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Abstract. An orthogonal drawing of a plane graph G is a planar draw-
ing, denoted by D(G), of G such that each vertex of G is drawn as a
point on the plane, and each edge is drawn as a sequence of horizontal
and vertical line segments with no crossings. D(G) is called orthogonally
convex if each of its faces is an orthogonally convex polygon P . (Namely,
for any horizontal or vertical line L, the intersection of L and P is a sin-
gle line segment or empty). Recently, Chang et al. [1] gave a necessary
and sufficient condition for a plane graph to have such a drawing.

D(G) is called a star-shaped orthogonal drawing (SSOD) if each of
its faces is a star-shaped polygon P . (Namely there is a point p ∈ P
such that the entire P is visible from p). Every SSOD is an orthogonally
convex drawing, but the reverse is false. SSOD is visually more appealing
than orthogonally convex drawings. In this paper, we show that if G sat-
isfies the same conditions as in [1], it not only has an orthogonally convex
drawing, but also a SSOD, which can be constructed in linear time.

1 Introduction

Among many graph drawing styles, orthogonal drawing has attracted much
attention due to its various applications in circuit schematics, relationship dia-
grams, data flow diagrams etc. [2]. An orthogonal drawing of a plane graph G is
a planar drawing, denoted by D(G), of G such that each vertex of G is drawn
as a point on the plane, and each edge is drawn as a sequence of horizontal and
vertical line segments with no crossings. A bend is a point where an edge changes
its direction. (See Fig. 1 (1) and (2). The point p is a bend).

Rahman et al. [8] gave a necessary and sufficient condition for a plane graph
G of maximum degree 3 to have an orthogonal drawing without bends. A linear
time algorithm to find such a drawing was also presented in [8]. In the drawing
obtained in [8], the faces of D(G) can be of complicated shapes. An orthogonal
polygon P is orthogonally convex if, for any horizontal or vertical line L, the
intersection of L and P is either empty or a single line segment. (Fig. 1 (3)
shows an orthogonally convex polygon. The face marked by F in Fig. 1 (2) is
not orthogonally convex). An orthogonal drawing D(G) is orthogonally convex
if all faces of D(G) are orthogonally convex polygons. The orthogonally convex
drawings are more visually appealing than arbitrary orthogonal drawings.
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Fig. 1. (1) A plane graph G; (2) An orthogonal drawing of G; (3) An orthogonally
convex polygon; (4) A star-shaped orthogonal polygon.

Chang et al. [1] gave a necessary and sufficient condition (which strengthens
the conditions in [8]) for a plane graph G of maximum degree 3 to have an
orthogonally convex drawing without bends. A linear time algorithm to find
such a drawing was also obtained in [1].

An orthogonal polygon P is called star-shaped if there exists a point p in
P such that the entire polygon P is visible from p. (See Fig. 1 (4)). It is easy
to see that any star-shaped orthogonal polygon is always orthogonally convex.
But the reverse is not true. An orthogonal drawing D(G) is called a star-shaped
orthogonal drawing (SSOD) if every inner face of D(G) is a star-shaped orthog-
onal polygon. The star-shaped orthogonal drawings are more visually appealing
than orthogonally convex drawings. In this paper, we show that if G satisfies the
same conditions as in [1], then G has a SSOD without bends. In addition, such
a drawing can be constructed in linear time.

To the best knowledge of the authors, SSOD is a new drawing style. Although
star-shaped drawings have been studied before [5], the polygons in their drawings
are required to be star-shaped but not orthogonal. In [7], the problem of covering
orthogonal polygons by star-shaped orthogonal polygons is studied.

The paper is organized as follows. In Sect. 2, we present the definitions and
preliminary results. Section 3 describes a special rectangular dual needed by our
algorithm. In Sect. 4, we present our SSOD algorithm. Section 5 concludes the
paper.

2 Preliminaries

Let G = (V,E) be a graph with n vertices. The degree of a vertex v is the
number of neighbors of v in G. A vertex of degree 2 is called a 2-vertex. G is
called a d-graph if the maximum degree of vertices of G is ≤ d. A planar graph
is a graph G that can be drawn on the plane without edge crossings. A plane
graph is a planar graph with a fixed plane embedding. For the rest of this paper,
as in [1,8], G always denotes a biconnected plane 3-graph.

The embedding of G divides the plane into a set of connected regions called
faces. The unbounded face of G is called the exterior face. Other faces are called
interior faces. The contour of a face is the cycle formed by the vertices and edges
on the boundary of the face. The contour of the exterior face of G is denoted by
Co(G). If a vertex a is on the contour of a face f , we say f is incident to a.

A cycle C of G with k edges is called a k-cycle. A triangle is a 3-cycle. G
is called internally triangulated if all of its interior faces are triangles. A cycle
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C divides the plane into its interior and exterior regions. A separating cycle of
G is a cycle C such that there are vertices in both its interior and exterior.
A separating cycle may be contained in other separating cycles. A separating
cycle C is called maximal if it’s not contained in other separating cycles.

Let D(G) be an orthogonal drawing of G without bends. Each cycle C of
G is drawn as an orthogonal polygon D(C) in D(G). Let a be a vertex of C.
We will also use a to denote the point in D(C) that corresponds to a. A vertex
a of D(C) is called a corner of D(C) if the interior angle of D(C) at a is 90◦

or 270◦. A corner with 90◦ (270◦, respectively) interior angle is called a convex
(concave, respectively) corner. For an orthogonal drawing D(G) without bends,
any concave corner a of D(G) must correspond to a 2-vertex in G.

In the definition of the orthogonal drawing of G, the exterior face Co(G) is
not necessarily drawn as a rectangle. However, the algorithm Bi-Orthogonal-
Draw in [8] (which finds an orthogonal drawing of G) produces an orthogonal
drawing such that Co(G) is actually a rectangle. The first step of algorithm Bi-
Orthogonal-Draw arbitrarily selects four degree-2 vertices on Co(G) as the
four corners of the exterior rectangle of the drawing. Since the drawing in [1] is
produced by a modified version of the algorithm Bi-Orthogonal-Draw, this is
also true for the drawing in [1]. Thus, without loss of generality, we assume the
input to our problem is a plane graph H with four specified degree-2 vertices
a, b, c, d on Co(H) in clockwise order. Our goal is to produce an orthogonal
drawing D(G) of G such that Co(H) is drawn as a rectangle with a, b, c, d as the
northwest, northeast, southeast and southwest corner of D(H), respectively.

To simplify the presentation, we construct a graph G from H (Fig. 2 (1)):

1. Add eight new vertices a′′, a′, b′′, b′, c′′, c′, d′′, d′ in the exterior face of G; con-
nect them into a clockwise cycle;

2. Add four new edges (a, a′), (b, b′), (c, c′), (d, d′).

Clearly, H has an orthogonal drawing with no bends (with four corners
a, b, c, d) if and only if G has an orthogonal drawing with no bends (with four
corners a′′, b′′, c′′, d′′, see Fig. 2 (2)). Note that G satisfies the following proper-
ties:

Property 1.

– G is a biconnected plane 3-graph; On the exterior face Co(G), there are four
degree-2 vertices and four degree-3 vertices; the degree-2 and degree-3 vertices
alternate on Co(G);

– The four degree-2 vertices on Co(G) are specified as the northwest, northeast,
southeast, southwest vertices.

In the rest of the paper, without loss of generality, we always assume G
satisfies Property 1. Let C be a cycle of G. A leg of C is an edge e that is in the
exterior of C and has exactly one vertex on C. The vertex of e that is on C is
called a leg vertex of C. C is a k-legged cycle if it has exactly k legs. The k leg
vertices divide C into k sub-paths. Each sub-path is called a contour path of C.
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Fig. 2. (1) The construction of G from H; (2) drawings of H and G; (3) and (4)
Conditions in Theorem 1; (5) Conditions in Theorem 2.

Theorem 1 [8]. LetG be a plane graph that satisfies the conditions in Property 1.
Then G has an orthogonal drawing without bends if and only if the following two
conditions hold: (1) Every 3-legged cycle C has at least one 2-vertex and (2) Every
2-legged cycle C has at least two 2-vertices.

Figure 2 (3) shows a 3-legged cycle C = {a, b, c, d} and its orthogonal drawing.
Figure 2 (4) shows a 2-legged cycle C = {a, b, c, d} and its orthogonal drawing.

Theorem 2 [1]. LetG be a plane graph that satisfies the conditions in Property 1.
Then G has an orthogonally convex drawing without bends if and only if the follow-
ing two conditions hold: (1) Every 3-legged cycle C has at least one 2-vertex and
(2) Every 2-legged cycle C has at least two 2-vertices, at least one on each of its
two contour paths.

Figure 2 (5) shows a 2-legged cycle C = {a, b, c, d} and an orthogonal drawing
of C (b and d are two 2-vertices). Note that, in Fig. 2 (4), the 2-legged cycle
C satisfies the condition 2 in Theorem1, but not the condition 2 in Theorem2.
Hence there exists no orthogonally convex drawing: In any drawing, the face
outside of C (marked by F ) cannot be orthogonally convex. In Sect. 4, we will
show that if G satisfies the conditions in Theorem 2, then G has a SSOD without
bends.

Let G∗ = (V ∗, E∗) be the dual graph of G. To avoid confusion, the members
of V ∗ are called nodes. Each node in V ∗ corresponds to an interior face f of G,
and two nodes in V ∗ are adjacent to each other if and only if their corresponding
faces in G share an edge as common boundary. Note that G∗ is an internally
triangulated plane graph and the exterior face of G∗ has four nodes. A rectangular
dual of such a graph G∗ is a rectangle R divided into smaller rectangles such
that the following hold:

– No four smaller rectangles meet at the same point.
– Each smaller rectangle corresponds to a node of G∗.
– Two nodes of G∗ are adjacent in G∗ if and only if their corresponding small

rectangles share a line segment as their common boundary.

See Fig. 3 (a) for an example. It’s easy to see that a rectangular dual R of G∗

is an orthogonal drawing D(G) of the original graph G, and each face of D(G) is
a rectangle. Not every internally triangulated plane graph G∗ has a rectangular
dual. The following theorem characterizes such graphs.
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Fig. 3. (a) A rectangular dual of the graph shown in (b); (b) an REL R = {T1, T2};
(c) the subgraph consisting of edges in T1 and the 4 exterior edges oriented from vS to
vN ; (d) the subgraph consisting of edges in T2 and the 4 exterior edges oriented from
vW to vE (Color figure online).

Theorem 3 [6]. A plane graph G∗ has a rectangular dual with four rectangles
on its boundary if and only if: (1) Every interior face of G∗ is a triangle and
the exterior face of G∗ is a quadrangle; and (2) G∗ has no separating triangles.

G is called a proper triangular plane (PTP) graph if it satisfies the two conditions
in Theorem 3. Our algorithm heavily depends on the following concept:

Definition 1. A regular edge labeling REL R = {T1, T2} of a PTP graph G∗

is a partition of the interior edges of G∗ into two subsets T1, T2 of directed edges
such that the following conditions hold:

1. For each interior node v, the edges incident to v appear in clockwise order
around v as follows: a set of edges in T1 leaving v; a set of edges in T2 leaving
v; a set of edges in T1 entering v; a set of edges in T2 entering v. (All four
sets are not empty.)

2. Let vN , vE , vS , vW be the four exterior nodes of G∗ in clockwise order. All
interior edges incident to vN are in T1 entering vN . All interior edges incident
to vE are in T2 entering vE. All interior edges incident to vS are in T1 leaving
vS. All interior edges incident to vW are in T2 leaving vW .

Figure 3 (b) shows an example of REL of a PTP graph. The red solid lines are
edges in T1. The green dashed lines are edges in T2.

Theorem 4 [3,4]. Every PTP graph G∗ has an REL which can be constructed
in linear time. From an REL of G∗, a rectangular dual of G∗ can be constructed
in linear time.

3 A Special Rectangular Dual

A PTP graph G∗ may have many different RELs. From the same REL of G∗, we
may obtain different rectangular duals. In this section, we describe a rectangular
dual of G∗ with special properties, which is needed by our SSOD construction.

Lemma 1. Any PTP graph G∗ has a rectangular dual R such that the following
properties hold for any node u in G∗.
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1. Let v1 → u be the first clockwise T1 edge entering u and u → v2 the first
clockwise T1 edge leaving u. Then there exists a vertical stripe in R that
intersects rv1 , ru, rv2 .

2. Let w1 → u be the first clockwise T2 edge entering u and u → w2 the first
clockwise T2 edge leaving u. Then there exists a horizontal stripe in R that
intersects rw1 , ru, rw2 .

The proof is omitted due to space limitation.

4 Star-Shaped Orthogonal Convex Drawing

Let G be a plane graph that satisfies the conditions in Theorem 2. In this section,
we describe how to find a SSOD without bends for G.

Let v be a 2-vertex in G with two neighbors u,w. The operation contracting
v is defined as follows: delete v and replace the two edges (u, v) and (v, w) by
a single edge (u,w). First we modify G as follows. For every 3-legged cycle C
in G with more than one 2-vertex on C, we arbitrarily choose one 2-vertex and
contract every other 2-vertices on C. For every 2-legged cycle C in G with more
than two 2-vertices on C, we arbitrarily choose one 2-vertex on each contour
path of C and contract every other 2-vertices on C. After this modification, the
resulting graph H has the following properties:

Property 2.

– Each 3-legged cycle C of H has exactly one 2-vertex on C.
– Each 2-legged cycle C of H has exactly one 2-vertex on each of the two contour

paths of C.

After we construct a SSOD D(H) of H, we can obtain a SSOD D(G) of G
as follows: Consider any 2-vertex v that was contracted from G. Let u,w be the
two neighbors of v in G. In the drawing D(H), the edge (u,w) is drawn as a
line segment L. We simply draw v in the middle of L. After doing this for every
contracted vertex v, we get a SSOD D(G) for G. Thus, without loss of generality,
we assume G satisfies the conditions in Property 2 from now on.

Let G∗ be the dual graph of G. So G∗ has exactly four nodes on its exterior
face. Each 2-vertex of G corresponds to a pair of parallel edges in G∗. We only
keep one of them in G∗. These edges in G∗ are called marked edges.

Note that every 3-legged cycle C in G corresponds to a separating triangle
C∗ in G∗, and every 2-legged cycle C in G corresponds to a separating 2-cycle
C∗ in G∗. A 3-legged cycle C is shown in Fig. 4 (1). The edges in G are drawn as
dashed lines, the edges in G∗ are drawn as solid lines. The nodes in G∗ are drawn
as empty cycles. g is a 2-vertex in G. It corresponds to two parallel edges (w, x)
in G∗. We keep only one of them in G∗ and (w, x) is a marked edge. Figure 4 (2)
shows a 2-legged cycle and its corresponding separating 2-cycle in G∗.

We first outline the main ideas of our algorithm. Basically, we want to con-
struct a rectangular dual R of G∗ which will be the “skeleton” of the drawing
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Fig. 4. (1) A 3-legged cycle C = {a, b, c, d, e, f, g, h} and the dual separating triangle
C∗ = {u, v, x}; (2) A 2-legged cycle C = {a, b, c, d, e, f, g} and the dual separating
2-cycle C∗ = {x, y}. (3) The drawing of the graph in (1).

D(G). However, because G∗ has separating 2-cycles and 3-cycles, it is not a PTP
graph and hence has no rectangular dual. We have to modify G∗ to get a PTP
graph G∗′ as follows. For each separating 2-cycle or 3-cycle C∗ in G∗ incident
to a node x, we perform a node split operation on x as follows: This operation
“splits” x into two nodes and “destroys” C∗. After all separating 2-cycles and
3-cycles in G∗ are destroyed, the resulting graph G∗′ is a PTP graph. Each node
x in G∗ either corresponds to a node in G∗′ (if x is not split); or a set of nodes
in G∗′ (since there may be multiple separating cycles incident to x, we may have
to split x multiple times). We then find an REL R′ of G∗′ and construct a
rectangular dual D(G∗′) of G∗′ by Lemma 1. D(G∗′) is a “skeleton” of a SSOD
D(G) of G. Each face f of D(G) corresponds to a node x in G∗, which either
corresponds to a single rectangle in D(G∗′) (if x is not split), or an orthogonal
polygon F that is the union of several rectangles in D(G∗′) (each rectangle cor-
responds to a split node of x). Figure 4 (3) illustrates the drawing D(G) for the
graph G in Fig. 4 (1) by using this process. We split the node x into two nodes
x1 and x2 in order to destroy the separating triangle C∗ = {u, v, x}. In Fig. 4
(3), each rectangle corresponds to a node in G∗′. The union of the two rectangles
marked by x1 and x2 corresponds to the node x. The drawing in Fig. 4 (3) is
an orthogonal drawing of the graph G in Fig. 4 (1). Note the location of the
2-vertex g in D(G).

4.1 Node Split Operation

Since we want D(G) to be a SSOD of G, we must make sure each face F in
D(G) is star-shaped. This is done by carefully constructing the REL R′ so that
certain properties are satisfied (to be defined later). Next we describe the details
of our algorithm. Let G∗

1 be the graph obtained from G∗ as follows:

– For each maximal separating triangle C∗, delete all interior nodes of C∗.
– For each maximal separating 2-cycle C∗, delete all interior nodes of C∗, and

replace the two edges of C∗ by a single edge. We call these edges the merged
2-cycle edges.



144 X. He and D. He

Clearly G∗
1 is a PTP graph. By Theorem 4, G∗

1 has an REL R1 = {T1, T2}.
We now need to add the deleted nodes back into G∗

1. We process the separating
cycles of G∗ one by one. Consider a maximal separating triangle C∗ in G∗. Let
G∗(C∗) denote the induced subgraph of G∗ consisting of the nodes on and in the
interior of C∗. Let G∗

1 ∪ G∗(C∗) be the graph obtained by adding the interior
nodes of C∗ back into G∗

1. We want to construct an REL for G∗
1 ∪ G∗(C∗).

However, G∗
1 ∪ G∗(C∗) is not a PTP graph because C∗ is a separating triangle.

We must modify G∗
1 ∪ G∗(C∗) so that C∗ is not a separating triangle in it.

Let C be the 3-legged cycle in G corresponding to C∗. By Property 2, there
is exactly one 2-vertex a in G on C. The vertex a corresponds to a marked edge
e∗
a in G∗. e∗

a must be incident to a node on C∗. Let x be this node. We say the
separating triangle C∗ is assigned to x. (In Fig. 4 (1), the marked edge e∗ = (x,w)
in G∗ corresponds to the 2-vertex g in G. e∗ is incident to the node x. So the
separating triangle C∗ = {u, v, x} is assigned to x). The node split operation at
x with respect to two specified edges (x, yi) and (x, yj) is illustrated in Fig. 5.

y
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Fig. 5. Node split operation. (a) Before split; (b) After split.

Consider a separating triangle C∗ assigned to x. After splitting x into two
nodes, C∗ becomes a quadrangle. Then we can add back the deleted interior
nodes of C∗. Let e∗

1, e∗
2 and e∗

3 be the three edges of C∗. Two of them, say e∗
1

and e∗
2, are incident to x. Depending on the pattern of these two edges in R1,

there are eight cases (see Fig. 6). If both e∗
1 and e∗

2 are T1 edges entering x, we
call it the case south. If e∗

1 is a T2 edge entering x and e∗
2 is a T1 edge entering

x, we call it the case southwest. The other six cases are shown in Fig. 6.
For example, consider the case south. We split x with respect to two edges:

(z, x) is the marked edge in G∗ that is in the interior of C∗; and (x, y) is a
T1 edge in the exterior of C∗ leaving x (we will specify how to pick the edge
(x, y) later). In Fig. 6, the left figure for the case south shows the edge pattern
of C∗ before the node split operation. The right figure shows the edge pattern
of C∗ after the node split operation. In Fig. 6, a blue dotted circle indicates the
component inside C∗ that was deleted. The blue dotted arrow (z, x) indicates
the marked edge inside C∗.

Note that when looking from outside of C∗, the patterns of the involved
edges are identical before and after the node split operation. After the node
split operation, x is split into two nodes x1 and x2. Each of the two edges (z, x)
and (x, y) is split into two edges. C∗ becomes a quadrangle with four exterior
nodes x1, x2, u, v in clockwise order. We recursively construct an REL R(C∗)
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Fig. 6. Cases of node split operation (Color figure online).

for G∗(C∗) with x1, x2, u, v as the north, east, south and west node respectively.
Now we put the nodes and the edges in the interior of the subgraph G∗(C∗) back
into G∗

1, together with the edge pattern specified in R(C∗). It is easy to see that
after these operations, we get a valid REL of the graph G∗

1 ∪ G∗(C∗).
The other cases are similar as shown in Fig. 6. For each of the eight cases,

we get a valid REL of the graph G∗
1 ∪ G∗(C∗) after the node split operation.

Now consider a separating 2-cycle C∗ in G∗. We want to add the interior
nodes of C∗ back into G∗

1. C∗ corresponds to a merged 2-cycle edge e∗ = (x, y)
for some nodes x and y in G∗

1. Let C be the 2-legged cycle in G corresponding to
C∗. By Property 2, C has two 2-vertices, a and b, one on each of its two contour
paths. a and b correspond to two marked edges e∗

a and e∗
b in G∗. One of them,

say e∗
a, is incident to the node x. The other (e∗

b) is incident to the node y. We
say e∗ is assigned to both x and y. Or equivalently, we say the separating 2-cycle
C∗ is assigned to both x and y. (In Fig. 4 (2), the edges (x, v) and (y, w) are two
marked edges in G∗. They are incident to x and y, respectively. So the separating
2-cycle C∗ = {x, y} is assigned to both x and y). The processing of C∗ is similar
to a separating triangle. The only difference is that we need to split both x and y.
Depending on the pattern of e∗ = (x, y) in R1, there are four cases. For example,
if e∗ = y → x is in T1, then we split x according to the case south, and split y
according to the case north. (See Fig. 6 (i), case 2-cycle). After performing these
two node split operations, C∗ becomes a quadrangle with four exterior nodes
x1, x2, y2, y1 in clockwise order. We recursively construct an REL R(C∗) for
G∗(C∗) with x1, x2, y2, y1 as the north, east, south and west nodes respectively.
Putting R1 and R(C∗) together, we get a valid REL of G∗

1 ∪ G∗(C∗).
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4.2 The Edge Pattern Around a Node

Although we can process the separating cycles of G∗ in arbitrary order to add
all deleted nodes back into G∗

1, doing so does not guarantee a SSOD of G at the
end. Consider a node x in G∗

1. Let C be the set of all separating cycles of G∗

assigned to x. If C contains several separating cycles, x must be split multiple
times in order to destroy all separating cycles in C. To make sure the union
of the rectangles corresponding to these split nodes constitutes a star-shaped
orthogonal polygon, we must split the node x carefully as described below.

Figure 7 (1) shows the general pattern of the edges in G∗
1 around x with

respect to the REL R1 = {T1, T2}. (In Fig. 7 (1), a blue dotted circle indicates
the component inside a separating triangle C∗ assigned to x. The blue dotted
arrow indicates the marked edge inside C∗. A thick line indicates a merged 2-
cycle edge assigned to x.) We partition C into four subsets (some subsets may
be empty):

– CS = {C∗ ∈ C | C∗ is a case south or southwest separating cycle}.
Let mS = |CS |. Denote the separating cycles in CS by C∗

si (1 ≤ i ≤ mS).
– CE = {C∗ ∈ C | C∗ is a case east or southeast separating cycle} .

Let mE = |CE |. Denote the separating cycles in CE by C∗
ei (1 ≤ i ≤ mE).

– CN = {C∗ ∈ C | C∗ is a case north or northeast separating cycle}.
Let mN = |CN |. Denote the separating cycles in CN by C∗

ni (1 ≤ i ≤ mN ).
– CW = {C∗ ∈ C | C∗ is a case west or northwest separating cycle}.

Let mS = |CS |. Denote the separating cycles in CS by C∗
wi (1 ≤ i ≤ mW ).

We create a subgraph around x as follows (Fig. 7 (1) and (2)):

– Replace x by a new node x0 and create a cycle K around x0. K contains
four corner nodes xsw, xse, xne, xnw. The edge xsw → x0 is in T2. The edge
xse → x0 is in T1. The edge x0 → xne is in T2. The edge x0 → xnw is in T1.

– Between xsw and xse, K has a sub-path KS containing max{1,mS} edges.
All edges in KS are in T2 directed counterclockwise. The nodes on KS are
named as xsi (1 ≤ i ≤ mS − 1) counterclockwise. For 1 ≤ i < mS , the edge
xsi → x0 is in T1. For 1 ≤ i ≤ mS , the edge (xs(i−1), xsi) is used to destroy
the separating cycle C∗

si. Namely, (xs(i−1), xsi) is an edge of the quadrangle
obtained from C∗

si. Here xs0 = xsw and xsmS
= xse.

– The other sides of K are similar.

When some of CS , CE , CN , CW are empty, they are treated as a special case.
For example, when CW = ∅, KW just contains one T1 edge xsw → xnw. Then we
split the edge (w1, x) into two edges (w1, xsw) and (w1, xnw). (See Fig. 7 (2)).

Note that, for each separating 2-cycle, both end nodes of e∗ are split. For
example, for the separating 2-cycle C∗

s3 represented by e∗ = (s3, x), C∗
s3 becomes

a quadrangle with nodes xs2, xse, s
′
3, s3 (s′

3 is a split node from s3).
This construction deals with the most general case. If some of the sets

CS , CE , CN , CW are empty, the construction can be simplified.
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Fig. 7. (1) The edge pattern around a node x; (2) The subgraph created for x; (3) the
orthogonal drawing of the subgraph in (2).

Figure 7 (3) shows an orthogonal drawing D of the nodes in the subgraph
shown in Fig. 7 (2). Let rx be the union of the rectangle x0 and all rectangles xαi

(α ∈ {s, e, n, w} and 1 ≤ i ≤ mα). This orthogonal polygon rx is the face in the
drawing D(G) corresponding to the node x in G∗

1. In Fig. 7 (3), rx is outlined by
the thick line segments. A shaded rectangle indicates the region to draw interior
nodes in a separating cycle C∗

αi. Look at C∗
s2. The node a2 is in the interior of

C∗
s2. The edge (a2, x) is a marked edge in G∗, and it corresponds to a 2-vertex

in G. The northeast corner of the rectangle a2 in Fig. 7 (3) is this 2-vertex.

Lemma 2. For any node x in G∗
1, the orthogonal polygon rx is star-shaped.

Proof. rx is obtained by adding the rectangles xαi (α ∈ {s, e, n, w} and 1 ≤ i ≤
mα) to the rectangle x0. Let PS be the lower envelop of rx. PS consists of the
lower boundary of the rectangles xs0, xs1, . . . , xsmS−1, xsmS

(where xs0 = xsw

and xsmS
= xse). For 1 ≤ i ≤ mS , there is a marked edge (ai, x) in the interior

of the separating cycle C∗
si. Note that ai → xs(i−1) is a T1 edge and ai → xsi is a

T2 edge. So the rectangle xai
must touch the lower side of the rectangle xs(i−1)

and touch the left side of the rectangle xsi. So the lower side of xsi must be
below the lower side of xs(i−1). Since this is true for any 1 ≤ i ≤ mS , the lower
envelop PS of rx must be a downward staircase-like poly-line, with the lower
side of xse as its lowest horizontal segment.

Similarly, we can show that the upper envelop PN of rx must be an upward
staircase-like poly-line (from right to left, namely from xne to xnw) with
the upper side of xnw as the highest horizontal segment. Because xse → x0

is the first clockwise T1 edge entering x0 and x0 → xnw is the first clockwise
T1 edge leaving x0, by Lemma 1, there is a vertical stripe Lv in the drawing D
that intersects xse, x0, xnw. Any point p in the region x0 ∩ Lv can see the entire
lower envelop PS and the entire upper envelop PN . (See Fig. 7 (3)).
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Similarly, we can show the left envelop PW of rx is a staircase-like poly-line
(from the left side of xnw to the left side of xsw), with the left side of xsw as the
leftmost vertical segment. The right envelop PE of rx is a staircase-like poly-line
(from the right side of xse to the right side of xne), with the right side of xne

as the rightmost vertical segment. Because xsw → x0 the first clockwise T2 edge
entering x0 and x0 → xne is the first clockwise T2 edge leaving x0, by Lemma 1,
there is a horizontal stripe Lh in the drawing D that intersects xsw, x0, xne. Any
point p in the region x0 ∩ Lh can see the entire left envelop PW and the entire
right envelop PE . (See Fig. 7 (3)).

Pick any point p in the region x0 ∩ Lv ∩ Lh, then the entire polygon rx is
visible from p. �

4.3 Algorithm

Algorithm SSOD-Draw:
Input: A graph G that satisfies the conditions in Theorem 2 and Property 2.

1. Construct the dual graph G∗ of G.
2. Construct the graph G∗

1, by deleting all nodes in the interior of maximal
separating cycles in G∗.

3. Construct a REL R1 of G∗
1.

4. By using the procedure described above, perform node split operation for all
nodes x with at least one maximal separating cycle C∗ assigned to it. When
C∗ is destroyed, make recursive call to construct a REL R(C∗) for G∗(C∗).
Let G∗′ be the PTP graph obtained from G∗

1 by adding all deleted nodes back
into G∗

1. Let R′ be the REL of G∗′ obtained in this process.
5. Construct a rectangular dual R′ of G∗′ by using R′ as in Lemma 1.
6. Let D(G) be the orthogonal drawing of G obtained from R′ as above.

By Lemma 2, for any node x in G∗
1, the orthogonal polygon rx corresponding

to x is star-shaped. Any node y not in G∗
1 is in the interior of a maximal sep-

arating cycle C∗. The orthogonal polygon ry for y in D(G) is contained in the
drawing for G∗(C∗). Our argument can be recursively applied to the drawing
of G∗(C∗) to show ry is a star-shaped orthogonal polygon. Hence D(G) is a
SSOD of G. All steps in Algorithm SSOD-Draw can be done in linear time by
Theorem 4 and basic algorithmic techniques for planar graphs. In summary:

Theorem 5. Let G be a graph that satisfies the conditions in Theorem2. Then
G has a SSOD drawing, which can be constructed in linear time.

5 Conclusion

In this paper, we strengthen the result in [1]. We show that if G satisfies the same
conditions as in [1], it not only has an orthogonally convex drawing, but also a
stronger star-shaped orthogonal drawing. The method we use is quite different
from the methods used in [1,8]. It will be interesting to see if this method can
be used to solve other orthogonal drawing problems.
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