. The generating
function FN enumerating cardinality of N is given by

FN (z) =
1 − 2z −

√
1 − 4z − 4z2

2z2
.

This implies

[zn]{FN (z)} ∼ (2 + 2
√

2)nθ(n) = (4.82843 . . .)nθ(n)

with lim supn→∞ |θ(n)| 1
n = 1.

Proof. The grammar for N is given by

N := S | K | K N | S N | S N N .

It follows that the generating function FN satisfies

FN (z) = 2 + 2zFN (z) + z2(FN (z))2.

Solving the equation for FN (z) we obtain two solutions 1−2z±
√
1−4z−4z2

2z2 . Because
limn→∞ FN (0) = 2 we conclude that FN (z) = 1−2z−

√
1−4z−4z2

2z2 . In order to com-
pute the asymptotic growth of [zn]{FN (z)}, we start with the observation that
FN (z) has an analytic continuation in 0 and its radius of convergence R is equal
to 1

2 (
√

2 − 1). By Pringsheim’s theorem be obtain that R is also the modulus of
the dominating singularity of FN (z) and thus applying the Exponential Growth
Formula we obtain that

[zn]{FN (z)} = R−nθ(n) ∼ (4.82843 . . .)nθ(n) with lim sup
n→∞

|θ(n)| 1
n = 1. 	


In order to determine the density of normal forms in the set of all strongly
normalizing combinators, we define a class G as the set of combinators defined
by the following grammar:

G := S | K | KKK | K G | S G | S G G.

Since G contains all productions of N , we have N ⊆ G. Moreover, the only
redexes in G are of the form KKK, which implies that G ⊆ SN .

Lemma 4. The generating function FG enumerating cardinality of G is given by

FG(z) =
1 − 2z −

√
1 − 4z − 4z2 − 4z4

2z2
,

which yields

[zn]{FG(z)} ∼ (4.85823 . . .)nθ(n)with lim sup |θ(n)| 1
n = 1.
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Proof. Given the grammar for G we obtain that FG satisfies the following equa-
tion FG(z) = 2 + z2 + 2zFG(z) + z2(FG(z))2. Solving for FG(z) we find two
possible solutions 1−2z±

√
1−4z−4z2−4z4

2z2 . Since limn→∞ FG(0) = 2 we conclude
that FG(z) = 1−2z−

√
1−4z−4z2−4z4

2z2 . In order to find the dominating singular-
ity of FG(z), we examine the real roots of

√
1 − 4z − 4z2 − 4z4. This expression

yields two real roots z1 ≈ −0.800151 and z2 ≈ 0.205836. Because z2 lies closer
to the origin, it follows that z ≈ 0.205836 dictates the asymptotic growth of
[zn]{FG(z)}. Applying the Exponential Growth Formula we obtain that

[zn]{FG(z)} ∼ (4.85823 . . .)nθ(n) with lim sup |θ(n)| 1
n = 1. 	


Theorem 6. Asymptotically almost all strongly normalizing terms are not in
normal form, i.e., μ

( N
SN

)
= 0.

Proof. Similarly to WN , the set of strongly normalizing combinators SN is
undecidable and therefore we cannot enumerate SNn explicitly. Fortunately, it
suffices to prove that μ

(N
H

)
= 0 for some sufficiently large subclass H ⊆ SN . Let

G be the set of combinators as defined in Lemma 4. We claim that μ
(N

G
)

= 0.
Indeed, using Lemmas 3 and 4 we obtain

μ

(
N
G

)
= lim

n→∞

[zn]{FN (z)}
[zn]{FG(z)} = lim

n→∞

(4.82843 . . .)n

(4.85823 . . .)n
= 0. 	


Lemma 5. Let t0 ∈ N be a combinator of size |t0| ≥ 1. Let Nt0 be the set
of combinators in normal form which contain t0 as a subterm. The generating
function FNt0

enumerating cardinality of Nt0 is given by

FNt0
(z) =

−
√

1 − 4z − 4z2 +
√

1 − 4z − 4z2 + 4z|t0|+2

2z2
.

Proof. Note that if Q ∈ Nt0 then either:

1. Q = t0, or
2. Q = KM and t0 is a subterm of M , or
3. Q = SM and t0 is a subterm of M , or
4. Q = SMP and t0 is a subterm of M but not P , or
5. Q = SMP and t0 is a subterm of P but not M , or
6. Q = SMP and t0 is a subterm of both M and P .

It follows that FNt0
satisfies the following equation

FNt0
(z) = z|t0| + 2zFNt0

(z) + 2z2(FN (z) − FNt0
(z))FNt0

(z) + z2(FNt0
(z))2.

Using the generating function for N we solve this equation for FNt0
(z) and

obtain two solutions

−
√

1 − 4z − 4z2 ±
√

1 − 4z − 4z2 + 4z|t0|+2

2z2
.
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Since there is no Q ∈ Nt0 of size 0, we get that limz→0 FNt0
(z) = 0 and finally

FNt0
(z) =

−
√

1 − 4z − 4z2 +
√

1 − 4z − 4z2 + 4z|t0|+2

2z2
. 	


Theorem 7. Let t0 ∈ N . The density of combinators in normal form which
contain t0 as a subterm is 1.

Proof. We prove this result applying Theorem 1. We start with normalizing
FNt0

and FN in such a way that both generating functions are analytic in the
disc |z| < 1 with z = 1 being their only singularity on the circle |z| = 1. For
convenience, let us shift both generating functions by two positions obtaining
F̂N (z) := z2FN (z) and F̂Nt0

(z) := z2FNt0
(z). Since R = 1

2 (
√

2 − 1) is the
dominating singularity of both FN and FNt0

, we define FN (z) := F̂N (Rz) and
FNt0

(z) := F̂Nt0
(Rz).

First, we examine FN (z). Simplifying, we get

FN (z) =
1
2

(

−
√

2z + z −
√

(1 − z)
(
1 −

(
2
√

2 − 3
)
z
)

+ 1

)

.

Note that the inner expression
√

(1 − z)
(
1 −

(
2
√

2 − 3
)
z
)
, carrying the singu-

larities of FN (z), has exactly two roots, i.e., z1 = 1 and z2 = 1
2
√
2−3

≈ −5.82843.

It follows that FN (z) must be analytic in the disc |z| < 1 with z = 1 being the
only singularity on the circle |z| = 1. Moreover, FN (z) yields an expansion in
the vicinity of z = 1 in form of

∑
p≥0 wp(1− z)p/2 with w1 = − 1

2

√
4 − 2

√
2 �= 0.

Simplifying FNt0
, we obtain

FNt0
= −1

2

√

(1 − z)
(
1 −

(
2
√

2 − 3
)
z
)

+
1
2

√
1 − 2

(√
2 − 1

)
z −

(
3 − 2

√
2
)
z2 + 2−|t0|

(√
2 − 1

)|t0|+2
.

Since 1 − 2
(√

2 − 1
)
z −

(
3 − 2

√
2
)
z2 + 2−|t0|(√2 − 1

)|t0|+2 is decreasing in [0, 1]
attaining values 1 and 0 for z = 0 and z = 1 respectively, we obtain that FNt0

is analytic in the disc |z| < 1 with z = 1 being the only singularity on the circle
|z| = 1. Moreover, FNt0

has an expansion in the vicinity of z = 1 in form of
∑

p≥0 vp(1 − z)p/2 with v1 = − 1
2

√
4 − 2

√
2.

Next, let us consider functions F̃N and F̃Nt0
such that

F̃N (
√

1 − z) = FN (z) and F̃Nt0
(
√

1 − z) = FNt0
(z).

By the analyticity of FN and FNt0
in the disc |z| < 1, we obtain that both F̃N (z)

and F̃Nt0
(z) yield derivatives in this disc and thus F̃ ′

N (0) and F̃ ′
Nt0

(0) exist.



Asymptotic Properties of Combinatory Logic 71

Finally, computing those derivatives we get F̃ ′
N (0) = F̃ ′

Nt0
(0) = − 1

2

√
4 − 2

√
2

and so

lim
n→∞

[zn]{FNt0
}

[zn]{FN } = lim
n→∞

R−n−2[zn+2]{FNt0
}

R−n−2[zn+2]{FN }
= lim

n→∞

F̃ ′
Nt0

(0)

F̃ ′
N (0)

= 1.
	


Theorem 8. Asymptotically almost all normal forms are not typeable, i.e.,
μ

(T YP ∩ N
N

)
= 0.

Proof. Note that Ω = S(SKK)(SKK) is in normal form and is not typeable.
Directly from Theorem 7 we obtain that asymptotically almost every combinator
in normal form contains Ω as a subterm and is thus not typeable. 	
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