
Algorithms in the Ultra-Wide Word Model

Arash Farzan1, Alejandro López-Ortiz2, Patrick K. Nicholson3,
and Alejandro Salinger4(B)

1 Facebook Inc., New York, NY, USA
afarzan@fb.com

2 David R. Cheriton School of Computer Science, University of Waterloo,
Waterloo, ON, Canada
alopez-o@uwaterloo.ca

3 Max-Planck-Institut Für Informatik, Saarbrücken, Germany
pnichols@mpi-inf.mpg.de

4 SAP SE, Walldorf, Germany
alejandro.salinger@sap.com

Abstract. The effective use of parallel computing resources to speed up
algorithms in current multi-core parallel architectures remains a difficult
challenge, with ease of programming playing a key role in the even-
tual success of various parallel architectures. In this paper we consider
an alternative view of parallelism in the form of an ultra-wide word
processor. We introduce the Ultra-Wide Word architecture and model,
an extension of the word-ram model that allows for constant time oper-
ations on thousands of bits in parallel. Word parallelism as exploited by
the word-ram model does not suffer from the more difficult aspects of
parallel programming, namely synchronization and concurrency. For the
standard word-ram algorithms, the speedups obtained are moderate, as
they are limited by the word size. We argue that a large class of word-
ram algorithms can be implemented in the Ultra-Wide Word model,
obtaining speedups comparable to multi-threaded computations while
keeping the simplicity of programming of the sequential ram model.
We show that this is the case by describing implementations of Ultra-
Wide Word algorithms for dynamic programming and string searching.
In addition, we show that the Ultra-Wide Word model can be used to
implement a non-standard memory architecture, which enables the side-
stepping of lower bounds of important data structure problems such as
priority queues and dynamic prefix sums. While similar ideas about oper-
ating on large words have been mentioned before in the context of mul-
timedia processors [27], it is only recently that an architecture like the
one we propose has become feasible and that details can be worked out.

1 Introduction

In the last few years, multi-core architectures have become the dominant com-
mercial hardware platform. The potential of these architectures to improve per-
formance through parallelism remains to be fully attained, as effectively using
all cores on a single application has proven to be a difficult challenge. In this
c© Springer International Publishing Switzerland 2015
R. Jain et al. (Eds.): TAMC 2015, LNCS 9076, pp. 335–346, 2015.
DOI: 10.1007/978-3-319-17142-5 29

336 A. Farzan et al.

paper we introduce the Ultra-Wide Word architecture and model of computa-
tion, an alternate view of parallelism for a modern architecture in the form of an
ultra-wide word processor. This can be implemented by replacing one or more
cores of a multi-core chip with a very wide word Arithmetic Logic Unit (alu)
that can perform operations on a very large number of bits in parallel.

The idea of executing operations on a large number of bits simultaneously
has been successfully exploited in different forms. In Very Long Instruction Word
(VLIW) architectures [14], several instructions can be encoded in one wide word
and executed in one single parallel instruction. Vector processors allow the exe-
cution of one instruction on multiple elements simultaneously, implementing
Single-Instruction-Multiple-Data (SIMD) parallelism. This form of parallelism
led to the design of supercomputers such as the Cray architecture family [26]
and is now present in Graphics Processing Units (GPUs) as well as in Streaming
SIMD Extensions (SSE) to scalar processors.

In 2003, Thorup [27] observed that certain instructions present in some SSE
implementations were particularly useful for operating on large integers and
speeding up algorithms for combinatorial problems. To a certain extent, some
of the ideas in the Ultra Wide Word architecture are presaged in the paper by
Thorup, which was proposed in the context of multimedia processors. Our archi-
tecture developed independently and differs on several aspects (see discussion in
full version [15]) but it is motivated by similar considerations.

As CPU hardware advances, so does the model used in theory to analyze
it. The increase in word size was reflected in the word-ram model in which
algorithm performance is given as a function of the input size n and the word
size w, with the common assumption that w = Θ(log n). In its simplest version,
the word-ram model allows the same operations as the traditional ram model.
Algorithms in this model take advantage of bit-level parallelism through packing
various elements in one word and operating on them simultaneously. Although
similar to vector processing, the word-ram provides more flexibility in that the
layout of data in a word depends on the algorithm and data elements can be
packed in an arbitrary way. Unlike VLIW architectures, the Ultra-Wide Word
model we propose is not concerned with the compiler identifying operations
which can be done in parallel but rather with achieving large speedups in imple-
mentations of word-ram algorithms through operations on thousands of bits in
parallel.

As multi-core chip designs evolve, chip vendors try to determine the best
way to use the available area on the chip, and the options traditionally are
an increased number of cores or larger caches. We believe that the current
stage in processor design allows for the inclusion of an architecture such as
the one we propose. In addition, ease of programming is a major hurdle to the
eventual success of parallel and multi-core architectures. In contrast, bit paral-
lelism as exploited by the word-ram model does not suffer from this drawback:
there is a large selection of word-ram algorithms (see, e.g., [2,11,19,21]) that
readily benefit from bit parallelism without having to deal with the more dif-
ficult aspects of concurrency such as mutual exclusion, synchronization, and
resource contention. In this sense, the advantage of an on-chip ultra-wide word

Algorithms in the Ultra-Wide Word Model 337

architecture is that it can enable word-ram algorithms to achieve speedups com-
parable to those of multi-threaded computations, while at the same time keeping
the simplicity of sequential programming that is inherent to the ram model. We
argue that this is the case by showing several examples of implementations of
word-ram algorithms using the wide word, usually with simple modifications
to existing algorithms, and extending the ideas and techniques from the word-
ram model.

In terms of the actual architecture, we envision the ultra-wide alu together
with multi-cores on the same chip. Thus, the Ultra-Wide Word architecture adds
to the computing power of current architectures. The results we present in this
paper, however, do not use multi-core parallelism.

Summary of Results. We introduce the Ultra-Wide Word architecture and
model, which extends the w-bit word-ram model by adding an alu that oper-
ates on w2-bit words. We show that several broad classes of algorithms can be
implemented in this model. In particular:

– We describe Ultra-Wide Word implementations of dynamic programming
algorithms for the subset sum problem, the knapsack problem, the longest
common subsequence problem, as well as many generalizations of these prob-
lems. Each of these algorithms illustrates a different technique (or combination
of techniques) for translating an implementation of an algorithm in the word-
ram model to the Ultra-Wide Word model. In all these cases we obtain a
w-fold speedup over word-ram algorithms.

– We also describe Ultra-Wide Word implementations of popular string search-
ing algorithms: the Shift-And/Shift-Or algorithms [3,28] and the Boyer-Moore-
Horspool algorithm [22]. Again, we obtain a w-fold speedup over the original
algorithms.

– Finally, we show that the Ultra-Wide Word model is powerful enough to
simulate a non-standard memory architecture in which bytes can overlap,
which we shall call fs-ram [16]. This allows us to implement data structures
and algorithms that circumvent known lower bounds for the word-ram model.

Due to space constraints, we only present a high-level description of our
results. The full details can be found in the full version of this paper [15].

2 The Ultra-Wide Word-RAM Model

The Ultra-Wide word-ram model (uw-ram) we propose is an extension of the
word-ram model. The word-ram is a variant of the ram model in which a
word has length w bits, and the contents of memory are integers in the range
{0, . . . , 2w −1} [19]. This implies that w ≥ log n, where n is the size of the input,
and a common assumption is w = Θ(log n) (see, e.g., [7,24]). Algorithms in this
model take advantage of the intrinsic parallelism of operations on w-bit words.
We provide a more detailed description of the word-ram in the full version [15].

The Ultra-Wide word-ram model extends the word-ram model by introduc-
ing an ultra-wide alu with w2-bit wide words. The ultra-wide alu supports the

338 A. Farzan et al.

basic operations available in a word-ram on the entire word at once. As in the
word-ram model, the available set of instructions can be assumed to be those of
the restricted, multiplication, or the AC0 models. For the results in this paper
we assume the instructions of the restricted model (addition, subtraction, left
and right shift, and bitwise boolean operations), plus two non-standard straight-
forward AC0 operations that we describe at the end of this section.

The model maintains the standard w-bit alu as well as w-bit memory address-
ing. In general, we use the parameter w for the word size in the description and
analysis of algorithms, although in some cases we explicitly assume w = Θ(log n).
In terms of real world parameters, the wide word in the ultra-wide alu would
presently have between 1,000 and 10,000 bits and could increase even further in the
future. In reality, the addition of an alu that supports operations on thousands on
bits would require appropriate adjustments to the data and instruction caches of
a processor as well as to the instruction pipeline implementation. Similarly to the
abstractions made by the ram and word-ram models, the uw-ram model ignores
the effects of these and other architectural features and assumes that the execution
of instructions on ultra-wide words is as efficient as the execution of operations on
regular w-bit words, up to constant factors.

Provided that the uw-ram supports the same operations as the word-ram,
the techniques to achieve bit-level parallelism in the word-ram extend directly
to the uw-ram. However, since the word-ram assumes that a word can be read
from memory in constant time, many operations in word-ram algorithms can
be implemented through constant time table lookups. With words of w2 bits, we
cannot expect to achieve constant time lookups since the size of the tables would
be prohibitive. However, the memory access operations of our model allow for
the implementation of simultaneous table lookups of several w-bit words within
a wide word, as we shall explain below.

We first introduce some notation. Let W denote a w2-bit word. Let W [i]
denote the i-th bit of W , and let W [i..j] denote the contiguous subword of
W from bit i to bit j, inclusive. The least significant bit of W is W [0], and
thus W =

∑w2−1
i=0 W [i] × 2i. For the sake of memory access operations, we

divide W into w-bit blocks. Let Wj denote the j-th contiguous block of w bits
in W , for 0 ≤ j ≤ w − 1, and let Wj [i] denote the i-th bit within Wj . Thus,
Wj = W [jw..(j+1)w−1]. The division of a wide word in blocks is solely intended
for certain memory access operations, but basic operations of the model have
no notion of block boundaries. Figure 1 shows a representation of a wide word,
depicting bits with increasing significance from left to right. In the description of
operations with wide words we generally refer to variables with uppercase letters,
whereas we use lowercase to refer to regular variables that use one w-bit word.
Thus, shifts to the left (right) by i are equivalent to division (multiplication) by
2i. In addition, we use 0 to denote a wide word with value 0. We use standard C-
like notation for operations and (‘&’), or (‘|’), not (‘∼’) and shifts (‘<<’,‘>>’).

Memory Access Operations. In this architecture w (not necessarily contigu-
ous) words from memory can be transferred into the w blocks of a wide word
W in constant time. These blocks can be written to memory in parallel as well.

Algorithms in the Ultra-Wide Word Model 339

W1W0 W2 Ww−1

lsb msb

Fig. 1. A wide word in the Ultra-Wide Word architecture. The wide word is divided
in w blocks of w bits each, shown here in increasing number of block from left to right.

As with PRAM algorithms, the memory access type of the model can be assumed
to allow or disallow concurrent reads and writes. For the results in this paper
we assume the Concurrent-Read-Exclusive-Write (CREW) model.

The memory access operations that involve wide words are of three types:
block, word, and content. We describe read accesses (write accesses are analo-
gous). A block access loads a single w-bit word from memory into a given block
of a wide word. A word access loads w contiguous w-bit words from memory
into an entire wide word in constant time. Finally, a content access uses the
contents of a wide word W as addresses to load (possibly non-contiguous) words
of memory simultaneously: for each block j within W , this operation loads from
memory the w-bit word whose address is Wj (plus possibly a base address). The
specifics of read and write operations are shown in Table 1.

Note that accessing several (possibly non-contiguous) words from memory
simultaneously is an assumption that is already made by any shared memory
multiprocessing model. While, in reality, simultaneous access to all addresses in
actual physical memory (e.g., DRAM) might not be possible, in shared memory
systems, such as multi-core processors, the slowdown is mitigated by truly par-
allel access to private and shared caches, and thus the assumption is reasonable.
We therefore follow this assumption in the same spirit.

In fact, for w equal to the regular word size (32 or 64 bits), the choice of w
blocks of w bits each for the wide word alu was judiciously made to provide the
model with a feasible memory access implementation. w2 lines to memory are
well within the realm of the possible, as they are of the same order of magnitude
(a factor of 2 or 8) as modern GPUs, some of which feature bus widths of
512 bits (see, e.g., [1,18]). We note that a more general model could feature
a wide word with k blocks of w bits each, where k is a parameter, which can
be adjusted in reality according to the feasibility of implementation of parallel
memory accesses. Although described for w blocks, the algorithms presented in
this paper can easily be adapted to work with k blocks instead. Naturally, the
speedups obtained would depend on the number of blocks assumed, but also on
the memory bandwidth of the architecture. A practical implementation with a
large number of blocks would likely suffer slowdowns due to congestion in the
memory bus. We believe that an implementation with k equal to 32 or 64 can
be realized with truly parallel memory access, leading to significant speedups.

UW-RAM Subroutines. A procedure called compress serves to bring together
bits from all blocks into one block in constant time, while a procedure called
spread is the inverse function1. Both operations can be implemented by straight-
1 These operations are also known as PackSignBits and UnPackSignBits [27].

340 A. Farzan et al.

Table 1. Wide word memory access operations of the uw-ram. mem denotes regular
ram memory, which is indexed by addresses to words, and base is some base address.

Name Input Semantics

read block W , j, base Wj ←MEM[base+j]

read word W , base for all j in parallel: Wj ←MEM[base+j]

read content W , base for all j in parallel: Wj ←MEM[base+Wj]

write block W , j, base MEM[base+j]← Wj

write word W , base for all j in parallel: MEM[base+j]← Wj

write content W , V , base for all j in parallel: MEM[base+Vj]← Wj

W1W0 W2 Ww−1
W

X

Fig. 2. The compress operation takes a wide word W whose set bits are restricted to
the first bit of each block and compresses them to the first block of a wide word.

forward constant-depth circuits. We will also use parallel comparators, a stan-
dard technique used in word-ram algorithms [19] (see details in full version [15]).
Although these are all the subroutines that we need for the results in this paper,
other operations of similar complexity could be defined if proved useful.

– Compress: Let W be a wide word in which all bits are zero except possibly
for the first bit of each block. The compress operation copies the first bit of
each block of W to the first block of a word X. I.e., if X = compress(W),
then X[j] ← Wj [0] for 0 ≤ j < w, and X[j] = 0 for j ≥ w (see Fig. 2).

– Spread: This operation is the inverse of the compress operation. It takes a
word W whose set bits are all in the first block and spreads them across blocks
of a word X so that Xj [0] ← W [j] for 0 ≤ j < w.

Relation to Other Models. We provide a discussion of similarities and differ-
ences between the uw-ram and other existing models in the full version [15].

3 Simulation of FS-RAM

In the standard ram model of computation memory is organized in registers
or words, each word containing a set of bits. Any bit in a word belongs to that
word only. In contrast, in the fs-ram model [16]—also known as Random Access
Machine with Byte Overlap (rambo)—words can overlap, that is, a single bit
of memory can belong to several words. The topology of the memory, i.e., a
specification of which bits are contained in which words, defines a particular
variant of the fs-ram model. Variants of this model have been used to sidestep
lower bounds for important data structure problems [9,10].

Algorithms in the Ultra-Wide Word Model 341

B4

B8 B9

B5

B10 B11

B6

B12 B13

B7

B!4 B15

B2 B3

B1

Register 0 1 2 3 4 5 6 7

Bit
0

1

2

3

Fig. 3. Yggdrasil memory layout [9]: each node in a complete binary tree is an fs-
ram bit and registers are defined as paths from a leaf to the root. For example, register
3 contains bits B11,B5,B2, and B1 (shaded nodes).

We show how the uw-ram can be used to implement memory access opera-
tions for any given fs-ram of word size at most w bits in constant time. Thus,
the time bounds of any algorithm in the fs-ram model carry over directly to the
uw-ram. Note that each fs-ram layout requires a different specialized hardware
implementation, whereas a uw-ram architecture can simulate any fs-ram lay-
out without further changes to its memory architecture.

Let B1, . . . ,BB denote the bits of fs-ram memory. A particular fs-ram mem-
ory layout can be defined by the registers and the bits contained in them [8].
For example, in the Yggdrasil model in Fig. 3, reg[0]=B8B4B2B1, and in general
reg[i].bit[j]= Bk, where k = �i/2j� + 2m−j−1 (m = 4 in the example) [9].

In order to implement memory access operations on a given fs-ram using
the uw-ram, we need to represent the memory layout of fs-ram in standard
ram. Assume an fs-ram memory of r registers of b ≤ w bits each and B ≤ br
distinct fs-ram bits. We assume that the fs-ram layout is given as a table
R that stores, for each register and bit within the register, the number of the
corresponding fs-ram bit. Thus, if reg[i].bit[j]= Bk, for some k, then R[i, j] = k.
We assume R is stored in row major order. We simply store the value of each
fs-ram bit Bi in a different w-bit entry of an array A in ram, i.e., A[i] = Bi.

Given an index t of a register of an fs-ram represented by R, we can read the
values of each bit of reg[t] from ram and return the b bits in a word in constant
time using the parallel reading and compress operations. Let reg[t]= Bi0 . . . Bib−1 .
The read operation first obtains the address in A of each bit of register t from
R. Then, it uses a content access to read the value of each bit Bij into block Wj

of W , thus assigning Wj ← A[R[t, j]]. Finally, it applies one compress operation,
after which the b bits are stored in W0. In order to implement the write operation
reg[t]← Bi0 . . . Bib−1 of fs-ram, we first set W0 ← Bi0 . . . Bib−1 and perform a
spread operation to place each bit Bj in block Wj . We then write the contents
of each Wj in A[R[t, j]]. Both read and write take constant time. We describe
these operations in pseudocode in the full version [15].

Since the read and write operations described above are sufficient to imple-
ment any operation that uses fs-ram memory (any other operation is imple-
mented in ram), we have the following result (see [15] for the proof).

342 A. Farzan et al.

Theorem 1. Let R be any fs-ram memory layout of r registers of at most b
bits each and B distinct fs-ram bits, with b ≤ w and log B ≤ w. Let A be
any fs-ram algorithm that uses R and runs in time T . Algorithm A can be
implemented in the uw-ram to run in time O(T), using rb+B additional words
of ram.

Constant Time Priority Queue. Brodnik et al. [9] use the Yggdrasil fs-
ram memory layout to implement priority queue operations in constant time
using 3M −1 bits of space (2M of ordinary memory and M −1 of fs-ram mem-
ory), where M is the size of the universe. This problem has non-constant lower
bounds for several models, including the ram model [5]. For a universe of size
M = 2m, for some m, the Yggdrasil fs-ram layout consists of r = M/2 registers
of b = log M bits each and B = M − 1 distinct fs-ram bits (Figure 3 is an
example with M = 16). Thus, by Theorem 1 we obtain the following result:

Corollary 1. The discrete extended priority queue problem can be solved in the
uw-ram in O(1) time per operation using 2M +w(M/2) log M +w(M −1) bits,
thus in O(M log M) words of ram.

Constant Time Dynamic Prefix Sums. Brodnik et al. [10] use a modified
version of the Yggdrasil fs-ram to solve the dynamic prefix sums problem in
constant time. This problem consists of maintaining an array A of size N over a
universe of size M that supports the operations update(j, d), which sets A[j] to
A[j] ⊕ d, and retrieve(j), which returns ⊕j

i=0A[i] [10,17], where ⊕ is any asso-
ciative binary operation. This fs-ram implementation sidesteps lower bounds
on various models [17,20]. See the full version [15] for more details.

Corollary 2. The operations of the dynamic prefix sums problem can be sup-
ported in O(1) time in the uw-ram with O(M

√
log N) bits of ram.

4 Dynamic Programming

In this section we describe uw-ram implementations of dynamic programming
algorithms for the subset sum, knapsack, and longest common subsequence prob-
lems. A word-ram algorithm that only uses bit parallelism can be translated
directly to the uw-ram. The algorithm for subset sum is an example of this. In
general, however, word-ram algorithms that use lookup tables cannot be directly
extended to w2 bits, as this would require a mechanism to address Θ(w2)-bit
words in memory as well as lookup tables of prohibitively large size. Hence,
extra work is required to simulate table lookup operations. The knapsack imple-
mentation that we present is a good example of such case. We note that these
problems have many generalizations that can be solved using the same techniques
and describe them further in the full version [15].

Subset Sum. Given a set S = {a1, a2, . . . , an} of nonnegative integers (weights)
and an integer t (capacity), the subset sum problem is to find S′ ⊆ S such that

Algorithms in the Ultra-Wide Word Model 343

∑
ai∈S′ ai = t [12]. This problem is NP-hard, but it can solved in pseudopoly-

nomial time via dynamic programming in O(nt) time, using the following recur-
rence [6]: for each 0 ≤ i ≤ n and 0 ≤ j ≤ t, Ci,j = 1 if and only if there is a
subset of elements {a1, . . . , ai} that adds up to j. Thus, C0,0 = 1, C0,j = 0 for
all j > 0, and Ci,j = 1 if Ci−1,j = 1 or Ci−1,j−ai

= 1 (Ci,j = 0 for any j < 0).
The problem admits a solution if Cn,t = 1.

Pisinger [25] gives an algorithm that implements this recursion in the word-
ram with word size w by representing up to w entries of a row of C. Using
bit parallelism, w bits of a row can be updated simultaneously in constant
time from the entries of the previous row: Ci is updated by computing Ci =
(Ci−1 | (Ci−1 >> ai)) (which might require shifting words containing Ci−1 first
by �ai/w� words and then by ai − �ai/w�) [25]. Assuming w = Θ(log t), this
approach leads to an O(nt/ log t) time solution in O(t/ log t) space.

This algorithm can be implemented directly in the uw-ram: entries of row
Ci are stored contiguously in memory; thus, we can load and operate on w2 bits
in O(1) time when updating each row. Hence, the uw-ram implementation runs
in O(nt/ log2 t) time using the same O(t/ log t) space (number of w-bit words).

Knapsack. Given a set S of n elements with weights and values, the knapsack
problem asks for a subset of S of maximum value such that the total weight is
below a given capacity bound b. Let S = {(wi, vi)}n

i=1, where wi and vi are the
weight and value of the i-th element. Like subset sum, this problem is NP-hard
but can be solved in pseudopolynomial time using the following recurrence [6]:
let Ci,j be the maximum value of a solution containing elements in the subset
Si = {(wk, vk)}i

k=1 with maximum capacity j. Then, C0,j = 0 for all 0 ≤ j ≤ b,
and Ci,j = max{Ci−1,j , Ci−1,j−wi

+ vi}. The value of the optimal solution is
Cn,b. This leads to a dynamic program that runs in O(nb) time.

The word-ram algorithm by Pisinger [25] represents partial solutions of the
dynamic programming table with two binary tables g and h and operates on
O(w) entries at a time. More specifically, gi,u = 1 and hi,v = 1 if and only if there
is a solution with weight u and value v that is not dominated by another solution
in Ci,∗ (i.e., there is no entry Ci,u′ such that u′ < u and Ci,u′ ≥ v). Pisinger
shows how to update each entry of g and h with a constant time procedure,
which can be encoded as a constant size lookup table T . A new lookup table Tα

is obtained as the product of α times the original table T . Thus, α entries of g
and h can be computed in constant time. Setting α = w/10, an entire row of g
and h can be computed in O(m/w) time and O(m/w) space [25], where m is the
maximum of the capacity b and the value of the optimal solution. The optimal
solution can then be computed in O(nm/w) time.

Compared to the subset sum algorithm, which relies mainly on bit-parallel
operations, this word-ram algorithm for knapsack relies on precomputation and
use of lookup tables to achieve a w-fold speedup. While we cannot precompute
a composition of Θ(w2) lookup tables to compute Θ(w2) entries of g and h at a
time, we can use the same tables with α = w/10 as in Pisinger’s algorithm and
use the read content operation of the uw-ram to make w simultaneous lookups
to the table. Since the entries in a row i of h and g depend only on entries in
row i − 1, then there are no dependencies between entries in the same row.

344 A. Farzan et al.

One difficulty is that in order to compute the entries in row i in parallel we
must first preprocess row i − 1 in both h and g, such that we can return the
number of one bits in both gi−1,0, ..., gi−1,j and hi−1,0, ..., hi−1,j in O(1) time for
any column j ∈ {0,m − 1}. That is, the prefix sums of the one bits in row i − 1.
Note that this is not the same as the dynamic problem described in Sect. 3, but
it is a static prefix sums problem. We describe how to compute the prefix sums
of a row of g and h in O(m/w2) time in the full version [15]. Then, each row of
g and h takes O(m/w2) time to compute, and since there are n rows, the total
time to compute g and h (and hence the optimal solution) on the uw-ram is
O(nm/w2). This achieves a w-fold speedup over Pisinger’s word-ram solution.

Longest Common Subsequence. The final dynamic programming problem
we examine is that of computing the longest common subsequence (LCS) of two
string sequences (see the full version [15] for a definition). This problem can
be solved via a classic dynamic programming algorithm in O(nm) time [12].
In [15] we describe a uw-ram algorithm for LCS based on an algorithm by
Masek and Paterson [23]. We note that there exist other approaches to solving
the LCS problem with bit-parallelism (e.g., [13]) that could also be adapted
to work in the uw-ram. The approach we show here is a good example of bit
parallelism combined with the parallel lookup power of the model, which we use
to implement the Four Russians technique. We obtain the following results:

Theorem 2. The length of the LCS of two strings X and Y over an alphabet
of size σ, with |X| = m and |Y | = n, can be computed in the uw-ram in
O(nm

w2 log σ + m + n) time and O(min(n,m)
w log σ) words in addition to the input.

Theorem 3. The length of the LCS of two strings X and Y of length n over
an alphabet of size σ can be computed in the uw-ram in O(n2 log2(σ)/w3 +
n log(σ)/w) time. For σ = O(1) and w = Θ(log n) this time is O(n2/ log3 n).

5 String Searching

Another example of a problem where a large class of algorithms can be sped up
in the uw-ram is string searching. Given a text T of length n and a pattern P
of length m, both over an alphabet Σ, string searching consists of reporting all
the occurrences of P in T . We assume in general that n � m. We use two classic
algorithms for this problem to illustrate different ways of obtaining speedups
via parallel operations in the wide word. More specifically, we obtain speedups
of w = Ω(log n) for uw-ram implementations of the Shift-And and Shift-Or
algorithms [3,28], and the Boyer-Moore-Horspool algorithm [22].

Shift-And and Shift-Or. These algorithms simulate an (m + 1)-state non-
deterministic automaton that recognizes P starting from every position of T . For
a window T [i−m+1..i] in T , the j-th state of the automaton (0 ≤ j ≤ m) is active
if and only if P [1..j] = T [i− j +1..i]. These algorithms represent the automaton
as a bit vector and update the active states using bit-parallelism. Their running
time is O(mn/w + n), achieving linear time on the size of the text for small

Algorithms in the Ultra-Wide Word Model 345

patterns. We describe in the full version [15] two uw-ram algorithms for Shift-
And that illustrate different techniques, noting that the uw-ram implementation
of Shift-Or is analogous. We obtain the following theorem:

Theorem 4. Given a text T of length n and a pattern P of length m, we can
find the occ occurrences of P in T in the uw-ram in time O(nm/w2+n/w+occ).

Boyer-Moore-Horspool. bmh [22] keeps a sliding window of length m over
the text T and searches backwards in the window for matching suffixes of both
the window and the pattern. The worst case running time of bmh is O(nm)
(when the entire window is checked for all window positions) but on average the
window can be shifted by more than one character, making the running time
O(n) [4]. In the uw-ram, we can take advantage of the wide word to make
several character comparisons in parallel, thus achieving a w-fold speedup over
the worst case behaviour of bmh. Full details are described in [15].

Theorem 5. Given T of length n and P of length m over an alphabet of size σ,
we can find the occurrences of P in T with a uw-ram implementation of BMH
in O(mn log σ/w2 + 1) time in the worst-case and O(n) time on average.

6 Conclusions

We introduced the Ultra-Wide Word architecture and model and showed that
several classes of algorithms can be readily implemented in this model to achieve
a speedup of Ω(log n) over traditional word-ram algorithms. The examples we
describe already show the potential of this model to enable parallel implemen-
tations of existing algorithms with speedups comparable to those of multi-core
computations. We believe that this architecture could also serve to simplify many
existing word-ram algorithms that in practice do not perform well due to large
constant factors. We conjecture as well that this model will lead to new efficient
algorithms and data structures that can sidestep existing lower bounds.

References

1. AMD: AMD FirePro W9100 Workstation Graphics. http://www.amd.com/
Documents/FirePro W9100 Data Sheet.pdf. Acessed 20 Nov 2014

2. Andersson, A., Thorup, M.: Dynamic ordered sets with exponential search trees.
J. ACM 54(3), 13 (2007)

3. Baeza-Yates, R., Gonnet, G.H.: A new approach to text searching. Commun. ACM
35(10), 74–82 (1992)

4. Baeza-Yates, R.A., Régnier, M.: Average running time of the Boyer-Moore-
Horspool algorithm. Theoret. Comput. Sci. 92(1), 19–31 (1992)

5. Beame, P., Fich, F.: Optimal bounds for the predecessor problem and related
problems. J. Comput. Syst. Sci. 65, 2002 (2002)

6. Bellman, R.: Dynamic Programming, 1st edn. Princeton University Press,
Princeton (1957)

http://www.amd.com/Documents/FirePro_W9100_Data_Sheet.pdf
http://www.amd.com/Documents/FirePro_W9100_Data_Sheet.pdf

346 A. Farzan et al.

7. Bose, P., Chen, E.Y., He, M., Maheshwari, A., Morin, P.: Succinct geometric
indexes supporting point location queries. In: Proceedings of SODA, pp. 635–644
(2009)

8. Brodnik, A.: Searching in Constant Time and Minimum Space. Ph.D. thesis, Uni-
versity of Waterloo (1995), also available as Technical Report CS-95-41

9. Brodnik, A., Carlsson, S., Fredman, M.L., Karlsson, J., Munro, J.I.: Worst case
constant time priority queue. J. Syst. Softw. 78(3), 249–256 (2005)

10. Brodnik, A., Karlsson, J., Munro, J., Nilsson, A.: An O(1) solution to the prefix
sum problem on a specialized memory architecture. In: Navarro, G., Bertossi, L.,
Kohayakawa, Y. (eds.) TCS 2006. IFIP, vol. 209, pp. 103–114. Springer, Boston
(2006)

11. Chan, T.M.: Point location in o(log n) time, Voronoi diagrams in o(n log n) time,
and other transdichotomous results in computational geometry. In: Proceedings of
FOCS, pp. 333–344 (2006)

12. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms,
2nd edn. The MIT Press, Cambridge (2001)

13. Crochemore, M., Iliopoulos, C.S., Pinzon, Y.J., Reid, J.F.: A fast and practical
bit-vector algorithm for the longest common subsequence problem. Inf. Process.
Lett. 80(6), 279–285 (2001)

14. Fisher, J.A.: Very long instruction word architectures and the ELI-512. SIGARCH
Comput. Archit. News 11, 140–150 (1983)

15. Frazan, A., López-Ortiz, A., Nicholson, P.K., Salinger, A.: Algorithms in the Ultra-
Wide Word Model (2014). http://arxiv.org/pdf/1411.7359v2

16. Fredman, M., Saks, M.: The cell probe complexity of dynamic data structures. In:
Proceedings of STOC, pp. 345–354 (1989)

17. Fredman, M.L.: The complexity of maintaining an array and computing its partial
sums. J. ACM 29(1), 250–260 (1982)

18. GeForce: GeForce GTX 285 Specifications. http://www.geforce.com/hardware/
desktop-gpus/geforce-gtx-285/specifications. Accessed 20 Nov 2014

19. Hagerup, T.: Sorting and searching on the word RAM. In: Meinel, C., Morvan, M.
(eds.) STACS 1998. LNCS, vol. 1373, pp. 366–398. Springer, Heidelberg (1998)

20. Hampapuram, H., Fredman, M.L.: Optimal biweighted binary trees and the com-
plexity of maintaining partial sums. SIAM J. Comput. 28(1), 1–9 (1998)

21. Han, Y.: Deterministic sorting in O(nlog logn) time and linear space. J. Algorithms
50, 96–105 (2004)

22. Horspool, R.N.: Practical fast searching in strings. Softw. Pract. Exp. 10(6), 501–
506 (1980)

23. Masek, W.J., Paterson, M.: A faster algorithm computing string edit distances. J.
Comput. Syst. Sci. 20(1), 18–31 (1980)

24. Munro, J.: Tables. In: Chandru, V., Vinay, V. (eds.) FSTTCS 1996. LNCS, vol.
1180, pp. 37–42. Springer, Heidelberg (1996)

25. Pisinger, D.: Dynamic programming on the word RAM. Algorithmica 35, 128–145
(2003)

26. Russell, R.M.: The CRAY-1 computer system. Comm. ACM 21(1), 63–72 (1978)
27. Thorup, M.: Combinatorial power in multimedia processors. SIGARCH Comput.

Archit. News 31(4), 5–11 (2003)
28. Wu, S., Manber, U.: Fast text searching: allowing errors. Commun. ACM 35(10),

83–91 (1992)

http://arxiv.org/pdf/1411.7359v2
http://www.geforce.com/hardware/desktop-gpus/geforce-gtx-285/specifications
http://www.geforce.com/hardware/desktop-gpus/geforce-gtx-285/specifications

	Algorithms in the Ultra-Wide Word Model
	1 Introduction
	2 The Ultra-Wide Word-RAM Model
	3 Simulation of FS-RAM
	4 Dynamic Programming
	5 String Searching
	6 Conclusions
	References

