
Common Developments of Three Incongruent
Boxes of Area 30

Dawei Xu1, Takashi Horiyama2(B), Toshihiro Shirakawa1,2,
and Ryuhei Uehara1

1 School of Information Science,
Japan Advanced Institute of Science and Technology, Nomi, Japan

{xudawei,uehara}@jaist.ac.jp
2 Information Technology Center, Saitama University, Saitama, Japan

horiyama@al.ics.saitama-u.ac.jp

Abstract. We investigate common developments that can fold into
plural incongruent orthogonal boxes. Recently, it was shown that there
are infinitely many orthogonal polygons that folds into three boxes of dif-
ferent size. However, the smallest one that folds into three boxes consists
of 532 unit squares. From the necessary condition, the smallest possible
surface area that can fold into two boxes is 22, which admits to fold into
two boxes of size 1×1×5 and 1×2×3. On the other hand, the smallest
possible surface area for three different boxes is 46, which may admit to
fold into three boxes of size 1×1×11, 1×2×7, and 1×3×5. For the area
22, it has been shown that there are 2,263 common developments of two
boxes by exhaustive search. However, the area 46 is too huge for search.
In this paper, we focus on the polygons of area 30, which is the second
smallest area of two boxes that admits to fold into two boxes of size
1 × 1 × 7 and 1 × 3 × 3. Moreover, when we admit to fold along diagonal
lines of rectangles of size 1 × 2, the area may admit to fold into a box of
size

√
5×√

5×√
5. That is, the area 30 is the smallest candidate area for

folding three different boxes in this manner. We perform two algorithms.
The first algorithm is based on ZDDs, zero-suppressed binary decision
diagrams, and it computes in 10.2 days on a usual desktop computer. The
second algorithm performs exhaustive search, however, straightforward
implementation cannot be run even on a supercomputer since it causes
memory overflow. Using a hybrid search of DFS and BFS, it completes
its computation in 3 months on a supercomputer. As results, we obtain
(1) 1,080 common developments of two boxes of size 1×1×7 and 1×3×3,
and (2) 9 common developments of three boxes of size 1×1×7, 1×3×3,
and

√
5 × √

5 × √
5.

1 Introduction

Since Lubiw and O’Rourke posed the problem in 1996 [10], polygons that can fold
into a (convex) polyhedron have been investigated in the area of computational
geometry. In general, we can state the development/folding problem as follows:
c© Springer International Publishing Switzerland 2015
R. Jain et al. (Eds.): TAMC 2015, LNCS 9076, pp. 236–247, 2015.
DOI: 10.1007/978-3-319-17142-5 21

Common Developments of Three Incongruent Boxes of Area 30 237

Fig. 1. Cubigami. Fig. 2. A polygon folding into two
boxes of size 1 × 1 × 5 and 1 × 2 × 3
in [12].

Input : A polygon P and a polyhedra Q
Output: Determine whether P can fold into Q or not

When Q is a tetramonohedron (a tetrahedron with four congruent triangular
faces), Akiyama and Nara gave a complete characterization of P by using the
notion of tiling [2,3]. Except that, we have quite a few results from the math-
ematical viewpoint. Hence we can tackle this problem from the viewpoint of
computational geometry and algorithms.

From the viewpoint of computation, one natural restriction is that consid-
ering the orthogonal polygons and polyhedra which consist of unit squares and
unit cubes, respectively. Such polygons have wide applications including packag-
ing and puzzles, and some related results can be found in the books on geometric
folding algorithms by Demaine and O’Rourke [6,14]. However, this problem is
counterintuitive. For example, the puzzle “cubigami” (Fig. 1) is a common devel-
opment of all tetracubes except one (since the last one has surface area 16, while
the others have surface area 18), which is developed by Miller and Knuth. One
of the many interesting problems in this area asks whether there exists a poly-
gon that folds into plural incongruent orthogonal boxes. This folding problem
is very natural but still counterintuitive; for a given polygon that consists of
unit squares, and the problem asks are there two or more ways to fold it into
simple convex orthogonal polyhedra (Fig. 2). Biedl et al. first gave two polygons
that fold into two incongruent orthogonal boxes [5] (see also Fig. 25.53 in the
book by Demaine and O’Rourke [6]). Later, Mitani and Uehara constructed infi-
nite families of orthogonal polygons that fold into two incongruent orthogonal
boxes [12]. Recently, Shirakawa and Uehara extended the result to three boxes
in a nontrivial way; that is, they showed infinite families of orthogonal polygons
that fold into three incongruent orthogonal boxes [16]. However, the smallest
polygon by their method contains 532 unit squares, and it is open if there exists
much smaller polygon of several dozens of squares that folds into three (or more)
different boxes.

238 D. Xu et al.

Table 1. A part of possible size a × b × c of boxes and its common surface area
2(ab + bc + ca).

2(ab + bc + ca) a × b × c

22 1 × 1 × 5, 1 × 2 × 3

30 1 × 1 × 7, 1 × 3 × 3

34 1 × 1 × 8, 1 × 2 × 5

38 1 × 1 × 9, 1 × 3 × 4

46 1 × 1 × 11, 1 × 2 × 7, 1 × 3 × 5

54 1 × 1 × 13, 1 × 3 × 6, 3 × 3 × 3

58 1 × 1 × 14, 1 × 2 × 9, 1 × 4 × 5

62 1 × 1 × 15, 1 × 3 × 7, 2 × 3 × 5

64 1 × 2 × 10, 2 × 2 × 7, 2 × 4 × 4

70 1 × 1 × 17, 1 × 2 × 11, 1 × 3 × 8, 1 × 5 × 5

88 1 × 2 × 14, 1 × 4 × 8, 2 × 2 × 10, 2 × 4 × 6

It is easy to see that two boxes of size a×b×c and a′×b′×c′ can have a common
development only if they have the same surface area, i.e., when 2(ab+ bc+ ca) =
2(a′b′ + b′c′ + c′a′) holds. We can compute small surface areas that admit to fold
into two or more boxes by a simple exhaustive search. We show a part of the table
for 1 ≤ a ≤ b ≤ c ≤ 50 in Table 1. From the table, we can say that the smallest
surface area is at least 22 to have a common development of two boxes, and their
sizes are 1 × 1 × 5 and 1 × 2 × 3. In fact, Abel et al. have confirmed that there
exist 2,263 common developments of two boxes of size 1×1×5 and 1×2×3 [1].
On the other hand, the smallest surface area that may admit to fold into three
boxes is 46, which may fold into three boxes of size 1 × 1 × 11, 1 × 2 × 7, and
1 × 3 × 5. However, the number of polygons of area 46 seems to be too huge
to search. This number is strongly related to the enumeration and counting
of polyominoes, namely, orthogonal polygons that consist of unit squares [7].
The number of polyominoes of area n is well investigated in the puzzle society,
but it is known up to n = 45, which is given by the third author (see the OEIS
(https://oeis.org/A000105) for the references). Since their common area consists
of 46 unit squares, it seems to be hard to enumerate all common developments
of three boxes of size 1 × 1 × 11, 1 × 2 × 7, and 1 × 3 × 5.

One natural step is the next one of the surface area 22 in Table 1. The next
area of 22 in the table is 30, which admits to fold into two boxes of size 1×1×7 and
1×3×3. When Abel et al. had confirmed the area 22 in 2011, it takes around 10 h.
Thus we cannot use the straightforward way in [1] for the area 30. We first employ
a nontrivial extention of the method based on a zero-suppressed binary decision
diagram (ZDD) used in [4], which is so-called frontier-based search algorithm for
enumeration [9]. Our first algorithm based on ZDD runs in around 10 days on
an ordinary PC. To perform double-check, we also use supercomputer (CRAY
XC30). We note that we cannot use the same way as one for area 22 shown in
[1] since it takes too huge memory even on a supercomputer. Therefore, we use

https://oeis.org/A000105

Common Developments of Three Incongruent Boxes of Area 30 239

(a)

(b)

Fig. 3. The common development shown
in [5]. (a) It folds into a box of size 1 ×
2 × 4 and (b) it also folds into a box of
size

√
2 × √

2 × 3
√

2.

(1) (2) (3)

(4) (5) (6)

(7) (9)(8)

Fig. 4. Nine polygons that fold into
three boxes of size 1 × 1 × 7, 1 × 3 × 3,
and

√
5 × √

5 × √
5. The last one can

fold into the third box in two different
ways (Fig. 5).

a hybrid search of the breadth first search and the depth first search. Our first
result is the number of common developments of two boxes of size 1 × 1 × 7 and
1 × 3 × 3, which is 1,080.

Based on the obtained common developments, we next change the scheme.
In [5], they also considered folding along 45◦ lines, and showed that there was a
polygon that folded into two boxes of size 1× 2× 4 and

√
2×√

2× 3
√

2 (Fig. 3).
In this context, we can observe that the area 30 may admit to fold into another
box of size

√
5 × √

5 × √
5 by folding along the diagonal lines of rectangles of

size 1 × 2. This idea leads us to the problem that asks if there exist common
developments of three boxes of size 1×1×7, 1×3×3, and

√
5×√

5×√
5 among

the common developments of two boxes of size 1 × 1 × 7 and 1 × 3 × 3.
We remark that this is a special case of the development/folding problem

above. In our case, P is one of the 1,080 polygons that consist of 30 unit squares,
and Q is the cube of size

√
5×√

5×√
5. We note that we can use a pseudopoly-

nomial time algorithm for Alexandrov’s Theorem proposed in [8], however, it
runs in O(n456.5) time, and it is not practical. Therefore, we develop the other
efficient algorithm specialized in our case that checks if a polyomino P of area
30 can fold into a cube Q of size

√
5×√

5×√
5. Using the algorithm, we check if

these common developments of two boxes of size 1× 1× 7 and 1× 3× 3 can also
fold into the third box of size

√
5 × √

5 × √
5, and give an affirmative answer.

We find that nine of 1,080 common developments of two boxes can fold into
the third box (Fig. 4). Moreover, one of the nine common developments of three

240 D. Xu et al.

(a) (b) (c) (d)

Fig. 5. The unique polygon folds into three boxes of size (a) 1 × 1 × 7, (b) 1 × 3 × 3,
and (c)(d)

√
5 × √

5 × √
5 in four different ways.

boxes has another way of folding. Precisely, the last one (Fig. 4(9)) admits to
fold into the third box of size

√
5 × √

5 × √
5 in two different ways. These four

ways of folding are depicted in Fig. 5.
We summarize the main results in this paper:

Theorem 1. (1) There are 1,080 polyominoes of area 30 that admit to fold
(along the edges of unit squares) into two boxes of size 1 × 1 × 7 and 1 × 3 × 3.
(2) Among the above 1,080, nine polyominoes can fold into the third box of size√

5×√
5×√

5 if we admit to fold along diagonal lines (Fig. 4). (3) Among these
nine polyominoes, one can fold into the third box in two different ways (Fig. 5).

2 Preliminaries

2.1 Problem Definitions

Demaine and O’Rourke [6, Chap. 21] give a formal definition of the development
of a polyhedron as the net1. Briefly, the development is the unfolding obtained
by slicing the surface of the polyhedron, and it forms a single connected sim-
ple polygon without self-overlap. The common development of two (or more)
polyhedra is the development that can fold into both (or all) of them. We only
consider connected orthogonal polygons that consist of unit squares, which are
called polyominoes [7], as developments. Polyominoes obtained from a develop-
ment by removing some unit squares are called partial developments of it. We
call a convex orthogonal polyhedron (folded from a polyomino) a box.

The cut edges of an edge development of a convex polyhedron form a spanning
tree of the 1-skeleton (i.e., the graph formed by the vertices and the edges) of the
polyhedron (See e.g., [6, Lemma 22.1.1]). Figure 6(a) and (b) are the 1-skeleton
of a cube and its spanning tree, respectively. In our problem, given a box of
size a × b × c, we divide the faces into unit squares, and cut the surface along
edges of the unit squares. We call such a development a unit square development.
1 Since the word “net” has several meaning, we use “development” instead of it to

make clear.

Common Developments of Three Incongruent Boxes of Area 30 241

Fig. 6. 1-skeletons and spanning trees of a cube and a box of size 1 × 1 × 3.

In Fig. 6(c), we regard the eight vertices (colored in white) as special, where the
angle sum at each corner is 270◦. We call them corners. The 1-skeleton of a box
is given as G = (Vc ∪ Vo, E), where Vc and Vo denote the sets of eight corners
and others, respectively, and E denote the set of edges of unit length. The cut
edges of a unit square development form a tree spanning to the eight corners.

Now, we go back to the common development. It is easy to see that two boxes
of size a × b × c and size a′ × b′ × c′ have a common unit square development
only if they have the same surface area, i.e., 2(ab+bc+ca) = 2(a′b′ +b′c′ +c′a′).
Such 3-tuples (a, b, c) can be computed by a simple enumeration for small areas
(Table 1), but it seems that we have many corresponding 3-tuples for large area.
In fact, this intuition can be proved as follows:

Theorem 2 [13]. We say two 3-tuples (a, b, c) and (a′, b′, c′) are distinct if and
only if a �= a′, b �= b′, or c �= c′. For any positive integer p, there are p distinct 3-
tuples (ai, bi, ci) for i = 1, 2, . . . , p such that aibi + bici +ciai = ajbj + bjcj +cjaj
for any 1 ≤ i, j ≤ p.

Proof. For a given p, we let ai = 2i − 1, bi = 22p−i − 1, ci = 1 for i = 1, 2, . . . , p.
Then we have aibi+bici+ciai = (22p−2i−22p−i+1)+(22p−i−1)+(2i−1) = 22p−1
for any i. It is easy to see that all 3-tuples (ai, bi, ci) are distinct. Thus we have
the theorem. �

By Theorem 2, we can consider any number of boxes that may share the common
developments.

2.2 Enumeration by Zero-Suppressed Binary Decision Diagrams

A zero-suppressed binary decision diagram (ZDD) [11] is directed acyclic graph
that represents a family of sets. As illustrated in Fig. 7, it has the unique source
node2, called the root node, and has two sink nodes 0 and 1, called the 0-node
and the 1-node, respectively (which are together called the constant nodes).
Each of the other nodes is labeled by one of the variables x1, x2, . . . , xn, and
has exactly two outgoing edges, called 0-edge and 1-edge, respectively. On every
path from the root node to a constant node in a ZDD, each variable appears at
most once in the same order. The size of a ZDD is the number of nodes in it.
2 We distinguish nodes of a ZDD from vertices of a graph (or a 1-skeleton).

242 D. Xu et al.

Fig. 7. A ZDD representing {{1, 2}, {1, 3, 4}, {2, 3, 4}, {3}, {4}}.

Every node v of a ZDD represents a family of sets Fv, defined by the subgraph
consisting of those edges and nodes reachable from v. If node v is the 1-node
(respectively, 0-node), Fv equals to {{}} (respectively, {}). Otherwise, Fv is
defined as F0-succ(v) ∪ {S | S = {var(v)} ∪ S′, S′ ∈ F1-succ(v)}, where 0-succ(v)
and 1-succ(v), respectively, denote the nodes pointed by the 0-edge and the 1-
edge from node v, and var(v) denotes the label of node v. The family F of sets
represented by a ZDD is the one represented by the root node. Figure 7 is a ZDD
representing F = {{1, 2}, {1, 3, 4}, {2, 3, 4}, {3}, {4}}. Each path from the root
node to the 1-node, called 1-path, corresponds to one of the sets in F.

Now, we focus on the enumeration of developments by ZDDs. As denoted
in Sect. 2.1, the cut edges of an edge development form a spanning tree of the
1-skeleton (e.g., edges {e1, e2, e4, e7, e6, e9, e10} in Fig. 6(b)). This conditions can
be interpreted as follows:

Property 1. Given the 1-skeleton G = (V,E) of a polyhedron, the cut edges of
its edge development is the set of edges Ed (⊆ E) satisfying: (1) Ed has no cycle.
(2) Subgraph of G induced by Ed has only one connected component. (3) Each
vertex in V is adjacent to at least one edge in Ed.

Algorithm 1 [4] gives the frontier-based search [9] to construct a ZDD represent-
ing a family of spanning trees. It can be considered as one of DP-like algorithms.
Each search node in the algorithm corresponds to a subgraphs of the given
graph G. The search begins with noderoot (i.e., the root node of the resulting
ZDD) corresponding to (V, {}). In the search, we check whether we can adopt
edge ei or not, in the order of i = 1, 2, . . . ,m, where m is the number of edges
in G. In Line 4 of Algorithm 1, current search node is n̂, and in case x = 1
(respectively, x = 0), we adopt (respectively, do not adopt) ei. Search node
n′ corresponds to the resulting graph, and is pointed by the x-edge of n̂ in
Line 13.

The key is to share nodes of the constructing ZDD (in Lines 9 and 10) by
simple “knowledge” of subgraphs, and not to traverse the same subproblems
more than once. Each search node n̂ in the algorithm has an array n̂.comp[] as
an knowledge, where n̂.comp[vj] indicates the ID of the connected component
vj belonging to. We can reduce the size of knowledge by maintaining the values
of n̂.comp[] just for vertices incident to both a processed and an unprocessed
edges. Such set of vertices are called the i-th frontier Fi (∈ V), which is formally

Common Developments of Three Incongruent Boxes of Area 30 243

Algorithm 1. Construct ZDD
Input : Graph G = (V,E) with n vertices and m edges
Output: ZDD representing a family of spanning trees in G
N1 := {noderoot}. Ni := {} for i = 2, 3, . . . ,m + 11

for i := 1, 2, . . .m do2

foreach n̂ ∈ Ni do3

foreach x ∈ {0, 1} do // 0-edge and 1-edge4

n′ := CheckTerminal(n̂, i, x) // returns 0, 1, or nil5

if n′ = nil then // n′ is neither 0 nor 16

Copy n̂ to n′
7

UpdateInfo(n′, i, x)8

if there exists n′′ ∈ Ni+1 that is identical to n′ then9

n′ := n′′
10

else11

Ni+1 := Ni+1 ∪ {n′}12

Create the x-edge of n̂ and make it point at n′
13

defined as Fi = (∪j=1,...,i ej)∩(∪j=i+1,...,m ej), F0 = Fm = {}. We check whether
the subgraph corresponding to the search node n̂ consists a spanning tree in
Procedure CheckTerminal. For more detail, see [9].

3 Algorithms for the First Two Boxes of Size 1 × 1 × 7
and 1 × 3 × 3

3.1 Algorithm Based on ZDDs

We first describe how to obtain all common unit cube developments of two incon-
gruent boxes of sizes 1 × 1 × 7 and 1 × 3 × 3 by ZDDs. The strategy is simple:
For each box, we enumerate sets of cut edges corresponding to unit cube devel-
opments, and convert them to the shapes of the developments, each of which
is represented by a sequence of interior angles of a polyomino. Then, we obtain
common developments that appear in both of the two boxes. The important
thing is to enumerate the sets of cut edges efficiently. For obtaining unit cube
developments, we generalize the algorithm given in Sect. 2.2. Once a ZDD is
obtained, each of its 1-paths represents a set of cut edges. By traversing the
ZDD, we can obtain 1-paths, and thus obtain the shapes of developments. The
difference between the problem in Sect. 2.2 and ours can be seen in Fig. 6(b)
and (c). In our problem, faces of our boxes are divided into unit squares, and
we need to make a tree spanning to the eight corners, not spanning to all ver-
tices. The cut edges of a unit square development of our box has the following
property:

Property 2. Given the 1-skeleton G = (Vc ∪ Vo, E) of a box, the cut edges of its
unit square development is the set of edges Ed (⊆ E) satisfying: (1) Ed has no
cycle. (2) Subgraph of G induced by Ed has only one connected component of

244 D. Xu et al.

size greater than 1. (3) Each vertex in Vc is adjacent to at least one edge in Ed.
(4) No vertex in Vo is adjacent to exactly one edge in Ed.

Conditions (1) and (2) are essentially equivalent to those in Property 1. Condition
(3) is to flatten the corners of the box into a plane. Conditions (2) and (3)
guarantees that all vertices in Vc are connected. Condition (4) is to avoid a
vertex in Vo adjacent to exactly one edge in Ed. (If there exists such an edge, we
can eliminate it from Ed.) Conditions (2) and (4) guarantees that all vertices in
Vo adjacent to two or more edges are connected to the vertices in Vc. Thus, we
have a tree spanning the vertices in Vc.

To check the above conditions, we modify Procedures UpdateInfo and Check-
Terminal. For counting the number of adopted edges adjacent to vj and the size of
connected component vj belonging to, we prepare two arrays n̂.deg[] and n̂.size[].
In Procedure 3, we initialize n̂.deg[vj] := 0 (i.e., the number of adopted edges in
Ed adjecent to vj is 0) and n̂.size[vj] := 1 (i.e., vertex vj is a singleton) in Line 3.
If edge ei = (vi1 , vi2) is adopted to Ed (i.e., x = 1), we update the degrees of vi1
and vi2 , and the size of their connected components in Lines 8, 9 and 12.

In Procedure 2, Condition (1) is checked in Lines 2–4. If vertex vj leaves from
the frontier, we have no chance to adopt its adjecent edges, which means the
degree of vj does not change. Thus, we check Conditions (3) and (4) in Lines
8 and 9, respectively. At the same time, we have no chance to grow the size
of vj ’s connected components. Thus, we check whether we have two or more
connected components in Lines from 14 to 16, and terminate the search if it
holds. Otherwise, we have only one connected component, and hence we cannot
adopt any edges in the remaining search. Thus, we check Conditions (3) and (4)
in Lines from 17 to 22, and returns the result.

3.2 Algorithm Based on Exhaustive Search

Here we describe the exhaustive algorithm for generating all common develop-
ments of two boxes of size 1 × 1 × 7 and 1 × 3 × 3. The basic idea is similar to
one in [1]: Let Li be the set of all common partial developments of area i of two
boxes. Then L1 consists of a unit square, and each Li with i > 1 is a subset
of polyominoes of size i that can be computed from Li−1 by the breadth first
search. Each Li is maintained by a huge hash table, which means that we use
O(maxi{i|Li| + (i − 1)|Li−1|}) space for the computation of step i.

This simple idea works up to 22 for two boxes of size 1 × 1 × 5 and 1 × 2 × 3
in [1] since the maximum number of |Li ∪ Li−1| takes 1.01 × 107 when i = 18.
However, for the surface area 30, it does not work even on a supercomputer
(CRAY XC30) due to memory overflow when i = 22.

Thus we divide the computation into two phases. In the first phase, we com-
pute Li for each i = 2, . . . , 16. As a result, we have L16 that consists of 7,486,799
common partial developments of two boxes of size 1× 1× 7 and 1× 3× 3. In the
second phase, we partition L16 into 75 disjoint subsets Lj

16 with 1 ≤ j ≤ 75. For
each Lj

16, we independently compute up to Lj
30 in parallel by the BFS algorithm

again. In the final step, we merge Lj
30 with 1 ≤ j ≤ 75, remove duplicates, and

obtain L30.

Common Developments of Three Incongruent Boxes of Area 30 245

Procedure 2. CheckTerminalRevised(n̂, i, x)

Let (vi1 , vi2) denote ei ∈ E1

if x = 1 then2

if n̂.comp[vi1] = n̂.comp[vi2] then // vi1 , vi2 are in the same component3

return 0 // we have a cycle by adding ei4

Copy n̂ to n′
5

UpdateInfo(n′, i, x)6

foreach vj ∈ {vi1 , vi2} satisfying vj �∈ Fi do // vj is leaving from the frontier7

// Check the degree constraints for vj8

if (vj is in Vc) and (n̂.deg[vj] = 0) then return 09

if (vj is in Vo) and (n̂.deg[vj] = 1) then return 010

if (∀vk ∈ Fi n̂.comp[vj] �= n̂.comp[vk]) then11

// vj ’s connected component cannot connect to any other components12

if (n̂.size[vj] > 1) then13

if (∃v� ∈ Fi (n̂.size[v�] > 1)) then14

// we have two or more connected components of size > 115

return 016

else // We cannot adopt any edges17

foreach vj′ ∈ ∪i′=i+1,...,mei′ do18

// Check the degree constraints for remaining vertices19

if (vj′ is in Vc) and (n̂.deg[vj′] = 0) then return 020

if (vj′ is in Vo) and (n̂.deg[vj′] = 1) then return 021

return 122

23

Fi := Fi \ {vj}24

return nil25

Procedure 3. UpdateInfoRevised(n̂, i, x)

Let (vi1 , vi2) denote ei ∈ E1

foreach vj ∈ {vi1 , vi2} such that vj �∈ Fi−1 do // vj is entering the frontier2

n̂.comp[vj] := j // The initial component ID is the index of vj3

n̂.deg[vj] := 0, n̂.size[vj] := 14

if x = 1 then // Merge two components of vi1 , vi25

cmin := min{n̂.comp[vi1], n̂.comp[vi2]}6

cmax := max{n̂.comp[vi1], n̂.comp[vi2]}7

n̂.deg[vi1] := n̂.deg[vi1] + 1, n̂.deg[vi2] := n̂.deg[vi2] + 18

s = n̂.size[vi1] + n̂.size[vi2]9

foreach vj ∈ Fi do10

if n̂.comp[vj] = cmax then n̂.comp[vj] := cmin11

if (n̂.comp[vj] = cmin) or (n̂.comp[vj] = cmax) then n̂.size[vj] := s12

foreach vj ∈ {vi1 , vi2} such that vj �∈ Fi do // vj is leaving the frontier13

Forget n̂.comp[vj], n̂.deg[vj] and n̂.size[vi2]14

246 D. Xu et al.

4 Algorithm for the Third Box

Let L30 be the set of all common developments of two boxes of size 1 × 1 × 7
and 1 × 3 × 3. We here note that if we can compute L30 efficiently, we can
check in the same manner; that is, we generate all developments of the cube
of size

√
5 × √

5 × √
5 by cutting along the line of unit squares, and check if

each one appears in L30 or not. Thus, in the first method based on ZDDs, we
can use the same way again; we construct all developments of the cube of size√

5 × √
5 × √

5 based on the connection network on unit squares, and check if
each one appears in L30 or not. In the second method based on the exhaustive
search for two boxes, we check if each development in L30 can be folded into a
cube of size

√
5 × √

5 × √
5.

The program of the first method based on ZDDs runs on a usual desktop com-
puter with Intel Xeon E5-2643 and 128 GB memory. It takes 0.10 and 71.53 s
for obtaining the sets of cut edges of two boxes of size 1 × 1 × 7 and 1 × 3 × 3,
respectively, and 7.7 days for converting the cut edges into the shapes of devel-
opments and for obtaining the common developments. For the third box of size√

5×√
5×√

5, It takes 354.64 s for obtaining cut edges, and 2.5 days for obtain-
ing the common developments of the three boxes. It takes 10.2 days in total. The
program of the second method runs, in total, in 3 months on the supercomputer
(CRAY XC30), and we obtain 1,080 common developments in L30 of two boxes
of size 1 × 1 × 7 and 1 × 3 × 33 and 9 common developments of three boxes of
size 1 × 1 × 7, 1 × 3 × 3 and

√
5 × √

5 × √
5.

5 Concluding Remarks

Recently, Shirakawa and Uehara showed infinite families of orthogonal poly-
gons that fold into three incongruent orthogonal boxes [16]. However, the small-
est polygon contains 532 unit squares. In this paper, we show that there exist
orthogonal polygons of 30 unit squares that fold into three incongruent orthog-
onal boxes if we allow us to fold along slanted lines. In the original framework
in [16], the smallest possible surface area that may fold into three different boxes
is 46, which may produce three boxes of size 1 × 1 × 11, 1 × 2 × 7, and 1 × 3 × 5.
We conjecture that there exists an orthogonal polygon of 46 unit squares that
admits to fold these three boxes. Some nontrivial properties in Figs. 4 and 5 may
help to find it.

There are many future work in this area. For example, does there exist a
polyomino that folds into four or more boxes? Is there some upper bound of
the number of boxes which can be folded from one polyomino? We remind that
Theorem 2 says that we have no upper bound by the constraint of the surface
areas. But it is hard to imagine that one polyomino can fold into, say, 10,000
different boxes. General development/folding problems are also remained open.
For example, Shirakawa et al. found a common development of a unit cube
and an almost regular tetrahedron (with relative error <2.89200×10−1796) [15],
however, a common development of two Platonic solids are still open.
3 We note that the maximum number of partial developments is given when j = 24.

Common Developments of Three Incongruent Boxes of Area 30 247

References

1. Abel, Z., Demaine, E., Demaine, M., Matsui, H., Rote, G., Uehara, R.: Common
development of several different orthogonal boxes. In: 23rd Canadian Conference
on Computational Geometry (CCCG 2011), pp. 77–82 (2011)

2. Akiyama, J.: Tile-makers and semi-tile-makers. Math. Assoc. Amerika 114, 602–
609 (2007)

3. Akiyama, J., Nara, C.: Developments of polyhedra using oblique coordinates. J.
Indonesia. Math. Soc. 13(1), 99–114 (2007)

4. Araki, Y., Horiyama, T., Uehara, R.: Common unfolding of regular Tetrahedron
and Johnson-Zalgaller solid. In: Rahman, M.S., Tomita, E. (eds.) WALCOM 2015.
LNCS, vol. 8973, pp. 294–305. Springer, Heidelberg (2015)

5. Biedl, T., Chan, T., Demaine, E., Demaine, M., Lubiw, A., Munro, J.I., Shallit, J.:
Notes from the University of Waterloo Algorithmic Problem Session, 8 September
1999

6. Demaine, E.D., O’Rourke, J.: Geometric Folding Algorithms: Linkages, Origami,
Polyhedra. Cambridge University Press, Cambridge (2007)

7. Golomb, S.W.: Polyominoes. Princeton University Press, Princeton (1994)
8. Kane, D., Price, G.N., Demaine, E.D.: A pseudopolynomial algorithm for Alexan-

drov’s theorem. In: Dehne, F., Gavrilova, M., Sack, J.-R., Tóth, C.D. (eds.) WADS
2009. LNCS, vol. 5664, pp. 435–446. Springer, Heidelberg (2009)

9. Kawahara, J., Inoue, T., Iwashita, H., Minato, S.: Frontier-based search for enumer-
ating all constrained subgraphs with compressed representation. Technical report
TCS-TR-A-14-76, Division of Computer Science, Hokkaido University (2014)

10. Lubiw, A., O’Rourke, J.: When can a polygon fold to a polytope? Technical report
048. Department of Computer Science, Smith College (1996)

11. Minato, S.: Zero-suppressed bdds for set manipulation in combinatorial problems.
In: 30th ACM/IEEE Design Automation Conference (DAC 1993), pp. 272–277
(1993)

12. Mitani, J., Uehara, R.: Polygons folding to plural incongruent orthogonal boxes.
In: Canadian Conference on Computational Geometry (CCCG 2008), pp. 39–42
(2008)

13. Okumura, T.: Personal communication, August 2014
14. O’Rourke, J.: How to Fold It: The Mathematics of Linkage, Origami and Polyhedra.

Cambridge University Press, Cambridge (2011)
15. Shirakawa, T., Horiyama, T., Uehara, R.: Construct of common development of

regular tetrahedron and cube. In: 27th European Workshop on Computational
Geometry (EuroCG 2011), pp. 47–50, 28–30 March 2011

16. Shirakawa, T., Uehara, R.: Common developments of three incongruent orthogonal
boxes. Int. J. Comput. Geom. Appl. 23(1), 65–71 (2013)

	Common Developments of Three Incongruent Boxes of Area 30
	1 Introduction
	2 Preliminaries
	2.1 Problem Definitions
	2.2 Enumeration by Zero-Suppressed Binary Decision Diagrams

	3 Algorithms for the First Two Boxes of Size 117 and 133
	3.1 Algorithm Based on ZDDs
	3.2 Algorithm Based on Exhaustive Search

	4 Algorithm for the Third Box
	5 Concluding Remarks
	References

