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Abstract. Many different deletion operations are investigated applied
to languages accepted by one-way and two-way deterministic reversal-
bounded multicounter machines as well as finite automata. Operations
studied include the prefix, suffix, infix and outfix operations, as well as
left and right quotient with languages from different families. It is often
expected that language families defined from deterministic machines
will not be closed under deletion operations. However, here, it is shown
that one-way deterministic reversal-bounded multicounter languages are
closed under right quotient with languages from many different lan-
guage families; even those defined by nondeterministic machines such
as the context-free languages, or languages accepted by nondeterminis-
tic pushdown machines augmented by any number of reversal-bounded
counters. Also, it is shown that when starting with one-way determin-
istic machines with one counter that makes only one reversal, taking
the left quotient with languages from many different language fami-
lies, again including those defined by nondeterministic machines such
as the context-free languages, yields only one-way deterministic reversal-
bounded multicounter languages (by increasing the number of counters).
However, if there are even just two more reversals on the counter, or
a second 1-reversal-bounded counter, taking the left quotient (or even
just the suffix operation) yields languages that can neither be accepted
by deterministic reversal-bounded multicounter machines, nor by 2-way
nondeterministic machines with one reversal-bounded counter. A number
of other results with deletion operations are also shown.
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1 Introduction

This paper involves the study of various types of deletion operations applied
to languages accepted by one-way deterministic reversal-bounded multicounter
machines (DCM). These are machines that operate like finite automata with
an additional fixed number of counters, where there is a bound on the number
of times each counter switches between increasing and decreasing [2,10]. These
languages have many decidable properties, such as emptiness, infiniteness, equiv-
alence, inclusion, universe and disjointness [10].

These machines have been studied in a variety of different applications, such
as to membrane computing, verification of infinite-state systems and Diophantine
equations.

Recently, in [5], a related study was conducted for insertion operations; specif-
ically operations defined by ideals obtained from the prefix, suffix, infix and out-
fix relations, as well as left and right concatenation with languages from different
language families. It was found that languages accepted by one-way deterministic
reversal-bounded counter machines with one reversal-bounded counter are closed
under right concatenation with Σ∗, but having two 1-reversal-bounded counters
and right concatenating Σ∗ yields languages outside of DCM and 2DCM(1) (lan-
guages accepted by two-way deterministic machines with one counter that is
reversal-bounded). It also follows from this analysis that the right input end-
marker is necessary for even one-way deterministic reversal-bounded counter
machines, when there are at least two counters. Also, concatenating Σ∗ to the
left of some one-way deterministic 1-reversal-bounded one counter languages
yields languages that are neither in DCM nor 2DCM(1). Other recent results on
reversal-bounded multicounter languages include a technique to show languages
are outside of DCM [3].

Closure properties of some variants of nondeterministic counter machines
under deletion operations were studied in [14]. However, in this paper we inves-
tigate deterministic machines which were not examined in [14].

2 Preliminaries

The set of non-negative integers is denoted by N0, and the set of positive integers
by N. For c ∈ N0, let π(c) be 0 if c = 0, and 1 otherwise.

We assume knowledge of standard formal language theoretic concepts such as
languages, finite automata, determinism, nondeterminism, semilinearity, recur-
sive and recursively enumerable languages [2,9]. Next, we will give some notation
used in the paper. The empty word is denoted by λ. If Σ is a finite alpha-
bet, then Σ∗ is the set of all words over Σ and Σ+ = Σ∗ \ {λ}. For a word
w ∈ Σ∗, if w = a1 · · · an where ai ∈ Σ, 1 ≤ i ≤ n, the length of w is denoted
by |w| = n, and the reversal of w is denoted by wR = an · · · a1. A language
over Σ is any subset of Σ∗. Given a language L ⊆ Σ∗, the complement of L,
Σ∗ \ L is denoted by L. Given two languages L1, L2, the left quotient of L2

by L1, L−1
1 L2 = {y | xy ∈ L2, x ∈ L1}, and the right quotient of L1 by L2 is

L1L
−1
2 = {x | xy ∈ L1, y ∈ L2}.
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A language L is word-bounded or simply bounded if L ⊆ w∗
1 · · · w∗

k for some
k ≥ 1 and (not-necessarily distinct) words w1, . . . , wk. Further, L is letter-bounded
if each wi is a distinct letter. Also, L is bounded-semilinear if L ⊆ w∗

1 · · · w∗
k and

Q = {(i1, . . . , ik) | wi1
1 · · · wik

k ∈ L} is a semilinear set [12].
We now present notation for common word and language operations used

throughout the paper.

Definition 1. For a language L ⊆ Σ∗, the prefix, suffix, infix and outfix opera-
tions are defined by:

– pref(L) = {w | wx ∈ L, x ∈ Σ∗},
– suff(L) = {w | xw ∈ L, x ∈ Σ∗},
– inf(L) = {w | xwy ∈ L, x, y ∈ Σ∗},
– outf(L) = {xy | xwy ∈ L,w ∈ Σ∗}.
Note that pref(L) = L(Σ∗)−1 and suff(L) = (Σ∗)−1L.

The outfix operation has been generalized to the notion of embedding [13]:

Definition 2. The m-embedding of a language L ⊆ Σ∗ is the following set:
emb(L,m) = {w0 · · · wm | w0x1 · · · wm−1xmwm ∈ L, wi ∈ Σ∗, 0 ≤ i ≤ m,
xj ∈ Σ∗, 1 ≤ j ≤ m}.
Note that outf(L) = emb(L, 1).

A nondeterministic multicounter machine is a finite automaton augmented by
a fixed number of counters. The counters can be increased, decreased, tested for
zero, or tested to see if the value is positive. A multicounter machine is reversal-
bounded if every counter makes a fixed number of changes between increasing
and decreasing.

Formally, a one-way k-counter machine is a tuple M = (k,Q,Σ, $, δ, q0, F ),
where Q,Σ, $, q0, F are respectively the finite set of states, the input alphabet,
the right input end-marker, the initial state in Q, and the set of final states
that is a subset of Q. The transition function δ (defined as in [10] except with
only a right end-marker since we only use one-way inputs) is a mapping from
Q×(Σ∪{$})×{0, 1}k into Q×{S,R}×{−1, 0,+1}k, such that if δ(q, a, c1, . . . , ck)
contains (p, d, d1, . . . , dk) and ci = 0 for some i, then di ≥ 0 to prevent negative
values in any counter. The direction of the input tape head movement is given by
the symbols S are R for either stay or right respectively. The machine M is deter-
ministic if δ is a function. A configuration of M is a k+2-tuple (q, w$, c1, . . . , ck)
for describing the situation where M is in state q, with w ∈ Σ∗ still to read
as input, and c1, . . . , ck ∈ N0 are the contents of the k counters. The deriva-
tion relation �M is defined between configurations, where (q, aw, c1, . . . , ck) �M

(p,w′ , c1 + d1, . . . , ck + dk), if (p, d, d1, . . . , dk) ∈ δ(q, a, π(c1), . . . , π(ck)) where
d ∈ {S,R} and w′ = aw if d = S, and w′ = w if d = R. Extended deriva-
tions are given by �∗

M , the reflexive, transitive closure of �M . A word w ∈ Σ∗

is accepted by M if (q0, w$, 0, . . . , 0) �∗
M (q, $, c1, . . . , ck), for some q ∈ F , and

c1, . . . , ck ∈ N0. The language accepted by M , denoted by L(M), is the set of all
words accepted by M . The machine M is l-reversal bounded if, in every accept-
ing computation, the count on each counter alternates between increasing and
decreasing at most l times.
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We denote by NCM(k, l) the family of languages accepted by one-way non-
deterministic l-reversal-bounded k-counter machines. We denote by DCM(k, l)
the family of languages accepted by one-way deterministic l-reversal-bounded
k-counter machines. The union of the families of languages are denoted by
NCM =

⋃
k,l≥0 NCM(k, l) and DCM =

⋃
k,l≥0 DCM(k, l). We will also some-

times refer to a multicounter machine as being in NCM(k, l) (DCM(k, l)), if it
has k l-reversal bounded counters (and is deterministic).

We denote by REG the family of regular languages, and by NPCM the family
of languages accepted by nondeterministic pushdown automata augmented by a
fixed number of reversal-bounded counters [10]. We also denote by 2DCM(1) the
family of languages accepted by two-way input, deterministic finite automata
(both a left and right input tape end-marker are required) augmented by one
reversal-bounded counter [11]. A machine of this form is said to be finite-crossing
if there is a fixed c such that the number of times the boundary between any
two adjacent input cells is crossed is at most c [6]. A machine is finite-turn if the
input head makes at most k turns on the input, for some k. Also, 2NCM is
the family of languages accepted by two-way nondeterministic machines with a
fixed number of reversal-bounded counters, while 2DPCM is the family of two-
way deterministic pushdown machines augmented by a fixed number of reversal-
bounded counters.

The next result proved in [12] gives examples of weak and strong machines
that are equivalent over word-bounded languages.

Theorem 1. [12] The following are equivalent for every word-bounded lan-
guage L:

1. L can be accepted by an NCM.
2. L can be accepted by an NPCM.
3. L can be accepted by a finite-crossing 2NCM.
4. L can be accepted by a DCM.
5. L can be accepted by a finite-turn 2DCM(1).
6. L can be accepted by a finite-crossing 2DPCM
7. L is bounded-semilinear.

We also need the following result in [11]:

Theorem 2. [11] Let L ⊆ a∗ be accepted by a 2NCM (not necessarily finite-
crossing). Then L is regular, hence, semilinear.

3 Closure and Non-closure for Erasing Operations

3.1 Right Quotient for DCM

We begin by showing the closure of DCM under right quotient with any non-
deterministic reversal bounded machine, even when augmented with a pushdown
store.
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Proposition 1. Let L1 ∈ DCM and let L2 ∈ NPCM. Then L1L2
−1 ∈ DCM.

Proof. Consider a DCM machine M1 = (k1, Q1, Σ, $, δ1, s0, F1) and NPCM mach-
ine M2 over Σ with k2 counters where L(M1) = L1 and L(M2) = L2. A DCM
machine M ′ will be constructed accepting L1L2

−1.
Let Γ = {a1, . . . , ak1} be new symbols. For each q ∈ Q1, let Mc(q) be

an interim k1 + k2 counter (plus a pushdown) NPCM machine over Γ con-
structed as follows: on input ap1

1 · · · apk1
k1

, Mc(q) increments the first k1 counters to
(p1, . . . , pk1). Then Mc(q) nondeterministically guesses a word x ∈ Σ∗ and simu-
lates M1 on x$ starting from state q and from the counter values of (p1, . . . , pk1)
using the first k1 counters, while in parallel, simulating M2 on x using the next k2
counters and the pushdown. This is akin to the product automaton construction
described in [10] showing NPCM is closed under intersection with NCM. Then
Mc(q) accepts if both M1 and M2 accept.

Claim. Let Lc(q) = {ap1
1 · · · apk1

k1
| ∃x ∈ L2 such that (q, x$, p1, . . . , pk1) �∗

M1

(qf , $, p′
1, . . . p

′
k1

), p′
i ≥ 0, 1 ≤ i ≤ k1, qf ∈ F1}. Then L(Mc(q)) = Lc(q).

Proof. Consider w = ap1
1 · · · apk1

k1
∈ Lc(q). Then there exists x where x ∈ L2 and

(q, x$, p1, . . . , pk1) �∗
M1

(q1f , $, p′
1, . . . p

′
k1

), where q1f ∈ F1. There must then be
some final state q2f ∈ F2 reached when reading x$ in M2. Then, Mc(q), on input
w places (p1, . . . , pk1 , 0, . . . , 0) on the counters and then can nondeterministically
guess x letter by letter and simulate x in M1 from state q on the first k1 counters
and simulate x in M2 from its initial configuration on the remaining counters
and pushdown. Then Mc(q) ends up in state (q1f , q2f ), which is final. Hence,
w ∈ L(Mc(q)).

Consider w = ap1 · · · apk1 ∈ L(Mc(q)). After adding each pi to counter i,
Mc(q) guesses x and simulates M1 on the first k1 counters from q and simulates
M2 on the remaining counters from an initial configuration. It follows that x ∈
L2, and (q, x$, p1, . . . , pk1) �∗

M1
(q1f , $, p′

1, . . . p
′
k1

), p′
i ≥ 0, 1 ≤ i ≤ k1, q

1
f ∈ F1.

Hence, w ∈ Lc(q). 	

Since for each q ∈ Q1, Mc(q) is in NPCM, it accepts a semilinear language [10],
and since the accepted language is bounded, it is bounded-semilinear and can
therefore be accepted by a DCM-machine by Theorem 1. Let M ′

c(q) be this DCM
machine, with k′ counters, for some k′.

Thus, a final DCM machine M ′ with k1 +k′ counters is built as follows. In it,
M ′ has k1 counters used to simulate M1, and also k′ additional counters, used
to simulate some M ′

c(q), for some q ∈ Q1. Then, M ′ reads its input x$, where
x ∈ Σ∗, while simulating M1 on the first k1 counters, either failing, or reaching
some configuration (q, $, p1, . . . , pk1), for some q ∈ Q1, upon first hitting the
end-marker $. If it does not fail, we then simulate the DCM-machine M ′

c(q) on
input ap1

1 · · · apk1
k1

, but this simulation is done deterministically by subtracting
1 from the first k1 counters, in order, until each are zero instead of reading
input characters, and accepts if ap1

1 · · · apk1
k1

∈ L(M ′
c(q)) = Lc(q). Then M ′ is
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deterministic and accepts

{x | either (s0, x$, 0, . . . , 0) �∗
M1

(q′, a$, p′
1, . . . , p

′
k1

) �M1 (q, $, p1, . . . , pk1),

a ∈ Σ, or (s0, x$, 0, . . . , 0) = (q, $, p1, . . . , pk1), s.t. ap1
1 · · · apk1

k1
∈ Lc(q)}

= {x | either (s0, x$, 0, . . . , 0) �∗
M1

(q′, a$, p′
1, . . . , p

′
k1

) �M1 (q, $, p1, . . . , pk1),
a ∈ Σ, or (s0, x$, 0, . . . , 0) = (q, $, p1, . . . , pk1), where ∃y ∈ L2 s.t.
(q, y$, p1, . . . , pk1) �∗

M1
(qf , $, p′′

1 , . . . , p′′
k1

), qf ∈ F1}
= {x | xy ∈ L1, y ∈ L2}
= L1L

−1
2 . 	


These immediately show closure for the prefix operation.

Corollary 1. If L ∈ DCM, then pref(L) ∈ DCM.

We can modify this construction to show a strong closure result for one-counter
languages that does not increase the number of counters.

Proposition 2. Let l ∈ N. If L1 ∈ DCM(1, l) and L2 ∈ NPCM, then L1L2
−1 ∈

DCM(1, l).

Proof. The construction is similar to the one in Proposition 1. However, we note
that since the input machine for L1 has only one counter, Lc(q) is unary (regard-
less of the number of counters needed for L2). Thus Lc(q) is unary and semilinear,
and Parikh’s theorem states that all semilinear languages are letter-equivalent
to regular languages [8], and all unary semilinear languages are regular. Thus
Lc(q) is regular, and can be accepted by a DFA.

We can then construct M ′ accepting L1L2
−1 as in Proposition 1 without

requiring any additional counters or counter reversals, by transitioning to the
DFA accepting Lc(q) when we reach the end of input at state q. 	

Corollary 2. Let l ∈ N. If L ∈ DCM(1, l), then pref(L) ∈ DCM(1, l).

In fact, this construction can be generalized from NPCM to any class of automata
that can be defined using Definition 3. These classes of automata are described
in more detail in [7]. We only define it in a way specific to our use in this paper.
Only the first two conditions are required for Corollary 3, while the third is
required for Corollary 5.

Definition 3. A family of languages F is said to be reversal-bounded counter
augmentable if

– every language in F is effectively semilinear,
– given DCM machine M1 with k counters, state set Q and final state set F , and

L2 ∈ F , we can effectively construct, for each q ∈ Q, the following language
in F ,

{ap1
1 · · · apk

k | ∃x ∈ L2 such that (q, x$, p1, . . . , pk) �∗
M1

(qf , $, p′
1, . . . p

′
k),

p′
i ≥ 0, qf ∈ F},
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– given DCM machine M1 with k counters, state set Q, and L2 ∈ F , we can
effectively construct, for each q ∈ Q, the following language in F ,

{ap1
1 · · · apk

k | ∃x ∈ L2 such that (q, x, 0, . . . , 0) �∗
M1

(q, λ, p1, . . . pk)}.

There are many reversal-bounded counter augmentable families that L2 could
be from in this corollary, such as:

Corollary 3. Let L1 ∈ DCM and L2 ∈ F , a family of languages that is reversal-
bounded counter augmentable. Then L1L2

−1 ∈ DCM. Furthermore, if L1 ∈
DCM(1, l) for some l ∈ N, then L1L2

−1 ∈ DCM(1, l).

This construction could be applied to several other families of semilinear lan-
guages such as:

– MPCA’s: one-way machines with k pushdowns where values may only be
popped from the first non-empty stack, augmented by a fixed number of
reversal-bounded counters [7].

– TCA’s: NFA’s augmented with a two-way read-write tape, where the number
of times the read-write head crosses any tape cell is finitely bounded, again
augmented by a fixed number of reversal-bounded counters [7].

– QCA’s: NFA’s augmented with a queue, where the number of alternations
between the non-deletion phase and the non-insertion phase is bounded by a
constant [7].

– EPDA’s: embedded pushdown automata, modelled around a stack of stacks,
introduced in [17]. These accept the languages of tree-adjoining grammars,
a semilinear subset of the context-sensitive languages. As was stated in [7],
we can augment this model with a fixed number of reversal-bounded counters
and still get an effectively semilinear family.

3.2 Right and Left Quotients of Regular Sets

Let F be any family of languages (which need not be recursively enumerable).
It is known that REG is closed under right quotient by languages in F [9].
However, this closure need not be effective, as it will depend on the properties
of F . The following is an interesting observation which connects decidability of
the emptiness problem to effectiveness of closure under right quotient:

Proposition 3. LetF be any family of languages which is effectively closed under
intersection with regular sets and whose emptiness problem is decidable. Then REG
is effectively closed under both left and right quotient by languages in F .

Proof. We will start with right quotient.
Let L1 ∈ REG and L2 be in F . Let M be a DFA accepting L1. Let q be

a state of M , and Lq = {y | M from initial state q accepts y}. Let Q′ = {q |
q is a state of M,Lq ∩ L2 �= ∅}. Since F is effectively closed under intersection
with regular sets and has a decidable emptiness problem, Q′ is computable.
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Then a DFA M ′ accepting L1L
−1
2 can be obtained by just making Q′ the set of

accepting states in M .
Next, for left quotient, let L1 be in F , and L2 in REG be accepted by a DFA

M whose initial state is q0.
Let Lq = {x | M on input x ends in state q}. Let Q′ = {q | Lq ∩ L1 �= ∅}.

Then Q′ is computable, since F is effectively closed under intersection with
regular sets and has a decidable emptiness problem.

We then construct an NFA (with λ-transitions) M ′ to accept L−1
1 L2 as fol-

lows: M ′ starting in state q0 with input y nondeterministically goes to a state q
in Q′ without reading any input, and then simulates the DFA M . 	

Corollary 4. REG is effectively closed under left and right quotient by lan-
guages in:

1. the families of languages accepted by NPCM and 2DCM(1) machines,
2. the family of languages accepted MPCAs, TCAs, QCAs, and EPDAs,
3. the families of ET0L and Indexed languages.

Proof. These families are closed under intersection with regular sets. They have
also a decidable emptiness problem [1,7,16]. The family of ET0L languages and
Indexed languages are discussed further in [16] and [1] respectively. 	


3.3 Suffix, Infix and Left Quotient for DCM(1, 1)

In the case of one-counter machines that makes only one counter reversal, it will
be shown that a DCM-machine that can accept their suffix and infix languages
can always be constructed. However, in some cases, these resulting machines
often require more than one counter. Thus, unlike prefix, DCM(1, 1) is not closed
under suffix, left quotient, or infix. But, the result is in DCM.

The proof of Lemma 1 is quite lengthy, and due to space constraints is omit-
ted but can be found online in [4]. We will give some intuition for the result
here. First, DCM is closed under union and so the second statement of Lemma1
follows from the first. For the first statement, an intermediate NPCM machine is
constructed from L1 and L that accepts a language Lc. This language contains
words of the form qai where there exists some word w such that both w ∈ L1,
and also from the initial configuration of M (accepting L), it can read w and
reach state q with i on the counter. Then, it is shown that this language is actu-
ally a regular language, using the fact that all semilinear unary languages are
regular (as (q)−1Lc is unary; see [4] for full details). Then, DCM(1, 1) machines
are created for every state q of M . These accept all words w such that qai ∈ Lc,
and in M , from state q and counter i with w to read as input, M can reach a
final state while emptying the counter. The fact that Lc is regular allows these
machines to be created.

Lemma 1. Let L ∈ DCM(1, 1), L1 ∈ NPCM. Then L−1
1 L is the finite union of

languages in DCM(1, 1). Furthermore, it is in DCM.



396 J. Eremondi et al.

From this, we obtain the following general result (proof also omitted due to space
and is found in [4]).

Theorem 3. Let L ∈ DCM(1, 1), L1, L2 ∈ NPCM. Then both (L−1
1 L)L−1

2 and
L−1
1 (LL−1

2 ) are a finite union of languages in DCM(1, 1). Furthermore, both
languages are in DCM.

And, as with Corollary 3, this can be generalized to any language families that
are reversal-bounded counter augmentable.

Corollary 5. Let L ∈ DCM(1, 1), L1 ∈ F1, L2 ∈ F2, where F1 and F2 are
any families of languages that are reversal-bounded counter augmentable. Then
(L−1

1 L)L−1
2 and L−1

1 (LL−1
2 ) are both a finite union of languages in DCM(1, 1).

Furthermore, both languages are in DCM.

As a special case, when using the fixed regular language Σ∗ for the right and
left quotient, we obtain:

Corollary 6. Let L ∈ DCM(1, 1). Then suff(L) and inf(L) are both DCM
languages.

It is however necessary that the number of counters increase to accept suff(L)
and inf(L), for some L ∈ DCM(1, 1). The result also holds for the outfix operator.
The proof is omitted due to space and is found in [4].

Proposition 4. There exists L ∈ DCM(1, 1) where all of suff(L), inf(L), outf(L)
are not in DCM(1, 1).

3.4 Non-closure of Suffix, Infix and Outfix with Multiple Counters
or Reversals

In [5], a technique was used to show languages are not in DCM and 2DCM(1)
simultaneously. The technique uses undecidable properties to show non-closure.
As 2DCM(1) machines have two-way input and a reversal-bounded counter, it is
difficult to derive “pumping” lemmas for these languages. Furthermore, unlike
DCM and NCM machines, 2DCM(1) machines can accept non-semilinear lan-
guages. For example, L1 = {aibk | i, k ≥ 2, i divides k} can be accepted by a
2DCM(1) whose counter makes only one reversal. However, L2 = {aibjck | i, j,
k ≥ 2, k = ij} cannot be accepted by a 2DCM(1) [11]. This technique from [5]
works as follows. The proof uses the fact that there is a recursively enumer-
able but not recursive language Lre ⊆ N0 that is accepted by a deterministic
2-counter machine [15]. Thus, the machine when started with n ∈ N0 in the first
counter and zero in the second counter, eventually halts (i.e., accepts n ∈ Lre).

Examining the constructions in [15] of the 2-counter machine demonstrates
that the counters behave in a regular pattern. Initially one counter has some
value d1 and the other counter is zero. Then, the machine’s operation can be
divided into phases, where each phase starts with one of the counters equal to
some positive integer di and the other counter equals 0. During the phase, the
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positive counter decreases, while the other counter increases. The phase ends
with the first counter containing 0 and the other counter containing di+1. In
the next phase, the modes of the counters are interchanged. Thus, a sequence of
configurations where the phases are changing will be of the form:

(q1, d1, 0), (q2, 0, d2), (q3, d3, 0), (q4, 0, d4), (q5, d5, 0), (q6, 0, d6), . . .

where the qi’s are states, with q1 = qs (the initial state), and d1, d2, d3, . . . are
positive integers. The second component of the configuration refers to the value
of the first counter, and the third component refers to the value of the second.
Also, notice that in going from state qi in phase i to state qi+1 in phase i + 1,
the 2-counter machine goes through intermediate states.

For each i, there are 5 cases for the value of di+1 in terms of di: di+1 = di,
2di, 3di, di/2, di/3 (the division operation only occurs if the number is divisible
by 2 or 3, respectively). The case applied is determined by qi. Hence, a function
h can be defined such that if qi is the state at the start of phase i, di+1 = h(qi)di,
where h(qi) is one of 1, 2, 3, 1/2, 1/3.

Let T be a 2-counter machine accepting a recursively enumerable language
that is not recursive. Assume that q1 = qs is the initial state, which is never
re-entered, and if T halts, it does so in a unique state qh. Let Q be the states of
T , and 1 be a new symbol.

In what follows, α is any sequence of the form #I1#I2# · · · #I2m# (thus we
assume that the length is even), where for each i, 1 ≤ i ≤ 2m, Ii = q1k for some
q ∈ Q and k ≥ 1, represents a possible configuration of T at the beginning of
phase i, where q is the state and k is the value of the first counter (resp., the
second) if i is odd (resp., even).

Define L0 to be the set of all strings α such that

1. α = #I1#I2# · · · #I2m#;
2. m ≥ 1;
3. for 1 ≤ j ≤ 2m − 1, Ij ⇒ Ij+1, i.e., if T begins in configuration Ij , then after

one phase, T is in configuration Ij+1 (i.e., Ij+1 is a valid successor of Ij);

Then, the following was shown in [5].

Lemma 2. L0 is not in DCM ∪ 2DCM(1).

We will use this language exactly to show taking either the suffix, infix or outfix
of a language in DCM(1, 3),DCM(2, 1) or 2DCM(1) can produce languages that
are in neither DCM nor 2DCM(1).

Theorem 4. There exists a language L in all of L ∈ DCM(1, 3), L ∈ DCM(2, 1),
and L ∈ 2DCM(1) (which makes no turn on the input and 3 reversals on the
counter) such that suff(L) �∈ DCM ∪ 2DCM(1), inf(L) �∈ DCM ∪ 2DCM(1), and
outf(L) �∈ DCM ∪ 2DCM(1).

Proof. Let L0 be the language defined above, which is not in DCM ∪ 2DCM(1).
Let a, b be new symbols. Clearly, bL0b is also not in DCM ∪ 2DCM(1). Let
L = {aib#I1#I2# · · · #I2m#b | I1, . . . , I2m are configurations of the 2-counter
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machine T , i ≤ 2m − 1, Ii+1 is not a valid successor of Ii}. Clearly L is in
DCM(1, 3), in DCM(2, 1), and in 2DCM(1) (as DCM(1, 3) is a subset of 2DCM(1)).

Let L1 be suff(L). Suppose L1 is in DCM (resp., 2DCM(1)). Then L2 = L1

is also in DCM (resp., 2DCM(1)).
Let R = {b#I1#I2 · · · #I2m#b | I1, . . . , I2m are configurations of T}. Then

since R is regular, L3 = L2 ∩ R is in DCM (resp, 2DCM(1)). We get a contradic-
tion, since L3 = bL0b.

Non-closure under infix and outfix can be shown similarly. 	

This implies non-closure under left-quotient with regular languages, and this
result also extends to the embedding operation, a generalization of outfix.

Corollary 7. There exists L ∈ DCM(1, 3), L ∈ DCM(2, 1), L ∈ 2DCM(1) (which
makes no turn on the input and 3 reversals on the counter), and R ∈ REG such
that R−1L �∈ DCM ∪ 2DCM(1).

Corollary 8. Let m > 0. Then there exists L ∈ DCM(1, 3), L ∈ DCM(2, 1),
L ∈ 2DCM(1) (which makes no turn on the input and 3 reversals on the counter)
such that emb(L,m) �∈ DCM ∪ 2DCM(1).

The results of Theorem 4 and Corollary 7 are optimal for suffix and infix as these
operations applied to DCM(1, 1) are always in DCM by Corollary 6 (and since
DCM(1, 2) = DCM(1, 1)). But whether the outfix and embedding operations
applied to DCM(1, 1) languages is always in DCM is an open question.

3.5 Closure for Bounded Languages

In this subsection, deletion operations applied to bounded and letter-bounded
languages will be examined.

The following is a required straightforward corollary to Theorem2.

Corollary 9. Let L ⊆ #a∗# be accepted by a 2NCM. Then L is regular.

Theorem 5. If L is a bounded language accepted by either a finite-crossing
2NCM, an NPCM or a finite-crossing 2DPCM, then all of pref(L), suff(L),
inf(L), outf(L) can be accepted by a DCM.

Proof. By Theorem 1, L can always be converted to an NCM. Further, one can
construct NCM’s accepting pref(L), suff(L), inf(L), outf(L) since one-way NCM
is closed under prefix, suffix, infix and outfix. In addition, it is known that apply-
ing these operations on bounded languages produce only bounded languages.
Thus, by another application of Theorem1, the result can then be converted to
a DCM. 	

The “finite-crossing” requirement in the theorem above is necessary:

Proposition 5. There exists a letter-bounded language L accepted by a 2DCM(1)
machine which makes only one reversal on the counter such that suff(L) (resp.,
inf(L), outf(L),pref(L)) is not in DCM ∪ 2DCM(1).
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Proof. Let L = {ai#bj# | i, j ≥ 2, j is divisible by i}. Clearly, L can be accepted
by a 2DCM(1) which makes only one reversal on the counter. If suff(L) is in
DCM∪2DCM(1), then L′ = suff(L)∩#b+# would be in DCM∪2DCM(1). From
Corollary 9, we get a contradiction, since L′ is not semilinear. The other cases
are shown similarly. 	
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