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Abstract. We will look at the question for which bounded Turing reduci-
bilities » and ' such that r is stronger than 7’ join preservation holds,
i.e. for which r and r’ every join in the computably enumerable (c.e.)
r-degrees is also a join in the c.e. r'-degrees. We will also have a look at the
corresponding question for meets. We will consider the class of monotone
admissible (uniformly) bounded Turing reducibilities, i.e. the reflexive and
transitive Turing reducibilities with use bounded by a function that is
contained in a (uniformly computable) family of strictly increasing com-
putable functions. This class contains for example ibT- and cl-reducibility.
We will show that join preservation does not hold for cl and any admissi-
ble uniformly bounded Turing reducibility. We will show that, on the other
hand, for all monotone admissible bounded Turing reducibilities » and r’
such that r is stronger than r’, meet preservation holds.

1 Introduction

Various notions of reducibilities stronger than Turing reducibility have been
studied in computability theory, e.g. the so called classical strong reducibili-
ties: one-one reducibility (1-reducibility), many-one reducibility (m-reducibility),
truth-table reducibility (tt-reducibility), and weak truth-table reducibility (wtt-
reducibility) (see e.g. Odifreddi [13]). More recently, one has started to look
at the so called strongly bounded Turing reducibilities: identity bounded Turing
reducibility (ibT-reducibility) and computable Lipschitz reducibility (cl-reducibi
lity) which are defined in terms of Turing functionals where the use is bounded
by the identity function and the identity function plus a constant and which were
introduced by Soare [14] and Downey, Hirschfeldt, and LaForte [9,10], respec-
tively. cl-reducibility is not only a notion of relative complexity but can also be
viewed as a notion of relative randomness and is hence important in the field
of algorithmic randomness (see the monograph [8] by Downey and Hirschfeldt
for more background). The degree structures of the strongly bounded Turing
reducibilities on the c.e. sets have been studied intensively. Barmpalias [5] showed
that the partial ordering (R, <) of the c.e. cl-degrees has no maximal elements;

I would like to thank my advisor, Klaus Ambos-Spies, for his help and guidance
during my work on this paper.
© Springer International Publishing Switzerland 2015

R. Jain et al. (Eds.): TAMC 2015, LNCS 9076, pp. 38-49, 2015.
DOI: 10.1007/978-3-319-17142-5_5



Where Join Preservation Fails in the Bounded Turing Degrees of C.E. Sets 39

Fan and Lu [12] showed that there are maximal pairs hence the partial orderings
of the ibT- and cl-degrees are not upper semilattices, and Barmpalias and Lewis
[6] and Day [7] showed that these partial orderings are not dense. Ambos-Spies,
Bodewig, Kriling, and Yu [3] embedded the nonmodular lattice N5 into the c.e.
ibT- and cl-degrees thereby showing that these partial orderings are not distrib-
utive, and Ambos-Spies [1] proved some global results, e.g. showed that the first
order theories of the partial orderings of the c.e. ibT- and cl-degrees are unde-
cidable. Recently, Ambos-Spies [2] introduced a more general class of bounded
Turing reducibilities, the uniformly bounded Turing reducibilities. A reducibility
r is a (uniformly) bounded Turing reducibility ((u)bT-reducibility) if there is a
family F of (uniformly) computable functions such that, for all sets A and B, A
is r-reducible to B if and only if A is Turing reducible to B with use bounded by
some function f in F. We call a (uniformly) bounded Turing reducibility admis-
sible if it is reflexive and transitive and we call it monotone if it is induced by
a family of strictly increasing functions. Examples of monotone admissible ubT-
reducibilities are the strongly bounded Turing reducibilities ibT and cl as well as
the linearly bounded and the primitive recursively bounded Turing reducibilities.
An example of an admissible monotone bT-reducibility which is not uniformly
bounded is wtt-reducibility. Here, we will only look at the monotone admissible
bT-reducibilities.

If a reducibility r is stronger than a reducibility r’, of course, every upper
r-bound for some sets A and B is also an upper r’-bound for A and B and the
same holds for lower bounds. But this does not necessarily imply that least upper
r-bounds (joins) have to be a least upper r’-bounds, too. Again, the same holds
for greatest lower bounds (meets). Here, we ask the question for which reducibil-
ities 7 and r’, joins and meets in the c.e. r-degrees are preserved in the c.e. r'-
degrees. We say -1’ join (meet) preservation holds if, for all noncomputable c.e.
sets A, B, and C such that the r-degree of C'is the join (meet) of the r’-degrees of
A and B, it holds that the r’-degree of C' is the join (meet) of the r'-degrees of
A and B, too.

For most of the classical reducibilities mentioned above, the structure of
the c.e. degrees is an upper semilattice where the join of the degrees of two
sets A and B is induced by the effective disjoint union A & B. So, for two
such reducibilities where r is stronger than 7/, of course, r-r’ join preservation
holds. So, for example, m-tt join preservation, tt-wtt join preservation and wtt-T
join preservation hold. For reducibilities » whose degree structures are not an
upper semilattice with join induced by the effective disjoint union, the question
of r-r’ join preservation is less obvious. For the classical strong reducibilities,
1-reducibility is an example of such a reducibility, but, as one can easily show
(see Lemma?2 below), 1-m join preservation holds. It easily follows that r-r’
join preservation holds for all classical strong reducibilities where r is stronger
than r’. For the (uniformly) bounded Turing reducibilities, the question of join
preservation is less straightforward. Ambos-Spies, Ding, Fan, and Merkle [4]
showed that ibT-cl join preservation holds and Ambos-Spies, Bodewig, Kriling,
and Yu (see [1]) showed that cl-wtt join preservation holds, too. This may lead
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one to conjecture that — just as in case of the classical strong reducibilities — r-r’
join preservation holds for any monotone admissible (u)bT-reducibilities where
r is stronger than 7/, too. As we will show here, however, this is not the case. In
fact, for r = ibT,cl and for any monotone amissible ubT-reducibility r’ which is
strictly stronger than cl, 7-7’ join preservation fails (see Theorem 1 below).

We complement our main result by considering meet preservation in the
monotone admissible bt-reducibilities, too. There we generalize the result in [4]
that ibT-cl meet preservation holds by showing that indeed, r-r’ meet preserva-
tion holds for all monotone admissible bT-reducibilities r and 7’ such that r is
stronger than ' (see Lemmab5).

So, for the monotone admissible (uniformly) bounded Turing reducibilities,
meet preservation holds in general while, in some instances, join preservation
fails. For the classical reducibilities, i.e. the strong reducibilities together with
Turing reducibility, the converse is true. There join preservation holds in general,
whereas, as Downey and Stob [11] showed, wtt-T meet preservation fails.

2 Preliminaries

A reducibility r is admissible if it is reflexive and transitive. For two reducibilities
r and r’, we say that r is stronger than ' (denoted by r < ') if, for all sets A
and B, from A <, B, it follows that A <,» B, and r is strictly stronger than r’
(r<7r)ifr <7 and r #r.

Definition 1. For two admissible reducibilities v and r’, we say that r-r’ join
preservation holds (in the c.e. degrees) if, for any noncomputable c.e. sets A, B,
and C,

deg,(A) V deg,(B) = deg,(C) = deg, (A) V deg, (B) = deg, (C)

holds. Otherwise, we say that r-r' join preservation fails. Similarly, r-r' meet
preservation holds (in the c.e. degrees) if, for any noncomputable c.e. sets A, B,
and C,

deg,(A) A deg,.(B) = deg,-(C) = deg, (A) A deg,(B) = deg, (C)
holds and r-r' meet preservation fails otherwise.

Let {®X : e > 0} be a fixed enumeration of all Turing functionals obtained by
Godelization of the oracle Turing machines. Then, we obtain an enumeration
{@X:/ : e >0} of all f-bounded Turing functionals by bounding the use of each
@X on input = by f(z) (by making the computation divergent in case of longer
oracle queries). For any pair of sets A and B, A is f-bounded Turing reducible
to B (denoted by A <;_r B) if and only if there is an e such that A = ¢/, By
letting f = id, we obtain an enumeration {ég( } of all identity bounded Turing
functionals.

We call a reducibility r a bounded Turing reducibility (bT-reducibility) if
there is a family F of computable functions such that A <, B if and only if
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A <y_1 B for some function f € F; in this case we say that r is induced
by F. If F is uniformly computable, r is called a uniformly bounded Turing
reducibility (ubT-reducibility). We call a bounded Turing reducibility monotone
if it is induced by a family F which consists only of strictly increasing functions.
Note that ibT and cl are ubT-reducibilities which are induced by Fir = {id}
and Fg = {id + e : e > 0}, respectively.

Lemma 1 (Ambos-Spies [2]). Let r and r' be admissible ubT-reducibilities.
Then, r =< ' if and only if there are uniformly computable families F and F'
that induce r and ', respectively, such that F <* F', i.e. for every function
f € F, there is a function f' € F' such that f(x) < f'(x) for almost all x € w.

3 Join Preservation

It is a straightforward observation that r-r’ join preservation holds for reducibil-
ities 7 and r’ such that r is stronger than ' and such that the structures of the
c.e. r-degrees and of the c.e. r’-degrees form upper semilattices with join induced
by the effective disjoint union. We will now observe (by giving an example) that
r-r’ join preservation may hold even if the structure of the c.e. r-degrees does
not form an upper semilattice.

Lemma 2. 1-m join preservation holds.

Proof. Given c.e. sets Ay, A1, and B such that
deg1(Ao) V degi (A1) = deg1(B) (1)

holds, we have to show that degm(Ag) V degm (A1) = degm(B) holds, too. As
we know that degm(Ag) V degm(A1) = degm(Ap ® A1), we only have to show
that B =, Ao @ A;. It is obvious that A; <1 Ay ® A; via fi(z) = 2z + ¢ for
1 = 0,1, so, it follows from (1) that B <; Ao @ A;, hence B <, 49 ® A;. On
the other hand, if we fix g; such that A; <; B via g; for i = 0, 1, it follows that
Ayg @ Ay <m B via g where g(2x + i) = g;(z) for all z > 0 and for i =0,1. O

More examples of reducibilities 7 and r’ where the structure of r does not form
an upper semilattice but where r-r’ join preservation still holds have been given
in the bounded Turing degrees.

Lemma 3 (Ambos-Spies, Ding, Fan, and Merkle [4]; Ambos-Spies [1]).
ibT-cl, ibT-wtt, and cl-wtt join preservation hold.

This result might lead to the assumption that cl-r join preservation holds for all
reducibilities r with cl < r < wtt, but this is not the case. We will now show that
cl-r join preservation even fails for all admissible monotone ubT-reducibilities
with cl < r.

Theorem 1. Let r be a monotone admissible ubT-reducibility such that cl < r.
Then, for r' =ibT, cl, r’'-r join-preservation fails.
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Proof. By Lemma 3, ibT-cl join preservation holds. So, it is enough to prove the
theorem for ' = ibT. Since, by cl < r, any upper ibT-bound for two sets Ag
and A, is also an upper r-bound for Ay and Ay, it suffices to construct c.e. sets
Ao, A1, B, and C such that degipr(Ao) V degivr (A1) = degibr(B) and such that
Ap, A1 <, C but B £, C. Let F be a uniformly computable admissible family
of strictly increasing functions such that r is induced by F. As F is uniformly
computable, we can fix a computable function f such that f >* h for all h € F.
Ascl <7, hence r A cl, F £* {id+e: e > 0} holds, so, there is a function g € F
such that {g} €* {id+e:e >0}, ie. for any e > 0, g(x) > = + e for infinitely
many x. Since g is strictly increasing, this implies that for all e > 0, g(z) > x +e
for all but finitely many =z, so, id+ e <* g for all e > 0. So, in order to complete
the proof, it suffices to show that the following lemma holds.

Lemma 4. Let g be a strictly increasing computable function such that
id+e <* g for all e and let f be any computable function (in particular, f
can be chosen as above). Then, there are c.e. sets Ag, A1, B and C such that the
following hold.

degint(Ao) V degibt (A1) = degibT(B) (2)
Ap, Ay <y C (3)
B %1 C. (4)

Proof. We will enumerate c.e. sets Ay, A1, B, and C such that (2) to (4) hold
using a tree argument. The construction will use ideas introduced in the proof
that the nondistributive lattice N5 can be embedded into the partial orderings
(RibT, <) and (R, <) in [3]. Our notation will be the same as in that proof. To

guarantee that (3) holds and that B is an upper ibT-bound for Ag and Ay, we
will satisfy the following global permitting (or coding) requirement for i = 0, 1.

(@ N\us+1 Ai = Fy < 2(y \st1 B)) & (2 \sp1 Ai = Ty < g(2) (¥ \us+1 C))( :
5

To guarantee that B is in fact the least upper ibT-bound for Ay and Ay, i.e.
that (2) holds, we will meet the following join requirements for e > 0.
. —_ $Weo _ 3Weo _
Qe . AO - ¢61 & Al - 4362 = B SibT Weo (6 - <€0761762>)-

Finally, we will satisfy condition (4) by meeting the nonordering requirements
P.: B #9057

for e > 0. Before we give the actual construction, we will explain the ideas
underlying the strategies for meeting the individual requirements and how to
combine them.

As the join requirements Q. are conditional requirements whose hypoth-
eses are not decidable, we have to guess on the correctness of the hypotheses.
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We define the length of agreement between Ay and Qgg[fe“ and between A; and

@Zeo at stage s by letting

(e, s) = max{z : Vy < 2(Ao.(y) = ber 9" (y) & Ars(y) = Pead” ()}

Since the @ are bounded functionals, lim;_, (e, $) < oo exists and the following
holds.

(A = 43?1/60 & Ay = SZA?ZZSO) & Slir&l(e, s) =00 < limsupl(e,s) =oco0.  (6)
- §—00

In the following, we call a join requirement Q. infinitary if its hypothesis is true
(i.e., if lims_,o0l(e,8) = o0) and we call Q. finitary otherwise. The strategy
for meeting the join requirements is the join strategy used by Ambos-Spies,
Bodewig, Kriling, and Yu in [3]. For meeting an infinitary join requirement Q.,
we guarantee B <j,7 W,, by permitting (up to some computable subset of B).
We work with a computable set S = {s,, : n > 0} of Q.-expansionary stages,
e, sp < 81 < sz <...and l(e,s0) < l(e,s1) < l(e,82) < .... We ensure that
numbers put into B between stages s, +1 and s,,+1 + 1 are greater than s, + 1.
So, it suffices to guarantee that if a number = enters B at a stage s + 1 where
s € Sand x < (e, s) then a number < z will be enumerated into W,, after stage
s. This change in W,, is forced by putting a sufficiently small number into Ao
or A;. As one can easily check, this is achieved by guaranteeing the following.

N1 B &z <l(e,s) =3Iy < min(2’, (e, 5))(y \ust+1 Ao or ¥ \uss1 A1)

7
where @’ = pz(z > x & 2 ¢ We, 5) @)

For meeting the nonordering requirements P,, we will use the Friedberg-Muchnik
strategy. For a fixed unused number z, we ensure B(z) # &%/ () by waiting for
a stage s such that @g’:?f(ac) = 0. Then, at stage s + 1, we put z into B and,
in order to preserve the computation @g;vf (), we impose a restraint of length
f(x) +1 on C, thereby ensuring

B(z) = 1# 0= By(z) = 207 (x) = 90 (2). (®)

In the presence of the join requirements and the global permitting requirement,
this strategy needs some amendments. To describe the potential conflicts, con-
sider the situation in which we wish to meet requirement P, and simultaneously
satisfy the global permitting requirement (5) and follow the join strategy (7) for
a single infinitary join requirement Qs of higher priority.

Now, when we put a number x into B at stage s + 1 in order to guarantee
(8), then, according to (7), we have to put a number y < 2’ into Ay or A; at
stage s + 1 where

o =pz(z> &2 g We o).

(In our case, we choose to put y into A;.) If we do so, then, as long as = < y,
this is consistent with the first part of condition (5). But, for the second part of
this condition, we have to put a number z < g(y) into C'. In case that z < f(z),
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however, this will injure the restraint imposed on C in order to preserve the
computation @g;’f (z). In order to overcome this problem, we will make sure
that we can find a number y such that f(z) < y < 2’ where y is not yet in
Ay and the interval [y, g(y)] is not yet completely enumerated into C. (Then
putting y into A; and some new number z with y < z < g(y) into C' makes the
enumeration of z into B compatible with (5) and (7).)

For that matter, we will assign a sufficiently long interval I,, of unused
numbers to P.. I, will contain finitely many candidates x,  for a possible
attack on P, where these numbers are chosen so that x, k1 > f(xnk) and
9(xn k) > Tnk + k + 2 for all k. (Note that the latter can be achieved since,
by choice of g, g(y) > y + k + 2 for all sufficiently large y; also note that
g(xn k) > Tpk + k + 2 implies g(y) > y+ k+ 2 for all y > x,5.) We will
arrange that, for some k (and some stage s), (n i, Tn k+1] C We, s where @y,
is not in Bg, Xp k41 is not in Ay s and the interval [z, k11,9(%n k+1)] is not
completely contained in C;. (Hence, for = 2, and y =z, k11, ¥ < 2’ whence
we can ensure (8) and simultaneously obey (5) and (7) by putting z,,  into B,
T, k+1 Into Aq, and some unused number from the interval [z, k11, g(Tn k+1)]
into C' at stage s + 1.) In order to ensure (2, Tn k+1] C We, for some k, we
will successively and in decreasing order put numbers w from I, into Ay at
stages s + 1 where (e, s) is greater than the endpoint of I,,. This forces We,
to respond by enumerating more and more numbers from I, (or smaller ones).
As we will argue, this implies that, at some point s, there will be an interval
(Tnky - Tnk+1] C In such that the enumeration of the numbers > z, 5 + 1
from I,, into A¢ has forced all the numbers z,, 1 +1, ..., 2z, 41 into Weé. (In the
actual construction, all the numbers actually have to be forced simultaneously
into all sets W, attached to the infinitary higher priority join requirements, but
we will show that this can be achieved.) So we can use z,  for an attack on
P. — provided that z, ; & Bs, Tnk+1 & A1,s and [y p11, 9(Tn k+1)] € Cs.

The latter, however, is not trivially true, since to make the enumeration of
w into Ay compatible with (5) simultaneously we have to put a trace wg < w
into B and a trace we < g(w) into C. So whenever we put w into Ao, then,
simultaneously we put w into B (which is compatible with (7) since w goes
simultaneously into Ag) and a number from the interval [w, g(w)) into C. Since
we put only numbers w > x,, ; into Ay this procedure also puts only numbers
> %y into B and no numbers into A; hence guarantees x,, 1 ¢ Bs and %y, p41 &
Aj 5. To ensure that [z, k11, 9(Tnk+1)] € Cs, however, we have to choose the
trace we € [w, g(w)) to be put into C' carefully. Here we let we = w+ & + 1
for the unique k' such that w € (@, x/,Zn k+1]. Note that, by choice of the
numbers x,, ;- this ensures that we < g(w). On the other hand, this ensures that
ZTn,k+1 + k + 2 is not enumerated into C since, for w < xp py1, wo <w+k+1
while, for w > zp p41 < T g1 +E+2, we >w+ (k+1)+1>zp 1 + 5+ 2.

This completes the discussion of the basic conflicts among the different goals
of the construction and how these conflicts can be resolved. We now turn to the
actual construction.



Where Join Preservation Fails in the Bounded Turing Degrees of C.E. Sets 45

We implement the guesses about which of the join requirements are infinitary

on the full binary tree T'= {0,1}<“. A node « codes a guess about the first n

join requirements Q, ..., Q,_1 where, for e < n, a(e) = 0 codes the guess that

Q. is infinitary and a(e) = 1 codes the guess that Q. is finitary. So the true path
f:w —{0,1} of the construction is defined by

Fe) = {o if Ag= B0 & Ay = B

1 otherwise.

For each node « of length e there is a strategy P, for meeting requirement P,
which is based on the guess o. We will show that the strategy P, on the true
path will succeed in meeting P.

At any stage s of the construction we have an approximation d, of f | s, i.e., a
guess which of the first s join requirements are infinitary. For the definition of Jg,
first we inductively define a-stages for each node « as follows. Each stage s > 0
is a A-stage. If s is an a-stage, then we call s a-expansionary if [(|a|, s) > I(|al, t)
for all a-stages t < s, and we call s an a0-stage if s is a-expansionary and an
al-stage if s is an a-stage but not a-expansionary. Now, for each s > 0, let
ds € T be the unique « of length s such that s is an a-stage. So, the node
represents the guess at which of Qy,...Qs_1 are infinite which is made at the
end of stage s. It easily follows from (6) that the true path is the leftmost path
visited infinitely often in the construction.

Claim 1 (True Path Lemma). f = liminf,_ o s, i.e., for any o, « C f if and
only if o T ds for infinitely many s and there are only finitely many s such that
0s <, Q.

The intervals I,, which might be assigned to the strategies for meeting the
nonordering requirements are inductively defined as follows, where the nth inter-
val I,, consists of n(x,, 0+ 1) subintervals I, x = (T i, Tn k+1)-

zo,0 = pr(g(z) = = +2)
Tng = px(x > f(Znr-1) & g(x) > 2+ k+2)
for ncw and 1<k <n(z,o+1)
Tpy1,0 = P(T > Tpon(z, o+1) T (oo +1) +2& g(x) > 2+ 2)forn cw
Ing = (@n g Tnrt+1] for new and 0 <k <n(r,o+1)—1
n(2n04+1)—1

In = U In,k

k=0

Note that this definition ensures that z, k41 > f(znk), g(w) > w + k + 2 for
w € I, and g(w) < xp41,0 for w € I,.
For a node « of length e, we call a number x € I, U{x, 0} a-safe at stage s if

x=xp) for some k with 0 <k <n(r,o+1)—1 (9)
¢ B, Tpiy1 ¢ A1y and x4 +k+2¢ Cs, and (10)
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Ve'(le' < e & ale') =0 = Inx C We ) (11)

hold where e’ = (e, €], €5).
Using the above definitions, the construction of the sets Ay, Ay, B, and C'is
as follows where stage 0 is vacuous (i.e., Agg = A1,0 = By = Cy = 0).

Stage s + 1. A strategy P, with |a] = e requires attention at stage s + 1 if
a C &g, P, is not satisfied at the end of stage s, and one of the following cases
applies.

(i) No interval is assigned to P, at the end of stage s.
(ii) Interval I, = (acnyo,:c”,n(wn’o_s_l)] is assigned to P, at the end of stage s,

Ve'(le' <e& ale) =0] = 1(,s) > T (zm.0+1)) (12)

holds, no number x € I, U {z, 0} is a-safe at stage s, and I,, Z Ag s.

(iii) Interval I, is assigned to P, at the end of stage s, (12) holds, and there
is a number = € I, U {z, 0} such that z is a-safe at stage s and B,(z) =
@gg’f(x) =0.

Fix @ minimal such that P, requires attention (as Pjs, requires attention, there
is such an «). Declare that P, receives attention or becomes active, initialize
all strategies Pg with oo < [ (i.e., if an interval is assigned to Pp then cancel
this assignment and if Pg had been satisfied before, then declare Pg to be
unsatisfied), and perform the following action according to the case via which
P, requires attention.

(i) For the least n > e, s such that the interval I,, has not been assigned to any
strategy before, assign I, to P,.
(ii) Let y be the greatest number in I, \ Ay ;. Put y into Ay and B and, for the
unique k such that y € I, ;, put y + k + 1 into C.
(i) Let = be the greatest a-safe number in I, U {x, 0} such that Bs(z) =
@47 (z) = 0. Let k be the unique number such that = a,, ;. Put z into
B, xy 41 into Ay, and 2y, k41+k+2 into C. Then, declare P, to be satisfied.

This completes the construction. We will prove a series of claims to show that
the construction satisfies all of our requirements. The claims will essentially
be the same as in the proof of Theorem 3.2 in [3]. The first of these claims is
straightforward and we omit the proof.

Claim 2. Every strategy Po on the true path (i.e., o T f) is initialized only
finitely often and requires attention only finitely often. Moreover, for any such
strategy, there is an interval I, which is permanently assigned to it.

Claim 3. The global permitting requirement (5) is satisfied.

Proof. It is crucial to note that numbers from I, U {x, 0} U{g(z) : © € I,} can
be enumerated into any of the sets under construction at stage s+ 1 only by the
strategy to which I,, is assigned at this stage. So, it follows by a straightforward
induction that if a strategy P, acts via (ii) at stage s + 1 then, for the number
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y there, neither y is in Bs nor y + k + 1 is in Cs. And, similarly, if a strategy P,
acts via (iii) at stage s + 1 then neither x, j is in B, nor x, y41 is in A 5 nor
ZTn,k+1 + k + 2 is in C5 where the latter follows from our observations preceding
the construction. This easily implies the claim, since a number z is enumerated
into Ap at some stage s + 1 only if some strategy P, acts at stage s + 1 via
(ii), hence x € I,, ) for some k and, at stage s + 1, x is enumerated into B and
x+k~+1 is enumerated into C' where x +k+1 < g(x) by choice of I, ; and since
a number x is enumerated into A; at some stage s+ 1 only if some strategy P,
acts at stage s+ 1 via (iii), hence © = z,, 41 for some n, k and, at stage s + 1,
Tk < Tp k41 15 enumerated into B and z, 41 + k + 2 is enumerated into C
where by choice of @y, 11, Tn k41 + 5+ 2 < g(z).

Claim 4. The join requirements Q. are met.

Proof. The argumentation is very similar to the one in the proof of Claim 5
in the proof of Theorem 3.2 in [3]. We fix e = (e, e1,e2) and assume w.l.o.g.
that Q. is infinitary, so, a0 C f for & = f [ e. Hence there are infinitely many
a0-stages. By Claims 1 and 2, we can fix an a0-stage sg > e such that no
strategy P with 8 < a0 becomes active after this stage. Let S = {s, : n > 0}
be the set of the al-stages > sg. Then, S is computable, sg < s1 < 59 < ...,
and I(e, sg) < l(e,s1) < l(e,s2) < .... So, as explained in the discussion of the
strategy for meeting the requirements Q., it suffices to show that (7) holds for
s € S. But this is immediate by construction since at a stage s,, + 1 only a
strategy Ps with a0 C 8 may act. Namely, if Pg acts via (ii) then the number
2 enumerated into B is simultaneously enumerated into Ag and if Pg acts via
(iii) then the claim follows from the corresponding action by [-safeness of the
number x put into B.

Claim 5. The nonordering requirements P, are met.

Proof. For fixed e, assume for a contradiction that P, is not met. Exactly as in
[3], we can then argue that for « = f [ e, an interval I,, becomes permanently
assigned to P, at some stage s1 +1, that there is no number z € I, U{z, o} that
is a-safe at any stage s’ > s1, and that all numbers in I,, are enumerated into
Ay in decreasing order after stage s1 4+ 1 according to clause (ii) in the definition
of requiring and receiving attention. As in [3], for z € I,,, let ¢, > s be the
a-stage such that x is enumerated into Ag at stage ¢, + 1. Then (12) holds for
s = t,. So, for x € I,, and for any infinitary higher priority join requirement Q./,
Wert, 1@+ 1# Wery ' + 1. So if we let J be the set of the numbers e,
such that

z—1

J ={ep:3et,en: ((eg e, e5) < e & Qe et ery is infinitary},
then
ViedVee (Wi, To4+1C Wy, | [2+1). (13)
Now, for z € I, and j € J, let

wj(z) =Wy, 41| and wy(z) = ij(x),
jeJ
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and call = unsaturated if x ¢ W4, for some j € J. By definition, |J| < e and
w;(xz) <z + 1, hence
wi(2n,0) < e(zno+1). (14)

As in [3], we will now argue that this bound is not compatible with (13) and the
fact that there are no a-safe numbers in I,, U {z,0}. As shown in [3], it follows
from (13) that

wy(Tno0) > {z € I, : xisunsaturated}|. (15)

Now, it suffices to give a lower bound on the number of unsaturated numbers
in I, that contradicts (14). For a number x, 5 € I, U {z, o} with 0 < k <
n(zno + 1) — 1, (9) and (10) hold for ¢, = s. So, since there are no a-safe
numbers in I, U {x, 0} after stage s; + 1, (11) must fail for ¢, = s. It follows
that at least one number in I,, ;, must be unsaturated for every k. As there are
n(xn,0 + 1) many subintervals I, , in I, each of which must contain at least one
unsaturated number and as e < n by construction, it follows that there are at
least (e + 1)(zy,0 + 1) unsaturated numbers in I,,, which, together with (15),
leads to the desired contradiction.

This completes the proof of Lemma4. O

4 Meet Preservation

In contrast to Theorem 1, meet preservation holds for the monotone admissi-
ble bounded Turing reducibilities in general. This is immediate by the follow-
ing lemma which generalizes the observation in [4] that ibT-cl and cl-wtt meet
preservation hold.

Lemma 5. Let r and r' be monotone admissible bounded Turing reducibilities
induced by F and F', respectively, such that v is stronger than v’'. Then, r-r'
meet preservation holds.

Proof. The proof is essentially the same as the one for the results in [4]. Let A,
Ay, and B be c.e. sets such that

degr(A0> A degy (Al) = degr(B) (16)

holds. As r is stronger than ’, B is also an upper r’-bound for Ay and A1, so,
it suffices to show that for a given c.e. set C such that C <,, Ay, A1, C <, B
holds. Fix functions f; € F’ such that C' <y _r A; for i = 0,1. Since ' is
admissible, as shown in [2], we may assume that F’ is closed under composition,
so, foo f1 = f € F'. As 7’ is monotone, we may also assume that fy and fi
are strictly increasing, so, max(fo, f1) < f. It follows that C <;_ Ay, A1. Let
Cy = {f(z) : « € C} be the f-shift of C. Then, C; <ipr Ao, A1. As ibT is
stronger than r, Cy <, Ao, A1, so, by (16), Cy <, B, hence C; <,» B. We
know that C <;_r Cy, hence by f € F', C <,» Cy, so, by transitivity of
r', C <, B. O
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5 Open Problems

Contrasting previous positive results on join preservation in the bounded Tur-
ing degrees (see Lemma3) we have shown that r-r’ join preservation fails for
the strongly bounded Turing reducibilities » =ibT,cl and any monotone admis-
sible uniformy bounded Turing reducibility ' with ¢l < 7/. This naturally leads
to the question of a classification of the monotone admissible bounded Turing
reducibilities r and r’ for which r-r’ join preservation holds. Moreover, one may
consider nonmonotone reducibilities, too. For the latter, a classification of the
bT-reducibilities for which meet preservation holds is open, too.
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