
Streaming Algorithms for Smallest
Intersecting Ball of Disjoint Balls

Wanbin Son(B) and Peyman Afshani

MADALGO, Department of Computer Science, Aarhus University, Aarhus, Denmark
{wson,peyman}@cs.au.dk

Abstract. In this paper, we propose streaming algorithms for approxi-
mating the smallest intersecting ball of a set of disjoint balls in R

d. This
problem is a generalization of the 1-center problem, one of the most fun-
damental problems in computational geometry. We consider the single-
pass streaming model; only one-pass over the input stream is allowed and
a limited amount of information can be stored in memory. We introduce
three approximation algorithms: one is an algorithm for the problem in
arbitrarily dimensions, but in the other two we assume d is a constant.
The first algorithm guarantees a (2+

√
2+ε∗)-factor approximation using

O(d2) space and O(d) update time where ε∗ is an arbitrarily small posi-
tive constant. The second algorithm guarantees an approximation factor
3 using O(1) space and O(1) update time (assuming constant d). The
third one is a (1 + ε)-approximation algorithm that uses O(1/εd) space
and O(1/ε(d−1)/2) amortized update time. They are the first approxima-
tion algorithms for the problem, and also the first results in the streaming
model.

1 Introduction

Given a set D of n pairwise interior-disjoint balls in R
d, n > d, we consider the

problem of finding a center that minimizes the maximum distance between the
center and a ball in D. The distance between a point p and a ball b centered at c of
radius r is defined by dist(p, b) = max {0, |pc| − r} where |·| is a distance between
two points. The problem can be also formulated as finding the smallest ball that
intersects all the input balls, and hence we call it “the smallest intersecting ball of
disjoint balls (SIBB) problem”. Observe that if the input balls are points, which
we call “the smallest enclosing ball of points (SEBP) problem”, then we have
an instance of the 1-center problem. The 1-center problem is a fundamental
problem in computational geometry, specially in the area of facility location
problems [1]. So in our problem we model facilities that can be “relocated”
up to a fixed distance. Finally, as an additional motivation, we can view each
ball as an uncertain point [2] and thus a solution for the SIBB problem would
imply a lower bound for the 1-center problem in a set of uncertain points.

MADALGO—Center for Massive Data Algorithmics, a center of the Danish National
Research Foundation.

c© Springer International Publishing Switzerland 2015
R. Jain et al. (Eds.): TAMC 2015, LNCS 9076, pp. 189–199, 2015.
DOI: 10.1007/978-3-319-17142-5 17

190 W. Son and P. Afshani

Fig. 1. Three input balls b1 b2 and b3, and the smallest ball B that intersects b1 and b2.

Several properties of the SIBB problem are same as those of the SEBP
problem. Both problems are LP-type problems with combinatorial dimension
d + 1 [3], so the problem can be solved by a generic algorithm for an LP-type
problem in the static setting. Because of the similarity between the SEBP prob-
lem and the SIBB problem, few studies [1,2,4] consider the SIBB problem.

In this paper, we are interested in the problem in the single-pass streaming
model ; only one-pass over the input stream is allowed and only a limited amount
of information can be stored. The streaming model is attractive both in theory
and in practice due to massive increase in the volume of data over the last
decades, a trend that is most likely to continue. We assume that the memory
size is much smaller than the size of input data in the streaming model, so it
is important to develop an algorithm in which the space complexity does not
depend on the size of input data.

In the streaming model, the similarities between the SIBB and SEBP prob-
lems break down as it turns out that a set of balls is much more difficult to process
than a set of points. For example, let us consider a factor 1.5-approximation algo-
rithm for the SEBP problem [5] which works as follows: For the first two input
points, the algorithm computes the smallest enclosing ball B for them. For each
next input point pi, the algorithm updates B to be the smallest ball that contains
B and pi. For the SEBP problem, the algorithm gives the correct approximation
factor. The obvious extension of this algorithm to the SIBB problem would be as
follows: For the first two input balls b1 and b2, compute the smallest intersecting
ball B for them. For each next input ball bi, compute the smallest ball that con-
tains B and intersects bi. This algorithm gives a solution that intersects all the
input balls, but it does not guarantee any approximation factor. In fact, as Fig. 1
shows, the approximation factor could be arbitrarily large: the first two input balls
are b1 and b2, and B is the smallest intersecting ball for them. The third input ball
on the stream is b3 and the smallest ball that contains B and intersects b3 can be
arbitrarily larger than the optimal solution if b3 is located far way from B. The
reason why the algorithm does not work properly is that B does not “keep” enough
information about b1 and b2. Because of similar reasons, the other approximation
algorithms [5–7] for the SEBP problem also do not work for the SIBB problem.

Previous work in the static setting. Matoušek et al. [3] showed that the small-
est intersecting ball of convex objects problem is an LP-type problem, so it
can be solved in O(n) time in fixed dimensions. Löffler and Kreveld [2] con-
sidered the smallest intersecting ball of balls problem as the 1-center problem
for imprecise points. They mentioned that the problem is an LP-type problem.

Streaming Algorithms for Smallest Intersecting Ball of Disjoint Balls 191

Mordukhovich et al. [1] described sufficient conditions for the existence and
uniqueness of a solution for the problem. In the plane, Ahn et al. [4] proposed
an algorithm to compute the smallest two congruent disks that intersect all the
input disks in O(n2 log4 n log log n) time.

For the SEBP problem, it is known that the problem is an LP-type prob-
lem, so it can be solved by an LP-type framework in linear time in fixed constant
dimensions [3]. While the LP-type framework gives an exact solution, it is not
attractive when d may be large because a hidden constant in the time complexity
of the LP-type framework has exponential dependency on d. In high dimensions,
Bâdoiu and Clarkson [8] presented a (1+ ε)-approximation algorithm that com-
putes a solution in O(nd/ε + (1/ε)5) time.

The k-center problem is NP-hard if k is a part of input [9], so studies have
been focused on the problem for small k [10,11] or developing approximation
algorithms [12,13].

Previous work on data streams. To the best of our knowledge, our work contains
the first approximation algorithms for the SIBB problem, and also the first
results in the streaming model.

The SEBP problem, however, has been studied extensively in the streaming
model. Zarrabi-Zadeh and Chan [5] showed a 1.5 approximation algorithm which
uses the minimum amount of storage. Agarwal and Sharathkumar [6] presented
a ((1 +

√
3)/2 + ε)-approximation algorithm using O(d/ε3 log (1/ε)) space, and

Chan and Pathak [7] proved that the algorithm has approximation factor 1.22.
Agarwal and Sharathkumar [6] also showed that any algorithm in the single-
pass stream model that uses space polynomially bounded in d cannot achieve
an approximation factor less than (1 +

√
2)/2 > 1.207. In fixed dimensions, a

(1 + ε)-approximation algorithm can be derived using O(1/ε(d−1)/2) space and
O(1/ε(d−1)/2) update time [7]. For the k-center problem, several approximation
algorithms [14–16] also have been proposed.

Our results. We describe a (2+
√

2+ε∗)-approximation algorithm that uses O(d2)
space and O(d) update time for arbitrary dimension d where ε∗ is an arbitrarily
small positive constant. After that we present two approximation algorithms for
fixed constant dimension d. The first approximation algorithm guarantees a 3-
approximation using O(1) space and O(1) update time, and the next one guaran-
tees a (1+ε)-approximation using O(1/εd) space and O(1/ε(d−1)/2) update time.
One may think the last two approximation algorithms have the same complexity

Table 1. Results for the smallest intersecting ball of disjoint balls problem over the
single-pass streaming model. O∗(x) denotes O(x) amortized time, and ε∗ denotes an
arbitrarily small positive constant.

Dimension d Factor Space Update time

Arbitrary dim. d (2 +
√

2 + ε∗) O(d2) O(d)

Constant dim. d 3 O(1) O(1)

(1 + ε) O(1/εd) O∗(1/ε(d−1)/2)

192 W. Son and P. Afshani

for ε = 2, but the 3-approximation algorithm only uses space polynomial in d,
so it is more valuable than the (1+ε)-approximation algorithm in the streaming
model. Table 1 shows a summary of our results.

2 Preliminaries

Let D be a set of n pairwise interior-disjoint balls in R
d. The balls in D arrive

one by one over the single-pass stream. They are labeled in order, so bi is a ball
in D that has arrived at the i-th step, that is, D = {b1, b2,, bn}.

Let b(c, r) denote a ball centered at c of radius r, and let c(b) and r(b) denote
the center and the radius of a ball b, respectively. We denote B∗ the optimal
solution, and c∗ and r∗ denote c(B∗) and r(B∗), respectively.

The distance between any two points p and q is denoted by |pq|, and
the distance between any two balls b and b′ is denoted by dist(b, b′) =
max {|c(b)c(b′)| − (r(b) + r(b′)), 0}. We use dist(p, b) to denote the distance
between a point p and a ball b, that is,
max {|pc(b)| − r(b), 0}.

Our goal is to approximate the smallest ball B∗ that intersects all the input
balls.

3 (2 +
√
2 + ε∗)-Approximation Algorithm in Any

Dimensions d

We introduce an algorithm that guarantees (2 +
√

2 + ε∗)-approximation factor
for any d where ε∗ is an arbitrarily small positive constant. It is trivial to solve
the problem for d = 1, and the algorithm in Sect. 4 gives a better result for
d = 2, so we assume that d ≥ 3 in this section.

Lemma 1. The radius of d concurrent interior-disjoint balls is at most
√
d√

2(d−1)
r

where r is the radius of the smallest enclosing ball of the centers of the d balls.

Proof. Let us consider d points in a ball b with radius r. To maximize the distance
of the closest pair of the points, they should satisfy the following conditions.

– they should lie on the boundary of the ball,
– the distances between all the pairs should be same, and
– the hyper-plane h defined by them should contain c(b).

The above imply that they are vertices of a (d − 1)-dimensional regular simplex
on h. The side length of a (d−1)-dimensional regular simplex is 2

√
d√

2(d−1)
r where

r is the radius of the circumscribed ball of it. Therefore the lemma holds. ��

We can derive the following lemma from Lemma 1. Let cd =
√

2(d−1)
√
d+d

d−2 .

Streaming Algorithms for Smallest Intersecting Ball of Disjoint Balls 193

Fig. 2. The two input balls b1 and b2, B∗ (the gray ball), and one of our solution B1

(the dashed ball).

Lemma 2. There are at most d− 1 input balls such that radius of each of them
is greater than cdr

∗.

Proof. Assume to the contrary that there are d input balls such that radii of
all of them are cdr

∗ + ε∗ where ε∗ is an arbitrarily small positive constant.
Their centers should lie in b(c∗, (1 + cd)r∗ + ε∗) by the problem definition. Let
r = (1 + cd)r∗ + ε∗, then for d ≥ 3

√
d

√
2(d − 1)

r = cdr
∗ +

√
d

√
2(d − 1)

ε∗ < cdr
∗ + ε∗

By Lemma 1, at least one pair of the balls should intersect each other, a contra-
diction. ��
We propose a simple approximation algorithm by using Lemma2 as follows. We
keep the first d input balls, and then find the smallest ball bmin among them. We
set the center of our solution to c(bmin), and then expand radius of our solution
whenever a new input ball b arrives that does not intersect our solution.

By Lemma 2, r(bmin) is at most cdr
∗, so our solution guarantees an approxi-

mation factor 2+ cd. Because
√

2(d − 1)
√

d <
√

2(d− 1)+
√

d − 1 for any d ≥ 3
the following equation holds.

cd =

√
2(d − 1)

√
d + d

d − 2
< (1 +

√
2) +

√
d − 1 +

√
2 + 2

d − 2

We can use the algorithm in Sect. 4 for a small constant dimension, so following
theorem holds.

Theorem 1. For streaming balls in arbitrary dimensions d, there is an algo-
rithm that guarantees a (3+

√
2+ ε∗)-approximation to the smallest intersecting

ball of disjoint balls problem using O(d2) space and O(d) update time where ε∗

is an arbitrarily small positive constant.

194 W. Son and P. Afshani

3.1 Improved Approximation Algorithm

The above algorithm can be improved by maintaining two solutions B1 and B2

as follows. See Fig. 2. We keep the first d + 1 input balls, and then find the
two smallest balls b1 and b2 among them. Let s be the line segment connecting
c(b1) and c(b2) (remember that c(b1) and c(b2) are the centers of b1 and b2,
respectively). We set c(B1) and c(B2) to b1 ∩ s and b2 ∩ s, respectively, and then
expand each of them to make it intersects all the input balls. Our solution B at
the end is the smaller one between B1 and B2.

Let us consider the correctness and the approximation factor of the above
algorithm. Obviously, our solution B intersects all the input balls. As shown in
Fig. 2, one of ∠c(b1)c1c∗ and ∠c(b2)c2c∗ is greater than or equal to π/2. Without
loss of generality, let us assume that ∠c(b1)c1c∗ ≥ π/2. The approximation factor
of our solution is (|c1c∗| + r∗)/r∗, and

|c1c∗|2 ≤ |c(b1)c∗|2 − r(b1)2 ≤ (r∗ + r(b1))2 − r(b1)2 = (r∗)2 + 2r∗r(b1)

by the Pythagorean theorem. By Lemma 2, r(b1) ≤ (1 +
√

2 + ε∗)r∗, so

|c1c∗| ≤
√

1 + 2(1 +
√

2)r∗ + 2ε∗r∗ = (1 +
√

2)r∗ + 2ε∗r∗

which proves the following theorem.

Theorem 2. For streaming balls in arbitrary dimensions d, there is an algo-
rithm that guarantees a (2+

√
2+ ε∗)-approximation to the smallest intersecting

ball of disjoint balls problem using O(d2) space and O(d) update time.

Because of the curse of dimensionality, there can be d + 1 balls each of radius
is slightly smaller than cdr

∗ in high dimensions, and both of ∠c(b1)c1c∗ and
∠c(b2)c2c∗ can be π/2, so the analysis of our algorithm is tight. Next two sections
introduce approximation algorithms in fixed constant dimensions d.

Fig. 3. Proof of Lemma 3

Streaming Algorithms for Smallest Intersecting Ball of Disjoint Balls 195

4 3-Approximation Algorithm in Fixed Dimensions d

In this section, we introduce a 3-approximation algorithm in fixed constant
dimensions d. The following lemma is the heart of the algorithm.

Lemma 3. Any set D′ of d + 2 input balls satisfies the one of the following
conditions.

1. there is a ball b in D′ such that r(b) ≤ r∗, or
2. the smallest ball B+ that intersects all the balls in D′ intersects B∗.

Proof. If Condition 1 holds, then we are done. So let us assume that radius of
each of the balls in D′ is greater than r∗. B+ is determined by at most d + 1
balls, so there is a ball b+ ∈ D′ that does not determine B+.

Let us consider a bisector of b+ and B∗ (See Fig. 3). The bisector subdivides
the space into two parts; all the points in one of them are closer to B∗, and all
the points in the other part are closet to b+. Let S∗ be the subspace defined
by the bisector such that dist(p,B∗) ≤ dist(p, b+) for all points p in S∗. Since
r∗ < r(b+), S∗ is convex.

All the balls in D′ \ {b+} intersect B∗ and do not intersect interior of b+. It
means that dist(c(b), B∗) ≤ dist(c(b), b+) for all b ∈ D′\{b+}, so c(b) is contained
in S∗. B+ is determined by balls in D′ \{b+}, so c(B+) is also contained in S∗.1

By the definition of S∗, dist(c(B+), B∗) ≤ dist(c(B+), b+), and dist(c(B+),
b+) ≤ r(B+) by the definition of B+. Then dist(c(B+), B∗) ≤ r(B+), which
proves the lemma. ��
Our algorithm is as follows. We keep two solutions simultaneously; one is based
on the assumption that Condition 1 in Lemma3 holds, and the other is based on
the assumption that Condition 2 holds. We choose the better one among them
at the end.

The solution based on Condition 1 can be computed as follows. We keep
the first d + 2 input balls, and then find the smallest ball bmin among them.
We set the center of our solution to c(bmin), and then expand the radius of our
solution whenever a new input ball arrives that does not intersect our solution
while keeping the center unchanged.

The solution based on Condition 2 can be computed by the almost same way
except the way to choose the center of our solution. We keep the first d+2 input
balls, and then compute the optimal solution B+ for them. We set the center of
our solution to c(B+). The remaining parts are the same as our solution based
on Condition 1.

Both of our solutions obviously intersects all the input balls. By Lemma3
and the problem definition, one of bmin and B+ has radius r ≤ r∗ and intersects
B∗, which means that the algorithm guarantees a 3-approximate solution. Our
algorithm spends O(1) time [3] to compute B+ and O(1) update time by using
O(1) space.
1 c(B+) is contained in the convex hull of centers of balls in D′ \{b+}, and the convex

hull is contained in S∗.

196 W. Son and P. Afshani

Fig. 4. A tight example of Theorem 3: three input balls b3, b4 and b5, the optimal
solution B∗, and the optimal solution B+ (dashed) for the first five input balls.

Theorem 3. For streaming balls in fixed constant dimensions d, there is an
algorithm that guarantees a 3-approximation to the smallest intersecting ball of
disjoint balls problem using O(1) space and O(1) update time.

Note that the space of our algorithm does not depend on n, and it has polynomial
dependency on d.

Now we show that our approximation factor analysis for the algorithm is
tight by showing an example in R

3 as follow. See Fig. 4. Let us consider the
first five input balls. If they satisfy Condition 1 in Lemma3, it is trivial to show
tightness, so let us assume that they only satisfy Condition 2.

The centers of the first two input balls b1 and b2 are at (0, 0, a) and (0, 0,−a),
respectively, where a is an arbitrarily large positive constant. We assume that
dist(b1, b2) = 2r∗ − ε∗ where ε∗ is an arbitrarily small positive constant, and
they determine B+; c(B+) = (0, 0, 0). The remaining three input balls b3, b4
and b5 are slightly greater than B∗ and their centers are on the xy-plane. Let us
assume that c∗ is also on the xy-plane, so they look like Fig. 4 on the xy-plane.
The figure shows that the five input balls are interior-disjoint, and they do not
satisfy Condition 1. As you see, we can make the intersecting area of B+ and
B∗ as small as possible, which proves the tightness of the analysis.

5 (1+ ε)-Approximation Algorithm in Fixed Dimensions d

We present a (1 + ε)-approximation algorithm in fixed constant dimensions
d in this section. Before we propose our algorithm, we describe a (1 + ε)-
approximation algorithm for the smallest enclosing ball of points problem.

Definition 1. Chan [17] Given a double-argument measure w(P, x) =
maxp,q∈P (p − q) · x that is monotone in its first argument, a subset R ⊂ P
is called an ε-core-set of P over all vectors x ∈ R

d if w(R, x) ≥ (1 − ε)w(P, x)
for all x.

For streaming points in any fixed dimensions d, one can devise an ε-core-set
by maintaining extreme points along a number of different directions using

Streaming Algorithms for Smallest Intersecting Ball of Disjoint Balls 197

O(1/ε(d−1)/2) space and O(1/ε(d−1)/2) update time [17]. A (1 + ε)-approximate
solution can be obtained by increasing the radius of the optimal solution for
points in an ε-core-set by 2εr∗

p where r∗
p is the optimal radius of the smallest

enclosing ball of points problem.
The basic idea of our algorithm is as follows. Let D< be a subset of D such

that r(b) ≤ εr∗ for b ∈ D<, and C< = {c(b) | b ∈ D<}. We also denote by εC<

an ε-core-set of C<, and εD< = {b | c(b) ∈ εC<}. We maintain εD< and all
balls in D \ D<. For εD<, the following lemma hold.

Lemma 4. Let B be a ball that intersects all the balls in εD<, then dist(B, b) ≤
5εr∗ for any b ∈ D< if 0 < ε < 1.

Proof. Let b ∈ D< be a ball that does not intersect B. It means that b /∈ εD<.
By Definition 1, there is a ball b′ ∈ εD< such that (c(b)− c(b′)) ·x ≤ ε ·w(C<, x)
where x = (c(b)−c(B))

|c(b)c(B)| . Let p be a point in B ∩ b′. The following equation proves
the lemma.

dist(B, b) ≤ dist(B, c(b)) ≤ (c(b) − p) · x = (c(b) − c(b′)) · x + (c(b′) − p) · x

≤ ε · w(C<, x) + εr∗ ≤ ε(2r∗ + 2εr∗) + εr∗ ≤ 5εr∗

��
So, we can get a (1 + 5ε)-approximate solution by increasing the radius of the
optimal solution for balls in εD< and D \ D< by 5εr∗ if 0 < ε < 1. We present
a 3-approximation algorithm in Sect. 4, so 0 < 5ε < 2 is enough.

Now, let us consider our algorithm in detail. We partition D into O(εd)
subsets. Let Di be the subset that contains
1/εd� input balls in order from the
((i − 1) ·
1/εd� + 1)-th input ball. We process Di one by one in order.

For D1, we compute the optimal solution B for balls in it. We find balls in D1

each ball b of them satisfies r(b) ≤ εr(B), and then compute εD< by considering
their centers. We insert all the other balls in a set D>. We only maintain εD<

and D> for the next step.
For D2, we compute the optimal solution B for the balls in D2 ∪ D> ∪ εD<.

Similarly, we find balls each of radius smaller than or equal to εr(B) from D2 ∪
D>, and then update εD< by considering them. We delete such balls from D2

and D>, and then update D> by inserting all remaining balls in D2. We repeat
this process for all Di where i is an integer between 1 and O(εd).

At the end of the algorithm, we compute the optimal solution B for balls in
D> ∪ εD<, and then increase the radius of B by 5εr+ where r+ is the radius
from the algorithm in Sect. 4. We use the algorithm in Sect. 4 simultaneously to
compute r+. Finally, we report B as our solution.

The correctness of our algorithm immediately follows from Lemma 4. In each
step, a ball b that satisfies r(b) ≤ εr(B) also guarantees that r(b) ≤ εr∗. At
the end of the algorithm, we maintain εD< and all the balls in D \ D<, so
the optimal solution for them guarantees that r(B) ≤ r∗ and dist(B, b) ≤ 5εr∗

by Lemma 4. The radius r+ guarantees that r∗ ≤ r+ ≤ 3r∗ by Theorem 3, so
5εr∗ ≤ 5εr+ ≤ 15εr∗. Therefore after increasing the radius of B by 5εr+, B

198 W. Son and P. Afshani

intersects all the input balls. The approximation factor is (1 + 15ε), and we can
get a (1 + ε′) approximation algorithm by adjusting a parameter ε′ = 15ε.

Let us analyze the complexity of the algorithm. To maintain εD<, the algo-
rithm uses O(1/ε(d−1)/2) space and O(1/ε(d−1)/2) update time [7]. The size of
D> can be computed by the following lemma.

Lemma 5. For given a ball b of radius r, there are at most O(1/εd) interior-
disjoint balls that intersect b if radius of each of them is greater than or equal to
εr in fixed constant dimensions d.

Proof. We are going to prove the lemma for the interior-disjoint balls each of
radius εr. Obviously, if there are at most O(1/εd) such balls, then the lemma
holds. Let us consider a ball b′ = b(c(b), r + 2εr). A ball that intersects b should
be contained in b′. We can compute the maximum number of the interior-disjoint
balls that are contained in b′ by considering their volumes. The volume of b′ is
Θ((r + 2εr)d), and the volume of a ball of radius εr is Θ((εr)d). The sum of
the volumes of all the balls contained in b′ can not exceed the volume of b′, so
the maximum number of the interior-disjoint balls in b′ is O((r + 2εr)/εr)d) =
O(1/εd), which prove the lemma. ��
By Lemma 5, the size of D> is O(1/εd). In each step the algorithm holds O(1/εd)
balls. We compute the optimal solution for them in each step and it takes linear
time [18], so we spend O(1) amortized time per update.

Theorem 4. For streaming balls in fixed constant dimensions d, there is an
algorithm that guarantees a (1 + ε) approximation to the smallest intersecting
ball of disjoint balls problem using O(1/εd) space and O(1/ε(d−1)/2) amortized
update time.

6 Conclusion

In this paper, we introduced three approximation algorithms for the smallest
intersecting ball of disjoint balls problem. One of them is for the problem in
any arbitrarily dimensions, and the others are for the problem in fixed constant
dimensions. As the exact problem is very difficult (no polynomial algorithm is
known if d is not constant), approximation seems to be the only way forward.

We do not know any better lower bound for the worst-case approximation
ratio than (1 +

√
2)/2 > 1.207 that is a lower bound for the smallest enclosing

ball of points problem in the streaming model if we use space only polynomially
bounded in d [6]. We believe that this lower bound is not tight for our problem
and it can be improved.

A natural extension of our algorithm is to allow the input balls to overlap.
However, this poses a great number of challenges since the size of the optimal
answer could be zero (when a point pierces all the balls). But if we allow over-
lapping with some restrictions it may be possible to solve the problem. Another
interesting question is how to improve our results in static setting. Even in the
static setting, no approximation algorithms are known for the problem except
our results in this paper.

Streaming Algorithms for Smallest Intersecting Ball of Disjoint Balls 199

References

1. Mordukhovich, B., Nam, N., Villalobos, C.: The smallest enclosing ball problem
and the smallest intersecting ball problem: existence and uniqueness of solutions.
Optim. Lett. 7(5), 839–853 (2013)

2. Löffler, M., van Kreveld, M.: Largest bounding box, smallest diameter, and related
problems on imprecise points. Comput. Geom. 43(4), 419–433 (2010)

3. Matoušek, J., Sharir, M., Welzl, E.: A subexponential bound for linear program-
ming. Algorithmica 16(4–5), 498–516 (1996)

4. Ahn, H.K., Kim, S.S., Knauer, C., Schlipf, L., Shin, C.S., Vigneron, A.: Covering
and piercing disks with two centers. Comput. Geom. 46(3), 253–262 (2013)

5. Zarrabi-Zadeh, H., Chan, T.: A simple streaming algorithm for minimum enclosing
balls. In: Proceedings of the 18th Canadian Conference on Computational Geom-
etry, pp. 139–142 (2006)

6. Agarwal, P.K., Sharathkumar, R.: Streaming algorithms for extent problems in
high dimensions. In: Proceedings of the 21st ACM-SIAM Symposium on Discrete
Algorithms, SODA 2010, pp. 1481–1489 (2010)

7. Chan, T.M., Pathak, V.: Streaming and dynamic algorithms for minimum enclosing
balls in high dimensions. Comput. Geom. 47(2, Part B), 240–247 (2014)

8. Bâdoiu, M., Clarkson, K.L.: Smaller core-sets for balls. In: Proceedings of the 14th
ACM-SIAM Symposium on Discrete Algorithms, SODA 2003, pp. 801–802 (2003)

9. Garey, M., Johnson, D.: Computers and Intractability: A Guide to the Theory of
NP-Completeness. W.H. Freeman, New York (1979)

10. Chan, T.: More planar two-center algorithms. Comput. Geom. 13(3), 189–198
(1999)

11. Agarwal, P., Avraham, R., Sharir, M.: The 2-center problem in three dimensions.
In: Proceedings of the 26th ACM Symposium Computational Geometry, pp. 87–96
(2010)

12. Gonzalez, T.: Clustering to minimize the maximum intercluster distance. Theoret.
Comput. Sci. 38, 293–306 (1985)

13. Feder, D., Greene, D.: Optimal algorithms for approximate clustering. In: Proceed-
ings of the 20th ACM Symposium on Theory of Computing, pp. 434–444 (1988)

14. Charikar, M., Chekuri, C., Feder, T., Motwani, R.: Incremental clustering and
dynamic information retrieval. SIAM J. Comput. 33(6), 1417–1440 (2004)

15. Guha, S.: Tight results for clustering and summarizing data streams. In: Proceed-
ings of the 12th International Conference on Database Theory, pp. 268–275 (2009)

16. Matthew McCutchen, R., Khuller, S.: Streaming algorithms for k -center cluster-
ing with outliers and with anonymity. In: Goel, A., Jansen, K., Rolim, J.D.P.,
Rubinfeld, R. (eds.) APPROX and RANDOM 2008. LNCS, vol. 5171, pp. 165–
178. Springer, Heidelberg (2008)

17. Chan, T.M.: Faster core-set constructions and data-stream algorithms in fixed
dimensions. Comput. Geom. 35(12), 20–35 (2006)

18. Chazelle, B., Matoušek, J.: On linear-time deterministic algorithms for optimiza-
tion problems in fixed dimension. J. Algorithms 21(3), 579–597 (1996)

	Streaming Algorithms for Smallest Intersecting Ball of Disjoint Balls
	1 Introduction
	2 Preliminaries
	3 (2+2+*)-Approximation Algorithm in Any Dimensions d
	3.1 Improved Approximation Algorithm

	4 3-Approximation Algorithm in Fixed Dimensions d
	5 =.26em plus.1em minus .1em(1+)-Approximation Algorithm in Fixed Dimensions d
	6 Conclusion
	References

