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Abstract. The NP-hard Effectors problem on directed graphs is
motivated by applications in network mining, particularly concerning
the analysis of (random) information-propagation processes. In the cor-
responding model the arcs carry probabilities and there is a probabilistic
diffusion process activating nodes by neighboring activated nodes with
probabilities as specified by the arcs. The point is to explain a given net-
work activation state best possible using a minimum number of “effector
nodes”; these are selected before the activation process starts.

We complement and extend previous work from the data mining com-
munity by a more thorough computational complexity analysis of Effec-
tors, identifying both tractable and intractable cases. To this end, we
also exploit a parameterization measuring the “degree of randomness”
(the number of ‘really’ probabilistic arcs) which might prove useful for
analyzing other probabilistic network diffusion problems.

1 Introduction

To understand and master the dynamics of information propagation in networks
(biological, chemical, computer, information, social) is a core research topic in
data mining and related fields. A prominent problem in this context is the NP-
hard problem Effectors [10]: The input is a directed (influence) graph with a
subset of nodes marked as active (the target nodes) and each arc of the graph
carries an influence probability between 0 and 1. The task is to find few “effec-
tor nodes” that can “best explain” the set of given active nodes, that is, the
activation state of the graph; herein, in one round (this is known as the indepen-
dent cascade model [9]) an activated node (initially consisting only the chosen
effectors) can activate every out-neighbor with the corresponding arc probabil-
ity; see Sect. 2 for a formal model and problem definition. It is important to
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note that we allow effectors to be chosen from the whole set of graph nodes
and not only from the set of target nodes. This makes our model, in a sense,
more general than the original one by Lappas et al. [10].1 Our main contribu-
tion is to extend and clarify research on the computational complexity status
of Effectors, which has been initiated by Lappas et al. [10]. In particular,
as probabilistic information propagation is central in this model as well as in
other network diffusion models, we put particular emphasis on studying how the
“degree of randomness” in the network governs the computational complexity.
Moreover, compared to previous work, we make an effort to present the results
in a more formal setting conducting a rigorous mathematical analysis.

Informally speaking (concrete statements of our results appear in Sect. 2 after
having provided formal definitions), we gained the following main insights.

– With unlimited degree of randomness, finding effectors is computationally
very hard. In fact, even computing the “cost” (how well does a set of effectors
explain a given activation state) of a given set of effectors is intractable. This
significantly differs from deterministic models.

– Even if the directed input graph is acyclic, then this does not lead to a sig-
nificant decrease of the computational complexity.

– Bounding the degree of randomness (in other words, bounding the number
of arcs with probability different from 0 or 1), that is, parameterizing on the
degree of randomness, yields some encouraging (fixed-parameter) tractability
results for otherwise intractable cases.

– We identify some flaws in the work of Lappas et al. [10] (see the last part
of Sect. 4.3 for details), who claim one case to be intractable which in fact is
tractable and one case the other way around.

Admittedly, in real-world applications (where influence probabilities are deter-
mined through observation and simulation, often involving noise) the number of
probabilistic arcs may be high, thus rendering the parameter “number of prob-
abilistic arcs” doubtful. However, note that finding effectors is computationally
very hard (also in terms of polynomial-time approximability) and so in order
to make the computation of a solution more feasible one might round up (to 1)
arc probabilities which are close to 1 and round down (to 0) arc probabilities
which are close to 0. Thus, we can achieve a tradeoff between running time and
accuracy of the result. Depending on the degree of rounding (as much as a sub-
sequent fixed-parameter algorithm exploiting the mentioned parameter would
“allow”) in this way one might at least find a good approximation of an optimal
set of effectors in reasonable time.

Related Work. Our main point of reference is the work of Lappas et al. [10].
Indeed, we use a slightly different (and more general) problem definition: they
define the effectors to be necessarily a subset of the target nodes, whereas we
1 We conjecture that both models coincide if we have unlimited budget, that is, if the

number of chosen effectors does not matter. On the contrary, they do not coincide
if we have limited budget, see Sect. 2.
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allow the effectors to form an arbitrary subset of the nodes. It turns out that
these two definitions really yield different problems (see Sect. 2 for an extensive
discussion of the two models). The also NP-hard special case where all nodes are
target nodes (and hence where the two models above clearly coincide) is called
Influence Maximization and is also well studied in the literature [4,6,9].
Finally, a closely related deterministic version (called Target Set Selection)
with the additional difference of having node-individual thresholds specifying
how many neighboring nodes need to be active to make a node active has also
been extensively studied, in particular from a parameterized complexity point
of view [3,5,11].

2 Preliminaries and Model Discussion

In this section, we first provide the formal framework, overview our results, and
explain our modeling, particularly discussing the difference between our model
and the one by Lappas et al. [10].

Preliminaries. We basically use the same definitions as Lappas et al. [10] except
for few differences in notation.

Influence Graphs. An influence graph G = (V,E,w) is a simple directed graph
equipped with a function w : E → (0, 1]∩Q assigning an influence weight to each
arc (u → v) ∈ E which represents the influence of node u on node v. We denote
the number of nodes in G by n := |V | and the number of arcs in G by m := |E|.
Information Propagation. We consider the following information-propagation
process, called the Independent Cascade (IC) model [9]. Within this model, each
node is in one of two states: active or inactive. When a node u becomes active for
the first time, at time step t, it gets a single chance to activate its out-neighbors.
Specifically, u succeeds in activating a neighbor v with probability w(u → v). If
u succeeds, then v will become active at step t+1. Otherwise, u cannot make any
more attempts to activate v in any subsequent round. As usual, we assume that
the precision of the probabilities determined by the function w is polynomially
bounded in the number n of nodes in the input graph.

Cost Function. For a given influence graph G = (V,E,w), subset X ⊆ V of
effectors, and subset A ⊆ V of active nodes, we define a cost function

CA(G,X) :=
∑

v∈A

(1 − p(v|X)) +
∑

v∈V \A
p(v|X),

where for each v ∈ V , we define p(v|X) to be the probability of v being active
after the termination of the information-propagation process starting with X as
the active nodes. An alternative definition is that CA(G,X) :=

∑
v∈V CA(v,X),

where CA(v,X) := 1 − p(v|X) if v ∈ A and CA(v,X) := p(v|X) if v /∈ A.

Main Problem Definition. Our central problem Effectors is formulated as a
decision problem—it relates to finding few nodes which best explain (lowest cost)
the given network activation state specified by a subset A ⊆ V of nodes.
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Effectors

Input: An influence graph G = (V,E,w), a set of target nodes A ⊆ V ,
a budget b ∈ N, and a cost c ∈ Q.
Question: Is there a subset X ⊆ V of effectors such that |X| ≤ b and
CA(G,X) ≤ c?

We will additionally consider the related problem Effectors-Cost (see Sect. 3)
where the set X of effectors is already given and one has to determine its cost.

Parameters. The most natural parameters to consider for a parameterized com-
plexity analysis are the maximum number b of effectors, the cost value c, and
the number a := |A| of target nodes. Moreover, we will be especially inter-
ested in quantifying the amount of randomness in the influence graph. To this
end, consider an arc (u → v) ∈ E: if w(u → v) = 1, then this arc is not
probabilistic. We define the parameter number r of probabilistic arcs, that is,
r := |{(u → v) ∈ E : 0 < w(u → v) < 1}|. We will also briefly discuss the
parameterization by the treewidth of the underlying undirected graph.

Graph Theory. We use the acronym DAG for directed acyclic graphs. The DAG
of strongly connected components of a directed graph is called its condensation.
A directed tree is an arbitrary orientation of an undirected tree.

Computational Complexity. We assume familiarity with the basic notions of algo-
rithms and complexity. Several of our results will be cast using the framework
of parameterized complexity analysis. An instance (I, k) of a parameterized
problem consists of the actual instance I and an integer k being the parame-
ter [7,8,12]. A parameterized problem is called fixed-parameter tractable (FPT)
if there is an algorithm solving it in f(k) · |I|O(1) time, whereas an algorithm
with running time O(|I|f(k)) only shows membership in the class XP (clearly,
FPT ⊆ XP). Thus, achieving fixed-parameter tractability is computationally
much more attractive. One can show that a parameterized problem L is (presum-
ably) not fixed-parameter tractable by devising a parameterized reduction from
a W[1]-hard or W[2]-hard problem (such as Clique or Set Cover, respec-
tively, each parameterized by the solution size) to L. A parameterized reduc-
tion from a parameterized problem L to another parameterized problem L′ is
a function that, given an instance (I, k), computes in f(k) · |I|O(1) time an
instance (I ′, k′) (with k′ ≤ g(k)) such that (I, k) ∈ L ⇔ (I ′, k′) ∈ L′. We
will also consider counting problems of the form “compute func(x)”. Informally
speaking, we can associate a decision problem in NP to a counting problem
in #P. Then, analogously to NP-hardness, showing that a counting problem is
#P-hard gives strong evidence for the intractability of the counting problem.

Our Results. Before we discuss our model and the one by Lappas et al. [10], we
overview our main results. We will treat the subproblem Effectors-Cost in
Sect. 3, and Effectors in Sect. 4. Our results are summarized in Table 1. Note
that most of our results transfer to the model of Lappas et al. [10]. In particular,
this implies that their claims that the “zero-cost” special case is NP-hard [10,
Lemma 1] and that the deterministic version is polynomial-time solvable are
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Table 1. Computational complexity of the different variants of Effectors. Note that
all hardness results hold also for DAGs. The parameter a stands for the number of active
nodes, b for the budget, c for the cost value, and r for the number of probabilistic arcs.

Deterministic
(r = 0)

Parameterized
(by r)

Probabilistic
(arbitrary r)

Effectors-

Cost

FPT [wrt. r], Theorem 2 #P-hard, Corollary 1

Effectors

(general case)
W[2]-hard [wrt. b + c], Theorem 3

W[1]-hard [wrt. a + b + c], Theorem 3

XP [wrt. min(a, b, c)],
Proposition 1

Infinite budget
(b = ∞)

FPT [wrt. r], Theorem 5 NP-hard, Theorem 4

Influence
Maximization

(A = V )

W[1]-hard [wrt. min(b, c)],
Theorem 6

FPT [wrt. b + c],
Theorem 6

FPT [wrt. treewidth],
[3]

both flawed, because from our results exactly the opposite follows (see the last
part of Sect. 4.3 for details). Due to lack of space, most of the proofs are omitted.
For full formal proofs, refer to the full version (available at http://arxiv.org/abs/
1411.7838).

Model Discussion. Our definition of Effectors differs from the problem
definition of Lappas et al. [10] in that we do not require the effectors to be
chosen among the target nodes. Before pointing out possible advantages and
motivating our problem definition, we give a simple example illustrating the
difference between these two problems.

Consider the influence graph in Fig. 1, consisting of one non-target node
(white) having three outgoing arcs of weight 1 to three target nodes (black).
Clearly, for b = c = 1, this is a “no”-instance if we are only allowed to pick
target nodes as effectors since the probability of being active will be 0 for two of
the three target nodes in any case, which yields a cost of at least 2. According to
our problem definition, however, we are allowed to select the non-target node,
which only incurs a cost of 1, showing that this is a “yes”-instance. We think
that our model captures the natural assumption that an effector node does not
have to remain active forever. Indeed, the modeling of Lappas et al. [10] might
be interpreted as a “monotone version” as for example discussed by Askalidis
et al. [2], while in this sense our model allows for “non-monotone explanations”.

Clearly, if all nodes are target nodes (this particular setting is called Influ-
ence Maximization), then the two models coincide. Furthermore, we strongly
conjecture that if we have an unlimited budget, then it suffices to search for a
solution among the target nodes, that is, also for b = ∞, we believe that the two
problem definitions are equivalent.

http://arxiv.org/abs/1411.7838
http://arxiv.org/abs/1411.7838
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1 1 1

Fig. 1. A small example where it is optimal to choose a non-target node as effector
(Color figure online).

Conjecture 1. For b = ∞, it holds that for every “yes”-instance (G,A, b, c) of
Effectors there exists a solution X ⊆ A.

At least for directed trees (that is, the underlying undirected graph is a tree) we
can prove Conjecture 1. The idea of proof is that if an optimal solution contains
a non-target node, then this node only influences nodes reachable from it via
paths that do not visit other nodes in the solution. Within this smaller tree of
influenced nodes there must be some subtrees rooted at target nodes such that
the expected cost for such a subtree is smaller if its target root node is activated
during the propagation process compared to the case when it is not. Choosing
these target nodes directly as effectors, replacing the non-target node, yields
another optimal solution with fewer non-target nodes.

Theorem 1. Conjecture 1 holds for directed trees.

3 Computing the Cost Function

We consider the problem of computing the cost for a given set of effectors.

Effectors-Cost

Input: An influence graph G = (V,E,w), a set of target nodes A ⊆ V ,
and a set of effectors X ⊆ V .
Compute: The cost CA(G,X).

Effectors-Cost is polynomial-time solvable on directed trees [10]. On the
contrary, Effectors-Cost is unlikely to be polynomial-time solvable already
on DAGs. This follows from a result by Wang et al. [13, Theorem 1]. They
show that computing the expected number of activated nodes for a single given
effector is #P-hard on DAGs. Note that for the case A = ∅, the cost equals the
expected number of activated nodes at the end of the propagation process.

Corollary 1. Effectors-Cost on DAGs is #P-hard for |A| = 0 and |X| = 1.

On the positive side, Effectors-Cost is fixed-parameter tractable with respect
to the number r of probabilistic arcs. The general idea is to recursively simulate
the propagation process, branching over the probabilistic arcs, and to compute
a weighted average of the final activation state of the graph.

Theorem 2. Effectors-Cost can be solved in O(2r ·n(n+m)) time, where r
is the number of probabilistic arcs.
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4 Finding Effectors

We treat the general variant of Effectors in Sect. 4.1, the special case of
unlimited budget in Sect. 4.2, and the special case of influence maximization in
Sect. 4.3.

4.1 General Model

We consider the parameters number a of target nodes, the budget b, and the
cost c. We first notice that if at least one of them equals zero, then Effectors

is polynomial-time solvable. This holds trivially for parameters a and b; simply
choose the empty set as a solution. This is optimal for a = 0, and the only
feasible solution for b = 0. For parameter c, the following holds, using a simple
decomposition into strongly connected components.

Lemma 1. For c = 0, Effectors can be solved in O(n + m) time.

Based on Lemma 1, by basically checking all possibilities in a brute-force manner,
we obtain simple polynomial-time algorithms for Effectors in the cases of a
constant number a of target nodes, budget b, or cost c.

Proposition 1. For r = 0, Effectors is in XP with respect to each of the
parameters a, b, and c.

In the following, we show that, even for r = 0, Effectors is W[1]-hard with
respect to the combined parameter (a, b, c), and even W[2]-hard with respect to
the combined parameter (b, c). We briefly sketch the proof of the first statement,
and mention that the second statement is proven by a reduction from the W[2]-
complete Dominating Set problem.

Theorem 3. The following statements hold.

1. Effectors, parameterized by the combined parameter (a, b, c), is W[1]-hard,
even if r = 0 and the influence graph is a DAG.

2. Effectors, parameterized by the combined parameter (b, c), is W[2]-hard,
even if r = 0 and the influence graph is a DAG.

Proof (Sketch for the first statement). We describe a parameterized reduction
from the W[1]-hard problem Multi-Colored Clique, which asks for the exis-
tence of a colorful clique of size k in a simple and undirected graph whose vertices
are colored with k colors. Given an instance of Multi-Colored Clique(G =
(V,E), k), we construct an instance of Effectors with b =

(
k
2

)
, c =

(
k
2

)
+ k,

and an influence graph defined as follows. Add
(
k
2

)
+ k + 1 nodes for each pair

of distinct colors. Let us call these nodes color-pair nodes. Now, add a vertex
node nv for each v ∈ V , add an edge node eu,v for each e = {u, v} ∈ E, and
add arcs {eu,v → nu, eu,v → nv}. For each edge, let L be the color-pair nodes
corresponding to the colors of u and v, and add arcs {eu,v → l | l ∈ L}. Finally,
let the set of target nodes A contain all color-pair nodes and set the influence
weights of all arcs to 1. 
�
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X X X X
Vp

Xp

Xo

Yp

Yo
V ′

Fig. 2. Illustration for Theorem 5. Effectors of a solution are marked with an aura.
Probabilistic arcs are dashed, and nodes of Vp (with an outgoing probabilistic arc)
are marked with a cross. For readability, target nodes are not represented. Intuitively,
the algorithm guesses the partition of Vp into Xp (effectors) and Yp (non-effectors).
Node set Xp (respectively, Yp) is then extended to its closure Xo (respectively, its
closure Yo in the reverse graph). The remaining nodes form a deterministic subgraph
G[V ′], in which effectors, forming the set X ′, are selected by solving an instance of
Maximum Weight Closure.

4.2 Special Case: Unlimited Budget

Here, we concentrate on a model variant where we are allowed to choose any
number of effectors, that is, the goal is to minimize the overall cost with an
unlimited budget of effectors. In general, Effectors with unlimited budget
remains intractable, though (via reduction from a #P -hard counting problem).

Theorem 4. If P �= NP, then Effectors, even with unlimited budget, is not
polynomial-time solvable on DAGs.

However, with unlimited budget, Effectors is fixed-parameter tractable with
respect to the number r of probabilistic arcs.

Theorem 5. If b = ∞, then Effectors is solvable in O(4r ·n4) time, where r
is the number of probabilistic arcs.

Proof. The general idea is to fully determine the probabilistic aspects of the
graph, and then to remove all of the corresponding nodes and arcs. We can
show that this leaves an equivalent “deterministic graph” that we can solve
using a reduction to the problem Maximum Weight Closure, which is itself
polynomial-time solvable by a polynomial-time reduction to a flow maximization
problem [1, Chapter 19].

Maximum Weight Closure

Input: A directed graph G = (V,E) with weights on the vertices.
Compute: A maximum-weight set of vertices X ⊆ V with no arcs going
out of the set.
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We start with some notation (see Fig. 2 for an illustration). For an input graph
G = (V,E), let Ep := {(u → v) ∈ E | w(u → v) < 1} denote the set of
probabilistic arcs and let Vp := {u | (u → v) ∈ Ep} denote the set of nodes with
at least one outgoing probabilistic arc. For a node v ∈ V , let cldet(v) (cl-1det(v))
denote the set of all nodes u such that there exists at least one deterministic
path from v to u (respectively, from u to v), where a deterministic path is a path
containing only deterministic arcs. We extend the notation to subsets V ′ of V
and write cldet(V ′) =

⋃
v∈V ′ cldet(v) and cl-1det(V

′) =
⋃

v∈V ′ cl-1det(v). We call a
subset V ′ ⊆ V of nodes deterministically closed if and only if cldet(V ′) = V ′,
that is, there are no outgoing deterministic arcs from V ′ to V \ V ′.

Our algorithm will be based on a closer analysis of the structure of an optimal
solution. To this end, let G = (V,E,w) be an input graph with a set A ⊆ V of tar-
get nodes and let X ⊆ V be an optimal solution with minimum cost CA(G,X).
Clearly, we can assume that X is deterministically closed, that is, cldet(X) = X,
since we have an infinite budget b = ∞.

We write Vp as a disjoint union of Xp := Vp∩X and Yp := Vp\X. We also use
Xo := cldet(Xp), Yo := cl-1det(Yp) and Vo = Xo ∪ Yo. Since X is deterministically
closed, we have that Xo ⊆ X and Yo ∩ X = ∅. We write V ′ := V \ Vo and
X ′ := X \ Xo = X ∩ V ′. Note that X ′ is deterministically closed in G[V ′] and
that G[V ′] contains only deterministic arcs. Moreover, note that the sets Xo,
Yp, Yo, Vo, and V ′, are directly deduced from the choice of Xp, and that for a
given Xp, the set X ′ can be any closed subset of V ′.

We first show that the nodes in Vo are only influenced by effectors in Xo, that
is, for any node v ∈ Vo, it holds that p(v|X) = p(v|Xo). This is clear for v ∈ Xo,
since in this case p(v|X) = p(v|Xo) = 1. Assume now that there is a node x ∈ X ′

with a directed path to v ∈ Yo that does not contain any node from Xo. Two
cases are possible, depending on whether this path is deterministic. If it is, then
since v ∈ cl-1det(Yp), then there exists a deterministic path from x to some u ∈ Yp,
via v. Hence, x ∈ cl-1det(Yp) = Yo, yielding a contradiction. Assume now that the
path from x to v has a probabilistic arc and write u → u′ for the first such
arc. Hence, x ∈ cl-1det(u) and u ∈ Vp. Since we assumed that the path does not
contain any node from Xo, we have u /∈ Xp, and therefore u ∈ Yp. Again, we
have x ∈ cl-1det(Yp), yielding a contradiction.

Hence, the nodes in Vo are not influenced by the nodes in X ′. Now consider
nodes in V ′. Note that we have p(v|X) = 1 for v ∈ X ′ and p(v|X) = p(v|Xo)
for v ∈ V ′ \ X ′, since G[V ′] is deterministic and X ′ is deterministically closed.

Overall, CA(v,X) = CA(v,Xo) for all v ∈ V \ X ′. The total cost of solution
X can now be written as

CA(G,X) =
∑

v∈V \X′
CA(v,Xo) +

∑

v∈X′
CA(v,X)

=
∑

v∈V

CA(v,Xo) −
∑

v∈X′
(CA(v,Xo) − CA(v,X))

= α(Xo) − β(Xo,X
′),
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where

α(Xo) :=
∑

v∈V

CA(v,Xo) and β(Xo,X
′) :=

∑

v∈X′
(CA(v,Xo) − CA(v,X)).

We further define, for all v ∈ V ′, γ(v,Xo) := 1−p(v|Xo) if v ∈ A, and γ(v,Xo) =
p(v|Xo) − 1 if v /∈ A. Note that, for v ∈ X ′, the difference CA(v,Xo) − CA(v,X)
is exactly γ(v,Xo), hence β(Xo,X

′) :=
∑

v∈X′ γ(v,Xo).
The algorithm can now be described directly based on the above formulas.

Specifically, we branch over all subsets Xp ⊆ Vp (note that the number of these
subsets is upper-bounded by 2r). For each such subset Xp ⊆ Vp, we can compute
Xo and Yo in linear time because this involves propagation only through deter-
ministic arcs (outgoing for Xo and ingoing for Yo). Then, for each node v ∈ V ,
we compute p(v|Xo) using Theorem 2 in O(2r · n(n + m)) time. This yields the
values α(Xo) and γ(v,Xo) for each v ∈ V ′. The closed subset X ′ of V ′ maximiz-
ing β(Xo,X

′) is then computed as the solution of Maximum Weight Closure

on G[V ′] (which is solved by a maximum flow computation in O(n3) time), where
the weight of any v ∈ V ′ is γ(v,Xo). Finally, we return the set Xo ∪ X ′ that
yields the minimum value for α(Xo) − β(Xo,X

′). 
�

4.3 Special Case: Influence Maximization

In this section, we consider the special case of Effectors, called Influence

Maximization, where all nodes are targets (A = V ). Note that in this case the
variant with unlimited budget and the parameterization by the number of target
nodes are irrelevant.

In the influence maximization case, on deterministic instances, one should
intuitively choose effectors among the “sources” of the influence graph, that is,
nodes without incoming arcs (or among strongly connected components without
incoming arcs). Moreover, the budget b bounds the number of sources that can
be selected, and the cost c bounds the number of sources that can be left
out. In the following theorem, we prove that deterministic Effectors remains
intractable even if either one of these parameters is small, but, on the contrary,
having b + c as a parameter yields fixed-parameter tractability in the determin-
istic case. We mention that the first statement is proven by a reduction from
the W[2]-hard Set Cover problem, while the second statement is proven by a
reduction from the W[1]-hard Independent Set problem.

Theorem 6. The following holds.

1. Effectors, parameterized by the maximum number b of effectors, is W[2]-
hard, even if G is a deterministic (r = 0) DAG and all nodes are target nodes
(A = V ).

2. Effectors, parameterized by the cost c, is W[1]-hard, even if G is a deter-
ministic (r = 0) DAG and all nodes are target nodes (A = V ).

3. If r = 0 and A = V , then Effectors can be solved in O(
(
b+c
b

)·(n+m)) time.
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Treewidth as a Parameter. As Effectors is in general not polynomial-time
solvable (unless P = NP (Theorem 4)), but polynomial-time solvable on trees,
it is natural to consider the treewidth of the underlying undirected graph as
a parameter. Indeed, treewidth is a well-known concept in algorithmic graph
theory. Informally, treewidth measures how “tree-like” a graph is—trees have
treewidth one. We note that for deterministic influence graphs (r = 0) under
the influence maximization model (A = V ), Effectors corresponds to a spe-
cial case of a related problem, namely Target Set Selection (with constant
thresholds), for which fixed-parameter tractability for the parameter treewidth is
already known [3]. It is basically straightforward—but tedious and technical—to
extend this algorithm to the case where some nodes are non-targets (A � V ). We
conjecture that, for influence graphs with r > 0 probabilistic arcs, the problem
is still fixed-parameter tractable for the combined parameter treewidth and r.
The most challenging open question is whether Effectors is fixed-parameter
tractable when parameterized by the treewidth, even with an unbounded number
of probabilistic arcs.

Results in Contradiction with Lappas et al. [10]. The following two claims
from the literature are contradicted by the results presented in this paper.

According to Lappas et al. [10, Lemma 1], in the Influence Maximization

case with c = 0, Effectors is NP-complete. The reduction is incorrect: it uses
a target node � which influences all other vertices with probability 1 (in at most
two steps). It suffices to select � as an effector in order to activate all vertices,
so such instances always have a trivial solution (X = {�}), and the reduction
collapses. On the contrary, we prove in Lemma 1 that all instances with c = 0
can be solved in linear time.

According to the discussion of Lappas et al. [10] following their Corollary 1,
there exists a polynomial-time algorithm for Effectors with deterministic
instances (with r = 0). Note that the selection model corresponds to our own
model in the case of Influence Maximization. However, the given algorithm
is flawed: it does not consider the influence between different strongly connected
components. Indeed, as we prove in Theorem 6, finding effectors under the deter-
ministic model is NP-hard, even in the case of Influence Maximization.

5 Conclusion

We leave several challenges for future research. First, it remains to (dis)prove that
Conjecture 1 also holds for arbitrary directed graphs. Further, we have made some
unproven claims about (fixed-parameter) tractability when restricting Effec-

tors to directed graphs whose underlying graphs have bounded treewidth. Two
more general directions could be to extend our results concerning the parameter
“degree of randomness” to other probabilistic diffusion models or to make the con-
sidered probabilistic information-propagation problems more tractable by devel-
oping simpler (and better to analyze) “linearized models”—the non-linearity in
computing the activation probabilities of nodes appears to be an important cause
for computational hardness.
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