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Abstract. Ummels and Wojtczak initiated the study of finding Nash equ-
ilibria in simple stochastic multi-player games satisfying specific bounds.
They showed that deciding the existence of pure-strategy Nash equilibria
(pureNE) where a fixed player wins almost surely is undecidable for games
with 9 players. They also showed that the problem remains undecidable
for the finite-strategy Nash equilibrium (finNE) with 14 players. In this
paper we improve their undecidability results by showing that pureNE
and finNE problems remain undecidable for 5 or more players.

Keywords: Stochastic games · Nash equilibrium · Pure strategy · Finite-
state strategy

1 Introduction

Stochastic games are well established formalism for analyzing reactive systems
under the influence of random events [1]. Such systems are often modeled as
games between the system and its environment, where the environment’s objec-
tive is the complement of the system’s objective: the environment is considered
hostile. Therefore, research in this area has traditionally focused on two-player
games where each play is won by precisely one of the two players, so-called two-
player zero-sum games. However, often in the practical settings the system may
consist of several components with independent objectives, a situation which is
naturally modeled by a multi-player game.

In this paper, we study multi-player stochastic games [9] played on finite direc-
ted graphs whose vertices are either stochastic or controlled by one of the play-
ers. A play of such a game evolves by moving a token along edges of the graph in
the following manner. The game begins in an initial vertex. Whenever the token
arrives at a non-stochastic vertex, the player who controls this vertex must move
the token to a successor vertex; when the token arrives at a stochastic vertex, a
fixed probability distribution determines the successor vertex. In the most gen-
eral case, a measurable function maps plays to payoffs. In this paper we consider
so-called simple stochastic games, where the possible payoffs of a single play are
either 0 or 1 (i.e. each player either wins or loses a given play) and depend only
on the terminal vertex of the play, i.e. a vertex which only has a self-loop edge.
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However, due to the presence of stochastic vertices, a player’s expected payoff (i.e.
her probability of winning) can be an arbitrary probability.

The most common interpretation of rational behavior in multi-player games
is captured by the notion of a Nash equilibrium [8]. In a Nash equilibrium, no
player can improve her payoff by unilaterally switching to a different strategy.
Chatterjee et al. in [3] gave an algorithm for computing a Nash equilibrium in
a stochastic multi-player game with ω-regular winning conditions. However—as
observed by Ummels and Wojtczak [11]—the algorithm proposed by Chatterjee
et al. may compute an equilibrium where all players lose almost surely, even when
there exist other equilibria where all players win almost surely. The equilibrium
where all players win almost surely is more optimal than the one where all players
lose almost surely.

Ummels and Wojtczak [11] successfully argue that in practice it is desirable
to look for an equilibrium where as many players as possible win almost surely
or where it is guaranteed that the expected payoff of the equilibrium falls into
a certain interval. They studied the so-called NE problem as a decision prob-
lem where, given a k-player game G with initial vertex v0 and two thresholds
x̄, ȳ ∈ [0, 1]k1, the goal is to decide whether (G, v0) has a Nash equilibrium with
expected payoff at least x̄ and at most ȳ. This problem can be considered as
a generalization of the quantitative decision problem for two-player zero-sum
games, which asks whether in such a game player 0 has a strategy that ensures
to win the game with a probability that exceeds a given threshold.

There are several variants of the NE problem depending on the type of
strategies permitted. On the one hand, strategies may be randomized (allow-
ing randomization over actions) or pure (not allowing such randomization). On
the other hand, one can restrict to strategies that use (unbounded or bounded)
finite memory or even to stationary ones (strategies that do not use any mem-
ory at all). For the quantitative decision problem, this distinction is often not
meaningful since in a two-player zero-sum simple stochastic game with ω-regular
objectives both players have optimal pure strategies with finite memory. More-
over, in many games even positional (i.e. both pure and stationary) strategies
suffice for optimality. However, regarding NE this distinction leads to distinct
decision problems with completely different computational complexity [11].

Contributions. Ummels and Wojtczak [11] showed that deciding the existence
of pure-strategy Nash equilibria (pureNE) where a fixed player wins almost
surely is undecidable for games with 9 players. They also showed that the prob-
lem remains undecidable for the finite-strategy Nash equilibrium (finNE) with
13 players. In this paper we further refine their undecidability results by showing
that pureNE and finNE problems remain undecidable for 5 or more players.

Related Work. Determining the complexity of Nash equilibria has attracted
much interest in recent years. In particular, a series of papers culminated in
the result that computing a Nash equilibrium of a two-player game in strategic
form is complete for the complexity class PPAD [4,7]. More in the spirit of our

1 The ith element of vector x̄ corresponds to the payoff of player i.
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work, [6] showed that deciding whether there exists a Nash equilibrium in a two-
player game in strategic form where player 0 receives payoff at least x and related
decision problems are all NP-hard. For non-stochastic infinite games, a qualita-
tive version of the NE problem was studied in [10]. In particular, it was shown
that the problem is NP-complete for games with parity winning conditions but
in P for games with Büchi winning conditions.

For stochastic games, most results concern the computation of values and
optimal strategies in two player case. In the multi-player case, [3] showed that
the problem of deciding whether a (concurrent) stochastic game with reachability
objectives has a Nash equilibrium in positional strategies with payoff at least x̄
is NP-complete.

Ummels and Wojtczak showed in [11] that the NE problem is undecidable
if we allow either arbitrary randomized strategies or arbitrary pure strategies.
In fact, even the following, presumably simpler, problem was showed undecid-
able: Given a game G, decide whether there exists a Nash equilibrium (in pure
strategies) where player 0 wins almost surely. Moreover, the problem remains
undecidable if one restricts to randomized or pure strategies with finite memory.
However, it was also shown there that if one restricts to simpler types of strate-
gies like stationary ones, NE becomes decidable [11]. In particular, for positional
strategies the problem is NP-complete, and for arbitrary stationary strategies it
is NP-hard but contained in Pspace. Also, the strictly qualitative fragment of
NE is decidable. This fragment arises from NE by restricting the two thresholds
to be the same binary payoff. Hence, they were only interested in equilibria where
each player either wins or loses almost surely. Formally, the task is to decide,
given a k-player game G with initial vertex v0 and a binary payoff x̄ ∈ {0, 1}k,
whether the game has a Nash equilibrium with expected payoff x̄. It was shown
there that for simple stochastic games, this problem is P-complete [11].

Ummels and Wojtczak studied, in [12], the computational complexity of Nash
equilibria in concurrent games with limit-average objectives. They showed that
the existence of a Nash equilibrium in randomized strategies is undecidable (for
at least 14 players), while the existence of a Nash equilibrium in pure strategies
is decidable, even if a constraint is put on the payoff of the equilibrium. Their
undecidability result holds even for a restricted class of concurrent games, where
nonzero rewards occur only on terminal states. Moreover, they showed that the
constrained existence problem is undecidable not only for concurrent games but
for turn-based games with the same restriction on rewards. They also showed
undecidability of the existence of an (unconstrained) Nash equilibrium in con-
current games with terminal-reward payoffs. Finally, Bouyer et al. [2] showed
undecidability of the existence of constrained Nash equilibrium in a very similar
model – players do no observe the actions taken but only the state of the game –
with only three players and 0/1-rewards (i.e., reachability objectives).

2 Simple Stochastic Multi-player Games

We study multi-player extension of simple stochastic game introduced by Con-
don [5] as studied by Ummels and Wojtczak [11].
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Definition 1 (Simple Stochastic Multi-player Games). A simple stochas-
tic multi-player game(SSMG) is a tuple (Π,V, (Vi)i∈Π ,Δ, (Fi)i∈Π) where:

– Π = {0, 1, . . . , k − 1} is a finite set of players;
– V is a finite set of vertices;
– Vi ⊆ V is the set of vertices controlled by player i such that Vi ∩ Vj = ∅ for

every i �= j ∈ Π;
– Δ ⊆ V × ([0, 1] ∪ {⊥}) × V is the transition relation, and
– Fi ⊆ V for each i ∈ Π.

We say that a vertex v ∈ V is controlled by player i if v ∈ Vi. A vertex
v ∈ V is called a stochastic vertex if v �∈ ⋃

i∈Π Vi, that is, v is not contained
in any of the sets Vi. We require that a transition is labeled by a probability
iff it originates in a stochastic vertex: If (v, p, w) ∈ Δ then p ∈ [0, 1] if v is a
stochastic vertex and p = ⊥ if v ∈ Vi for some i ∈ Π. Moreover, for each pair
of a stochastic vertex v and an arbitrary vertex w, we require that there exists
precisely one p ∈ [0, 1] such that (v, p, w) ∈ Δ. As usual, for computational
purposes we require that all these probabilities are rational.

For a given vertex v ∈ V , the set of all w ∈ V such that there exists p ∈
(0, 1]∪{⊥} with (v, p, w) ∈ Δ is denoted by vΔ. For technical reasons, it is required
that vΔ �= ∅ for all v ∈ V . Moreover, for each stochastic vertex v, the outgoing
probabilities must sum up to 1:

∑
(p,w):(v,p,w)∈Δ p = 1. Finally, it is required that

each vertex v that lies in one of the sets Fi is a terminal (sink) vertex : vΔ = {v}.
So if F is the set of all terminal vertices, then Fi ⊆ F for each i ∈ Π.

A (mixed) strategy of player i in G is a mapping σ : V ∗Vi → D(V ) assigning
to each possible history xv ∈ V ∗Vi of vertices ending in a vertex controlled by
player i a (discrete) probability distribution over V such that σ(xv)(w) > 0 only
if (v,⊥, w) ∈ Δ. Instead of σ(xv)(w), we usually write σ(w | xv). A (mixed)
strategy profile of G is a tuple σ̄ = (σi)i∈Π where σi is a strategy of player i in
G. Given a strategy profile σ̄ = (σj)j∈Π and a strategy τ of player i, we denote
by (σ̄−i, τ) the strategy profile resulting from σ̄ by replacing σi with τ .

A strategy σ of player i is called pure if for each xv ∈ V ∗Vi there exists
w ∈ vΔ with σ(w | xv) = 1. Note that a pure strategy of player i can be
identified with a function σ : V ∗Vi → V . A strategy profile σ̄ = (σi)i∈Π is called
pure if each σi is pure. More generally, a pure strategy σ is called finite-state
if it can be implemented by a finite automaton with output or, equivalently, if
the equivalence relation ∼ ⊆ V ∗ × V ∗ defined by x ∼ y if σ(xz) = σ(yz) for all
z ∈ V ∗Vi has only finitely many equivalence classes. In general, this definition is
applicable to mixed strategies as well, but here, we identify finite-state strategies
with pure finite-state strategies. Finally, a finite-state strategy profile is a profile
consisting of finite-state strategies only.

It is sometimes convenient to designate an initial vertex v0 ∈ V of the game.
We call the tuple (G, v0) an initialized SSMG. A strategy (strategy profile) of
(G, v0) is just a strategy (strategy profile) of G. In the following, we will use the
abbreviation SSMG also for initialized SSMGs. It should always be clear from
the context if the game is initialized or not.

When drawing an SSMG as a graph, we continue to use the conventions
of [11]. The initial vertex is marked by an incoming edge that has no source
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vertex. Vertices that are controlled by a player are depicted as circles, where the
player who controls a vertex is given by the label next to it. Stochastic vertices
are depicted as diamonds, where the transition probabilities are given by the
labels on its outgoing edges. Finally, terminal vertices are generally represented
by their associated payoff vector. In fact, we allow arbitrary vectors of rational
probabilities as payoffs. This does not increase the power of the model since such
a payoff vector can easily be realized by an SSMG consisting of stochastic and
terminal vertices only.

Given an SSMG (G, v0) and a strategy profile σ̄ = (σi)i∈Π , the conditional
probability of w ∈ V given the history xv ∈ V ∗V is the number σi(w | xv) if
v ∈ Vi and the unique p ∈ [0, 1] such that (v, p, w) ∈ Δ if v is a stochastic vertex.
We abuse notation and denote this probability by σ̄(w | xv). The probabilities
σ̄(w | xv) induce a probability measure on the space V ω in the following way: The
probability of a basic open set v1 . . . vk ·V ω is 0 if v1 �= v0 and the product of the
probabilities σ̄(vj | v1 . . . vj−1) for j = 2, . . . , k otherwise. It is a classical result
of measure theory that this extends to a unique probability measure assigning
a probability to every Borel subset of V ω, which we denote by Prσ̄

v0
. For a set

U ⊆ V , let Reach(U) := V ∗ · U · V ω.
Given a strategy profile σ̄, a strategy τ of player i is called a best response to

σ̄ if τ maximizes the expected payoff of player i, i.e. for all strategies τ ′ of player i

we have that Pr(σ̄−i,τ
′)

v0
(Reach(Fi)) ≤ Pr(σ̄−i,τ)

v0
(Reach(Fi)). A Nash equilibrium

is a strategy profile σ̄ = (σi)i∈Π such that each σi is a best response to σ̄.
Hence, in a Nash equilibrium no player can improve her payoff by (unilaterally)
switching to a different strategy. In this paper we study the following decision
problem.

Definition 2 (Decision Problem NE). Given an initialized simple stochastic
multi-player game (G, v0) and two thresholds x̄, ȳ ∈ [0, 1]Π , decide whether there
exists a Nash equilibrium with payoff ≥ x̄ and ≤ ȳ.

As usual, for computational purposes we assume that the thresholds x̄ and ȳ
are vectors of rational numbers. The threshold-free variant of the above prob-
lem which omits the thresholds just asks about a Nash equilibrium where some
distinguished player, say player 0, wins almost surely.

The following is the key result of this paper.

Theorem 1. The existence of a pure-strategy-Nash equilibrium SSMG where
player 0 wins almost surely is undecidable for games with 5 or more players.

3 Improved Undecidability Result

In this section we construct an SSMG G for which we show the undecidability
of the existence of pure-strategy Nash equilibria of (G, v0) where player 0 wins
almost surely, whenever G has 5 or more players. We then explain how this proof
can be adapted to show undecidability of

– finite-strategy Nash equilibrium where player 0 wins almost surely whenever
G has 5 or more players.
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3.1 Pure-Strategy Equilibria

In this section, we show that the problem pureNE is undecidable by exhibit-
ing a reduction from an undecidable problem about two-counter machines. Our
construction is inspired by a construction used in [11]. A two-counter machine
M is given by a list of instructions ι1, . . . , ιm where each instruction is one of
the following:

– “inc(j); goto k” (increment counter j by 1 and go to instruction k);
– “zero(j) ? goto k: dec(j); goto l” (if the value of counter j is zero, go to

instruction k; otherwise, decrement counter j by one and go to instruction l);
– “halt” (stop the computation).

Here j ranges over 1, 2 (the two counters), and k �= l range over 1, . . . , m.
A configuration of M is a triple C = (i, c1, c2) ∈ {1, . . . , m} × N × N, where i
denotes the number of the current instruction and cj denotes the current value
of counter j. A configuration C ′ is the successor of configuration C, denoted
by C 
 C ′, if it results from C by executing instruction ιi; a configuration
C = (i, c1, c2) with ιi = “halt” has no successor configuration. Finally, the
computation of M is the unique maximal sequence ρ = ρ(0)ρ(1) . . . such that
ρ(0) 
 ρ(1) 
 . . . and ρ(0) = (1, 0, 0) (the initial configuration). Note that ρ is
either infinite, or it ends in a configuration C = (i, c1, c2) such that ιi = “halt”.

The halting problem is to decide, given a machine M, whether the com-
putation of M is finite. It is well-known that two-counter machines are Turing
powerful, which makes the halting problem and its dual, the non-halting problem,
undecidable.

In order to prove Theorem1, we show that one can compute from a two-
counter machine M an SSMG (G, v0) with five players such that the computation
of M is infinite iff (G, v0) has a pure Nash equilibrium where player 0 wins almost
surely. This establishes a reduction from the non-halting problem to pureNE.

The game G is played by player 0 and four other players At and Bt, indexed by
t ∈ {0, 1}. Let Γ = {init, inc(j),dec(j), zero(j) : j = 1, 2}, and let q1 = 2, q2 = 3
be two primes. If M has instructions ι1, . . . , ιm, then for each i ∈ {1, . . . , m},
each γ ∈ Γ , each j ∈ {1, 2} and each t ∈ {0, 1}, the game G contains the
gadgets St

i,γ , It
i,γ and Ct

j,γ , which are depicted in Fig. 1. In the figure, squares
represent terminal vertices (the edge leading from a terminal vertex to itself
being implicit), and the labeling indicates which players win at the respective
vertex. Moreover, the dashed edge inside Ct

j,γ is present iff γ �∈ {init, zero(j)}.
The initial vertex v0 of G is the black vertex inside the gadget S0

1,init.
For any pure strategy profile σ̄ of G where player 0 wins almost surely, let

x0v0 ≺ x1v1 ≺ x2v2 ≺ . . . (xi ∈ V ∗, v ∈ V , x0 = ε) be the (unique) sequence
of all consecutive histories such that, for each n ∈ N, vn is a black vertex and
Prσ̄

v0
(xnvn · V ω) > 0. Additionally, let γ0, γ1, . . . be the corresponding sequence

of instructions, i.e. γn = γ for the unique instruction γ such that vn lies in one
of the gadgets St

i,γ (where t = n mod 2). For each j ∈ {1, 2} and n ∈ N, we
define two conditional probabilities an and pn as follows:

an := Prσ̄
v0

(Reach(FAn mod 2) | xnvn · V ω) and
pn := Prσ̄

v0
(Reach(FAn mod 2) | xnvn · V ω \ xn+2vn+2 · V ω).
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Finally, for each j ∈ {1, 2} and n ∈ N, we define an ordinal number cn
j ≤ ω

as follows: After the history xnvn, with probability 1
4 the play proceeds to the

vertex controlled by player 0 in the counter gadget Ct
j,γn

(where t = n mod 2).
The number cn

j is defined to be the maximal number of subsequent visits to the
grey vertex inside this gadget (where cn

j = ω if, on one path, the grey vertex

St
i,γ :

A0 (0, 2
3 , . . . , 2

3 )

B0 (0, 1
3 , . . . , 1

3 )

A1 (0, 2
3 , . . . , 2

3 )

B1 (0, 1
3 , . . . , 1

3 )

Ct
1,γ

Ct
2,γ

It
i,γ

1
2

1
4

1
4

Ct
j,γ :

0

0,At,Bt̄

0,At,Bt̄ 0,At,At̄ 0,At,At̄

0,Bt,At̄

if γ = inc(j);

1− 1
qj

1
qj

1
qj

1− 1
qj

1
qj

1− 1
qj

1
2

1
2

0

0,At,Bt̄

0,At,Bt̄

0,At,Bt̄

0,At,At̄

0,Bt,Bt̄

0,Bt,At̄

if γ = dec(j);

1− 1
qj

1
qj

1
q2
j

1− 1
q2
j

1
2

1
2

1− 1
qj

1
qj

1
qj

1− 1
qj

0

0,At,Bt̄

0,At,Bt̄ 0,At,At̄

0,Bt,At̄

if γ {∈� inc(j), dec(j)}.

1− 1
qj

1
qj

1
q2
j

1− 1
q2
j

1
2

1
2

It
i,γ :

0

St̄
k,inc(j)

if ιi = “inc(j); goto k”;

0
St̄

k,zero(j)

St̄
l,dec(j)

if ιi = “zero(j) ? goto k : dec(j); goto l”;

0

(0, . . . , 0)

if ιi = “halt”.

Fig. 1. Simulating a two-counter machine.
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is visited infinitely often). Note that, by the construction of Ct
j,γ , it holds that

cn
j = 0 if γn = zero(j) or γn = init.

Lemma 1. Let σ̄ be a pure strategy profile of (G, v0) where player 0 wins almost
surely. Then σ̄ is a Nash equilibrium if and only if the following equation holds.

cn+1
j =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 + cn
j if γn+1 = inc(j),

cn
j − 1 if γn+1 = dec(j),

cn
j = 0 if γn+1 = zero(j),

cn
j otherwise

(1)

for all j ∈ {1, 2} and n ∈ N.

Here + and − denote the usual addition and subtraction of ordinal numbers
respectively (satisfying 1 + ω = ω − 1 = ω). The proof of Lemma 1 goes through
several claims. In the following, let σ̄ be a pure strategy profile of (G, v0) where
player 0 wins almost surely. The first claim gives a necessary and sufficient
condition on the probabilities an for σ̄ to be a Nash equilibrium.

Proposition 1. The profile σ̄ is a Nash equilibrium iff an = 2
3 for all n ∈ N.

Proof. (⇒) Assume that σ̄ is a Nash equilibrium. Clearly, this implies that an ≥
2
3 for all n ∈ N since otherwise some player At could improve her payoff by
leaving one of the gadgets St

i,γ . Let bn := Prσ̄
v0

(Reach(FBn mod 2) | xnvn · V ω).
We have bn ≥ 1

3 for all n ∈ N since otherwise some player Bt could improve
her payoff by leaving one of the gadgets St

i,γ . Note that at every terminal vertex
of the counter gadgets Ct

j,γ and C t̄
j,γ either player At or player Bt wins. The

conditional probability that, given the history xnvn, we reach either of those
gadgets is

∑
k∈Z

( 12 )k · 1
2 = 1 for all n ∈ N, so we have an = 1 − bn for all n ∈ N.

Since bn ≥ 1
3 , we arrive at an ≤ 1 − 1

3 = 2
3 , which proves the claim.

(⇐) Assume that an = 2
3 for all n ∈ N. Clearly, this implies that none of

the players At can improve her payoff. To show that none of the players Bt can
improve her payoff, it suffices to show that bn ≥ 1

3 for all n ∈ N. But with the
same argumentation as above, we have bn = 1 − an and thus bn = 1

3 for all
n ∈ N, which proves the claim. ��
The second claim relates the probabilities an and pn.

Proposition 2. an = 2
3 for all n ∈ N if and only if pn = 1

2 for all n ∈ N.

Proof. (⇒) Assume that an = 2
3 for all n ∈ N. We have an = pn + 1

4 · an+2 and
therefore 2

3 = pn + 1
6 for all n ∈ N. Hence, pn = 1

2 for all n ∈ N.
(⇐) Assume that pn = 1

2 for all n ∈ N. Since an = pn + 1
4 ·an+2 for all n ∈ N,

the numbers an must satisfy the following recurrence: an+2 = 4an − 2. Since all
the numbers an are probabilities, we have 0 ≤ an ≤ 1 for all n ∈ N. It is easy
to see that the only values for a0 and a1 such that 0 ≤ an ≤ 1 for all n ∈ N are
a0 = a1 = 2

3 . But this implies that an = 2
3 for all n ∈ N. ��
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Finally, the last claim relates the numbers pn to Eq. (1).

Proposition 3. pn = 1
2 for all n ∈ N if and only if Eq. (1) holds for all n ∈ N.

Proof. Let n ∈ N, and let t = n mod 2. The probability pn can be expressed as
the sum of the probability that the play reaches a terminal vertex that is winning
for player At inside Ct

j,γn
(this probability is denoted as αj

n) and the probability
that the play reaches a terminal vertex winning for player At̄ inside C t̄

j,γn+1

(denoted as αj
n+1). For counter 1 gadgets, the probability α1

n of At winning in
counter gadget Ct

1,γn
is

α1
n = Σ0≤i≤cn1 −1

(

1 − 1
q1

)
1
qi
1

+
1

q
cn1
1

{(

1 − 1
q21

)

+
1

2q21

}

= 1 − 1

q
cn1
1

+
1

q
cn1
1

{(

1 − 1
q21

)

+
1

2q21

}

= 1 − 1

q
cn1
1

+
1

q
cn1
1

{

1 − 1
2q21

}

= 1 − 1

2q
cn1 +2
1

Suppose γn+1 = inc(1).

Then the probability α1
n+1 of At̄ winning in counter gadget C t̄

1,γn+1
is

1

q
cn+1
1

1

· 1
q1

Similarly, the probabilities α2
n and α2

n+1 corresponding to counter 2 gadgets are
as follows:

α2
n = 1 − 1

2q
cn1 +2
1

and α2
n+1 =

1

q
cn+1
2

2

· 1
q22

Given, these probabilities, pn is as follows.

pn =
1
4

[

α1
n +

1
2
α1

n+1

]

+
1
4

[

α2
n +

1
2
α2

n+1

]

=
1
4

[

1 − 1

2q
cn1 +2
1

+
1

2q
cn+1
1 +1

1

]

+
1
4

[

1 − 1

2q
cn2 +2
2

+
1

2q
cn+1
2 +2

2

]

=
1
2

− 1
8

[
1

q
cn1+2
1

− 1

q
cn+1
1 +1

1

]

− 1
8

[
1

q
cn2 +2
2

− 1

q
cn+1
2 +2

2

]

As q1 and q2 are primes, this sum is equal to 1
2 iff cn+1

1 = 1 + cn
1 and cn+1

2 = cn
2 .

For γn+1 being any other instruction like decrement, other instructions, the
argument is similar. ��
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Proof (Proof of Lemma 1). By Proposition 1, the profile σ̄ is a Nash equilibrium
iff an = 2

3 for all n ∈ N. By Proposition 2, the latter is true if pn = 1
2 for all

n ∈ N. Finally, by Proposition 3, this is the case iff Eq. (1) holds for all j ∈ {1, 2}
and n ∈ N. ��

To establish the reduction, it remains to show that the computation of M
is infinite iff the game (G, v0) has a pure Nash equilibrium where player 0 wins
almost surely.

(⇒) Assume that the computation ρ = ρ(0)ρ(1) . . . of M is infinite. We
define a pure strategy σ0 for player 0 as follows: For a history that ends in one of
the instruction gadgets It

i,γ after visiting a black vertex exactly n times, player 0
tries to move to the neighboring gadget S t̄

k,γ′ such that ρ(n) refers to instruction
number k (which is always possible if ρ(n − 1) refers to instruction number i; in
any other case, σ0 might be defined arbitrarily). In particular, if ρ(n−1) refers to
instruction ιi = “zero(j) ? goto k : dec(j); goto l”, then player 0 will move to the
gadget S t̄

k,zero(j) if the value of the counter in configuration ρ(n − 1) is 0 and to
the gadget S t̄

l,dec(j) otherwise. For a history that ends in one of the gadgets Ct
j,γ

after visiting a black vertex exactly n times and a grey vertex exactly m times,
player 0 will move to the grey vertex again iff m is strictly less than the value of
the counter j in configuration ρ(n−1). So after entering Ct

j,γ , player 0’s strategy
is to loop through the grey vertex exactly as many times as given by the value
of the counter j in configuration ρ(n − 1).

Any other player’s pure strategy is “moving down at any time”. We claim that
the resulting strategy profile σ̄ is a Nash equilibrium of (G, v0) where player 0
wins almost surely.

Since, according to her strategy, player 0 follows the computation of M, no
vertex inside an instruction gadget It

i,γ where ιi is the halt instruction is ever
reached. Hence, with probability 1 a terminal vertex in one of the counter gadgets
is reached. Since player 0 wins at any such vertex, we can conclude that she wins
almost surely.

It remains to show that σ̄ is a Nash equilibrium. By the definition of player 0’s
strategy σ0, we have the following for all n ∈ N: 1. cn

j is the value of counter j in
configuration ρ(n); 2. cn+1

j is the value of counter j in configuration ρ(n + 1); 3.
γn+1 is the instruction corresponding to the counter update from configuration
ρ(n) to ρ(n+1). Hence, Eq. (1) holds, and σ̄ is a Nash equilibrium by Lemma 1.

(⇐) Assume that σ̄ is a pure Nash equilibrium of (G, v0) where player 0
wins almost surely. We define an infinite sequence ρ = ρ(0)ρ(1) . . . of pseudo
configurations (where the counters may take the value ω) of M as follows. Let
n ∈ N, and assume that vn lies inside the gadget St

i,γn
(where t = n mod 2);

then ρ(n) := (i, cn
1 , cn

2 ).
We claim that ρ is, in fact, the (infinite) computation of M. It suffices to

verify the following two properties:

1. ρ(0) = (1, 0, 0);
2. ρ(n) 
 ρ(n + 1) for all n ∈ N.
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Note that we do not have to show explicitly that each ρ(n) is a configuration
of M since this follows easily by induction from 1. and 2. Verifying the first
property is easy: v0 lies inside S0

1,init (and we are at instruction 1), which is
linked to the counter gadgets C0

1,init and C0
2,init. The edge leading to the grey

vertex is missing in these gadgets. Hence, c01 and c02 are both equal to 0.
For the second property, let ρ(n) = (i, c1, c2) and ρ(n+1) = (i′, c′

1, c
′
2). Hence,

vn lies inside St
i,γ and vn+1 inside S t̄

i′,γ′ for suitable γ, γ′ and t = n mod 2. We
only prove the claim for the case that ιi = “zero(2) ? goto k : dec(2); goto l”; the
other cases are straightforward. Note that, by the construction of the gadget It

i,γ ,
it must be the case that either i′ = k and γ′ = zero(2), or i′ = l and γ′ = dec(2).
By Lemma 1, if γ′ = zero(2), then c′

2 = c2 = 0 and c′
1 = c1, and if γ′ =

dec(2), then c′
2 = c2 − 1 and c′

1 = c1. This implies ρ(n) 
 ρ(n + 1): On the one
hand, if c2 = 0, then c′

2 �= c2−1, which implies γ′ �= dec(2) and thus γ′ = zero(2),
i′ = k and c′

2 = c2 = 0. On the other hand, if c2 > 0, then γ′ �= zero(2) and thus
γ′ = dec(2), i′ = l and c′

2 = c2 − 1. ��

3.2 Finite-State Equilibria

Theorem 2. The existence of a finite-strategy-Nash equilibrium SSMG where
player 0 wins almost surely is undecidable for games with 5 or more players.

We now move on to prove Theorem 2. Before showing the undecidability of the
existence of finNE, we first note that finNE is recursively enumerable: To decide
whether an SSMG (G, v0) has a finite-state Nash equilibrium with payoff ≥ x̄ and
≤ ȳ, one can just enumerate all possible finite-state profiles and check for each
of them whether the profile is a Nash equilibrium with the desired properties
by analyzing the finite Markov chain that is generated by this profile (where
one identifies states that correspond to the same vertex and memory state).
Hence, to show the undecidability of finNE, we cannot reduce from the non-
halting problem but from the halting problem for two-counter machines (which
is recursively enumerable itself).

We now explain how to adapt the proof of Theorem1 to show the undecidabil-
ity of finNE. The construction is similar to the one for proving undecidability of
pureNE. Given a two-counter machine M, we modify the SSMG G constructed
in the proof of Theorem1 by adding another “counter” (sharing the four players
from the other two gadgets, but using an additional new prime, say q3 = 5 for
checking whether the counter is updated correctly) that has to be incremented
in each step. Moreover, additionally to the terminal vertices in the gadgets Ct

j,γ ,
we let player 0 win at the terminal vertex in each of the gadgets Ii,γ where
ιi = “halt”. The gadget γ = inc(j) in Fig. 1 is a generic one and when we put
qj = 5, it becomes the increment gadget for this new counter. Correctly incre-
menting this counter comes from Proposition 3 that pn = 1

2 iff Eq. (1) is correct.
With the extra counter, pn is the sum of At winning in the gadgets of all the
three counters. Hence, this will ensure correct updates of all counters.

Let us denote the new game by G′. Now, if M does not halt, any pure Nash
equilibrium of (G′, v0) where player 0 wins almost surely needs infinite memory:
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to win almost surely, player 0 must follow the computation of M and increment
the new counter at each step. On the other hand, if M halts, then we can easily
construct a finite-state Nash equilibrium of (G′, v0) where player 0 wins almost
surely. Hence, (G′, v0) has a finite-state Nash equilibrium where player 0 wins
almost surely iff the machine M halts.

We shall now compare the above described improved results with their coun-
terparts in [11]. The pureNE undecidability proof in [11] reduced the non-halting
problem to a game with 9 players. The game has 4 dedicated players to ensure cor-
rectness of each counter - thus using 8 additional players. While we follow their
idea of reduction, with the help of primes q1, q2 we re-use the 4 players At and Bt,
t ∈ {0, 1} across the gadgets of both counters. Addtionally, finNE undecidability
proof is achieved by incrementing a third additional counter. While the proof for
finNE in [11] uses 4 new players for the third counter, we use another prime q3
and re-use the 4 players (At and Bt, t ∈ {0, 1}) for the third counter.

4 Conclusion

We have showed that pureNE where player 0 wins almost surely is undecidable
when the game has 5 or more players. A closely related open problem is pureNE
where player 0 wins with probability p ∈ [0, 1). The decidability of the existence
of mixed-strategy NE is an interesting open problem. A further line of work
is to explore concurrent moves by all the non-stochastic players, and study the
decidability of the existence of various kinds of Nash equilibrium. This concurrent
extension of SSMGs is inspired by [12], where the authors consider concurrent
moves of all players on finite graphs, with reward vectors attached to the terminal
vertices.
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