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Abstract. The last two decades have witnessed a rapid development
of quantum information processing, a new paradigm which studies the
power and limit of “quantum advantages” in various information process-
ing tasks. Problems such as when quantum advantage exists, and if exist-
ing, how much it could be, are at a central position of these studies. In
a broad class of scenarios, there are, implicitly or explicitly, at least two
parties involved, who share a state, and the correlation in this shared
state is the key factor to the efficiency under concern. In these scenarios,
the shared entanglement or discord is usually what accounts for quan-
tum advantage. In this paper, we examine a fundamental problem of this
nature from the perspective of game theory, a branch of applied math-
ematics studying selfish behaviors of two or more players. We exhibit a
natural zero-sum game, in which the chance for any player to win the
game depends only on the ending correlation. We show that in a certain
classical equilibrium, a situation in which no player can further increase
her payoff by any local classical operation, whoever first uses a quantum
computer has a big advantage over its classical opponent. The equilib-
rium is fair to both players and, as a shared correlation, it does not
contain any discord, yet a quantum advantage still exists. This indicates
that at least in game theory, the previous notion of discord as a measure
of non-classical correlation needs to be reexamined, when there are two
players with different objectives.

1 Introduction

Quantum computers have exhibited tremendous power in algorithmic, crypto-
graphic, information theoretic, and many other information processing tasks,
compared with their classical counterparts. Meanwhile, for a large number of
problems, quantum computers are not able to offer much advantage over clas-
sical ones. When and why quantum computers are more powerful are always
at a central position in studies on quantum computation and quantum infor-
mation processing. A particularly interesting class of scenarios is when there
are, implicitly or explicitly, at least two parties involved who share a state, the
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correlation in this state is the key factor. What accounts for the quantum advan-
tage is often entanglement, one of the most distinctive characters of quantum
information. Indeed, it has been showed that a quantum algorithm with only
slight entanglement can be simulated efficiently by a classical computer [Vid03].
In certain potential applications of quantum algorithms, it is also shown that
entangled measurement is necessary for the existence of efficient quantum algo-
rithms [HMR+10].

Recently people started to realize that entanglement is not always a nec-
essary resource needed for generating quantum correlations. It has been found
that discord, another unique character of quantum states, also plays an impor-
tant role in quantum information processing [OZ01]. Discord is a relaxed version
of entanglement—states with positive entanglement must also have positive dis-
cord, but there are states with positive discord but zero entanglement. People has
discovered cases where quantum speed-up exists without entanglement involved,
and discord is considered to be responsible for the quantum advantage [DSC08].
Till today, discord is widely considered as necessary for the existence of quantum
advantages.

In this paper, we reexamine this notion from the perspective of game theory
[OR94]. Game theory studies the situation in which there are two or more players
with possibly different goals. There are two broad classes of games, one is strategic-
form (or normal-form) games, in which all players make their choice simultane-
ously; a typical example is Rock-Paper-Scissors. The other class is extensive-form
games, in which players make their moves in turn; a typical example is chess.

The research on quantum games began about one decade ago, starting with
two pioneering papers.1 The first one [EWL99] aimed to quantize a specific
strategic-form game called Prisoners’ Dilemma [EWL99], and it unleashed a
long sequence of follow-up works in the same model. Despite the rapid growth
of literature, controversy also largely exists [BH01,vEP02,CT06], which ques-
tioned the meaning of the claimed quantum solution, the ad hoc assumptions
in the model, and the inconsistency with standard settings of classical strategic
games. Recently a new model was proposed for quantizing general strategic-
form games [Zha12]. Compared with [EWL99], the new model corresponds to
the classical games more precisely, and has rich mathematical structures and
game-theoretic questions; also see later theoretical developments [KZ12,WZ13,
JSWZ13,PKL+15].

Back to the early stage of the development of quantum game theory, the other
pioneering paper was [Mey99], which demonstrated the power of using quantum
strategies in an extensive-form game. More specifically, Meyer considered the
quantum version of the classical Penny Matching game. The basic setting is as
follows. There are two players, and each has two possible actions on one bit:
Flip it or not. Starting with the bit being 0, Player 1 first takes an action, and

1 Note that there is also a class of “nonlocal games”, such as CHSH or GHZ games
[BCMdW10], where all the players have the same objective. But general game theory
focuses more on situation that the players have different objective functions, and the
players are selfish, each aiming to optimize her own objective function only.
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then Player 2 takes an action, and finally Player 1 takes another action, and the
game is finished. If the bit is finally 0, then Player 1 wins; otherwise Player 2
wins. It is not hard to see that if Player 2 flips the bit with half probability, then
no matter what Player 1 does, each player wins the game with half probability.
Now consider the following change of setting: The bit becomes a qubit; the first
player uses a quantum computer in the sense that she can perform any quantum
admissible operation on the bit; the second player uses a classical computer

in the sense that she can perform either Identity or the flip operation
[
0 1
1 0

]
.

In this new setting, Player 1 can win the game with certainty! Her winning
strategy is simple: she first applies a Hadamard gate to change the state to
|+〉 = (|0〉 + |1〉)/√2, and then no matter whether Player 2 applies the flip
operation or not, the state remains the same |+〉, thus in the third step Player
1 can simply apply a Hadamard gate again to rotate the state back to |0〉. This
shows that a player using a quantum computer can have big advantage over one
using a classical computer.

Despite a very interesting phenomena it exhibits, the quantum advantage is
not the most convincing due to a fairness issue. After all, the quantum player
takes two actions and the classical player takes just one. And the order of “Player
1 → Player 2 → Player 1” is also crucial for the quantum advantage. One rem-
edy is to consider normal-form games, in which the players give their strategies
simultaneously, thus there is no longer the issue of the action order. Taking the
model in [Zha12], two players play a complete-information normal-form game,
with a starting state ρ in systems (A1, A2), and Ai being given to Player i. A
classical player can only measure her part of the state in the computational basis,
followed by whatever classical operation C (on the computational basis). In pre-
vious works [EWL99,Mey99,ZWC+12] the classical player is usually assumed
to be able to apply any classical operation on computational basis (such as X-
gate), followed by a measurement in the computational basis. A classical oper-
ations there is implicitly assumed to be unitary, so the operation in the matrix
form is a permutation matrix. Here we allow classical player to measure first
and then perform any classical operation, which gives her more power since the
second-step classical operation does need to be unitary. Indeed, in Meyer’s Penny
Matching game, in the second step Player 2 could measure the state first and
then randomly set it to be |0〉 or |1〉 each with half probability. Then in the third
step, Player 1’s Hadamard gate will change the state to |+〉 or |−〉, in either
case, Player 1 could win with only half probability.

Even if we now enlarge the space of possible operations of the classical player,
we will show examples where the quantum player has advantage of winning the
game. Furthermore, the examples have the following nice properties respecting
the fairness of the game:

1. If both players are classical, then both get expected payoff 0, and ρ is a
correlated equilibrium in the sense that any classical operation C by one
player cannot increase her expected payoff.
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2. Suppose that one player remains classical and the other player uses a quantum
computer. To illustrate the power of using quantum strategies, we cut the
classical player some slack as follows. The classical player can (1) pick one
subsystem, A1 or A2, of ρ, leaving the other subsystem to the quantum player,
and (2) “take side” by picking one of the two payoff matrices, leaving the other
to the quantum player.

Examples were found that even with the advantage of taking side and taking
part of the shared state, the classical player still has a disadvantage compared
to the quantum player. Consider the canonical 2 × 2 zero-sum game with the
payoff matrices being

U1 =
(

1 −1
−1 1

)
and U2 =

(−1 1
1 −1

)
. (1)

Quantum game with entanglement. Each player i owns a 2-dimensional Hilbert
space, and they share the quantum state

|ψ〉 =
1√
2
(| + 0〉 + | − 1〉) =

1√
2
(|0+〉 + |1−〉), (2)

where |+〉 = 1√
2
(|0〉 + |1〉), and |−〉 = 1√

2
(|0〉 − |1〉). It is not difficult to verify

that if both players measure their parts in the computational basis, then each
gets payoff 1 and −1 with equal probability, resulting an average payoff of zero
for both players. This is a correlated equilibrium for classical operations.

Now suppose that Player 1 employs a quantum computer. Since the state is
symmetric, it does not matter which part Player 2, the classical player, chooses.
Let us assume that Player 2 chooses part 2, and the payoff matrix U2. Then
Player 1 can apply the Hadamard transformation on her qubit, followed by the
measurement in computational basis. The state immediately before the measure-
ment is |ψ′〉 = (|00〉+|11〉)/√2. Therefore the measurement in the computational
basis gives Player 1 and Player 2 payoff 1 and −1, respectively, with certainty.
In other words, Player 1 wins with certainty, whereas she could only win with
half probability when using a classical computer.

In this example where the quantum player has an advantage, the state shared
by players is highly entangled, which motivates the following natural question:
Is entanglement necessary for quantum advantage in the game? It turns out that
the answer is no. Consider the example below.

Quantum Game with Discord. The payoff matrices are the same as before, but
the quantum state shared by players is the following.

ρ =
1
4
(|+〉〈+| ⊗ |0〉〈0| + |0〉〈0| ⊗ |+〉〈+| + |−〉〈−| ⊗ |1〉〈1| + |1〉〈1| ⊗ |−〉〈−|). (3)

This state is separable and thus does not have any entanglement. It can be
checked that if the players measure this state in computational basis, the prob-
ability of getting each of the four possible outcomes is 1/4. Thus the overall
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payoff of each player is zero, and it can be verified that it is a classical correlated
equilibrium.

In the quantum setting, again without loss of generality assume that the
classical computer picks the second part of ρ and the second payoff matrix.
The quantum player can again perform a Hadamard operation on her system,
resulting in a new state

ρ′ =
1
4
(|0〉〈0|⊗ |0〉〈0|+ |+〉〈+|⊗ |+〉〈+|+ |1〉〈1|⊗ |1〉〈1|+ |−〉〈−|⊗ |−〉〈−|). (4)

Measuring the new state, the quantum player gets state |00〉, |01〉, |10〉, |11〉 with
probability 3/8, 1/8, 1/8, 3/8 respectively. As a result, her winning probability
increases from 1/2 to 3/4; in other words, she gets an expected payoff of 1/2.

Note that the quantum state in Eq. (4) is separable, and there is no any
entanglement, but the quantum player still gets a quantum advantage. Thus,
entanglement is not necessary for quantum advantage to exist in this game. Note
that, however, the state in Eq. (4) has a positive discord. As we have mentioned,
it was known that in some scenarios, it is discord, rather than entanglement,
that produces non-classical correlations. So the above example confirms this
traditional notion in the new game-theoretic setting.

These two examples were also experimentally verified recently [ZWC+12].
The present paper makes further studies on the foregoing notion by asking the
following fundamental question.

Is discord necessary for quantum advantage to exist in games where play-
ers share a symmetric state?

It is tempting to conjecture that the answer is Yes. In the rest of the paper, we
will show that, first, discord is indeed necessary for any quantum advantage to
exist in a 2-player games where each player has n = 2 strategies. We will then
show that when n ≥ 3, however, there are games where the quantum player has
a positive advantage even when the shared symmetric state has zero discord.

2 Preliminaries

Suppose that in a classical game there are k players, labeled by {1, 2, . . . , k}.
Each player i has a set Si of strategies. To play the game, each player i selects a
strategy si from Si. We use s = (s1, . . . , sk) to denote the joint strategy selected
by the players and S = S1 × . . . × Sk to denote the set of all possible joint
strategies. Each player i has a utility function ui : S → R, specifying the payoff
or utility ui(s) of Player i on the joint strategy s. For simplicity of notation, we
use subscript −i to denote the set [k] − {i}, so s−i is (s1, . . . , si−1, si+1, . . . , sk),
and similarly for S−i, p−i, etc. In this paper, we will mainly consider 2-player
games.

Nash equilibrium is a fundamental solution concept in game theory. Roughly,
it says that in a joint strategy, no player can gain more by changing her strategy,
provided that all other players keep their current strategies unchanged. The
precise definition is as follows.
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Definition 1. A pure Nash equilibrium is a joint strategy s = (s1, . . . , sk) ∈ S
satisfying that

ui(si, s−i) ≥ ui(s′
i, s−i), ∀i ∈ [k],∀s′

i ∈ Si.

Pure Nash equilibria can be generalized by allowing each player to independently
select her strategy according to some probability distribution, leading to the
following concept of mixed Nash equilibrium.
Definition 2. A (mixed) Nash equilibrium (NE) is a product probability distri-
bution p = p1 × . . . × pk, where each pi is a probability distributions over Si,
satisfying that
∑

s−i

p−i(s−i)ui(si, s−i) ≥
∑

s−i

p−i(s−i)ui(s
′
i, s−i), ∀i ∈ [k], ∀si, s′

i ∈ Si with pi(si) > 0.

A fundamental fact proved by Nash [Nas51] is that every game with a finite
number of players and a finite set of strategies for each player has at least one
mixed Nash equilibrium.

There are various further extensions of mixed Nash equilibria. Aumann
[Aum74] introduced a relaxation called correlated equilibrium. This notion assumes
an external party, called Referee, to draw a joint strategy s = (s1, ..., sk) from
some probability distribution p over S, possibly correlated in an arbitrary way,
and to suggest si to Player i. Note that Player i only sees si, thus the rest strat-
egy s−i is a random variable over S−i distributed according to the conditional
distribution p|si , the distribution p conditioned on the i-th part being si. Now p
is a correlated equilibrium if any Player i, upon receiving a suggested strategy
si, has no incentive to change her strategy to a different s′

i ∈ Si, assuming that
all other players stick to their received suggestion s−i.

Definition 3. A correlated equilibrium (CE) is a probability distribution p over
S satisfying that∑

s−i

p(si, s−i)ui(si, s−i) ≥
∑
s−i

p(si, s−i)ui(s′
i, s−i), ∀i ∈ [k],∀si, s

′
i ∈ Si.

The above statement can also be restated as

Es−i←µ|si [ui(si, s−i)] ≥ Es−i←µ|si [ui(s′
i, s−i)]. (5)

where μ|si is the distribution μ conditioned on the i-th component being si.
Notice that a classical correlated equilibrium p is a classical Nash equilibrium if
p is a product distribution.

Correlated equilibria captures natural games such as the Traffic Light and
the Battle of the Sexes ([VNRET97], Chap. 1). The set of CE also has good
mathematical properties such as being convex (with Nash equilibria being some
of the vertices of the polytope). Algorithmically, it is computationally benign for
finding the best CE, measured by any linear function of payoffs, simply by solving
a linear program (of polynomial size for games of constant players). A natural
learning dynamics also leads to an approximate CE ([VNRET97], Chap. 4) which
we will define next, and all CE in a graphical game with n players and with log(n)
degree can be found in polynomial time ([VNRET97], Chap. 7).
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3 Quantum Game Without Discord

In this section, we will address the question proposed at the end of the first
section. Suppose that a game has two players and both of them have n strategies.
In other words, each player holds an n-dimensional quantum system. Recall
that we also require the shared quantum state ρ ∈ H ⊗H be symmetric, so that
swapping the two systems does not change the state. It is not hard to derive from
the general criteria of zero-discord state [DVB10] that these quantum states ρ
have the form of

ρ =
n−1∑
i,j=0

p(i, j)|ψi〉〈ψi| ⊗ |ψj〉〈ψj |, (6)

where {|ψi〉} is a set of orthogonal basis of the n-dimensional Hilbert space
H, and P = [p(i, j)]ij ∈ R

n×n
+ is a symmetric matrix with nonnegative entries

satisfying that
∑

ij p(i, j) = 1. (In general, we use the upper case letter P to
denote the matrix and the lower case letter p to denote the corresponding two-
variate distribution p(i, j).) We sometimes also write the state as

ρ =
∑
i

p1(i)|ψi〉〈ψi| ⊗ σi (7)

where p1(i) =
∑

j p(i, j) is the marginal distribution on the first system, and

σi =
∑

j
p(i,j)
p1(i)

|ψj〉〈ψj | (if p1(i) = 0 then let σi = |0〉〈0|).
Consider the following game as a natural extension of the Penny Matching

game in Sect. 1. The payoff matrices are

U1 = nI − J and U2 = −U1, (8)

where J is the all-one matrix. Intuitively, whoever takes the first matrix bets
that the two n-sided dice give the same side, and the other player bets that
the two dice give different sides. We first show that there is a unique correlated
equilibrium in the game.

Lemma 1. The game given by Eq. (8) has only one classical correlated equilib-
rium Q = J/n2.

Proof. According to the definition of correlated equilibrium, if a distribution q
on [n] × [n] is a classical correlated equilibrium, then the following relationships
hold: ∑

j

q(i, j)U1(i, j) ≥
∑
j

q(i, j)U1(i′, j), ∀i, i′ ∈ {0, 1, ..., n − 1}, (9)

and ∑
i

q(i, j)U2(i, j) ≥
∑
i

q(i, j)U2(i, j′), ∀j, j′ ∈ {0, 1, ..., n − 1}. (10)

Plugging the definition of U1 and U2 into the above inequalities, one can verify
that Q = J/n2 is the only solution.
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Recall that ρ =
∑

i p1(i)|ψi〉〈ψi|⊗σi. Since ρ is symmetric, it does not matter
which part the classical player, Player 2, chooses to hold. For the convenience of
discussions, let us assume that the classical player takes the second part. We use
supp(p) to denote the support of a distribution p, i.e., the set of elements with
non-zero probability. The next lemma gives a sufficient and necessary condition
for the existence of quantum advantage.

Lemma 2. Suppose that measuring the state ρ gives a classical correlated equi-
librium for the game given in Eq. (8). Then Player 1 (who is quantum) does not
have any advantage if and only if

〈i|σj |i〉 = 1/n, ∀i ∈ {0, 1, ..., n − 1} and j ∈ supp(p1). (11)

Proof. “Only if”: Assume that Player 1 first measures her part in the orthonor-
mal basis {|ψi〉}. Note that this does not affect the state. If outcome j occurs,
then Player 1 knows that the state of Player 2 is σj . We consider which utility
matrix in Eq.(8) Player 1 has. In the first case, Player 1 takes the utility matrix
U1. It is not hard to see that her optimal strategy is to replace her part |ψj〉
by |i〉, where i is a maximizer of maxi〈i|σj |i〉. Thus Player 1 has a strict pos-
itive advantage if and only if there is some i and j, where j ∈ supp(p1), with
〈i|σj |i〉 > 1/n, which is equivalent to saying that there is some i and j ∈ supp(p1)
with 〈i|σj |i〉 
= 1/n.

Similarly, if Player 1 takes the utility matrix U2, then her optimal strategy is
to replace |ψj〉 with |i〉, where i is a minimizer of mini〈i|σj |i〉. Thus Player 1 has
a strict positive advantage if and only if there is some i and j with 〈i|σj |i〉 < 1/n,
which is again equivalent to saying that there is some i and j with 〈i|σj |i〉 
= 1/n.

“If”: Player 2 measures her part in the computational basis, yielding the
state

1
n

∑
i,j

p1(j)|ψj〉〈ψj | ⊗ |i〉〈i|.

Now whatever quantum operation Player 1 applies, the probability of observing
the same bits (i.e., the state after the measurement is |ii〉 for some i) is 1/n,
with the expected payoff of 0 for both players.

Though the above lemma gives a sufficient and necessary condition, it is
still not always clear whether quantum advantage could exist for any symmetric
state ρ with zero discord. Next we will further the study by considering a related
matrix M ∈ R

n×n
+ , whose (i, j)-th entry is defined to be

M(i, j) = |〈i|ψj〉|2. (12)

It turns out that the rank of M is an important criteria to our question. In
the rest of this section, we will consider two cases, depending on whether M is
full rank or not.
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3.1 Case 1: M Is Full-Rank

We will first show that if M is full-rank, then the quantum player cannot have
any advantage.

Theorem 3. Suppose that the two players of the game Eq. (8) share a symmetric
state ρ, measuring which gives a classical correlated equilibrium. Then Player 1
(who is quantum) does not have any advantage if M in Eq. (12) is full-rank.

Proof. By Lemma 1, for any 0 ≤ k, j ≤ n − 1 we have

n−1∑
i=0

p1(i)|〈k|ψi〉|2 · 〈j|σi|j〉 =
1
n2

Summing over j, we obtain another equality

n−1∑
i=0

p1(i)|〈k|ψi〉|2 =
1
n

.

Combining these two equalities, we have

n−1∑
i=0

|〈k|ψi〉|2 · p1(i)
(

〈j|σi|j〉 − 1
n

)
= 0.

Define a matrix A = [a(i, j)]ij ∈ R
n×n by a(i, j) = p1(i)

(〈j|σi|j〉 − 1
n

)
. Then

the above equality is just
∑

i M(k, i)a(i, j) = 0 for all k, j. In other words,
we have M · A = 0. Since the matrix M is assumed to be full-rank, we have
A = M−10 = 0. The conclusion thus follows by Lemma 2.

Two corollaries are in order. First, note that M is full-rank for a generic
orthogonal basis {|ψi〉}, it is generically true that no discord implies no quantum
advantage.

Corollary 4. If a set of orthonormal basis {|ψi〉} is picked uniformly at random,
then with probability 1, the quantum player does not have any advantage.

The second corollary considers the case of n = 2, which is settled by the
above theorem completely. Indeed, when n = 2, the rank of M is either 1 or 2.
The rank-2 case is handled by the above theorem. If the rank is 1, it is not hard

to see that the only possible M is M =
[
1/2 1/2
1/2 1/2

]
. In this case, for any i and

any k it holds that

〈k|σi|k〉 = 〈k|
( ∑

j

p(j|i)|ψj〉〈ψj |
)
|k〉 =

∑
j

p(j|i)|〈k|ψj〉|2 =
1
2

∑
j

p(j|i) =
1
2
.

Applying Lemma 2, we thus get the following corollary.

Corollary 5. There is no quantum advantage for the game defined in Eq. (1)
on any symmetric state ρ with zero discord.
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3.2 Case 2: M Is Not Full Rank

Somewhat surprisingly, the quantum player can have an advantage when M is
not full-rank. In this section we exhibit a counterexample for n = 3. In this case,
recall that the payoff matrices are

U1 =

⎛
⎝ 2 −1 −1

−1 2 −1
−1 −1 2

⎞
⎠ and U2 =

⎛
⎝−2 1 1

1 −2 1
1 1 −2

⎞
⎠ . (13)

We consider the following quantum state,

ρ =
2∑

i,j=0

p(i, j)|ψi〉〈ψi| ⊗ |ψj〉〈ψj |, (14)

where

|ψ0〉 =
1√
2

(|0〉 + |1〉) , |ψ1〉 =
1√
2

(|0〉 − |1〉) , |ψ2〉 = |2〉. (15)

It is not hard to calculate M :

M =

⎛
⎝1/2 1/2 0

1/2 1/2 0
0 0 1

⎞
⎠ . (16)

which has rank 2. Define

P =

⎛
⎝4/9 0 0

0 0 2/9
0 2/9 1/9

⎞
⎠ . (17)

It can be easily verified that if the two players measure the state in computa-
tional basis, the probability distribution yielded is uniform, which is a classical
Nash equilibrium.

Now suppose that Player 1 uses a quantum computer. One can verify that the
condition in Lemma 2 does not hold. For a concrete illustration, let us consider
the protocol in Lemma 2 again. Player 1 first measures in the basis {|+〉, |−〉, |2〉}.
With probability 4/9, she observes |+〉, then changes it to |0〉. Player 2’s state
is also |+〉 in this case, thus a measurement in the computational basis gives the
|00〉 and |01〉 each with half probability. Thus Player 1’s payoff in this case is
2· 12 −1· 12 = 1

2 . The second case is that Player 1 observes |−〉, which happens with
probability 2/9, and Player 2’s state is |2〉 for sure. Player 1 changes her part to
|2〉, and gets payoff 2. The third case is that Player 1 observes |2〉, which happens
with probability 1/3, leaving Player 2 σ3 = (2/3)|1〉〈1| + (1/3)|2〉〈2|. Player 1
then changes her qubit to |1〉, collides with Player 2’s outcome with probability
1/3, thus Player 1’s payoff is 2 · 1

3 − 1 · 2
3 = 0. On average, the quantum player

has a payoff of (4/9)(1/2) + (2/9) · 2 + (1/3) · 0 = 2/3.
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It should be pointed out that the matrix P achieving the quantum advantage
of 2/3 is not unique. For example, the following matrix also works with the same
effect:

P =

⎛
⎝2/9 2/9 0

0 0 2/9
1/9 1/9 1/9

⎞
⎠ . (18)

3.3 Optimization

In this subsection, we show that the 3-dimensional example in the above subsec-
tion is actually optimal for M defined in Eq. (16). Actually the theorem below
shows more. Note that if the rank of M is 1, it is easy to prove that M must
be the uniform matrix, and the quantum advantage must be zero, thus in the
following we suppose the rank of M to be 2.

Theorem 6. Suppose that measuring the state ρ gives a classical correlated equi-
librium. Suppose the columns of M are M0,M1 and M2. Without loss of gen-
erality, suppose M0 = xM1 + (1 − x)M2, where 0 ≤ x ≤ 1. Then the quantum
advantage

QA ≤ 1
3

+
1

3xb
, where xb = max{x, 1 − x}. (19)

Proof. By Lemma 1, for any 0 ≤ k, l ≤ 2 we have
∑2

i,j=0 p(i, j)|〈k|ψi〉|2 ·
|〈l|ψj〉|2 = 1

9 ., which turns out to be equivalent to M · P · MT = J
9 . Noting

that M · (J/9) · MT = J/9, we know that P can be expressed as

P =
J

9
+ P̄ , (20)

where M ·P̄ ·MT = 0. By straightforward calculation, one can show that Eq. (20)
indicates M · P̄ = 0. Considering the form of M , P̄ can now be expressed as

P̄ =

⎛
⎝ k0 k1 k2

−k0x −k1x −k2x
−k0(1 − x) −k1(1 − x) −k2(1 − x)

⎞
⎠ , (21)

where k0, k1 and k2 are real numbers.
According to the discussion above, we know that the maximal quantum

advantage is

QA =
2∑

i=0

p1(i)[2 · 〈li|σi|li〉 − 1 · (1 − 〈li|σi|li〉)], (22)

where li = maxl〈l|σi|l〉. Then it holds that

QA = 3
2∑

i=0

p1(i) · 〈li|σi|li〉 − 1 = 3
2∑

i,j=0

p(i, j)|〈li|ψj〉|2 − 1

= 3
2∑

i,j=0

(
1
9

+ p̄(i, j)
)

|〈li|ψj〉|2 − 1 = 3
2∑

i=0

⎛
⎝ 2∑

j=0

p̄(i, j)|〈li|ψj〉|2
⎞
⎠ ,



322 Z. Wei and S. Zhang

where p̄(i, j) is the element of P̄ . At the same time, it can be obtained that
li = maxl

∑
j p̄(i, j)|〈l|ψj〉|2. Besides, recall that the rank of M is 2, then there

must be one row of M , say M2, has the form of aM0 + (1 − a)M1, where M0

and M1 are the other two rows of M , and 0 ≤ a ≤ 1. Then it can be known
that every li must be 0 or 1. Based on the form of P̄ , we have that l0 
= l1 = l2.
Without loss of generality, we suppose l0 = 0, and l1 = l2 = 1. Then

QA = 3
2∑

j=0

p̄(0, j)|〈0|ψj〉|2 + 3
2∑

j=0

(p̄(1, j) + p̄(2, j))|〈1|ψj〉|2

= 3
2∑

j=0

p̄(0, j)|〈0|ψj〉|2 − 3
2∑

j=0

p̄(0, j)|〈1|ψj〉|2.

Note that P̄+J/9 is a matrix with nonnegative elements. Thus, for any 0 ≤ i ≤ 2,
if ki ≥ 0 we have −kix ≥ − 1

9 and − ki(1 − x) ≥ − 1
9 , and if ki < 0, we

have −ki ≤ 1
9 . And the above inequality indicates that if 0 < x < 1, ki ≤

1
9x and ki ≤ 1

9(1−x) , which is equivalent to ki ≤ 1
9xb

. Actually, this also holds
when x = 0 or x = 1. Therefore, we obtain that

QA = 3
2∑

j=0

p̄(0, j)|〈0|ψj〉|2 − 3
2∑

j=0

p̄(0, j)|〈1|ψj〉|2

= 3
2∑

j=0

kj |〈0|ψj〉|2 − 3
2∑

j=0

kj |〈1|ψj〉|2 ≤ 3 · 1
9xb

+ 3 · 1
9

=
1
3

+
1

3xb
,

where the relationship
∑

j |〈0|ψj〉|2 =
∑

j |〈1|ψj〉|2 = 1 is utilized.

Go back to the example in the above subsection. Note that for M in Eq. (16)
we have M0 = 1 · M1 + 0 · M2(thus in order to utilize Theorem 6, we need to
adjust the order of the columns). Thus we can choose x = 0, and then xb = 1.
As a result, the discussion above shows that QA ≤ 2/3, which means the choice
of P in Eq. (17) is optimal for M in Eq. (16).

Open Problems. From the mathematical perspective, some questions remain
open. Two of them are listed as below: (1) What is the maximum gain in a
zero-sum [−1, 1]-normalized game2 on a state in symmetric subspace without
entanglement? (2) What is the maximum gain in a zero-sum [−1, 1]-normalized
game on a state in symmetric subspace without discord?
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