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Abstract. We continue the investigation of algorithmically random
functions and closed sets, and in particular the connection with the
notion of capacity. We study notions of random continuous functions
given in terms of a family of computable measures called symmetric
Bernoulli measures. We isolate one particular class of random functions
that we refer to as random online functions F , where the value of y(n) for
y = F (x) may be computed from the values of x(0), . . . , x(n). We show
that random online functions are neither onto nor one-to-one. We give
a necessary condition on the members of the ranges of random online
functions in terms of initial segment complexity and the associated com-
putable capacity. Lastly, we introduce the notion of Martin-Löf random
online partial function on 2ω and give a family of online partial ran-
dom functions the ranges of which are precisely the random closed sets
introduced in [2].

Keywords: Algorithmic randomness · Computability theory · Random
closed sets · Random continuous functions · Capacity.

1 Introduction

In a series of recent papers [2–4,7], Barmpalias, Brodhead, Cenzer et al. have
developed the notion of algorithmic randomness for closed sets and continuous
functions on 2ω as part of the broad program of algorithmic randomness. The
study of random closed sets was furthered by Axon [1], Diamondstone and Kjos-
Hanssen [8], and others. Cenzer et al. [7] studied the relationship between notions
of random closed sets with respect to different computable probability measures
and effective capacities.

Here we look more closely at the relationship between random continuous
functions and effective capacity. First, we generalize the notion of random con-
tinuous function from [4] to a wider class of computable measures that we call
symmetric Bernoulli measures. Then we study properties of the effective capaci-
ties associated to the classes of functions that are random with respect to various
symmetric Bernoulli measures. We isolate one such class of functions, which we
refer to as random online continuous functions. We study the reals in the range
of a random online continuous function, as well as the average values of random
online continuous functions.
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It turns out that a number of effective capacities cannot be generated by a class
of functions that are random with respect to a symmetric Bernoulli measure. We
identify a class of measures on the space of functions that yield random online
partial continuous functions and prove that a wide class of effective capacities can
be generated by such functions, including the effective capacity that is associated
to the original definition of algorithmically random closed set from [2].

Algorthmic randomness for closed sets was defined in [2] starting from a
natural computable measure on the space C(2ω) of closed subsets of 2ω and
using the notion of Martin-Löf randomness given by Martin-Löf tests. It was
shown that Δ0

2 random closed sets exist but there are no random Π0
1 closed sets.

It is shown that any random closed set is perfect, has measure 0, and has box
dimension log2

4
3 . A random closed set has no n-c.e. elements.

Algorithmic randomness for continuous functions on 2ω was defined in [4] by
defining a representation of such functions in 3ω and using the uniform measure
on 3ω to induce a measure on the space F(2ω) of continuous functions. It was
shown that random Δ0

2 continuous functions exist, but no computable function
can be random and no random function can map a computable real to a com-
putable real. The image of a random continuous function is always a perfect
set and hence uncountable. For any y ∈ 2ω, there exists a random continuous
function F with y in the image of F . Thus the image of a random continu-
ous function need not be a random closed set. The set of zeros of a random
continuous function is a random closed set (if nonempty).

The connection between measure and capacity for the space C(2ω) was inves-
tigated in [7]. For any computable measure μ∗ on C(2ω), a computable capacity
may be defined by letting T (Q) be the μ∗-measure of the family of closed sets K
which have nonempty intersection with Q for each Q ∈ C(2ω). An effective ver-
sion of the Choquet’s theorem was obtained by showing that every computable
capacity may be obtained from a computable measure in this way. Conditions
were given on a measure ν∗ on C(2ω) that characterize when the capacity of
all ν∗-random closed sets equals zero. For certain computable measures, effec-
tively closed sets with positive capacity and with Lebesgue measure zero are
constructed. For computable measures, a real q is upper semi-computable if and
only if there is an effectively closed set with capacity q.

The problem of characterizing the possible members of random closed sets
was studied by Diamondstone and Kjos-Hanssen in [8]. They gave an alternative
presentation for random closed sets and showed a strong connection between the
effective Hausdorff dimension of a real x and the membership of x in a random
closed set.

The outline of the paper is as follows. In Sect. 2, we provide the requisite
background. In Sect. 3 we define symmetric Bernoulli measures on the space
of continuous functions on 2ω and prove basic facts about the domains and
ranges of functions that are random with respect to such measures. We study
the connection between random functions and effective capacities on the space
of closed subsets of 2ω in Sect. 4. Next, we introduce and study the notion of
a random online function in Sect. 5. Lastly, in Sect. 6, we define random online
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partial functions and establish a correspondence between the ranges of such
functions and various families of random closed sets.

The authors would like to thank Laurent Bienvenu and the anonymous ref-
erees for helpful comments on an earlier draft of this paper.

2 Background

Some definitions are needed. For a finite string σ ∈ {0, 1}n, let |σ| = n denote
the length of n. For two strings σ, τ , say that τ extends σ and write σ ≺ τ if
|σ| ≤ |τ | and σ(i) = τ(i) for i < |σ|. For x ∈ 2ω, σ ≺ x means that σ(i) = x(i)
for i < |σ|. Let σ�τ denote the concatenation of σ and τ and let σ�i denote
σ�(i) for i = 0, 1. Let x�n = (x(0), . . . , x(n − 1)). The empty string will be
denoted ε. Two reals x and y may be coded together into z = x ⊕ y, where
z(2n) = x(n) and z(2n + 1) = y(n) for all n. For a finite string σ, let [[σ]] denote
{x ∈ 2ω : σ ≺ x}. We shall refer to [[σ]] as the interval determined by σ. Each
such interval is a clopen set and the clopen sets are just finite unions of intervals.
Now a nonempty closed set P may be identified with a tree TP ⊆ {0, 1}∗ where
TP = {σ : P ∩ [[σ]] �= ∅}. Note that TP has no dead ends. That is, if σ ∈ TP ,
then either σ�0 ∈ TP or σ�1 ∈ TP (or both). For an arbitrary tree T ⊆ {0, 1}∗,
let [T ] denote the set of infinite paths through T . It is well-known that P ⊆ 2ω

is a closed set if and only if P = [T ] for some tree T . P is a Π0
1 class, or an

effectively closed set, if P = [T ] for some computable tree T .
A measure ν on 2ω is computable if there is a computable function ν̂ : 2<ω ×

ω → Q2 (where Q2 = { m
2n : n,m ∈ ω}) such that |ν([[σ]]) − ν̂(σ, i)| ≤ 2−i for

every σ ∈ 2<ω and i ∈ ω. A computable measure on 3ω is similarly defined.
Martin-Löf [10] observed that stochastic properties could be viewed as special

kinds of effectively presented measure zero sets and defined a random real as one
that avoids these measure 0 sets. More precisely, a real x ∈ 2ω is Martin-Löf ran-
dom if for every effective sequence S1, S2, . . . of c.e. open sets with μ(Sn) ≤ 2−n,
x /∈

⋂
n Sn (where μ is the uniform measure on 2ω). This can be straightfor-

wardly extended to any computable measure ν on 2ω or 3ω by replacing the
condition μ(Sn) ≤ 2−n with ν(Sn) ≤ 2−n.

Given a measure μ on 3ω, we define a measure μ∗ on the space C(2ω) of
closed subsets of 2ω as follows. Given a closed set Q ⊆ 2ω, let T = TQ be the
tree without dead ends such that Q = [T ]. Let σ0, σ1, . . . enumerate the elements
of T in order, first by length and then lexicographically. We then define the
(canonical) code x = xQ = xT of Q by recursion such that for each n, x(n) = 2
if both σn

�0 and σn
�1 are in T , x(n) = 1 if σn

�0 /∈ T and σn
�1 ∈ T , and

x(n) = 0 if σn
�0 ∈ T and σn

�1 /∈ T . We then define μ∗ by setting

μ∗(X ) = μ({xQ : Q ∈ X}) (1)

for any X ⊆ C(2ω). For the uniform measure, this means that given σ ∈ TQ,
there is probability 1

3 that both σ�0 ∈ TQ and σ�1 ∈ TQ and, for i = 0, 1, there
is probability 1

3 that only σ�i ∈ TQ. Brodhead, Cenzer, and Dashti [2] defined
a closed set Q ⊆ 2ω to be (Martin-Löf) random if xQ is (Martin-Löf) random.
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We will sometimes refer to the random closed sets given by the uniform measure
on 3ω as the standard random closed sets.

Given a continuous function F on 2ω, observe that for any σ ∈ 2<ω there is
some n ∈ ω and τ ∈ 2<ω of length n such that for all x ∈ [[σ]], F (x)�n = τ .

Let F(2ω) denote the collection of all continuous functions F : 2ω → 2ω. Each
F ∈ F(2ω) may be represented by a function f : 2<ω \ {ε} → {0, 1, 2}, defined
inductively as follows. Suppose we have defined f(σ�i) = ei for i = 1, . . . , n and
every σ of length n. Then given some σ of length n + 1, where f(σ�i) = ei for
i = 1, . . . , n, let ρ = (n1, . . . , nk) be the result of deleting all 2 s from (e1, . . . , en).
If for all x ∈ [[σ]], F (x)�(k + 1) = ρ�j for some j ∈ {0, 1}, then we may set
en+1 = j, although we may set en+1 = 2. If there is no such j, we must set
en+1 = 2. It is helpful to think of the 2’s as delaying the output of F along
initial segments of some x ∈ 2ω. For each F ∈ F(2ω), there are infinitely many
functions that represent F , and f : 2<ω \ {ε} → {0, 1, 2} defines a (possibly
partial) F ∈ F(2ω). Each representing function f : 2<ω \ {ε} → {0, 1, 2} can be
straightforwardly coded as some z ∈ 3ω. We can thus define a measure μ∗∗ on
F(2ω) induced by the uniform measure on 3ω. As with the case of computable
measures on C(2ω), every computable measure ν on 3ω induces a computable
measure ν∗∗ on F(2ω). Brodhead, Cenzer, and Remmel [6] defined F ∈ F(2ω)
to be Martin-Löf random if F is represented by a representing function coded by
a Martin-Löf random z ∈ 3ω. We will sometimes refer to the random continuous
functions given by the uniform measure on 3ω as the standard random continuous
functions.

Next we consider the notion of a capacity.

Definition 1. A capacity on C(2ω) is a function T : C(2ω) → [0, 1] with T (∅) =
0 such that

1. T is monotone increasing, that is, Q1 ⊆ Q2 implies T (Q1) ≤ T (Q2).
2. T has the alternating of infinite order property, that is, for n ≥ 2 and any

Q1, . . . , Qn ∈ C

T (
n⋂

i=1

Qi) ≤
∑

{(−1)|I|+1T (
⋃

i∈I

Qi) : ∅ �= I ⊆ {1, 2, . . . , n}}.

3. If Q =
⋂

n Qn and Qn+1 ⊆ Qn for all n, then T (Q) = limn→∞ T (Qn).

We will also assume, unless otherwise specified, that T (2ω) = 1. We will say
that a capacity T is computable if it is computable on the family of clopen sets,
that is, if there is a computable function F from the Boolean algebra B of clopen
sets into [0, 1] such that F (B) = T (B) for any B ∈ B.

Given a measure μ∗ on the space C(2ω) of closed sets, define

Tμ(Q) = μ∗({X ∈ C(2ω) : X ∩ Q �= ∅}),

That is, Tμ(Q) is the probability that a randomly chosen closed set meets Q. The
following effective version of the Choquet Capacity Theorem was shown in [7].
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Theorem 1 ([7])

1. For any computable probability measure μ on C(2ω), Tμ is a computable
capacity.

2. For any computable capacity T on C(2ω), there is a computable measure μ on
the space of closed sets such that T = Tμ.

For a given computable capacity T , if μ∗ is a computable measure on C(2ω) such
that T = Tμ, we will refer to μ∗-random closed sets as the random closed sets
associated to T and T as the capacity associated to the μ∗-random closed sets.

3 Symmetric Bernoulli Measures on F(2ω)

In this section, we consider continuous functions that are random with respect
to some measure from a specific class of computable measures on 3ω.

Definition 2. Let μ be a measure on 3ω.

(i) μ is a Bernoulli measure if there are p0, p1, p2 ∈ [0, 1] such that p0+p1+p2 =
1 and μ(σ�i) = pi · μ(σ) for each i ∈ {0, 1, 2}.

(ii) μ is a symmetric Bernoulli measure if μ is a Bernoulli measure and there is
some r ∈ [0, 1/2] such that r = p0 = p1 (so that p2 = 1 − 2r).

The symmetric Bernoulli measure with parameter r ∈ [0, 1/2] will be denoted
μr. Note that μr is computable if and only if r is a computable real number.

We are interested in the behavior of the μ∗∗
r -random continuous functions on

2ω. Note that in the case that r = 1/3, μr is the uniform measure on 3ω and the
μ∗∗

r -random continuous functions are the standard random continuous functions
discussed in the previous section. In fact, the results in this section generalize
certain results from [3] concerning μ∗∗

1/3-random continuous functions.
First, it was shown in [3] that every μ∗∗

1/3-random continuous function is total.
However, if we allow the parameter r to vary, which results in a change of the
probability of the occurrence of delays (i.e., the occurrence of 2s), the situation
becomes slightly more interesting. Specifically, if μr is such that the probability
of delay is greater than or equal to 1/2, then not every μ∗∗

r -random function will
be total.

The following lemma will be needed.

Lemma 1. Let μr be a symmetric Bernoulli measure on 3ω, let A ⊆ {0, 1, 2},
and let p =

∑
i∈A pi, where p0 = p1 = r and p2 = 1 − 2r. Then the μ∗∗-measure

q of the functions F ∈ F(2ω) such that there exists x ∈ 2ω with f(x�n) ∈ A for
all n (where f is the function representing F ) equals 0 if p ≤ 1/2 and equals
2p−1

p2 if p > 1/2.

Proof. It follows from the compactness of 2ω that there exists x such that
f(x�n) ∈ A for all n > 0 if and only if for every n, there exists σ ∈ {0, 1}n

such that f(σ�m) ∈ A for all 0 < m < n. Let qn be the probability that such
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σ ∈ {0, 1}n exists. Then q0 = 1, qn+1 ≤ qn for all n, and q = limn→∞ qn.
Considering the cases of f(i) for i ∈ {0, 1}, we calculate that

qn+1 = 2pqn − p2q2n.

Taking the limit of both sides, we see that q = 2pq−p2q2, so that either q = 0 or
q = 2p−1

p2 . In the case that p < 1/2, the latter is negative. Thus q = 0 if p ≤ 1/2.
For the other case, note first that 2pqn −p2q2n = 1−(1−pqn)2, so that qn ≥ x

implies that 2pqn −p2q2n ≥ 2px−p2x2. Let s = 2p−1
p2 . We now show by induction

that qn ≥ s for all n. Initially we have q0 = 1 ≥ s. Now assuming that qn ≥ s, it
follows that

qn+1 = 2pqn − p2q2n ≥ 2ps − p2s2 = s(2p − p2s) = s(2p − (2p − 1)) = s.

Now suppose that p > 1/2, so that s = 2p−1
p2 > 0. Since the sequence (qn)n∈ω

is decreasing and qn ≥ s for all n, it follows that the limit q = limn qn ≥ s and
hence q = s.

Proposition 1. Let μr be a symmetric Bernoulli measure on 3ω for some r ∈
[0, 1/2]. Then the μ∗∗

r -measure of the collection of partial continuous functions
on 2ω is 0 if r ≥ 1/4 and is 1 if r < 1/4.

Proof. First note that the measure must be either 0 or 1 in either case. This is
because a function F is total if and only if the restrictions of F to both [[0]] and
[[1]] are total, so that if p is the measure of the set of total functions, then p = p2.
Next observe that the function represented by f : 2<ω → {0, 1, 2} is partial if
and only if there exists x ∈ 2ω and n such that f(x�m) = 2 for all m ≥ n. It is
enough to compute the probability q that there exists x such that f(x�m) = 2
for all m > 0.

Let A = {2}, so that f(σ) ∈ A with probability p = 1 − 2r for each σ ∈
2<ω \ {ε}. Then by Lemma 1, the μ∗∗-measure of functions F such that there
exists x ∈ 2ω with f(x�n) ∈ A for all n > 0 equals 0 if r ≥ 1/4 and equals
2p−1

p2 = 1−4r
(1−2r)2 if r < 1/4. Since for r < 1/4, there are positive μ∗∗-measure

many functions F for which such an x exists, it follows that the collection of
partial functions has μ∗∗-measure 1.

Next, it was also shown in [3] that the probability that the range of a random
continuous function includes a fixed y ∈ 2ω is equal to 3/4. This was obtained
by computing, for each σ ∈ 2<ω of length n, the probability pn that the range
of a random continuous function has non-empty intersection with [[σ]] and then
proving that limn→∞ pn = 3/4. We consider the analogous result in the general
case of a symmetric Bernoulli measure.

Theorem 2. Let μr be a symmetric Bernoulli measure on 3ω for some r ∈
(0, 1/2] and let y ∈ 2ω. Then the μ∗∗

r -measure of the collection of continuous
functions F such that y ∈ ran(F ) is equal to

1 − 2r

(1 − r)2
.
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Proof. By symmetry of the measure μr, it suffices to show that μ∗∗
r -measure of

the collection of continuous functions F such that 0∞ ∈ ran(F ) is equal to 1−2r
(1−r)2 .

Let A = {0, 2}, so that f(σ) ∈ A with probability p = 1 − r for σ ∈ 2<ω \ {ε}.
Then by Lemma 1, the μ∗∗-measure of functions F such that there exists x ∈ 2ω

with f(x�n) ∈ A for all n equals 0 if r ≥ 1/2 and equals 2p−1
p2 = 1−2r

(1−r)2 if r < 1/2.
Note that even if a function F satisfies f(x�n) ∈ A for every n > 0 for

some x ∈ 2ω, this does not guarantee that 0∞ ∈ ran(F ), since we may have
f(x�n) = 2 for all but finitely many n. For a given F ∈ F(2ω), let CF = {x ∈
2ω : (∀n)f(x�n) ∈ A}. One can verify that the probability that 0∞ ∈ ran(F ),
given that CF is non-empty, is 1 as follows. Suppose that CF is non-empty. Then
if we consider the left-most path x of CF , by the law of large numbers, as the
occurrence of the label 0 on initial segments of x is r

1−r , the limiting frequency
of 0 s along x is r

1−r with probability 1. Since the μ∗∗
r -measure of the collection

of functions F such that CF is non-empty is 1−2r
(1−r)2 , the conclusion follows.

Observe that as r approaches 0, the above probability approaches 1. This
means that as the probability of delay approaches 1, we have more chances to
hit any given real, and so this probability approaches one. However, for the
value r = 0, we have a discontinuity, as the resulting measure is concentrated on
the function coded by 2∞, which never outputs any bits but only delays indefi-
nitely on every possible input. Lastly, as r approaches 1/2, the above probability
approaches 0. In fact, this probability only attains the value 0 when r = 1/2,
that is, when the μ∗∗

r -random functions have no delay. Hereafter, we will refer
to μ∗∗

1/2-random functions as random online functions, which we study in detail
in Sect. 5.

4 From Functions to Capacities

The significance of the proof of Theorem2 is that it reveals a connection between
a notion of random continuous function and a notion of effective capacity. In
particular, we have the following result.

Theorem 3. Let ν∗∗ be a computable measure on F(2ω) and suppose that every
ν∗∗-random function is total. Then the function

T (S) = ν∗∗({F ∈ F(2ω) : ran(F ) ∩ S �= ∅})

is a computable capacity on C(2ω).

Proof. First we show that the map taking a ν∗∗-random function to its range
induces a computable measure on C(2ω). Let F be a ν∗∗-random function. Since
F is a continuous map from a compact space to a Hausdorff space, F is a
closed map. By assumption, F is total, and hence ran(F ) = F (2ω) is a closed
set. Moreover, it is not hard to see that there is a (partial) Turing functional
Φ : 3ω → 3ω that, given a real in 3ω that codes a representing function f of
some ν∗∗-random function F , outputs a real that codes the range of F . One can
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verify that Φ is defined on a subset of 3ω of ν-measure one. It follows that Φ and
ν together induce a computable measure νΦ on 3ω defined by

νΦ(X ) = ν(Φ−1(X ))

for all measurable X ⊆ 3ω (see [5, Lemma 2.6]). It follows from the preservation
of randomness theorem ([5, Theorem 3.2]) that the image of a ν-random real
under Φ is a νΦ-random real. In addition, by the no randomness ex nihilo prin-
ciple ([5, Theorem 3.5]), every νΦ-random real is the image of a ν-random real
under Φ. Thus, it follows that the range of a ν∗∗-random continuous function is
a ν∗

Φ-random closed set and every ν∗
Φ-random is in the range of some ν∗∗-random

continuous function.
Thus we have

T (Q) = ν∗∗({F ∈ F(2ω) : ran(F ) ∩ Q �= ∅}) = ν∗
Φ({C ∈ C(2ω) : C ∩ Q �= ∅})

for every Q ∈ C(2ω). By the Theorem 1, it follows that T is a computable
capacity.

In the proof of Theorem 3, we showed that if ν∗∗ is a computable mea-
sure on F(2ω) such that the ν∗∗-random functions are total, then the ranges
of the ν∗∗-random functions yield a notion of random closed sets with respect to
some computable measure ν∗

Φ on C(2ω). This raises the following question: Is
there a computable measure ν∗∗ on F(2ω) such that the ranges of the ν∗∗-
random functions are the standard random closed sets?

We will provide a full answer to this question in Sect. 6, but as a first step,
we prove the following.

Proposition 2. Let μr be a symmetric Bernoulli measure on 3ω with r ∈
(0, 1/2). Then the collection of ranges of the μ∗∗

r -random functions is not the
collection of standard random closed sets.

Proof. Let r ∈ (0, 1/2). By Theorem 2, the μ∗∗
r -measure of the collection of

continuous functions F such that 0∞ ∈ ran(F ) is equal to
1 − 2r

(1 − r)2
> 0. However,

as shown in [2], no standard random closed set contains a computable real, and
thus the conclusion follows.

A more significant difference between the collection of ranges of the μ∗∗
r -random

functions and the collection of standard random closed sets can be seen by
considering the computable capacity associated to each of these two collections.
First, let μ be the uniform measure on 3ω. Then the capacity Tμ(Q) on C(2ω)
associated to the collection of standard random closed sets (see Theorem 1) can
be shown to satisfy T ([[σ]]) =

(
2
3

)n for every n ∈ ω and every σ ∈ 2<ω of length
n. Thus for x ∈ 2ω, Tμ({x}) = limn→∞ Tμ([[x�n]]) = 0.

Now suppose that r ∈ (0, 1/2). Let ν = μr and let Tr be the capacity from
Theorem 3. Then as we proved Tr({x}) > 0 for every x ∈ 2ω. Thus, if we want
to find a family of random functions such that the ranges of all such functions
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are the standard random closed sets, then we need the capacity T associated to
this family to satisfy T ({x}) = 0 for every x ∈ 2ω.

One such candidate is the collection of μ∗∗
1/2-random functions, for by

Theorem 3, in the case that r = 1/2, we have Tr({x}) = 0 for every x ∈ 2ω.
Is it the case that the ranges of the μ∗∗

1/2-random functions are the standard
random closed sets? To answer this question, we will look more closely at the
μ∗∗
1/2-random functions.

5 Random Online Functions

In this section, we study the collection of functions that are random with respect
to the measure μ∗∗

1/2 induced by the symmetric Bernoulli measure μ1/2 on 3ω. We
will hereafter refer to the μ∗∗

1/2-random functions as the random online functions
due to the absence of 2s in their codes in 3ω, which means that each bit given as
input to such a function immediately (and randomly) yields one bit as output.
Given this absence of 2s, we can equivalently define a random online function to
be given by a representing function f : 2<ω\{ε} → {0, 1}. In this case, each online
function has precisely one representing function. To see this, let (σn)n∈ω be the
canonical listing of 2<ω in length-lexicographical order. Then given x ∈ 2ω, we
define a representing function fx such that fx(σn+1) = x(n) for every n ∈ ω.
One can readily verify that the function FX defined by

Fx(y) = fx(y�1)�fx(y�2)�fx(y�3)� . . .

is an online function, and that every online function can be obtained in this way.
Thus, a function F ∈ F(2ω) is a random online function if and only if F has a
representing function f coded by a Martin-Löf random x ∈ 2ω.

Note that by Proposition 1, every random online function is total. We estab-
lish several additional results.

Theorem 4. No computable real is in the range of a random online function.

Proof. The proof can be obtained by modifying the proof of Theorem 2.4 from
[3], according to which no standard random continuous function is partial.

Corollary 1. No random online function is onto.

Theorem 5. Let F be a random online function and let x ∈ 2ω code the rep-
resenting function of F . If y is Martin-Löf random with relative to x, then
F−1({F (y)}) is a standard random closed set.

Proof (Sketch). We define a map Θ : 2ω → 3ω that maps the join of two reals
x ⊕ y ∈ 2ω to some z ∈ 3ω, where x is the code of the representing function of
a random online function and z is a code of the closed set F−1({F (y)}). One
can verify that Θ induces the uniform measure on 3ω. Given y ∈ MLRx, by van
Lambalgen’s theorem (see [9, Theorem 6.9.1]) the real x ⊕ y is random, and
hence by the preservation of randomness theorem, Θ(x ⊕ y) = z is random with
respect to the measure induced by Θ, namely the uniform measure on 2ω, which
establishes the theorem.
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Corollary 2. No random online function is one-to-one.

Proof. Given a random online function F , let let x ∈ 2ω code the representing
function of F . Since F is total, F is defined on some y that is Martin-Löf random
relative to x. Then by Theorem5, F−1({F (y)}) is a random closed set, which is
perfect (as shown in [2]). Thus F is not one-to-one.

By Theorem 2, for a fixed y ∈ 2ω, the probability that a random online function
will have y in its range is 0. In fact, if for each n we let pn be the probability
that a random online function hits [[σ]] for a fixed σ of length n (where F hits
[[σ]] if ran(F ) ∩ [[σ]] �= ∅), by considering the cases of f(i) for i ∈ {0, 1}, one can
show that

(i) p1 = 3/4, and
(ii) pn+1 = pn(1 − 1

4pn).

Moreover, one can verify that limn→∞ pn = 0 for each n ≥ 1. Hereafter, we will
refer to the pi’s as hitting probabilities.

Using the notation of the previous section, it follows that T1/2(σ) = pn

for every n and every σ of length n. We can use this fact to determine the
computable measure ν on 3ω with the property that the ν∗-random closed sets
are precisely the ranges of random online functions. Following the proof of the
effective Choquet capacity theorem from [7] to find the values of ν, the key
observation to make is that for each n ∈ ω and each σ ∈ 2<ω of length n,

ν(σ2 | σ) = 2
( pn

pn−1

)
− 1 = 2(1 − 1

4
pn) − 1 = 1 − 1

2
pn

for n ≥ 1 (where p0 = 1). Here ν(σi | σ) is the probability, under ν, that a
random function F hits [[σi]] given that F hits [[σ]]. For each such σ, we thus
have ν(σ0 | σ) = ν(σ1 | σ) = 1

4pn. Since limn→∞ pn = 0, ν(σ2 | σ) approaches 1
while ν(σ0 | σ) and ν(σ1 | σ) both approach 0 as we consider longer and longer
strings σ. Thus one can prove:

Theorem 6. For each random online function F , the range of F is not a stan-
dard random closed set.

Proof. Let μ be the uniform measure on 3ω and let ν be the measure on 3ω as
defined above. Then one can verify that μ/ν is a computable ν-martingale on
3ω, where d : 2<ω → [0,+∞) is a ν-martingale on 3ω if

ν(σ)d(σ) = ν(σ0)d(σ0) + ν(σ1)d(σ1) + ν(σ2)d(σ2).

Given a x ∈ 3ω, for each n ≥ 0 we can write

μ
(
x�(n + 1)

)

ν
(
x�(n + 1)

) =
μ
(
x�(n + 1) | x�n

)

ν
(
x�(n + 1) | x�n

)
μ(x�n)
ν(x�n)

,

Since limn→∞ pn = 0, for each k, there is some nk such that pnk
≤ 2−k. Then

for any σ of length greater than nk, we have 1 ≥ ν(σ2 | σ) ≥ 1 − 2−(k+1) and
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ν(σ0 | σ) = ν(σ1 | σ) ≤ 2−(k+2). If x ∈ 3ω is μ-random, then for each n ≥ nk

such that x(n) = 2, which happens roughly 1/3 of the time, we have

μ
(
x�(n + 1)

)

ν
(
x�(n + 1)

) =
1/3

ν
(
(x�n)�2 | x�n

)
μ(x�n)
ν(x�n)

≥ 1/3
μ(x�n)
ν(x�n)

,

For each n ≥ nk such that x(n) = 0 or x(n) = 1, which happens roughly 2/3 of
the time, we have for i = 0, 1,

μ
(
x�(n + 1)

)

ν
(
x�(n + 1)

) =
1/3

ν
(
(x�n)�

i | x�n
)ν(x�n) ≥ 1/3

2−(k+2)

μ(x�n)
ν(x�n)

≥ 2k μ(x�n)
ν(x�n)

.

One can verify that limn→∞
μ(x�n+1)
ν(x�n+1) = ∞ for every μ-random x ∈ 3ω. It is well-

known that this implies that no such x can be ν-random, and the conclusion
follows.

It is reasonable to ask which reals are in the range of some random online
function. We give a partial answer to this question by providing a necessary
condition for being a member of the range of some random online function.
We first prove a more general result, which is an extension of a result in [8],
according to which every member of a standard random closed set must have
sufficiently high effective Hausdorff dimension. Recall that K(σ) is the prefix-free
Kolmogorov complexity of σ.

Theorem 7. Let μ∗ be a computable measure on C(2ω) and Tμ the computable
capacity associated to μ. If x is a member of some μ∗-random closed set, then
there is some c such that

K(x�n) ≥ − log Tμ([[x�n]]) − c

for all n.

Proof. Suppose that x is such that for every c, there is some n such that

K(x�n) < − log Tμ([[x�n]]) − c.

We first define

Si = {σ ∈ 2<ω : K(σ) < − log Tμ([[σ]]) − i}.

Next, we let Ŝi consist of those strings in Si with no proper initial segments in
Si, so that [[Ŝi]] = [[Si]]. Lastly, we define

Ui = {Q ∈ C(2ω) : (∃σ ∈ Ŝi)[Q ∩ [[σ]] �= ∅]}.

Then

μ∗(Ui) ≤
∑

σ∈̂Si

μ∗({Q ∈ C(2ω) : Q ∩ [[σ]]} �= ∅) =
∑

σ∈̂Si

Tμ([[σ]]) <
∑

σ∈̂Si

2−K(σ)−i ≤ 2−i,
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where the last inequality follows from the fact that
∑

σ∈2<ω 2−K(σ) ≤ 1. Thus,
(Ui)i∈ω forms a μ∗-Martin-Löf test. Now let Q ∈ C(2ω) be such that x ∈ Q.
Then for each i, there is some least n such that x�n ∈ Ŝi, and thus Q ∈ Ui. It
follows that no Q ∈ C(2ω) containing x is μ∗-random.

An order function f : ω → ω is a non-decreasing, unbounded function. Recall
further that a real x ∈ 2ω is complex if there is some computable order function
f such that K(x�n) ≥ f(n) for every n. Let (pn)n∈ω be the collection of hit-
ting probabilities determined by the collection of random online functions. Since
(pn)n∈ω is a computable, strictly decreasing sequence of rationals that converges
to 0, it follows that the function f(n) = − log pn is a computable order function.

This observation, combined with Theorem7, yields:

Corollary 3. If x ∈ 2ω is in the range of a random online function, then

K(x�n) ≥ − log pn − c

for some c ∈ ω. In particular, x is complex.

We conjecture that the converse, or some minor variant thereof, holds as well.

6 Random Online Partial Functions

As we have seen, for each symmetric Bernoulli measure μr on 2ω with r ∈
(0, 1/2), the collection of ranges of the μ∗∗

r -random functions is not the collec-
tion of standard random closed sets. The collection of ranges of random online
functions was, at first glance, a reasonable candidate for being equal to the col-
lection of standard random closed sets, but this too fails by Theorem6. Thus,
we cannot use symmetric Bernoulli measures to obtain such a class of random
functions.

As discussed in Sect. 4, the capacity T associated to the standard random
closed sets satisfies T ({x}) = 0 for every x ∈ 2ω. Thus, for any collection of
random functions the ranges of which are the standard random closed sets, we
need the capacity associated with this collection of functions to converge to zero
quickly. Note, however, that by Theorem 2, as we increase the possibility of delay
in our functions, this actually increases the probability that we hit a given real.

The first step to a solution is to introduce a notion of random online partial
function. As with the representing functions of continuous functions on 2ω, we
define an online partial function to be given by a {0, 1, 2}-valued representing
function. The values 0 and 1 play the same role as before, but the 2s play a
different role. If F is the partial function given by a {0, 1, 2}-valued representing
function f , for each σ ∈ 2<ω with f(σ) = 2, we have F (X)↑ for every X � σ.
That is, instead of causing our function to delay at a given node, a node labelled
with a ‘2’ indicates that our function is undefined on all reals extending this
node.

Observe that each symmetric Bernoulli measure μr on 3ω yields a notion of
random online partial function. However, for certain choices of r, we are not even
guaranteed to have any functions with non-empty domain.
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Proposition 3. If μr is a computable symmetric Bernoulli measure on 3ω, then
the probability that a μ∗∗

r -random online partial function has non-empty domain
is 0 if r < 1/4 and is

4r − 1
4r2

if r ≥ 1/4.

Proof. An online partial function F has non-empty domain if and only if there
is some x ∈ 2ω such that f(x�n) �= 2 for every n > 0. Let A = {0, 1}, so that
f(σ) ∈ A with probability p = 2r for every σ ∈ 2<ω \ {ε}. Applying Lemma 1,
the μ∗∗-measure of functions F such that there exists x ∈ 2ω with f(x�n) ∈ A
for all n equals 0 if r < 1/4 and equals 2p−1

p2 = 4r−1
4r2 if r ≥ 1/4.

The final step to obtaining a collection of random functions whose ranges are
the standard random closed sets is to consider a wider class of measures, namely,
computable, symmetric generalized Bernoulli measures on 3ω. Such a measure is
given by a computable sequence of rationals r = (ri)i∈ω with ri ≤ 1/2 for every
i such that for each n and each σ of length n, μr(σ0 | σ) = μ(σ1 | σ) = rn · μ(σ)
and μr(σ2 | σ) = (1 − 2rn)μ(σ). We can now prove the following.

Theorem 8. Let T be an computable capacity on C(2ω) such that there is a
computable sequence of rationals (pi)i∈ω satisfying

(i) for each n, T ([[σ]]) = pn for every σ ∈ 2n, and
(ii) limn→∞ pn = 0.

Then there is a computable, generalized symmetric Bernoulli measure μr on 3ω

such that the ranges of the μ∗∗
r -random online partial functions are precisely the

random closed sets associated with the capacity T . Moreover, in the case that
limn→∞

pn+1
pn

= p for some p ∈ [0, 1], we have limn→∞ rn = p
2 .

Proof. To obtain the measure μr, we suppose we have a collection of μr-random
functions that yield the hitting probabilities (pn)n∈ω then follow the proof of
Theorem 2 to recover the values of the sequence (ri)i∈ω.

Without loss of generality, we can consider the probability of hitting [[0n]] for
each n. By convention, p0 = T (∅) = 1. For n ≥ 0, to determine the relationship
between pn+1 and pn, we consider the possible initial values f(0) and f(1) of
a representing function f : 2<ω \ {ε} → {0, 1, 2} corresponding to an arbitrary
F ∈ F(2ω). Due to our new interpretation of 2s, we only have a total of four
cases to consider:

Case 1 : f(0) �= 0 and f(1) �= 0, then ran(F ) ∩ [[0n+1]] = ∅.
Case 2 : If f(0) = f(1) = 0, which occurs with probability r2n+1, then ran(F ) ∩

[[0n+1]] �= ∅ with probability 1 − (1 − pn)2 = 2pn − p2n.
Case 3 : f(i) = 0 and f(1 − i) = 1, which occurs with probability 2r2n+1, then

ran(F ) ∩ [[0n+1]] �= ∅ with probability pn.
Case 4 : f(i) = 0 and f(1 − i) = 2, which occurs with probability 2rn+1(1 −

2rn+1), then ran(F ) ∩ [[0n+1]] �= ∅ with probability pn.
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Combining these cases yields

pn+1 = (2pn − p2n)r2n+1 + 2pnr2n+1 + 2rn+1(1 − 2rn+1)pn,

which simplifies to
pn+1 = 2pnrn+1 − p2nr2n+1.

Solving for rn+1 yields

rn+1 =
pn+1

pn(1 +
√

1 − pn+1)
.

It follows that the capacity induced by the family of μ∗∗
r -random online partial

functions is the capacity T . Now, the map Φ that maps a μ∗∗
r -random online

partial function F to its range is still a computable map, as we can effectively
determine those basic open neighborhoods [[σ]] on which F is undefined. Then if
we let ν∗ be the computable measure on C(2ω) induced by Φ and μr (as in the
proof of Theorem 3), then we will have

T (Q) = μ∗∗
r ({F ∈ F(2ω) : ran(F ) ∩ Q �= ∅}) = ν∗({C ∈ C(2ω) : C ∩ Q �= ∅}).

for every Q ∈ C(2ω). Thus, the ranges of the μ∗∗
r -random online partial functions

are the random closed sets associated to T .
Lastly, observe that

lim
n→∞ rn = lim

n→∞
pn+1

pn(1 +
√

1 − pn+1)
=

(
lim

n→∞
pn+1

pn

)(
lim

n→∞
1

1 +
√

1 − pn+1

)
=

p

2
.

Theorem 9. Let r = (ri)i∈ω be defined by

ri =
2/3

1 +

√

1 −
(

2
3

)i
.

Then the collection of ranges of the μ∗∗
r -random online partial functions is equal

to the collection of the standard random closed sets.

Proof. Let T be the capacity associated to the standard random closed sets. As
discussed in Sect. 4, we have T ([[σ]]) =

(
2
3

)n

for every n ∈ ω. Then T satisfies
the conditions of Theorem 8. By the proof of Theorem 8, if μr is the computable,
symmetric generalized Bernoulli measure on 3ω where

ri =
2/3

1 +

√

1 −
(

2
3

)i

for every i ∈ ω, then the ranges of the μ∗∗
r -random online partial functions are

precisely the standard random closed sets.
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