
On the Power of Parity Queries in Boolean
Decision Trees

Raghav Kulkarni1, Youming Qiao1(B), and Xiaoming Sun2

1 Centre for Quantum Technologies,
The National University of Singapore, Singapore, Singapore

{kulraghav86,jimmyqiao86}@gmail.com
2 Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China

sunxiaoming@ict.ac.cn

Abstract. In an influential paper, Kushilevitz andMansour (1993) intro-
duced a natural extension of Boolean decision trees called parity decision
tree (PDT) where one may query the sum modulo 2, i.e., the parity, of an
arbitrary subset of variables. Although originally introduced in the con-
text of learning, parity decision trees have recently regained interest in
the context of communication complexity (cf. Shi and Zhang 2010) and
property testing (cf. Bhrushundi, Chakraborty, and Kulkarni 2013). In
this paper, we investigate the power of parity queries. In particular, we
show that the parity queries can be replaced by ordinary ones at the cost
of the total influence aka average sensitivity per query. Our simulation is
tight as demonstrated by the parity function.

At the heart of our result lies a qualitative extension of the result of
O’Donnell, Saks, Schramme, and Servedio (2005) titled: Every decision
tree has an influential variable. Recently Jain and Zhang (2011) obtained
an alternate proof of the same. Our main contribution in this paper is
a simple but surprising observation that the query elimination method
of Jain and Zhang can indeed be adapted to eliminate, seemingly much
more powerful, parity queries. Moreover, we extend our result to linear
queries for Boolean valued functions over arbitrary finite fields.

1 Introduction

The decision tree model [8], perhaps due to its simplicity and fundamental
nature has been extensively studied over decades, yet remains a fascinating
source of some of the outstanding open questions. In the first part of this
paper we focus on decision trees for Boolean functions, i.e., functions of the

Raghav Kulkarni—Research at the Centre for Quantum Technologies is funded by
the Singapore Ministry of Education and the National Research Foundation.
Xiaoming Sun—Part of this work was done while the author was visiting the Centre
for Quantum Techologies, National University of Singapore. He is supported in part
by the National Natural Science Foundation of China Grant 61170062, 61222202,
61433014 and the China National Program for support of Top-notch Young Profes-
sionals.

c© Springer International Publishing Switzerland 2015
R. Jain et al. (Eds.): TAMC 2015, LNCS 9076, pp. 99–109, 2015.
DOI: 10.1007/978-3-319-17142-5 10

100 R. Kulkarni et al.

form f : {0, 1}n → {0, 1}. In later section, we extend our results for decision
trees over any finite field, i.e., for functions of the form F

n
q → {0, 1}. A deter-

ministic decision tree Df for f takes x = (x1, . . . , xn) as an input and deter-
mines the value of f(x1, . . . , xn) using queries of the form “is xi = 1?”. Let
C(Df , x) denote the cost of the computation, i.e., the number of queries made
by Df on input x. The deterministic decision tree complexity of f is defined as
D(f) = minDf

maxx C(Df , x).
Variants of decision tree model are fundamental for several reasons including

their connection to other models such as communication complexity, their usabil-
ity in analyzing more complicated models such as circuits, their mathematical
elegance and richness, and finally the notoriety of some simple yet fascinating
open questions about them such as the Evasiveness Conjecture [3,14,15,19,22]
that have caught the imagination of generations of researchers over decades. In
this paper we study a variant of decision trees called parity decision tree (PDT)
and its extension over finite fields, which we call linear decision tree (LDT).

Motivation for Studying PDTs and LDTs
A parity decision tree may query “is

∑
i∈S xi ≡ 1 (mod 2)?” for an arbitrary

subset S ⊆ [n] = {1, 2, . . . , n}. We call such queries parity queries. For a PDT Pf

for f, let C(Pf , x) denote the number of parity queries made by Pf on input x.
The parity decision tree complexity of f is D⊕(f) = minPf

maxx C(Pf , x). Note
that D⊕(f) ≤ D(f) as “is xi = 1?” can be treated as a parity query.

The PDTs were introduced by Kushilevitz and Mansour [17] in the context of
learning Boolean functions by estimating their Fourier coefficients. Several other
models such as circuits and branching programs have been also been analysed
in the past after augmenting their power by allowing counting operations.

In spite of being combinatorially rich and beautiful model, the PDT some-
how remained dormant until recently where it was brought back into light in
an entirely different context, namely the communication complexity of XOR
functions [23,31]. Shi and Zhang [31] and Montanaro and Osborne [23] have
observed that the deterministic communication complexity CC(f⊕) of comput-
ing f(x ⊕ y), when x and y are distributed between the two parties, is upper
bounded by D⊕(f). The importance for communication complexity comes from
the conjecture [23,31] that for some positive constant c, every Boolean func-
tion f satisfies D⊕(f) = O((log ||f̂ ||0)c); where ||f̂ ||0 is the sparsity (number of
non-zero Fourier coefficients) of f. Settling this conjecture in affirmative would
confirm the famous Log-rank Conjecture [24] in the important special case of
XOR functions. Recently Tsang et al. [36] confirm it for functions with constant
degree over F2 and Kulkarni and Santha [18] confirm it for AC0 functions.

Very recently, Bhrushundi, Chakraborty, and Kulkarni [4] connected parity
decision trees to property testing of linear and quadratic functions. Their app-
roach for instance can potentially be used to solve a long-standing open question
of closing the gap for k-linearity by analysing the randomized PDT complexity of
the function Ek that evaluates to 1 iff the number of 1s in the input is exactly k.
Recently PDTs were analysed further in several papers including [18,32,34,36]
and many more to come.

On the Power of Parity Queries in Boolean Decision Trees 101

Similar to PDTs, the LDTs are closely related to the Fourier spectrum of
functions over Zp. In recent paper by Shpilka, Tal, and Volk [32] the authors
derive various structural results of the Fourier spectrum by analysing LDTs.
Given the evidence of abundance of connections to other models and mathemat-
ics, and given the rich combintaorial structure of PDTs and LDTs, we believe
that they deserve a systematic and independent study at this point. Our paper
is a step in this direction.

Motivation for Studying Influence Lower Bounds
Proving lower bounds on the influence of Boolean functions has had a long his-
tory in Theoretical Computer Science. It is nicely summerized in the paper [29],
we restate a part from that for illustration. Influence lower bounds have been
crucial part of several fundamental results such as threshold phenomenon, lower
bound on randomized query complexity of graph properties, quantum and clas-
sical equivalence etc. Ben-Or and Linial [6], in their 1985 paper on collective coin
flipping, observe that the maximum influence Infmax(f) ≥ 1/n for any balanced
function and conjectured Θ(log n/n) bound. The seminal paper by Kahn, Kalai,
Linial [16] confirmed the conjecture via an application of the Hypercontractive
Inequality. This result was subsequently generalized by Talagrand [35] in order
to show sharp threshold behaviour for monotone functions.

In their celebrated paper Every decision tree has an influential variable,
O’Donnell, Saks, Schramme, and Servedio [29] showed a crucial inequality lower
bounding the maximum influence: Infmax(f) ≥ Var(f)/Δ(f), where Δ(f) denotes
the minimum possible average depth of a decision tree for f. This inequal-
ity found application in the lower bounds on randomized query complexity of
monotone graph properties. Homin Lee [20] found a simple inductive proof of
the OSSS result. Recently Jain and Zhang [13] found another simple and con-
ceptually different proof via the method of query elimination, which we use here.

Aaronson and Ambainis [1] study a conjecture lower bounding the maximum
influence of real valued polynomials in terms of their degree. This conjecture,
if true, would imply polynomial equivalence between bounded-error quantum
and classical query complexity. These previous results seems to indicate the
importance of lower bounds on influence in terms of several complexity measures.
In this paper, we present such new lower bounds in terms of PDT and LDT
complexity.

Our Results
Let Dε(f) and D⊕

ε (f) denote the minimum depth of a DT and a PDT (resp.)
computing f correctly on at least 1 − ε fraction of the inputs.

Theorem 1. For any Boolean function f and any ε ≥ 0 :

Infmax(f) ≥ Var(f) − ε

D⊕
ε (f)

.

102 R. Kulkarni et al.

Corollary 1. For any Boolean function f and any ε > 0 :

Dε(f) ≤ 1
ε2

· D⊕(f) · Inf(f).

Corollary 2. If f is computable by a polynomial size constant depth circuit,
i.e., f ∈ AC0, then:1

Dε(f) = Õε(D⊕(f)).

To prove Theorem 1 we use an adaptation of the query elimination method of
Jain and Zhang. Our main observation is that assuming the uniform distribu-
tion on the inputs, one can eliminate seemingly powerful parity queries at the
expense of Infmax(f) error per elimination. Corollary 1 is obtained by analysing
the ‘query the most influential variable’ strategy using our new bound. We extend
Theorem 1 for LDTs over arbitrary fields (see Sect. 4). The Corollary 1 can also
be extended with similar techniques; we omit its simple proof.

Theorem 2. Let q be a prime power. For any f : Fn
q → {0, 1} and any ε ≥ 0 :

Infmax(f) ≥ 1
q − 1

· Var(f) − ε

D
⊕q
ε (f)

.

Further we explore the power of PDTs for monotone functions and show:

Theorem 3. For any monotone Boolean function f and any ε > 0 :

Dε(f) ≤ 3
ε2

· D⊕(f)3/2.

To prove Theorem 3 we show an upper bound on L1 norm of Fourier spectrum in
terms of PDT depth, which in turn gives an upper bound on sum of linear Fourier
coefficients restricted to monotone functions. We adapt the proof of the same
for ordinary decision trees by O’Donnell and Servedio. Our main observation is
that under the uniform distribution on inputs their proof can be extended for
PDTs as well. Our result naturally raises the following question:

Question 1. Is it true that for every monotone Boolean function f and for every
ε > 0 we have:

Dε(f) = Õε(D⊕(f))?

It is also interesting to see if our results can be strengthened to D⊕
ε rather than

just D⊕ as zero-error and bounded error complexities may behave differently.
We believe that our observations, although might appear simple, are indeed

surprising. They seem to make a crucial qualitative point, that under the uni-
form distribution, the method of lower bounding the ordinary (randomized)
decision tree complexity by Var(f)/ Infmax(f) works equally well for seemingly
much more powerful PDTs and LDTs as well. For non-balanced functions the
uniform distribution does not seem to be an optimal choice for maximizing
Var(f)/ Infmax(f) but for balanced functions it does. As an application, finally
we exhibit a gap between randomized PDT complexity and approximate L1,
both of which are relevant for communication complexity of XOR functions.
1 The Oε notation hides a multiplicative constant depending on ε and the Õε notation
hides a further poly-logarithmic multiplicative factor.

On the Power of Parity Queries in Boolean Decision Trees 103

Organization. Section 2 contains preliminaries. Section 3 contains the proof of
Theorem 1. Section 4 contains the proof of Theorem2. Unfortunately, we had to
move the other proofs to appendix and hence omit it from this version due to
space constraint.

2 Preliminaries

Fig. 1. A boolean decision tree

Randomized Decision Trees
A bounded error randomized decision tree Rf is a probability distribution over
all deterministic decision trees such that for every input, the expected error
of the algorithm is bounded by some fixed constant less than 1/2 (say 1/3).
The cost C(Rf , x) is the highest possible number of queries made by Rf on
x, and the bounded error randomized decision tree complexity of f is R(f) =
minRf

maxx C(Rf , x). Similarly one can define bounded error randomized PDT
complexity of f , denoted by R⊕(f). Using Yao’s min-max principle one may
obtain: D1/3(f) ≤ R(f) and D⊕

1/3(f) ≤ R⊕(f). (Fig. 1)

Variance and Influence
Let μp denote the p-biased distribution on the Boolean cube, i.e., each co-
ordinate is independently chosen to be 1 with probability p. The variance of
a Boolean function is Var(f, p) := 4 · Prx←μp

(f(x) = 0)Prx←μp
(f(x) = 1). The

influence of the ith variable under μp is Infi(f, p) := Prx←μp
(f(x) 	= f(x ⊕ ei)).

Let Infmax(f) := maxi Infi(f). The total influence aka average sensitivity of f
is Inf(f, p) :=

∑
i Infi(f, p). In this paper we focus on p = 1/2 case.

Fourier Spectrum, Polynomial Degree, and Sparsity
Let f± : {−1, 1}n → {−1, 1} be represented by the following polynomial with
real coefficients: f±(z1, . . . , zn) =

∑
S⊆[n] f̂(S)

∏
i∈S zi. The above polynomial is

unique and it is called the Fourier expansion of f. The f̂(S) are called the Fourier
coefficients of f. The polynomial degree of f is deg(f) := max{|S| | f̂(S) 	= 0}.

The sparsity of a Boolean function f is ||f̂ ||0 := |{S | f̂(S) 	= 0}|. We know that
deg(f) ≤ D(f), log ||f̂ ||0 ≤ D⊕(f) and log ||f̂ ||0 ≤ deg(f).

104 R. Kulkarni et al.

Representing Decision Trees
We represent a decision tree T as T = (xi, T0, T1) where xi denotes the first
variable queried by T, i.e., xi is the variable at the root of T : if xi = 0 then
T0 is consulted; if xi = 1 then T1 is consulted. A leaf labeled 1 is represented as
(1, ∅, ∅) and the one labeled 0 is represented as (0, ∅, ∅). We represent a parity
decision tree as T = (xS , T0, T1); if

∑
i∈S xi = 0 (mod 2) then consult T0, else

consult T1. A leaf labeled 1 is represented as (1, ∅, ∅) and the one labeled 0 is
represented as (0, ∅, ∅).

The Query Elimination Lemma (Jain and Zhang)
Jain and Zhang prove the following simple yet powerful lemma:

Lemma 1 (Query Elimination Lemma). If T = (xi, T0, T1) is an ordinary
decision tree that computes f correctly on at least 1 − δ fraction of the inputs
then either T0 or T1 computes f correctly on at least 1 − δ − Infi(f) fraction of
the inputs.

In this paper we observe that the above lemma can be adapted for parity decision
trees. This observation is a crucial part of our results.

Overview of the Query Elimination Method
The query elimination method of Jain and Zhang works as follows: Suppose we
have a decision tree of depth Dε(f) that computes f correctly on at least 1 − ε
fraction of the inputs. We repeatedly apply the Query Elimination Lemma to
obtain a decision tree that computes f correctly on at least 1 − ε − Dε(f) ·
Infmax(f) fraction of the inputs without making any single query. Of course,
such (zero-query) decision tree must make error on at least Var(f) fraction of
the inputs. Hence: the error of the zero-query decision tree that we obtained
(ε + Dε(f) · Infmax(f)) can be lower bounded by Var(f). In other words:

Dε(f) ≥ Var(f) − ε

Infmax(f)
.

3 Every PDT Has an Influential Variable

In this section we present the proof of Theorem 1. We start with eliminating
queries in PDTs.

Eliminating Ordinary Queries in PDTs
First we note that Jain and Zhang’s proof of the Query Elimination Lemma
generalizes when Ti are parity decision trees instead of ordinary ones. In other
words, if the first query in a parity decision tree is an ordinary query then one
can remove it at the expense of Infi(f) increase in the error. We formulate this
below.

On the Power of Parity Queries in Boolean Decision Trees 105

Lemma 2. If T = (x{i}, T0, T1) is a parity decision tree that computes f cor-
rectly on at least 1−δ fraction of the inputs then either T0 with every occurrence
of xi hard-wired to 0 or T1 with every occurrence of xi hard-wired to 1 computes
f correctly on at least 1 − δ − Infi(f) fraction of the inputs.

Eliminating Parity Queries in PDTs
Let T be a parity decision tree that computes f correctly on at least 1−δ fraction
of the inputs. Our idea is to convert the parity queries to an ordinary one and
then eliminate the queries at the root of the tree. Let

Lf(x) := f(Lx).

We apply the linear transformation L on the input space F
n
2 and work with Lf

instead of f.

Observation 4. Var(f) = Var(Lf) and D⊕(f) = D⊕(Lf).

Rotatating the PDT T : Without loss of generality, let us assume that the first
parity query in T is the parity of the first k bits, i.e., x1⊕. . .⊕xk (for some k). Let
g(x1, . . . , xn) := f(x1⊕. . .⊕xk, x2, . . . , xn). Note that g = Lf where L is the fol-
lowing invertible linear transformation on the vector space F

n
2 : L(x1, . . . , xn) :=

(x1⊕ . . .⊕xk, x2, . . . , xn). Also note that: f(x1, . . . , xn) = g(x1⊕ . . .⊕xk, x2, . . . ,
xn). Thus by querying x1 ⊕ . . . ⊕ xk, we know the value of the ‘first input bit’
of g. Moreover the influence of the first variable remains unchanged.

Observation 5. Inf1(g) = Inf1(f).

Note however that the influences of the variables x2, . . . , xk might have changed!
A PDT T = (x[k], T0, T1) for f can be easily modified to a PDT LT for

Lf = g. We call the transformation from T to LT as the rotation of T and it is
defined as follows:

L(xS , T0, T1) := (L(xS), L(T0), L(T1)),

(base case) L(0, ∅, ∅) = (0, ∅, ∅),

(base case) L(1, ∅, ∅) = (1, ∅, ∅).

Next we observe that the error is preserved by a rotation.

Observation 6. If T computes f correctly on 1 − δ fraction of the inputs then
LT computes g = Lf correctly on 1 − δ fraction of the inputs.

Moreover: the tree LT has a nice property that the query at the root is not an
arbitrary parity query but in fact an ordinary query, i.e., a variable x1. Hence we
can use Lemma 2 to remove the first query at the expense of Inf1(g) = Inf1(f)
increase in the error. Thus we conclude that:

Proposition 1. If T computes f with error δ then either LT0 or LT1 computes
LF correctly on at least 1 − δ − Infmax(f) fraction of inputs.

106 R. Kulkarni et al.

Rotating the PDT LTi back to Ti:

Observation 7. For the particular L above, L−1 = L.

Suppose that LTi computes Lf correctly on at least 1 − δ − Infmax(f) fraction
of the inputs.

Thus we can rewrite Observation 6 as follows:

Observation 8. If LT computes Lf correctly on 1 − δ fraction of the inputs
then L(LT) computes f = L(Lf) correctly on 1 − δ fraction of the inputs.

Proof of Theorem 1. Since L(LTi) = Ti and since LTi computes Lf correctly
on at least 1 − δ − Infmax(f) fraction of the inputs, Ti computes f with the
same error. Notice that Ti makes one less parity query than T . So we have
eliminated one parity query with an increase in error at most Infmax(f). Now
we can repeat this process starting from a parity tree T of depth D⊕

ε (f) that
makes error on at most ε fraction of the inputs to obtain a zero-query parity
decision tree that makes at most ε+D⊕

ε (f)·Infmax(f) error. The error of any zero-
query parity decision tree must be at least Var(f). This completes the proof of
Theorem 1. ��
Remark 1. OR and AND functions on n variables can be computed with error
probability at most 1/n on every input, using O(log n) parity queries chosen uni-
formly at random. Thus our Theorem1 can be extended (up to a multiplicative
poly-logarithmic factor) to the decision trees that use AND, OR, and PARITY
queries. More generally, one can extend it to so called 1+ queries (see [10])
involving parities of (say polynomially many) arbitrary subsets.

4 Every Linear Decision Tree Has an Influential Variable

Let q be a prime power and Fq be the finite field with q elements. In this section
we consider computing functions from F

n
q to {0, 1} with the model called linear

decision trees, denoted by ⊕q-DT. It is a computation tree, with each internal
nodel v labeled by a linear form � : F

n
q → Fq. v has q children, whose edges

connecting to v are labeled by elements from Fq. The branching at node v is
based on the evaluation of � on the input vector. It is clear that when q = 2, this
model becomes the parity decision tree model for computing boolean functions.
We use D

⊕q
ε (f) to denote the smallest ⊕q-DT for computing f : Fn

q → {0, 1}
with error ε.

We will focus on the setting of uniform distribution over F
n
q . For f : Fn

q →
{0, 1}, its variance is defined the same as Var(f) = 4 ·Pr(f(x) = 0)Pr(f(x) = 1).
If x and y in F

n
q differ only at the kth position, k ∈ [n], we denote this by x ∼k y.

The influence of the kth variable is Infk(f) := Prx∼ky(f(x) 	= f(y)). Our main
result is the following analogue of Theorem1.

Theorem 2, restated. For any function f : Fn
q → {0, 1} and any ε ≥ 0 :

Infmax(f) ≥ 1
q − 1

· Var(f) − ε

D
⊕q
ε (f)

.

On the Power of Parity Queries in Boolean Decision Trees 107

We now prove Theorem 2. We shall adapt the proof of the query elimination
lemma to ⊕q-DT as follows.

Suppose T is a ⊕q-DT for f : Fn
q → {0, 1}. Let � : Fn

q → {0, 1} be the first
query made by T , and �(x1, . . . , xn) = α1x1 + α2x2 + · · · + αnxn. As � is not
trivial, there exists some k ∈ [n] s.t. αk 	= 0. Fix such a k ∈ [n]. For i ∈ Fq,
let Ti be the ⊕q-DT to be executed when �(x) = i.

For every Ti, i ∈ Fq, construct a new ⊕q-DT T ′
i , by replacing every occurrence

of xk in Ti with

1
αk

(i − (α1x1 + · · · + αk−1xk−1 + αk+1xk+1 + · · · + αnxn)).

It is clear that T ′
i and Ti are related as follows. Let a = (a1, . . . , an) ∈ F

n
q . Then

T ′
i (a1, . . . , an) = Ti(a1, . . . , ak−1, bk, ak+1, . . . , an), where bk ∈ Fq s.t.

�(a1, . . . , ak−1, bk, ak+1, . . . , an) = i.

For a = (a1, . . . , an) ∈ F
n
q , we use a|�,ik to denote (a1, . . . , ak−1, bk, ak+1, . . . , an) ∈

F
n
q satisfying the above. Then we have T ′

i (a) = Ti(a|�,ik).
As T computes f with error ε, there exists some j ∈ Fq, s.t. when restricting

to {a ∈ F
n
q | �(a) = j}, Tj computes f with error ≤ ε. Fix such Tj , and consider

T ′
j . We claim that T ′

j computes f with error no more that ε + (q − 1) Infk(f).
To see this, for i ∈ Fq, i 	= j, define

A|�,jk (f, i) = Pr
a∈Fn

q ,�(a)=i
(f(a) 	= f(a|�,jk)).

It is obvious that T ′
j computes f with error ≤ ε+1/q ·(∑i∈Fq,i 	=j A|�,jk (f, i)). Now

we verify that 1/q · (∑i∈Fq,i 	=j A|�,jk (f, i)) ≤ (q − 1) Infk(f). Fix a = (a1, . . . , an)
from {a ∈ F

n
q | �(a) = j}. Then the contribution of (a1, . . . , ak−1, ak+1, . . . , an) in

1/q · (∑i∈Fq,i 	=j A|�,jk (f, i)) is 1
q · 1

qn−1 · s, where s ∈ {0, . . . , q − 1} is the number
of field elements b s.t. f(a1, . . . , ak−1, b, ak+1, . . . , an) 	= f(a1, . . . , an). On the
other hand, its contribution in (q − 1) · Infk(f) is (q − 1) · 1

qn−1 · s(q−s)

(q2)
. Finally

note that s
(q−1)q ≤ s(q−s)

(q2)
for q ≥ 2 and s ∈ {0, . . . , q − 1}.

As eliminating the first query introduces an extra error of at most (q−1) Infmax

(f), similar to the argument in proving Theorem1, we have ε + (q − 1)D⊕q (f) ·
Infmax(f) ≥ Var(f), therefore proving that

Infmax(f) ≥ 1
q − 1

· Var(f) − ε

D⊕q (f)
.

Acknowledgements. We thank Rahul Jain, Supartha Poddar, Miklos Santha, and
Avishay Tal for several helpful discussions. We also thank Ben vee Volk for pointing
out that the super-linear separation in [27] works for PDTs as well.

108 R. Kulkarni et al.

References

1. Aaronson, S., Ambainis, A.: The need for structure in quantum speedups. In: ICS
2011, pp. 338–352 (2011)

2. Ada, A., Fawzi, O., Hatami, H.: Spectral norm of symmetric functions. In: Gupta,
A., Jansen, K., Rolim, J., Servedio, R. (eds.) APPROX 2012 and RANDOM 2012.
LNCS, vol. 7408, pp. 338–349. Springer, Heidelberg (2012)

3. Babai, L., Banerjee, A., Kulkarni, R., Naik, V.: Evasiveness and the distribution
of prime numbers. In: STACS 2010, pp. 71-82 (2010)

4. Bhrushundi, A., Chakraborty, S., Kulkarni, R.: Property testing bounds for linear
and quadratic functions via parity decision trees. In: Hirsch, E.A., Kuznetsov,
S.O., Pin, J.É., Vereshchagin, N.K. (eds.) CSR 2014. LNCS, vol. 8476, pp. 97–110.
Springer, Heidelberg (2014). Electronic colloquium on Computational Complexity
(ECCC)

5. Benjamini, I., Kalai, G., Schramm, O.: Noise sensitivity of boolean functions and
its application to percolation. Inst. Hautes Etudes Sci. Publ. Math. 90, 5–43 (1999)

6. Ben- Or, M., Linial, N.: Collective coin flipping. In: Proceedings of the 26th FOCS,
pp. 408–416 (1985)

7. Bollobas, B.: Combinatorics: Set Systems, Hypergraphs, Families Of Vectors And
Combinatorial Probability. Cambridge University Press, New York (1986)

8. Buhrman, H., de Wolf, R.: Complexity measures and decision tree complexity: a
survey. Theor. Comput. Sci. 288(1), 21–43 (2002)

9. Efron, B., Stein, C.: The jackknife estimate of variance. Ann. Stat. 9, 586–596
(1981)

10. Gopalan, P., O’Donnell, R., Servedio, R.A., Shpilka, A., Wimmer, K.: Testing
fourier dimensionality and sparsity. In: Albers, S., Marchetti-Spaccamela, A.,
Matias, Y., Nikoletseas, S., Thomas, W. (eds.) ICALP 2009, Part I. LNCS, vol.
5555, pp. 500–512. Springer, Heidelberg (2009)

11. Hayes, T.P., Kutin, S., van Melkebeek, D.: The quantum black-box complexity of
majority. algorithmica 34(4), 480–501 (2002)

12. Hatami, P., Kulkarni, R., Pankratov, D.: Variations on the sensitivity conjecture.
Theor. Comput. Grad. Surv. 2, 1–27 (2011)

13. Jain, R., Zhang, S.: The influence lower bound via query elimination. Theor. Com-
put. 7(1), 147–153 (2011)

14. Kulkarni, R.: Evasiveness through a circuit lens. In: ITCS 2013 pp. 139–144 (2013)
15. Kulkarni, R.: Gems in decision tree complexity revisited. SIGACT News 44(3),

42–55 (2013)
16. Kahn, J., Kalai, G., Linial, N.: The influence of variables on boolean functions

(extended abstract). In: FOCS 1988, pp. 68–80 (1988)
17. Kushilevitz, E., Mansour, Y.: Learning decision trees using the fourier spectrum.

SIAM J. Comput. 22(6), 1331–1348 (1993)
18. Kulkarni, R., Santha, M.: Query complexity of matroids. In: Spirakis, P.G., Serna,

M. (eds.) CIAC 2013. LNCS, vol. 7878, pp. 300–311. Springer, Heidelberg (2013)
19. Kahn, J., Saks, M.E., Sturtevant, D.: A topological approach to evasiveness. Com-

binatorica 4(4), 297–306 (1984)
20. Lee, H.K.: Decision trees and influence: an inductive proof of the OSSS inequality.

Theor. Comput. 6(1), 81–84 (2010)
21. Linial, N., Mansour, Y., Nisan, N.: Constant depth circuits, fourier transform, and

learnability. J. ACM 40(3), 607–620 (1993)

On the Power of Parity Queries in Boolean Decision Trees 109

22. Lovasz, L., Young, N. E.: Lecture Notes on Evasiveness of Graph Properties
arXiv:cs/020503 (2002)

23. Montanaro, A., Osborne, T.: On the communication complexity of XOR functions.
CoRR abs/0909.3392 (2009)

24. Mehlhorn, K., Schmidt, E.: Las Vegas is better than determinism in VLSI and
distributed computing. In: Proceedings of the 14th STOC, pp. 330–337. ACM
Press, New York (1982)

25. Nisan, N.: CREW PRAMs and decision trees. In: Proceedings of the 21st STOC,
pp. 327–335. ACM Press, New York (1989)

26. Nisan, N., Szegedy, M.: On the degree of boolean functions as real polynomials.
Comput. Complex. 4, 301–313 (1994)

27. Nisan, N., Wigderson, A.: On rank vs. communication complexity. Combinatorica
15(4), 557–565 (1995)

28. O’Donnell, R., Servedio, R.A.: Learning monotone decision trees in polynomial
time. SIAM J. Comput. 37(3), 827–844 (2007)

29. O’Donnell, R., Saks, M.E., Schramm, O., Servedio, R.A.: Every decision tree has
an influential variable. In: FOCS, pp. 31-39 (2005)

30. Sherstov, A.A.: Making polynomials robust to noise. In: STOC 2012, pp. 747–758
(2012)

31. Shi, Y., Zhang, Z.: Communication Complexities of XOR functions CoRR
abs/0808.1762 (2008)

32. Shpilka, A., Tal, A., Volk, B.L.: On the Structure of Boolean Functions with Small
Spectral Norm: arXiv:1304.0371

33. Saks, M.E., Wigderson, A.: Probabilistic boolean decision trees and the complexity
of evaluating game trees. In: FOCS, pp. 29–38 (1986)

34. Zhang, Z., Shi, Y.: On the parity complexity measures of boolean functions. Theor.
Comput. Sci. 411(26–28), 2612–2618 (2010)

35. Talagrand, M.: On russo’s approximate 0-1 law. Ann. Probab. 22(3), 1576–1587
(1994)

36. Tsang, H.Y., Wong, C.H., Xie, N., Zhang, S.: Fourier sparsity, spectral norm, and
the Log-rank conjecture. CoRR abs/1304.1245 (2013) FOCS (2014)

http://arxiv.org/abs/1304.0371

	On the Power of Parity Queries in Boolean Decision Trees
	1 Introduction
	2 Preliminaries
	3 Every PDT Has an Influential Variable
	4 Every Linear Decision Tree Has an Influential Variable
	References

