
Finding Connected Dense k-Subgraphs

Xujin Chen(B), Xiaodong Hu, and Changjun Wang

Institute of Applied Mathematics, AMSS,
Chinese Academy of Sciences, Beijing 100190, China

{xchen,xdhu,wcj}@amss.ac.cn

Abstract. Given a connected graph G on n vertices and a positive
integer k ≤ n, a subgraph of G on k vertices is called a k-subgraph
in G. We design combinatorial approximation algorithms for finding a
connected k-subgraph in G such that its density is at least a factor
Ω(max{n−2/5, k2/n2}) of the density of the densest k-subgraph in G
(which is not necessarily connected). These particularly provide the first
non-trivial approximations for the densest connected k-subgraph prob-
lem on general graphs.

Keywords: Densest k-subgraphs · Connectivity · Combinatorial app-
roximation algorithms

1 Introduction

Let G = (V,E) be a connected simple undirected graph with n vertices, m edges,
and nonnegative edge weights. The (weighted) density of G is defined as its average
(weighted) degree. Let k ≤ n be a positive integer. A subgraph of G is called a k-
subgraph if it has exactly k vertices. The densest k-subgraph problem (DkSP) is to
find a k-subgraph of G that has the maximum density, equivalently, a maximum
number of edges. If the k-subgraph requires to be connected, then the problem
is referred to as the densest connected k-subgraph problem (DCkSP). Both DkSP
and DCkSP have their weighted generalizations, denoted respectively as HkSP
and HCkSP, which ask for a heaviest (connected) k-subgraph, i.e., a (connected)
k-subgraph with a maximum total edge weight. Identifying k-subgraphs with high
densities is a useful primitive, which arises in diverse applications – from social
networks, to protein interaction graphs, to the world wide web, etc. While dense
subgraphs can give valuable information about interactions in these networks, the
additional connectivity requirement turns out to be natural in various scenarios.

Related Work. An easy reduction from the maximum clique problem shows that
DkSP, DCkSP and their weighted generalizations are all NP-hard in general.
The NP-hardness remains even for some very restricted graph classes such as

Research supported in part by by NNSF of China under Grant No. 11222109,
11021161 and 10928102, by 973 Project of China under Grant No. 2011CB80800, and
by CAS Program for Cross & Cooperative Team of Science & Technology Innovation.

c© Springer International Publishing Switzerland 2015
R. Jain et al. (Eds.): TAMC 2015, LNCS 9076, pp. 248–259, 2015.
DOI: 10.1007/978-3-319-17142-5 22

Finding Connected Dense k-Subgraphs 249

chordal graphs, triangle-free graphs, comparability graphs and bipartite graphs
of maximum degree three.

Most literature on finding dense subgraphs focus on the versions without
requiring the subgraphs to be connected. For DkSP and its generalization HkSP,
narrowing the large gap between the lower and upper bounds on the approach-
ability is an important open problem.On the negative side, Feige [9] showed
that computing a (1 + ε) approximation for DkSP is at least as hard as refut-
ing random 3-SAT clauses for some ε > 0. Khot [15] showed that there does
not exist any polynomial time approximation scheme (PTAS) for DkSP assum-
ing NP does not have randomized algorithms that run in sub-exponential time.
Recently, constant factor approximations in polynomial time for DkSP have
been ruled out by Raghavendra and Steurel [20] under Unique Games with
Small Set Expansion conjecture. On the positive side, considerable efforts have
been devoted to finding good quality approximations for HkSP. Improving the
O(n0.3885)-approximation of Kortsarz and Peleg [17], Feige et al. [11] proposed
a combinatorial algorithm with approximation ratio O(nδ) for some δ < 1/3.
The latest algorithm of Bhaskara et al. [4] provides an O(n1/4+ε)-approximation
in nO(1/ε) time. If allowed to run for nO(log n) time, their algorithm guarantees
an approximation ratio of O(n1/4). The O(n/k)-approximation algorithm by
Asahiro et al. [3] is remarkable for its simple greedy removal method. Linear and
semidefinite programming relaxation approaches have been adopted in [10,13,21]
to design randomized rounding algorithms.

For some special graph classes, better approximations have been obtained for
DkSP and HkSP. Arora et al. [2] gave a PTAS for the restricted DkSP where m =
Ω(n2) and k = Ω(n), or each vertex of G has degree Ω(n). Demaine et al. [8]
developed a 2-approximation algorithm for DkSP on H-minor-free graphs, where
H is any given fixed graph. Chen et al. [5] showed that DkSP on a large family
of intersection graphs admits constant factor approximations.

The work on approximating densest/heaviest connected k-subgraphs are rel-
atively very limited. To the best of our knowledge, the existing polynomial time
algorithms deal only with special graphical topologies, including: (a) 2-approxi-
mation for the metric HkSP (HCkSP) [14], where the underlying graph G is com-
plete, and the connectivity is trivial; (b) exact algorithms for HkSP and HCkSP
on trees [7], for DkSP and DCkSP on h-trees, cographs and split graphs [7], and
for DCkSP on interval graphs whose clique graphs are simple paths [19].

Among the well-known relaxations of DkSP and HkSP is the problem of
finding a (connected) subgraph of maximum weighted density that does not have
any cardinality constraint. It is strongly polynomial time solvable using max-flow
based techniques [12,18]. Andersen and Chellapilla [1] and Khuller and Saha [16]
studied two relaxed variants of HkSP for finding a weighted densest subgraph
with at least or at most k vertices. The former variant was shown to be NP-
hard even in the unweighted case, and admit 2-approximation in the weighted
setting. The approximation of the latter variant was proved to be as hard as
that of DkSP/HkSP up to a constant factor.

250 X. Chen et al.

OurResults. Given the interest in finding densest/heaviest connected k-subgraphs
from both the theoretical and practical point of view, a better understanding
of the problems is an important challenge for the field. In this paper, we design
O(mn log n) time combinatorial approximation algorithms for finding a connec-
ted k-subgraph of G whose density (weighted density) is at least a factor Ω(max
{n−2/5, k2/n2}) (Ω(max{1/k, k2/n2})) of the density (weighted density) of the
densest (heaviest) k-subgraph of G which is not necessarily connected. These par-
ticularly provide the first non-trivial approximation ratios for DCkSP and HCkSP
on general graphs: O(min{n2/5, n2/k2}) for DCkSP and O(min{k, n2/k2}) for
HCkSP. Note that min{k, n2/k2} ≤ n2/3.

To evaluate the quality of our algorithms’ performance guarantees O(n2/5)
and O(n2/3), which are compared with the optimums of DkSP and HkSP, we
investigate the maximum ratio Λ (resp. Λw), over all graphs G (resp. over all
graphs G and all nonnegative edge weights), between the maximum density (resp.
weighted density) of all k-subgraphs and that of all connected k-subgraphs in G.
The following examples show Λ ≥ 1

3n1/3 and Λw ≥ 1
2n1/2.

Example 1. (a) The graph G is formed from � vertex-disjoint �-cliques L1, . . . , L�

by adding, for each i = 1, . . . , � − 1, a path Pi of length �2 + 1 to connect Li and
Li+1, where Pi intersects all the � cliques only at a vertex in Li and a vertex in
Li+1. Let k = �2. Note that G has n = �2 + �2(� − 1) = �3 vertices. The unique
densest k-subgraph of G is the disjoint union of L1, . . . , L� and has density �−1.
One of densest connected k-subgraphs of G is induced by the � vertices in L1

and certain �2 − � vertices in P1, and has density (�(�− 1)+2(�2 − �))/�2. Hence
Λ ≥ �2/(� + 2�) = 1

3n1/3.
(b) The graph G is a tree formed from a star on � + 1 vertices by dividing

each edge into a path of length � + 1. All pendant edges have weight 1 and
other edges have weight 0. Let k = 2�. Note that G has n = �2 + 1 vertices.
The unique heaviest k-subgraph of G is induced by the � pendant edges of G,
and has weighted density 1. Every heaviest connected k-subgraph of G is a path
containing exactly one pendant edge of G, and has weighted density 1/�. Hence
Λw ≥ � ≥ 1

2n1/2.

The remainder of this paper is organized as follows. Section 2 gives notations,
definitions and basic properties necessary for our discussion. Section 3 is devoted
to designing approximation algorithms for finding connected dense k-subgraphs.
Section 4 discusses extension to the weighted case, and future research direc-
tions.The omitted details can be found in [6].

2 Preliminaries

Graphs studied in this paper are simple and undirected. For any graph G′ =
(V ′, E′) and any vertex v ∈ V ′, we use dG′(v) to denote v’s degree in G′. The
density σ(G′) of G′ refers to its average degree, i.e., σ(G′) =

∑
v∈V ′ dG′(v)/|V ′| =

2|E′|/|V ′|. Following convention, we define |G′| = |V ′|. By a component of G′

we mean a maximal connected subgraph of G′.

Finding Connected Dense k-Subgraphs 251

Throughout let G = (V,E) be a connected graph on n vertices and m edges,
and let k ∈ [3, n] be an integer. Our goal is to find a connected k-subgraph C of
G such that its density σ(C) is as large as possible. Let σ∗(G) and σ∗

k(G) denote
the maximum densities of a subgraph and a k-subgraph of G, respectively, where
the subgraphs are not necessarily connected. It is clear that

σ∗(G) ≥ σ∗
k(G) and n − 1 ≥ σ(G) ≥ k · σ∗

k(G)/n. (2.1)

Let S be a subset of V or a subgraph of G. We use G[S] to denote the subgraph
of G induced by the vertices in S, and use G \ S to denote the graph obtained
from G by removing all vertices in S and their incident edges. If S consists of a
single vertex v, we write G \ v instead of G \ {v}.

The vertices whose removals increase the density of the graph play an impor-
tant role in our algorithm design.

Definition 1. A vertex v ∈ V is called removable in G if σ(G \ v) > σ(G).

Since σ(G\v) = 2(|E|−dG(v))/(|V |−1), the following lemma is straightforward.
It also provides an efficient way for identifying removable vertices.

Lemma 1. A vertex v ∈ V is removable in G if and only if dG(v) < σ(G)/2. ��
Lemma 2. Let G1 be a connected k-subgraph of G. For any connected subgraph
G2 of G1, it holds that σ(G1) ≥ σ(G2)/

√
k.

Proof. Suppose that G2 is a k2-subgraph of G with m2 edges. By the definition
of density, σ(G2) ≤ k2 − 1. The connectivity of G1 implies |E(G1)| ≥ |E(G2)| +
|V (G1 \ G2)|, and

σ(G1) ≥ 2(m2 + k − k2)
k

=
k2 · σ(G2) + 2(k − k2)

k
.

In case of k2 ≥ √
k, we have σ(G1) ≥ k2 · σ(G2)/k ≥ σ(G2)/

√
k. In case of

k2 <
√

k, since k ≥ 3, it follows that G1 has no isolated vertices, and σ(G1) ≥
1 > k2/

√
k > σ(G2)/

√
k. ��

For a cut-vertex v of G, we use Gv to denote a densest component of G \ v, and
use Gv+ to denote the connected subgraph of G induced by V (Gv) ∪ {v}. Note
that G \ Gv is a connected subgraph of G.

3 Algorithms

We design an O(n2/k2)-approximation algorithm (in Sect. 3.1) and further an
O(n2/5)-approximation algorithm (in Sect. 3.2) for DkSP that always finds a
connected k-subgraph of G. For ease of description we assume k is even. The
case of odd k can be treated similarly. Alternatively, if k is odd, we can first find
a connected (k − 1)-subgraph G1 satisfying σ∗

k−1(G)/σ(G1) ≤ O(α), where α ∈
{n2/k2, n2/5}. Notice that σ∗

k(G) ≤ 3·σ∗
k−1(G) [6]. It follows that σ∗

k(G)/σ(G1) ≤
O(α). Then we attach an appropriate vertex to G1, making a connected k-
subgraph G2 with density σ(G2) ≥ k−1

k σ(G1) ≥ 2
3σ(G1). This guarantees that

the approximation ratio is still σ∗
k(G)/σ(G2) ≤ O(α).

252 X. Chen et al.

3.1 O(n2/k2)-Approximation

We first give an outline of our algorithm (see Algorithm1) for finding a connected
k-subgraph C of G with density σ(C) ≥ Ω(k2/n2) · σ∗

k(G) (see Theorem 1).

Outline. We start with a connected graph G′ ← G and repeatedly delete remov-
able vertices from G′ to increase its density without destroying its connectivity.

– If we can reach G′ with |G′| = k in this way, we output C as the resulting G′.
– If we can find a removable cut-vertex r in G′ such that |G′

r| ≥ k, then we
recurse with G′ ← G′

r.
– If we stop at a G′ without any removable vertices, then we construct C from an

arbitrary connected (k/2)-subgraph by greedily attaching k/2 more vertices
(see Procedure 1).

– If we are in none of the above three cases, we find a connected subgraph of
G′ induced by a set S of at most k/2 vertices, and then expand the subgraph
in two ways: (1) attaching G′

r for all removable vertices r of G′ which are
contained in S, and (2) greedily attaching no more than k/2 vertices. From
the resulting connected subgraphs, we choose the one that has more edges
(breaking ties arbitrarily), and further expand it to be a connected k-subgraph
(see Procedure 2), which is returned as the output C.

Greedy Attachment. We describe how the greedy attaching mentioned in the
above outline proceeds. Let S and T be disjoint nonempty vertex subsets (or
subgraphs) of G. Note that 1 ≤ |S| < n. The set of edges of G with one end in S
and the other in T is written as [S, T]. For any positive integer j ≤ n−|S|, a set
S� of j vertices in G\S with maximum |[S, S�]| can be found greedily by sorting
the vertices in G \S as v1, v2, . . . , vj , . . . in a non-increasing order of the number
of neighbors they have in S. For each i = 1, 2 . . . , j, it can be guaranteed that vi

has either a neighbor in S or a neighbor in {v1, v2 . . . , vi−1}; in the latter case
i ≥ 2. Setting S� = {v1, v2, . . . , vj}. It is easy to see that

|[S, S�]| ≥ j
n · |[S,G \ S]|. (3.1)

Moreover, if G[S] is connected, the choices of vi’s guarantee that G[S ∪ S�] is
connected. We refer to this S� as a j-attachment of S in G. Given S, finding a j-
attachment of S takes O(m+n log n) time, which implies the following procedure
runs in O(|E(G′)| + |G′| · log |G′|) time.

Procedure 1. Input: a connected graph G′ without removable vertices, where
|G′| > k. Output: a connected k-subgraph of G′, written as Prc1(G′).

1. G1 = (V1, E1) ← an arbitrary connected (k/2)-subgraph of G′

2. V �
1 ← a (k/2)-attachment of V1 in G′

3. Output Prc1(G′) ← G[V1 ∪ V �
1]

Note that the definition of attachment guarantees that V1 ∩ V �
1 = ∅, |[V1, V

�
1]| is

maximum, and G[V1 ∪ V �
1] is connected.

Finding Connected Dense k-Subgraphs 253

Lemma 3. σ(Prc1(G′)) ≥ k
4|G′| · σ(G′).

Proof. Since G′ has no removable vertices, we deduce from Lemma 1 that every
vertex of G′ has degree at least σ(G′)/2. Therefore |[G1, G

′ \ G1]| ≥ k
2 · σ(G′)

2 −
2|E1|. Recalling (3.1), we see that the number of edges in Prc1(G′) is at least
|[V1, V

�
1]| ≥ (k·σ(G′)

4 − 2|E1|) · k/2
|G′| + |E1| ≥ k2

8|G′| · σ(G′), proving the lemma. ��

Procedure 2. Input: a connected graph G′ with |G′| > k, where every removable
vertex r is a cut-vertex and satisfies |G′

r| < k. Output: a connected k-subgraph
of G′, written as Prc2(G′).

1. H ← G′, R′ ← R = the set of removable vertices of G′

2. While R′ �= ∅ do
3. Take r ∈ R′

4. H ← H \ V (G′
r), R′ ← R′ \ V (G′

r+)
5. End-While
6. For each v ∈ V (H), define θ(v) = |G′

v+| if v ∈ R, and θ(v) = 1 otherwise
7. Let S be a minimal subset of V (H) s.t.H[S] is connected &

∑
v∈S θ(v)≥ k

2
8. Let S∗ be a min{k/2, |H \ S|}-attachment of S in H
9. V1 ← S ∪ (∪r∈R∩SV (G′

r)), V2 ← S ∪ S�

10. Let H ′ be one of G′[V1] and G′[V2] whichever has more edges (break ties
arbitrarily)

11. Expand H ′ to be a connected k-subgraph of G′

12. Output Prc2(G′) ← H ′

Under the condition that the resulting graph is connected, the expansion in
Step 11 can be done in an arbitrary way. It is easy to see that Procedure 2 runs
in O(|G′| · |E(G′)|) time.

Lemma 4. At the end of the while-loop (Step 5) in Procedure 2, we have

(i) H is a connected subgraph of G′.
(ii) If H contains two distinct vertices r and s that are removable in G′, then

(by the condition of the procedure both r and s are cut-vertices of G′, and
moreover) G′

r and G′
s are vertex-disjoint.

Proof. Note that in every execution of the while-loop, r ∈ R′ is a cut-vertex of H,
and V (H)∩V (G′

r) induces a component of H\r. Thus H is connected throughout
the procedure. For any two removable vertices r, s of G′ with |G′

r| ≤ |G′
s| and

r, s ∈ V (H), if G′
r and G′

s are not vertex-disjoint, then V (G′
r) ∪ {r} ⊆ V (G′

s).
It follows that all vertices of V (G′

r) ∪ {r} have been removed by Step 4 delete
when considering s ∈ R′, a contradiction. ��
Observe that for any two distinct r, s ∈ R, either G′

r+ and G′
s+ are vertex-

disjoint, or G′
r+ contains G′

s+, or G′
s+ contains G′

r+. This fact, along with an
inductive argument, shows that, throughout Procedure 2, for any s ∈ R\V (H),
there exists at least a vertex r ∈ V (H)∩R such that G′

r+ contains G′
s+, implying

254 X. Chen et al.

that (Ur∈R∩V (H)V (Gr+)) ∪ (V (H)\R) = V (G′) holds always. By Lemma 4(ii),
in Step 7, we see that V (G′) is the disjoint union of V (Gr+), r ∈ R ∩ V (H)
and V (H)\R, giving

∑
v∈V (H) θ(v) = |G′| > k. Hence, the connectivity of H

(Lemma 4 (i)) implies that the set S in Step 7 does exist.
Take u ∈ S such that u is not a cut-vertex of H. If |S| ≥ (k/2) + 1, then we

have
∑

v∈S\{u} θ(v) ≥ |S\{u}| ≥ k/2, a contradiction to the minimality of S.
Hence |S| ≤ k/2.

Since Step 4 has removed from H all vertices in V (G′
r) for all r ∈ R, we see

that V1 is the disjoint union of S and ∪r∈R∩SV (G′
r) Recall that |G′

r| < k for all
r ∈ R∩S. If |V1| > k, then |S| ≥ 2, and either θu ≥ k/2 or

∑
v∈S\{u} θ(v) ≥ k/2,

contradicting to the minimality of S. Noting that |V1| =
∑

v∈S θ(v), we have

k/2 ≤ |V1| ≤ k. (3.2)

We deduce that the output of Procedure 2 is indeed a connected k-subgraph
of G′.

Algorithm 1. Input: connected graph G = (V,E) with |V | ≥ k.
Output: a connected k-subgraph of G, written as Alg1(G).

1. G′ ← G
2. While |G′| > k and G′ has a removable vertex r that is not a cut-vertex do
3. G′ ← G′ \ r
4. End-While // either |G′| = k or any removable vertex of G′ is a cut-vertex

5. If |G′| = k then output Alg1(G) ← G′

6. If |G′| > k and G′ has no removable vertices
then output Alg1(G) ← Prc1(G′)

7. If |G′| > k and |G′
r| < k for each removable vertex r of G′

then output Alg1(G) ← Prc2(G′)
8. If |G′| > k and |G′

r| ≥ k for some removable vertex r of G′

then output Alg1(G) ← Alg1(G′
r)

In the while-loop, we repeatedly delete removable non-cut vertices from G′

until |G′| = k or G′ has no removable non-cut vertex anymore. The deletion
process keeps G′ connected, and its density σ(G′) increasing (cf. Definition 1).
When the deletion process finishes, there are four possible cases, which are han-
dled by Steps 5, 6, 7 and 8, respectively.

– In case of Step 5, the output G′ is clearly a connected k-subgraph of G.
– In case of Step 6, G′ qualifies to be an input of Procedure 1. With this input,

Procedure 1 returns the connected k-subgraph Prc1(G′) of G′ as the algo-
rithm’s output.

– In case of Step 7, G′ qualifies to be an input of Procedure 2. With this input,
Procedure 2 returns the connected k-subgraph Prc2(G′) of G′ as the algo-
rithm’s output.

– In case of Step 8, the algorithm recurses with smaller input G′
r, which satisfies

σ(G′
r) ≥ σ(G′) ≥ σ(G) and k ≤ |G′

r| < |G′| ≤ |G|.

Finding Connected Dense k-Subgraphs 255

Hence after O(n) recursions, the algorithm terminates at one of Steps 5 – 7 and
outputs a connected k-subgraph of G.

Theorem 1. Algorithm1 finds in O(mn) time a connected k-subgraph C of G
such that σ∗

k(G)/σ(C) ≤ 12n2/k2.

Proof. Let C = Alg1(G) be the output connected k-subgraph of G. If C is
output at Step 5, then its density is σ(C) ≥ σ(G) ≥ (k/n) · σ∗

k(G), where the
last inequality is by (2.1). If C is output by Procedure 1 at Step 6, then from
Lemma 3 we know its density is at least k

4|G′| · σ(G′) ≥ k
4n · σ(G) ≥ k2

4n2 · σ∗
k(G).

Now we are only left with the case that C =Prc2(G′) is output by Proce-
dure 2 at Step 7 of Algorithm1. Let R denote the set of removable vertices of
G′. For every r ∈ R, we see that r is a cut-vertex of G′ (cf. the note at Step 4
of the algorithm), and σ(G′

r) ≥ σ(G′ \ r) > σ(G′), where the first inequality is
from the definition of G′

r (it is the densest component of G′ \ r), and the second
inequality is due to the removability of r. Thus

σ(G′
r+) > σ(G′

r) · |G′
r|/(|G′

r| + 1) ≥ σ(G′)/2 for every r ∈ R.

Using the notations in Procedure 2, we note that each vertex of S \ R is non-
removable in G′, and therefore has degree at least σ(G′)/2 in G′ by Lemma 1.
Since V1 = S ∪ (∪r∈R∩SV (G′

r)) = (S \ R) ∪ (∪r∈S∩RV (G′
r+)) contains at least

k/2 vertices (recall (3.2)), it follows that G′ contains at least (k
2 · σ(G′)

2)/2 ≥
k
8 · σ(G) ≥ k2

8n · σ∗
k(G) edges each with at least one end in V1.

If there are at least k2

24n ·σ∗
k(G) edges with both ends in V1, then by Step 10 of

Procedure 2 we have |E(C)| ≥ k2

24n ·σ∗
k(G) and σ(C) = 2|E(C)|/k ≥ k

12n ·σ∗
k(G) ≥

k2

12n2 ·σ∗
k(G). It remains to consider the case where G′ contains at least k2

12n ·σ∗
k(G)

edges between V1 and G′ \V1. All these edges are between S and G′ \V1 = H \S,
since each edge incident with any vertex in G′

r (r ∈ R) must have both ends in
V1. So, by the definition of S� at Step 8 of Procedure 2, we deduce from (3.1) that
there are at least a number |[S, S�]| ≥ k/2

n ·|[S,H\S]| ≥ k3

24n2 ·σ∗
k(G) of edges in the

subgraph of G′ induced by V2 = S∪S�. Hence σ(C) ≥ 2|[S, S�]|/k ≥ k2

12n2 ·σ∗
k(G),

justifying the performance of the algorithm. See [6] for the runtime analysis. ��

3.2 O(n2/5)-Approximation

In this subsection we design algorithms for finding connected k-subgraphs of G
that jointly provide an O(n2/5)-approximation to DkSP. Among the outputs of
all these algorithms (with input G), we select the densest one, denoted as C.
Then it can be guaranteed that σ∗

k(G)/σ(C) ≤ O(n2/5). In view of the O(n2/k2)-
approximation of Algorithm 1, we may focus on the case of k < n4/5. (Note that
n2/k2 ≤ n2/5 if k ≥ n4/5.)

Let D be a densest connected subgraph of G, which is computable in time
O(mn log(n2/m)) [12,18], because every component of a densest subgraph of G
is also a densest subgraph of G. Thus

σ(D) = σ∗(G) ≥ σ∗
k(G).

256 X. Chen et al.

Moreover, the maximality of σ(D) implies that D has no removable vertices.

Algorithm 2. Input: connected graph G along with its densest connected sub-
graph D. Output: a connected k-subgraph of G, denoted as Alg2(G).

1. If |D| ≤ k then Expand D to be a connected k-subgraph H of G
Output Alg2(G) ← H

2. Else Output Alg2(G) ← Prc1(D)

Lemma 5. If k < n4/5, then σ(Alg2(G)) ≥ min{k/(4n), n−2/5} · σ∗(G).

Proof. In case of |D| ≤ k, by Lemma 2, it follows from σ∗(G) ≥ σ∗
k(G) that the

density of the output subgraph σ(H) ≥ σ(D)/
√

k = σ∗(G)/
√

k. Since k ≤ n4/5,
we see that σ(H) ≥ n−2/5 · σ∗(G).

In case of |D| > k, we deduce from Lemma 3 that the connected k-subgraph
Alg2(G)=Prc1(D) of D has density at least k

4|D| · σ(D) ≥ k
4n · σ∗(G). ��

Our next algorithm is an expansion of Procedure 2 by Feige et al. [11]. Let Vh be
a set of k/2 vertices of highest degrees in G, and let dh = 2

k

∑
v∈Vh

dG(v) denote
the average degree of the vertices in Vh.

Algorithm 3. Input: connected graph G with |G| ≥ k.
Output: a connected k-subgraph of G, denoted as Alg3(G).

1. V �
h ← a (k/2)-attachment of Vh in G

2. H ← a densest component of G[Vh ∪ V �
h]

3. Output Alg3(G) ← a k-connected subgraph of G that is expanded from H

In the above algorithm, the subgraph G[Vh ∪ V �
h] is exactly the output of Pro-

cedure 2 in [11], for which it has been shown (cf, Lemma 3.2 of [11]) that

σ̄ := σ(G[Vh ∪ V �
h]) ≥ kdh/(2n).

Recalling Lemma 2, we have σ(Alg3(G)) ≥ σ(H)/
√

k ≥ σ̄/
√

k, which implies
the following result.

Lemma 6. σ(Alg3(G)) ≥ σ̄√
k

≥
√

k
2n · dh. ��

Our last algorithm is a slight modification of Procedure 3 in [11], where we link
things up via a “hub” vertex. For vertices u, v of G, let W (u, v) denote the
number of walks of length 2 from u to v in G.

Algorithm 4. Input: connected graph G = (V,E) with |G| ≥ k.
Output: a connected k-subgraph of G, denoted as Alg4(G).

1. G� ← G[V \ Vh].
2. Compute W (u, v) for all pairs of vertices u, v in G�.
3. For every v ∈ V \ Vh, construct a connected k-subgraph Cv of G as follows:

Finding Connected Dense k-Subgraphs 257

– Sort the vertices u ∈ V \ Vh \ {v} with positive W (v, u) as v1, v2, . . . , vt

such that W (v, v1) ≥ W (v, v2) ≥ · · · ≥ W (v, vt) > 0.
– P v ← {v1, . . . , vmin{t,k/2−1}}
– Bv ← a set of min{dG�

(v), k/2} neighbors of v in G� such that the
number of edges between Bv and P v is maximized.

– Cv ← the component of G�[{v} ∪ Bv ∪ P v] that contains v
– Expand Cv to be a connected k-subgraph of G

4. Output Alg4(G) ← the densest Cv for v ∈ V \ Vh

In the above algorithm, Bv can be found in O(m + n log n) time, and v is the
“hub” vertex ensuring that Cv is connected. Hence the algorithm is correct, and
runs in O(mn + n2 log n) time, where Step 2 finishes in O(n2 log n) time. The
key point here is that Cv contains all edges between Bv and P v, where Bv and
P v are not necessarily disjoint. Using a similar analysis to that in [11] (see [6]),
we obtain the following.

Lemma 7. If k≤ 2
3n, then σ(Alg4(G)) ≥ (σ∗

k(G)−2σ̄)2

2max{k,2dh} · k−2
k ≥ (σ∗

k(G)−2σ̄)2

6max{k,2dh} . ��
We are now ready to prove that the four algorithms given above jointly guarantee
an O(n2/5)-approximation.

Theorem 2. A connected k-subgraph C of G can be found in O(mn log n) time
such that σ∗

k(G)/σ(C) ≤ O(n2/5).

Proof. Let C be the densest connected k-subgraph of G among the outputs
of Algorithms 1 – 4. As mentioned at the beginning of Sect. 3.2, it suffices to
consider the case of k < n4/5. The connectivity of C gives σ(C) ≥ 1. Clearly, we
may assume n ≥ 8, which along with k < n4/5 implies k ≤ 2n/3. By Lemmas 5–7,
we may assume that

σ(C) ≥ max

{

1,
kσ∗(G)

4n
,

σ̄√
k

,

√
kdh

2n
,
(σk(G) − 2σ̄)2

6max{k, 2dh}

}

.

If k ≥ n3/5, then σ(C) ≥ k · σ∗(G)/(4n) ≥ σ∗(G)/(4n2/5) ≥ σ∗
k(G)/(4n2/5). If

k ≤ n2/5, then σ(C) ≥ 1 ≥ σ∗
k(G)/k ≥ σ∗

k(G)/n2/5. So we are only left with the
case of n2/5 ≤ k ≤ n3/5.

Since σ(C) ≥ σ̄/
√

k ≥ σ̄/n3/10 ≥ σ̄/n2/5, we may assume σ̄ < σ∗
k(G)/4, and

hence σ∗
k(G) − 2σ̄ ≥ σ∗

k(G)/2. Next we use the geometric mean to prove the
performance guarantee as claimed.

In case of k ≥ 2dh, since σ∗(G) ≥ σ∗
k(G), we have

σ(C) ≥
(

1 · kσ∗(G)
4n

· (σ∗
k(G)/2)2

6k

)1/3

≥ σ∗
k(G)

5n2/5
,

In case of k < 2dh, we have

σ(C) ≥
(

1 ·
√

kdh

2n
· (σ∗

k(G)/2)2

12dh
·
√

kdh

2n
· (σ∗

k(G)/2)2

12dh

)1/5

≥ σ∗
k(G)

7n2/5
,

where the last inequality follows from the fact that k ≥ σ∗
k(G). ��

258 X. Chen et al.

4 Conclusion

In Sect. 3, we have given four strongly polynomial time algorithms that jointly
guarantee an O(min{n2/5, n2/k2})-approximation for the unweighted problem –
DCkSP. The approximation ratio is compared with the maximum density of all
k-subgraphs, and in this case no O(n1/3−ε)-approximation for any ε > 0 can
be expected (recall Λ ≥ 1

3n1/3 in Example 1(a)). When studying the weighted
generalization – HCkSP, we can extend the techniques developed in Sect. 3.1,
and obtain an O(n2/k2)-approximation for the weighted case. Besides, a simple
greedy approach can achieve a (k/2)-approximation [6]. As min{n2/k2, k} ≤
n2/3, the following result implies an O(n2/3)-approximation for HCkSP.

Theorem 3. For any connected graph G = (V,E) with weight w ∈ Z
E
+, a con-

nected k-subgraph H of G can be found in O(nm) time such that σ∗
k(G,w)/σ(H,w)

≤ O(min{n2/k2, k}), where σ(H,w) is the weighted density of H, and σ∗
k(G,w)

is the weighted density of a heaviest k-subgraph of G (which is not necessarily
connected). ��
Since the weighted density of a graph is not necessarily related to its num-
ber of edges or vertices, a couple of the results in the previous sections (such
as Lemmas 2, 6 and 7) do not hold for the general weighted case. Neither the
techniques of extending unweighted case approximations to weighted cases in
[11,17] apply to our setting due to the connectivity constraint. An immedi-
ate question is whether an O(n2/5)-approximation algorithm exists for HCkSP.
Note from Λw ≥ 1

2n1/2 in Example 1(b) that no one can achieve an O(n1/2−ε)-
approximation for any ε > 0 if the solution value is compared with the maximum
weighted density of all k-subgraphs. Among other algorithmic approaches, ana-
lyzing the properties of densest/heaviest connected k-subgraphs is an important
and challenging task in obtaining improved approximation ratios for DCkSP and
HCkSP.

References

1. Andersen, R., Chellapilla, K.: Finding dense subgraphs with size bounds. In:
Avrachenkov, K., Donato, D., Litvak, N. (eds.) WAW 2009. LNCS, vol. 5427,
pp. 25–37. Springer, Heidelberg (2009)

2. Arora, S., Karger, D., Karpinski, M.: Polynomial time approximation schemes for
dense instances of NP-hard problems. In: Proceedings of the 27th Annual ACM
Symposium on Theory of Computing, pp. 284–293 (1995)

3. Asahiro, Y., Iwama, K., Tamaki, H., Tokuyama, T.: Greedily finding a dense sub-
graph. J. Algorithms 34(2), 203–221 (2000)

4. Bhaskara, A., Charikar, M., Chlamtac, E., Feige, U., Vijayaraghavan, A.: Detecting
high log-densities: an O(n1/4) approximation for densest k-subgraph. In: Proceed-
ings of the 42nd Annual ACM Symposium on Theory of Computing, pp. 201–210
(2010)

5. Chen, Danny Z., Fleischer, Rudolf, Li, Jian: Densest k -subgraph approximation
on intersection graphs. In: Jansen, Klaus, Solis-Oba, Roberto (eds.) WAOA 2010.
LNCS, vol. 6534, pp. 83–93. Springer, Heidelberg (2011)

Finding Connected Dense k-Subgraphs 259

6. Chen, X., Hu, X., Wang, C.: Finding connected dense k-subgraphs. CoRR abs/
1501.07348 (2015)

7. Corneil, D.G., Perl, Y.: Clustering and domination in perfect graphs. Discrete
Appl. Math. 9(1), 27–39 (1984)

8. Demaine, E.D., Hajiaghayi, M., Kawarabayashi, K.i.: Algorithmic graph minor
theory: decomposition, approximation, and coloring. In: Proceedings of the 46th
Annual IEEE Symposium on Foundations of Computer Science, pp. 637–646 (2005)

9. Feige, U.: Relations between average case complexity and approximation complex-
ity. In: Proceedings of the 34th Annual ACM Symposium on Theory of Computing,
pp. 534–543 (2002)

10. Feige, U., Langberg, M.: Approximation algorithms for maximization problems
arising in graph partitioning. J. Algorithms 41(2), 174–211 (2001)

11. Feige, U., Peleg, D., Kortsarz, G.: The dense k-subgraph problem. Algorithmica
29(3), 410–421 (2001)

12. Goldberg, A.V.: Finding a Maximum Density Subgraph. University of California
Berkeley, CA (1984)

13. Han, Q., Ye, Y., Zhang, J.: An improved rounding method and semidefinite pro-
gramming relaxation for graph partition. Math. Program. 92(3), 509–535 (2002)

14. Hassin, R., Rubinstein, S., Tamir, A.: Approximation algorithms for maximum
dispersion. Oper. Res. Lett. 21(3), 133–137 (1997)

15. Khot, S.: Ruling out ptas for graph min-bisection, dense k-subgraph, and bipartite
clique. SIAM J. Comput. 36(4), 1025–1071 (2006)

16. Khuller, S., Saha, B.: On finding dense subgraphs. In: Albers, S., Marchetti-
Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.) ICALP 2009, Part I.
LNCS, vol. 5555, pp. 597–608. Springer, Heidelberg (2009)

17. Kortsarz, G., Peleg, D.: On choosing a dense subgraph. In: Proceedings of the
34th Annual IEEE Symposium on Foundations of Computer Science, pp. 692–701
(1993)

18. Lawler, E.L.: Combinatorial Optimization: Networks and Matroids. Courier Dover
Publications, New York (1976)

19. Liazi, M., Milis, I., Zissimopoulos, V.: Polynomial variants of the densest/heaviest
k-subgraph problem. In: Proceedings of the 20th British Combinatorial Conference,
Durham (2005)

20. Raghavendra, P., Steurer, D.: Graph expansion and the unique games conjecture.
In: Proceedings of the 42nd Annual ACM Symposium on Theory of Computing,
pp. 755–764 (2010)

21. Srivastav, A., Wolf, K.: Finding dense subgraphs with semidefinite programming.
In: Jansen, K., Rolim, J.D.P. (eds.) APPROX 1998. LNCS, vol. 1444, pp. 181–191.
Springer, Heidelberg (1998)

	Finding Connected Dense k-Subgraphs
	1 Introduction
	2 Preliminaries
	3 Algorithms
	3.1 O(n2/k2)-Approximation
	3.2 O(n2/5)-Approximation

	4 Conclusion
	References

