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Abstract. We will look at the question for which bounded Turing reduci-
bilities r and r′ such that r is stronger than r′ join preservation holds,
i.e. for which r and r′ every join in the computably enumerable (c.e.)
r-degrees is also a join in the c.e. r′-degrees. We will also have a look at the
corresponding question for meets. We will consider the class of monotone
admissible (uniformly) bounded Turing reducibilities, i.e. the reflexive and
transitive Turing reducibilities with use bounded by a function that is
contained in a (uniformly computable) family of strictly increasing com-
putable functions. This class contains for example ibT- and cl-reducibility.
We will show that join preservation does not hold for cl and any admissi-
ble uniformly bounded Turing reducibility. We will show that, on the other
hand, for all monotone admissible bounded Turing reducibilities r and r′

such that r is stronger than r′, meet preservation holds.

1 Introduction

Various notions of reducibilities stronger than Turing reducibility have been
studied in computability theory, e.g. the so called classical strong reducibili-
ties: one-one reducibility (1-reducibility), many-one reducibility (m-reducibility),
truth-table reducibility (tt-reducibility), and weak truth-table reducibility (wtt-
reducibility) (see e.g. Odifreddi [13]). More recently, one has started to look
at the so called strongly bounded Turing reducibilities: identity bounded Turing
reducibility (ibT-reducibility) and computable Lipschitz reducibility (cl-reducibi
lity) which are defined in terms of Turing functionals where the use is bounded
by the identity function and the identity function plus a constant and which were
introduced by Soare [14] and Downey, Hirschfeldt, and LaForte [9,10], respec-
tively. cl-reducibility is not only a notion of relative complexity but can also be
viewed as a notion of relative randomness and is hence important in the field
of algorithmic randomness (see the monograph [8] by Downey and Hirschfeldt
for more background). The degree structures of the strongly bounded Turing
reducibilities on the c.e. sets have been studied intensively. Barmpalias [5] showed
that the partial ordering (Rcl,≤) of the c.e. cl-degrees has no maximal elements;
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Fan and Lu [12] showed that there are maximal pairs hence the partial orderings
of the ibT- and cl-degrees are not upper semilattices, and Barmpalias and Lewis
[6] and Day [7] showed that these partial orderings are not dense. Ambos-Spies,
Bodewig, Kräling, and Yu [3] embedded the nonmodular lattice N5 into the c.e.
ibT- and cl-degrees thereby showing that these partial orderings are not distrib-
utive, and Ambos-Spies [1] proved some global results, e.g. showed that the first
order theories of the partial orderings of the c.e. ibT- and cl-degrees are unde-
cidable. Recently, Ambos-Spies [2] introduced a more general class of bounded
Turing reducibilities, the uniformly bounded Turing reducibilities. A reducibility
r is a (uniformly) bounded Turing reducibility ((u)bT-reducibility) if there is a
family F of (uniformly) computable functions such that, for all sets A and B, A
is r-reducible to B if and only if A is Turing reducible to B with use bounded by
some function f in F . We call a (uniformly) bounded Turing reducibility admis-
sible if it is reflexive and transitive and we call it monotone if it is induced by
a family of strictly increasing functions. Examples of monotone admissible ubT-
reducibilities are the strongly bounded Turing reducibilities ibT and cl as well as
the linearly bounded and the primitive recursively bounded Turing reducibilities.
An example of an admissible monotone bT-reducibility which is not uniformly
bounded is wtt-reducibility. Here, we will only look at the monotone admissible
bT-reducibilities.

If a reducibility r is stronger than a reducibility r′, of course, every upper
r-bound for some sets A and B is also an upper r′-bound for A and B and the
same holds for lower bounds. But this does not necessarily imply that least upper
r-bounds (joins) have to be a least upper r′-bounds, too. Again, the same holds
for greatest lower bounds (meets). Here, we ask the question for which reducibil-
ities r and r′, joins and meets in the c.e. r-degrees are preserved in the c.e. r′-
degrees. We say r-r′ join (meet) preservation holds if, for all noncomputable c.e.
sets A, B, and C such that the r-degree of C is the join (meet) of the r′-degrees of
A and B, it holds that the r′-degree of C is the join (meet) of the r′-degrees of
A and B, too.

For most of the classical reducibilities mentioned above, the structure of
the c.e. degrees is an upper semilattice where the join of the degrees of two
sets A and B is induced by the effective disjoint union A ⊕ B. So, for two
such reducibilities where r is stronger than r′, of course, r-r′ join preservation
holds. So, for example, m-tt join preservation, tt-wtt join preservation and wtt-T
join preservation hold. For reducibilities r whose degree structures are not an
upper semilattice with join induced by the effective disjoint union, the question
of r-r′ join preservation is less obvious. For the classical strong reducibilities,
1-reducibility is an example of such a reducibility, but, as one can easily show
(see Lemma 2 below), 1-m join preservation holds. It easily follows that r-r′

join preservation holds for all classical strong reducibilities where r is stronger
than r′. For the (uniformly) bounded Turing reducibilities, the question of join
preservation is less straightforward. Ambos-Spies, Ding, Fan, and Merkle [4]
showed that ibT-cl join preservation holds and Ambos-Spies, Bodewig, Kräling,
and Yu (see [1]) showed that cl-wtt join preservation holds, too. This may lead



40 N. Losert

one to conjecture that – just as in case of the classical strong reducibilities – r-r′

join preservation holds for any monotone admissible (u)bT-reducibilities where
r is stronger than r′, too. As we will show here, however, this is not the case. In
fact, for r = ibT,cl and for any monotone amissible ubT-reducibility r′ which is
strictly stronger than cl, r-r′ join preservation fails (see Theorem 1 below).

We complement our main result by considering meet preservation in the
monotone admissible bt-reducibilities, too. There we generalize the result in [4]
that ibT-cl meet preservation holds by showing that indeed, r-r′ meet preserva-
tion holds for all monotone admissible bT-reducibilities r and r′ such that r is
stronger than r′ (see Lemma 5).

So, for the monotone admissible (uniformly) bounded Turing reducibilities,
meet preservation holds in general while, in some instances, join preservation
fails. For the classical reducibilities, i.e. the strong reducibilities together with
Turing reducibility, the converse is true. There join preservation holds in general,
whereas, as Downey and Stob [11] showed, wtt-T meet preservation fails.

2 Preliminaries

A reducibility r is admissible if it is reflexive and transitive. For two reducibilities
r and r′, we say that r is stronger than r′ (denoted by r � r′) if, for all sets A
and B, from A ≤r B, it follows that A ≤r′ B, and r is strictly stronger than r′

(r ≺ r′) if r � r′ and r �= r′.

Definition 1. For two admissible reducibilities r and r′, we say that r-r′ join
preservation holds (in the c.e. degrees) if, for any noncomputable c.e. sets A, B,
and C,

degr(A) ∨ degr(B) = degr(C) ⇒ degr′(A) ∨ degr′(B) = degr′(C)

holds. Otherwise, we say that r-r′ join preservation fails. Similarly, r-r′ meet
preservation holds (in the c.e. degrees) if, for any noncomputable c.e. sets A, B,
and C,

degr(A) ∧ degr(B) = degr(C) ⇒ degr′(A) ∧ degr′(B) = degr′(C)

holds and r-r′ meet preservation fails otherwise.

Let {ΦX
e : e ≥ 0} be a fixed enumeration of all Turing functionals obtained by

Gödelization of the oracle Turing machines. Then, we obtain an enumeration
{ΦX,f

e : e ≥ 0} of all f -bounded Turing functionals by bounding the use of each
ΦX

e on input x by f(x) (by making the computation divergent in case of longer
oracle queries). For any pair of sets A and B, A is f -bounded Turing reducible
to B (denoted by A ≤f−T B) if and only if there is an e such that A = ΦB,f

e . By
letting f = id, we obtain an enumeration {Φ̂X

e } of all identity bounded Turing
functionals.

We call a reducibility r a bounded Turing reducibility (bT-reducibility) if
there is a family F of computable functions such that A ≤r B if and only if
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A ≤f−T B for some function f ∈ F ; in this case we say that r is induced
by F . If F is uniformly computable, r is called a uniformly bounded Turing
reducibility (ubT-reducibility). We call a bounded Turing reducibility monotone
if it is induced by a family F which consists only of strictly increasing functions.
Note that ibT and cl are ubT-reducibilities which are induced by FibT = {id}
and Fcl = {id + e : e ≥ 0}, respectively.

Lemma 1 (Ambos-Spies [2]). Let r and r′ be admissible ubT-reducibilities.
Then, r � r′ if and only if there are uniformly computable families F and F ′

that induce r and r′, respectively, such that F ≤∗ F ′, i.e. for every function
f ∈ F , there is a function f ′ ∈ F ′ such that f(x) ≤ f ′(x) for almost all x ∈ ω.

3 Join Preservation

It is a straightforward observation that r-r′ join preservation holds for reducibil-
ities r and r′ such that r is stronger than r′ and such that the structures of the
c.e. r-degrees and of the c.e. r′-degrees form upper semilattices with join induced
by the effective disjoint union. We will now observe (by giving an example) that
r-r′ join preservation may hold even if the structure of the c.e. r-degrees does
not form an upper semilattice.

Lemma 2. 1-m join preservation holds.

Proof. Given c.e. sets A0, A1, and B such that

deg1(A0) ∨ deg1(A1) = deg1(B) (1)

holds, we have to show that degm(A0) ∨ degm(A1) = degm(B) holds, too. As
we know that degm(A0) ∨ degm(A1) = degm(A0 ⊕ A1), we only have to show
that B =m A0 ⊕ A1. It is obvious that Ai ≤1 A0 ⊕ A1 via fi(x) = 2x + i for
i = 0, 1, so, it follows from (1) that B ≤1 A0 ⊕ A1, hence B ≤m A0 ⊕ A1. On
the other hand, if we fix gi such that Ai ≤1 B via gi for i = 0, 1, it follows that
A0 ⊕ A1 ≤m B via g where g(2x + i) = gi(x) for all x ≥ 0 and for i = 0, 1. �
More examples of reducibilities r and r′ where the structure of r does not form
an upper semilattice but where r-r′ join preservation still holds have been given
in the bounded Turing degrees.

Lemma 3 (Ambos-Spies, Ding, Fan, and Merkle [4]; Ambos-Spies [1]).
ibT-cl, ibT-wtt, and cl-wtt join preservation hold.

This result might lead to the assumption that cl-r join preservation holds for all
reducibilities r with cl � r � wtt, but this is not the case. We will now show that
cl-r join preservation even fails for all admissible monotone ubT-reducibilities
with cl ≺ r.

Theorem 1. Let r be a monotone admissible ubT-reducibility such that cl ≺ r.
Then, for r′ = ibT, cl, r′-r join-preservation fails.
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Proof. By Lemma 3, ibT-cl join preservation holds. So, it is enough to prove the
theorem for r′ = ibT. Since, by cl ≺ r, any upper ibT-bound for two sets A0

and A1 is also an upper r-bound for A0 and A1, it suffices to construct c.e. sets
A0, A1, B, and C such that degibT(A0)∨ degibT(A1) = degibT(B) and such that
A0, A1 ≤r C but B �≤r C. Let F be a uniformly computable admissible family
of strictly increasing functions such that r is induced by F . As F is uniformly
computable, we can fix a computable function f such that f ≥∗ h for all h ∈ F .
As cl ≺ r, hence r �� cl, F �≤∗ {id+e : e ≥ 0} holds, so, there is a function g ∈ F
such that {g} �≤∗ {id + e : e ≥ 0}, i.e. for any e ≥ 0, g(x) > x + e for infinitely
many x. Since g is strictly increasing, this implies that for all e ≥ 0, g(x) > x+e
for all but finitely many x, so, id + e ≤∗ g for all e ≥ 0. So, in order to complete
the proof, it suffices to show that the following lemma holds.

Lemma 4. Let g be a strictly increasing computable function such that
id + e ≤∗ g for all e and let f be any computable function (in particular, f
can be chosen as above). Then, there are c.e. sets A0, A1, B and C such that the
following hold.

degibT(A0) ∨ degibT(A1) = degibT(B) (2)
A0, A1 ≤g-T C (3)

B �≤f-T C. (4)

Proof. We will enumerate c.e. sets A0, A1, B, and C such that (2) to (4) hold
using a tree argument. The construction will use ideas introduced in the proof
that the nondistributive lattice N5 can be embedded into the partial orderings
(RibT,≤) and (Rcl,≤) in [3]. Our notation will be the same as in that proof. To
guarantee that (3) holds and that B is an upper ibT-bound for A0 and A1, we
will satisfy the following global permitting (or coding) requirement for i = 0, 1.

(x ↘s+1 Ai ⇒ ∃y ≤ x(y ↘s+1 B)) & (x ↘s+1 Ai ⇒ ∃y ≤ g(x)(y ↘s+1 C))
(5)

To guarantee that B is in fact the least upper ibT-bound for A0 and A1, i.e.
that (2) holds, we will meet the following join requirements for e ≥ 0.

Qe : A0 = Φ̂
We0
e1 & A1 = Φ̂

We0
e2 ⇒ B ≤ibT We0 (e = 〈e0, e1, e2〉).

Finally, we will satisfy condition (4) by meeting the nonordering requirements

Pe : B �= ΦC,f
e

for e ≥ 0. Before we give the actual construction, we will explain the ideas
underlying the strategies for meeting the individual requirements and how to
combine them.

As the join requirements Qe are conditional requirements whose hypoth-
eses are not decidable, we have to guess on the correctness of the hypotheses.
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We define the length of agreement between A0 and Φ̂
We0
e1 and between A1 and

Φ̂
We0
e2 at stage s by letting

l(e, s) = max{x : ∀y < x(A0,s(y) = Φ̂
We0,s
e1,s (y) & A1,s(y) = Φ̂

We0,s
e2,s (y))}.

Since the Φ̂ are bounded functionals, lims→∞ l(e, s) ≤ ∞ exists and the following
holds.

(A0 = Φ̂
We0
e1 & A1 = Φ̂

We0
e2 ) ⇔ lim

s→∞ l(e, s) = ∞ ⇔ lim sup
s→∞

l(e, s) = ∞. (6)

In the following, we call a join requirement Qe infinitary if its hypothesis is true
(i.e., if lims→∞ l(e, s) = ∞) and we call Qe finitary otherwise. The strategy
for meeting the join requirements is the join strategy used by Ambos-Spies,
Bodewig, Kräling, and Yu in [3]. For meeting an infinitary join requirement Qe,
we guarantee B ≤ibT We0 by permitting (up to some computable subset of B).
We work with a computable set S = {sn : n ≥ 0} of Qe-expansionary stages,
i.e., s0 < s1 < s2 < . . . and l(e, s0) < l(e, s1) < l(e, s2) < . . .. We ensure that
numbers put into B between stages sn + 1 and sn+1 + 1 are greater than sn + 1.
So, it suffices to guarantee that if a number x enters B at a stage s + 1 where
s ∈ S and x < l(e, s) then a number ≤ x will be enumerated into We0 after stage
s. This change in We0 is forced by putting a sufficiently small number into A0

or A1. As one can easily check, this is achieved by guaranteeing the following.

x ↘s+1 B & x < l(e, s) ⇒∃y < min(x′, l(e, s))(y ↘s+1 A0 or y ↘s+1 A1)
where x′ = μz(z > x & z /∈ We0,s)

(7)

For meeting the nonordering requirements Pe, we will use the Friedberg-Muchnik
strategy. For a fixed unused number x, we ensure B(x) �= ΦC,f

e (x) by waiting for
a stage s such that ΦCs,f

e,s (x) = 0. Then, at stage s + 1, we put x into B and,
in order to preserve the computation ΦCs,f

e,s (x), we impose a restraint of length
f(x) + 1 on C, thereby ensuring

B(x) = 1 �= 0 = Bs(x) = ΦCs,f
e,s (x) = ΦC,f

e (x). (8)

In the presence of the join requirements and the global permitting requirement,
this strategy needs some amendments. To describe the potential conflicts, con-
sider the situation in which we wish to meet requirement Pe and simultaneously
satisfy the global permitting requirement (5) and follow the join strategy (7) for
a single infinitary join requirement Qe′ of higher priority.

Now, when we put a number x into B at stage s + 1 in order to guarantee
(8), then, according to (7), we have to put a number y < x′ into A0 or A1 at
stage s + 1 where

x′ = μz(z > x & z /∈ We′
0,s).

(In our case, we choose to put y into A1.) If we do so, then, as long as x ≤ y,
this is consistent with the first part of condition (5). But, for the second part of
this condition, we have to put a number z ≤ g(y) into C. In case that z ≤ f(x),
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however, this will injure the restraint imposed on C in order to preserve the
computation ΦCs,f

e,s (x). In order to overcome this problem, we will make sure
that we can find a number y such that f(x) < y < x′ where y is not yet in
A1 and the interval [y, g(y)] is not yet completely enumerated into C. (Then
putting y into A1 and some new number z with y ≤ z ≤ g(y) into C makes the
enumeration of x into B compatible with (5) and (7).)

For that matter, we will assign a sufficiently long interval In of unused
numbers to Pe. In will contain finitely many candidates xn,k for a possible
attack on Pe where these numbers are chosen so that xn,k+1 > f(xn,k) and
g(xn,k) ≥ xn,k + k + 2 for all k. (Note that the latter can be achieved since,
by choice of g, g(y) > y + k + 2 for all sufficiently large y; also note that
g(xn,k) ≥ xn,k + k + 2 implies g(y) ≥ y + k + 2 for all y ≥ xn,k.) We will
arrange that, for some k (and some stage s), (xn,k, xn,k+1] ⊆ We′

0,s where xn,k

is not in Bs, xn,k+1 is not in A1,s and the interval [xn,k+1, g(xn,k+1)] is not
completely contained in Cs. (Hence, for x = xn,k and y = xn,k+1, y < x′ whence
we can ensure (8) and simultaneously obey (5) and (7) by putting xn,k into B,
xn,k+1 into A1, and some unused number from the interval [xn,k+1, g(xn,k+1)]
into C at stage s + 1.) In order to ensure (xn,k, xn,k+1] ⊆ We′

0
for some k, we

will successively and in decreasing order put numbers w from In into A0 at
stages s + 1 where l(e, s) is greater than the endpoint of In. This forces We′

0

to respond by enumerating more and more numbers from In (or smaller ones).
As we will argue, this implies that, at some point s, there will be an interval
(xn,k, . . . xn,k+1] ⊂ In such that the enumeration of the numbers ≥ xn,k + 1
from In into A0 has forced all the numbers xn,k +1, . . . , xn,k+1 into We′

0
. (In the

actual construction, all the numbers actually have to be forced simultaneously
into all sets We′

0
attached to the infinitary higher priority join requirements, but

we will show that this can be achieved.) So we can use xn,k for an attack on
Pe – provided that xn,k �∈ Bs, xn,k+1 �∈ A1,s and [xn,k+1, g(xn,k+1)] �⊆ Cs.

The latter, however, is not trivially true, since to make the enumeration of
w into A0 compatible with (5) simultaneously we have to put a trace wB ≤ w
into B and a trace wC ≤ g(w) into C. So whenever we put w into A0, then,
simultaneously we put w into B (which is compatible with (7) since w goes
simultaneously into A0) and a number from the interval [w, g(w)) into C. Since
we put only numbers w > xn,k into A0 this procedure also puts only numbers
> xn,k into B and no numbers into A1 hence guarantees xn,k �∈ Bs and xn,k+1 �∈
A1,s. To ensure that [xn,k+1, g(xn,k+1)] �⊆ Cs, however, we have to choose the
trace wC ∈ [w, g(w)) to be put into C carefully. Here we let wC = w + k′ + 1
for the unique k′ such that w ∈ (xn,k′ , xn,k′+1]. Note that, by choice of the
numbers xn,k′ this ensures that wC ≤ g(w). On the other hand, this ensures that
xn,k+1 + k + 2 is not enumerated into C since, for w ≤ xn,k+1, wC ≤ w + k + 1
while, for w > xn,k+1 < xn,k+1 + k + 2, wC ≥ w + (k + 1) + 1 > xn,k+1 + k + 2.

This completes the discussion of the basic conflicts among the different goals
of the construction and how these conflicts can be resolved. We now turn to the
actual construction.
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We implement the guesses about which of the join requirements are infinitary
on the full binary tree T = {0, 1}<ω. A node α codes a guess about the first n
join requirements Q0, . . . ,Qn−1 where, for e < n, α(e) = 0 codes the guess that
Qe is infinitary and α(e) = 1 codes the guess that Qe is finitary. So the true path
f : ω → {0, 1} of the construction is defined by

f(e) =

{
0 if A0 = Φ̂

We0
e1 & A1 = Φ̂

We0
e2

1 otherwise.

For each node α of length e there is a strategy Pα for meeting requirement Pe

which is based on the guess α. We will show that the strategy Pf�e on the true
path will succeed in meeting Pe.

At any stage s of the construction we have an approximation δs of f � s, i.e., a
guess which of the first s join requirements are infinitary. For the definition of δs,
first we inductively define α-stages for each node α as follows. Each stage s ≥ 0
is a λ-stage. If s is an α-stage, then we call s α-expansionary if l(|α|, s) > l(|α|, t)
for all α-stages t < s, and we call s an α0-stage if s is α-expansionary and an
α1-stage if s is an α-stage but not α-expansionary. Now, for each s ≥ 0, let
δs ∈ T be the unique α of length s such that s is an α-stage. So, the node δs

represents the guess at which of Q0, . . . Qs−1 are infinite which is made at the
end of stage s. It easily follows from (6) that the true path is the leftmost path
visited infinitely often in the construction.

Claim 1 (True Path Lemma). f = lim infs→∞ δs, i.e., for any α, α � f if and
only if α � δs for infinitely many s and there are only finitely many s such that
δs <L α.

The intervals In which might be assigned to the strategies for meeting the
nonordering requirements are inductively defined as follows, where the nth inter-
val In consists of n(xn,0 + 1) subintervals In,k = (xn,k, xn,k+1].

x0,0 = μx(g(x) ≥ x + 2)
xn,k = μx(x > f(xn,k−1) & g(x) ≥ x + k + 2)

for n ∈ ω and 1 ≤ k ≤ n(xn,0 + 1)
xn+1,0 = μx(x > xn,n(xn,0+1) + n(xn,0 + 1) + 2 & g(x) ≥ x + 2) for n ∈ ω

In,k = (xn,k, xn,k+1] for n ∈ ω and 0 ≤ k ≤ n(xn,0 + 1) − 1

In =
n(xn,0+1)−1⋃

k=0

In,k

Note that this definition ensures that xn,k+1 > f(xn,k), g(w) ≥ w + k + 2 for
w ∈ In,k and g(w) < xn+1,0 for w ∈ In.

For a node α of length e, we call a number x ∈ In ∪ {xn,0} α-safe at stage s if

x = xn,k for some k with 0 ≤ k ≤ n(xn,0 + 1) − 1 (9)

x /∈ Bs, xn,k+1 /∈ A1,s and xn,k+1 + k + 2 /∈ Cs, and (10)
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∀e′([e′ < e & α(e′) = 0] ⇒ In,k ⊆ We′
0,s) (11)

hold where e′ = 〈e′
0, e

′
1, e

′
2〉.

Using the above definitions, the construction of the sets A0, A1, B, and C is
as follows where stage 0 is vacuous (i.e., A0,0 = A1,0 = B0 = C0 = ∅).

Stage s + 1. A strategy Pα with |α| = e requires attention at stage s + 1 if
α � δs, Pα is not satisfied at the end of stage s, and one of the following cases
applies.

(i) No interval is assigned to Pα at the end of stage s.
(ii) Interval In =

(
xn,0, xn,n(xn,0+1)

]
is assigned to Pα at the end of stage s,

∀e′([e′ < e & α(e′) = 0] ⇒ l(e′, s) > xn,n(xn,0+1)) (12)

holds, no number x ∈ In ∪ {xn,0} is α-safe at stage s, and In �⊆ A0,s.
(iii) Interval In is assigned to Pα at the end of stage s, (12) holds, and there

is a number x ∈ In ∪ {xn,0} such that x is α-safe at stage s and Bs(x) =
ΦCs,f

e,s (x) = 0.

Fix α minimal such that Pα requires attention (as Pδs requires attention, there
is such an α). Declare that Pα receives attention or becomes active, initialize
all strategies Pβ with α < β (i.e., if an interval is assigned to Pβ then cancel
this assignment and if Pβ had been satisfied before, then declare Pβ to be
unsatisfied), and perform the following action according to the case via which
Pα requires attention.

(i) For the least n > e, s such that the interval In has not been assigned to any
strategy before, assign In to Pα.

(ii) Let y be the greatest number in In \A0,s. Put y into A0 and B and, for the
unique k such that y ∈ In,k, put y + k + 1 into C.

(iii) Let x be the greatest α-safe number in In ∪ {xn,0} such that Bs(x) =
ΦCs,f

e,s (x) = 0. Let k be the unique number such that x = xn,k. Put x into
B, xn,k+1 into A1, and xn,k+1+k+2 into C. Then, declare Pα to be satisfied.

This completes the construction. We will prove a series of claims to show that
the construction satisfies all of our requirements. The claims will essentially
be the same as in the proof of Theorem 3.2 in [3]. The first of these claims is
straightforward and we omit the proof.

Claim 2. Every strategy Pα on the true path (i.e., α � f) is initialized only
finitely often and requires attention only finitely often. Moreover, for any such
strategy, there is an interval In which is permanently assigned to it.

Claim 3. The global permitting requirement ( 5) is satisfied.

Proof. It is crucial to note that numbers from In ∪ {xn,0} ∪ {g(x) : x ∈ In} can
be enumerated into any of the sets under construction at stage s+1 only by the
strategy to which In is assigned at this stage. So, it follows by a straightforward
induction that if a strategy Pα acts via (ii) at stage s + 1 then, for the number
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y there, neither y is in Bs nor y + k + 1 is in Cs. And, similarly, if a strategy Pα

acts via (iii) at stage s + 1 then neither xn,k is in Bs nor xn,k+1 is in A1,s nor
xn,k+1 + k + 2 is in Cs where the latter follows from our observations preceding
the construction. This easily implies the claim, since a number x is enumerated
into A0 at some stage s + 1 only if some strategy Pα acts at stage s + 1 via
(ii), hence x ∈ In,k for some k and, at stage s + 1, x is enumerated into B and
x+k+1 is enumerated into C where x+k+1 ≤ g(x) by choice of In,k; and since
a number x is enumerated into A1 at some stage s + 1 only if some strategy Pα

acts at stage s + 1 via (iii), hence x = xn,k+1 for some n, k and, at stage s + 1,
xn,k < xn,k+1 is enumerated into B and xn,k+1 + k + 2 is enumerated into C
where by choice of xn,k+1, xn,k+1 + k + 2 ≤ g(x).

Claim 4. The join requirements Qe are met.

Proof. The argumentation is very similar to the one in the proof of Claim 5
in the proof of Theorem 3.2 in [3]. We fix e = 〈e0, e1, e2〉 and assume w.l.o.g.
that Qe is infinitary, so, α0 � f for α = f � e. Hence there are infinitely many
α0-stages. By Claims 1 and 2, we can fix an α0-stage s0 > e such that no
strategy Pβ with β ≤ α0 becomes active after this stage. Let S = {sn : n ≥ 0}
be the set of the α0-stages ≥ s0. Then, S is computable, s0 < s1 < s2 < . . .,
and l(e, s0) < l(e, s1) < l(e, s2) < . . .. So, as explained in the discussion of the
strategy for meeting the requirements Qe, it suffices to show that (7) holds for
s ∈ S. But this is immediate by construction since at a stage sm + 1 only a
strategy Pβ with α0 � β may act. Namely, if Pβ acts via (ii) then the number
x enumerated into B is simultaneously enumerated into A0 and if Pβ acts via
(iii) then the claim follows from the corresponding action by β-safeness of the
number x put into B.

Claim 5. The nonordering requirements Pe are met.

Proof. For fixed e, assume for a contradiction that Pe is not met. Exactly as in
[3], we can then argue that for α = f � e, an interval In becomes permanently
assigned to Pα at some stage s1+1, that there is no number x ∈ In ∪{xn,0} that
is α-safe at any stage s′ > s1, and that all numbers in In are enumerated into
A0 in decreasing order after stage s1 +1 according to clause (ii) in the definition
of requiring and receiving attention. As in [3], for x ∈ In, let tx > s1 be the
α-stage such that x is enumerated into A0 at stage tx + 1. Then (12) holds for
s = tx. So, for x ∈ In and for any infinitary higher priority join requirement Qe′ ,
We′

0,tx � x + 1 �= We′
0,tx−1 � x + 1. So if we let J be the set of the numbers e′

0,
such that

J = {e′
0 : ∃e′

1, e
′
2 : (〈e′

0, e
′
1, e

′
2〉 < e & Q〈e′

0,e′
1,e′

2〉 is infinitary},

then
∀j ∈ J ∀x ∈ In(Wj,tx � x + 1 ⊂ Wj,tx−1 � x + 1). (13)

Now, for x ∈ In and j ∈ J , let

wj(x) = |Wj,tx � x + 1| and wJ (x) =
∑
j∈J

wj(x),
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and call x unsaturated if x /∈ Wj,tx for some j ∈ J . By definition, |J | ≤ e and
wj(x) ≤ x + 1, hence

wJ (xn,0) ≤ e(xn,0 + 1). (14)

As in [3], we will now argue that this bound is not compatible with (13) and the
fact that there are no α-safe numbers in In ∪ {xn,0}. As shown in [3], it follows
from (13) that

wJ (xn,0) ≥ |{x ∈ In : x is unsaturated}|. (15)

Now, it suffices to give a lower bound on the number of unsaturated numbers
in In that contradicts (14). For a number xn,k ∈ In ∪ {xn,0} with 0 ≤ k ≤
n(xn,0 + 1) − 1, (9) and (10) hold for tx = s. So, since there are no α-safe
numbers in In ∪ {xn,0} after stage s1 + 1, (11) must fail for tx = s. It follows
that at least one number in In,k must be unsaturated for every k. As there are
n(xn,0 +1) many subintervals In,k in In each of which must contain at least one
unsaturated number and as e < n by construction, it follows that there are at
least (e + 1)(xn,0 + 1) unsaturated numbers in In, which, together with (15),
leads to the desired contradiction.

This completes the proof of Lemma 4. �

4 Meet Preservation

In contrast to Theorem1, meet preservation holds for the monotone admissi-
ble bounded Turing reducibilities in general. This is immediate by the follow-
ing lemma which generalizes the observation in [4] that ibT-cl and cl-wtt meet
preservation hold.

Lemma 5. Let r and r′ be monotone admissible bounded Turing reducibilities
induced by F and F ′, respectively, such that r is stronger than r′. Then, r-r′

meet preservation holds.

Proof. The proof is essentially the same as the one for the results in [4]. Let A0,
A1, and B be c.e. sets such that

degr(A0) ∧ degr(A1) = degr(B) (16)

holds. As r is stronger than r′, B is also an upper r′-bound for A0 and A1, so,
it suffices to show that for a given c.e. set C such that C ≤r′ A0, A1, C ≤r′ B
holds. Fix functions fi ∈ F ′ such that C ≤fi−T Ai for i = 0, 1. Since r′ is
admissible, as shown in [2], we may assume that F ′ is closed under composition,
so, f0 ◦ f1 = f ∈ F ′. As r′ is monotone, we may also assume that f0 and f1
are strictly increasing, so, max(f0, f1) ≤ f . It follows that C ≤f−T A0, A1. Let
Cf = {f(x) : x ∈ C} be the f -shift of C. Then, Cf ≤ibT A0, A1. As ibT is
stronger than r, Cf ≤r A0, A1, so, by (16), Cf ≤r B, hence Cf ≤r′ B. We
know that C ≤f−T Cf , hence by f ∈ F ′, C ≤r′ Cf , so, by transitivity of
r′, C ≤r′ B. �
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5 Open Problems

Contrasting previous positive results on join preservation in the bounded Tur-
ing degrees (see Lemma 3) we have shown that r-r′ join preservation fails for
the strongly bounded Turing reducibilities r = ibT,cl and any monotone admis-
sible uniformy bounded Turing reducibility r′ with cl ≺ r′. This naturally leads
to the question of a classification of the monotone admissible bounded Turing
reducibilities r and r′ for which r-r′ join preservation holds. Moreover, one may
consider nonmonotone reducibilities, too. For the latter, a classification of the
bT-reducibilities for which meet preservation holds is open, too.
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