
Rahul Jain
Sanjay Jain
Frank Stephan (Eds.)

 123

LN
CS

 9
07

6

12th Annual Conference, TAMC 2015
Singapore, May 18–20, 2015
Proceedings

Theory and Applications
of Models of Computation

Lecture Notes in Computer Science 9076

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zürich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7407

http://www.springer.com/series/7407

Rahul Jain • Sanjay Jain
Frank Stephan (Eds.)

Theory and Applications
of Models of Computation
12th Annual Conference, TAMC 2015
Singapore, May 18–20, 2015
Proceedings

123

Editors
Rahul Jain
National University of Singapore
Singapore
Singapore

Sanjay Jain
National University of Singapore
Singapore
Singapore

Frank Stephan
National University of Singapore
Singapore
Singapore

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-17141-8 ISBN 978-3-319-17142-5 (eBook)
DOI 10.1007/978-3-319-17142-5

Library of Congress Control Number: 2015937497

Springer Cham Heidelberg New York Dordrecht London
© Springer International Publishing Switzerland 2015
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

Springer International Publishing AG Switzerland is part of Springer Science+Business Media
(www.springer.com)

Preface

This volume contains the papers presented at TAMC 2015: Theory and Applications of
Models of Computation held during May 18–20, 2015 in Singapore.

There were 78 submissions. Each submission was reviewed by 2–5 (on the average
by 3.1) reviewers. The Program Committee decided to accept 35 papers. We would like
to thank the Program Committee members and their sub reviewers for their hard work
in putting together this program. The program also included 3 invited talks by Lance
Fortnow, Miklos Santha, and Alexandra Shlapentokh.

The conference series TAMC started in the year 2004 and has been held annually
since then. The previous conferences are the following: Beijing China 2004, Kunming
China 2005, Beijing China 2006, Shanghai China 2007, Xian China 2008, Changsha
China 2009, Prague Czech Republic 2010, Tokyo Japan 2011, Beijing China 2012,
Hong Kong China 2013, and Chennai India 2014.

We thank the Steering Committee for their timely advice on various matters. The
Steering Committee comprises Manindra Agrawal, Jin-Yi Cai, Barry Cooper, John
Hopcroft, Angsheng Li, and Zhiyong Liu.

We would also like to thank the local team here in Singapore:
(1) Siew Foong Ho (Local Arrangements Chair) and Pei Pei Teo for Local

Organization.
(2) Yong Ngee Kee and Philip Lim for Registration website.
(3) Several members of the finance and administrative staff of the School of
Computing, National University of Singapore, for taking care of various matters.
We kindly acknowledge the financial support from the School of Computing and the

Centre for Quantum Technologies, National University of Singapore.
We greatly appreciate the help offered by Easychair in handling all matters related to

the conference, right from receiving the submissions to the creation of the proceedings.
Easychair really makes the life of the PC Chairs and the PC very easy! We are also
grateful to Springer for their continuous support and for publishing of the proceedings
of the conference series TAMC.

February 2015 Sanjay Jain
Rahul Jain

Frank Stephan

Organization

Program Committee

Ajith Abraham Machine Intelligence Research Laboratories,
Auburn, Washington, USA

Anthony Bonato Ryerson University, Canada
Yijia Chen Shanghai Jiao Tong University, China
Rodney G. Downey Victoria University of Wellington, New Zealand
Henning Fernau Universität Trier, Germany
Dimitris Fotakis National Technical University of Athens, Greece
T.V. Gopal Anna University Chennai, India
Rahul Jain National University of Singapore, Singapore
Steffen Lempp University of Wisconsin - Madison, USA
Jiamou Liu Auckland University of Technology, New Zealand
Frédéric Magniez Université Paris Diderot, France
Klaus Meer Brandenburgische Technische Universität

Cottbus-Senftenberg, Germany
Mia Minnes University of California, San Diego, USA
Philippe Moser National University of Ireland, Maynooth, Ireland
Mitsunori Ogihara University of Miami, USA
Yota Otachi Japan Advanced Institute of Science

and Technology, Japan
Yicheng Pan Institute of Software, Chinese Academy

of Sciences, China
Pan Peng Technische Universität Dortmund, Germany
Anil Seth Indian Institute of Technology Kanpur, India
Frank Stephan National University of Singapore, Singapore
Chaitanya Swamy University of Waterloo, Canada
Hongan Wang Institute of Software, Chinese Academy of

Sciences, China
Wei Wang Sun Yat-Sen University, Guangzhou, China
Guohua Wu Nanyang Technological University, Singapore
Sun Xiaoming Institute of Computing Technology, Chinese

Academy of Sciences, China
Yitong Yin Nanjing University, China
Mingsheng Ying University of Technology Sydney, Australia
Neal Young University of California, Riverside, USA
Thomas Zeugmann Hokkaido University, Sapporo, Japan
Shengyu Zhang Chinese University of Hong Kong, Hong Kong
Conghua Zhou Jiangsu University, China

Additional Reviewers

Ambainis, Andris
Baartse, Martijn
Bazgan, Cristina
Bei, Xiaohui
Bouyer, Patricia
Bury, Marc
Chan, Timothy M.
Chang, Hong
Chrobak, Marek
Cooper, S. Barry
Damaschke, Peter
Dell, Holger
Dittmann, Christoph
Elberfeld, Michael
Fellows, Michael
Fomin, Fedor
Fournier, Jacques
Gadouleau, Maximilien
Har-Peled, Sariel
Homan, Christopher
Hu, Guangda
Huang, Xiuzhen
Jaggi, Sidharth
Jain, Sanjay
Janssen, Jeannette
Jeffery, Stacey
Kalimullin, Iskander
Kaplan, Marc
Kiyomi, Masashi

Konrad, Christian
Korman, Matias
Kosub, Sven
Krzyzak, Adam
Lauriere, Mathieu
Lemire, Daniel
Lescanne, Pierre
Leupold, Peter
Limaye, Nutan
Lin, Chengyu
Liu, Xingwu
M.S., Ramanujan
Maehara, Takanori
Markham, Damian
Mengel, Stefan
Mestre, Julian
Milis, Ioannis
Mouawad, Amer
Munteanu, Alexander
Nandakumar, Satyadev
Papakonstantinou, Periklis
Pappa, Anna
Penninger, Rainer
Poirier, Antoine
Prouff, Emmanuel
R., Venkatesh
Raman, Rajeev
Rao, Michael
Ravi, S.S.

Rawitz, Dror
Reimann, Jan
Reinhardt, Klaus
Schwiegelshohn, Chris
Schwoon, Stefan
Schöpp, Ulrich
Seki, Shinnosuke
Serre, Olivier
Shen, Yuping
Srinivasan, Venkatesh
Staiger, Ludwig
Strehler, Martin
Toda, Takahisa
Tsang, Hing Yin
Tzoumas, Vasileios
Wang, Haitao
Wang, Yaoyu
Wei, Zhaohui
Wright, John
Xiao, Tao
Youseff, Arman
Zhang, Chihao
Zhang, Jialin
Zhang, Peng
Zhang, Yi
Zhou, Gelin
Zhou, Hong
Zissimopoulos, Vassilis

VIII Organization

Contents

Invited Papers

Hilbert’s Tenth Problem for Subrings of Q and Number Fields
(Extended Abstract) . 3

Alexandra Shlapentokh

Nondeterministic Separations . 10
Lance Fortnow

Quantum and Randomized Query Complexities (Extended Abstract) 18
Miklos Santha

Recursion Theory and Mathematical Logic

Algorithmically Random Functions and Effective Capacities. 23
Douglas Cenzer and Christopher P. Porter

Where Join Preservation Fails in the Bounded Turing Degrees of C.E. Sets 38
Nadine Losert

Structured Frequency Algorithms . 50
Kaspars Balodis, Jānis Iraids, and Rūsiņš Freivalds

Asymptotic Properties of Combinatory Logic . 62
Maciej Bendkowski, Katarzyna Grygiel, and Marek Zaionc

Computational Complexity and Boolean Functions

Some New Consequences of the Hypothesis That P Has Fixed
Polynomial-Size Circuits . 75

Ning Ding

Computational Complexity Studies of Synchronous Boolean Finite
Dynamical Systems . 87

Mitsunori Ogihara and Kei Uchizawa

On the Power of Parity Queries in Boolean Decision Trees 99
Raghav Kulkarni, Youming Qiao, and Xiaoming Sun

Card-Based Protocols for Any Boolean Function. 110
Takuya Nishida, Yu-ichi Hayashi, Takaaki Mizuki, and Hideaki Sone

http://dx.doi.org/10.1007/978-3-319-17142-5_1
http://dx.doi.org/10.1007/978-3-319-17142-5_1
http://dx.doi.org/10.1007/978-3-319-17142-5_1
http://dx.doi.org/10.1007/978-3-319-17142-5_2
http://dx.doi.org/10.1007/978-3-319-17142-5_3
http://dx.doi.org/10.1007/978-3-319-17142-5_4
http://dx.doi.org/10.1007/978-3-319-17142-5_5
http://dx.doi.org/10.1007/978-3-319-17142-5_6
http://dx.doi.org/10.1007/978-3-319-17142-5_7
http://dx.doi.org/10.1007/978-3-319-17142-5_8
http://dx.doi.org/10.1007/978-3-319-17142-5_8
http://dx.doi.org/10.1007/978-3-319-17142-5_9
http://dx.doi.org/10.1007/978-3-319-17142-5_9
http://dx.doi.org/10.1007/978-3-319-17142-5_10
http://dx.doi.org/10.1007/978-3-319-17142-5_11

Size of Sets with Small Sensitivity: A Generalization of Simon’s Lemma . . . 122
Andris Ambainis and Jevgēnijs Vihrovs

Graph Theory

Star Shaped Orthogonal Drawing . 137
Xin He and Dayu He

The Domination Number of On-line Social Networks and Random
Geometric Graphs . 150

Anthony Bonato, Marc Lozier, Dieter Mitsche, Xavier Pérez-Giménez,
and Paweł Prałat

A Linear Time Algorithm for Determining Almost Bipartite Graphs 164
Dayu He and Xin He

The First-Order Contiguity of Sparse Random Graphs
with Prescribed Degrees. 177

Nans Lefebvre

Streaming Algorithms for Smallest Intersecting Ball of Disjoint Balls 189
Wanbin Son and Peyman Afshani

Multi-player Diffusion Games on Graph Classes . 200
Laurent Bulteau, Vincent Froese, and Nimrod Talmon

Reconfiguration of Cliques in a Graph. 212
Takehiro Ito, Hirotaka Ono, and Yota Otachi

The Complexity of Finding Effectors. 224
Laurent Bulteau, Stefan Fafianie, Vincent Froese, Rolf Niedermeier,
and Nimrod Talmon

Common Developments of Three Incongruent Boxes of Area 30 236
Dawei Xu, Takashi Horiyama, Toshihiro Shirakawa, and Ryuhei Uehara

Finding Connected Dense k-Subgraphs . 248
Xujin Chen, Xiaodong Hu, and Changjun Wang

The Complexity of Degree Anonymization by Graph Contractions 260
Sepp Hartung and Nimrod Talmon

An Improved Exact Algorithm for Maximum Induced Matching 272
Mingyu Xiao and Huan Tan

Completion of the Mixed Unit Interval Graphs Hierarchy. 284
Alexandre Talon and Jan Kratochvil

X Contents

http://dx.doi.org/10.1007/978-3-319-17142-5_12
http://dx.doi.org/10.1007/978-3-319-17142-5_13
http://dx.doi.org/10.1007/978-3-319-17142-5_14
http://dx.doi.org/10.1007/978-3-319-17142-5_14
http://dx.doi.org/10.1007/978-3-319-17142-5_15
http://dx.doi.org/10.1007/978-3-319-17142-5_16
http://dx.doi.org/10.1007/978-3-319-17142-5_16
http://dx.doi.org/10.1007/978-3-319-17142-5_17
http://dx.doi.org/10.1007/978-3-319-17142-5_18
http://dx.doi.org/10.1007/978-3-319-17142-5_19
http://dx.doi.org/10.1007/978-3-319-17142-5_20
http://dx.doi.org/10.1007/978-3-319-17142-5_21
http://dx.doi.org/10.1007/978-3-319-17142-5_22
http://dx.doi.org/10.1007/978-3-319-17142-5_22
http://dx.doi.org/10.1007/978-3-319-17142-5_23
http://dx.doi.org/10.1007/978-3-319-17142-5_24
http://dx.doi.org/10.1007/978-3-319-17142-5_25

Bounded Treewidth and Space-Efficient Linear Algebra. 297
Nikhil Balaji and Samir Datta

Quantum Computing

Quantum Game Players Can Have Advantage Without Discord 311
Zhaohui Wei and Shengyu Zhang

Quantum Circuits for the Unitary Permutation Problem 324
Stefano Facchini and Simon Perdrix

Parallelism and Statistics

Algorithms in the Ultra-Wide Word Model . 335
Arash Farzan, Alejandro López-Ortiz, Patrick K. Nicholson,
and Alejandro Salinger

Uniformity of Point Samples in Metric Spaces Using Gap Ratio 347
Arijit Bishnu, Sameer Desai, Arijit Ghosh, Mayank Goswami,
and Subhabrata Paul

On Pure Nash Equilibria in Stochastic Games. 359
Ankush Das, Shankara Narayanan Krishna, Lakshmi Manasa,
Ashutosh Trivedi, and Dominik Wojtczak

Learning, Automata and Probabilistic Models

Learning from Non-iid Data: Fast Rates for the One-vs-All Multiclass
Plug-in Classifiers . 375

Vu Dinh, Lam Si Tung Ho, Nguyen Viet Cuong, Duy Nguyen,
and Binh T. Nguyen

Deletion Operations on Deterministic Families of Automata 388
Joey Eremondi, Oscar H. Ibarra, and Ian McQuillan

ExplicitPRISMSymm: Symmetry Reduction Technique for Explicit Models
in PRISM . 400

Reema Patel, Kevin Patel, and Dhiren Patel

Parameterised Complexity

Kernelization Algorithms for Packing Problems Allowing Overlaps 415
Henning Fernau, Alejandro López-Ortiz, and Jazmín Romero

Parameterized Complexity of Asynchronous Border Minimization 428
Robert Ganian, Martin Kronegger, Andreas Pfandler, and Alexandru Popa

Contents XI

http://dx.doi.org/10.1007/978-3-319-17142-5_26
http://dx.doi.org/10.1007/978-3-319-17142-5_27
http://dx.doi.org/10.1007/978-3-319-17142-5_28
http://dx.doi.org/10.1007/978-3-319-17142-5_29
http://dx.doi.org/10.1007/978-3-319-17142-5_30
http://dx.doi.org/10.1007/978-3-319-17142-5_31
http://dx.doi.org/10.1007/978-3-319-17142-5_32
http://dx.doi.org/10.1007/978-3-319-17142-5_32
http://dx.doi.org/10.1007/978-3-319-17142-5_33
http://dx.doi.org/10.1007/978-3-319-17142-5_34
http://dx.doi.org/10.1007/978-3-319-17142-5_34
http://dx.doi.org/10.1007/978-3-319-17142-5_35
http://dx.doi.org/10.1007/978-3-319-17142-5_36

Parametrized Complexity of Length-Bounded Cuts and Multi-cuts 441
Pavel Dvořák and Dušan Knop

Algorithms and Hardness for Signed Domination . 453
Jin-Yong Lin and Sheung-Hung Poon

Author Index . 465

XII Contents

http://dx.doi.org/10.1007/978-3-319-17142-5_37
http://dx.doi.org/10.1007/978-3-319-17142-5_38

Invited Papers

Hilbert’s Tenth Problem for Subrings of Q
and Number Fields (Extended Abstract)

Alexandra Shlapentokh(B)

Department of Mathematics, East Carolina University,
Greenville, NC 27858, USA
shlapentokha@ecu.edu

http://myweb.ecu.edu/shlapentokha

1 Some History

In 1900 David Hilbert presented a list of questions at an international meeting of
Mathematicians in Paris. The tenth problem on the list asked the following ques-
tion (rephrased here in modern terms): given an arbitrary polynomial equation
in several variables over Z, is there a uniform algorithm to determine whether
such an equation has solutions in Z? This question, became known as Hilbert’s
Tenth Problem, and has been answered negatively in the work of M. Davis,
H. Putnam, J. Robinson and Yu. Matijasevich. (See [3,4,12]).

Since the time when this result was obtained, similar questions have been
raised for other fields and rings. In other words, if R is a computable ring, then,
given an arbitrary polynomial equation in several variables over R, is there a
uniform algorithm to determine whether such an equation has solutions in R?
Arguably, the most prominent open questions in the area are the questions of
decidability of an analog of Hilbert’s Tenth Problem (HTP) for R = Q and R
equal to the ring of integers of an arbitrary number field. In this talk we survey
what is known about the status of Hilbert’s Tenth Problem over subrings of
number fields, including Q to date.

We start our survey with a discussion of HTP for the field of rational numbers.
The first attempts to show that HTP was undecidable over Q involved efforts to
construct an existential (Diophantine) definition of Z over Q in the language of
rings. It is not hard to show that in general any ring of characteristic 0 where Z

is existentially definable as a subset has an undecidable HTP.
Unfortunately, the Diophantine definition plan for Q quickly ran into prob-

lems. In 1992 Barry Mazur formulated a series of conjectures which were to play
an important role in the development of the subject (see [13–15]). One of these
conjectures implied that Z has not Diophantine (existential) definition over Q.
Quite a few years later Jochen Königsmann showed in [11] that a strong version
of Bombieri-Lang conjecture also implies that there is no Diophantine definition
of Z over Q.

A. Shlapentokh—The author has been partially supported by the NSF grant DMS-
1161456.

c© Springer International Publishing Switzerland 2015
R. Jain et al. (Eds.): TAMC 2015, LNCS 9076, pp. 3–9, 2015.
DOI: 10.1007/978-3-319-17142-5 1

4 A. Shlapentokh

Since the plan to construct a Diophantine definition of Z over Q ran into
substantial difficulties, alternative ways were considered for showing that HTP
had no solution over Q. One of the alternative methods required construction
of a Diophantine model of Z, i.e. a map φ : Z −→ Qk such that the graphs of
addition and multiplication over Z are Diophantine. Such a map, if it exists,
maps Diophantine sets to Diophantine sets and one can then show that Q like
Z has undecidable Diophantine sets implying that HTP is undecidable over Q.

An old plan for building a Diophantine model of Z over Q involved elliptic
curves of rank one, using multiples of a point of infinite order to model integers.
Under such a map the graph of addition is clearly Diophantine, but it is not clear
what happens to the graph of multiplication. Unfortunately, it turns out that the
situation with Diophantine models is not any better than with Diophantine defi-
nitions. A theorem of Cornelissen and Zahidi (see [2]) showed that multiplication
of indices of elliptic curve points is probably not existentially definable.

Theorem 1. If Mazur’s conjecture on topology of rational points holds, then
there is no Diophantine model of Z over Q.

At this point two main research directions emerged trying to approach HTP
for Q: investigation of big rings and reduction of the number of universal quan-
tifiers in the first-order definitions of Z over Q. In this talk we will concentrate
on subrings of Q.

2 Big Rings

We start with a definition of the rings in question whose first appearance on the
scene in [27] and [26] dates back to 1994.

Definition 2 (A Ring in Between). Let S be a set of primes of Q. Let OQ,S

be the following subring of Q.
{m

n
: m,n ∈ Z, n �= 0, n is divisible by primes of S only

}

If S = ∅, then OQ,S = Z. If S contains all the primes of Q, then OQ,S = Q.
If S is finite, we call the ring small. If S is infinite, we call the ring big.

Some of these rings have other (canonical) names: the small rings are also
called rings of S -integers, and when S contains all but finitely many primes,
the rings are called semi-local subrings of Q. To measure the “size” of big rings
we use the natural density of prime sets defined below.

Definition 3 (Natural Density). If A is a set of primes, then the natural
density of A is equal to the limit below (if it exists):

lim
X→∞

#{p ∈ A, p ≤ X}
#{p ≤ X}

Hilbert’s Tenth Problem for Subrings of Q 5

It turned out that we already knew everything we needed to know about small
rings from the work of Julia Robinson (see [24]). In particular from her work
on the first-order definability of integers over Q one can deduce the following
theorem and corollaries.

Theorem 4 (Julia Robinson). For every p, the ring Rp = {x ∈ Q|x =
m
n ,m, n ∈ Z, n > 0, p � | n} has a Diophantine definition over Q.

This theorem of Julia Robinson plays a role in many other results. In partic-
ular, we get the following corollary.

Corollary 5. 1. Z has a Diophantine definition over any small subring of Q.
2. HTP is unsolvable over all small subrings of Q.

Over big rings the questions turned out to be far more difficult. In 2003 Bjorn
Poonen in [21] proved the first result on Diophantine undecidability (unsolvabil-
ity of HTP) over a big subring of Q.

Theorem 6. There exist recursive sets of primes T1 and T2, both of natural
density zero and with an empty intersection, such that for any set S of primes
containing T1 and avoiding T2, the following hold:

– Z has a Diophantine model over OQ,S .
– Hilbert’s Tenth Problem is undecidable over OQ,S .

Poonen used elliptic curves to prove his result but the model he constructed
was very different from the one envisioned by the old elliptic curve plan we
described earlier. Poonen modeled integers by approximation. The construction
of the model does start with an elliptic curve of rank one

Poonen’s method was further extended by Eisenträger and Everest in [7], by
Perlega in [18] and finally by Eisenträger, Everest and the author in [8]. The theo-
rem proved in [8] provides a “covering” ofQ by big rings where HTP is undecidable.

Theorem 7 (Eisenträger, Everest, Shlapentokh). For any finite set of
positive computable real numbers (i.e. real numbers which can be approximated by
a computable sequence of rational numbers) r1, . . . , rk such that r1 + . . .+ rk = 1
we can partition the set of all (rational) primes into set P1, . . . ,Pk such that
the natural density of each Pi is ri, each ring OQ,Pi

has a Diophantine model
of Z and therefore HTP is undecidable over each OQ,Pi

.

The author also constructed a model of Z using Diophantine equivalence
classes (a class model of Z) over a big ring using the old idea of trying to make
multiplication of indices Diophantine in [29].

2.1 The Other End of the Spectrum

In this section we would like to describe some work (still in progress) which
approached HTP over big rings from the other end of the spectrum, i.e. from
the point of view of Q.

6 A. Shlapentokh

We convert the question of decidability of HTP of a recursive ring R into a
question of the Turing degree of a subset of Z>0. To that end let {pi(x̄)} be an
effective enumeration of all polynomials over R and let HTP(R) denote the set
of indices corresponding to polynomials having a root in R. Now given DPRM
result we have that HTP(Z) ≡T H, where H is the halting set. Further, any
recursive or computably presentable ring R with a Diophantine model of Z has
HTP(R) ≡T H.

At the same time, by results of Richard Friedberg [10] and Albert Muchnik [17]
we know that there are Turing degrees containing undecidable r.e. sets not as
hard as H, i.e. H is not Turing equivalent to these sets. What if HTP(Q) is one
of these sets? If this were the case, there would be neither an algorithm to solve
HTP over Q nor a Diophantine model of Z over Q. So if HTP(Q) �≡T HTP(Z)
it makes sense to see if there are big subrings R of Q, “infinitely” far away from
Q with HTP(R) ≡T HTP(Q).

In the project still in progress (see [9]) Kirsten Eisenträger, Russell Miller, Jen-
nifer Park, and the author using an effective form of Theorem 4 have constructed
families of computably presentable subrings R of Q with HTP(R) ≡T HTP(Q).
The constructed rings consist of rational numbers where an infinite set of primes is
allowed to divide the denominator, but the complement of this set of primes, that
is the set of primes that are not allowed to divide the denominator is also infi-
nite. Priority method was used to make the set of inverted primes c.e. (and thus
the rings computably presentable). Further, the set of primes which can occur as
divisors of the denominators of elements in the ring can be arranged to have the
lower natural density equal to 0. So we are truly looking at a ring “in the mid-
dle”, “infinitely far away” from both Z and Q. These rings also have the property
that the set of inverted primes, i.e. primes allowed to divide the denominators is
computable from HTP(Q). So if HTP(Q) is decidable, these prime sets are also
decidable and the rings in question are computable subrings of Q (not just com-
putably presentable).

The co-authors have also obtained an analog of Theorem 7, though a weaker
one. More specifically, for any positive integer k, one can partition the set of
all prime numbers into k sets S1, . . . ,SK , each of lower density 0, and con-
struct rings R1, . . . , Rk where the primes allowed to divide the denominators are
precisely S1, . . . ,SK respectively and such that HTP(Ri) ≡T HTP(Q). Unfor-
tunately, these rings are not necessarily computably presentable and we can
only say that each Si is Turing reducible to HTP(Q), so that again if HTP(Q)
is decidable, these prime sets are also decidable and the rings in question are
computable subrings of Q.

Now if we combine the results above with results constructing big rings with
HTP equivalent to the halting problem, then one can conclude that if HTP over
Z is different from HTP over Q, in particular if HTP(Q) is decidable, then we
have an extremely strange picture of tightly intermingled recursive rings inside Q
with different levels of difficulty for HTP. Such a picture seems unlikely, though
of course we cannot rule it out without a proof.

Hilbert’s Tenth Problem for Subrings of Q 7

3 Number Fields

The state of knowledge concerning the rings of integers and HTP is summarized
in the theorem below.

Theorem 8. Z is Diophantine and HTP is unsolvable over the rings of integers
of the following fields:

– Extensions of degree 4 of Q (except for a totally complex extension without a
degree-two subfield), totally real number fields and their extensions of degree 2.
(See [5,6].) Note that these fields include all abelian extensions.

– Number fields with exactly one pair of non-real embeddings (See [19,25].)
– Any number field K such that there exists an elliptic curve E of positive rank

defined over Q with [E(K) : E(Q)] < ∞. (See [20,22,28].)
– Any number field K such that there exists an elliptic curve of rank 1 over K

and an abelian variety over Q keeping its rank over K. (See [1].)

All the gaps in the results are “almost” filled by a theorem proved by B.
Mazur and K. Rubin (see [16]).

Theorem 9. Suppose K/L is a cyclic extension of prime degree of number fields.
If the Shafarevich-Tate Conjecture is true for L, then there is an elliptic curve
E over L with rank(E(L)) = rank(E(K)) = 1. (Here E(K) denote the points on
the elliptic curve with coordinates in K and E(L) is defined analogously with
respect to L.)

From this theorem we can obtain the following corollary.

Corollary 10. If Shafarevich-Tate Conjecture is true for all number fields, then
Z has a Diophantine definition over the ring of integers of any number field and
therefore HTP is undecidable over the ring of integers of any number field.

4 Big Rings Inside Number Fields

As over Q we can define big and small subrings of number fields. If a number
field has an elliptic curve of rank 1 (which would follow if Shafarevich-Tate
Conjecture is true), then there are generalizations of Poonen’s construction and
the complementary subring construction. (See [8,23,29].) At the same time “the
other end of spectrum” results generalize unconditionally.

8 A. Shlapentokh

References

1. Cornelissen, G., Thanases, P., Zahidi, K., Zahidi, K.: Division-ample sets and dio-
phantine problem for rings of integers. J. de Théorie des Nombres Bordeaux 17,
727–735 (2005)

2. Cornelissen, G., Zahidi, K.: Topology of diophantine sets: remarks on Mazur’s
conjectures. In: Denef, J., Lipshitz, L., Pheidas, T., Van Geel, J. (eds.) Hilbert’s
Tenth Problem: Relations with Arithmetic and Algebraic Geometry. Contemporary
Mathematics, pp. 253–260. American Mathematical Society, Rhods Island (2000)

3. Davis, M.: Hilbert’s tenth problem is unsolvable. Am. Math. Monthly 80, 233–269
(1973)

4. Davis, M., Matiyasevich, Y., Robinson, J.: Hilbert’s tenth problem. Diophantine
equations: Positive aspects of a negative solution. In: Proceedings of Symposia in
Pure Mathematics, vol. 28, pp. 323–378. American Mathematical Society (1976)

5. Denef, J.: Hilbert’s tenth problem for quadratic rings. Proc. Am. Math. Soc. 48,
214–220 (1975)

6. Denef, J., Lipshitz, L.: Diophantine sets over some rings of algebraic integers. J.
London Math. Soc. 18(2), 385–391 (1978)

7. Eisenträger, K., Everest, G.: Descent on elliptic curves and Hilbert’s tenth problem.
Proc. Am. Math. Soc. 137(6), 1951–1959 (2009)

8. Eisenträger, K., Everest, G., Shlapentokh, A.: Hilbert’s tenth problem and Mazur’s
conjectures in complementary subrings of number fields. Math. Res. Lett. 18(6),
1141–1162 (2011)

9. Eisenträger, K., Miller, R., Park, J., Shlapentokh, A.: Easy as Q. (work in progress)
10. Friedberg, R.M.: Two recursively enumerable sets of incomparable degrees of

unsolvability. Proc. National Acad. Sci. USA 43, 236–238 (1957)
11. Jochen K.: Defining Z in Q Annals of Mathematics to appear
12. Matiyasevich, Y.V.: Hilbert’s tenth problem. Foundations of Computing Series.

MIT Press, Cambridge (1993). Translated from the 1993 Russian original by the
author, With a foreword by Martin Davis

13. Mazur, B.: The topology of rational points. Exp. Math. 1(1), 35–45 (1992)
14. Mazur, B.: Questions of decidability and undecidability in number theory. J.

Symb.Logic 59(2), 353–371 (1994)
15. Mazur, B.: Galois representations in arithmetic algebraic geometry. In: Scholl, A.J.,

Taylor, R.L. (eds.) Open problems regarding rational points on curves and varieties.
Cambridge University Press, Cambridge (1998)

16. Mazur, B., Rubin, K.: Ranks of twists of elliptic curves and Hilbert’s Tenth Prob-
lem. Inventiones Mathematicae 181, 541–575 (2010)

17. Muchnik, A.A.: On the separability of recursively enumerable sets. Doklady
Akademii Nauk SSSR (N.S.), vol. 109,pp. 29–32 (1956)

18. Perlega, S.: Additional results to a theorem of Eisenträger and Everest. Archiv der
Mathematik (Basel) 97(2), 141–149 (2011)

19. Pheidas, T.: Hilbert’s tenth problem for a class of rings of algebraic integers. Proc.
Am. Math. Soc. 104(2), 611–620 (1988)

20. Bjorn, P.: Elliptic curves whose rank does not grow and Hilbert’s Tenth Problem
over the rings of integers. Private Communication

21. Poonen, B.: Using elliptic curves of rank one towards the undecidability of Hilbert’s
tenth problem over rings of algebraic integers. In: Fieker, C., Kohel, D.R. (eds.)
ANTS 2002. LNCS, vol. 2369, pp. 33–42. Springer, Heidelberg (2002)

Hilbert’s Tenth Problem for Subrings of Q 9

22. Poonen, B.: Hilbert’s tenth problem and Mazur’s conjecture for large subrings of
Q. J Am. Math. Soc. 16(4), 981–990 (2003)

23. Poonen, B., Shlapentokh, A.: Diophantine definability of infinite discrete non-
archimedean sets and diophantine models for large subrings of number fields. Jour-
nal für die Reine und Angewandte Mathematik 27–48, 2005 (2005)

24. Robinson, J.: Definability and decision problems in arithmetic. J. Symb. Logic 14,
98–114 (1949)

25. Shlapentokh, A.: Extension of Hilbert’s tenth problem to some algebraic number
fields. Commun. Pure Appl. Math. XLII, 939–962 (1989)

26. Shlapentokh, A.: Diophantine classes of holomorphy rings of global fields. J. Alge-
bra 169(1), 139–175 (1994)

27. Shlapentokh, A.: Diophantine equivalence andcountable rings. J. Symb. Logic 59,
1068–1095 (1994)

28. Shlapentokh, A.: Elliptic curves retaining their rank in finite extensions and
Hilbert’s tenth problem for rings of algebraic numbers. Trans. Am. Math. Soc.
360(7), 3541–3555 (2008)

29. Shlapentokh, A.: Elliptic curve points and Diophantine models of Z in large sub-
rings of number fields. Int. J. Number Theor. 8(6), 1335–1365 (2012)

Nondeterministic Separations

Lance Fortnow(B)

Georgia Institute of Technology, Atlanta, USA
fortnow@cc.gatech.edu

Abstract. We survey recent research on the power of nondeterministic
computation and how to use nondeterminism to get new separations
of complexity classes. Results include separating NEXP from NP with
limited advice, a new proof of the nondeterministic time hierarchy and a
surprising relativized world where NP is as powerful as NEXP infinitely
often.

1 Results

In this talk we focus on new results by the speaker about the power of nondeter-
minism which sits at the heart of the famous P versus NP problem. The results
in this paper first appeared in works by Buhrman, Fortnow and Santhanam [1–3]

Theorem 1. For any constant c, NEXP �⊆ NP/nc.

Eric Allender asked whether even Theorem 1 (NEXP �⊆ NP/nc) can be strength-
ened to a lower bound that works on almost all input lengths, rather than on
infinitely many. Direct diagonalizations tend to work on almost all input lengths–
our separation is indirect, and technique does not give this stronger property.
We give a new relativized world showing that relativizing techniques cannot get
the stronger separation even without the advice.

Theorem 2. There exists a relativized world such that NEXP ⊆ i.o.NP.

Cook [4] first showed a nondeterministic time hierarchy, given in its strongest
form by Seiferas, Fischer and Meyer [5] and simplified by Žàk [6]. We give yet a
new proof that gives a far more compact diagonalization.

Theorem 3. If t1 and t2 are time-constructable functions such that

– t1(n) = o(t2(n)), and
– n � t1(n) � nc for some constant c

then NTIME(t2(n)) �⊆ NTIME(t1(n)).

Corollary 1. For any reals 1 � r < s, NTIME(ns) �⊆ NTIME(nr).

We can use the techniques of this new proof to get a time hierarchy with advice.

c© Springer International Publishing Switzerland 2015
R. Jain et al. (Eds.): TAMC 2015, LNCS 9076, pp. 10–17, 2015.
DOI: 10.1007/978-3-319-17142-5 2

Nondeterministic Separations 11

Theorem 4. Let d � 1 be any constant, and let t be a time-constructible time
bound such that t = o(nd). Then NTIME(nd) �⊆ NTIME(t)/n1/d.

Theorem 4 improves on known results handling advice in two respects. First, the
amount of advice in the lower bound can be as high as nΩ(1), in contrast to
earlier results in which it was limited to be O(log(n)). Second, the hierarchy is
provably tight in terms of the time bounds, while earlier results handling advice
could only separate NTIME(nd) from NTIME(nc) with advice, where c < d.

We are able to use Theorem 4 to derive a new circuit lower bound for NP,
improving a 30-year old result of Kannan [7].

Corollary 2. Let k > 1 be any constant. NP does not have NP-uniform non-
deterministic circuits of size O(nk).

2 Proof of Theorem1

We first need the following lemma, a slightly stronger version of a result in
Homer and Mocas [8] about lower bounds for deterministic exponential time
against advice. The proof we give is folklore.

Lemma 1. For any constant d, EXP �⊆ i.o.DTIME(2nd

)/nd.

Proof. The proof is by diagonalization. We define a diagonalizing language L

which is not in i.o.DTIME(2nd

)/nd by defining a machine M which runs in expo-
nential time and decides L.

M operates as follows on input x of length n. It enumerates advice taking
machines M1,M2 . . . Mlog(n) each running in time at most 2nd

and taking advice
of length nd. It then enumerates all log(n)2nd

truth tables computed by these
machines when every possible string of length nd is given as advice. It then
computes a truth table of an n-bit function f which is distinct from all the
truth tables enumerated so far–this can be done in exponential time by a simple
pruning strategy. Finally it outputs f(x).

Now we are ready to prove our lower bound for NEXP.

Proof. We will show that either NEXP �⊆ NP/poly or NEXP �⊆ NE/nc. From this,
the result follows.

Assume, to the contrary, that both these inclusions hold, i.e., NEXP ⊆
NP/poly and NEXP ⊆ NE/nc. We will derive a contradiction. Let L be a complete
language for NE with respect to linear-time reductions. Since NEXP ⊆ NP/poly,
we get that L ∈ NTIME(nk)/nk for some constant k. Since L is complete for NE
with respect to linear-time reductions, we get that NE ⊆ NTIME(nk)/O(nk).

By translation, we get that NE/nc ⊆ NTIME(nkc)/O(nkc). To see this, let L′

be a language in NE/nc, and let M ′ be an advice-taking NE machine accepting L′

with advice length nc. Define a language L′′ ∈ NE as follows: a string < x, a > is
in L′′ iff M ′ accepts x with advice a. Since M ′ is an NE machine, it follows that

12 L. Fortnow

L′′ ∈ NE. Thus, by assumption L′′ ∈ NTIME(mk)/O(mk), where m is the input
length for L′′. Let M ′′ be an advice-taking machine solving L′′ using resources as
stated. Now we can solve L′ in NTIME(nkc)/O(nkc) as follows. The advice-taking
machine M we construct for solving L′ interprets its advice as consisting of two
parts: the first part is an advice string a of length nc, where n is the input size,
and the second part is an advice string b of length O((n + nc)k) = O(nkc). M
simulates M ′′ on input < x, a > with advice string b, where x is the input for L′.
M accepts iff M ′′ accepts. M operates within time O(nkc) (since it simulates an
O(nk) time machine on an input of length O(nc)), uses advice of length O(nkc),
and decides L′ correctly, by definition of L′′ and the assumption on M ′′.

Thus, we have NEXP ⊆ NE/nc and NE/nc ⊆ NTIME(nkc)/O(nkc), which
together imply NEXP ⊆ NTIME(nkc)/O(nkc). But since EXP ⊆ NEXP and
NTIME(nkc)/O(nkc) ⊆ DTIME(2nkc

)/O(nkc) we get EXP ⊆ DTIME(2nkc

)/O(nkc),
which is a contradiction to Lemma 1.

3 Proof of Theorem2

We show the surprising relativized world where NEXP is infinitely often contained
in NP.

Proof. Let Mi be a standard enumeration of non-deterministic relativized Turing
machines that runs in time at most 2ni

. Since these machines are paddable, for
any A and any L ∈ NEXPA there will some i such that L = L(MA

i). We will
create A such that for every i there are an infinite number of n such that for all
x of length n,

x ∈ L(MA
i) ⇔ there exists a y with |y| = 2|x|i and (i, x, y) ∈ A

which immediately implies Theorem 2.
Start with A = ∅. We construct A in stages (i, j) chosen in any order that

cover all possible (i, j).
Stage (i, j): Pick n such that n is larger than any frozen string as well as the

n chosen in any previous stage.
Set all strings x of length n to be unmarked.
Repeat the following as long as there is an unmarked x of length n such that

MA
i (x) accepts: Fix an accepting path of MA

i (x) and freeze every string queried
along that path. Mark x. Pick a y, |y| = 2|x|i such that (i, x, y) is not frozen
and let A = A ∪ {(i, x, y)}.

We can always find such a y since we have 22ni

possible (i, x, y) and at this
point since we have frozen at most 2ni

strings for at most 2n possible x’s for a
total of 2ni

2n < 22ni

frozen strings.

By adding every (i, x, y) that is non frozen in the proof above one can get an
even stronger oracle.

Corollary 3. There exists a relativized world such that NEXP ⊆ i.o.RP.

Nondeterministic Separations 13

4 New Proof of Nondeterministic Time Hierarchy

Here we give an alternate proof of Theorem 3.

Proof (Proof of Theorem3). Let M1,M2, . . . be an enumeration of multitape
nondeterministic machines that run in time t1(n).

Define a nondeterministic Turing machine M that on input 1i01m0w does as
follows:

– If |w| < t1(i+m+2) accept if both Mi(1i01m0w0) and Mi(1i01m0w1) accept.
– If |w| � t1(i + m + 2) accept if Mi(1i01m0) rejects on the path specified by

the bits of w.

Since we can universally simulate t(n)-time nondeterministic multitape Turing
machines on an O(t(n))-time 2-tape nondeterministic Turing machine, L(M) ∈
NTIME(O(t1(n + 1))) ⊆ NTIME(t2(n)). Note (n + 1)c = O(nc) for any c.

Suppose NTIME(t2(n)) ⊆ NTIME(t1(n)). Pick a c such that t1(n) � nc. By
assumption there is a language L ∈ NTIME(t1(n)) such that L(M) = L. Fix i
such that L = L(Mi). Then z ∈ L(Mi) ⇔ z ∈ L(M) for all z = 1i01n00w for
w � t1(i + n0 + 2).

By induction we have Mi(1i01n00) accepts if Mi(1i01n00w) accepts for all
w � t1(i + n0 + 2). So Mi(1i01n00) accepts if and only Mi(1i01n00) rejects on
every computation path, contradicting the definition of nondeterministic time.

5 Proof of Theorem4

Theorem 4 follows immediately from the following result.

Theorem 5. Fix any constant d > 1. Let t1 and t2 be time-constructible func-
tions such that t2 = O(nd) and t1(n + 1) = o(t2(n)). Then there is a language
in NTIME(t2) which is not in NTIME(t1)/t−1

2 (n).

We need a new notion of “cumulative advice”, defined as follows. Given a time
function t : N → N and an advice function a : N → N, a language L is said to be
in NTIME(t)/ca if there is an advice-taking non-deterministic machine M such
that, for each n, there is a string bn of length at most a(n) for which M , given
< n, bn > on its advice tape, halts in time t(n) and accepts an input x of length
at most n iff x ∈ L.

The notion of cumulative advice is defined here for non-deterministic time
but it extends naturally to any complexity measure.

Informally, an advice string given as cumulative advice helps to decide all
inputs of length at most a given length, while the traditional notion of advice
only applies to inputs which are all of the same length. If a language L is in
NTIME(t)/a and a is a non-decreasing function, then it is obvious that L is
NTIME(t)/cna, since cumulative advice for length n can be formed simply by
concatenating all advice strings of length at most n. However, it is far from clear

14 L. Fortnow

whether advice of length a can be simulated with cumulative advice o(na), when
a is polynomially bounded.

We will first prove a hierarchy theorem for non-deterministic polynomial time
against sub-linear cumulative advice, and then show how to strengthen this to
a hierarchy theorem for non-deterministic polynomial time against sub-linear
advice. Note that though the notion of cumulative advice plays an important
role in our proof, it does not appear in our main theorem - the main theorem
holds for the traditional notion of advice.

Lemma 2. Fix any constant d > 1. Let t1 and t2 be time-constructible functions
such that t2 = O(nd), t1(n + 1) = o(t2(n)). Then there is a language L ∈
NTIME(t2) which is not in NTIME(t1)/ct

−1
2 (n).

Note that the statement of Lemma 2 is identical to that of Theorem5, except
that the lower bound is against cumulative advice.

Proof. First fix a function f : N → N such that f(n) is computable in time
O(n), and for each constant k, there are only finitely many triples (n1, n2, n3)
of integers such that n1 � n2 � n3 � nk

1 such that f(n1), f(n2), f(n3) are all
distinct, and also such that each positive integer has infinitely many pre-images
under f . We will use the function f(n) = i if 22

2m � n < 22
2m+1

, where i is the
unique number such that bin(m) is of the form 1k0bin(i) for some k � 0. Here
bin(j) denotes the binary representation of the number j.

Intuitively, f selects which cumulative advice-taking non-deterministic Tur-
ing machine we attempt to diagonalize against at a given input length n. The
properties of f ensure that the same machine is being diagonalized against for
a long enough stretch of inputs, and that it is easy to compute for any given
input length which machine we’re diagonalizing against. Let M1,M2,M3 . . . be
an efficiently computable enumeration of all cumulative advice-taking 2-tape
non-deterministic Turing machines. We define a non-deterministic machine M
without advice which operates as follows.

On input x, M first computes n = |x|, i = f(n) and the number t2(n), the
last of which it uses as a clock for its computation. It then computes the largest
m such that 22

2m � n < 22
2m+1

. Set A = 22
2m

. If n > t2(A), M simply rejects.
Otherwise M decomposes x as yz, where |y| = A. If n < t2(A), M simulates Mi

on input x0 with advice < t2(A), y > on the advice tape1. If Mi halts within
the allotted time, M next simulates Mi on input x1 with advice < t2(A), y >
on the advice tape. If this simulation halts as well within the allotted time, M
accepts iff both simulations (i.e., of Mi on x0 and Mi on x1) accept. In every
other case, M rejects.

If n = t2(A), M simulates Mi on y with guess sequence z (i.e., z is treated as
an encoding of all the non-deterministic choices of Mi), and with advice < n, y >
on the advice tape. It accepts iff the simulation halts and rejects. Note that the
simulation on such an input length n is completely deterministic.
1 We assume that if Mi needs only r < |y| bits of advice, then only the first r bits of
y are used.

Nondeterministic Separations 15

By definition of M , L(M) ∈ NTIME(t2). We claim L(M) �∈ NTIME(t1)/
ct

−1
2 (n). The proof of this claim is by contradiction. Suppose, to the contrary,

that there is a cumulative advice-taking non-deterministic Turing machine decid-
ing L(M) in time O(t1) with t−1

2 (n) bits of advice. By the tape reduction theo-
rem for non-deterministic time, there is a 2-tape advice-taking non-deterministic
machine Mi which decides L(M) in time O(t1) with t−1

2 (n) bits of advice.
Let g : N → N be a function such that the simulation of t steps of a machine

Mi is performed within g(i)t steps of M . Choose A a power of a power of a
power of 2 large enough so that f(A) = i and 2g(i)t1(n′ + 1) + 100n′ < t2(n′)
for all n′ � A. By choice of f and since t1(n + 1) = o(t2(n)), such an A exists.
Now, for all n such that A � n < t2(A), the simulations of Mi by M halt
within the allotted time, since all the extra computations (of n, i, t2(n) and the
decomposition) can be performed in time < 100n. Note also that the simulations
at length n = t2(A) complete succesfully since t2(n) − n � t1(n).

By assumption, there is a sequence of advice strings {bm} such that for each
m, for each x of length at most m, Mi accepts x with advice < m, bm > iff
x ∈ L(M), and |bm| � t−1

2 (m). Let y be any string of length A such that bt2(A)

is a prefix of y. By the assumption on size of advice strings, such a string y
exists.

Now we have that M accepts on y iff Mi accepts on both y0 and y1 with
< t2(A), y > on the advice tape. Continuing inductively, we have that M accepts
y iff Mi accepts on all strings of the form yz, |z| � t2(A) − A with < t2(A), y >
on the advice tape. Now we take advantage of the behavior of M on strings of
length t2(A). M accepts on a string yz, |z| = t2(A)−A iff z is not a sequence of
non-deterministic choices leading to acceptance of Mi on y with < t2(A), y > on
the advice tape. Hence, if Mi with < t2(A), y > on the advice tape agrees with
M on all strings of the form yz, |yz| = t2(A), we have that M accepts y iff Mi

rejects y with < t2(A), y > on the advice tape, which contradicts the assumption
that M on y agrees with Mi on y with < t2(A), y > on the advice tape.

Lemma 3. Let L be any language, and let L′ = {0k1x|x ∈ L, k � 0}. For any
non-decreasing advice function a : N → N, and for any non-decreasing time
function t : N → N which is Ω(n), we have that L ∈ NTIME(t(n + 1))/ca(n + 1)
iff L′ ∈ NTIME(t(n))/a(n).

Proof. We define L′ = {0k1x|x ∈ L, k � 0}. We first show the forward implica-
tion, and then the reverse one.

Suppose L ∈ NTIME(t(n+1))/ca(n+1), for some time function t and cumu-
lative advice function a. Let M be an advice-taking non-deterministic Turing
machine which always halts in time t(n + 1) on inputs of length n and decides
L correctly with a(n+1) bits of cumulative advice. For each input length m, let
bm be a correct advice string of length at most a(m+1) for M at length m, i.e.,
for all x of length at most m, M accepts x given advice < m, bm > iff x ∈ L.
We define an advice-taking non-deterministic Turing machine M ′ which always
halts in time t(n) on inputs of length n and decides L correctly with at most
a(n) bits of advice.

16 L. Fortnow

Given an input x′, M ′ operates as follows. M ′ first computes the unique string
x such that 0k1x = x′, for some k � 0. This computation can be done easily
in linear time. M ′ then interprets its advice string cn as the cumulative advice
bn−1 for M at length n − 1, and simulates M on x with advice < n − 1, cn >.
It accepts iff M accepts. M ′ always halts in time O(t(n)) since the string x′ is
of length at most n − 1 and since M always halts in time t(m + 1) on inputs
of length m. The correctness of M ′ follows from the fact that M is a correct
advice-taking machine deciding L with cumulative advice.

For the reverse implication, suppose L′ ∈ NTIME(t(n))/a(n). Let M ′ be an
advice-taking non-deterministic machine which always halts in time t(·) and
accepts L′ with at most a(n) bits of advice. We define an advice-taking machine
M halting in time t(n + 1) and accepting L with at most a(n + 1) bits of
cumulative advice as follows.

Say M is given a string x on its input tape, and < m, bm > on its advice
tape, with m � |x|. Note that we can assume wlog that m � |x|, since otherwise
M is allowed to behave arbitrarily. M forms the string x′ = 0m−|x|1x and then
simulates M ′ on input x′ with advice bm. Namely, it interprets its advice string as
advice for M ′ at length m + 1. The time taken for the simulation is O(t(m + 1))
since t is at least linear, and the advice is of length at most a(m + 1). The
correctness of M follows from the correctness of M ′.

Proof of Theorem 5. Applying Lemma 2 to the time functions t1(n+1), t2(n+1)
and the cumulative advice function t−1

2 (n + 1), we have that there is a language
L which is in NTIME(t2(n + 1)) but not in NTIME(t1(n + 1))/t−1

2 (n + 1). Using
Lemma 3 with t = t2 and a = 0, we have that L′ ∈ NTIME(t2). Using Lemma 3
with t = t1 and a = t−1

2 , we have that L′ �∈ NTIME(t1)/t−1
2 (n). Thus L′ satisfies

the required conditions.
We note that the polynomial upper bound on t2 in Theorem 5 is in fact

redundant. It helps to simplify the choice of f in the proof, but in fact for
any time-constructible t2 an appropriate f can be chosen to make the proof go
through.

References

1. Buhrman, H., Fortnow, L., Santhanam, R.: Unconditional lower bounds against
advice. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S.,
Thomas, W. (eds.) ICALP 2009, Part I. LNCS, vol. 5555, pp. 195–209. Springer,
Heidelberg (2009)

2. Fortnow, L., Santhanam, R.: Robust simulations and significant separations. In:
Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011, Part I. LNCS, vol. 6755,
pp. 569–580. Springer, Heidelberg (2011)

3. Fortnow, L., Santhanam, R.: Hierarchies against sublinear advice. Technical report
TR14-171, Electronic Colloquium on Computational Complexity (2014)

4. Cook, S.: A hierarchy for nondeterministic time complexity. J. Comput. Syst. Sci.
7(4), 343–353 (1973)

5. Seiferas, J., Fischer, M., Meyer, A.: Separating nondeterministic time complexity
classes. J. ACM 25(1), 146–167 (1978)

Nondeterministic Separations 17

6. Žàk, S.: A turing machine time hierarchy. Theor. Comput. Sci. 26(3), 327–333 (1983)
7. Kannan, R.: Circuit-size lower bounds and non-reducibility to sparse sets. Inf. Con-

trol 55, 40–56 (1982)
8. Homer, S., Mocas, S.: Nonuniform lower bounds for exponential time classes.

In: Hájek, Petr, Wiedermann, Jǐŕı (eds.) MFCS 1995. LNCS, vol. 969. Springer,
Heidelberg (1995)

Quantum and Randomized Query Complexities
(Extended Abstract)

Miklos Santha1,2(B)

1 CNRS–LIAFA, Université Paris Diderot, 75205 Paris, France
miklos.santha@gmail.com

2 Centre for Quantum Technologies, National University of Singapore,
Singapore 117543, Singapore

Deterministic query complexity is a simplified model of computation where
the resource measured is only the number of questions to the input to get infor-
mation about individual input bits, while all other operations are for free. In
the randomized model the queries can be chosen probabilistically, and in the
quantum model they can be in superposition. While we have made significant
progress in understanding all three models, numerous important questions (some
of them over 40 years old) remain still unsolved.

Quantum query complexity has been very useful for studying the power of
quantum computation. Important quantum algorithms, in particular the search
algorithm of Grover and the period finding subroutine of Shor’s factoring algo-
rithm, can be formulated in this model. Yet, the model is still simple enough that
one can often hope to prove tight lower bounds. Recently there have been very
exciting developments in quantum query complexity. In particular, in a series of
works, Reichardt has shown that the general adversary bound of Høyer, Lee and
Špalek, formerly just a lower bound technique, was also an upper bound up to
constant factors. This characterization clearly opened a new way for designing
quantum query algorithms. Indeed, the dual adversary bound can be written
as a relatively simple SDP, and therefore any feasible solution yields an upper
bound for quantum query complexity. Nonetheless, in practice this approach
can be quite difficult to implement since the minimization form of the SDP has
exponentially many constraints. Even for simple functions it can be challenging
to explicit a feasible solution, and even more to find one with a good objective
value.

To surmount this problem, Belovs has introduced the beautiful model of
learning graphs, which can be viewed as the minimization form of the general
adversary bound with an additional structure imposed on the form of the solu-
tion. Learning graphs have a simple, combinatorial description. The vertices of
a learning graph correspond to the sets of input variables known to the algo-
rithm. The transitions of the algorithm are governed by a unit flow injected to

Research supported by the European Commission IST STREP project Quantum
Algorithms (QALGO) 600700, the French ANR Blanc program under contract ANR-
12-BS02-005 (RDAM project), the Singapore Ministry of Education and the National
Research Foundation, also through the Tier 3 Grant “Random numbers from quan-
tum processes”.

c© Springer International Publishing Switzerland 2015
R. Jain et al. (Eds.): TAMC 2015, LNCS 9076, pp. 18–19, 2015.
DOI: 10.1007/978-3-319-17142-5 3

Quantum and Randomized Query Complexities (Extended Abstract) 19

the empty set, and every sink of the flow must contain a positive certificate for
the function. The flow constraint makes learning graphs easy to reason about
by ensuring that the SDP constraints are automatically satisfied, leaving one
only to worry about optimizing the objective value. Learning graphs come in
several flavor. In the non-adaptive version they are only sensitive to the certifi-
cate structure of the function to be computed, implying that various problems
with the same certificate structure have the same learning graph complexity.
For example, finding a triangle in a graph has the same certificate structure as
the problem of finding one whose edge labels satisfy some specific property in a
labeled graph.

In this survey talk we demonstrate the pertinence of learning graphs by their
impact in two distinct research directions. Firstly, they gave significant impetus
to the design of new quantum query algorithms for various problems, in particu-
lar for finding constant size subgraphs, associativity testing, and k-distinctness.
Secondly, they inspired new concepts and techniques in the theory of quantum
walks. We also illustrate the strong connection between learning graphs and
quantum walks by the parallel between their classical analogies. Indeed, if quan-
tum walks are often based on classical random walks in graphs, learning graphs
are closely related to electric networks. The complexity of a learning graph is in
fact defined in function of the overall weight and the effective resistance of the
corresponding electric network. This relation actually makes possible a quadratic
simulation of learning graphs by random query algorithms. While such a sim-
ulation could possibly exist for generic query algorithms in the case of total
functions, proving such a relationship seems currently quite elusive.

Unlike in the case of quantum query complexity, we are not aware of any use-
ful equivalent characterization of the randomized query complexity. We know
several techniques to lower bound the bounded-error randomized query com-
plexity, such as the approximate polynomial degree, the block sensitivity, the
randomized certificate complexity and the classical adversary bound. All these
techniques were recently subsumed by the public-coin partition bound of Jain,
Lee and Vishnoi, which was also proven to be within a quadratic factor of the ran-
domized query complexity. They raised the question whether this bound could
actually be asymptotically equivalent to it. We describe the recent result of
Racicot–Desloges, Kothari and Santha which answers the question by the neg-
ative. Indeed, they present a function whose randomized query complexity is
asymptotically higher than its deterministic subcube complexity, which in turn
is always lower bounded by the partition bound. This result shows that an equiv-
alent characterization of the randomized query complexity should necessarily
overcome the randomized subcube barrier which is not the case of the currently
available techniques.

Recursion Theory
and Mathematical Logic

Algorithmically Random Functions
and Effective Capacities

Douglas Cenzer(B) and Christopher P. Porter

Department of Mathematics, University of Florida, Gainesville 32611, USA
cenzer@ufl.edu, cp@cpporter.com

Abstract. We continue the investigation of algorithmically random
functions and closed sets, and in particular the connection with the
notion of capacity. We study notions of random continuous functions
given in terms of a family of computable measures called symmetric
Bernoulli measures. We isolate one particular class of random functions
that we refer to as random online functions F , where the value of y(n) for
y = F (x) may be computed from the values of x(0), . . . , x(n). We show
that random online functions are neither onto nor one-to-one. We give
a necessary condition on the members of the ranges of random online
functions in terms of initial segment complexity and the associated com-
putable capacity. Lastly, we introduce the notion of Martin-Löf random
online partial function on 2ω and give a family of online partial ran-
dom functions the ranges of which are precisely the random closed sets
introduced in [2].

Keywords: Algorithmic randomness · Computability theory · Random
closed sets · Random continuous functions · Capacity.

1 Introduction

In a series of recent papers [2–4,7], Barmpalias, Brodhead, Cenzer et al. have
developed the notion of algorithmic randomness for closed sets and continuous
functions on 2ω as part of the broad program of algorithmic randomness. The
study of random closed sets was furthered by Axon [1], Diamondstone and Kjos-
Hanssen [8], and others. Cenzer et al. [7] studied the relationship between notions
of random closed sets with respect to different computable probability measures
and effective capacities.

Here we look more closely at the relationship between random continuous
functions and effective capacity. First, we generalize the notion of random con-
tinuous function from [4] to a wider class of computable measures that we call
symmetric Bernoulli measures. Then we study properties of the effective capaci-
ties associated to the classes of functions that are random with respect to various
symmetric Bernoulli measures. We isolate one such class of functions, which we
refer to as random online continuous functions. We study the reals in the range
of a random online continuous function, as well as the average values of random
online continuous functions.
c© Springer International Publishing Switzerland 2015
R. Jain et al. (Eds.): TAMC 2015, LNCS 9076, pp. 23–37, 2015.
DOI: 10.1007/978-3-319-17142-5 4

24 D. Cenzer and C.P. Porter

It turns out that a number of effective capacities cannot be generated by a class
of functions that are random with respect to a symmetric Bernoulli measure. We
identify a class of measures on the space of functions that yield random online
partial continuous functions and prove that a wide class of effective capacities can
be generated by such functions, including the effective capacity that is associated
to the original definition of algorithmically random closed set from [2].

Algorthmic randomness for closed sets was defined in [2] starting from a
natural computable measure on the space C(2ω) of closed subsets of 2ω and
using the notion of Martin-Löf randomness given by Martin-Löf tests. It was
shown that Δ0

2 random closed sets exist but there are no random Π0
1 closed sets.

It is shown that any random closed set is perfect, has measure 0, and has box
dimension log2

4
3 . A random closed set has no n-c.e. elements.

Algorithmic randomness for continuous functions on 2ω was defined in [4] by
defining a representation of such functions in 3ω and using the uniform measure
on 3ω to induce a measure on the space F(2ω) of continuous functions. It was
shown that random Δ0

2 continuous functions exist, but no computable function
can be random and no random function can map a computable real to a com-
putable real. The image of a random continuous function is always a perfect
set and hence uncountable. For any y ∈ 2ω, there exists a random continuous
function F with y in the image of F . Thus the image of a random continu-
ous function need not be a random closed set. The set of zeros of a random
continuous function is a random closed set (if nonempty).

The connection between measure and capacity for the space C(2ω) was inves-
tigated in [7]. For any computable measure μ∗ on C(2ω), a computable capacity
may be defined by letting T (Q) be the μ∗-measure of the family of closed sets K
which have nonempty intersection with Q for each Q ∈ C(2ω). An effective ver-
sion of the Choquet’s theorem was obtained by showing that every computable
capacity may be obtained from a computable measure in this way. Conditions
were given on a measure ν∗ on C(2ω) that characterize when the capacity of
all ν∗-random closed sets equals zero. For certain computable measures, effec-
tively closed sets with positive capacity and with Lebesgue measure zero are
constructed. For computable measures, a real q is upper semi-computable if and
only if there is an effectively closed set with capacity q.

The problem of characterizing the possible members of random closed sets
was studied by Diamondstone and Kjos-Hanssen in [8]. They gave an alternative
presentation for random closed sets and showed a strong connection between the
effective Hausdorff dimension of a real x and the membership of x in a random
closed set.

The outline of the paper is as follows. In Sect. 2, we provide the requisite
background. In Sect. 3 we define symmetric Bernoulli measures on the space
of continuous functions on 2ω and prove basic facts about the domains and
ranges of functions that are random with respect to such measures. We study
the connection between random functions and effective capacities on the space
of closed subsets of 2ω in Sect. 4. Next, we introduce and study the notion of
a random online function in Sect. 5. Lastly, in Sect. 6, we define random online

Algorithmically Random Functions and Effective Capacities 25

partial functions and establish a correspondence between the ranges of such
functions and various families of random closed sets.

The authors would like to thank Laurent Bienvenu and the anonymous ref-
erees for helpful comments on an earlier draft of this paper.

2 Background

Some definitions are needed. For a finite string σ ∈ {0, 1}n, let |σ| = n denote
the length of n. For two strings σ, τ , say that τ extends σ and write σ ≺ τ if
|σ| ≤ |τ | and σ(i) = τ(i) for i < |σ|. For x ∈ 2ω, σ ≺ x means that σ(i) = x(i)
for i < |σ|. Let σ�τ denote the concatenation of σ and τ and let σ�i denote
σ�(i) for i = 0, 1. Let x�n = (x(0), . . . , x(n − 1)). The empty string will be
denoted ε. Two reals x and y may be coded together into z = x ⊕ y, where
z(2n) = x(n) and z(2n + 1) = y(n) for all n. For a finite string σ, let [[σ]] denote
{x ∈ 2ω : σ ≺ x}. We shall refer to [[σ]] as the interval determined by σ. Each
such interval is a clopen set and the clopen sets are just finite unions of intervals.
Now a nonempty closed set P may be identified with a tree TP ⊆ {0, 1}∗ where
TP = {σ : P ∩ [[σ]] �= ∅}. Note that TP has no dead ends. That is, if σ ∈ TP ,
then either σ�0 ∈ TP or σ�1 ∈ TP (or both). For an arbitrary tree T ⊆ {0, 1}∗,
let [T] denote the set of infinite paths through T . It is well-known that P ⊆ 2ω

is a closed set if and only if P = [T] for some tree T . P is a Π0
1 class, or an

effectively closed set, if P = [T] for some computable tree T .
A measure ν on 2ω is computable if there is a computable function ν̂ : 2<ω ×

ω → Q2 (where Q2 = { m
2n : n,m ∈ ω}) such that |ν([[σ]]) − ν̂(σ, i)| ≤ 2−i for

every σ ∈ 2<ω and i ∈ ω. A computable measure on 3ω is similarly defined.
Martin-Löf [10] observed that stochastic properties could be viewed as special

kinds of effectively presented measure zero sets and defined a random real as one
that avoids these measure 0 sets. More precisely, a real x ∈ 2ω is Martin-Löf ran-
dom if for every effective sequence S1, S2, . . . of c.e. open sets with μ(Sn) ≤ 2−n,
x /∈ ⋂

n Sn (where μ is the uniform measure on 2ω). This can be straightfor-
wardly extended to any computable measure ν on 2ω or 3ω by replacing the
condition μ(Sn) ≤ 2−n with ν(Sn) ≤ 2−n.

Given a measure μ on 3ω, we define a measure μ∗ on the space C(2ω) of
closed subsets of 2ω as follows. Given a closed set Q ⊆ 2ω, let T = TQ be the
tree without dead ends such that Q = [T]. Let σ0, σ1, . . . enumerate the elements
of T in order, first by length and then lexicographically. We then define the
(canonical) code x = xQ = xT of Q by recursion such that for each n, x(n) = 2
if both σn

�0 and σn
�1 are in T , x(n) = 1 if σn

�0 /∈ T and σn
�1 ∈ T , and

x(n) = 0 if σn
�0 ∈ T and σn

�1 /∈ T . We then define μ∗ by setting

μ∗(X) = μ({xQ : Q ∈ X}) (1)

for any X ⊆ C(2ω). For the uniform measure, this means that given σ ∈ TQ,
there is probability 1

3 that both σ�0 ∈ TQ and σ�1 ∈ TQ and, for i = 0, 1, there
is probability 1

3 that only σ�i ∈ TQ. Brodhead, Cenzer, and Dashti [2] defined
a closed set Q ⊆ 2ω to be (Martin-Löf) random if xQ is (Martin-Löf) random.

26 D. Cenzer and C.P. Porter

We will sometimes refer to the random closed sets given by the uniform measure
on 3ω as the standard random closed sets.

Given a continuous function F on 2ω, observe that for any σ ∈ 2<ω there is
some n ∈ ω and τ ∈ 2<ω of length n such that for all x ∈ [[σ]], F (x)�n = τ .

Let F(2ω) denote the collection of all continuous functions F : 2ω → 2ω. Each
F ∈ F(2ω) may be represented by a function f : 2<ω \ {ε} → {0, 1, 2}, defined
inductively as follows. Suppose we have defined f(σ�i) = ei for i = 1, . . . , n and
every σ of length n. Then given some σ of length n + 1, where f(σ�i) = ei for
i = 1, . . . , n, let ρ = (n1, . . . , nk) be the result of deleting all 2 s from (e1, . . . , en).
If for all x ∈ [[σ]], F (x)�(k + 1) = ρ�j for some j ∈ {0, 1}, then we may set
en+1 = j, although we may set en+1 = 2. If there is no such j, we must set
en+1 = 2. It is helpful to think of the 2’s as delaying the output of F along
initial segments of some x ∈ 2ω. For each F ∈ F(2ω), there are infinitely many
functions that represent F , and f : 2<ω \ {ε} → {0, 1, 2} defines a (possibly
partial) F ∈ F(2ω). Each representing function f : 2<ω \ {ε} → {0, 1, 2} can be
straightforwardly coded as some z ∈ 3ω. We can thus define a measure μ∗∗ on
F(2ω) induced by the uniform measure on 3ω. As with the case of computable
measures on C(2ω), every computable measure ν on 3ω induces a computable
measure ν∗∗ on F(2ω). Brodhead, Cenzer, and Remmel [6] defined F ∈ F(2ω)
to be Martin-Löf random if F is represented by a representing function coded by
a Martin-Löf random z ∈ 3ω. We will sometimes refer to the random continuous
functions given by the uniform measure on 3ω as the standard random continuous
functions.

Next we consider the notion of a capacity.

Definition 1. A capacity on C(2ω) is a function T : C(2ω) → [0, 1] with T (∅) =
0 such that

1. T is monotone increasing, that is, Q1 ⊆ Q2 implies T (Q1) ≤ T (Q2).
2. T has the alternating of infinite order property, that is, for n ≥ 2 and any

Q1, . . . , Qn ∈ C

T (
n⋂

i=1

Qi) ≤
∑

{(−1)|I|+1T (
⋃
i∈I

Qi) : ∅ �= I ⊆ {1, 2, . . . , n}}.

3. If Q =
⋂

n Qn and Qn+1 ⊆ Qn for all n, then T (Q) = limn→∞ T (Qn).

We will also assume, unless otherwise specified, that T (2ω) = 1. We will say
that a capacity T is computable if it is computable on the family of clopen sets,
that is, if there is a computable function F from the Boolean algebra B of clopen
sets into [0, 1] such that F (B) = T (B) for any B ∈ B.

Given a measure μ∗ on the space C(2ω) of closed sets, define

Tμ(Q) = μ∗({X ∈ C(2ω) : X ∩ Q �= ∅}),

That is, Tμ(Q) is the probability that a randomly chosen closed set meets Q. The
following effective version of the Choquet Capacity Theorem was shown in [7].

Algorithmically Random Functions and Effective Capacities 27

Theorem 1 ([7])

1. For any computable probability measure μ on C(2ω), Tμ is a computable
capacity.

2. For any computable capacity T on C(2ω), there is a computable measure μ on
the space of closed sets such that T = Tμ.

For a given computable capacity T , if μ∗ is a computable measure on C(2ω) such
that T = Tμ, we will refer to μ∗-random closed sets as the random closed sets
associated to T and T as the capacity associated to the μ∗-random closed sets.

3 Symmetric Bernoulli Measures on F(2ω)

In this section, we consider continuous functions that are random with respect
to some measure from a specific class of computable measures on 3ω.

Definition 2. Let μ be a measure on 3ω.

(i) μ is a Bernoulli measure if there are p0, p1, p2 ∈ [0, 1] such that p0+p1+p2 =
1 and μ(σ�i) = pi · μ(σ) for each i ∈ {0, 1, 2}.

(ii) μ is a symmetric Bernoulli measure if μ is a Bernoulli measure and there is
some r ∈ [0, 1/2] such that r = p0 = p1 (so that p2 = 1 − 2r).

The symmetric Bernoulli measure with parameter r ∈ [0, 1/2] will be denoted
μr. Note that μr is computable if and only if r is a computable real number.

We are interested in the behavior of the μ∗∗
r -random continuous functions on

2ω. Note that in the case that r = 1/3, μr is the uniform measure on 3ω and the
μ∗∗

r -random continuous functions are the standard random continuous functions
discussed in the previous section. In fact, the results in this section generalize
certain results from [3] concerning μ∗∗

1/3-random continuous functions.
First, it was shown in [3] that every μ∗∗

1/3-random continuous function is total.
However, if we allow the parameter r to vary, which results in a change of the
probability of the occurrence of delays (i.e., the occurrence of 2s), the situation
becomes slightly more interesting. Specifically, if μr is such that the probability
of delay is greater than or equal to 1/2, then not every μ∗∗

r -random function will
be total.

The following lemma will be needed.

Lemma 1. Let μr be a symmetric Bernoulli measure on 3ω, let A ⊆ {0, 1, 2},
and let p =

∑
i∈A pi, where p0 = p1 = r and p2 = 1 − 2r. Then the μ∗∗-measure

q of the functions F ∈ F(2ω) such that there exists x ∈ 2ω with f(x�n) ∈ A for
all n (where f is the function representing F) equals 0 if p ≤ 1/2 and equals
2p−1

p2 if p > 1/2.

Proof. It follows from the compactness of 2ω that there exists x such that
f(x�n) ∈ A for all n > 0 if and only if for every n, there exists σ ∈ {0, 1}n

such that f(σ�m) ∈ A for all 0 < m < n. Let qn be the probability that such

28 D. Cenzer and C.P. Porter

σ ∈ {0, 1}n exists. Then q0 = 1, qn+1 ≤ qn for all n, and q = limn→∞ qn.
Considering the cases of f(i) for i ∈ {0, 1}, we calculate that

qn+1 = 2pqn − p2q2n.

Taking the limit of both sides, we see that q = 2pq−p2q2, so that either q = 0 or
q = 2p−1

p2 . In the case that p < 1/2, the latter is negative. Thus q = 0 if p ≤ 1/2.
For the other case, note first that 2pqn −p2q2n = 1−(1−pqn)2, so that qn ≥ x

implies that 2pqn −p2q2n ≥ 2px−p2x2. Let s = 2p−1
p2 . We now show by induction

that qn ≥ s for all n. Initially we have q0 = 1 ≥ s. Now assuming that qn ≥ s, it
follows that

qn+1 = 2pqn − p2q2n ≥ 2ps − p2s2 = s(2p − p2s) = s(2p − (2p − 1)) = s.

Now suppose that p > 1/2, so that s = 2p−1
p2 > 0. Since the sequence (qn)n∈ω

is decreasing and qn ≥ s for all n, it follows that the limit q = limn qn ≥ s and
hence q = s.

Proposition 1. Let μr be a symmetric Bernoulli measure on 3ω for some r ∈
[0, 1/2]. Then the μ∗∗

r -measure of the collection of partial continuous functions
on 2ω is 0 if r ≥ 1/4 and is 1 if r < 1/4.

Proof. First note that the measure must be either 0 or 1 in either case. This is
because a function F is total if and only if the restrictions of F to both [[0]] and
[[1]] are total, so that if p is the measure of the set of total functions, then p = p2.
Next observe that the function represented by f : 2<ω → {0, 1, 2} is partial if
and only if there exists x ∈ 2ω and n such that f(x�m) = 2 for all m ≥ n. It is
enough to compute the probability q that there exists x such that f(x�m) = 2
for all m > 0.

Let A = {2}, so that f(σ) ∈ A with probability p = 1 − 2r for each σ ∈
2<ω \ {ε}. Then by Lemma 1, the μ∗∗-measure of functions F such that there
exists x ∈ 2ω with f(x�n) ∈ A for all n > 0 equals 0 if r ≥ 1/4 and equals
2p−1

p2 = 1−4r
(1−2r)2 if r < 1/4. Since for r < 1/4, there are positive μ∗∗-measure

many functions F for which such an x exists, it follows that the collection of
partial functions has μ∗∗-measure 1.

Next, it was also shown in [3] that the probability that the range of a random
continuous function includes a fixed y ∈ 2ω is equal to 3/4. This was obtained
by computing, for each σ ∈ 2<ω of length n, the probability pn that the range
of a random continuous function has non-empty intersection with [[σ]] and then
proving that limn→∞ pn = 3/4. We consider the analogous result in the general
case of a symmetric Bernoulli measure.

Theorem 2. Let μr be a symmetric Bernoulli measure on 3ω for some r ∈
(0, 1/2] and let y ∈ 2ω. Then the μ∗∗

r -measure of the collection of continuous
functions F such that y ∈ ran(F) is equal to

1 − 2r

(1 − r)2
.

Algorithmically Random Functions and Effective Capacities 29

Proof. By symmetry of the measure μr, it suffices to show that μ∗∗
r -measure of

the collection of continuous functions F such that 0∞ ∈ ran(F) is equal to 1−2r
(1−r)2 .

Let A = {0, 2}, so that f(σ) ∈ A with probability p = 1 − r for σ ∈ 2<ω \ {ε}.
Then by Lemma 1, the μ∗∗-measure of functions F such that there exists x ∈ 2ω

with f(x�n) ∈ A for all n equals 0 if r ≥ 1/2 and equals 2p−1
p2 = 1−2r

(1−r)2 if r < 1/2.
Note that even if a function F satisfies f(x�n) ∈ A for every n > 0 for

some x ∈ 2ω, this does not guarantee that 0∞ ∈ ran(F), since we may have
f(x�n) = 2 for all but finitely many n. For a given F ∈ F(2ω), let CF = {x ∈
2ω : (∀n)f(x�n) ∈ A}. One can verify that the probability that 0∞ ∈ ran(F),
given that CF is non-empty, is 1 as follows. Suppose that CF is non-empty. Then
if we consider the left-most path x of CF , by the law of large numbers, as the
occurrence of the label 0 on initial segments of x is r

1−r , the limiting frequency
of 0 s along x is r

1−r with probability 1. Since the μ∗∗
r -measure of the collection

of functions F such that CF is non-empty is 1−2r
(1−r)2 , the conclusion follows.

Observe that as r approaches 0, the above probability approaches 1. This
means that as the probability of delay approaches 1, we have more chances to
hit any given real, and so this probability approaches one. However, for the
value r = 0, we have a discontinuity, as the resulting measure is concentrated on
the function coded by 2∞, which never outputs any bits but only delays indefi-
nitely on every possible input. Lastly, as r approaches 1/2, the above probability
approaches 0. In fact, this probability only attains the value 0 when r = 1/2,
that is, when the μ∗∗

r -random functions have no delay. Hereafter, we will refer
to μ∗∗

1/2-random functions as random online functions, which we study in detail
in Sect. 5.

4 From Functions to Capacities

The significance of the proof of Theorem2 is that it reveals a connection between
a notion of random continuous function and a notion of effective capacity. In
particular, we have the following result.

Theorem 3. Let ν∗∗ be a computable measure on F(2ω) and suppose that every
ν∗∗-random function is total. Then the function

T (S) = ν∗∗({F ∈ F(2ω) : ran(F) ∩ S �= ∅})

is a computable capacity on C(2ω).

Proof. First we show that the map taking a ν∗∗-random function to its range
induces a computable measure on C(2ω). Let F be a ν∗∗-random function. Since
F is a continuous map from a compact space to a Hausdorff space, F is a
closed map. By assumption, F is total, and hence ran(F) = F (2ω) is a closed
set. Moreover, it is not hard to see that there is a (partial) Turing functional
Φ : 3ω → 3ω that, given a real in 3ω that codes a representing function f of
some ν∗∗-random function F , outputs a real that codes the range of F . One can

30 D. Cenzer and C.P. Porter

verify that Φ is defined on a subset of 3ω of ν-measure one. It follows that Φ and
ν together induce a computable measure νΦ on 3ω defined by

νΦ(X) = ν(Φ−1(X))

for all measurable X ⊆ 3ω (see [5, Lemma 2.6]). It follows from the preservation
of randomness theorem ([5, Theorem 3.2]) that the image of a ν-random real
under Φ is a νΦ-random real. In addition, by the no randomness ex nihilo prin-
ciple ([5, Theorem 3.5]), every νΦ-random real is the image of a ν-random real
under Φ. Thus, it follows that the range of a ν∗∗-random continuous function is
a ν∗

Φ-random closed set and every ν∗
Φ-random is in the range of some ν∗∗-random

continuous function.
Thus we have

T (Q) = ν∗∗({F ∈ F(2ω) : ran(F) ∩ Q �= ∅}) = ν∗
Φ({C ∈ C(2ω) : C ∩ Q �= ∅})

for every Q ∈ C(2ω). By the Theorem 1, it follows that T is a computable
capacity.

In the proof of Theorem 3, we showed that if ν∗∗ is a computable mea-
sure on F(2ω) such that the ν∗∗-random functions are total, then the ranges
of the ν∗∗-random functions yield a notion of random closed sets with respect to
some computable measure ν∗

Φ on C(2ω). This raises the following question: Is
there a computable measure ν∗∗ on F(2ω) such that the ranges of the ν∗∗-
random functions are the standard random closed sets?

We will provide a full answer to this question in Sect. 6, but as a first step,
we prove the following.

Proposition 2. Let μr be a symmetric Bernoulli measure on 3ω with r ∈
(0, 1/2). Then the collection of ranges of the μ∗∗

r -random functions is not the
collection of standard random closed sets.

Proof. Let r ∈ (0, 1/2). By Theorem 2, the μ∗∗
r -measure of the collection of

continuous functions F such that 0∞ ∈ ran(F) is equal to
1 − 2r

(1 − r)2
> 0. However,

as shown in [2], no standard random closed set contains a computable real, and
thus the conclusion follows.

A more significant difference between the collection of ranges of the μ∗∗
r -random

functions and the collection of standard random closed sets can be seen by
considering the computable capacity associated to each of these two collections.
First, let μ be the uniform measure on 3ω. Then the capacity Tμ(Q) on C(2ω)
associated to the collection of standard random closed sets (see Theorem 1) can
be shown to satisfy T ([[σ]]) =

(
2
3

)n for every n ∈ ω and every σ ∈ 2<ω of length
n. Thus for x ∈ 2ω, Tμ({x}) = limn→∞ Tμ([[x�n]]) = 0.

Now suppose that r ∈ (0, 1/2). Let ν = μr and let Tr be the capacity from
Theorem 3. Then as we proved Tr({x}) > 0 for every x ∈ 2ω. Thus, if we want
to find a family of random functions such that the ranges of all such functions

Algorithmically Random Functions and Effective Capacities 31

are the standard random closed sets, then we need the capacity T associated to
this family to satisfy T ({x}) = 0 for every x ∈ 2ω.

One such candidate is the collection of μ∗∗
1/2-random functions, for by

Theorem 3, in the case that r = 1/2, we have Tr({x}) = 0 for every x ∈ 2ω.
Is it the case that the ranges of the μ∗∗

1/2-random functions are the standard
random closed sets? To answer this question, we will look more closely at the
μ∗∗
1/2-random functions.

5 Random Online Functions

In this section, we study the collection of functions that are random with respect
to the measure μ∗∗

1/2 induced by the symmetric Bernoulli measure μ1/2 on 3ω. We
will hereafter refer to the μ∗∗

1/2-random functions as the random online functions
due to the absence of 2s in their codes in 3ω, which means that each bit given as
input to such a function immediately (and randomly) yields one bit as output.
Given this absence of 2s, we can equivalently define a random online function to
be given by a representing function f : 2<ω\{ε} → {0, 1}. In this case, each online
function has precisely one representing function. To see this, let (σn)n∈ω be the
canonical listing of 2<ω in length-lexicographical order. Then given x ∈ 2ω, we
define a representing function fx such that fx(σn+1) = x(n) for every n ∈ ω.
One can readily verify that the function FX defined by

Fx(y) = fx(y�1)�fx(y�2)�fx(y�3)� . . .

is an online function, and that every online function can be obtained in this way.
Thus, a function F ∈ F(2ω) is a random online function if and only if F has a
representing function f coded by a Martin-Löf random x ∈ 2ω.

Note that by Proposition 1, every random online function is total. We estab-
lish several additional results.

Theorem 4. No computable real is in the range of a random online function.

Proof. The proof can be obtained by modifying the proof of Theorem 2.4 from
[3], according to which no standard random continuous function is partial.

Corollary 1. No random online function is onto.

Theorem 5. Let F be a random online function and let x ∈ 2ω code the rep-
resenting function of F . If y is Martin-Löf random with relative to x, then
F−1({F (y)}) is a standard random closed set.

Proof (Sketch). We define a map Θ : 2ω → 3ω that maps the join of two reals
x ⊕ y ∈ 2ω to some z ∈ 3ω, where x is the code of the representing function of
a random online function and z is a code of the closed set F−1({F (y)}). One
can verify that Θ induces the uniform measure on 3ω. Given y ∈ MLRx, by van
Lambalgen’s theorem (see [9, Theorem 6.9.1]) the real x ⊕ y is random, and
hence by the preservation of randomness theorem, Θ(x ⊕ y) = z is random with
respect to the measure induced by Θ, namely the uniform measure on 2ω, which
establishes the theorem.

32 D. Cenzer and C.P. Porter

Corollary 2. No random online function is one-to-one.

Proof. Given a random online function F , let let x ∈ 2ω code the representing
function of F . Since F is total, F is defined on some y that is Martin-Löf random
relative to x. Then by Theorem5, F−1({F (y)}) is a random closed set, which is
perfect (as shown in [2]). Thus F is not one-to-one.

By Theorem 2, for a fixed y ∈ 2ω, the probability that a random online function
will have y in its range is 0. In fact, if for each n we let pn be the probability
that a random online function hits [[σ]] for a fixed σ of length n (where F hits
[[σ]] if ran(F) ∩ [[σ]] �= ∅), by considering the cases of f(i) for i ∈ {0, 1}, one can
show that

(i) p1 = 3/4, and
(ii) pn+1 = pn(1 − 1

4pn).

Moreover, one can verify that limn→∞ pn = 0 for each n ≥ 1. Hereafter, we will
refer to the pi’s as hitting probabilities.

Using the notation of the previous section, it follows that T1/2(σ) = pn

for every n and every σ of length n. We can use this fact to determine the
computable measure ν on 3ω with the property that the ν∗-random closed sets
are precisely the ranges of random online functions. Following the proof of the
effective Choquet capacity theorem from [7] to find the values of ν, the key
observation to make is that for each n ∈ ω and each σ ∈ 2<ω of length n,

ν(σ2 | σ) = 2
(pn

pn−1

)
− 1 = 2(1 − 1

4
pn) − 1 = 1 − 1

2
pn

for n ≥ 1 (where p0 = 1). Here ν(σi | σ) is the probability, under ν, that a
random function F hits [[σi]] given that F hits [[σ]]. For each such σ, we thus
have ν(σ0 | σ) = ν(σ1 | σ) = 1

4pn. Since limn→∞ pn = 0, ν(σ2 | σ) approaches 1
while ν(σ0 | σ) and ν(σ1 | σ) both approach 0 as we consider longer and longer
strings σ. Thus one can prove:

Theorem 6. For each random online function F , the range of F is not a stan-
dard random closed set.

Proof. Let μ be the uniform measure on 3ω and let ν be the measure on 3ω as
defined above. Then one can verify that μ/ν is a computable ν-martingale on
3ω, where d : 2<ω → [0,+∞) is a ν-martingale on 3ω if

ν(σ)d(σ) = ν(σ0)d(σ0) + ν(σ1)d(σ1) + ν(σ2)d(σ2).

Given a x ∈ 3ω, for each n ≥ 0 we can write

μ
(
x�(n + 1)

)

ν
(
x�(n + 1)

) =
μ
(
x�(n + 1) | x�n

)

ν
(
x�(n + 1) | x�n

) μ(x�n)
ν(x�n)

,

Since limn→∞ pn = 0, for each k, there is some nk such that pnk
≤ 2−k. Then

for any σ of length greater than nk, we have 1 ≥ ν(σ2 | σ) ≥ 1 − 2−(k+1) and

Algorithmically Random Functions and Effective Capacities 33

ν(σ0 | σ) = ν(σ1 | σ) ≤ 2−(k+2). If x ∈ 3ω is μ-random, then for each n ≥ nk

such that x(n) = 2, which happens roughly 1/3 of the time, we have

μ
(
x�(n + 1)

)

ν
(
x�(n + 1)

) =
1/3

ν
(
(x�n)�2 | x�n

) μ(x�n)
ν(x�n)

≥ 1/3
μ(x�n)
ν(x�n)

,

For each n ≥ nk such that x(n) = 0 or x(n) = 1, which happens roughly 2/3 of
the time, we have for i = 0, 1,

μ
(
x�(n + 1)

)

ν
(
x�(n + 1)

) =
1/3

ν
(
(x�n)�

i | x�n
)ν(x�n) ≥ 1/3

2−(k+2)

μ(x�n)
ν(x�n)

≥ 2k μ(x�n)
ν(x�n)

.

One can verify that limn→∞
μ(x�n+1)
ν(x�n+1) = ∞ for every μ-random x ∈ 3ω. It is well-

known that this implies that no such x can be ν-random, and the conclusion
follows.

It is reasonable to ask which reals are in the range of some random online
function. We give a partial answer to this question by providing a necessary
condition for being a member of the range of some random online function.
We first prove a more general result, which is an extension of a result in [8],
according to which every member of a standard random closed set must have
sufficiently high effective Hausdorff dimension. Recall that K(σ) is the prefix-free
Kolmogorov complexity of σ.

Theorem 7. Let μ∗ be a computable measure on C(2ω) and Tμ the computable
capacity associated to μ. If x is a member of some μ∗-random closed set, then
there is some c such that

K(x�n) ≥ − log Tμ([[x�n]]) − c

for all n.

Proof. Suppose that x is such that for every c, there is some n such that

K(x�n) < − log Tμ([[x�n]]) − c.

We first define

Si = {σ ∈ 2<ω : K(σ) < − log Tμ([[σ]]) − i}.

Next, we let Ŝi consist of those strings in Si with no proper initial segments in
Si, so that [[Ŝi]] = [[Si]]. Lastly, we define

Ui = {Q ∈ C(2ω) : (∃σ ∈ Ŝi)[Q ∩ [[σ]] �= ∅]}.

Then

μ∗(Ui) ≤
∑

σ∈̂Si

μ∗({Q ∈ C(2ω) : Q ∩ [[σ]]} �= ∅) =
∑

σ∈̂Si

Tμ([[σ]]) <
∑

σ∈̂Si

2−K(σ)−i ≤ 2−i,

34 D. Cenzer and C.P. Porter

where the last inequality follows from the fact that
∑

σ∈2<ω 2−K(σ) ≤ 1. Thus,
(Ui)i∈ω forms a μ∗-Martin-Löf test. Now let Q ∈ C(2ω) be such that x ∈ Q.
Then for each i, there is some least n such that x�n ∈ Ŝi, and thus Q ∈ Ui. It
follows that no Q ∈ C(2ω) containing x is μ∗-random.

An order function f : ω → ω is a non-decreasing, unbounded function. Recall
further that a real x ∈ 2ω is complex if there is some computable order function
f such that K(x�n) ≥ f(n) for every n. Let (pn)n∈ω be the collection of hit-
ting probabilities determined by the collection of random online functions. Since
(pn)n∈ω is a computable, strictly decreasing sequence of rationals that converges
to 0, it follows that the function f(n) = − log pn is a computable order function.

This observation, combined with Theorem7, yields:

Corollary 3. If x ∈ 2ω is in the range of a random online function, then

K(x�n) ≥ − log pn − c

for some c ∈ ω. In particular, x is complex.

We conjecture that the converse, or some minor variant thereof, holds as well.

6 Random Online Partial Functions

As we have seen, for each symmetric Bernoulli measure μr on 2ω with r ∈
(0, 1/2), the collection of ranges of the μ∗∗

r -random functions is not the collec-
tion of standard random closed sets. The collection of ranges of random online
functions was, at first glance, a reasonable candidate for being equal to the col-
lection of standard random closed sets, but this too fails by Theorem6. Thus,
we cannot use symmetric Bernoulli measures to obtain such a class of random
functions.

As discussed in Sect. 4, the capacity T associated to the standard random
closed sets satisfies T ({x}) = 0 for every x ∈ 2ω. Thus, for any collection of
random functions the ranges of which are the standard random closed sets, we
need the capacity associated with this collection of functions to converge to zero
quickly. Note, however, that by Theorem 2, as we increase the possibility of delay
in our functions, this actually increases the probability that we hit a given real.

The first step to a solution is to introduce a notion of random online partial
function. As with the representing functions of continuous functions on 2ω, we
define an online partial function to be given by a {0, 1, 2}-valued representing
function. The values 0 and 1 play the same role as before, but the 2s play a
different role. If F is the partial function given by a {0, 1, 2}-valued representing
function f , for each σ ∈ 2<ω with f(σ) = 2, we have F (X)↑ for every X � σ.
That is, instead of causing our function to delay at a given node, a node labelled
with a ‘2’ indicates that our function is undefined on all reals extending this
node.

Observe that each symmetric Bernoulli measure μr on 3ω yields a notion of
random online partial function. However, for certain choices of r, we are not even
guaranteed to have any functions with non-empty domain.

Algorithmically Random Functions and Effective Capacities 35

Proposition 3. If μr is a computable symmetric Bernoulli measure on 3ω, then
the probability that a μ∗∗

r -random online partial function has non-empty domain
is 0 if r < 1/4 and is

4r − 1
4r2

if r ≥ 1/4.

Proof. An online partial function F has non-empty domain if and only if there
is some x ∈ 2ω such that f(x�n) �= 2 for every n > 0. Let A = {0, 1}, so that
f(σ) ∈ A with probability p = 2r for every σ ∈ 2<ω \ {ε}. Applying Lemma 1,
the μ∗∗-measure of functions F such that there exists x ∈ 2ω with f(x�n) ∈ A
for all n equals 0 if r < 1/4 and equals 2p−1

p2 = 4r−1
4r2 if r ≥ 1/4.

The final step to obtaining a collection of random functions whose ranges are
the standard random closed sets is to consider a wider class of measures, namely,
computable, symmetric generalized Bernoulli measures on 3ω. Such a measure is
given by a computable sequence of rationals r = (ri)i∈ω with ri ≤ 1/2 for every
i such that for each n and each σ of length n, μr(σ0 | σ) = μ(σ1 | σ) = rn · μ(σ)
and μr(σ2 | σ) = (1 − 2rn)μ(σ). We can now prove the following.

Theorem 8. Let T be an computable capacity on C(2ω) such that there is a
computable sequence of rationals (pi)i∈ω satisfying

(i) for each n, T ([[σ]]) = pn for every σ ∈ 2n, and
(ii) limn→∞ pn = 0.

Then there is a computable, generalized symmetric Bernoulli measure μr on 3ω

such that the ranges of the μ∗∗
r -random online partial functions are precisely the

random closed sets associated with the capacity T . Moreover, in the case that
limn→∞

pn+1
pn

= p for some p ∈ [0, 1], we have limn→∞ rn = p
2 .

Proof. To obtain the measure μr, we suppose we have a collection of μr-random
functions that yield the hitting probabilities (pn)n∈ω then follow the proof of
Theorem 2 to recover the values of the sequence (ri)i∈ω.

Without loss of generality, we can consider the probability of hitting [[0n]] for
each n. By convention, p0 = T (∅) = 1. For n ≥ 0, to determine the relationship
between pn+1 and pn, we consider the possible initial values f(0) and f(1) of
a representing function f : 2<ω \ {ε} → {0, 1, 2} corresponding to an arbitrary
F ∈ F(2ω). Due to our new interpretation of 2s, we only have a total of four
cases to consider:

Case 1 : f(0) �= 0 and f(1) �= 0, then ran(F) ∩ [[0n+1]] = ∅.
Case 2 : If f(0) = f(1) = 0, which occurs with probability r2n+1, then ran(F) ∩

[[0n+1]] �= ∅ with probability 1 − (1 − pn)2 = 2pn − p2n.
Case 3 : f(i) = 0 and f(1 − i) = 1, which occurs with probability 2r2n+1, then

ran(F) ∩ [[0n+1]] �= ∅ with probability pn.
Case 4 : f(i) = 0 and f(1 − i) = 2, which occurs with probability 2rn+1(1 −

2rn+1), then ran(F) ∩ [[0n+1]] �= ∅ with probability pn.

36 D. Cenzer and C.P. Porter

Combining these cases yields

pn+1 = (2pn − p2n)r2n+1 + 2pnr2n+1 + 2rn+1(1 − 2rn+1)pn,

which simplifies to
pn+1 = 2pnrn+1 − p2nr2n+1.

Solving for rn+1 yields

rn+1 =
pn+1

pn(1 +
√

1 − pn+1)
.

It follows that the capacity induced by the family of μ∗∗
r -random online partial

functions is the capacity T . Now, the map Φ that maps a μ∗∗
r -random online

partial function F to its range is still a computable map, as we can effectively
determine those basic open neighborhoods [[σ]] on which F is undefined. Then if
we let ν∗ be the computable measure on C(2ω) induced by Φ and μr (as in the
proof of Theorem 3), then we will have

T (Q) = μ∗∗
r ({F ∈ F(2ω) : ran(F) ∩ Q �= ∅}) = ν∗({C ∈ C(2ω) : C ∩ Q �= ∅}).

for every Q ∈ C(2ω). Thus, the ranges of the μ∗∗
r -random online partial functions

are the random closed sets associated to T .
Lastly, observe that

lim
n→∞ rn = lim

n→∞
pn+1

pn(1 +
√

1 − pn+1)
=

(
lim

n→∞
pn+1

pn

)(
lim

n→∞
1

1 +
√

1 − pn+1

)
=

p

2
.

Theorem 9. Let r = (ri)i∈ω be defined by

ri =
2/3

1 +

√
1 −

(
2
3

)i
.

Then the collection of ranges of the μ∗∗
r -random online partial functions is equal

to the collection of the standard random closed sets.

Proof. Let T be the capacity associated to the standard random closed sets. As
discussed in Sect. 4, we have T ([[σ]]) =

(
2
3

)n

for every n ∈ ω. Then T satisfies
the conditions of Theorem 8. By the proof of Theorem 8, if μr is the computable,
symmetric generalized Bernoulli measure on 3ω where

ri =
2/3

1 +

√
1 −

(
2
3

)i

for every i ∈ ω, then the ranges of the μ∗∗
r -random online partial functions are

precisely the standard random closed sets.

Algorithmically Random Functions and Effective Capacities 37

References

1. Axon, L.M.: Algorithmically random closed sets and probability. PhD thesis, Uni-
versity of Notre Dame (2010)

2. Barmpalias, G., Brodhead, P., Cenzer, D., Dashti, S., Weber, R.: Algorithmic ran-
domness of closed sets. J. Logic Comput. 17, 1041–1062 (2007)

3. Barmpalias, G., Brodhead, P., Cenzer, D., Remmel, J.B., Weber, R.: Algorithmic
randomness of continuous functions. Arch. Math. Logic 46, 533–546 (2008)

4. Barmpalias, G., Cenzer, D., Remmel, J.B., Weber, R.: k-triviality of closed sets
and continuous functions. J. Logic Comput. 19, 3–16 (2009)

5. Bienvenu, L., Porter, C.: Strong reductions in effective randomness. Theoret. Com-
put. Sci. 459, 55–68 (2012)

6. Brodhead, P., Cenzer, D., Remmel, J.B.: Random continuous functions. Electron.
Notes Theor. Comput. Sci. 167, 275–287 (2007)

7. Cenzer, D., Brodhead, P., Toska, F., Wyman, S.: Algorithmic randomness and
capacity of closed sets. Log. Methods Comput. Sci. 6, 1–16 (2011)

8. Diamondstone, D., Kjos-Hanssen, B.: Martin-Löf randomness and galton-watson
processes. Ann. Pure Appl. Logic 163, 519–529 (2012)

9. Downey, R., Hirschfeldt, D.: Algorithmic Randomness Complex. Springer,
Heidelberg (2011)

10. Martin-Lof, P.: The definition of random sequences. Inf. Control 9, 602–619 (1966)

Where Join Preservation Fails in the Bounded
Turing Degrees of C.E. Sets

Nadine Losert(B)

Department of Mathematics and Computer Science,
Heidelberg University, Heidelberg, Germany

nadine.losert@informatik.uni-heidelberg.de

Abstract. We will look at the question for which bounded Turing reduci-
bilities r and r′ such that r is stronger than r′ join preservation holds,
i.e. for which r and r′ every join in the computably enumerable (c.e.)
r-degrees is also a join in the c.e. r′-degrees. We will also have a look at the
corresponding question for meets. We will consider the class of monotone
admissible (uniformly) bounded Turing reducibilities, i.e. the reflexive and
transitive Turing reducibilities with use bounded by a function that is
contained in a (uniformly computable) family of strictly increasing com-
putable functions. This class contains for example ibT- and cl-reducibility.
We will show that join preservation does not hold for cl and any admissi-
ble uniformly bounded Turing reducibility. We will show that, on the other
hand, for all monotone admissible bounded Turing reducibilities r and r′

such that r is stronger than r′, meet preservation holds.

1 Introduction

Various notions of reducibilities stronger than Turing reducibility have been
studied in computability theory, e.g. the so called classical strong reducibili-
ties: one-one reducibility (1-reducibility), many-one reducibility (m-reducibility),
truth-table reducibility (tt-reducibility), and weak truth-table reducibility (wtt-
reducibility) (see e.g. Odifreddi [13]). More recently, one has started to look
at the so called strongly bounded Turing reducibilities: identity bounded Turing
reducibility (ibT-reducibility) and computable Lipschitz reducibility (cl-reducibi
lity) which are defined in terms of Turing functionals where the use is bounded
by the identity function and the identity function plus a constant and which were
introduced by Soare [14] and Downey, Hirschfeldt, and LaForte [9,10], respec-
tively. cl-reducibility is not only a notion of relative complexity but can also be
viewed as a notion of relative randomness and is hence important in the field
of algorithmic randomness (see the monograph [8] by Downey and Hirschfeldt
for more background). The degree structures of the strongly bounded Turing
reducibilities on the c.e. sets have been studied intensively. Barmpalias [5] showed
that the partial ordering (Rcl,≤) of the c.e. cl-degrees has no maximal elements;

I would like to thank my advisor, Klaus Ambos-Spies, for his help and guidance
during my work on this paper.

c© Springer International Publishing Switzerland 2015
R. Jain et al. (Eds.): TAMC 2015, LNCS 9076, pp. 38–49, 2015.
DOI: 10.1007/978-3-319-17142-5 5

Where Join Preservation Fails in the Bounded Turing Degrees of C.E. Sets 39

Fan and Lu [12] showed that there are maximal pairs hence the partial orderings
of the ibT- and cl-degrees are not upper semilattices, and Barmpalias and Lewis
[6] and Day [7] showed that these partial orderings are not dense. Ambos-Spies,
Bodewig, Kräling, and Yu [3] embedded the nonmodular lattice N5 into the c.e.
ibT- and cl-degrees thereby showing that these partial orderings are not distrib-
utive, and Ambos-Spies [1] proved some global results, e.g. showed that the first
order theories of the partial orderings of the c.e. ibT- and cl-degrees are unde-
cidable. Recently, Ambos-Spies [2] introduced a more general class of bounded
Turing reducibilities, the uniformly bounded Turing reducibilities. A reducibility
r is a (uniformly) bounded Turing reducibility ((u)bT-reducibility) if there is a
family F of (uniformly) computable functions such that, for all sets A and B, A
is r-reducible to B if and only if A is Turing reducible to B with use bounded by
some function f in F . We call a (uniformly) bounded Turing reducibility admis-
sible if it is reflexive and transitive and we call it monotone if it is induced by
a family of strictly increasing functions. Examples of monotone admissible ubT-
reducibilities are the strongly bounded Turing reducibilities ibT and cl as well as
the linearly bounded and the primitive recursively bounded Turing reducibilities.
An example of an admissible monotone bT-reducibility which is not uniformly
bounded is wtt-reducibility. Here, we will only look at the monotone admissible
bT-reducibilities.

If a reducibility r is stronger than a reducibility r′, of course, every upper
r-bound for some sets A and B is also an upper r′-bound for A and B and the
same holds for lower bounds. But this does not necessarily imply that least upper
r-bounds (joins) have to be a least upper r′-bounds, too. Again, the same holds
for greatest lower bounds (meets). Here, we ask the question for which reducibil-
ities r and r′, joins and meets in the c.e. r-degrees are preserved in the c.e. r′-
degrees. We say r-r′ join (meet) preservation holds if, for all noncomputable c.e.
sets A, B, and C such that the r-degree of C is the join (meet) of the r′-degrees of
A and B, it holds that the r′-degree of C is the join (meet) of the r′-degrees of
A and B, too.

For most of the classical reducibilities mentioned above, the structure of
the c.e. degrees is an upper semilattice where the join of the degrees of two
sets A and B is induced by the effective disjoint union A ⊕ B. So, for two
such reducibilities where r is stronger than r′, of course, r-r′ join preservation
holds. So, for example, m-tt join preservation, tt-wtt join preservation and wtt-T
join preservation hold. For reducibilities r whose degree structures are not an
upper semilattice with join induced by the effective disjoint union, the question
of r-r′ join preservation is less obvious. For the classical strong reducibilities,
1-reducibility is an example of such a reducibility, but, as one can easily show
(see Lemma 2 below), 1-m join preservation holds. It easily follows that r-r′

join preservation holds for all classical strong reducibilities where r is stronger
than r′. For the (uniformly) bounded Turing reducibilities, the question of join
preservation is less straightforward. Ambos-Spies, Ding, Fan, and Merkle [4]
showed that ibT-cl join preservation holds and Ambos-Spies, Bodewig, Kräling,
and Yu (see [1]) showed that cl-wtt join preservation holds, too. This may lead

40 N. Losert

one to conjecture that – just as in case of the classical strong reducibilities – r-r′

join preservation holds for any monotone admissible (u)bT-reducibilities where
r is stronger than r′, too. As we will show here, however, this is not the case. In
fact, for r = ibT,cl and for any monotone amissible ubT-reducibility r′ which is
strictly stronger than cl, r-r′ join preservation fails (see Theorem 1 below).

We complement our main result by considering meet preservation in the
monotone admissible bt-reducibilities, too. There we generalize the result in [4]
that ibT-cl meet preservation holds by showing that indeed, r-r′ meet preserva-
tion holds for all monotone admissible bT-reducibilities r and r′ such that r is
stronger than r′ (see Lemma 5).

So, for the monotone admissible (uniformly) bounded Turing reducibilities,
meet preservation holds in general while, in some instances, join preservation
fails. For the classical reducibilities, i.e. the strong reducibilities together with
Turing reducibility, the converse is true. There join preservation holds in general,
whereas, as Downey and Stob [11] showed, wtt-T meet preservation fails.

2 Preliminaries

A reducibility r is admissible if it is reflexive and transitive. For two reducibilities
r and r′, we say that r is stronger than r′ (denoted by r � r′) if, for all sets A
and B, from A ≤r B, it follows that A ≤r′ B, and r is strictly stronger than r′

(r ≺ r′) if r � r′ and r �= r′.

Definition 1. For two admissible reducibilities r and r′, we say that r-r′ join
preservation holds (in the c.e. degrees) if, for any noncomputable c.e. sets A, B,
and C,

degr(A) ∨ degr(B) = degr(C) ⇒ degr′(A) ∨ degr′(B) = degr′(C)

holds. Otherwise, we say that r-r′ join preservation fails. Similarly, r-r′ meet
preservation holds (in the c.e. degrees) if, for any noncomputable c.e. sets A, B,
and C,

degr(A) ∧ degr(B) = degr(C) ⇒ degr′(A) ∧ degr′(B) = degr′(C)

holds and r-r′ meet preservation fails otherwise.

Let {ΦX
e : e ≥ 0} be a fixed enumeration of all Turing functionals obtained by

Gödelization of the oracle Turing machines. Then, we obtain an enumeration
{ΦX,f

e : e ≥ 0} of all f -bounded Turing functionals by bounding the use of each
ΦX

e on input x by f(x) (by making the computation divergent in case of longer
oracle queries). For any pair of sets A and B, A is f -bounded Turing reducible
to B (denoted by A ≤f−T B) if and only if there is an e such that A = ΦB,f

e . By
letting f = id, we obtain an enumeration {Φ̂X

e } of all identity bounded Turing
functionals.

We call a reducibility r a bounded Turing reducibility (bT-reducibility) if
there is a family F of computable functions such that A ≤r B if and only if

Where Join Preservation Fails in the Bounded Turing Degrees of C.E. Sets 41

A ≤f−T B for some function f ∈ F ; in this case we say that r is induced
by F . If F is uniformly computable, r is called a uniformly bounded Turing
reducibility (ubT-reducibility). We call a bounded Turing reducibility monotone
if it is induced by a family F which consists only of strictly increasing functions.
Note that ibT and cl are ubT-reducibilities which are induced by FibT = {id}
and Fcl = {id + e : e ≥ 0}, respectively.

Lemma 1 (Ambos-Spies [2]). Let r and r′ be admissible ubT-reducibilities.
Then, r � r′ if and only if there are uniformly computable families F and F ′

that induce r and r′, respectively, such that F ≤∗ F ′, i.e. for every function
f ∈ F , there is a function f ′ ∈ F ′ such that f(x) ≤ f ′(x) for almost all x ∈ ω.

3 Join Preservation

It is a straightforward observation that r-r′ join preservation holds for reducibil-
ities r and r′ such that r is stronger than r′ and such that the structures of the
c.e. r-degrees and of the c.e. r′-degrees form upper semilattices with join induced
by the effective disjoint union. We will now observe (by giving an example) that
r-r′ join preservation may hold even if the structure of the c.e. r-degrees does
not form an upper semilattice.

Lemma 2. 1-m join preservation holds.

Proof. Given c.e. sets A0, A1, and B such that

deg1(A0) ∨ deg1(A1) = deg1(B) (1)

holds, we have to show that degm(A0) ∨ degm(A1) = degm(B) holds, too. As
we know that degm(A0) ∨ degm(A1) = degm(A0 ⊕ A1), we only have to show
that B =m A0 ⊕ A1. It is obvious that Ai ≤1 A0 ⊕ A1 via fi(x) = 2x + i for
i = 0, 1, so, it follows from (1) that B ≤1 A0 ⊕ A1, hence B ≤m A0 ⊕ A1. On
the other hand, if we fix gi such that Ai ≤1 B via gi for i = 0, 1, it follows that
A0 ⊕ A1 ≤m B via g where g(2x + i) = gi(x) for all x ≥ 0 and for i = 0, 1. �
More examples of reducibilities r and r′ where the structure of r does not form
an upper semilattice but where r-r′ join preservation still holds have been given
in the bounded Turing degrees.

Lemma 3 (Ambos-Spies, Ding, Fan, and Merkle [4]; Ambos-Spies [1]).
ibT-cl, ibT-wtt, and cl-wtt join preservation hold.

This result might lead to the assumption that cl-r join preservation holds for all
reducibilities r with cl � r � wtt, but this is not the case. We will now show that
cl-r join preservation even fails for all admissible monotone ubT-reducibilities
with cl ≺ r.

Theorem 1. Let r be a monotone admissible ubT-reducibility such that cl ≺ r.
Then, for r′ = ibT, cl, r′-r join-preservation fails.

42 N. Losert

Proof. By Lemma 3, ibT-cl join preservation holds. So, it is enough to prove the
theorem for r′ = ibT. Since, by cl ≺ r, any upper ibT-bound for two sets A0

and A1 is also an upper r-bound for A0 and A1, it suffices to construct c.e. sets
A0, A1, B, and C such that degibT(A0)∨ degibT(A1) = degibT(B) and such that
A0, A1 ≤r C but B �≤r C. Let F be a uniformly computable admissible family
of strictly increasing functions such that r is induced by F . As F is uniformly
computable, we can fix a computable function f such that f ≥∗ h for all h ∈ F .
As cl ≺ r, hence r �� cl, F �≤∗ {id+e : e ≥ 0} holds, so, there is a function g ∈ F
such that {g} �≤∗ {id + e : e ≥ 0}, i.e. for any e ≥ 0, g(x) > x + e for infinitely
many x. Since g is strictly increasing, this implies that for all e ≥ 0, g(x) > x+e
for all but finitely many x, so, id + e ≤∗ g for all e ≥ 0. So, in order to complete
the proof, it suffices to show that the following lemma holds.

Lemma 4. Let g be a strictly increasing computable function such that
id + e ≤∗ g for all e and let f be any computable function (in particular, f
can be chosen as above). Then, there are c.e. sets A0, A1, B and C such that the
following hold.

degibT(A0) ∨ degibT(A1) = degibT(B) (2)
A0, A1 ≤g-T C (3)

B �≤f-T C. (4)

Proof. We will enumerate c.e. sets A0, A1, B, and C such that (2) to (4) hold
using a tree argument. The construction will use ideas introduced in the proof
that the nondistributive lattice N5 can be embedded into the partial orderings
(RibT,≤) and (Rcl,≤) in [3]. Our notation will be the same as in that proof. To
guarantee that (3) holds and that B is an upper ibT-bound for A0 and A1, we
will satisfy the following global permitting (or coding) requirement for i = 0, 1.

(x ↘s+1 Ai ⇒ ∃y ≤ x(y ↘s+1 B)) & (x ↘s+1 Ai ⇒ ∃y ≤ g(x)(y ↘s+1 C))
(5)

To guarantee that B is in fact the least upper ibT-bound for A0 and A1, i.e.
that (2) holds, we will meet the following join requirements for e ≥ 0.

Qe : A0 = Φ̂
We0
e1 & A1 = Φ̂

We0
e2 ⇒ B ≤ibT We0 (e = 〈e0, e1, e2〉).

Finally, we will satisfy condition (4) by meeting the nonordering requirements

Pe : B �= ΦC,f
e

for e ≥ 0. Before we give the actual construction, we will explain the ideas
underlying the strategies for meeting the individual requirements and how to
combine them.

As the join requirements Qe are conditional requirements whose hypoth-
eses are not decidable, we have to guess on the correctness of the hypotheses.

Where Join Preservation Fails in the Bounded Turing Degrees of C.E. Sets 43

We define the length of agreement between A0 and Φ̂
We0
e1 and between A1 and

Φ̂
We0
e2 at stage s by letting

l(e, s) = max{x : ∀y < x(A0,s(y) = Φ̂
We0,s
e1,s (y) & A1,s(y) = Φ̂

We0,s
e2,s (y))}.

Since the Φ̂ are bounded functionals, lims→∞ l(e, s) ≤ ∞ exists and the following
holds.

(A0 = Φ̂
We0
e1 & A1 = Φ̂

We0
e2) ⇔ lim

s→∞ l(e, s) = ∞ ⇔ lim sup
s→∞

l(e, s) = ∞. (6)

In the following, we call a join requirement Qe infinitary if its hypothesis is true
(i.e., if lims→∞ l(e, s) = ∞) and we call Qe finitary otherwise. The strategy
for meeting the join requirements is the join strategy used by Ambos-Spies,
Bodewig, Kräling, and Yu in [3]. For meeting an infinitary join requirement Qe,
we guarantee B ≤ibT We0 by permitting (up to some computable subset of B).
We work with a computable set S = {sn : n ≥ 0} of Qe-expansionary stages,
i.e., s0 < s1 < s2 < . . . and l(e, s0) < l(e, s1) < l(e, s2) < We ensure that
numbers put into B between stages sn + 1 and sn+1 + 1 are greater than sn + 1.
So, it suffices to guarantee that if a number x enters B at a stage s + 1 where
s ∈ S and x < l(e, s) then a number ≤ x will be enumerated into We0 after stage
s. This change in We0 is forced by putting a sufficiently small number into A0

or A1. As one can easily check, this is achieved by guaranteeing the following.

x ↘s+1 B & x < l(e, s) ⇒∃y < min(x′, l(e, s))(y ↘s+1 A0 or y ↘s+1 A1)
where x′ = μz(z > x & z /∈ We0,s)

(7)

For meeting the nonordering requirements Pe, we will use the Friedberg-Muchnik
strategy. For a fixed unused number x, we ensure B(x) �= ΦC,f

e (x) by waiting for
a stage s such that ΦCs,f

e,s (x) = 0. Then, at stage s + 1, we put x into B and,
in order to preserve the computation ΦCs,f

e,s (x), we impose a restraint of length
f(x) + 1 on C, thereby ensuring

B(x) = 1 �= 0 = Bs(x) = ΦCs,f
e,s (x) = ΦC,f

e (x). (8)

In the presence of the join requirements and the global permitting requirement,
this strategy needs some amendments. To describe the potential conflicts, con-
sider the situation in which we wish to meet requirement Pe and simultaneously
satisfy the global permitting requirement (5) and follow the join strategy (7) for
a single infinitary join requirement Qe′ of higher priority.

Now, when we put a number x into B at stage s + 1 in order to guarantee
(8), then, according to (7), we have to put a number y < x′ into A0 or A1 at
stage s + 1 where

x′ = μz(z > x & z /∈ We′
0,s).

(In our case, we choose to put y into A1.) If we do so, then, as long as x ≤ y,
this is consistent with the first part of condition (5). But, for the second part of
this condition, we have to put a number z ≤ g(y) into C. In case that z ≤ f(x),

44 N. Losert

however, this will injure the restraint imposed on C in order to preserve the
computation ΦCs,f

e,s (x). In order to overcome this problem, we will make sure
that we can find a number y such that f(x) < y < x′ where y is not yet in
A1 and the interval [y, g(y)] is not yet completely enumerated into C. (Then
putting y into A1 and some new number z with y ≤ z ≤ g(y) into C makes the
enumeration of x into B compatible with (5) and (7).)

For that matter, we will assign a sufficiently long interval In of unused
numbers to Pe. In will contain finitely many candidates xn,k for a possible
attack on Pe where these numbers are chosen so that xn,k+1 > f(xn,k) and
g(xn,k) ≥ xn,k + k + 2 for all k. (Note that the latter can be achieved since,
by choice of g, g(y) > y + k + 2 for all sufficiently large y; also note that
g(xn,k) ≥ xn,k + k + 2 implies g(y) ≥ y + k + 2 for all y ≥ xn,k.) We will
arrange that, for some k (and some stage s), (xn,k, xn,k+1] ⊆ We′

0,s where xn,k

is not in Bs, xn,k+1 is not in A1,s and the interval [xn,k+1, g(xn,k+1)] is not
completely contained in Cs. (Hence, for x = xn,k and y = xn,k+1, y < x′ whence
we can ensure (8) and simultaneously obey (5) and (7) by putting xn,k into B,
xn,k+1 into A1, and some unused number from the interval [xn,k+1, g(xn,k+1)]
into C at stage s + 1.) In order to ensure (xn,k, xn,k+1] ⊆ We′

0
for some k, we

will successively and in decreasing order put numbers w from In into A0 at
stages s + 1 where l(e, s) is greater than the endpoint of In. This forces We′

0

to respond by enumerating more and more numbers from In (or smaller ones).
As we will argue, this implies that, at some point s, there will be an interval
(xn,k, . . . xn,k+1] ⊂ In such that the enumeration of the numbers ≥ xn,k + 1
from In into A0 has forced all the numbers xn,k +1, . . . , xn,k+1 into We′

0
. (In the

actual construction, all the numbers actually have to be forced simultaneously
into all sets We′

0
attached to the infinitary higher priority join requirements, but

we will show that this can be achieved.) So we can use xn,k for an attack on
Pe – provided that xn,k �∈ Bs, xn,k+1 �∈ A1,s and [xn,k+1, g(xn,k+1)] �⊆ Cs.

The latter, however, is not trivially true, since to make the enumeration of
w into A0 compatible with (5) simultaneously we have to put a trace wB ≤ w
into B and a trace wC ≤ g(w) into C. So whenever we put w into A0, then,
simultaneously we put w into B (which is compatible with (7) since w goes
simultaneously into A0) and a number from the interval [w, g(w)) into C. Since
we put only numbers w > xn,k into A0 this procedure also puts only numbers
> xn,k into B and no numbers into A1 hence guarantees xn,k �∈ Bs and xn,k+1 �∈
A1,s. To ensure that [xn,k+1, g(xn,k+1)] �⊆ Cs, however, we have to choose the
trace wC ∈ [w, g(w)) to be put into C carefully. Here we let wC = w + k′ + 1
for the unique k′ such that w ∈ (xn,k′ , xn,k′+1]. Note that, by choice of the
numbers xn,k′ this ensures that wC ≤ g(w). On the other hand, this ensures that
xn,k+1 + k + 2 is not enumerated into C since, for w ≤ xn,k+1, wC ≤ w + k + 1
while, for w > xn,k+1 < xn,k+1 + k + 2, wC ≥ w + (k + 1) + 1 > xn,k+1 + k + 2.

This completes the discussion of the basic conflicts among the different goals
of the construction and how these conflicts can be resolved. We now turn to the
actual construction.

Where Join Preservation Fails in the Bounded Turing Degrees of C.E. Sets 45

We implement the guesses about which of the join requirements are infinitary
on the full binary tree T = {0, 1}<ω. A node α codes a guess about the first n
join requirements Q0, . . . ,Qn−1 where, for e < n, α(e) = 0 codes the guess that
Qe is infinitary and α(e) = 1 codes the guess that Qe is finitary. So the true path
f : ω → {0, 1} of the construction is defined by

f(e) =

{
0 if A0 = Φ̂

We0
e1 & A1 = Φ̂

We0
e2

1 otherwise.

For each node α of length e there is a strategy Pα for meeting requirement Pe

which is based on the guess α. We will show that the strategy Pf�e on the true
path will succeed in meeting Pe.

At any stage s of the construction we have an approximation δs of f � s, i.e., a
guess which of the first s join requirements are infinitary. For the definition of δs,
first we inductively define α-stages for each node α as follows. Each stage s ≥ 0
is a λ-stage. If s is an α-stage, then we call s α-expansionary if l(|α|, s) > l(|α|, t)
for all α-stages t < s, and we call s an α0-stage if s is α-expansionary and an
α1-stage if s is an α-stage but not α-expansionary. Now, for each s ≥ 0, let
δs ∈ T be the unique α of length s such that s is an α-stage. So, the node δs

represents the guess at which of Q0, . . . Qs−1 are infinite which is made at the
end of stage s. It easily follows from (6) that the true path is the leftmost path
visited infinitely often in the construction.

Claim 1 (True Path Lemma). f = lim infs→∞ δs, i.e., for any α, α � f if and
only if α � δs for infinitely many s and there are only finitely many s such that
δs <L α.

The intervals In which might be assigned to the strategies for meeting the
nonordering requirements are inductively defined as follows, where the nth inter-
val In consists of n(xn,0 + 1) subintervals In,k = (xn,k, xn,k+1].

x0,0 = μx(g(x) ≥ x + 2)
xn,k = μx(x > f(xn,k−1) & g(x) ≥ x + k + 2)

for n ∈ ω and 1 ≤ k ≤ n(xn,0 + 1)
xn+1,0 = μx(x > xn,n(xn,0+1) + n(xn,0 + 1) + 2 & g(x) ≥ x + 2) for n ∈ ω

In,k = (xn,k, xn,k+1] for n ∈ ω and 0 ≤ k ≤ n(xn,0 + 1) − 1

In =
n(xn,0+1)−1⋃

k=0

In,k

Note that this definition ensures that xn,k+1 > f(xn,k), g(w) ≥ w + k + 2 for
w ∈ In,k and g(w) < xn+1,0 for w ∈ In.

For a node α of length e, we call a number x ∈ In ∪ {xn,0} α-safe at stage s if

x = xn,k for some k with 0 ≤ k ≤ n(xn,0 + 1) − 1 (9)

x /∈ Bs, xn,k+1 /∈ A1,s and xn,k+1 + k + 2 /∈ Cs, and (10)

46 N. Losert

∀e′([e′ < e & α(e′) = 0] ⇒ In,k ⊆ We′
0,s) (11)

hold where e′ = 〈e′
0, e

′
1, e

′
2〉.

Using the above definitions, the construction of the sets A0, A1, B, and C is
as follows where stage 0 is vacuous (i.e., A0,0 = A1,0 = B0 = C0 = ∅).

Stage s + 1. A strategy Pα with |α| = e requires attention at stage s + 1 if
α � δs, Pα is not satisfied at the end of stage s, and one of the following cases
applies.

(i) No interval is assigned to Pα at the end of stage s.
(ii) Interval In =

(
xn,0, xn,n(xn,0+1)

]
is assigned to Pα at the end of stage s,

∀e′([e′ < e & α(e′) = 0] ⇒ l(e′, s) > xn,n(xn,0+1)) (12)

holds, no number x ∈ In ∪ {xn,0} is α-safe at stage s, and In �⊆ A0,s.
(iii) Interval In is assigned to Pα at the end of stage s, (12) holds, and there

is a number x ∈ In ∪ {xn,0} such that x is α-safe at stage s and Bs(x) =
ΦCs,f

e,s (x) = 0.

Fix α minimal such that Pα requires attention (as Pδs requires attention, there
is such an α). Declare that Pα receives attention or becomes active, initialize
all strategies Pβ with α < β (i.e., if an interval is assigned to Pβ then cancel
this assignment and if Pβ had been satisfied before, then declare Pβ to be
unsatisfied), and perform the following action according to the case via which
Pα requires attention.

(i) For the least n > e, s such that the interval In has not been assigned to any
strategy before, assign In to Pα.

(ii) Let y be the greatest number in In \A0,s. Put y into A0 and B and, for the
unique k such that y ∈ In,k, put y + k + 1 into C.

(iii) Let x be the greatest α-safe number in In ∪ {xn,0} such that Bs(x) =
ΦCs,f

e,s (x) = 0. Let k be the unique number such that x = xn,k. Put x into
B, xn,k+1 into A1, and xn,k+1+k+2 into C. Then, declare Pα to be satisfied.

This completes the construction. We will prove a series of claims to show that
the construction satisfies all of our requirements. The claims will essentially
be the same as in the proof of Theorem 3.2 in [3]. The first of these claims is
straightforward and we omit the proof.

Claim 2. Every strategy Pα on the true path (i.e., α � f) is initialized only
finitely often and requires attention only finitely often. Moreover, for any such
strategy, there is an interval In which is permanently assigned to it.

Claim 3. The global permitting requirement (5) is satisfied.

Proof. It is crucial to note that numbers from In ∪ {xn,0} ∪ {g(x) : x ∈ In} can
be enumerated into any of the sets under construction at stage s+1 only by the
strategy to which In is assigned at this stage. So, it follows by a straightforward
induction that if a strategy Pα acts via (ii) at stage s + 1 then, for the number

Where Join Preservation Fails in the Bounded Turing Degrees of C.E. Sets 47

y there, neither y is in Bs nor y + k + 1 is in Cs. And, similarly, if a strategy Pα

acts via (iii) at stage s + 1 then neither xn,k is in Bs nor xn,k+1 is in A1,s nor
xn,k+1 + k + 2 is in Cs where the latter follows from our observations preceding
the construction. This easily implies the claim, since a number x is enumerated
into A0 at some stage s + 1 only if some strategy Pα acts at stage s + 1 via
(ii), hence x ∈ In,k for some k and, at stage s + 1, x is enumerated into B and
x+k+1 is enumerated into C where x+k+1 ≤ g(x) by choice of In,k; and since
a number x is enumerated into A1 at some stage s + 1 only if some strategy Pα

acts at stage s + 1 via (iii), hence x = xn,k+1 for some n, k and, at stage s + 1,
xn,k < xn,k+1 is enumerated into B and xn,k+1 + k + 2 is enumerated into C
where by choice of xn,k+1, xn,k+1 + k + 2 ≤ g(x).

Claim 4. The join requirements Qe are met.

Proof. The argumentation is very similar to the one in the proof of Claim 5
in the proof of Theorem 3.2 in [3]. We fix e = 〈e0, e1, e2〉 and assume w.l.o.g.
that Qe is infinitary, so, α0 � f for α = f � e. Hence there are infinitely many
α0-stages. By Claims 1 and 2, we can fix an α0-stage s0 > e such that no
strategy Pβ with β ≤ α0 becomes active after this stage. Let S = {sn : n ≥ 0}
be the set of the α0-stages ≥ s0. Then, S is computable, s0 < s1 < s2 < . . .,
and l(e, s0) < l(e, s1) < l(e, s2) < So, as explained in the discussion of the
strategy for meeting the requirements Qe, it suffices to show that (7) holds for
s ∈ S. But this is immediate by construction since at a stage sm + 1 only a
strategy Pβ with α0 � β may act. Namely, if Pβ acts via (ii) then the number
x enumerated into B is simultaneously enumerated into A0 and if Pβ acts via
(iii) then the claim follows from the corresponding action by β-safeness of the
number x put into B.

Claim 5. The nonordering requirements Pe are met.

Proof. For fixed e, assume for a contradiction that Pe is not met. Exactly as in
[3], we can then argue that for α = f � e, an interval In becomes permanently
assigned to Pα at some stage s1+1, that there is no number x ∈ In ∪{xn,0} that
is α-safe at any stage s′ > s1, and that all numbers in In are enumerated into
A0 in decreasing order after stage s1 +1 according to clause (ii) in the definition
of requiring and receiving attention. As in [3], for x ∈ In, let tx > s1 be the
α-stage such that x is enumerated into A0 at stage tx + 1. Then (12) holds for
s = tx. So, for x ∈ In and for any infinitary higher priority join requirement Qe′ ,
We′

0,tx � x + 1 �= We′
0,tx−1 � x + 1. So if we let J be the set of the numbers e′

0,
such that

J = {e′
0 : ∃e′

1, e
′
2 : (〈e′

0, e
′
1, e

′
2〉 < e & Q〈e′

0,e′
1,e′

2〉 is infinitary},

then
∀j ∈ J ∀x ∈ In(Wj,tx � x + 1 ⊂ Wj,tx−1 � x + 1). (13)

Now, for x ∈ In and j ∈ J , let

wj(x) = |Wj,tx � x + 1| and wJ (x) =
∑
j∈J

wj(x),

48 N. Losert

and call x unsaturated if x /∈ Wj,tx for some j ∈ J . By definition, |J | ≤ e and
wj(x) ≤ x + 1, hence

wJ (xn,0) ≤ e(xn,0 + 1). (14)

As in [3], we will now argue that this bound is not compatible with (13) and the
fact that there are no α-safe numbers in In ∪ {xn,0}. As shown in [3], it follows
from (13) that

wJ (xn,0) ≥ |{x ∈ In : x is unsaturated}|. (15)

Now, it suffices to give a lower bound on the number of unsaturated numbers
in In that contradicts (14). For a number xn,k ∈ In ∪ {xn,0} with 0 ≤ k ≤
n(xn,0 + 1) − 1, (9) and (10) hold for tx = s. So, since there are no α-safe
numbers in In ∪ {xn,0} after stage s1 + 1, (11) must fail for tx = s. It follows
that at least one number in In,k must be unsaturated for every k. As there are
n(xn,0 +1) many subintervals In,k in In each of which must contain at least one
unsaturated number and as e < n by construction, it follows that there are at
least (e + 1)(xn,0 + 1) unsaturated numbers in In, which, together with (15),
leads to the desired contradiction.

This completes the proof of Lemma 4. �

4 Meet Preservation

In contrast to Theorem1, meet preservation holds for the monotone admissi-
ble bounded Turing reducibilities in general. This is immediate by the follow-
ing lemma which generalizes the observation in [4] that ibT-cl and cl-wtt meet
preservation hold.

Lemma 5. Let r and r′ be monotone admissible bounded Turing reducibilities
induced by F and F ′, respectively, such that r is stronger than r′. Then, r-r′

meet preservation holds.

Proof. The proof is essentially the same as the one for the results in [4]. Let A0,
A1, and B be c.e. sets such that

degr(A0) ∧ degr(A1) = degr(B) (16)

holds. As r is stronger than r′, B is also an upper r′-bound for A0 and A1, so,
it suffices to show that for a given c.e. set C such that C ≤r′ A0, A1, C ≤r′ B
holds. Fix functions fi ∈ F ′ such that C ≤fi−T Ai for i = 0, 1. Since r′ is
admissible, as shown in [2], we may assume that F ′ is closed under composition,
so, f0 ◦ f1 = f ∈ F ′. As r′ is monotone, we may also assume that f0 and f1
are strictly increasing, so, max(f0, f1) ≤ f . It follows that C ≤f−T A0, A1. Let
Cf = {f(x) : x ∈ C} be the f -shift of C. Then, Cf ≤ibT A0, A1. As ibT is
stronger than r, Cf ≤r A0, A1, so, by (16), Cf ≤r B, hence Cf ≤r′ B. We
know that C ≤f−T Cf , hence by f ∈ F ′, C ≤r′ Cf , so, by transitivity of
r′, C ≤r′ B. �

Where Join Preservation Fails in the Bounded Turing Degrees of C.E. Sets 49

5 Open Problems

Contrasting previous positive results on join preservation in the bounded Tur-
ing degrees (see Lemma 3) we have shown that r-r′ join preservation fails for
the strongly bounded Turing reducibilities r = ibT,cl and any monotone admis-
sible uniformy bounded Turing reducibility r′ with cl ≺ r′. This naturally leads
to the question of a classification of the monotone admissible bounded Turing
reducibilities r and r′ for which r-r′ join preservation holds. Moreover, one may
consider nonmonotone reducibilities, too. For the latter, a classification of the
bT-reducibilities for which meet preservation holds is open, too.

References

1. Ambos-Spies, K.: On the strongly bounded Turing degrees of the computably enu-
merable sets (to appear)

2. Ambos-Spies, K.: Uniformly bounded Turing reducibilities (to appear)
3. Ambos-Spies, K., Bodewig, P., Kräling, T., Yu, L.: Joins and meets in the com-

putably enumerable cl-degrees (to appear)
4. Ambos-Spies, K., Ding, D., Fan, Y., Merkle, W.: Maximal pairs of computably

enumerable sets in the computable Lipschitz degrees. Theor. Comput. Syst. 52(1),
2–27 (2013)

5. Barmpalias, G.: Computably enumerable sets in the solovay and the strong weak
truth table degrees. In: Cooper, S.B., Löwe, B., Torenvliet, L. (eds.) CiE 2005.
LNCS, vol. 3526, pp. 8–17. Springer, Heidelberg (2005)

6. George, B., Andrew, E.M.L.: The ibT degrees of computably enumerable sets are
not dense. Ann. Pure Appl. Log. 141(1–2), 51–60 (2006)

7. Day, A.: The computable Lipschitz degrees of computably enumerable sets are not
dense. Ann. Pure Appl. Log. 161(12), 1588–1602 (2010)

8. Downey, R.G., Hirschfeldt, D.R.: Algorithmic Randomness And Complexity, vol.
XXVIII, 855p. Springer, New York (2010)

9. Downey, R.G., Hirschfeldt, D.R., LaForte, G.: Randomness and reducibility. In:
Sgall, J., Pultr, A., Kolman, P. (eds.) MFCS 2001. LNCS, vol. 2136, pp. 316–327.
Springer, Heidelberg (2001)

10. Downey, R.G., Hirschfeldt, D.R., LaForte, G.: Randomness and reducibility. (Eng-
lish summary). J. Comput. Syst. Sci. 68(1), 96–114 (2004)

11. Downey, R.G., Stob, M.: Structural interactions of the recursively enumerable
T- and w-degrees. Ann. Pure Appl. Log. 31(2–3), 205–236 (1986)

12. Fan, Y., Lu, H.: Some properties of sw-reducibility. Nanjing Daxue Xuebao Shuxue
Bannian Kan 22(2), 244–252 (2005)

13. Odifreddi, P.: Strong reducibilities. Bull. Am. Math. Soc. 4(1), 37–86 (1981)
14. Robert, I.S.: Computability theory and differential geometry. Bull. Symb. Log.

10(4), 457–486 (2004)

Structured Frequency Algorithms

Kaspars Balodis1,2(B), Jānis Iraids1,2, and Rūsiņš Freivalds1,2

1 Faculty of Computing, University of Latvia,
Raiņa bulvāris 19, Riga 1586, Latvia

2 Institute of Mathematics and Computer Science,
University of Latvia, Raiņa bulvāris 29, Riga 1459, Latvia

kbalodis@gmail.com

Abstract. B.A. Trakhtenbrot proved that in frequency computability
(introduced by G. Rose) it is crucially important whether the frequency
exceeds 1

2
. If it does then only recursive sets are frequency-computable.

If the frequency does not exceed 1
2

then a continuum of sets is frequency-
computable. Similar results for finite automatawere provedbyE.B.Kinber
and H. Austinat et al. We generalize the notion of frequency computabil-
ity demanding a specific structure for the correct answers. We show that
if this structure is described in terms of finite projective planes then
even a frequency O(

√
n
n

) ensures recursivity of the computable set. We
also show that with overlapping structures this frequency cannot be sig-
nificantly decreased. We also introduce the notion of graph frequency
computation and prove sufficient conditions for a graph G such that a
continuum of sets can be G-computed.

1 Introduction

Theproblem“What is randomness?”has alwaysbeen interestingnot only for philo-
sophers and physicists but also for computer scientists. The term “nondeterminis-
tic algorithm” has been deliberately coined to differ from “indeterminism” [13].

Probabilistic (randomized) algorithms form one of central notions in Theory
of Computation [12]. However, since long ago computer scientists have attempted
to develop notions and technical implementations of these notions that would
be similar to but not equal to randomization.

The notion of frequency computation was introduced by G. Rose [14] as an
attempt to have an absolutely deterministic mechanism with properties similar
to probabilistic algorithms. The definition was as follows. A function f : w → w
is (m,n)-computable, where 1 ≤ m ≤ n, iff there exists a recursive function R:
wn → wn such that, for all n-tuples (x1, · · · , xn) of distinct natural numbers,

K. Balodis—The first author has been supported by the European Social Fund within
the project Support for Doctoral Studies at University of Latvia.
R. Freivalds—The research was supported by Co-operation Project “Uzticamas un
kontrolētas mobilo ier̄ıču pielietojuma vides izpēte un saist̄ıto ekspertu r̄ıku izveides
iespējas” and by Project 271/2012 from the Latvian Council of Science.

c© Springer International Publishing Switzerland 2015
R. Jain et al. (Eds.): TAMC 2015, LNCS 9076, pp. 50–61, 2015.
DOI: 10.1007/978-3-319-17142-5 6

Structured Frequency Algorithms 51

card{i : (R(x1, · · · , xn))i = f(xi)} ≥ m.

McNaughton [11] cites in his survey a problem (posed by Myhill) whether f
has to be recursive if m is close to n. This problem was answered by
Trakhtenbrot [16] by showing that f is recursive whenever 2m > n. On the
other hand, Trakhtenbrot [16] proved that, if 2m = n then nonrecursive func-
tions can be (m,n)-computed. Kinber [8,9] extended the research by considering
frequency enumeration of sets. The class of (m,n)-computable sets equals the
class of recursive sets if and only if 2m > n. The notion of frequency computa-
tion can be extended to other models of computation. Frequency computation
in polynomial time was discussed in full detail by Hinrichs and Wechsung [7].

For resource bounded computations, the behavior of frequency computability
is completely different: for example, whenever n′ − m′ > n − m, it is known that
under any reasonable resource bound there are sets which are (m′, n′)-computable,
but not (m,n)-computable. However, scaling down to finite automata, the ana-
logue of Trakhtenbrot’s [16] result holds again: the class of languages (m,n)-recog-
nizable by deterministic frequency automata equals the class of regular languages
if and only if 2m > n (cf. Austinat et al. [2]). Conversely, as shown by Austinat
et al. [2], for 2m ≤ n, the class of languages (m,n)-recognizable by deterministic
frequency automata is uncountable for a two-letter alphabet. A stronger result
concerning sets separable by finite automata was claimed by Kinber [9], and this
result would imply the results mentioned above as a corollary. However, as shown
by Tantau [15], who gave a counter-example, Kinber’s [9] Theorem 3 does not hold.
When restricted to a one-letter alphabet, then every (m,n)-recognizable language
is regular. This was shown by Kinber [8] and also by Austinat et al. [2].

Frequency computations became increasingly popular when relations between
frequency computation and computation with a small number of queries was
discovered [1–4,6]. Many papers have been written to distinguish properties of
frequency algorithms from the properties of probabilistic algorithms [1,4,8,9,16].

2 Definitions

By N = {0, 1, 2, . . . } we denote the set of nonnegative integers and B = {0, 1}.
[n] = {0, 1, 2, . . . , n − 1}. We use |X| to denote the cardinality of a set X.

Let A ⊆ N be a set. By χA : N → B we denote the characteristic function of A:

χA (x) =

{
1, if x ∈ A

0, if x /∈ A

We say that a function f is recursive if there is an algorithm (Turing machine)
that computes f . If χA is a total recursive function then we call the set A
recursive.

Definition 1. A set A is (m,n)-computable iff there is a total recursive function
f which assigns to all distinct inputs x1, x2, . . . , xn a binary vector (y1, y2, . . . , yn)
such that at least m of the equations χA(x1) = y1, χA(x2) = y2, . . . , χA(xn) =
yn hold.

52 K. Balodis et al.

By a structure of a finite set K we call a set of K’s subsets S ⊆ 2K .
We assume that the elements of K are ordered under some fixed ordering

φ : K → [n] where n = |K|.
Definition 2. A set A is (S,K)-computable (or computable with a structure S) iff
there is a total recursive function f which assigns to all distinct inputs x1, x2, . . . , xn

a binary vector (y1, y2, . . . , yn) such that ∃B ∈ S ∀b ∈ B χA(xφ(b)) = yφ(b)

It can be seen that (m,n)-computability is a special case of (S,K)-computability
by taking S to be the set of all subsets of K of size m.

3 Projective Plane Frequency Computation

In finite geometry, the Fano plane (named after Gino Fano) is the finite projec-
tive plane of order 2, having the smallest possible number of points and lines.
This plane has 7 points and 7 lines with 3 points on every line and 3 lines through
every point. Every two points are on a unique line and every two lines intersect
in a unique point (Fig. 1).

1

2

3

45

6

7

Fig. 1. The Fano Plane

We consider the first example of a structured frequency computability using
the Fano plane.

Definition 3. A set A is Fano-computable iff there exists a total recursive func-
tion f : N7 → B7 which assigns to all 7-tuples (x1, x2, . . . , x7) ∈ N7 of distinct
inputs a binary vector {y1, y2, . . . , y7} such that

(y1 = χA(x1) ∧ y2 = χA(x2) ∧ y4 = χA(x4))∨

∨(y2 = χA(x2) ∧ y3 = χA(x3) ∧ y5 = χA(x5))∨
∨(y3 = χA(x3) ∧ y4 = χA(x4) ∧ y6 = χA(x6))∨
∨(y4 = χA(x4) ∧ y5 = χA(x5) ∧ y7 = χA(x7))∨

Structured Frequency Algorithms 53

∨(y5 = χA(x5) ∧ y6 = χA(x6) ∧ y1 = χA(x1))∨
∨(y6 = χA(x6) ∧ y7 = χA(x7) ∧ y2 = χA(x2))∨
∨(y7 = χA(x7) ∧ y1 = χA(x1) ∧ y3 = χA(x3))

It can be seen that the required fraction of correct answers for Fano-comput-
ability is 3

7 < 1
2 . Contrary to the (m,n)-computability however only recursive

sets are Fano-computable.

Theorem 1. A set A is Fano-computable iff it is recursive.

The proof of this theorem is a special case of Theorem 3 below.
We want to explore further how much smaller can we get this fraction, i.e.,

for how small fraction of the inputs can we require the algorithm to give the
correct answers so that the computed set can still only be recursive? Recall,
that for “unstructured” frequency computations the answer is 1

2 – if m
n ≤ 1

2
then a continuum of sets can be (m,n)-computed even with a finite automaton,
but if m

n > 1
2 then every (m,n)-computable set is recursive. Surprisingly for the

structured frequency computation we can get this fraction close to
√

n
n as n tends

to infinity by extending the Fano-computability example.
Of course, it is possible “cheat”, for example, by requiring that the algorithm

on every input (x1, x2, . . . , xn) outputs (y1, y2, . . . , yn) such that y1 = χA (x1)
and have no requirements for the other yi’s therefore attaining even a fraction
of 1

n while every such computable set A is recursive (as on the first input the
algorithm always has to output the correct answer). However we would like to
avoid such cases because if we only look at the first input x1 the fraction of correct
answers there is 1

1 which is the maximal possible. To avoid such “cheating” we
introduce the notion of size consistency.

Definition 4. By the size of a structure S ⊆ 2K we denote the size of the
smallest subset - minA∈S |A|. We call the structure size consistent iff ¬∃K ′ ⊆
K minA′∈S

|A′∩K′|
|K′| > minA∈S

|A|
|K|

The size consistency means that there is no smaller subset K ′ ⊆ K such that the
minimal subset A′ ∈ S (respective to K ′) contains a larger fraction of elements
of K ′ than the minimal subset A ∈ S does for K. Therefore this excludes the
unwanted cases mentioned earlier.

Now we introduce a new type of structures for which we prove that the
computed set is guaranteed to be recursive.

Definition 5. We call a structure S ⊆ 2K overlapping iff ∀A,B ∈ S A∩B �= ∅.
Theorem 2. For any set K of size n = q2 + q + 1 where q is a prime power
there exists a size consistent overlapping structure of size q + 1.

Proof. The reader might already be familiar with the concept of finite projective
geometry. A finite projective plane is a finite set of points P and lines L ⊆ 2P ,
such that

54 K. Balodis et al.

(A1) For any two distinct points, there is exactly one line containing these
points.

(A2) For any two distinct lines, there is exactly one point common to these lines.
(A3) There exist four points, no three of which are on a line.

For all q ≥ 2 these axioms imply

(B1) Each line contains exactly q + 1 points.
(B2) Each point is on exactly q + 1 lines.
(B3) There are exactly q2 + q + 1 points in the projective plane.

It is known, that if q is a prime power there exists a finite projective plane
denoted by PG(2, q) with |L| = |P | = q2 + q +1 based on the finite field Fq with
q elements. For a more detailed overview see, for example, [5].

Note, that S = PG(2, q) is an overlapping structure with the points P playing
the role of K and the lines L playing the role of S. For PG(2, q): |K| = |P | =
q2 + q +1 and all the lines contain exactly q +1 points. From A2) it follows that
the lines of PG(2, q) indeed make an overlapping structure.

To show that the projective plane S = PG(2, q) is a size consistent structure, it
is sufficient to count

∑
A∈S |A ∩ K ′|.; For any integer m : 0 < m < n, if we consider

a subset K ′ of size n−m, from B2) follows that
∑

A∈S |A ∩ K ′| = (q + 1)n− (q +
1)m. By the pigeonhole principle, there exists a subset A, such that |A ∩ K ′| ≤
(q+1)n−(q+1)m

n = (q+1)(n−m)
n . Therefore minA′∈S

|A′∩K′|
|K′| ≤ (q+1)(n−m)

n(n−m) = q+1
n . ��

Theorem 3. If A is computable with an overlapping structure then A is recursive.

Proof. We will use infinite binary trees whose vertices correspond to binary
strings. The root corresponds to the empty string and for every other vertex v
the corresponding string s(v) is the string of its parent vertex concatenated with
a 0 or 1 depending on which child is v:

s(v) =

{
s(vp)0, if v is the left child of vp

s(vp)1, if v is the right child of vp

We will use v(x) to denote the x-th (0-based) symbol of s(v). dom(v) = [|s(v)|]
Therefore an infinite branch B = B0B1B2 . . . defines a set whose characteristic
function χB(x) is given by B(x) = limn→∞ Bn(x). We use the same name for
the set as for the branch.

Let f : Nn → Bn be the function that (S,K)-computes A with |K| = n and
some overlapping structure S ⊆ 2K .

Consider a tree T which contains all σ ∈ {0, 1}∗ satisfying the property that for
all distinct x1, . . . , xn ∈ dom(σ) there exists P ∈ S such that (σ(x1), . . . , σ(xn))
coincides with f (x1, . . . , xn) in positions P .

T contains A as an infinite branch because f (S,K)-computes A.
Assume that another infinite branch B in T differs from A in n positions

x1, x2, . . . , xn. Then (B(x1), B(x2), . . . , B(xn)) coincides with f(x1, x2, . . . , xn)
in some positions P1 ∈ S. But (A(x1), A(x2), . . . , A(xn)) also coincides with

Structured Frequency Algorithms 55

f(x1, x2, . . . , xn) in some positions P2 ∈ S. As ∀P1, P2 ∈ S P1 ∩ P2 �= ∅ there
is an xi such that A(xi) = B(xi) contradicting the assumption that A and B
differs in x1, x2, . . . , xn. Therefore every infinite branch of T differs from A in at
most n − 1 positions.

Let B be an infinite branch that differs from A in maximum number of
positions and let D be the finite set on which A and B differs. B is also an
infinite branch in the subtree

T ′ = {σ ∈ T | ∀x ∈ dom(σ) ∩ D σ(x) = B(x)}

Assume that C is another infinite branch in T ′. Let x be such that B(x) �= C(x).
From the definition of T ′ follows that x /∈ D. But then C and A differ on D∪{x}
thus contradicting the choice of B as an infinite branch that differs from A in
maximum number of positions. Therefore B is the only infinite branch in T ′.

For any vertex v the procedure of deciding whether v is in T ′ is recursive.
The following algorithm computes B(x) for any x:

Search for the first t > x such that all σ ∈ T ′ ∩{0, 1}t take only a unique
value y = σ(x) at x. Output this y as the value of B(x).

The returned value cannot be different from B(x) as T ′ has at every length
t > x a string σ with σ(x) = B(x). If the algorithm wouldn’t terminate for
some x then for every t > x there would be σ with σ(x) �= B(x) and there
would be an infinite subtree T ′′ = {σ ∈ T ′ | x ∈ dom(σ) → σ(x) �= B(x)}. By
König’s Lemma this subtree would contain an infinite branch C different from
B contradicting the fact that B is the only infinite branch of T ′.

Therefore B is recursive and as A differs from B in a finite set of positions
A is also recursive. ��
The following theorem shows that for overlapping structures the fraction obtained
by the finite planes is close to the best possible.

Theorem 4. Every size consistent overlapping structure S ⊆ 2K has size at
least

√
n where n = |K|.

Proof. If S is size consistent, ∀K ′ ⊆ K minA′∈S
|A′∩K′|

|K′| ≤ minA∈S
|A|
|K| . In par-

ticular, take K ′ equal to a set of minimal size in S. Then

|K ′|
|K| = min

A∈S

|A|
|K| ≥ min

A′∈S

|A′ ∩ K ′|
|K ′| ≥ 1

|K ′| ,

where the second inequality follows from the fact that S is overlapping, hence
even K ′ has at least one element common with any other set from S. The
size of the structure S is equal to the size of the smallest set in it – |K ′| and
|K ′|2 ≥ |K| = n. Therefore the size of the structure is at least

√
n. ��

56 K. Balodis et al.

4 Graph Frequency Computation

If we consider structures with the sizes of all subsets equal to some k ≥ 1, the
first interesting case is with k = 2 (with k = 1 either there are some inputs
for which the outputs are not taken into account or it is the same as (1, n)-
computability). A convenient and well-known way to represent such structures
is using graphs.

Definition 6. We call a structure S ⊆ 2K a graph structure iff ∀A ∈ S |A| = 2.
For a graph G = (V,E) by saying that a set A is G-computable we mean that A
is (E, V)-computable.

A natural question arises – for which graphs G are the G-computable sets
recursive?

For some graphs G it is very easy to show that only recursive sets are G-
computable.

Proposition 1. If the graph G is either a triangle (C3) or a star graph (Sk)
then every G-computable set is recursive.

Proof. The internal vertex of a star graph Sk is involved in every edge therefore
on the input corresponding to this vertex the algorithm must always output the
correct answer (on this vertex the algorithm (1, 1)-computes the set).

For a triangle graph C3 if an algorithm C3-computes a set A then it also
(2, 3)-computes A. ��
The following theorem shows a sufficient condition for a graph G to allow com-
putability of non-recursive sets.

Theorem 5. If a graph G contains as a subgraph a cycle of length 4 (C4) or two
vertex-disjoint paths of length 3 (2P3) then there is a continuum of G-computable
sets, namely, every (1, 2)-computable set is also G-computable.

Proof. Assume there is an algorithm A1 that (1, 2)-computes a set A. For a
graph G that contains a cycle of length 4 - {(1, 2), (2, 3), (3, 4), (4, 1)} for some
vertices 1, 2, 3, 4 (see Fig. 2) consider the following algorithm – on inputs x1 and
x3 output the values (y1, y3) = A1(x1, x3) and on inputs x2 and x4 output the
values (y2, y4) = A1(x2, x4). At least one of the outputs y1 and y3 is correct and
at least one of the outputs y2 and y4 is correct, therefore on at least one of the
pairs of inputs {(1, 2), (2, 3), (3, 4), (4, 1)} the outputs are correct.

Similarly for a graph G containing two vertex-distinct paths of length 3 -
{(1, 2), (2, 3), (4, 5), (5, 6)} for some vertices 1, 2, 3, 4, 5, 6. Now the algorithm
is to use A1 on pairs of inputs – (x1, x3), (x4, x6) and (x2, x5). In this case
also there exists at least one pair of correct outputs corresponding to an edge
of G. ��
As shown by the following corollaries Theorem 5 discards many graphs as the
potential candidates for a structure that allows only recursive functions.

Structured Frequency Algorithms 57

1

2 3

4 1

2

3 4

5

6

Fig. 2. Continuum implying subgraphs. Dashed lines show on which pairs of vertices
(inputs) apply the (1, 2)-algorithm.

Corollary 1. If G contains more than one connected component of size ≥ 3
then every (1, 2)-computable set is also G-computable.

Corollary 2. If G contains as a subgraph a cycle of length other than 3 or 5
then every (1, 2)-computable set is also G-computable.

The following two theorems show that graph structures two pairs() and three
pairs() differ very much.

First we will need some lemmas. Let H be the 4-vertex graph with vertices
1, 2, 3, 4 and edges (1, 2), (3, 4).

Lemma 1. If M is a Turing machine with 4 inputs and 4 outputs H-computes
two distinct total functions f(x) and g(x) such that there exist d0 and d1 with
properties d0 �= d1, f(d0) �= g(d0) and f(d1) �= g(d1) then there exists an algo-
rithmic procedure computing all the values of the functions f and g with at most
one exception.

Proof. With no restriction to generality, we can assume that d0 = 0 and d1 = 1.
We start with considering (x1 = 0, x2 = 2, x3 = 1, x4 = 3). Since f(0) �= g(0)

and f(1) �= g(1) but the two functions f and g are computed correctly, the values
y1, y2 are to be correct values of one of these functions, and y3, y4 are to be correct
values of the other function. If y1 = f(0) then y2 = f(2), y3 = g(1), y4 = g(3). If
y1 = g(0) then y2 = g(2), y3 = f(1), y4 = f(3).

Next, we consider (x1 = 0, x2 = 1, x3 = 2, x4 = 3). Three cases are possible.
First, if y1 = f(0), y2 = f(1) then y3 = g(2), y4 = g(3). Second, if y1 = g(0), y2 =
g(1) then y3 = f(2), y4 = f(3). Third, if neither y1 = f(0), y2 = f(1) nor
y1 = g(0), y2 = g(1) then y3 = f(2) = g(2) and y4 = f(3) = g(3).

In any of these cases we have found either both f(2) and g(2), or both f(3)
and g(3). Denote by a ∈ {2, 3} the value of x such that we have not yet found
both f(a) and g(a). Then we go on considering the 4-tuples (x1 = 0, x2 = a, x3 =
1, x4 = 4) and (x1 = 0, x2 = 1, x3 = a, x4 = 4). This way, gradually we get all
the values of the functions f and g l values of with at most one exception. ��
Lemma 2. If a Turing machine M with 4 inputs and 4 outputs is not correctly
H-computing some total recursive function f(x) then this property of M can be
discovered considering only a finite number of 4-tuples (x1, x2, x3, x4) ∈ N4.

58 K. Balodis et al.

Proof. By the definition, the machine M produces some result on arbitrary 4-
tuple (x1, x2, x3, x4) ∈ N4. Since all such 4-tuples can be algorithmically enu-
merated, either a contradiction is found after a finite number of steps, or no
contradiction is ever found and the function f is computed correctly. ��
Lemma 3. If α ∈ {0, 1}n is a finite binary word and if a Turing machine M
with 4 inputs and 4 outputs is not correctly H-computing any total function
f(x) with values f(0) = α(0), f(1) = α(1), . . . , f(n − 1) = α(n − 1), then this
property of M can be discovered considering only a finite number of 4-tuples
(x1, x2, x3, x4) ∈ N4.

Proof. Weconsider an infinite binary tree representing all infinite binary sequences.
If α ∈ {0, 1}n is a prefix of a function that is not correctly H -computed by M ,
then, by Lemma 2, this can be discovered considering only a finite number of
4-tuples (x1, x2, x3, x4) ∈ N4. In our infinite binary tree we make a cut corre-
sponding to this prefix α. By formulation of our Lemma, these cuts leave no
infinite binary path in the tree. By König’s lemma [10], every tree that contains
infinitely many vertices, each having finite degree, has at least one infinite sim-
ple path. Hence after all the cuts in our infinite binary tree, there remain only
a finite number of vertices. ��
Now we consider a tree T of all the total functions H -computed by M . (Since we
consider only functions N → {0, 1}, all the vertices of this tree have finite degree.)
By Lemma 1, every function g(x) correctly H -computed by the machine M differs
from f(x) at most for one value of x.

Lemma 4. If M is a Turing machine with 4 inputs and 4 outputs H-computes
at least one total nonrecursive function f(x), then the tree T either contains only
a finite number of functions or T has only one accumulation point.

Proof. Accumulation point of the tree T is an infinite path P such that for
every prefix π of the path P there exists an infinite path Q distinct from P but
also having the prefix π. Had there been two distinct accumulation points P
and Q in T, there would be two functions f(x) and g(x) and values d0 and d1
with properties d0 �= d1, f(d0) �= g(d0) and f(d1) �= g(d1). However, then, by
Lemma 1, all the functions H -computed by M are recursive. ��
Theorem 6. If a Turing machine M with 4 inputs and 4 outputs correctly H-
computes a total function then this function is recursive.

Proof. Consider a tree T of all the total functions H -computed by M . If T

contains only a finite number of functions then for each of these functions there
is a prefix π which is not not a prefix of any other total function H -computed by
M . If T has only one accumulation point then, by the construction of the tree T

described in the proof of Lemma 3, we gradually construct initial fragments of
T. Since T has exactly one accumulation point, the accumulation point is always
the path with the maximum other functions branching off this initial fragment of
the path. Hence this path can be algorithmically constructed, and the function
is recursive. ��

Structured Frequency Algorithms 59

Theorem 7. If a graph G contains as a subgraph three vertex-disjoint paths of
length 2 (3P2) then there is a continuum of G-computable sets.

Proof (Sketch of). Consider a complete infinite binary tree T whose vertices are
labeled with nonnegative integers. The root is labeled with 0. For each vertex
labeled x its right child is labeled 2x + 1 and its left child is labeled 2x + 2.
Therefore T contains all numbers in N. If we fix an infinite branch B in T , it
defines the set LB = {x | x ∈ B}.

We will show that if G contains as a subgraph 3P2 then there is an algorithm
which G-computes any language LB , irrespective of which branch B is chosen.
As there is a continuum different ways to choose a branch B, it will follow that
there is a continuum of G-computable sets.

As a side note, we should note that this is also the way how to prove that
there is a continuum of (1, 2)-computable sets. The algorithm (1, 2)-computing
LB is the following:

On inputs (x1, x2):

– if there is a branch which goes through both x1 and x2, then output (1, 0), if
x1 < x2, and (0, 1), if x1 > x2

– otherwise, output (0, 0)

It can be checked that no matter how the branch B is chosen, at least one of
these outputs will be correct.

If, instead of (1, 2)-computing, we consider computing with a graph with 3
pairs of connected vertices, the idea of the proof is the same, only now we have
to deal with a larger number of different possibilities for the input instances.
A single input instance can be represented as a 7-vertex rooted tree I in which
all vertices except the root are divided into three pairs. The root of I represents
a vertex prepended to the root of T and the 3 pairs of vertices represent the 3
pairs of inputs for the algorithm. For any vertices x1, x2 if x1 is a descendant
of x2 in T then x1 is also a descendant of x2 in I. See Fig. 3 for an example
instance.

r

x3

x2

x1

x6

x5

x4

0

1

0

0

0

0

Fig. 3. An example instance. The tree shows relationships between the inputs in the
tree T . The dashed lines show how the inputs are distributed into pairs. The attached
output labels yi ∈ {0, 1} show one possible assignment such that no matter how a
branch B is chosen, there exists a pair for which both outputs are correct.

60 K. Balodis et al.

To correctly solve an instance I means to assign outputs yi ∈ {0, 1} to all
non-root vertices so that, no matter which branch B is chosen, on at least one
pair both outputs will be correct.

It was checked with a computer program that for each possible instance I
there exists an assignment that solves it.

The pseudocode of the program:
for each 7-vertex tree T do

for each possible division of T into root and 3 pairs of vertices do
if there exists no assingment such that no matter which branch B is
chosen, there exists a pair with both correct outputs then

return fail
end if

end for
end for
return success ��

5 Conclusions and Open Problems

We have introduced a new model of computability by extending the previously
known frequency (m,n)-computability. We have shown some structures which
lead to computability of only recursive sets and some structures which allow a
continuum of computable sets. However, we are still far from a complete char-
acterization of all structures.

Some open problems are:

– Are there any size consistent non-overlapping structures of size less than
√

n
that allow only computability of recursive sets? If so then what is the smallest
possible fraction of correct answers attainable?

– For graph frequency computation obtain a complete classification of all graphs
G and classes of G-computable sets.

– What other types of structures are interesting and worth considering and what
classes of sets are computable with them?

References

1. Ablaev, F., Freivalds, R.: Why sometimes probabilistic algorithms can be more
effective. In: Wiedermann, J., Gruska, J., Rovan, B. (eds.) MFCS 1986. LNCS,
vol. 233, pp. 1–14. Springer, Heidelberg (1986)

2. Austinat, H., Diekert, V., Hertrampf, U., Petersen, H.: Regular frequency compu-
tations. Theoret. Comput. Sci. 330(1), 15–21 (2005). Insightful Theory

3. Degtev, A.N.: On (m,n)-computable sets. In: Moldavanskij, D.I. (ed.), Algebraic
Systems, pp. 88–99. Ivanovo Gos. Universitet, (1981) (In Russian)

4. Freivalds, R.: Inductive inference of recursive functions: qualitative theory. In:
Barzdins, J., Bjorner, D. (eds.) Baltic Computer Science. LNCS, vol. 502,
pp. 77–110. Springer, Heidelberg (1991)

5. Hall Jr., M.: Combinatorial Theory, 2nd edn. Wiley, New York (1986)

Structured Frequency Algorithms 61

6. Harizanov, V., Kummer, M., Owings, J.: Frequency computations and the cardi-
nality theorem. J. Symb. Log. 57, 682–687 (1992)

7. Hinrichs, M., Wechsung, G.: Time bounded frequency computations. In: Proceed-
ings of Twelfth Annual IEEE Conference on Computational Complexity, 1997 (For-
merly: Structure in Complexity Theory Conference), pp. 185–192. IEEE (1997)

8. Kinber, E.B.: Frequency calculations of general recursive predicates and frequency
enumerations of sets. Sov. Math. 13, 873–876 (1972)

9. Kinber, E.B.: Frequency computations in finite automata. Cybern. Sys. Anal.
12(2), 179–187 (1976)

10. König, D.: Sur les correspondances multivoques des ensembles. Fundamenta Math.
8(1), 114–134 (1926)

11. McNaughton, R.: The theory of automata, a survey. Adv. Comput. 2, 379–421
(1961)

12. Rabin, M.O.: Probabilistic automata. Inf. Control 6(3), 230–245 (1963)
13. Rabin, M.O., Scott, D.: Finite automata and their decision problems. IBM J. Res.

Dev. 3(2), 114–125 (1959)
14. Rose, G.F.: An extended notion of computability. In: International Congress for

Logic, Methodology and Philosophy of Science, Stanford, California (1960)
15. Tantau, T.: Towards a cardinality theorem for finite automata. In: Diks, K., Rytter,

W. (eds.) MFCS 2002. LNCS, vol. 2420, pp. 625–636. Springer, Heidelberg (2002)
16. Trakhtenbrot, B.A.: On the frequency computation of functions. Algebra i Logika

2(1), 25–32 (1964). In Russian

Asymptotic Properties of Combinatory Logic

Maciej Bendkowski, Katarzyna Grygiel(B), and Marek Zaionc

Theoretical Computer Science Department, Faculty of Mathematics and Computer
Science, Jagiellonian University, ul. �Lojasiewicza 6, 30-348 Kraków, Poland

{bendkowski,grygiel,zaionc}@tcs.uj.edu.pl

Abstract. We present a quantitative analysis of random combinatory
logic terms. Our main goal is to investigate likelihood of semantic prop-
erties of random combinators. We show that asymptotically almost all
weakly normalizing terms are not strongly normalizing. Moreover, we
present a proof that asymptotically almost all strongly normalizing terms
are not in normal form. We also prove that asymptotically almost all nor-
mal forms in combinatory logic are not typeable.

Keywords: Models of computation · Combinatory logic · Asymptotic
probability in logic

1 Introduction

Over the last decade quantitative aspects of logic have attracted increasing
attention from researchers working on the border of combinatorics, logic, and
computer science. Probabilistic methods used in the paper appear to be very
powerful in computer science investigations. From a point of view of these meth-
ods we study typical objects chosen from a given set. In recent years we have
investigated sets of syntactic objects of logical flavor in order to estimate like-
lihood of the fact that a randomly chosen syntactic object belongs to a given
set. There is a long history of using this kind of asymptotic approach applied to
logic and computability. Probability of truth of logical formulas has been inves-
tigated in several papers. For the purely implicational logic of one variable (and
at the same time simply typed system), the likelihood of finding true formulas
was computed by Moczurad, Tyszkiewicz, and Zaionc in [14]. The classical logic
of one variable and two connectives of implication and negation was studied in
Zaionc [20]; over the same language, the exact proportion between intuitionistic
and classical logics was determined by Kostrzycka and Zaionc in [11].

Asymptotic id entity between classical and intuitionistic logic of implication
has been proved in Fournier, Gardy, Genitrini, and Zaionc in [6]. Some variants
involving expressions with other logical connectives have also been considered.

This work was supported within the grant 2013/11/B/ST6/0095 funded by the Pol-
ish National Science Center.
K. Grygiel—This author was supported by funding from the Jagiellonian University
within the SET project. The project is co-financed by the European Union.

c© Springer International Publishing Switzerland 2015
R. Jain et al. (Eds.): TAMC 2015, LNCS 9076, pp. 62–72, 2015.
DOI: 10.1007/978-3-319-17142-5 7

Asymptotic Properties of Combinatory Logic 63

Genitrini and Kozik in [9] have studied asymptotic behavior of full proposi-
tional system. For two connectives again, the and/or case has already received
much attention—see Lefmann and Savický [13], Chauvin, Flajolet, Gardy, and
Gittenberger [2], Gardy and Woods [8], Woods [19] and Kozik [12]. Let us also
mention the survey [7] of Gardy on probability distributions on Boolean func-
tions induced by random Boolean expressions.

In [4] investigations of computational objects from lambda calculus and com-
binatory logic were started. It was shown that a randomly chosen λ-term is
strongly normalizing. In the case of combinatory logic (the equivalent translation
of the λ-calculus), the situation is exactly opposite—a random combinator does
not strongly normalize. Since every strongly normalizing term (in both models) is
weakly normalizing, the obtained results imply that a random lambda term satis-
fies the weak normalization property, however, they do not allow us to claim any-
thing about weakly normalizing combinators. The counting problem for lambda
terms is still a very hot open research subject. Some variants of lambda calculus
have also been considered. Bodini, Gardy, Gittenberger and Jacquot in [15] stud-
ied enumeration of BCI lambda terms. John Tromp in [17], as well as Grygiel
and Lescanne in [10], considered the enumeration problem in the so called binary
lambda calculus.

The syntax of combinators is very simple, as the terms in question can be
uniquely represented by finite binary planar trees whose leaves are labeled by
constants. In contrast to lambda calculus terms, whose unusual tree representa-
tion makes the combinatorial analysis very difficult (see, e.g. [4]), the analysis of
combinators satisfying a given syntactic property is usually simple. However, in
the case of properties that are undecidable, the enumeration problems become
hard or even impossible, as for any nonrecursive set it is impossible to find a
finite pattern collection defining the whole set. For example, any nonrecursive
set of combinators cannot be defined by a context-free grammar. Therefore the
only possible approach to find asymptotic behavior of nonrecursive sets of com-
binators is to construct proper recursive subsets and proper recursive supersets.

In this paper we give a simple argument that the density of weakly normal-
izing combinators is neither zero nor one. Moreover, we present lower and upper
bounds for the density in question. This result allows us to compare two basic
nonrecursive sets of combinators, one being the subset of another: the set of all
weakly normalizing combinators and its proper subset—the set of all strongly
normalizing combinators. It turns out, that the set of strongly normalizing terms
can be seen as a tiny fragment of the set of weakly normalizing combinators. In
other words, we prove that the asymptotic probability of finding strongly nor-
malizing terms chosen from the set of weakly normalizing ones is zero.

Another part of the paper is oriented toward terms in so called normal forms.
At the same time we are interested in typeable terms in combinatory logic which
form an important subclass motivated by programming languages. Both typeable
terms (in the simple type system) and terms in normal forms form recursive sets
of combinators. In the paper we present a result concerning typeable normal
forms in the setting of all normal forms.

64 M. Bendkowski et al.

WN

SN

N

T YP

C

Fig. 1. Partition of combinatory logic

Figure 1 illustrates the topography of all major classes of combinatory logic
terms used in this paper. C denotes the set of all combinators, WN stands for
weakly normalizing terms, SN for strongly normalizing ones, N for normal forms
and, finally, T YP stands for typeable terms.

2 Combinators

The set C of combinators is defined inductively as follows. Constants K and S are
combinators. If M and N are combinators, then (M N) is a combinator. Terms
built as in the third case are called applications. Following standard notational
conventions, we omit outermost parentheses and drop parentheses from left-
associated terms, e.g., instead of ((MN)(PQ)) we write MN(PQ). We define
a one-step reduction relation → on the set of combinators in the following way.
Let P,Q,R be arbitrary combinators. Then

– KPQ → P ,
– SPQR → PR(QR),
– if P → Q then PR → QR and RP → RQ.

Let P be a combinator. If there exists no combinator Q such that P → Q, then
P is said to be in normal form. If there exists a finite sequence of combinators
P0, P1, . . . , Pk such that P = P0 → P1 → . . . → Pk and Pk is in normal form,
then P is weakly normalizing. If there does not exist an infinite sequence of com-
binators P0, P1, . . . such that P = P0 → P1 → . . ., then we say that P is strongly
normalizing. Of course, strong normalization implies weak normalization.

3 Densities of Sets of Combinators

With the set of all combinators C we associate the size function defined as the
number of all applications occurring in a given combinator, i.e.,

|S| = |K| = 0 and |PQ| = 1 + |P | + |Q|.

Asymptotic Properties of Combinatory Logic 65

Given a subset X ⊆ C of combinators we define the asymptotic density μ(X) as

μ(X) = lim
n→∞

#{t ∈ X : |t| = n}
#{t ∈ C : |t| = n}

if the limit exists. The number μ(X) is an asymptotic probability of finding a
combinator from the class X among all combinators. It can be immediately seen
that the density μ is finitely additive, but not countably additive. Finally, we
define:

μ−(X) = lim inf
n→∞

#{t ∈ X : |t| = n}
#{t ∈ C : |t| = n}

μ+(X) = lim sup
n→∞

#{t ∈ X : |t| = n}
#{t ∈ C : |t| = n}

These two numbers are well defined for any set X of combinators, even when
the limiting ratio μ(X) is not known to exist. Given two classes of combinators
X and Y, assuming that X is a subset of Y, we define relative density μ

(X
Y

)
in

the usual way by allowing:

μ

(X
Y

)
= lim

n→∞
#{t ∈ X : |t| = n}
#{t ∈ Y : |t| = n}

The relative μ− (X
Y

)
and μ+

(X
Y

)
functions are defined in the very same way as

in general case, i.e.,

μ−
(X

Y
)

= lim inf
n→∞

#{t ∈ X : |t| = n}
#{t ∈ Y : |t| = n}

μ+

(X
Y

)
= lim sup

n→∞
#{t ∈ X : |t| = n}
#{t ∈ Y : |t| = n}

For technical reasons, we assume 0
0 := 1. Given any subclass X ⊆ C and n ∈ N,

we denote by Xn the set of all combinators from X that are of size n. Obviously
Xn is always finite.

4 Generating Functions

Many questions concerning the asymptotic behavior of sequences of real non-
negative numbers can be efficiently resolved by analyzing the behavior of their
generating functions (see [18] for introductory reference). This is the approach
we take to determine the asymptotic fraction of certain combinatory logic terms.
Let (an)n∈N be a sequence of non-negative numbers. The power series A(z) =∑

n∈N anzn is called the generating function enumerating the sequence (an)n∈N.
We denote by [zn]{A(z)} the coefficient of zn in the expansion of A(z). We
say that two sequences (An)n∈N and (Bn)n∈N are asymptotically equivalent if
limn→∞ An

Bn
= 1. In such a case we write An ∼ Bn. The following theorem is

a well-known result in the theory of generating functions. Its derivation from
Szegö Lemma (see [16]) can be found, e.g., in [21, Theorem 22].

66 M. Bendkowski et al.

Theorem 1 (Generating Function Method via Szegö Lemma). Let A,B
be functions satisfying the following conditions:

1. A,B are analytic in |z| < 1 with z = 1 being the only singularity on the circle
|z| = 1,

2. A,B have the following expansions in the vicinity of z = 1:

A(z) =
∑
p≥0

ap(1 − z)
p
2 , B(z) =

∑
p≥0

bp(1 − z)
p
2 ,

where b1 �= 0.

Let Ã and B̃ be functions satisfying Ã(
√

1 − z) = A(z) and B̃(
√

1 − z) = B(z).
Then

lim
n→∞

[zn]{A(z)}
[zn]{B(z)} =

a1

b1
=

Ã′(0)
B̃′(0)

.

Theorem 2 (Pringsheim, see [5, Theorem IV.6]). If A(z) is representable
at the origin by a series expansion that has non-negative coefficients and radius
of convergence R, then the point z = R is a singularity of A(z).

Theorem 3 (Exponential Growth Formula, see [5, Theorem IV.7]). If
A(z) is analytic at 0 and R is the modulus of a singularity nearest to the origin
in the sense that

R = sup{r ≥ 0 : A is analytic in |z| < r},

then the coefficient an = [zn]{A(z)} satisfies

an = R−nθ(n) with lim sup |θ(n)| 1
n = 1.

By Tn we denote n-th Catalan number, i.e., the number of expressions (or equi-
valently trees) containing n pairs of parentheses which are correctly matched. It
is well-known that Tn = 1

n+1

(
2n
n

)
and that

lim
n→∞

Tn+1

Tn
= 4. (1)

Since the set of all combinators is defined by a very simple grammar, we can
easily count all combinators of a given size.

Fact 1 (see, e.g. [4]). Let C be the generating function enumerating combina-
tors of a given size. Then

C(z) =
1 − √

1 − 8z

2z
and |Cn| = [zn]{C(z)} = 2n+1 · Tn

Asymptotic Properties of Combinatory Logic 67

5 Weakly Normalizing Combinators

Let us start with the well-known classical fact observed already in [3].

Theorem 4 (Standarization Theorem). If a combinator is weakly normal-
izing, then the leftmost outermost reduction always leads to a normal form.

Another classical observation is that the set of weakly normalizing combinators
WN is undecidable. It follows that there is no purely syntactic formula enumer-
ating WNn and thus we cannot find the cardinality of WNn explicitly. For that
reason we take the following approach. We find feasible subclasses of WN and
C \ WN and use them to bound the density of WN in C.

Lemma 1. Asymptotically at least 1
32 of combinators are weakly normalizing

i.e., μ− (WN
C

) ≥ 1
32 .

Proof. Let L be the class of combinators which are either of the form KKM
or KSM , where M ∈ C is an arbitrary combinator. Let us notice that in just
one reduction step every combinator from this class is reducible either to K or
to S. Therefore L is a subset of all weakly normalizing combinators. Moreover,
we have |Ln| = 2|Cn−2| for n ≥ 2 and so

μ

(L
C

)
= lim

n→∞
|Ln|
|Cn| = lim

n→∞
2|Cn−2|

|Cn| = lim
n→∞

2n · Tn−2

2n+1 · Tn

(1)
=

1
2

· 1
42

=
1
32

. 	

Lemma 2. Asymptotically at most 1 − 1
218 of combinators are weakly normal-

izing, i.e., μ+
(WN

C
) ≤ 1 − 1

218 .

Proof. Let ω1 = S(SS)SSSS and ω2 = SSS(SS)SS. Consider the class U of
combinators that are in form of ω1M1 . . . Mk or ω2M1 . . . Mk for arbitrary k ≥ 0
and M1, . . . , Mk ∈ C. In [1] it was shown that ω1 is not normalizable, which
implies that so is ω2 since ω1 reduces to ω2. By the standarization theorem for
combinatory logic, we obtain that U ⊆ (C \ WN). Since both ω1 and ω2 are of
size 6, we get |Un| = 2n−6 · Tn−6 for n ≥ 7. Finally,

μ

(U
C

)
= lim

n→∞
|Un|
|Cn| = lim

n→∞
|Cn−6|
|Cn| = lim

n→∞
Tn−6

26 · Tn

(1)
=

1
26

· 1
46

=
1

218
. 	

The two above lemmas show that the density of weakly normalizing combinators,
provided it exists, is neither zero nor one. In [4] it was shown that a random
combinator is not strongly normalizing. This immediately implies the following
result.

Theorem 5. Asymptotically almost all weakly normalizing terms are not stron-
gly normalizing i.e., μ

(SN
WN

)
= 0.

68 M. Bendkowski et al.

6 Combinatorial Results

Lemma 3. Let N be the set of combinators in normal form. The generating
function FN enumerating cardinality of N is given by

FN (z) =
1 − 2z − √

1 − 4z − 4z2

2z2
.

This implies

[zn]{FN (z)} ∼ (2 + 2
√

2)nθ(n) = (4.82843 . . .)nθ(n)

with lim supn→∞ |θ(n)| 1
n = 1.

Proof. The grammar for N is given by

N := S | K | K N | S N | S N N .

It follows that the generating function FN satisfies

FN (z) = 2 + 2zFN (z) + z2(FN (z))2.

Solving the equation for FN (z) we obtain two solutions 1−2z±√
1−4z−4z2

2z2 . Because
limn→∞ FN (0) = 2 we conclude that FN (z) = 1−2z−√

1−4z−4z2

2z2 . In order to com-
pute the asymptotic growth of [zn]{FN (z)}, we start with the observation that
FN (z) has an analytic continuation in 0 and its radius of convergence R is equal
to 1

2 (
√

2 − 1). By Pringsheim’s theorem be obtain that R is also the modulus of
the dominating singularity of FN (z) and thus applying the Exponential Growth
Formula we obtain that

[zn]{FN (z)} = R−nθ(n) ∼ (4.82843 . . .)nθ(n) with lim sup
n→∞

|θ(n)| 1
n = 1. 	

In order to determine the density of normal forms in the set of all strongly
normalizing combinators, we define a class G as the set of combinators defined
by the following grammar:

G := S | K | KKK | K G | S G | S G G.

Since G contains all productions of N , we have N ⊆ G. Moreover, the only
redexes in G are of the form KKK, which implies that G ⊆ SN .

Lemma 4. The generating function FG enumerating cardinality of G is given by

FG(z) =
1 − 2z − √

1 − 4z − 4z2 − 4z4

2z2
,

which yields

[zn]{FG(z)} ∼ (4.85823 . . .)nθ(n)with lim sup |θ(n)| 1
n = 1.

Asymptotic Properties of Combinatory Logic 69

Proof. Given the grammar for G we obtain that FG satisfies the following equa-
tion FG(z) = 2 + z2 + 2zFG(z) + z2(FG(z))2. Solving for FG(z) we find two
possible solutions 1−2z±√

1−4z−4z2−4z4

2z2 . Since limn→∞ FG(0) = 2 we conclude
that FG(z) = 1−2z−√

1−4z−4z2−4z4

2z2 . In order to find the dominating singular-
ity of FG(z), we examine the real roots of

√
1 − 4z − 4z2 − 4z4. This expression

yields two real roots z1 ≈ −0.800151 and z2 ≈ 0.205836. Because z2 lies closer
to the origin, it follows that z ≈ 0.205836 dictates the asymptotic growth of
[zn]{FG(z)}. Applying the Exponential Growth Formula we obtain that

[zn]{FG(z)} ∼ (4.85823 . . .)nθ(n) with lim sup |θ(n)| 1
n = 1. 	

Theorem 6. Asymptotically almost all strongly normalizing terms are not in
normal form, i.e., μ

(N
SN

)
= 0.

Proof. Similarly to WN , the set of strongly normalizing combinators SN is
undecidable and therefore we cannot enumerate SNn explicitly. Fortunately, it
suffices to prove that μ

(N
H

)
= 0 for some sufficiently large subclass H ⊆ SN . Let

G be the set of combinators as defined in Lemma 4. We claim that μ
(N

G
)

= 0.
Indeed, using Lemmas 3 and 4 we obtain

μ

(N
G

)
= lim

n→∞
[zn]{FN (z)}
[zn]{FG(z)} = lim

n→∞
(4.82843 . . .)n

(4.85823 . . .)n
= 0. 	

Lemma 5. Let t0 ∈ N be a combinator of size |t0| ≥ 1. Let Nt0 be the set
of combinators in normal form which contain t0 as a subterm. The generating
function FNt0

enumerating cardinality of Nt0 is given by

FNt0
(z) =

−√
1 − 4z − 4z2 +

√
1 − 4z − 4z2 + 4z|t0|+2

2z2
.

Proof. Note that if Q ∈ Nt0 then either:

1. Q = t0, or
2. Q = KM and t0 is a subterm of M , or
3. Q = SM and t0 is a subterm of M , or
4. Q = SMP and t0 is a subterm of M but not P , or
5. Q = SMP and t0 is a subterm of P but not M , or
6. Q = SMP and t0 is a subterm of both M and P .

It follows that FNt0
satisfies the following equation

FNt0
(z) = z|t0| + 2zFNt0

(z) + 2z2(FN (z) − FNt0
(z))FNt0

(z) + z2(FNt0
(z))2.

Using the generating function for N we solve this equation for FNt0
(z) and

obtain two solutions

−√
1 − 4z − 4z2 ±

√
1 − 4z − 4z2 + 4z|t0|+2

2z2
.

70 M. Bendkowski et al.

Since there is no Q ∈ Nt0 of size 0, we get that limz→0 FNt0
(z) = 0 and finally

FNt0
(z) =

−√
1 − 4z − 4z2 +

√
1 − 4z − 4z2 + 4z|t0|+2

2z2
. 	

Theorem 7. Let t0 ∈ N . The density of combinators in normal form which
contain t0 as a subterm is 1.

Proof. We prove this result applying Theorem 1. We start with normalizing
FNt0

and FN in such a way that both generating functions are analytic in the
disc |z| < 1 with z = 1 being their only singularity on the circle |z| = 1. For
convenience, let us shift both generating functions by two positions obtaining
F̂N (z) := z2FN (z) and F̂Nt0

(z) := z2FNt0
(z). Since R = 1

2 (
√

2 − 1) is the
dominating singularity of both FN and FNt0

, we define FN (z) := F̂N (Rz) and
FNt0

(z) := F̂Nt0
(Rz).

First, we examine FN (z). Simplifying, we get

FN (z) =
1
2

(
−

√
2z + z −

√
(1 − z)

(
1 − (

2
√

2 − 3
)
z
)

+ 1

)
.

Note that the inner expression
√

(1 − z)
(
1 − (

2
√

2 − 3
)
z
)
, carrying the singu-

larities of FN (z), has exactly two roots, i.e., z1 = 1 and z2 = 1
2
√
2−3

≈ −5.82843.

It follows that FN (z) must be analytic in the disc |z| < 1 with z = 1 being the
only singularity on the circle |z| = 1. Moreover, FN (z) yields an expansion in
the vicinity of z = 1 in form of

∑
p≥0 wp(1− z)p/2 with w1 = − 1

2

√
4 − 2

√
2 �= 0.

Simplifying FNt0
, we obtain

FNt0
= −1

2

√
(1 − z)

(
1 − (

2
√

2 − 3
)
z
)

+
1
2

√
1 − 2

(√
2 − 1

)
z − (

3 − 2
√

2
)
z2 + 2−|t0|(√2 − 1

)|t0|+2
.

Since 1 − 2
(√

2 − 1
)
z − (

3 − 2
√

2
)
z2 + 2−|t0|(√2 − 1

)|t0|+2 is decreasing in [0, 1]
attaining values 1 and 0 for z = 0 and z = 1 respectively, we obtain that FNt0

is analytic in the disc |z| < 1 with z = 1 being the only singularity on the circle
|z| = 1. Moreover, FNt0

has an expansion in the vicinity of z = 1 in form of∑
p≥0 vp(1 − z)p/2 with v1 = − 1

2

√
4 − 2

√
2.

Next, let us consider functions F̃N and F̃Nt0
such that

F̃N (
√

1 − z) = FN (z) and F̃Nt0
(
√

1 − z) = FNt0
(z).

By the analyticity of FN and FNt0
in the disc |z| < 1, we obtain that both F̃N (z)

and F̃Nt0
(z) yield derivatives in this disc and thus F̃ ′

N (0) and F̃ ′
Nt0

(0) exist.

Asymptotic Properties of Combinatory Logic 71

Finally, computing those derivatives we get F̃ ′
N (0) = F̃ ′

Nt0
(0) = − 1

2

√
4 − 2

√
2

and so

lim
n→∞

[zn]{FNt0
}

[zn]{FN } = lim
n→∞

R−n−2[zn+2]{FNt0
}

R−n−2[zn+2]{FN } = lim
n→∞

F̃ ′
Nt0

(0)

F̃ ′
N (0)

= 1.
	

Theorem 8. Asymptotically almost all normal forms are not typeable, i.e.,
μ

(T YP ∩ N
N

)
= 0.

Proof. Note that Ω = S(SKK)(SKK) is in normal form and is not typeable.
Directly from Theorem 7 we obtain that asymptotically almost every combinator
in normal form contains Ω as a subterm and is thus not typeable. 	

References

1. Barendregt, H.P., Bergstra, J., Klop, J.W., Volken, H.: Some notes on lambda
reduction, in: Degrees, reductions and representability in the lambda calculus.
Preprint no. 22, University of Utrecht, Department of mathematics, pp. 13–53
(1976)

2. Chauvin, B., Flajolet, P., Gardy, D., Gittenberger, B.: And/Or trees revisited.
Comb. Probab. Comput. 13(4–5), 475–497 (2004)

3. Curry, H., Feys, R.: Combinatory Logic, vol. I. North Holland, Amsterdam (1958)
4. David, R., Grygiel, K., Kozik, J., Raffalli, C., Theyssier, G., Zaionc, M.: Asymp-

totically almost all λ-terms are strongly normalizing. Logical Methods Comput.
Sci. 9, 1–30 (2013)

5. Flajolet, P., Sedgewick, R.: Analytic Combinatorics. Cambridge University Press,
Cambridge (2009)

6. Fournier, H., Gardy, D., Genitrini, A., Zaionc, M.: Classical and intuitionistic logic
are asymptotically identical. In: Duparc, J., Henzinger, T.A. (eds.) CSL 2007.
LNCS, vol. 4646, pp. 177–193. Springer, Heidelberg (2007)

7. Gardy, D. Random boolean expressions. In: Discrete Mathematics and Theoretical
Computer Science Proceedings AF, pp.1–36 (2005)

8. Gardy, D., Woods, A.: And/Or tree probabilities of boolean functions. Discrete
Math. Theor. Comput. Sci. 6, 139–146 (2005)

9. Genitrini, A., Kozik, J.: In the full propositional logic, 5/8 of classical tautologies
are intuitionistically valid. Ann. Pure Appl. Logic 163(7), 875–887 (2012)

10. Grygiel, K., and Lescanne, P. Counting terms in the binary lambda calculus.
In: DMTCS 25th International Conference on Probabilistic, Combinatorial and
Asymptotic Methods for the Analysis of Algorithms (2014)

11. Kostrzycka, Z., Zaionc, M.: Statistics of intuitionistic versus classical logic. Stud.
Logica 76(3), 307–328 (2004)

12. Kozik, J.: Subcritical pattern languages for And/Or trees. In: DMTCS Proceedings
from Fifth Colloquium on Mathematics and Computer Science Algorithms Trees,
Combinatorics and Probabilities, pp. 437–448 (2008)

13. Lefmann, H., Savický, P.: Some typical properties of large And/Or Boolean for-
mulas. Random Struct. Algorithms 10, 337–351 (1997)

14. Moczurad, M., Tyszkiewicz, J., Zaionc, M.: Statistical properties of simple types.
Math. Struct. Comput. Sci. 10(5), 575–594 (2000)

72 M. Bendkowski et al.

15. Olivier, B., Danièle, G., Bernhard, G., Alice, J.: Enumeration of generalized BCI
lambda-terms. Electr. J. Comb. 20, 4 (2013)

16. Szegö, G.: Orthogonal polynomials. Am. Math. Soc. Colloquium Ser. Publ. 23,
413–421 (1967)

17. Tromp, J. Binary lambda calculus and combinatory logic. Unpublished manuscript
(2014). http://tromp.github.io/cl/LC.pdf.

18. Wilf, H.: Generating Functionology. Academic Press, Boston (1994)
19. Woods, A.: On the probability of absolute truth for And/Or formulas. Bull. Sym-

bolic Logic 12, 3 (2006)
20. Zaionc, M.: On the asymptotic density of tautologies in logic of implication and

negation. Rep. Math. Logic 39, 67–87 (2005)
21. Zaionc, M.: Probability distribution for simple tautologies. Theor. Comput. Sci.

355(2), 243–260 (2006)

http://tromp.github.io/cl/LC.pdf.

Computational Complexity
and Boolean Functions

Some New Consequences of the Hypothesis
That P Has Fixed Polynomial-Size Circuits

Ning Ding1,2(B)

1 Department of Computer Science and Engineering,
Shanghai Jiao Tong University, Shanghai, China

dingning@sjtu.edu.cn
2 NTT Secure Platform Laboratories, Tokyo, Japan

Abstract. We present some new consequences of the hypothesis that P
can be computed by fixed polynomial-size circuits since [Lipton SCTC 94].
For instance, we show that the hypothesis implies that some small circuit
family and BPP machines cannot be fooled by any complexity-theoretic
pseudorandom generator G : {0, 1}Θ(log n) to {0, 1}n, which means the
known derandomization argument of BPP = P no longer works. It also
implies the existence of 2-round public-coin zero-knowledge proofs forNP.

1 Introduction

Proving non-uniform general circuit lower bounds for complexity classes is one of
the most fundamental and challenging tasks in complexity theory. Let SIZE(nc)
denote the class of languages that can be determined by O(nc)-size circuit fam-
ilies. Let P/poly = ∪cSIZE(nc). With the notions of SIZE(nc) and P/poly, a
typical lower bound result is of the form that some uniform class C cannot be
compute by SIZE(nc)) or P/poly.

For P/poly lower bounds, the best separation result we do know so far is
the exponential-time version of Merlin-Arthur games is not in P/poly due to
Buhrman et al. [3]. Karp and Lipton [13] showed that if NP ⊂ P/poly, the poly-
nomial hierarchy collapses. However, currently we do not have any techniques
for proving NEXP � P/poly. Williams [21] showed any algorithm for Circuit-
SAT or for Circuit Acceptance Probability Problem slightly faster than exhaustive
search implies NEXP � P/poly.

As for SIZE(nc) lower bounds, Kannan [12] showed that Σ2∩Π2 � SIZE(nc)
for any constant c, Vinodchandran [20] showed PP � SIZE(nc) and Santhanam
[17] showed promiseMA � SIZE(nc) for any c ∈ N. When considering lower
bounds for P and NP, however, currently the best known lower bound is 5n −
o(n) due to Iwama and Morizumi [11].

After long-time failure to present non-linear lower bounds for P, some resear-
chers thought possibly P ⊆ SIZE(nc). As mentioned in [16] Levin pointed out
that Kolmogorov even believed P ⊆ SIZE(n), and Lipton then investigated
what can be implied if P ⊆ SIZE(nc) and provided some interesting results e.g.
P ⊆ SIZE(nc) implies NP �= P. Two decades passed since then and we still
cannot prove or disprove the hypothesis.
c© Springer International Publishing Switzerland 2015
R. Jain et al. (Eds.): TAMC 2015, LNCS 9076, pp. 75–86, 2015.
DOI: 10.1007/978-3-319-17142-5 8

76 N. Ding

Our Results. We continue the research of [16] by presenting some new conse-
quences of the hypothesis P ⊆ SIZE(nc), some of which are about the topics
emerging posterior to [16]. More concretely, our results are as follows.

Basic Consequences. If P ⊆ SIZE(nc), we have the following two conclusions
(which are elementary but did not appear in literature to our knowledge).

1. E ⊆ SIZE(2o(n)). It follows from this result that the assumption that E has
a language that requires 2Ω(n) circuit lower bound is false. Recall that the
known derandomization argument of BPP = P in many works e.g. [10,18,19]
requires this assumption. So our result means the known derandomization of
BPP = P no longer works under the hypothesis.

2. BPP ⊆ SIZE(nc+ε) for any constant 0 < ε < 1 if one-way functions exist.

P ⊆ SIZE(nc) vs Pseudorandom Generators. We show P ⊆ SIZE(nc)
implies the following negative results on complexity-theoretic pseudorandom
generators G : {0, 1}l(n)=d log n to {0, 1}n in polynomial-time for any d ∈ N.
This kind of generators is used to derandomize BPP in literature.

1. General such pseudorandom generators fooling small circuits do not exist.
That is, there is no such G such that for all circuits D of size n, |Pr[D(G
(Ul(n))) = 1] − Pr[D(Un) = 1]| ≤ 1

n . Note that such generators are required
in many works e.g. [10,18,19].

2. Some small circuit family {Dn}n∈N is unfoolable against all G. That is, for
each such G it holds for any constant 0 < ε < 1, |Pr[Dn(G(Ul(n))) = 1] −
Pr[Dn(Un) = 1]| ≥ ε for infinitely many n. Note that this result is stronger
than the first one.

3. Some BPP machines are unfoolable against all G if one-way functions exist.
That is, for each L ∈ BPP, there is a BPP machine M for L such that for each
G there are instances x satisfying M(x,G(Ul(n))) outputs wrong decisions
with high probability (but in contrast M(x,Un) outputs wrong decisions with
small probability).

The first result eliminates the existence of such general G which can fool all
small circuits, but it does not eliminate the possibility that for any specific small
circuit, there may exist a specific G which can fool the circuit (and may not
fool other small circuits). However, the second result eliminates such possibility.
Despite these two results, there is still a possibility that for each L ∈ BPP and
some BPP machine M for L, there is such G such that we can derandomize
M with G. The third result says for any L ∈ BPP, some BPP machine for it
cannot be derandomized by any G.

2-round Public-coin Zero-knowledge Proofs for NP. Zero-knowledge
proofs [8] are of extreme importance in cryptography. Currently we have a 5-round
construction in [6] and some impossibilities on fewer round numbers in [6,7,14].
There is no constant-round public-coin zero-knowledge proof for NP ever known.
We show under the hypothesis there is a 2-round public-coin zero-knowledge proof
for NP. The simulator of the protocol is non-uniform. The non-triviality of such

Some New Consequences of the Hypothesis 77

a simulator is despite being non-uniform, it is able to simulate the interaction for
all public inputs.

Then we present a witness-extractor for the protocol from program obfusca-
tion, i.e. indistinguishability obfuscators recently proposed by e.g. [5,15], which
can work for all bounded-size provers.

Our Techniques. Basically, the core technique in each consequence is to first
define a problem/function and then show it is in P and thus gain an O(nc)-
size circuit family solving the problem which can then be used to establish the
consequence. Here we sketch it in more detail with respect to unfoolable circuits
against all pseudorandom generators.

Recall that our goal is to present some circuit family that can tell Un from
G(Ul(n)) for any G. So we first define a problem Li: given an n-bit string r,
decide if there is a string s with length |s| ≤ i log n such that there is a G among
the first ni machines (in lexicographical order, say) within n/2-bit size such that
G(s) halts in ni-time and r = G(s). It can be seen Li ∈ P for any i. So there is
an O(nc)-size circuit family {Ci

n}n∈N determining Li, i ∈ N.
Let us investigate the output of Ci

n on input Un or G(Ul(n)). First we can
show Ci

n’s output is almost always 0 when the input is Un. On the other hand,
for G(Ul(n)), for large enough i Ci

n can indeed output 1, indicating it can tell
G(Ul(n)) from Un. Lastly, we carefully choose such circuits over infinitely many
n such that the circuit family can tell Un from G(Ul(n)) for all G.

Organizations. Section 2 presents very short preliminaries. In Sects. 3 to 5 we
present the consequences of the three parts respectively.

2 Preliminaries

Let T : N → N be some function. A language L is in DTIME(T (n)) iff there
is a Turing machine that runs in time O(T (n)) and determines L. Let P =
∪c≥1DTIME(nc) and E = ∪c≥1DTIME(2cn).

Let SIZE(T (n)) denote the class of languages satisfying for each L in it there
is a circuit family {Cn}n∈N such that |Cn| = O(T (n)) and for every x ∈ {0, 1}n,
x ∈ L ⇔ Cn(x) = 1.

Let L(x) denote the indicator function that outputs 1 if x ∈ L and outputs
0 otherwise. Let BPP denote the class in which each language L admits a PPT
machine M such that for each x, Pr[M(x) = L(x)] > 1

10 where the probability
is taken over all choices of the coins of M . We call M a BPP machine for L.

3 Some Basic Consequences of P ⊆ SIZE(nc)

3.1 E and SIZE(2o(n))

Theorem 1. If P ⊆ SIZE(nc) for some c ∈ N, then E ⊆ SIZE(2o(n)).

Proof. We use the padding argument to show this. Suppose E−SIZE(2o(n)) �= φ
and L is a language in it. This means L ∈ DTIME(2c1n) for some c1 ∈ N, but

78 N. Ding

there exists 0 < ε < 1 such that L requires circuit lower bound Ω(2εn) for
infinitely many n. Choose a sufficiently small constant δ satisfying ε/δ > c.

Consider the language L′ that consists of all instances of form x ◦ 02
δn−n

for x ∈ L where n ← |x|. Then L′ can be determined in O(2δn·c1/δ)-time when
inputs are of 2δn bits. Thus by translation L′ ∈ DTIME(nc1/δ) ⊆ P. On the
other hand, L′ requires circuit lower bound Ω(2εn) when inputs are of 2δn bits for
infinitely many n. Thus by translation L′ requires circuit lower bound Ω(nε/δ)
for infinitely many n and so it is not in SIZE(nc). This is a contradiction. ��

The theorem immediately asserts the following assumption is conditionally
false which is used to establish the derandomization result BPP = P.

Assumption 2. E has a language of deterministic circuit complexity 2Ω(n).

Corollary 1. If P ⊆ SIZE(nc) for some c ∈ N, then Assumption 2 is false.

3.2 BPP and SIZE(nc+ε)

Theorem 3. If P ⊆ SIZE(nc) for some c ∈ N and one-way functions exist,
then BPP ⊆ SIZE(nc+ε) for any constant 0 < ε < 1.

Proof. First if one-way functions exist, for any constant 0 < δ < 1 there exists a
pseudorandom generator G : {0, 1}nδ → {0, 1}poly(n) such that G is computable
in time poly(n) and for all polynomial-size circuits D, |Pr[D(Upoly(n)) = 1] −
Pr[D(G(Unδ)) = 1]| ≤ 1/poly(n) [9]. Thus for any L ∈ BPP and a BPP machine
for L, there is another BPP machine for L which uses only nδ coins: The machine
first runs G with nδ coins to get polynomial pseudorandom coins and then feeds
the original BPP machine the pseudorandom coins to make decisions. Let M1

denote such a BPP machine using nδ coins with error 1
n .

Let M denote a machine that runs M1 8n times independently and outputs
the majority. Then there exists a specific value for all the coins used by M ,
denoted rn, such that Mrn

(x) outputs the correct decision for all x ∈ {0, 1}n (as
the proof of BPP ⊂ P/poly shows). Note that |rn| = 8n1+δ.

Now we define a language L1 which consists of all instances (x, y) satis-
fying My(x) = 1. Thus L1 ∈ P. Then there is an O(mc)-size circuit family
{Cn}n∈N deciding m = |(x, y)| = O(n1+δ)-bit instances of L1. Then we con-
struct an O(n(1+δ)c)-size circuit family {C ′

n}n∈N determining L. Actually, C ′
n

has rn hardwired and on input x outputs Cn(x, rn). Since Cn(x, rn) = Mrn
(x)

that equals the correct decision and |C ′
n| = O(nc+ε) for ε = cδ, L ∈ SIZE

(nc+ε). ��

4 P ⊆ SIZE(nc) vs Pseudorandom Generators

In this section we investigate the relations between the hypothesis and complexity-
theoretic pseudorandom generators. We focus on the polynomial-time generators
G : {0, 1}Θ(log n) to {0, 1}n, which are used to derandomize BPP and can result
in BPP = P.

Some New Consequences of the Hypothesis 79

4.1 On General Pseudorandom Generators Fooling Small Circuits

Recall the derandomization argument of BPP in [10,18,19] that basically pro-
ceeds in two steps: first assume Assumption 2 to deduce Assumption 4 in the
following is true; second use the pseudorandom generator G to derandomize any
BPP machine for a language in BPP. Conversely, we also know Assumption 4
implies Assumption 2.

Assumption 4. There exists a pseudorandom generator G : {0, 1}l(n) → {0, 1}n

such that G maps inputs of length l(n) = Θ(log n) to length n in time poly(n), and
for all circuits D of size n, |Pr[D(G(Ul(n))) = 1] − Pr[D(Un) = 1]| ≤ 1

n .

However, due to Corollary 1, we immediately have the following result.

Proposition 1. If P ⊆ SIZE(nc) for some c ∈ N, Assumption 4 is false.

Proposition 1 eliminates the existence of such general G which can fool all
small circuits. However, it does not eliminate the possibility that for any specific
small circuit, there may exist a specific G which can fool the circuit (and may not
fool other small circuits). So a further question is whether for each small circuit
there is such a specific generator G that can fool it. In the next subsection,
unexpectedly, we will answer this question negatively.

4.2 Unfoolable Circuit Families Against All Pseudorandom
Generators

We now present a circuit family that cannot be fooled by any pseudorandom
generator that stretches Θ(log n)-bit coins to n-bit pseudorandom coins.

Theorem 5. If P ⊆ SIZE(nc) for some c ∈ N, there is an nc+1-size circuit
family {Dn}n∈N such that for any pseudorandom generator G that maps inputs
of length l(n) = d log n for arbitrary d ∈ N to length n in time poly(n), it holds
for any constant 0 < ε < 1, |Pr[Dn(G(Ul(n))) = 1] − Pr[Dn(Un) = 1]| ≥ ε for
infinitely many n.

Proof. To present the circuit family {Dn}n∈N such that for any generator G the
result holds, we first define the following problems.

Problems Li. For each i ∈ N, we define problem Li as follows. Given r ∈ {0, 1}n,
decide if there is s of length no more than i log n such that for at least one
machine G among the first ni machines (in lexicographical order, say), G is at
most n/2-bit long and G(s) halts in ni-time and r is equal to G(s).

It can be seen that an exhaustive search algorithm can run each one of the
first ni machines at most ni steps on input a string s of length no more than
i log n and check if there are G and s satisfying the requirement. Since we only
need to check the first ni machines and emulate G(s) ni steps and the number
of all s is O(ni), the algorithm can output a correct decision in polynomial-time.
So Li is in P for all i ∈ N. Thus if P ⊆ SIZE(nc), there is an O(nc)-size circuit
family {Ci

n}n∈N determining Li, i ∈ N.

80 N. Ding

Note that Ci
n is of O(nc)-size. Set k = c + 1, which means the size of Ci

n, i ∈
N, is bounded by nk for sufficiently large n. Let n1 denote the least integer
satisfying |C1

n| < nk for each n ≥ n1 and for i = 2, 3, · · · , let ni denote the
least integer satisfying |Ci

n| < nk for each n ≥ ni and ni > ni−1. Define the
following distinguisher {Dn}n∈N: for each n ∈ {n1, · · · , ni, · · · }, let Dn be Ci

ni
;

for all other n, let it be any nk-size circuit. Thus |Dn| ≤ nk.
For {Dn}n∈N, let us consider an arbitrary pseudorandom generator G which

stretches d log n bits to n bits in polynomial-time for some d. It can be first
seen that for all machines of length n/2 and all inputs s of length no more than
i log n, there are at most poly(n)·2n/2 different outputs of all these machines with
input s. So for truly random Un, Un /∈ Li except for probability poly(n)/2n/2

for any i. Thus Pr[Dn(Un) = 1] = poly(n)/2n/2.
On the other hand, for this G, the order number of G in the enumeration

of all machines is a constant and G’s running-time is a fixed polynomial. When
the input is r = G(Ud log n), we have for each large enough i and for each n ∈
{ni, ni+1, · · · } the order number G is less than ni and G(s) outputs r for some s
of length d log n (no more than i log n) in ni-time, which shows Ci

ni
(r) outputs

1 always. Thus |Pr[Dn(G(Ul(n))) = 1]−Pr[Dn(Un) = 1]| ≥ ε for infinitely many
n for any constant 0 < ε < 1. The theorem holds. ��

4.3 Unfoolable BPP Machines Against All Pseudorandom
Generators

The previous subsections show under the hypothesis, not only the general pseudo-
random generator for all small circuits, but also specific generators for all specific
circuits do not exist. But for the purpose of derandomizing BPP, both the two-
type generators are not necessary. Actually, a specific pseudorandom generator
that can fool a specific BPP machine for any language in BPP suffices. More pre-
cisely, let L ∈ BPP and M be a BPP machine for L. A pseudorandom generator
G satisfying for any instance x, G(Ul(n)) can fool M with x suffices to induce a
deterministic polynomial-time machine for L. Since intuitively M(x) could not
be the {Dn}n∈N in Theorem 5, there is a possibility that for each L ∈ BPP and
some M for L, there is such G such that we can derandomize M with G.

However, to do this we need to select a derandomizable one instead of any
BBP machine for L, since the following theorem says that some M for L cannot
be derandomized by any generator G, in the sense that on one hand M with
truly random coins can decide all instances correctly with high probability and
on the other hand M with pseudorandom coins from any G will output wrong
decisions for some instances with high probability. When errors occur, we cannot
be aware of this.

In the following for any BPP machine M , we use notation M(x,Upoly(n)) to
denote the computation of M with input instance x and coins Upoly(n).

Theorem 6. If P ⊆ SIZE(nc) for some c ∈ N and one-way functions exist,
then for all L ∈ BPP there is a BPP machine M for L which needs no more
than nk coins for k ∈ N such that for any pseudorandom generator G that maps

Some New Consequences of the Hypothesis 81

inputs of length l(n) = d log n for arbitrary d ∈ N to length nk in time poly(n),
there is an instance serial {xn}n∈N satisfying Pr[M(xn, G(Ul(n))) �= L(xn)] ≥
1 − poly(n)

2n − 1
n for all sufficiently large n.

Proof. Let ML be a BPP machine for L with error ε = 1
n which uses no more

than n coins (using a cryptographically pseudorandom generator constructed
from one-way functions to generate poly(n) coins). We construct a BPP machine
M for L that uses nk coins and cannot be derandomized. On input any instance
x ∈ {0, 1}nc+1

and coins Unk , M does the following.

1. If x cannot be parsed to the form (C, r, r′) where C denotes a boolean circuit
of n-bit input and |C| = nc+1/2 and |r| = n and |r′| = n, output ML(x, r′⊕r1)
where r1 denotes n coins in Unk . Otherwise, move to the next step.

2. Set t = n3 and let r1, · · · , rt, rt+1, rt+2 be the first t + 2 n-bit blocks in Unk .
Compute C(r1), · · · , C(rt) and count the fraction of 1 among all outputs. If
the fraction is less than 1 − ε, output ML(x, r′ ⊕ rt+2). Otherwise, output
ML(x, r′ ⊕rt+2) if C(r⊕rt+1) = 1 and output 1−ML(x, r′ ⊕rt+2) otherwise.

We now show M is indeed a BPP machine for L. First consider x that is
not of form (C, r, r′). Then M outputs ML(x,Un). Thus it has error ε. Second
consider x = (C, r, r′) with Pr[C(Un) = 1] < 1 − 2ε. Due to the Chernoff bound,
1
t

∑t
i=1 C(ri) < 1−2ε+δ < 1−ε except for probability e−2δ2t = e−2n for δ = 1

n .
This shows M ’s error is at most ε+e−2nε < 2ε. Third consider x = (C, r, r′) with
Pr[C(Un) = 1] ≥ 1 − 2ε. Then M ’s error is at most ε + Pr[C(Un) = 0] + ε < 4ε.
So for any instance M ’s error is at most 4ε. That shows M is a BPP machine
for L.

Consider an arbitrary G that maps inputs of length d log n to length nk in
time poly(n). We now define the following function.

Function f . Given r ∈ {0, 1}n, output 1 if there is s ∈ {0, 1}d log n such that r
equals any one of the first n3 n-bit blocks in the output of G(s), and output 0
otherwise.

Similarly, viewed as a language, f−1(1) is in P. Thus there is an O(nc)-size
circuit family {Cn}n∈N computing f . Note that |Cn| < nc+1/2 and can be padded
to nc+1/2-size for large enough n. Similarly, G(s) has at most poly(n) different
outputs, one of which happens to contain Un as a block with probability poly(n)

2n .
Thus Pr[Cn(Un) = 1] = poly(n)

2n .
First consider the instance xn = (Cn, r, r′) for uniformly random r, r′. When

the coins for M is G(Ud log n), letting r1, · · · , rt+1 denote the first n3 + 1 n-bit
blocks in the output of G(Ud log n), we have Cn(r1) = · · · = Cn(rt) = 1 and
Pr[Cn(r ⊕ rt+1) = 0] = 1 − poly(n)

2n since r is uniformly random. Due to M ’s
strategy, M(xn, G(Ud log n)) outputs 1 − ML(xn, r′ ⊕ rt+2) almost all the time.
Thus Pr[M(xn, G(Ud log n)) �= L(xn)] ≥ 1 − poly(n)

2n − ε. Thus there exist specific
r, r′ such that fixing xn = (Cn, r, r′), the probability formula still holds. The
theorem holds. ��

82 N. Ding

We remark that even in the case BPP = P, L which admits a deterministic
polynomial-time machine still admits a BPP machine that cannot be derandom-
ized. Actually with a similar argument to that of Theorem6 (where ML changes
to be a deterministic polynomial-time machine for L and consider x of form
(C, r)) we have the following proposition which does not need one-way functions
and achieves stronger probability result.

Proposition 2. If P ⊆ SIZE(nc) for some c ∈ N, then for all L ∈ P there is
a BPP machine M for L which needs no more than nk coins for k ∈ N such
that for any pseudorapndom generator G described in Theorem 6, there is an
instance serial {xn}n∈N satisfying Pr[M(xn, G(Ul(n))) �= L(xn)] ≥ 1 − poly(n)

2n

for all sufficiently large n.

5 Two-Round Public-Coin Zero-Knowledge Proofs

In this section we investigate the question of constructing constant-round public-
coin zero-knowledge proofs for NP if P ⊆ SIZE(nc). An interactive proof is
zero-knowledge if for any polynomial-time verifier there is a polynomial-time
simulator such that what the verifier sees, i.e. random coins, the public input
and prover’s messages, can be computationally indistinguishably reconstructed
by the simulator [8].

Currently we have a 5-round private-coin construction due to [6] and some
impossibilities on fewer round numbers in e.g. [6,7,14]. Reference [2] presents a
negative result on 2-round public-coin zero-knowledge proofs, but it assumes
that E has a language of non-deterministic circuit complexity 2Ω(n), which
is even stronger than Assumption 2. So due to the hypothesis P ⊆ SIZE(nc),
this assumption is false and the negative result in [2] no longer works.

So there is no constant-round public-coin zero-knowledge proofs for NP ever
known. However, we show that based on the hypothesis there exists a 2-round
public-coin zero-knowledge proof for NP with respect to a relaxed requirement
that the simulator can be non-uniform. Despite being non-uniform the simulator
is able to simulate the interaction for all public inputs.

5.1 The Protocol

We first present some preparations as follows.

Definition 1. For each polynomial-time machine M , we define a function fM

as follows. Given x ∈ {0, 1}n, u ∈ {0, 1}n, i ∈ [1, nc+2], output ri that is the ith
bit of r ← M(x, u).

Note that in the definition i can be represented by a �(c+2) log n�-bit string.
The function fM induces a problem LM that consists all instances (x, u, i) satis-
fying fM (x, u, i) = 1. Since M is polynomial-time, LM ∈ P. Due to the hypoth-
esis, LM can be determined by an O(nc)-size circuit family {Cn}n∈N. Namely,
fM can be computed by {Cn}n∈N.

Let L be any language in NP. Then we define the following language Λ.

Some New Consequences of the Hypothesis 83

Public input: x;
Prover’s auxiliary input: w, (a witness for x ∈ L).

1. V → P : Send r ∈R {0, 1}nc+2
, ZAP1.

2. P → V : Send ZAP2 generated using witness w for the statement that (x, r) ∈ Λ.

Protocol 1 The 2-round public-coin zero-knowledge proof for L.

Definition 2. We define the following language Λ: (x, r) ∈ Λ where |x| =
n, |r| = nc+2 iff either there is a witness w for x ∈ L or there are a boolean
circuit C of size at most nc+1 and u ∈ {0, 1}n such that C(x, u, i) = ri for all
1 ≤ i ≤ nc+2.

Then Λ ∈ NP and a witness for (x, r) ∈ Λ is either w for x ∈ L or a circuit
C and u satisfying the second condition.

Let ZAP denote the 2-round public-coin witness-indistinguishable (WI) proof
for NP in [4], (ZAP1,ZAP2) denote the two messages of ZAP. Let PRG denote
a cryptographically pseudorandom generator in [9]. Our protocol for L is shown
in Protocol 1.

Theorem 7. Assuming P ⊆ SIZE(nc) for some c ∈ N and the existence of
ZAP, PRG, Protocol 1 is a 2-round public-coin zero-knowledge proof for L.

Proof. We show the completeness, soundness and zero-knowledge properties are
satisfied.

Completeness. For x ∈ L P can always convince V using w.

Soundness. For each x /∈ L and all possible nc+1-size boolean circuits C and
u ∈ {0, 1}n, the string of C(x, u, 1) ◦ · · · ◦ C(x, u, nc+2) in which “◦” means con-
catenation has at most 2nc+1+n different values. Now r is randomly chosen from
{0, 1}nc+2

. So one of these values equals r with probability 2−Ω(nc+2), which
shows (x, r) /∈ Λ with probability 1 − 2−Ω(nc+2), i.e. the statement that ZAP
proves is false. Thus the soundness follows from the soundness of ZAP.

Zero-Knowledge. For each PPT verifier V ∗, we present a polynomial-size sim-
ulator S which is constructed as follows.

1. Consider the following machine M . On input (x, u), M(x, u) runs V ∗(x) and
when V ∗ needs random coins, run PRG(u) and provide the output to it. For
this machine M , let fM and LM be defined previously. Then there is an
O(nc)-circuit family {Cn}n∈N computing fM .

2. Sample coins u ∈ {0, 1}n. Let S have V ∗, Cn, u hardwired. S(x) runs as
follows. It runs V ∗(x) to output r ∈ {0, 1}nc+2

and ZAP1 in which when V ∗

needs coins, run PRG(u) and provide the pseudorandom coins to it. Then S
computes ZAP2 using witness (Cn, u) and sends it to V ∗.

84 N. Ding

We first show that (Cn, u) is a witness for (x, r) ∈ Λ. It can be seen that
r is the output of V ∗(x) with coins from PRG(u). This means r = M(x, u).
Due to the definition of Cn, we have Cn(x, u, i) = ri for all 1 ≤ i ≤ nc+2. And
|Cn| < nc+1 for large enough n. This shows (Cn, u) is a witness for (x, r) ∈ Λ.
So S can finish the interaction.

Then we show S can reconstruct indistinguishably V ∗’s view (random tape,
prover’s messages). Since V ∗’s coins are now PRG(u) and S differs from P (w)
only in the witnesses they use, the indistinguishability is ensured by the pseudo-
randomness of PRG and WI of ZAP. The zero-knowledge property holds. ��

5.2 Obtaining Witness Extraction from Program Obfuscation

In this subsection we consider an enhanced property of witness extraction, which
claims an extractor E such that for any polynomial-time prover P ′ that can
convince V some x ∈ L, then E(P ′, x) can output a witness for x ∈ L in
polynomial-time. A proof system admitting an extractor is called a proof of
knowledge in cryptography. Our result is that we present a witness extractor
from program obfuscation for Protocol 1 which works for bounded-size provers.
For lack of space, we only sketch the construction.

Informally a program obfuscator is a PPT algorithm that given a program can
output a new program such that the output program is of same functionality as
the input program but hides some secrets. In particular, an indistinguishability
obfuscator, denoted iO, which was first introduced by [1] and which candidate
constructions were recently proposed by [5,15] etc. is such that for any two
machines (M1,M2) of same functionality (and same size and same running-time),
iO(M1) and iO(M2) are computationally indistinguishable. We will employ iO
to achieve our result.

We modify Protocol 1 with iO. That is, we let P send a random r1 ∈
{0, 1}poly(n) for a sufficiently large poly(n) (e.g. ≥ nc+3) and Q̃1 ← iO(Q1)
in Step 2, where Q1 denotes the program that on input a program Π with
|Π| < |r1|/2 outputs w for x ∈ L if Π outputs r1 within nlog log n steps and out-
puts 0n otherwise. And accordingly, the first condition in Definition 2 changes
to that Q̃1 is honestly generated. The modified protocol is shown in Protocol 2.

It can be seen that Protocol 2 is complete and sound. Moreover, the simulator
S needs slight modification. That is, it samples r1 and computes Q̃2 ← iO(Q2) in
Step 2, where Q2 is equal to Q1 except that it always outputs 0n, and computes
ZAP2 as before. Note that Q1, Q2 are of same functionality except on input a
program Π satisfying Π outputs r1. However, for random r1, since |Π| < |r1|/2,
the Π does not exist except for exponentially small probability. Thus the two
programs are of same functionality and thus Q̃1, Q̃2 are indistinguishable. So the
zero-knowledge property still holds.

Finally, let us sketch the construction of the extractor. Actually, as shown in
the soundness, if some prover P ′ can convince V x ∈ L, then due to the soundness
of ZAP, Q̃1 is honestly generated. If P ′’s size is bounded by |r1|/2, basically its
code is a valid input Π such that Q̃1(Π) outputs w. So an extractor E can adopt
V ’s strategy to send the message of Step 1 and emulates P ′’s computation where

Some New Consequences of the Hypothesis 85

Public input: x;
Prover’s auxiliary input: w, (a witness for x ∈ L).

1. V → P : Send r ∈R {0, 1}nc+2
, ZAP1.

2. P → V : Send r1 ∈R {0, 1}poly(n), ˜Q1,ZAP2.

Protocol 2 The 2-round public-coin zero-knowledge proof of knowledge for L.

providing P ′ pseudorandom coins from PRG(u′) for random u′ ∈ {0, 1}n. Thus
P ′’s code, u′ and PRG constitute a valid Π which size is bounded. On receiving
P ′’s message, E runs Q̃1(Π) to gain w. Thus we have the following result.

Theorem 8. Assuming P ⊆ SIZE(nc) for some c ∈ N and the existence of
ZAP,PRG, iO, Protocol 2 is a 2-round public-coin zero-knowledge proof for L

which admits an extractor for all bounded-size provers (< |r1|
2).

Acknowledgments. The author is grateful to the reviewers of TAMC 2015 for their
detailed and useful comments. This work is supported by the National Natural Science
Foundation of China (Grant No. 61100209) and Doctoral Fund of Ministry of Education
of China (Grant No. 20120073110094).

References

1. Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S.P.,
Yang, K.: On the (im)possibility of obfuscating programs. J. ACM 59(2), 6 (2012)

2. Barak, B., Lindell, Y., Vadhan, S.P.: Lower bounds for non-black-box zero knowl-
edge. J. Comput. Syst. Sci. 72(2), 321–391 (2006)

3. Buhrman, H., Fortnow, L., Thierauf, T.: Nonrelativizing separations. In: IEEE
Conference on Computational Complexity, pp. 8–12. IEEE Computer Society
(1998)

4. Dwork, C., Naor, M.: Zaps and their applications. In: FOCS, pp. 283–293. IEEE
Computer Society (2000)

5. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candi-
date indistinguishability obfuscation and functional encryption for all circuits. In:
FOCS, pp. 40–49. IEEE Computer Society (2013)

6. Goldreich, O., Kahan, A.: How to construct constant-round zero-knowledge proof
systems for np. J. Cryptol. 9(3), 167–190 (1996)

7. Goldreich, O., Oren, Y.: Definitions and properties of zero-knowledge proof sys-
tems. J. Cryptol. 7(1), 1–32 (1994)

8. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive
proof systems. SIAM J. Comput. 18(1), 186–208 (1989)

9. H̊astad, J., Impagliazzo, R., Levin, L.A., Luby, M.: A pseudorandom generator
from any one-way function. SIAM J. Comput. 28(4), 1364–1396 (1999)

86 N. Ding

10. Impagliazzo, R., Wigderson, A.: P = BPP if e requires exponential circuits: deran-
domizing the xor lemma. In: Leighton, F.T., Shor, P.W. (eds.) STOC, pp. 220–229.
ACM (1997)

11. Iwama, K., Morizumi, H.: An explicit lower bound of 5n-o(n) for boolean circuits.
In: Diks, K., Rytter, W. (eds.) MFCS 2002. LNCS, vol. 2420, pp. 353–364. Springer,
Heidelberg (2002)

12. Kannan, R.: Circuit-size lower bounds and non-reducibility to sparse sets. Inf.
Control 55(1–3), 40–56 (1982)

13. Karp, R.M., Lipton, R.J.: Some connections between nonuniform and uniform
complexity classes. In: Miller, R.E., Ginsburg, S., Burkhard, W.A., Lipton, R.J.
(eds.) STOC, pp. 302–309. ACM (1980)

14. Katz, J.: Which languages have 4-round zero-knowledge proofs? In: Canetti, R.
(ed.) TCC 2008. LNCS, vol. 4948, pp. 73–88. Springer, Heidelberg (2008)

15. Koppula, V., Lewko, A.B., Waters, B.: Indistinguishability obfuscation for turing
machines with unbounded memory. Cryptology ePrint Archive, Report 2014/925
(2014). http://eprint.iacr.org/

16. Lipton, R.J.: Some consequences of our failure to prove non-linear lower bounds
on explicit functions. In: Structure in Complexity Theory Conference, pp. 79–87.
IEEE Computer Society (1994)

17. Santhanam, R.: Circuit lower bounds for merlin-arthur classes. In: Johnson, D.S.,
Feige, U. (eds.) STOC, pp. 275–283. ACM (2007)

18. Shaltiel, R., Umans, C.: Simple extractors for all min-entropies and a new pseudo-
random generator. In: FOCS, pp. 648–657. IEEE Computer Society (2001)

19. Umans, C.: Pseudo-random generators for all hardnesses. J. Comput. Syst. Sci.
67(2), 419–440 (2003)

20. Vinodchandran, N.V.: A note on the circuit complexity.In: Electronic Colloquium
on Computational Complexity (ECCC) (056) (2004)

21. Williams, R.: Improving exhaustive search implies superpolynomial lower bounds.
In: Schulman, L.J. (ed.) STOC, pp. 231–240. ACM (2010)

http://eprint.iacr.org/

Computational Complexity Studies
of Synchronous Boolean Finite

Dynamical Systems

Mitsunori Ogihara1 and Kei Uchizawa2(B)

1 Department of Computer Science, University of Miami, 1365 Memorial Drive,
Coral Gables, FL 33146, USA

ogihara@cs.miami.edu
2 Faculty of Engineering, Yamagata University, Jonan 4-3-16, Yonezawa,

Yamagata 992-8510, Japan
uchizawa@yz.yamagata-u.ac.jp

Abstract. The finite dynamical system is a system consisting of some
finite number of objects that take upon a value from some domain as a
state, in which after initialization the states of the objects are updated
based upon the states of the other objects and themselves according
to a certain update schedule. This paper studies the subclass of finite
dynamical systems the synchronous boolean finite dynamical system (syn-
chronous BFDS, for short), where the states are boolean and the state
update takes place in discrete time and at the same on all objects. The
present paper is concerned with some problems regarding the behavior
of synchronous BFDS in which the state update functions (or the local
state transition functions) are chosen from a predetermined finite basis
of boolean functions B. Specifically the following three behaviors are
studied:

– Convergence. Does a system at hand converge on a given initial state
configuration?

– Path Intersection. Will a system starting in given two state config-
urations produce a common configuration?

– Cycle Length. Since the state space is finite, every BFDS on a given
initial state configuration either converges or enters a cycle having
length greater than 1. If the latter is the case, what is the length of
the loop? Or put more simply, for an integer t, is the length of loop
greater than t?

The paper studies these questions in terms of computational complexity
(in the case of Cycle Length using the decision version of the problem)
and shows the following:

1. The three problems are each PSPACE-complete if the boolean func-
tion basis contains NAND, NOR or both AND and OR.

2. The Convergence Problem is solvable in polynomial time if the set B
is one of {AND}, {OR} and {XOR,NXOR}.

3. If the set B is chosen from the three sets as in the case of the Con-
vergence Problem, the Path Intersection Problem is in UP, and the
Cycle Length Problem is in UP∩ coUP; thus, these are unlikely to be
NP-hard.

c© Springer International Publishing Switzerland 2015
R. Jain et al. (Eds.): TAMC 2015, LNCS 9076, pp. 87–98, 2015.
DOI: 10.1007/978-3-319-17142-5 9

88 M. Ogihara and K. Uchizawa

1 Introduction

The finite dynamical system is a system consisting of some finite number of
objects that each take upon a value from some domain D. After receiving an
initial state assignment the system evolves over time by means of state updates,
where the updates occur in discrete time and are governed by a global state-
update schedule and a local (meaning assigned to each node individually) state-
update functions (or local state-transition functions) that take as input the states
of the objects in the system.

Because of its flexibility the finite dynamical system has been used as a
mathematical model for time-dependent systems and can contain in itself other
multi-object computational models, such as cellular and graph automata and
Hopfield networks.

Classes of finite dynamical systems can be defined by giving certain require-
ments to their operation. First, classes can be defined by specifying the domain,
that is, the set of permissible states: infinite, finite, and boolean. Next, classes
can be defined based upon the types of the state update functions.

It is usually assumed that at each time step, all the objects conduct their
state updates exactly once, and so, classes can be defined depending on the
order in which the state updates occur in the objects. Specifically we have the
asynchronous (any update order), the sequential (a fixed predetermined order),
and the synchronous (all at the same time) finite dynamical systems.

For each n ≥ 1, the underlying structure of an n-object dynamical system
over domain D can be represented as a node- and edge-labeled directed graph G
of n nodes. The nodes of G represent the objects, the edges of G represent the
direct dependencies among the objects in updating their states in a natural way:
an edge from a node u to a node v indicates that the state updating function of v
takes the state of u as input. Also, for each node v, v is labeled by the state update
function of v and the incoming edges of v are labeled by the input positions of
the source node in the state update function. Because of this representation,
classes of the finite dynamical systems can be defined in terms of the properties
of the underlying graph, e.g., whether the graph is planar, whether the graph is
regular, and whether the edges are undirected in the sense, that if there is an
edge from node u to node v, there is an edge from v to u.

The subject of this paper is the synchronous boolean finite dynamical systems
(synchronous BFDS, for short). A synchronous BFDS is the subclass of BFDS
in which the domain is boolean and the update is synchronous.

Given a finite dynamical system we are naturally interested in its behavior.
For example, we may ask questions about fixed points, such as whether the
system has a fixed point (that is, whether there is a state configuration in which
the state update of the system produces no change). In the case where the state
domain is finite, there are a finite number of state configurations, and so we
can ask such questions how many fixed points the system has and how many
initial state configurations lead to fixed points. Furthermore, we can ask about
the behavior of the system on a particular initial state configuration, such as,
whether a given initial state configuration leads the system to a fixed point, and

Computational Complexity Studies of Synchronous Boolean Finite 89

if not, since the system eventually enters a cycle of state configurations, how
many steps it will take for the system to enter a cycle and how long the cycle is.

That the underlying structure of finite dynamical systems can be represented
as a graph suggests that the classes of finite dynamical systems can be studied
using the number of objects as the size parameter and so the behavioral prop-
erties of a class of finite dynamical systems can be studied in terms of its com-
putational complexity. In other words, for a class of finite dynamical systems C
and for a question Q, we ask how computationally hard it is to answer Q for
class C: Is it polynomial time solvable? If not, is the problem hard for a known
complexity class, such as NP and PSPACE?

Much work has been done to explore the computational complexity of behav-
ioral properties of finite dynamical systems. Barrett et al. [3] study the compu-
tational complexity of the sequential finite dynamical systems, the model first
introduced by Barrett, Mortveit, and Reidys in [1]. Barrett et al. [3] study partic-
ularly the sequential boolean finite dynamical systems regarding the existence of
fixed points. For a variety of permissible state update functions, they ask which
combinations of the functions make the problem easy or difficult. They show that
the problem is NP-complete if the set of permissible local transition functions is
either {NAND,XNOR}, {NAND,XOR}, {NOR,XNOR} or {NOR,XOR}. They
also show that the problem is solvable in polynomial time if the functions are
chosen from {AND,OR,NAND,NOR}.

The above results have been strengthened by Kosub [7], who shows a dicho-
tomy result in the sense of Schaefer [11]; i.e., the problem in question is either NP-
hard or polynomial time solvable. Kosub obtains a complete complexity-theoretic
characterization of the fixed-point problem about boolean finite dynamical sys-
tems with respect to the state update function classes, which Kosub calls Post
Classes, as well as with respect to the structure of the underlying graph. He
shows exactly in which case the problem is NP-hard and for all the remaining
cases the problem is polynomial-time solvable. Kosub and Homan [9] prove a
dichotomy result on the counting version of the fixed point problem, in the sense
that the problem is either #P-complete or polynomial-time solvable.

Another set of natural problems that arise in finite dynamical systems is the
reachability; that is, given a system and two state configurations a and b, can b
be reached from a? A variant of this problem is whether any fixed point can be
reached from a given configuration a. Barrett et al. [2] study these problems for
the sequential and synchronous dynamical systems in which the underlying graph
is an undirected graph. They show that the problems are PSPACE-complete in
general but polynomial time solvable if the state update functions are symmetric
and monotone boolean functions.

In this paper, as a follow-up of the aforementioned prior work [2,3,7,9], we
study the computational complexity of the synchronous boolean finite dynamical
systems in which the basis B of the state update functions is finite. We are
particularly interested in three questions:

1. Convergence(B): Given a system F and an initial state configuration a ,
decide whether the system converges to any fixed point.

90 M. Ogihara and K. Uchizawa

2. PathIntersection(B): Given an n-object system F and two state config-
urations a and b, do there exist time steps s and t, such that the state
configuration of F on a at step s is equal to the state configuration of F on
b at step t?

3. CycleLength(B): Given a system F , an initial state configuration a , and
an integer t, decide whether the state configuration sequence generated by the
system starting from a contains a cycle having length greater than or equal to
t. Note that the complement of this problem with t = 2 is Convergence(B).

Although our work may seem reminiscent of the previous work, our focus is
on the dynamical systems whose underlying graph is directed, not undirected.
It is known that the dynamical behavior of the Hopfield networks is different
depending on whether they are symmetric or not [10]. There is thus no a priori
reason to believe that the results regarding directed graph structures are derived
from the results regarding undirected graph structures.

We first show that the above three problems are all PSPACE-complete if B
contains NAND or NOR. While we provide a proof for the result, these follow
from an earlier paper by Floréen and Orponen [5]. We note that Barrett et al. [2]
study this problem too, but in their setting the underlying graph is undirected.

We then prove that if B is one of {AND}, {OR}, and {XOR,NXOR}, Con-
vergence is solvable in polynomial time and that the same assumption implies
that PathIntersection belongs to UP and CycleLength belongs to UP ∩
coUP. We suspect that the latter two problems are polynomial time solvable,
but we do not have at hand yet proofs that the problems are in P.

The rest of the paper is organized as follows. In Sect. 2, we formally define the
dynamical systems and the problems we will study. In Sect. 3, we give algorithms
for the convergence problem and the path intersection problem. In Sect. 4, we
show that the cycle length problem is in UP ∩ coUP.

2 Preliminaries

2.1 Definitions

Below, following the definition of the sequential dynamical systems by Lauben-
bacher and Pareigis [8] we define synchronous boolean finite dynamical systems.

Let n ≥ 1 be an integer. A synchronous boolean finite dynamical system
(synchronous BFDS, for short) of n variables is an n-tuple F = (f1, f2, . . . , fn)
such that f1, . . . , fn are boolean functions of n variables.

Let F = (f1, f2, . . . , fn) be an n-variable synchronous BFDS. A state con-
figuration (or simply a configuration) of F is an n-dimensional boolean vector.
We use the vector notation x = (x1, x2, . . . , xn) to denote a state configuration,
where x1, . . . , xn are boolean variables.

The action of F on an state configuration x is defined as:

F(x) = (f1(x), f2(x), . . . , fn(x))

Computational Complexity Studies of Synchronous Boolean Finite 91

In other words, the elements of F(x) are obtained by applying the n boolean
functions f1, . . . , fn concurrently on the variables x1, . . . , xn. Given an initial
state configuration x 0 = (x0

1, x
0
2, . . . , x

0
n), the synchronous BFDS defines n seque-

nces of boolean values {xt
i}, 1 ≤ i ≤ n and t ≥ 0 by iterative applications of F

on the initial state configuration vector:

for all t ≥ 0,x t+1 = F(x t),

where for all t ≥ 0, x t = (xt
1, x

t
2, . . . , x

t
n). In other words, for all t ≥ 0,

x t = F t(x 0).

For an n-state boolean finite dynamical system, there are exactly 2n pos-
sible state configurations. This implies that in an n-state synchronous BFDS,
regardless of which initial state configuration x 0 it starts, the state configuration
sequence generated from x 0 enters a cycle; that is, in the sequence there exist
indices s and t, 0 ≤ s < t, such that x s = x t. Clearly, for all such pairs (s, t), it
holds:

for all i ≥ 0,x s+i = x t+i.

This implies that there is the smallest value of s for which there exists some
t > s such that x s = x t and that, for that smallest value of s, there exists the
smallest value of t > s such that x s = x t. Let s0 and t0 respectively be the
values of s and t thus defined. Then we have:

– t0 ≤ 2n and
– for all i and j, 0 ≤ i < j ≤ t0 − 1, x i �= x j .

We say that F on x enters a cycle (or enters a loop) at step s0 and its cycle has
length t0 − s0. We call s0 the tail length of F on x . We define LF (x 0) to be the
length of the cycle t0 − s0.

In the case where t0 = s0 + 1, the cycle length is 1, and so, for all s ≥ s0 it
holds that x s0 = x s. In such a case we say that the vector x s0 is a fixed point
of F ; we also say that F converges on the initial state configuration x 0.

A function family is a collection of boolean functions H = {hi}i≥1 such that
for each i ≥ 1, hi takes i inputs. For example, the disjunction of any input size,
which can be described as

{hi}i≥1, hi(x1, . . . , xi) = x1 ∨ · · · ∨ xi,

is a function family. For a function family H, we write Hk to mean the element
of H for input size k. For example, OR is the family of the disjunction functions
while OR2 is the binary disjunction function.

A basis boolean function is either a single boolean function or a function
family. Let f be a boolean function of n variables and let g be a boolean function
of m variables for some m < n. We say that g is equivalent to f if there exist
indices xi1 , . . . , xim such that for all x1, · · · , xn ∈ {0, 1}, it holds that

f(x1, . . . , xn) = g(xi1 , . . . , xim).

92 M. Ogihara and K. Uchizawa

In other words, f is a function that depends only on the variables xi1 , . . . , xim

and g characterizes the behavior of f on those m inputs.
Let B be a finite set of basis functions. We say that a synchronous BFDS

F = (f1, . . . , fn) has basis B if each function of F is either a function family in
B or equivalent to a boolean function in B. In this paper, we consider specifically
the bases that are chosen from function families AND,NAND,OR,NOR,XOR,
and NXOR.

We say that a function family H = {hi}i≥1 is polynomial-time (respectively,
polynomial-space) computable if there exists an algorithm for computing, given
an integer i ≥ 1 and a1, . . . , ai ∈ {0, 1}, the value of hi(a1, . . . , ai) in time
(respectively, space) polynomial in i. We say that a function base B is polynomial-
time (respectively, polynomial-space) computable if each function family in B is
polynomial-time (respectively, polynomial-space) computable.

Given the above formulation it is now possible to discuss how to encode the
synchronous BFDS F over a basis B. An n-object synchronous BFDS f over a
basis B is encoded as a labeled directed graph G = (V,E) in which V is the
object set and E represents the dependency of the objects in terms of their state
update. The nodes are labeled with their basis function. The number of incoming
edges to each node is no more than the number of inputs to the basis function
it is associated with, and those edges are labeled to indicate the positions of the
variables in the input of the basis functions. Thus, any basis B, the synchronous
BFDS F over B has an encoding whose length is bounded by a fixed polynomial
in the number of objects. Note that such an encoding may not exist if B contains
a function family that does not have a polynomial-size encoding.

We now formally define the three decision problems we consider in the paper.
Let B be a boolean function basis.

1. Convergence(B) is the problem of deciding, given a synchronous BFDS F
having basis B and an initial state configuration a of F , whether F converges
on a .

2. PathIntersection(B) is the problem of deciding, given a synchronous BFDS
F having basis B and two initial state configurations a and b of F , whether
there exist some s and t, 0 ≤ s, t ≤ 2n − 1, such that Fs(a) = F t(b).

3. CycleLength(B) is the problem of deciding, given a synchronous BFDS F
having basis B, an initial state configuration a of F , and an integer t, whether
the cycle length of F on a , i.e., LF (a), is greater than t.

We assume that the reader is familiar with introductory-level complexity
classes (see, e.g., Hemaspaandra and Ogihara [6], for reference). The class
PSPACE consists of all decision problems that can be decided by a polynomial
space-bounded Turing machines. The class UP consists of all decision problems
that can be decided by a polynomial time-bounded nondeterministic Turing
machines with a special property that given as input each positive (respectively,
negative) instance, the number of accepting computation paths of the machine
is 1 (respectively, 0). The class coUP is the class of all decision problems that
are the complement of some decision problem in UP.

Computational Complexity Studies of Synchronous Boolean Finite 93

2.2 PSPACE-Completeness

Here we prove that the aforementioned three problems are PSPACE-complete if
the basis contains NAND, NOR or both AND and OR.

Proposition 1. For all polynomial-space computable bases B, Convergence
(B), PathIntersection(B) and CycleLength(B) are in PSPACE.

Proof. Let M be a Turing machine that, given as input a synchronous BFDS S
of some n objects, an initial state configuration a , and an integer t, 0 ≤ t ≤ 2n,
outputs St(a). Since the basis B is polynomial-space computable, M can be
made to run in polynomial space. Using this machine M as a subroutine, the
three problems can be solved as follows:

– Convergence(B): Test whether there exists a t, 0 ≤ t ≤ 2n, such that
M(S,a , t) = M(S,a , t + 1).

– PathIntersection(B): Test whether there exist s and t, 0 ≤ s, t ≤ 2n − 1,
such that M(S,a , s) = M(S, b, t).

– CycleLength(B): Test whether there are no k and l, 0 ≤ k, l ≤ 2n and
l − k ≤ t, such that M(S,a , k) = M(S,a , l).

Clearly, each of the above search can be run using O(n) space. Thus, all three
problems are in PSPACE. �	
The following theorem follows from [5, Corollary3.2]; we omit the proof due to
the page limitation.

Theorem 1. If the basis B contains either NAND, NOR or {AND,OR}, the
problems Convergence(B), PathIntersection(B) and CycleLength(B)
are PSPACE-hard.

The theorem immediately implies the following corollaries.

Corollary 1. If the basis B contains either NAND or NOR, the problems Con-
vergence(B), PathIntersection(B) and CycleLength(B) are PSPACE-
complete.

Corollary 2. If the basis B contains both AND and OR, the problems Con-
vergence(B), PathIntersection(B) and CycleLength(B) are PSPACE-
complete.

3 Algorithms for Convergence and PathIntersection

In this section, we prove the following theorem.

Theorem 2. If B is one of {AND}, {OR}, and {XOR,NXOR}, Convergence
(B) is polynomial-time computable and PathIntersection(B) belongs to UP.

94 M. Ogihara and K. Uchizawa

The theorem is built upon the following lemma, which states that the state
configuration at any time step t, 0 ≤ t ≤ 2n, of a synchronous BFDS of n objects
can be computed in time polynomial in n for a basis chosen from {AND}, {OR},
or {XOR,NXOR}.

Lemma 1. Let B be one of {AND}, {OR}, and {XOR,NXOR}. Given an n-
object synchronous BFDS F over basis B, a state configuration a ∈ {0, 1}n, and
an integer k ≥ 0, we can compute Fk(a) in time polynomial in n + log k.

Proof. In this proof we will think of the state configurations to be column vectors.
We first consider the case where B = {OR}. Let F = (f1, f2, . . . , fn) and a ∈
{0, 1}n be respectively an n-object BFDS over B and its state configuration. Let
A be the adjacency matrix of the system F in terms of its graph-based encoding;
that is, for all i and j, 1 ≤ i, j ≤ n, the entry (i, j) of A is 1 if there is an edge
from node j to node i and 0 otherwise. We then have

F(a) = Aa ,

where the multiplication is interpreted as AND and the addition as OR. It follows
from this that for all k ≥ 0

Fk(a) = Aka

and that Fk therefore can be computed by way of the standard iterated multipli-
cation. Thus, for all k, Fk(a) can be computed in time polynomial in n+ log k.

Next we consider the case where B = {AND}. For each vector a , ac be the
component-wise complement of a , that is, the vector constructed from a by
flipping each element. Then we have

F(a)c = Aac.

This implies that for all k ≥ 0,

(F(a)k)c = Akac

and so
F(a)k = (Akac)c.

Thus, from the previous discussion, the lemma holds in the case where the basis
is {AND}.

Finally we consider the case where B = {XOR,NXOR}. We will consider
each state to be an element of Z2 and perform the arithmetic over Z2. For each
i, 1 ≤ i ≤ n, fi can be represented by a linear function over Z2:

fi(x) =

⎛
⎝ ⊕

j∈Xi

xj

⎞
⎠ ⊕ bi

where ⊕ is the addition over Z2, Xi is a set of all indices of variables involved in
fi, and bi = 1 if fi is equivalent to NXOR and 0 otherwise. By using the same

Computational Complexity Studies of Synchronous Boolean Finite 95

adjacency matrix as before and using the column vector b = (b1, b2, . . . , bn)T ,
we have:

F(a) = Aa ⊕ b,

and so for all k ≥ 0,

Fk(a) = Aka ⊕ (Ak−1 ⊕ Ak−2 ⊕ · · · ⊕ I)b, (1)

where I is the n × n identity matrix. By the standard iterated multiplication,
for each k, 0 ≤ k ≤ 2n, we can compute Ak in polynomial time. Thus, it suffices
to show that the second term of Eq. (1) is computable in time polynomial in
n + log k.

Let Q(k) denote the summation in question. Suppose k is a power of 2. Let
p = log k. We have k = 2p and

Q(k) = (A2p−1 ⊕ I)(A2p−2 ⊕ I) · · · (A ⊕ I).

Since p = log k, by the iterative multiplication, we can compute all the compo-
nents on the right-hand side in time polynomial in n+log k, and so the left-hand
side can be obtained in time polynomial in n + log k.

Now suppose k is not a power of 2. There exist p and k′ such that 2p < k <
2p+1 and k′ = k − 2p ≤ k/2. We have

Q(k) = Q(2p) ⊕ A2pQ(k′).

Since 1 ≤ k′ < k/2, this allows us to establish a recursive method for computing
Q(k). The depth of recursion is at most log k, and each term of the form either
Q(2m) or A2m during the recursion can be computed in time polynomial in
n + log k. Thus, Q(k) can be computed in time polynomial in n + log k. Hence,
the claim holds, and the proof is complete. �	
Theorem 2 can be proven using Lemma 1 as follows.

Proof of Theorem 2. To show that Convergence is polynomial-time computa-
ble, let F be an n-object synchronous BFDS over one of the three bases and
let a be an initial state configuration. By the definition of convergence, we have
that F converges on a if and only if F2n−1(a) = F2n(a) holds. By Lemma 1, we
can compute F2n−1(a) and F2n(a) in polynomial time, and thus we complete
the proof.

The following algorithm shows that PathIntersection(B) is in UP: Given
F , a , and b,

Step 1. Nondeterministically choose s, 0 ≤ s ≤ 2n − 1.
Step 2. Nondeterministically choose t, 0 ≤ t ≤ 2n − 1.
Step 3. Test whether Fs(a) = F t(b). If the test fails, reject.
Step 4. If either s = 0 or t = 0, then accept. Otherwise, test whether Fs−1(a) �=

F t−1(b). If the inequality holds, accept; otherwise, reject.

Clearly the algorithm runs in time polynomial in n. If the two state configuration
paths intersect, then there is a unique combination of s and t for which the tests
pass. Thus, the algorithm runs in UP. �	

96 M. Ogihara and K. Uchizawa

4 Algorithm for CycleLength

In this section we prove the following theorem.

Theorem 3. If B is one of {AND}, {OR}, and {XOR,NXOR}, then Cycle-
Length(B) belongs to UP ∩ coUP.

This result together with the latter statement of Theorem 2 can be used as
evidence that for the bases mentioned in the theorems PathIntersection(B)
and CycleLength(B) are unlikely to be NP-hard.

We first prove the following proposition.

Proposition 2. Let F be an n-object BFDS and let a be an initial state con-
figuration. For all integers p ≥ 0 and q ≥ 1, F on a has tail length p and cycle
length q if and only if the following properties hold:

1. Fp(a) = F p+q(a).
2. If p > 0, then Fp−1(a) �= F p+q−1(a).
3. For all prime numbers d dividing q, Fp(a) �= F p+q/d(a).

Proof. Let F and a be as in the statement of the proposition. Suppose F on
a enters a cycle at step p and the cycle length is q. Then, we have Fp(a) =
F p+q(a). This is identical to Property 1 in the above. Also, by the minimality of
p, we have: for all i, 0 ≤ i ≤ p − 1 and for all j ≥ i, F i(a) �= F j(a). By setting
i = p − 1 and j = p + q − 1, we get Property 2. Finally, by the minimality of q,
we have for all i ≥ 0 and s, 1 ≤ s ≤ q− 1, F i(a) �= F i+s(a). In particular, if d is
a prime number dividing q, then q/d < q, and so by setting i = p and s = q/d,
we have Property 3.

Conversely, suppose that one of the three properties in the statement of the
proposition fails to hold for p and q. If Property 1 fails to hold, clearly q is not
the cycle length. If Property 2 fails to hold, Fp−1(a) = F p+q−1(a), and so F on
a enters a cycle earlier than step p. If Property 3 fails to hold, there is a divisor
e = p/d for some prime number d such that Fp(a) = F p+e(a). This implies that
the cycle length is smaller than q.

This proves the proposition. �	
For a total function g, we say that g is UP-computable if there exists a polynomial-
time nondeterministic Turing machineM such that for all inputs x,M on x accepts
along exactly one computational path and in that unique computation path M on
x outputs g(x).

In the following lemma, we show that the cycle length is UP-computable,
which immediately implies Theorem 3.

Lemma 2. Suppose B is one of {AND}, {OR}, and {XOR,NXOR}. Then for
all synchronous BFDS F and initial configurations a, the tail length and the
cycle length of F on a are UP-computable.

Computational Complexity Studies of Synchronous Boolean Finite 97

Proof. Let B be one of {AND}, {OR}, and {XOR,NXOR}. Since the tail length
p and the cycle length q are uniquely determined for each combination of F
and a and since the prime factorization is in UP ∩ coUP [4], we can design a
UP-algorithm for calculating p and q given F and a as follows:

Step 1. Our algorithm nondeterministically guesses p and q such that 0 ≤ p < 2n

and 1 ≤ q ≤ 2n − p.
Step 2. Using the algorithm presented in [4], we compute the prime factorization

of q in UP. If the factorization is successful, the algorithm proceeds to the
next step.

Step 3. Our algorithm tests the three properties in Proposition 2.
Step 4. Our nondeterministic algorithm accepts and outputs p and q if and only

if all the tests pass.

The prime factorization part is carried out nondeterministically and since it is
in UP, there is exactly one computation path along which the factorization is
successfully obtained. Since q ≤ 2n, the number of distinct prime factors of q
is at most n. This implies that there will be at most n + 2 equalities to be
tested in Step 3. Since both p and q are bounded from above by 2n, we have
from Lemma 1 that each equality can be tested in time polynomial in n. Thus,
the above algorithm runs in time polynomial in n. The algorithm has exactly
one accepting computation path for all F and a , and on that unique accepting
computation path computes p and q. Thus, the algorithm is an UP-algorithm.

This proves the lemma. �	

5 Conclusion

In this paper, we consider the convergence, path intersection, and cycle length
problems for the synchronous BFDS on various fixed function bases B and show
that while the three problems are PSPACE-complete for B ∈ {NAND}, {NOR},
they are solvable in polynomial time or belongs to UP (or UP ∩ coUP) if B
is {AND}, {OR}, or {XOR,NXOR}. An interesting question is whether the
complexity upper bound of UP can be reduced to P.

References

1. Barrett, C.L., Mortveit, H.S., Reidys, C.M.: Elements of a theory of simulation II:
sequential dynamical systems. Appl. Math. Comput. 107(2–3), 121–136 (2000)

2. Barrett, C.L., Hunt III, H.B., Marathe, M.V., Ravi, S.S., Rosenkrantz, D.J.,
Stearns, R.E.: Complexity of reachability problems for finite discrete dynamical
systems. J. Comput. Syst. Sci. 72(8), 1317–1345 (2006)

3. Barrett, C.L., Hunt III, H.B., Marathe, M.V., Ravi, S.S., Rosenkrantz, D.J.,
Stearns, R.E., Tošić, P.T.: Gardens of eden and fixed points in sequential dynami-
cal systems. In: Proceedings of Discrete Models: Combinatorics, Computation, and
Geometry, pp. 95–110 (2001)

98 M. Ogihara and K. Uchizawa

4. Fellows, M.R., Koblitz, N.: Self-witnessing polynomial-time complexity and prime
factorization. In: Proceedings of the Seventh Annual Conference on Structure in
Complexity Theory, pp.107–110 (1992)

5. Floréen, P., Orponen, P.: Complexity issues in discrete Hopfield networks. Neuro-
COLT Technical report Series, NC-TR-94-009 (1994)

6. Hemaspaandra, L.A., Ogihara, M.: A Complexity Theory Companion. Springer,
Berlin (2001)

7. Kosub, S.: Dichotomy results for fixed-point existence problems for boolean dynam-
ical systems. Math. Comput. Sci. 1(3), 487–505 (2008)

8. Laubenbacher, R., Pareigis, B.: Equivalence relations on finite dynamical systems.
Adv. Appl. Math. 26(3), 237–251 (2001)

9. Kosub, S., Homan, C.M.: Dichotomy results for fixed point counting in boolean
dynamical systems. In: Proceedings of the Tenth Italian Conference on Theoretical
Computer Science (ICTCS 2007), pp. 163–174 (2007)

10. Parberry, I.: Circuit Complexity and Neural Networks. MIT Press, Cambridge
(1994)

11. Schaefer, T.J.: The complexity of satisfiability problems. In: Proceedings of the
Tenth ACM Symposium on Theory of Computing, pp. 216–226 (1978)

On the Power of Parity Queries in Boolean
Decision Trees

Raghav Kulkarni1, Youming Qiao1(B), and Xiaoming Sun2

1 Centre for Quantum Technologies,
The National University of Singapore, Singapore, Singapore

{kulraghav86,jimmyqiao86}@gmail.com
2 Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China

sunxiaoming@ict.ac.cn

Abstract. In an influential paper, Kushilevitz andMansour (1993) intro-
duced a natural extension of Boolean decision trees called parity decision
tree (PDT) where one may query the sum modulo 2, i.e., the parity, of an
arbitrary subset of variables. Although originally introduced in the con-
text of learning, parity decision trees have recently regained interest in
the context of communication complexity (cf. Shi and Zhang 2010) and
property testing (cf. Bhrushundi, Chakraborty, and Kulkarni 2013). In
this paper, we investigate the power of parity queries. In particular, we
show that the parity queries can be replaced by ordinary ones at the cost
of the total influence aka average sensitivity per query. Our simulation is
tight as demonstrated by the parity function.

At the heart of our result lies a qualitative extension of the result of
O’Donnell, Saks, Schramme, and Servedio (2005) titled: Every decision
tree has an influential variable. Recently Jain and Zhang (2011) obtained
an alternate proof of the same. Our main contribution in this paper is
a simple but surprising observation that the query elimination method
of Jain and Zhang can indeed be adapted to eliminate, seemingly much
more powerful, parity queries. Moreover, we extend our result to linear
queries for Boolean valued functions over arbitrary finite fields.

1 Introduction

The decision tree model [8], perhaps due to its simplicity and fundamental
nature has been extensively studied over decades, yet remains a fascinating
source of some of the outstanding open questions. In the first part of this
paper we focus on decision trees for Boolean functions, i.e., functions of the

Raghav Kulkarni—Research at the Centre for Quantum Technologies is funded by
the Singapore Ministry of Education and the National Research Foundation.
Xiaoming Sun—Part of this work was done while the author was visiting the Centre
for Quantum Techologies, National University of Singapore. He is supported in part
by the National Natural Science Foundation of China Grant 61170062, 61222202,
61433014 and the China National Program for support of Top-notch Young Profes-
sionals.

c© Springer International Publishing Switzerland 2015
R. Jain et al. (Eds.): TAMC 2015, LNCS 9076, pp. 99–109, 2015.
DOI: 10.1007/978-3-319-17142-5 10

100 R. Kulkarni et al.

form f : {0, 1}n → {0, 1}. In later section, we extend our results for decision
trees over any finite field, i.e., for functions of the form Fn

q → {0, 1}. A deter-
ministic decision tree Df for f takes x = (x1, . . . , xn) as an input and deter-
mines the value of f(x1, . . . , xn) using queries of the form “is xi = 1?”. Let
C(Df , x) denote the cost of the computation, i.e., the number of queries made
by Df on input x. The deterministic decision tree complexity of f is defined as
D(f) = minDf

maxx C(Df , x).
Variants of decision tree model are fundamental for several reasons including

their connection to other models such as communication complexity, their usabil-
ity in analyzing more complicated models such as circuits, their mathematical
elegance and richness, and finally the notoriety of some simple yet fascinating
open questions about them such as the Evasiveness Conjecture [3,14,15,19,22]
that have caught the imagination of generations of researchers over decades. In
this paper we study a variant of decision trees called parity decision tree (PDT)
and its extension over finite fields, which we call linear decision tree (LDT).

Motivation for Studying PDTs and LDTs
A parity decision tree may query “is

∑
i∈S xi ≡ 1 (mod 2)?” for an arbitrary

subset S ⊆ [n] = {1, 2, . . . , n}. We call such queries parity queries. For a PDT Pf

for f, let C(Pf , x) denote the number of parity queries made by Pf on input x.
The parity decision tree complexity of f is D⊕(f) = minPf

maxx C(Pf , x). Note
that D⊕(f) ≤ D(f) as “is xi = 1?” can be treated as a parity query.

The PDTs were introduced by Kushilevitz and Mansour [17] in the context of
learning Boolean functions by estimating their Fourier coefficients. Several other
models such as circuits and branching programs have been also been analysed
in the past after augmenting their power by allowing counting operations.

In spite of being combinatorially rich and beautiful model, the PDT some-
how remained dormant until recently where it was brought back into light in
an entirely different context, namely the communication complexity of XOR
functions [23,31]. Shi and Zhang [31] and Montanaro and Osborne [23] have
observed that the deterministic communication complexity CC(f⊕) of comput-
ing f(x ⊕ y), when x and y are distributed between the two parties, is upper
bounded by D⊕(f). The importance for communication complexity comes from
the conjecture [23,31] that for some positive constant c, every Boolean func-
tion f satisfies D⊕(f) = O((log ||f̂ ||0)c); where ||f̂ ||0 is the sparsity (number of
non-zero Fourier coefficients) of f. Settling this conjecture in affirmative would
confirm the famous Log-rank Conjecture [24] in the important special case of
XOR functions. Recently Tsang et al. [36] confirm it for functions with constant
degree over F2 and Kulkarni and Santha [18] confirm it for AC0 functions.

Very recently, Bhrushundi, Chakraborty, and Kulkarni [4] connected parity
decision trees to property testing of linear and quadratic functions. Their app-
roach for instance can potentially be used to solve a long-standing open question
of closing the gap for k-linearity by analysing the randomized PDT complexity of
the function Ek that evaluates to 1 iff the number of 1s in the input is exactly k.
Recently PDTs were analysed further in several papers including [18,32,34,36]
and many more to come.

On the Power of Parity Queries in Boolean Decision Trees 101

Similar to PDTs, the LDTs are closely related to the Fourier spectrum of
functions over Zp. In recent paper by Shpilka, Tal, and Volk [32] the authors
derive various structural results of the Fourier spectrum by analysing LDTs.
Given the evidence of abundance of connections to other models and mathemat-
ics, and given the rich combintaorial structure of PDTs and LDTs, we believe
that they deserve a systematic and independent study at this point. Our paper
is a step in this direction.

Motivation for Studying Influence Lower Bounds
Proving lower bounds on the influence of Boolean functions has had a long his-
tory in Theoretical Computer Science. It is nicely summerized in the paper [29],
we restate a part from that for illustration. Influence lower bounds have been
crucial part of several fundamental results such as threshold phenomenon, lower
bound on randomized query complexity of graph properties, quantum and clas-
sical equivalence etc. Ben-Or and Linial [6], in their 1985 paper on collective coin
flipping, observe that the maximum influence Infmax(f) ≥ 1/n for any balanced
function and conjectured Θ(log n/n) bound. The seminal paper by Kahn, Kalai,
Linial [16] confirmed the conjecture via an application of the Hypercontractive
Inequality. This result was subsequently generalized by Talagrand [35] in order
to show sharp threshold behaviour for monotone functions.

In their celebrated paper Every decision tree has an influential variable,
O’Donnell, Saks, Schramme, and Servedio [29] showed a crucial inequality lower
bounding the maximum influence: Infmax(f) ≥ Var(f)/Δ(f), where Δ(f) denotes
the minimum possible average depth of a decision tree for f. This inequal-
ity found application in the lower bounds on randomized query complexity of
monotone graph properties. Homin Lee [20] found a simple inductive proof of
the OSSS result. Recently Jain and Zhang [13] found another simple and con-
ceptually different proof via the method of query elimination, which we use here.

Aaronson and Ambainis [1] study a conjecture lower bounding the maximum
influence of real valued polynomials in terms of their degree. This conjecture,
if true, would imply polynomial equivalence between bounded-error quantum
and classical query complexity. These previous results seems to indicate the
importance of lower bounds on influence in terms of several complexity measures.
In this paper, we present such new lower bounds in terms of PDT and LDT
complexity.

Our Results
Let Dε(f) and D⊕

ε (f) denote the minimum depth of a DT and a PDT (resp.)
computing f correctly on at least 1 − ε fraction of the inputs.

Theorem 1. For any Boolean function f and any ε ≥ 0 :

Infmax(f) ≥ Var(f) − ε

D⊕
ε (f)

.

102 R. Kulkarni et al.

Corollary 1. For any Boolean function f and any ε > 0 :

Dε(f) ≤ 1
ε2

· D⊕(f) · Inf(f).

Corollary 2. If f is computable by a polynomial size constant depth circuit,
i.e., f ∈ AC0, then:1

Dε(f) = Õε(D⊕(f)).

To prove Theorem 1 we use an adaptation of the query elimination method of
Jain and Zhang. Our main observation is that assuming the uniform distribu-
tion on the inputs, one can eliminate seemingly powerful parity queries at the
expense of Infmax(f) error per elimination. Corollary 1 is obtained by analysing
the ‘query the most influential variable’ strategy using our new bound. We extend
Theorem 1 for LDTs over arbitrary fields (see Sect. 4). The Corollary 1 can also
be extended with similar techniques; we omit its simple proof.

Theorem 2. Let q be a prime power. For any f : Fn
q → {0, 1} and any ε ≥ 0 :

Infmax(f) ≥ 1
q − 1

· Var(f) − ε

D
⊕q
ε (f)

.

Further we explore the power of PDTs for monotone functions and show:

Theorem 3. For any monotone Boolean function f and any ε > 0 :

Dε(f) ≤ 3
ε2

· D⊕(f)3/2.

To prove Theorem 3 we show an upper bound on L1 norm of Fourier spectrum in
terms of PDT depth, which in turn gives an upper bound on sum of linear Fourier
coefficients restricted to monotone functions. We adapt the proof of the same
for ordinary decision trees by O’Donnell and Servedio. Our main observation is
that under the uniform distribution on inputs their proof can be extended for
PDTs as well. Our result naturally raises the following question:

Question 1. Is it true that for every monotone Boolean function f and for every
ε > 0 we have:

Dε(f) = Õε(D⊕(f))?

It is also interesting to see if our results can be strengthened to D⊕
ε rather than

just D⊕ as zero-error and bounded error complexities may behave differently.
We believe that our observations, although might appear simple, are indeed

surprising. They seem to make a crucial qualitative point, that under the uni-
form distribution, the method of lower bounding the ordinary (randomized)
decision tree complexity by Var(f)/ Infmax(f) works equally well for seemingly
much more powerful PDTs and LDTs as well. For non-balanced functions the
uniform distribution does not seem to be an optimal choice for maximizing
Var(f)/ Infmax(f) but for balanced functions it does. As an application, finally
we exhibit a gap between randomized PDT complexity and approximate L1,
both of which are relevant for communication complexity of XOR functions.
1 The Oε notation hides a multiplicative constant depending on ε and the Õε notation
hides a further poly-logarithmic multiplicative factor.

On the Power of Parity Queries in Boolean Decision Trees 103

Organization. Section 2 contains preliminaries. Section 3 contains the proof of
Theorem 1. Section 4 contains the proof of Theorem2. Unfortunately, we had to
move the other proofs to appendix and hence omit it from this version due to
space constraint.

2 Preliminaries

Fig. 1. A boolean decision tree

Randomized Decision Trees
A bounded error randomized decision tree Rf is a probability distribution over
all deterministic decision trees such that for every input, the expected error
of the algorithm is bounded by some fixed constant less than 1/2 (say 1/3).
The cost C(Rf , x) is the highest possible number of queries made by Rf on
x, and the bounded error randomized decision tree complexity of f is R(f) =
minRf

maxx C(Rf , x). Similarly one can define bounded error randomized PDT
complexity of f , denoted by R⊕(f). Using Yao’s min-max principle one may
obtain: D1/3(f) ≤ R(f) and D⊕

1/3(f) ≤ R⊕(f). (Fig. 1)

Variance and Influence
Let μp denote the p-biased distribution on the Boolean cube, i.e., each co-
ordinate is independently chosen to be 1 with probability p. The variance of
a Boolean function is Var(f, p) := 4 · Prx←μp

(f(x) = 0)Prx←μp
(f(x) = 1). The

influence of the ith variable under μp is Infi(f, p) := Prx←μp
(f(x) 	= f(x ⊕ ei)).

Let Infmax(f) := maxi Infi(f). The total influence aka average sensitivity of f
is Inf(f, p) :=

∑
i Infi(f, p). In this paper we focus on p = 1/2 case.

Fourier Spectrum, Polynomial Degree, and Sparsity
Let f± : {−1, 1}n → {−1, 1} be represented by the following polynomial with
real coefficients: f±(z1, . . . , zn) =

∑
S⊆[n] f̂(S)

∏
i∈S zi. The above polynomial is

unique and it is called the Fourier expansion of f. The f̂(S) are called the Fourier
coefficients of f. The polynomial degree of f is deg(f) := max{|S| | f̂(S) 	= 0}.

The sparsity of a Boolean function f is ||f̂ ||0 := |{S | f̂(S) 	= 0}|. We know that
deg(f) ≤ D(f), log ||f̂ ||0 ≤ D⊕(f) and log ||f̂ ||0 ≤ deg(f).

104 R. Kulkarni et al.

Representing Decision Trees
We represent a decision tree T as T = (xi, T0, T1) where xi denotes the first
variable queried by T, i.e., xi is the variable at the root of T : if xi = 0 then
T0 is consulted; if xi = 1 then T1 is consulted. A leaf labeled 1 is represented as
(1, ∅, ∅) and the one labeled 0 is represented as (0, ∅, ∅). We represent a parity
decision tree as T = (xS , T0, T1); if

∑
i∈S xi = 0 (mod 2) then consult T0, else

consult T1. A leaf labeled 1 is represented as (1, ∅, ∅) and the one labeled 0 is
represented as (0, ∅, ∅).

The Query Elimination Lemma (Jain and Zhang)
Jain and Zhang prove the following simple yet powerful lemma:

Lemma 1 (Query Elimination Lemma). If T = (xi, T0, T1) is an ordinary
decision tree that computes f correctly on at least 1 − δ fraction of the inputs
then either T0 or T1 computes f correctly on at least 1 − δ − Infi(f) fraction of
the inputs.

In this paper we observe that the above lemma can be adapted for parity decision
trees. This observation is a crucial part of our results.

Overview of the Query Elimination Method
The query elimination method of Jain and Zhang works as follows: Suppose we
have a decision tree of depth Dε(f) that computes f correctly on at least 1 − ε
fraction of the inputs. We repeatedly apply the Query Elimination Lemma to
obtain a decision tree that computes f correctly on at least 1 − ε − Dε(f) ·
Infmax(f) fraction of the inputs without making any single query. Of course,
such (zero-query) decision tree must make error on at least Var(f) fraction of
the inputs. Hence: the error of the zero-query decision tree that we obtained
(ε + Dε(f) · Infmax(f)) can be lower bounded by Var(f). In other words:

Dε(f) ≥ Var(f) − ε

Infmax(f)
.

3 Every PDT Has an Influential Variable

In this section we present the proof of Theorem 1. We start with eliminating
queries in PDTs.

Eliminating Ordinary Queries in PDTs
First we note that Jain and Zhang’s proof of the Query Elimination Lemma
generalizes when Ti are parity decision trees instead of ordinary ones. In other
words, if the first query in a parity decision tree is an ordinary query then one
can remove it at the expense of Infi(f) increase in the error. We formulate this
below.

On the Power of Parity Queries in Boolean Decision Trees 105

Lemma 2. If T = (x{i}, T0, T1) is a parity decision tree that computes f cor-
rectly on at least 1−δ fraction of the inputs then either T0 with every occurrence
of xi hard-wired to 0 or T1 with every occurrence of xi hard-wired to 1 computes
f correctly on at least 1 − δ − Infi(f) fraction of the inputs.

Eliminating Parity Queries in PDTs
Let T be a parity decision tree that computes f correctly on at least 1−δ fraction
of the inputs. Our idea is to convert the parity queries to an ordinary one and
then eliminate the queries at the root of the tree. Let

Lf(x) := f(Lx).

We apply the linear transformation L on the input space Fn
2 and work with Lf

instead of f.

Observation 4. Var(f) = Var(Lf) and D⊕(f) = D⊕(Lf).

Rotatating the PDT T : Without loss of generality, let us assume that the first
parity query in T is the parity of the first k bits, i.e., x1⊕. . .⊕xk (for some k). Let
g(x1, . . . , xn) := f(x1⊕. . .⊕xk, x2, . . . , xn). Note that g = Lf where L is the fol-
lowing invertible linear transformation on the vector space Fn

2 : L(x1, . . . , xn) :=
(x1⊕ . . .⊕xk, x2, . . . , xn). Also note that: f(x1, . . . , xn) = g(x1⊕ . . .⊕xk, x2, . . . ,
xn). Thus by querying x1 ⊕ . . . ⊕ xk, we know the value of the ‘first input bit’
of g. Moreover the influence of the first variable remains unchanged.

Observation 5. Inf1(g) = Inf1(f).

Note however that the influences of the variables x2, . . . , xk might have changed!
A PDT T = (x[k], T0, T1) for f can be easily modified to a PDT LT for

Lf = g. We call the transformation from T to LT as the rotation of T and it is
defined as follows:

L(xS , T0, T1) := (L(xS), L(T0), L(T1)),

(base case) L(0, ∅, ∅) = (0, ∅, ∅),

(base case) L(1, ∅, ∅) = (1, ∅, ∅).

Next we observe that the error is preserved by a rotation.

Observation 6. If T computes f correctly on 1 − δ fraction of the inputs then
LT computes g = Lf correctly on 1 − δ fraction of the inputs.

Moreover: the tree LT has a nice property that the query at the root is not an
arbitrary parity query but in fact an ordinary query, i.e., a variable x1. Hence we
can use Lemma 2 to remove the first query at the expense of Inf1(g) = Inf1(f)
increase in the error. Thus we conclude that:

Proposition 1. If T computes f with error δ then either LT0 or LT1 computes
LF correctly on at least 1 − δ − Infmax(f) fraction of inputs.

106 R. Kulkarni et al.

Rotating the PDT LTi back to Ti:

Observation 7. For the particular L above, L−1 = L.

Suppose that LTi computes Lf correctly on at least 1 − δ − Infmax(f) fraction
of the inputs.

Thus we can rewrite Observation 6 as follows:

Observation 8. If LT computes Lf correctly on 1 − δ fraction of the inputs
then L(LT) computes f = L(Lf) correctly on 1 − δ fraction of the inputs.

Proof of Theorem 1. Since L(LTi) = Ti and since LTi computes Lf correctly
on at least 1 − δ − Infmax(f) fraction of the inputs, Ti computes f with the
same error. Notice that Ti makes one less parity query than T . So we have
eliminated one parity query with an increase in error at most Infmax(f). Now
we can repeat this process starting from a parity tree T of depth D⊕

ε (f) that
makes error on at most ε fraction of the inputs to obtain a zero-query parity
decision tree that makes at most ε+D⊕

ε (f)·Infmax(f) error. The error of any zero-
query parity decision tree must be at least Var(f). This completes the proof of
Theorem 1. ��
Remark 1. OR and AND functions on n variables can be computed with error
probability at most 1/n on every input, using O(log n) parity queries chosen uni-
formly at random. Thus our Theorem1 can be extended (up to a multiplicative
poly-logarithmic factor) to the decision trees that use AND, OR, and PARITY
queries. More generally, one can extend it to so called 1+ queries (see [10])
involving parities of (say polynomially many) arbitrary subsets.

4 Every Linear Decision Tree Has an Influential Variable

Let q be a prime power and Fq be the finite field with q elements. In this section
we consider computing functions from Fn

q to {0, 1} with the model called linear
decision trees, denoted by ⊕q-DT. It is a computation tree, with each internal
nodel v labeled by a linear form � : Fn

q → Fq. v has q children, whose edges
connecting to v are labeled by elements from Fq. The branching at node v is
based on the evaluation of � on the input vector. It is clear that when q = 2, this
model becomes the parity decision tree model for computing boolean functions.
We use D

⊕q
ε (f) to denote the smallest ⊕q-DT for computing f : Fn

q → {0, 1}
with error ε.

We will focus on the setting of uniform distribution over Fn
q . For f : Fn

q →
{0, 1}, its variance is defined the same as Var(f) = 4 ·Pr(f(x) = 0)Pr(f(x) = 1).
If x and y in Fn

q differ only at the kth position, k ∈ [n], we denote this by x ∼k y.
The influence of the kth variable is Infk(f) := Prx∼ky(f(x) 	= f(y)). Our main
result is the following analogue of Theorem1.

Theorem 2, restated. For any function f : Fn
q → {0, 1} and any ε ≥ 0 :

Infmax(f) ≥ 1
q − 1

· Var(f) − ε

D
⊕q
ε (f)

.

On the Power of Parity Queries in Boolean Decision Trees 107

We now prove Theorem 2. We shall adapt the proof of the query elimination
lemma to ⊕q-DT as follows.

Suppose T is a ⊕q-DT for f : Fn
q → {0, 1}. Let � : Fn

q → {0, 1} be the first
query made by T , and �(x1, . . . , xn) = α1x1 + α2x2 + · · · + αnxn. As � is not
trivial, there exists some k ∈ [n] s.t. αk 	= 0. Fix such a k ∈ [n]. For i ∈ Fq,
let Ti be the ⊕q-DT to be executed when �(x) = i.

For every Ti, i ∈ Fq, construct a new ⊕q-DT T ′
i , by replacing every occurrence

of xk in Ti with

1
αk

(i − (α1x1 + · · · + αk−1xk−1 + αk+1xk+1 + · · · + αnxn)).

It is clear that T ′
i and Ti are related as follows. Let a = (a1, . . . , an) ∈ Fn

q . Then
T ′

i (a1, . . . , an) = Ti(a1, . . . , ak−1, bk, ak+1, . . . , an), where bk ∈ Fq s.t.

�(a1, . . . , ak−1, bk, ak+1, . . . , an) = i.

For a = (a1, . . . , an) ∈ Fn
q , we use a|�,ik to denote (a1, . . . , ak−1, bk, ak+1, . . . , an) ∈

Fn
q satisfying the above. Then we have T ′

i (a) = Ti(a|�,ik).
As T computes f with error ε, there exists some j ∈ Fq, s.t. when restricting

to {a ∈ Fn
q | �(a) = j}, Tj computes f with error ≤ ε. Fix such Tj , and consider

T ′
j . We claim that T ′

j computes f with error no more that ε + (q − 1) Infk(f).
To see this, for i ∈ Fq, i 	= j, define

A|�,jk (f, i) = Pr
a∈Fn

q ,�(a)=i
(f(a) 	= f(a|�,jk)).

It is obvious that T ′
j computes f with error ≤ ε+1/q ·(∑i∈Fq,i 	=j A|�,jk (f, i)). Now

we verify that 1/q · (∑i∈Fq,i 	=j A|�,jk (f, i)) ≤ (q − 1) Infk(f). Fix a = (a1, . . . , an)
from {a ∈ Fn

q | �(a) = j}. Then the contribution of (a1, . . . , ak−1, ak+1, . . . , an) in
1/q · (∑i∈Fq,i 	=j A|�,jk (f, i)) is 1

q · 1
qn−1 · s, where s ∈ {0, . . . , q − 1} is the number

of field elements b s.t. f(a1, . . . , ak−1, b, ak+1, . . . , an) 	= f(a1, . . . , an). On the
other hand, its contribution in (q − 1) · Infk(f) is (q − 1) · 1

qn−1 · s(q−s)

(q2)
. Finally

note that s
(q−1)q ≤ s(q−s)

(q2)
for q ≥ 2 and s ∈ {0, . . . , q − 1}.

As eliminating the first query introduces an extra error of at most (q−1) Infmax

(f), similar to the argument in proving Theorem1, we have ε + (q − 1)D⊕q (f) ·
Infmax(f) ≥ Var(f), therefore proving that

Infmax(f) ≥ 1
q − 1

· Var(f) − ε

D⊕q (f)
.

Acknowledgements. We thank Rahul Jain, Supartha Poddar, Miklos Santha, and
Avishay Tal for several helpful discussions. We also thank Ben vee Volk for pointing
out that the super-linear separation in [27] works for PDTs as well.

108 R. Kulkarni et al.

References

1. Aaronson, S., Ambainis, A.: The need for structure in quantum speedups. In: ICS
2011, pp. 338–352 (2011)

2. Ada, A., Fawzi, O., Hatami, H.: Spectral norm of symmetric functions. In: Gupta,
A., Jansen, K., Rolim, J., Servedio, R. (eds.) APPROX 2012 and RANDOM 2012.
LNCS, vol. 7408, pp. 338–349. Springer, Heidelberg (2012)

3. Babai, L., Banerjee, A., Kulkarni, R., Naik, V.: Evasiveness and the distribution
of prime numbers. In: STACS 2010, pp. 71-82 (2010)

4. Bhrushundi, A., Chakraborty, S., Kulkarni, R.: Property testing bounds for linear
and quadratic functions via parity decision trees. In: Hirsch, E.A., Kuznetsov,
S.O., Pin, J.É., Vereshchagin, N.K. (eds.) CSR 2014. LNCS, vol. 8476, pp. 97–110.
Springer, Heidelberg (2014). Electronic colloquium on Computational Complexity
(ECCC)

5. Benjamini, I., Kalai, G., Schramm, O.: Noise sensitivity of boolean functions and
its application to percolation. Inst. Hautes Etudes Sci. Publ. Math. 90, 5–43 (1999)

6. Ben- Or, M., Linial, N.: Collective coin flipping. In: Proceedings of the 26th FOCS,
pp. 408–416 (1985)

7. Bollobas, B.: Combinatorics: Set Systems, Hypergraphs, Families Of Vectors And
Combinatorial Probability. Cambridge University Press, New York (1986)

8. Buhrman, H., de Wolf, R.: Complexity measures and decision tree complexity: a
survey. Theor. Comput. Sci. 288(1), 21–43 (2002)

9. Efron, B., Stein, C.: The jackknife estimate of variance. Ann. Stat. 9, 586–596
(1981)

10. Gopalan, P., O’Donnell, R., Servedio, R.A., Shpilka, A., Wimmer, K.: Testing
fourier dimensionality and sparsity. In: Albers, S., Marchetti-Spaccamela, A.,
Matias, Y., Nikoletseas, S., Thomas, W. (eds.) ICALP 2009, Part I. LNCS, vol.
5555, pp. 500–512. Springer, Heidelberg (2009)

11. Hayes, T.P., Kutin, S., van Melkebeek, D.: The quantum black-box complexity of
majority. algorithmica 34(4), 480–501 (2002)

12. Hatami, P., Kulkarni, R., Pankratov, D.: Variations on the sensitivity conjecture.
Theor. Comput. Grad. Surv. 2, 1–27 (2011)

13. Jain, R., Zhang, S.: The influence lower bound via query elimination. Theor. Com-
put. 7(1), 147–153 (2011)

14. Kulkarni, R.: Evasiveness through a circuit lens. In: ITCS 2013 pp. 139–144 (2013)
15. Kulkarni, R.: Gems in decision tree complexity revisited. SIGACT News 44(3),

42–55 (2013)
16. Kahn, J., Kalai, G., Linial, N.: The influence of variables on boolean functions

(extended abstract). In: FOCS 1988, pp. 68–80 (1988)
17. Kushilevitz, E., Mansour, Y.: Learning decision trees using the fourier spectrum.

SIAM J. Comput. 22(6), 1331–1348 (1993)
18. Kulkarni, R., Santha, M.: Query complexity of matroids. In: Spirakis, P.G., Serna,

M. (eds.) CIAC 2013. LNCS, vol. 7878, pp. 300–311. Springer, Heidelberg (2013)
19. Kahn, J., Saks, M.E., Sturtevant, D.: A topological approach to evasiveness. Com-

binatorica 4(4), 297–306 (1984)
20. Lee, H.K.: Decision trees and influence: an inductive proof of the OSSS inequality.

Theor. Comput. 6(1), 81–84 (2010)
21. Linial, N., Mansour, Y., Nisan, N.: Constant depth circuits, fourier transform, and

learnability. J. ACM 40(3), 607–620 (1993)

On the Power of Parity Queries in Boolean Decision Trees 109

22. Lovasz, L., Young, N. E.: Lecture Notes on Evasiveness of Graph Properties
arXiv:cs/020503 (2002)

23. Montanaro, A., Osborne, T.: On the communication complexity of XOR functions.
CoRR abs/0909.3392 (2009)

24. Mehlhorn, K., Schmidt, E.: Las Vegas is better than determinism in VLSI and
distributed computing. In: Proceedings of the 14th STOC, pp. 330–337. ACM
Press, New York (1982)

25. Nisan, N.: CREW PRAMs and decision trees. In: Proceedings of the 21st STOC,
pp. 327–335. ACM Press, New York (1989)

26. Nisan, N., Szegedy, M.: On the degree of boolean functions as real polynomials.
Comput. Complex. 4, 301–313 (1994)

27. Nisan, N., Wigderson, A.: On rank vs. communication complexity. Combinatorica
15(4), 557–565 (1995)

28. O’Donnell, R., Servedio, R.A.: Learning monotone decision trees in polynomial
time. SIAM J. Comput. 37(3), 827–844 (2007)

29. O’Donnell, R., Saks, M.E., Schramm, O., Servedio, R.A.: Every decision tree has
an influential variable. In: FOCS, pp. 31-39 (2005)

30. Sherstov, A.A.: Making polynomials robust to noise. In: STOC 2012, pp. 747–758
(2012)

31. Shi, Y., Zhang, Z.: Communication Complexities of XOR functions CoRR
abs/0808.1762 (2008)

32. Shpilka, A., Tal, A., Volk, B.L.: On the Structure of Boolean Functions with Small
Spectral Norm: arXiv:1304.0371

33. Saks, M.E., Wigderson, A.: Probabilistic boolean decision trees and the complexity
of evaluating game trees. In: FOCS, pp. 29–38 (1986)

34. Zhang, Z., Shi, Y.: On the parity complexity measures of boolean functions. Theor.
Comput. Sci. 411(26–28), 2612–2618 (2010)

35. Talagrand, M.: On russo’s approximate 0-1 law. Ann. Probab. 22(3), 1576–1587
(1994)

36. Tsang, H.Y., Wong, C.H., Xie, N., Zhang, S.: Fourier sparsity, spectral norm, and
the Log-rank conjecture. CoRR abs/1304.1245 (2013) FOCS (2014)

http://arxiv.org/abs/1304.0371

Card-Based Protocols for Any Boolean Function

Takuya Nishida1, Yu-ichi Hayashi1, Takaaki Mizuki2(B),
and Hideaki Sone2

1 Graduate School of Information Sciences, Tohoku University,
6–3–09 Aramaki-Aza-Aoba, Aoba-ku, Sendai, Miyagi 980–8578, Japan
2 Cyberscience Center, Tohoku University, 6–3 Aramaki-Aza-Aoba,

Aoba-ku, Sendai, Miyagi 980–8578, Japan
tm-paper+cardany@g-mail.tohoku-university.jp

Abstract. Card-based protocols that are based on a deck of physical
cards achieve secure multi-party computation with information-theoretic
secrecy. Using existing AND, XOR, NOT, and copy protocols, one can
naively construct a secure computation protocol for any given (multivari-
able) Boolean function as long as there are plenty of additional cards.
However, an explicit sufficient number of cards for computing any func-
tion has not been revealed thus far. In this paper, we propose a general
approach to constructing an efficient protocol so that six additional cards
are sufficient for any function to be securely computed. Further, we prove
that two additional cards are sufficient for any symmetric function.

1 Introduction

It is known that secure multi-party computation (MPC) can be achieved using
a number of physical cards such as black ♣ and red ♥ cards (with identical
backs ?). Several card-based cryptographic protocols have been reported in
the literature: in addition to the elementary computations, namely, the AND
[1,3,7,10,12,15] and XOR [3,10,11] protocols, efficient protocols (i.e., protocols
that require fewer cards) have been designed for specific functions such as the
adder [6] and the 3-variable functions [13]. Whereas previous studies have dealt
with specific functions, this paper proposes a general approach to constructing
an efficient protocol for any given (multivariable) Boolean function.

We start with introducing some preliminary notations for card-based pro-
tocols.

1.1 Preliminary Notations

To deal with Boolean values, we use the following encoding rule based on the
order of a pair of cards:

♣ ♥ = 0, ♥ ♣ = 1. (1)

c© Springer International Publishing Switzerland 2015
R. Jain et al. (Eds.): TAMC 2015, LNCS 9076, pp. 110–121, 2015.
DOI: 10.1007/978-3-319-17142-5 11

Card-Based Protocols for Any Boolean Function 111

For a bit x ∈ {0, 1}, a pair of face-down cards ? ? that has a value equaling x
according to encoding rule (1) is called a commitment to x and is written as

? ?︸ ︷︷ ︸
x

.

“Committed-format” protocols [3,6,10–13,15] produce the output as a com-
mitment; for example, given commitments to bits a and b, we can obtain a com-
mitment

? ?︸ ︷︷ ︸
a∧b

or ? ?︸ ︷︷ ︸
a⊕b

as the output of an AND or XOR protocol.
Given a pair of bits (x, y), we define two operations, get and shift, as

get0(x, y) = x, get1(x, y) = y;

shift0(x, y) = (x, y), shift1(x, y) = (y, x).

Using these operations, the AND function can be written as

a ∧ b = geta⊕r(shiftr(0, b)) (2)

for an arbitrary bit r ∈ {0, 1} [13]. Hereafter, for two bits x and y, the notation (i)
below implies (ii).

(i) ? ? ? ?︸ ︷︷ ︸
(x,y)

, (ii) ? ?︸ ︷︷ ︸
x

? ?︸ ︷︷ ︸
y

.

1.2 AND Protocol

Next, we introduce the most efficient AND protocol [10] currently known. Given
commitments to bits a and b together with two additional cards, it achieves a
committed-format AND computation as follows.

1. Arrange three commitments to a, 0, and b:

? ?︸ ︷︷ ︸
a

♣ ♥ ? ?︸ ︷︷ ︸
b

→ ? ?︸ ︷︷ ︸
a

? ?︸ ︷︷ ︸
0

? ?︸ ︷︷ ︸
b

.

2. Rearrange the sequence of six cards as

? ? ? ? ? ?
�

������ ���
? ? ? ? ? ? .

3. Bisect the sequence of six cards and switch the two portions (each of which
consists of three cards) randomly; we call this a random bisection cut [10] and

112 T. Nishida et al.

denote it by [· | ·]:
[
? ? ?

∣∣∣ ? ? ?
]

→ ? ? ? ? ? ? .

4. Rearrange the sequence as

? ? ? ? ? ?

������
�

��	
? ? ? ? ? ? .

Then, we have
? ?︸ ︷︷ ︸
a⊕r

? ? ? ?︸ ︷︷ ︸
shiftr(0,b)

where r is a (uniformly distributed) random bit because of the random bisec-
tion cut.

5. Reveal the two left-most cards; then, the value of a ⊕ r along with Eq. (2)
gives us the position of the desired commitment to a ∧ b:

♣ ♥ ? ?︸ ︷︷ ︸
a∧b

? ? or ♥ ♣ ? ? ? ?︸ ︷︷ ︸
a∧b

.

Since r is random, revealing the commitment to a⊕r does not cause any infor-
mation about bit a to be leaked, and hence, this protocol achieves an information-
theoretically secure computation1. Note that the two revealed cards can be used
for another computation (we call such an available card a free card).

1.3 Copy Protocol

Given a commitment to bit a together with four additional cards, we can make
two copied commitments to a [10] as follows.

1. Arrange three commitments to a, 0, and 0.

? ?︸ ︷︷ ︸
a

♣ ♥ ♣ ♥ → ? ?︸ ︷︷ ︸
a

? ?︸ ︷︷ ︸
0

? ?︸ ︷︷ ︸
0

.

2. Rearrange the sequence, apply a random bisection cut, and rearrange it again:

? ? ? ? ? ?
�

������ ���
�

��	
? ? ? ? ? ?

→
[
? ? ?

∣∣∣ ? ? ?
]

→
? ? ? ? ? ?

���
�

���
�

��	 ���
? ? ? ? ? ? .

1 Security is dependent on physical properties such as cards of the same color being
indistinguishable and a random bisection cut being applied truly randomly. A formal
treatment appears in [8], and the settings of this study are based on the formalization
of card-based protocols. It is also known that one can practically assume a semi-
honest model, i.e., a protocol is always executed properly [9].

Card-Based Protocols for Any Boolean Function 113

Then, we have
? ?︸ ︷︷ ︸
a⊕r

? ?︸ ︷︷ ︸
0⊕r

? ?︸ ︷︷ ︸
0⊕r

where r is a random bit.
3. Reveal the two left-most cards; then, we know whether r = a or r = ā, and

we have
♣ ♥ ? ?︸ ︷︷ ︸

a

? ?︸ ︷︷ ︸
a

or ♥ ♣ ? ?︸ ︷︷ ︸
ā

? ?︸ ︷︷ ︸
ā

.

Hence we obtain two commitments to a.

Note that swapping the two cards that constitute a commitment to a bit results
in a commitment to the negation of the bit (recall encoding rule (1)), i.e., the
NOT computation is trivial. Therefore, hereafter, we omit detailed des-
criptions of how a commitment to negation x̄ is transformed into a commit-
ment to x.

If we start this protocol with commitments to a, b, and 0 in step 1 instead,
commitments to a ⊕ b and a will be obtained [13].

Similarly, given commitments to bits a and b, we easily obtain

? ?︸ ︷︷ ︸
a⊕r

? ?︸ ︷︷ ︸
b⊕r

,

and hence the existing XOR protocol [10] produces a commitment to a⊕b without
the use of any additional card.

1.4 Our Results

The existing AND, XOR, and NOT protocols introduced thus far immediately
imply the following theorem.

Theorem 1 ([10]). Given commitments to x1 and x2 together with two addi-
tional cards ♣ ♥ , we can securely produce a commitment to the value of any
2-variable Boolean function f(x1, x2).

It is also known that the following holds.

Theorem 2 ([13]). Given commitments to x1, x2, x3 together with two addi-
tional cards ♣ ♥ , we can securely produce a commitment to the value of any
3-variable Boolean function f(x1, x2, x3).

These two results raise a natural question: what about the case of any general
Boolean function having four or more variables? Of course, by combining the
existing AND, XOR, NOT, and copy protocols, one can securely compute any
(multivariable) Boolean function f(x1, x2, . . . , xn) as long as there are plenty of
additional cards. However, an explicit sufficient number of cards for computing
any function has not been revealed thus far. We investigate this open problem

114 T. Nishida et al.

and propose a general approach to constructing an efficient protocol, showing
sufficient conditions on the numbers of additional cards.

The remainder of this paper is organized as follows. In Sect. 2, we improve
the existing AND and half-adder protocols. In Sect. 3, using the improved AND
protocol, we demonstrate the construction of a protocol that securely computes
any given n-variable Boolean function with n input commitments and six addi-
tional cards, i.e., we prove that six additional cards are sufficient for this case.
In Sect. 4, using our improved half-adder protocol, we show that two additional
cards are sufficient for the case of symmetric functions. Finally, the paper is
concluded in Sect. 5.

2 Building Blocks

In this section, we create two new protocols as building blocks for the main
results (presented in Sects. 3 and 4) by modifying the known AND protocol [10]
introduced in Sect. 1.2. The first new protocol produces a commitment to a ∧ b
as well as a commitment to b, as described in Sect. 2.1. The second one achieves
half-adder computation with only two additional cards, as described in Sect. 2.2.

2.1 Improved AND Protocol

Recall the AND protocol [10] introduced in Sect. 1.2. When a commitment to
a ∧ b is obtained as the output of the protocol, the other two face-down cards
will constitute a commitment to ā ∧ b, as known from Eq. (2):

♣ ♥ ? ?︸ ︷︷ ︸
a∧b

? ?︸ ︷︷ ︸
ā∧b

or ♥ ♣ ? ?︸ ︷︷ ︸
ā∧b

? ?︸ ︷︷ ︸
a∧b

.

From this observation and the identity

ab ⊕ āb = (a ⊕ ā) b = b

(where we omit the conjunction symbol ∧ hereafter), we can improve the AND
protocol so that one of the input commitments will be retained, as follows.

1. Arrange three commitments to a, 0, and b.

? ?︸ ︷︷ ︸
a

♣ ♥ ? ?︸ ︷︷ ︸
b

→ ? ?︸ ︷︷ ︸
a

? ?︸ ︷︷ ︸
0

? ?︸ ︷︷ ︸
b

.

2. Apply the known AND protocol [10]; then, we have

♣ ♥ ? ?︸ ︷︷ ︸
ab

? ?︸ ︷︷ ︸
āb

or ♥ ♣ ? ?︸ ︷︷ ︸
āb

? ?︸ ︷︷ ︸
ab

.

Card-Based Protocols for Any Boolean Function 115

3. Rearrange the sequence as

? ?︸ ︷︷ ︸
ab

? ?︸ ︷︷ ︸
āb

? ?︸ ︷︷ ︸
0

.

4. Apply steps 2 and 3 of the copy protocol [10] introduced in Sect. 1.3; then,
we have

♣ ♥ ? ?︸ ︷︷ ︸
ab⊕āb

? ?︸ ︷︷ ︸
ab

or ♥ ♣ ? ?︸ ︷︷ ︸
ab⊕āb

? ?︸ ︷︷ ︸
ab

.

Since ab ⊕ āb = b, we have

♣ ♥ ? ?︸ ︷︷ ︸
b

? ?︸ ︷︷ ︸
ab

or ♥ ♣ ? ?︸ ︷︷ ︸
b̄

? ?︸ ︷︷ ︸
ab

.

Thus, this protocol allows us to retain a commitment to b. Therefore, the
following lemma holds.

Lemma 3. Given commitments to x1 and x2 together with two additional cards
♣ ♥ , we can securely produce commitments to x1x2 and x2.

2.2 Improved Half-Adder Protocol

It is known that half-adder computation can be achieved with eight cards [6], i.e.,
given commitments to a and b together with four additional cards, the existing
protocol produces commitments to a ⊕ b and ab. In this subsection, we improve
the half-adder protocol by applying the improved AND protocol described in the
previous subsection. Our half-adder protocol requires only two additional cards
and proceeds as follows.

1. Arrange three commitments to a, b, and 0.

? ?︸ ︷︷ ︸
a

? ?︸ ︷︷ ︸
b

♣ ♥ → ? ?︸ ︷︷ ︸
a

? ?︸ ︷︷ ︸
b

? ?︸ ︷︷ ︸
0

.

2. Apply steps 2 and 3 of the copy protocol [10] introduced in Sect. 1.3; then,
we have

♣ ♥ ? ?︸ ︷︷ ︸
a⊕b

? ?︸ ︷︷ ︸
a

or ♥ ♣ ? ?︸ ︷︷ ︸
a⊕b

? ?︸ ︷︷ ︸
ā

.

3. Rearrange the sequence as

? ?︸ ︷︷ ︸
a

♣ ♥ ? ?︸ ︷︷ ︸
a⊕b

.

4. Apply the improved AND protocol described in the previous subsection; then,
we have

116 T. Nishida et al.

♣ ♥ ? ?︸ ︷︷ ︸
a⊕b

? ?︸ ︷︷ ︸
a(a⊕b)

or ♥ ♣ ? ?︸ ︷︷ ︸
a⊕b

? ?︸ ︷︷ ︸
a(a⊕b)

.

Since a (a ⊕ b) = aā ⊕ ab = ab, we have

♣ ♥ ? ?︸ ︷︷ ︸
a⊕b

? ?︸ ︷︷ ︸
ab

or ♥ ♣ ? ?︸ ︷︷ ︸
a⊕b

? ?︸ ︷︷ ︸
ab

.

Thus, this protocol achieves half-adder computation using only two addi-
tional cards. Therefore, the following lemma holds.

Lemma 4. Given commitments to x1 and x2 together with two additional cards
♣ ♥ , we can securely produce commitments to x1 ⊕ x2 and x1x2.

3 Computation of Any Multivariable Function

In this section, we present a general approach to constructing an efficient pro-
tocol for any given n-variable Boolean function by showing that any n-variable
function can be securely computed with n input commitments and six additional
cards.

3.1 Concepts and Sub-Protocol

Remember that XOR computation can be easily achieved [10] as described in
Sect. 1.3. Hence, XOR computation should be employed to construct an effi-
cient protocol. Therefore, we consider AND-XOR expressions of a given func-
tion. Indeed, it is well known that any n-variable function f(x1, x2, . . . , xn) can
be expressed as the Shannon expansion (or Boole’s expansion) [14]:

f(x1, x2, . . . , xn) = x̄1x̄2 · · · x̄nf(0, 0, . . . , 0) ⊕ x1x̄2 · · · x̄nf(1, 0, . . . , 0)
⊕ x̄1x2 · · · x̄nf(0, 1, . . . , 0) ⊕ x1x2 · · · x̄nf(1, 1, . . . , 0)
⊕ · · · ⊕ x1x2 · · · xnf(1, 1, . . . , 1).

i.e., f(x1, x2, . . . , xn) can be expressed uniquely by combining 2n product terms
with XORs, where a product term can be deleted if the corresponding value of
f is 0.

Now, we want to handle product terms v1v2 · · · vn, where vi, 1 ≤ i ≤ n, is a
literal (either xi or x̄i): given commitments to v1, v2, . . . , vn together with four
additional cards, the following sub-protocol securely generates a commitment to
the product term v1v2 · · · vn.

1. Make two copied commitments to v1 using the copy protocol [10] introduced
in Sect. 1.3:

♣ ♥ ♣ ♥ ? ?︸ ︷︷ ︸
v1

? ?︸ ︷︷ ︸
v2

· · · ? ?︸ ︷︷ ︸
vn

⇒ ? ?︸ ︷︷ ︸
v1

♣ ♥ ? ?︸ ︷︷ ︸
v1

? ?︸ ︷︷ ︸
v2

· · · ? ?︸ ︷︷ ︸
vn

.

Card-Based Protocols for Any Boolean Function 117

2. Apply the AND protocol described in Sect. 2.1; then, by Lemma 3 we have

? ?︸ ︷︷ ︸
v1

? ?︸ ︷︷ ︸
v2

♣ ♥ ? ?︸ ︷︷ ︸
v1v2

? ?︸ ︷︷ ︸
v3

· · · ? ?︸ ︷︷ ︸
vn

.

3. Similarly, by Lemma 3 we have

? ?︸ ︷︷ ︸
v1

? ?︸ ︷︷ ︸
v2

? ?︸ ︷︷ ︸
v3

♣ ♥ ? ?︸ ︷︷ ︸
v1v2v3

? ?︸ ︷︷ ︸
v4

· · · ? ?︸ ︷︷ ︸
vn

.

4. Repeat this up to vn so that we have

? ?︸ ︷︷ ︸
v1

? ?︸ ︷︷ ︸
v2

· · · ? ?︸ ︷︷ ︸
vn

♣ ♥ ? ?︸ ︷︷ ︸
v1v2···vn

.

Thus, four additional cards allow us to generate a commitment to the product
term without losing the input commitments.

Lemma 5. Given commitments to literals v1, v2, . . . , vn together with four addi-
tional cards ♣ ♣ ♥ ♥ , we can securely produce commitments to v1, v2, . . . , vn,
and v1v2 · · · vn.

3.2 Complete Description of Protocol

Now, we are ready to present our general protocol for securely computing any
function.

Let f be an arbitrary n-variable function. Given n commitments

? ?︸ ︷︷ ︸
x1

? ?︸ ︷︷ ︸
x2

· · · ? ?︸ ︷︷ ︸
xn

and six additional cards ♣ ♣ ♣ ♥ ♥ ♥ , the following protocol securely pro-
duces a commitment to f(x1, x2, . . . , xn).

1. Let T1 ⊕ T2 ⊕ · · · ⊕ T� be the Shannon expansion of f after removing the
constant-zero terms (where Ti, 1 ≤ i ≤ �, is a product term). Generate a
commitment to T1 using the sub-protocol described in Sect. 3.1. Then, by
Lemma 5 we have

? ?︸ ︷︷ ︸
x1

? ?︸ ︷︷ ︸
x2

· · · ? ?︸ ︷︷ ︸
xn

♣ ♥ ♣ ♥ ? ?︸ ︷︷ ︸
T1

.

2. Generate a commitment to T2 by Lemma 5:

? ?︸ ︷︷ ︸
x1

? ?︸ ︷︷ ︸
x2

· · · ? ?︸ ︷︷ ︸
xn

♣ ♥ ? ?︸ ︷︷ ︸
T1

? ?︸ ︷︷ ︸
T2

.

118 T. Nishida et al.

3. Apply the XOR protocol [10] to the two right-most commitments:

? ?︸ ︷︷ ︸
x1

? ?︸ ︷︷ ︸
x2

· · · ? ?︸ ︷︷ ︸
xn

♣ ♥ ♣ ♥ ? ?︸ ︷︷ ︸
T1⊕T2

.

4. Generate a commitment to T3 by Lemma 5:

? ?︸ ︷︷ ︸
x1

? ?︸ ︷︷ ︸
x2

· · · ? ?︸ ︷︷ ︸
xn

♣ ♥ ? ?︸ ︷︷ ︸
T1⊕T2

? ?︸ ︷︷ ︸
T3

.

5. Apply the XOR protocol [10] to the two right-most commitments:

? ?︸ ︷︷ ︸
x1

? ?︸ ︷︷ ︸
x2

· · · ? ?︸ ︷︷ ︸
xn

♣ ♥ ♣ ♥ ? ?︸ ︷︷ ︸
T1⊕T2⊕T3

.

6. Repeat this until we get a commitment to T1 ⊕ T2 ⊕ · · · ⊕ T�, which is equal
to f(x1, x2, . . . , xn):

? ?︸ ︷︷ ︸
x1

? ?︸ ︷︷ ︸
x2

· · · ? ?︸ ︷︷ ︸
xn

♣ ♥ ♣ ♥ ? ?︸ ︷︷ ︸
f(x1,x2,...,xn)

.

The remaining commitments to x1, x2, . . . , xn as well as the four free cards
♣ ♣ ♥ ♥ can be used for another computation. Thus, we have the following
theorem.

Theorem 6. Let f be an n-variable function. Given commitments to x1, x2, . . . ,
xn together with six additional cards ♣ ♣ ♣ ♥ ♥ ♥ , we can securely produce
commitments to x1, x2, . . . , xn, and the value f(x1, x2, . . . , xn).

Note that our improved AND protocol (Lemma3) plays an important role in
reducing the number of required cards; without it, two more cards would be
required to run the sub-protocol, and consequently, the above protocol. Fur-
thermore, although we used the Shannon expansion in step 1, one may use any
AND-XOR expression instead, which can be obtained by applying some simpli-
fication algorithm [14].

4 Case of Symmetric Functions

The previous section described the construction of a protocol that securely pro-
duces a commitment to the value of any function using n input commitments
and six additional cards. In this section, we focus our attention on symmetric
functions because practically important functions in MPC are often symmet-
ric. Specifically, we prove that two additional cards are sufficient for the case of
symmetric functions.

Let f be an n-variable symmetric function. Then, the value f(x1, x2, . . . , xn)
depends on only the number of variables that take 1, namely

∑n
i=1 xi. For instance,

Card-Based Protocols for Any Boolean Function 119

the 3-input majority MAJ3, which is a 3-variable symmetric function, can be
expressed using a function g : {0, 1, 2, 3} → {0, 1} as

MAJ3(x1, x2, x3) = g (
∑

xi) =
{

0 if
∑

xi ≤ 1
1 otherwise.

Thus, for any n-variable symmetric function f : {0, 1}n → {0, 1}, there exists a
unique function g : {0, 1, . . . , n} → {0, 1} such that f(x1, x2, . . . , xn) = g (

∑
xi).

Given commitments to x1, x2, . . . , xn, it is obvious that the half-adder com-
putation described in Sect. 2.2 enables us to securely generate a sequence of com-
mitments corresponding to the binary representation of

∑
xi; Lemma 4 implies

that two additional cards are sufficient for this purpose.

Lemma 7. Given commitments to x1, x2, . . . , xn together with two additional
cards ♣ ♥ , we can securely produce a (
log2 n�+1)-bit sequence of commitments
corresponding to

∑n
i=1 xi.

Note that after generating a sequence of commitments to
∑

xi from commit-
ments to x1, x2, . . . , xn (and two additional cards), some free cards will arise;
more specifically, we will have a total of 2 (n −
log2 n�) free cards.

Now, we are ready to present our main result of this section, i.e., only two
additional cards are sufficient for the case of symmetric functions.

Theorem 8. Let n ≥ 4 and let f be an n-variable symmetric function. Given
commitments to x1, x2, . . . , xn together with two additional cards ♣ ♥ , we can
securely produce a commitment to the value f(x1, x2, . . . , xn).

Proof. Let g : {0, 1, . . . , n} → {0, 1} be the function such that g (
∑

xi) =
f(x1, x2, . . . , xn). By Lemma 7, we obtain a (
log2 n� + 1)-bit sequence of com-
mitments corresponding to

∑
xi and 2 (n −
log2 n�) free cards. If n ≥ 5, then

2 (n −
log2 n�) ≥ 6, and hence there are at least 6 free cards, and consequently,
we can securely generate a commitment to the value g (

∑
xi) by Theorem 6 (by

regarding the domain of g as {0, 1}�log2 n�+1). Similarly, if n = 4, then there are a
3-bit sequence of commitments and 4 free cards, and hence Theorem 2 completes
the proof. �

5 Conclusion

We proposed a general approach to designing an efficient card-based protocol
for any given function. Specifically, using two-level AND-XOR representations,
we can construct a protocol that requires only six additional cards to securely
produce a commitment to the value of any n-variable function, regardless of
how large n is (Theorem 6). Further, we showed that two additional cards are
sufficient for the case of symmetric functions (Theorem 8).

As mentioned above, six additional cards are sufficient for general functions,
and two additional cards are sufficient for symmetric functions. Determining
whether they are necessary is an open problem; for example, is there a symmetric

120 T. Nishida et al.

function that needs at least two additional cards? Note that to prove such a
lower bound, one has to follow the formal computational model for card-based
protocols [8].

Cryptography and playing cards share a deep connection (e.g., [2,4,5,16]).
One benefit of considering such a connection is that it enables us to easily demon-
strate the underlying concepts of MPC and cryptography to non-specialists. In
addition, we have already confirmed that ordinary people such as high-school
students can use card-based protocols in their daily activities.

Acknowledgments. This work was supported by JSPS KAKENHI Grant Number
26330001.

References

1. den Boer, B.: More efficient match-making and satisfiability: the five card trick.
In: Quisquater, J.-J., Vandewalle, J. (eds.) Advances in Cryptology- EUROCRYPT
1989. LNCS, vol. 434, pp. 208–217. Springer, Heidelberg (1990)

2. Cordón-Franco, A., Van Ditmarsch, H., Fernández-Duque, D., Soler-Toscano, F.:
A colouring protocol for the generalized Russian cards problem. Theor. Comput.
Sci. 495, 81–95 (2013)

3. Crépeau, C., Kilian, J.: Discreet solitary games. In: Stinson, D.R. (ed.) Advances
in Cryptology-CRYPTO 1993. LNCS, vol. 773, pp. 319–330. Springer, Heidelberg
(1994)

4. Duan, Z., Yang, C.: Unconditional secure communication: a Russian cards protocol.
J. Comb. Optim. 19(4), 501–530 (2010)

5. Fischer, M.J., Wright, R.N.: Bounds on secret key exchange using a random deal
of cards. J. Cryptology 9(2), 71–99 (1996)

6. Mizuki, T., Asiedu, I.K., Sone, H.: Voting with a logarithmic number of cards. In:
Mauri, G., Dennunzio, A., Manzoni, L., Porreca, A.E. (eds.) UCNC 2013. LNCS,
vol. 7956, pp. 162–173. Springer, Heidelberg (2013)

7. Mizuki, T., Kumamoto, M., Sone, H.: The five-card trick can be done with four
cards. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp.
598–606. Springer, Heidelberg (2012)

8. Mizuki, T., Shizuya, H.: A formalization of card-based cryptographic protocols via
abstract machine. Int. J. Inf. Secur. 13(1), 15–23 (2014)

9. Mizuki, T., Shizuya, H.: Practical card-based cryptography. In: Ferro, A.,
Luccio, F., Widmayer, P. (eds.) FUN 2014. LNCS, vol. 8496, pp. 313–324. Springer,
Heidelberg (2014)

10. Mizuki, T., Sone, H.: Six-card secure and and four-card secure xor. In: Deng, X.,
Hopcroft, J.E., Xue, J. (eds.) FAW 2009. LNCS, vol. 5598, pp. 358–369. Springer,
Heidelberg (2009)

11. Mizuki, T., Uchiike, F., Sone, H.: Securely computing XOR with 10 cards.
Australas. J. Comb. 36, 279–293 (2006)

12. Niemi, V., Renvall, A.: Secure multiparty computations without computers. Theor.
Comput. Sci. 191(1–2), 173–183 (1998)

13. Nishida, T., Hayashi, Y., Mizuki, T., Sone, H.: Securely computing three-input
functions with eight cards. IEICE Trans. Fundam. Electron., Commun. Comput.
Sci. E98-A(6) (2015, to appear)

Card-Based Protocols for Any Boolean Function 121

14. Sasao, T.: Switching Theory for Logic Synthesis, 1st edn. Kluwer Academic Pub-
lishers, Norwell (1999)

15. Stiglic, A.: Computations with a deck of cards. Theor. Comput. Sci. 259(1–2),
671–678 (2001)

16. Swanson, C.M., Stinson, D.R.: Combinatorial solutions providing improved secu-
rity for the generalized Russian cards problem. Designs, Codes and Cryptography
72(2), 345–367 (2014)

Size of Sets with Small Sensitivity:
A Generalization of Simon’s Lemma

Andris Ambainis and Jevgēnijs Vihrovs(B)

Faculty of Computing, University of Latvia, Raiņa bulv. 19, Riga LV-1586, Latvia
jevgenijs.vihrovs@lu.lv

Abstract. We study the structure of sets S ⊆ {0, 1}n with small sen-
sitivity. The well-known Simon’s lemma says that any S ⊆ {0, 1}n of
sensitivity s must be of size at least 2n−s. This result has been useful
for proving lower bounds on the sensitivity of Boolean functions, with
applications to the theory of parallel computing and the “sensitivity vs.
block sensitivity” conjecture.

In this paper we take a deeper look at the size of such sets and their
structure. We show an unexpected “gap theorem”: if S ⊆ {0, 1}n has
sensitivity s, then we either have |S| = 2n−s or |S| ≥ 3

2
2n−s.

This provides new insights into the structure of low sensitivity subsets
of the Boolean hypercube {0, 1}n.

1 Introduction

The complexity of computing Boolean functions (for example, in the decision tree
model of computation) is related to a number of combinatorial quantities, such
as the sensitivity and block sensitivity of the function, its certificate complexity
and the degree of polynomials that represent the function exactly or approxi-
mately [5]. Study of these quantities has resulted in both interesting results and
longstanding open problems.

For example, it has been shown that decision tree complexity in either a deter-
ministic, a probabilistic or a quantum model of computation is polynomially
related to a number of these quantities: certificate complexity, block sensitivity
and the minimum degree of polynomials that represent or approximate f [4,9].
This result, in turn, implies that deterministic, probabilistic and quantum decision
tree complexities are polynomially related — which is very interesting because a

The research leading to these results has received funding from the European
Union Seventh Framework Programme (FP7/2007–2013) under projects QALGO
(Grant Agreement No. 600700) and RAQUEL (Grant Agreement No. 323970), ERC
Advanced Grant MQC and Latvian State Research programme NexIT project No.1.
Part of this work was done while Andris Ambainis was visiting Institute for Advanced
Study, Princeton, supported by National Science Foundation under agreement No.
DMS-1128155. Any opinions, findings and conclusions or recommendations expressed
in this material are those of the author(s) and do not necessarily reflect the views
of the National Science Foundation.

c© Springer International Publishing Switzerland 2015
R. Jain et al. (Eds.): TAMC 2015, LNCS 9076, pp. 122–133, 2015.
DOI: 10.1007/978-3-319-17142-5 12

Size of Sets with Small Sensitivity: A Generalization of Simon’s Lemma 123

similar result is not known in the Turing machine world; and, for deterministic vs.
quantum complexity, is most likely false because of Shor’s factoring algorithm.

The question about the relation between the sensitivity of a function and the
other quantities is, however, a longstanding open problem, known as the “sensi-
tivity vs. block sensitivity” question. Since the other quantities are all polyno-
mially related, showing a polynomial relation between sensitivity and any one
of them would imply a polynomial relation between sensitivity and all of them.
This question, since first being posed by Nisan in 1991 [8], has attracted much
attention but there has been quite little progress and the gap between the best
upper and lower bounds remains huge. The examples that achieve the asymp-
totically biggest separation between the two quantities give bs(f) = Ω(s2(f))
[3,10,12], while the best upper bound on bs(f) in terms of s(f) is exponential:
bs(f) ≤ s(f)2s(f)−1 [1,7]. Here bs(f) and s(f) denote the block sensitivity and
the sensitivity of f , respectively.

In this paper we study the following question: assume that a subset S of the
Boolean hypercube {0, 1}n has low sensitivity: that is, for every x ∈ S there
are at most s indices i ∈ {1, . . . , n} such that changing xi to the opposite value
results in y /∈ S. What can we say about this set?

Most of the upper bounds on bs(f) in terms of s(f) are based on Simon’s
lemma [11]. We say that a subset S of the Boolean hypercube {0, 1}n has sen-
sitivity s if, for every x ∈ S, there are at most s indices i ∈ {1, . . . , n} such
that changing xi to the opposite value results in y /∈ S. Simon’s lemma [11] says
that any S ⊂ {0, 1}n with sensitivity s must contain at least 2n−s input vectors
x ∈ S.

Simon [11] then used this result to show that s(f) ≥ 1
2 log2 n− 1

2 log2 log2 n+ 1
2

for any Boolean function that depends on n variables. Since bs(f) ≤ n, this
implies bs(f) ≤ s(f)4s(f). This was the first upper bound on bs(f) in terms of
s(f). A more recent upper bound of bs(f) ≤ s(f)2s(f)−1 by Ambainis et al. [1]
is also based on Simon’s lemma. If it was possible to improve Simon’s lemma,
this would result in better bounds on bs(f).

However, Simon’s lemma is known to be exactly optimal. Let S be a subcube
of the hypercube {0, 1}n obtained by fixing s of variables xi. That is, S is the
set of all x = (x1, . . . , xn) that satisfy xi1 = a1, . . ., xis = as for some choice
of distinct i1, . . . , ik ∈ {1, . . . , n} and a1, . . . , as ∈ {0, 1}. Then every x ∈ S is
sensitive to changing s bits xi1 , . . . , xik and |S| = 2n−s.

In this paper, we discover a direction in which Simon’s lemma can be improved!
Namely, we show that any S with sensitivity s that is not a subcube must be sub-
stantially larger. To do that, we study the structure of sets S with sensitivity s by
classifying them into two types:

1. sets S that are contained in a subcube S′ ⊂ {0, 1}n obtained by fixing one or
more of values xi;

2. sets S that are not contained in any such subcube.

124 A. Ambainis and J. Vihrovs

There is one-to-one correspondence between the sets of the first type and
low-sensitivity subsets of {0, 1}n−k for k ∈ {1, . . . , s}.1 In contrast, the sets of
the second type do not reduce to low-sensitivity subsets of {0, 1}n−k for k > 0.
Therefore, we call them irreducible.

Our main technical result (Theorem2) is that any irreducible S ⊆ {0, 1}n
must be of size |S| ≥ 2n−s+1−2n−2s, almost twice as large as a subcube obtained
by fixing s variables, and this bound is tight.

As a consequence, we obtain a surprising result: if S ⊆ {0, 1}n has sensitivity
s, then either |S| = 2n−s or |S| ≥ 3

22n−s. That is, such a set S cannot have a
size between 2n−s and 3

22n−s (Theorem 3).
In a following work [2], we have applied this theorem to obtain a new upper

bound on block sensitivity in terms of sensitivity:

bs(f) ≤ max
(

2s(f)−1

(
s(f) − 1

3

)
, s(f)

)
. (1)

Related Work. A gap theorem of a similar type is known for the spectral norm
of Boolean functions [6]: the spectral norm of a Boolean function is either equal
to 1 or is at least 3

2 . Both results have the constant 3
2 appearing in them and

there is some resemblance between the constructions of optimal sets/functions
but the proof methods are quite different and it is not clear to us if there is a
more direct connection between the results.

2 Preliminaries

In this section we give the basic definitions used in the paper. Let f : {0, 1}n →
{0, 1} be a Boolean function of n variables, where the i-th variable is denoted by
xi. We use x = (x1, . . . , xn) to denote a tuple consisting of all input variables xi.

Definition 1. The sensitivity complexity s(f, x) of f on an input x is defined
as |{i | f(x) �= f(x(i))}|, where x(i) is an input obtained from x by flipping the
value of the i-th variable. The sensitivity s(f) of f is defined as

s(f) = max{s(f, x) | x ∈ {0, 1}n}. (2)

The c-sensitivity sc(f) of f is defined as

sc(f) = max{s(f, x) | x ∈ {0, 1}n, f(x) = c}. (3)

In this paper we will look at {0, 1}n as a set of vertices for a graph Qn (called
the n-dimensional Boolean cube or hypercube) in which we have an edge (x, y)
whenever x = (x1, . . . , xn) and y = (y1, . . . , yn) differ in exactly one position.
We look at subsets S ⊆ {0, 1} as subgraphs (induced by the subset of vertices
S) in this graph.
1 If a set S of sensitivity s is contained in a subcube S′ obtained by fixing xi1 , . . . , xik ,
removing the variables that have been fixed gives us a set S′′ ⊆ {0, 1}n−k of sensi-
tivity s − k.

Size of Sets with Small Sensitivity: A Generalization of Simon’s Lemma 125

Definition 2. We define an m-dimensional subcube or m-subcube of Qn to be
a cube induced by the set of all vertices that have the same bit values on n − m
positions xi1 , . . . , xin−m

where ij are all different.

We denote a subcube that can be obtained by fixing some continuous sequence
b of starting bits by Qb. For example, Q0 and Q1 can be obtained by fixing the
first bit and Q01 can be obtained by fixing the first two bits to 01. We use a
wildcard * symbol to indicate that the bit in the corresponding position is not
fixed. For example, by Q∗10 we denote a cube obtained by fixing the second and
the third bit to 10.

Definition 3. Two m-dimensional subcubes of Qn are adjacent if the fixed n−m
positions of both subcubes are the same and their bit values differ in exactly one
position.

Each Boolean function f can be uniquely represented as a set of vertices V (f) =
{x | f(x) = 1}, thus each function of n variables represents a single subgraph
G(f) of Qn induced by V (f). Note that for an input x ∈ V (f), the sensitivity
s(f, x) is equal to the number of vertices not in V (f) and connected to x with
an edge in Qn. Thus the sensitivity of V (f) is equal to s1(f).

For a Boolean function f , the minimum degree δ(G(f)) corresponds to n −
s1(f), and the minimum degree of a graph induced by {0, 1}n \ V corresponds
to n − s0(f).

In the rest of this paper we phrase our results in terms of subgraphs of Qn.

Definition 4. Let X and Y be subgraphs of Qn. By X ∩Y we denote the inter-
section graph of X and Y that is the graph (V (X) ∩ V (Y), E(X) ∩ E(Y)). By
X \ Y denote the complement of Y in X that is the graph induced by the vertex
set V (X) \ V (Y) in X.

We also denote the degree of a vertex v in a graph G by deg(v,G).
The main focus of the paper is on the irreducible class of subgraphs:

Definition 5. We call a subgraph G ⊂ Qn reducible if it is a subgraph of some
graph S ⊂ Qn where V (S) can be obtained by fixing one or more of values xi.
Conversely, other subgraphs we call irreducible.

Another way to define the irreducible graphs is to say that each such graph
contains at least one vertex in each of the (n − 1)-subcubes of Qn.

3 Simon’s Lemma

In this section we present a theorem proved by Simon [11].

Theorem 1 (Simon). Let G = (V,E) be a non-empty subgraph of Qn (n ≥ 0)
of minimum cardinality among the subgraphs with δ(G) = d (d ≥ 0). Then G is
a d-dimensional subcube of Qn and |V | = 2d.

126 A. Ambainis and J. Vihrovs

This theorem implies:

Corollary 1. Let f(x) be a Boolean function on n variables. If f(x) is not
always 0, then

|{x | f(x) = 1}| ≥ 2n−s1(f), (4)

and the minimum is obtained iff some s1(f) positions hold the same bit values
for all x : f(x) = 1.

Proof. Let G be a subgraph of Qn induced by the set of vertices V = {x |
f(x) = 1}. The minimum degree of G is δ(G) = n − s1(f). Then by Theorem 1
|V | ≥ 2n−s1(f). The minimum is obtained iff G is an (n − s1(f))-subcube of Qn.
This means that it is defined by some bits fixed in s1(f) positions.
�

4 Smallest Irreducible Subgraphs

In this section we prove the main theorem.

Theorem 2. Let G = (V,E) be a non-empty irreducible subgraph of Qn (n ≥ 1)
with the minimum degree d ≥ 0. Let the smallest possible cardinality of V be
S(n, d). Then

S(n, d) =
⌈
2d+1 − 22d−n

⌉
. (5)

The proof of Theorem 2 is by induction on n and involves case analysis going as
deep as considering (n − 3)-dimensional subcubes of Qn.

In the language of Boolean functions, this theorem corresponds to:

Corollary 2. Let f(x) be a Boolean function on n variables. If ∀i ∈ [n]∀b ∈
{0, 1} ∃x (xi = b, f(x) = 1), then

|{x | f(x) = 1}| ≥ 2n−s1(f)+1 − 2n−2s1(f). (6)

Theorem 2 together with Lemma 1 imply the following generalization of Simon’s
lemma:

Theorem 3. Let G = (V,E) be a non-empty subgraph of Qn (n ≥ 0) with
δ(G) = d. Then either |V | = 2d or |V | ≥ 3

2 · 2d, with V = |2d| achieved if and
only if G is a d-subcube.

Equivalently, if G has sensitivity s, then either |V | = 2n−s or |V | ≥ 3
22n−s.

Thus there is a gap between the possible values for |V | — which we find quite
surprising.

In the next two subsections we prove Theorem 2 and in the last two subsec-
tions we show how it implies Corollary 2 and Theorem 3.

4.1 Instances Achieving the Minimum

In this section we prove that the given number of vertices is sufficient. We dis-
tinguish three cases:

Size of Sets with Small Sensitivity: A Generalization of Simon’s Lemma 127

1. n = 1. The only valid graph satisfying the properties is G = Qn with d = 1.
Then |V | = 2.

2. n > 1, 2d < n. Since 22d−n < 1, |V | should be 2d+1. We take

Sj = {x | ∀i ∈ [n − d] (xi = j)} (7)

for j ∈ {0, 1} and V = S0∪S1. Let G be the graph induced by V in Qn. Then
G consists of two d-subcubes of Qn with no common vertices. Since n−d > 1,
no edge connects any two vertices between these subcubes, thus δ(G) = d.
For the irreducibility, suppose that some (n − 1)-subcube H is defined by
fixing xi = j. If i ≤ n − d, then H ∩ Sj �= ∅. If i > n − d, then H ∩ Sj �= ∅

for any j. Then |V | = 2 · 2d = 2d+1.
3. n > 1, 2d ≥ n. Then |V | should be 2d+1 − 22d−n. We take

Sl = {x | ∀i ∈ [n − d] (xi = 1)}, (8)
Sr = {x | ∀i ∈ [n − d + 1; 2(n − d)] (xi = 1)} (9)

and V = Sl ∪ Sr. Let G be the graph induced by V in Qn. Graphs induced
by Sl and Sr are d-dimensional subcubes of Qn. Since they are not adjacent,
δ(G) = d. For the irreducibility, observe that any bit position i is not fixed for
at least one of Sl or Sr. Then the (n−1)-subcube H obtained by fixing xi holds
at least one of the vertices of G. Since Sl ∩Sr = {x | ∀i ∈ [2(n− d)](xi = 1)},
it follows that

|V | = 2 · 2d − 2n−2(n−d) = 2d+1 − 22d−n. (10)

4.2 Optimality

In this section we prove that there are no such graphs with a number of vertices
less than

⌈
2d+1 − 22d−n

⌉
.

The proof is by induction on n. As the base case we take n ≤ 2. From
the fact that each (n − 1)-subcube contains at least one vertex of G it follows
that |V | ≥ 2. This proves the cases n = 1, d = 1 and n = 2, d = 0 (and
the case n = 1, d = 0 is not possible). Suppose n = 2, d = 1: if there were 2
vertices in G, then either some of the 1-subcubes would contain no vertex of G
or there would be a vertex of G with degree 0 (which contradicts d = 1). Thus,
in this case |V | ≥ 3 = 21+1 − 22−2. Suppose n = 2, d = 2. Then G = Qn and
|V | = 4 = 22+1 − 24−2.

Inductive step. First suppose that each (n − 2)-subcube of Qn contains at
least one vertex of G, then G ∩ Q0 and G ∩ Q1 are irreducible. The minimum
degrees of G ∩ Q0 and G ∩ Q1 are at least d − 1, since each vertex of G ∩ Q0 can
have at most one neighbour in Q1 (and conversely). By applying the inductive
assumption to the cubes Q0 and Q1, we obtain that

|V | ≥ 2 ·
⌈
2(d−1)+1 − 22(d−1)−(n−1)

⌉
= (11)

= 2 · ⌈
2d − 22d−n−1

⌉ ≥ (12)

≥ ⌈
2d+1 − 22d−n

⌉
. (13)

128 A. Ambainis and J. Vihrovs

Now suppose that there is some (n−2)-subcube without vertices of G. WLOG
assume it is Q00, i.e., G ∩ Q00 = ∅. We prove two lemmas.

Lemma 1. Let G = (V,E) be a non-empty subgraph of Qn (n ≥ 0) with δ(G) =
d (d ≥ 0). Then either |V | = 2d or |V | ≥ minn

i=d+1 S(i, d).

Proof. The proof is by induction on n. Base case: n = 0. Then G = Qn, d = 0
and |V | = 1 = 20−0. In the inductive step we prove the statement for n > 0.
If n = d, then G = Qn, and |V | = 2n = 2d. Otherwise n > d. If each (n − 1)-
subcube of Qn contains vertices of G, then |V | ≥ S(n, d) by the definition of S.
Otherwise there is an (n − 1)-subcube of Qn that does not contain any vertex
of G. Then by induction the other (n − 1)-subcube contains either 2d or at least
minn−1

i=d+1 S(i, d) vertices of G. Combining the two cases together gives us the
result. �

Lemma 2. Let G = (V,E) be a subgraph of Qn (n ≥ 1). Let G′ = G ∩ Q0. If
G′ is not empty and minv∈G′ deg(v,G) ≥ d, then |V | ≥ 2d.

Note that this lemma is also a stronger version of Simon’s result. Here we require
the lower bound for the minimum degree only for vertices of G in one of the
(n − 1)-subcubes of Qn.

Proof. The proof is by induction on n.

(a) Base case, n = 1. Since G′ is non-empty, G′ = Q0. If d = 0, |V | ≥ 1 = 20. If
d = 1, then G = Qn and |V | = 2 = 21.

(b) In the inductive step we prove the statement for n > 1. If Q0j ∩ G′ is empty
for some j ∈ {0, 1}, then G′ ⊆ Q0(1−j). Thus by the induction hypothesis
|V (Q∗(1−j))| ≥ 2d. Otherwise both Q00 and Q01 contain some vertices of G.
Since each vertex of Q0j ∩ G has at most one neighbour in Q0(1−j) ∩ G, it
follows that minv∈Q0j∩G deg(v,Q∗j) ≥ d − 1 for any j ∈ {0, 1}. By applying
the induction hypothesis for Q∗j ∩ G in the cube Q∗j for each j, we obtain
that |V | ≥ 2 · 2d−1 = 2d.

�
We now have that δ(G ∩ Q01) ≥ d − 1 and δ(G ∩ Q10) ≥ d − 1 becase Q11 may
contain vertices of G but on the other hand we are assuming G ∩ Q00 = ∅. Now
we distinguish two cases:

1. |V (G ∩ Q01)| �= 2d−1 and |V (G ∩ Q10)| �= 2d−1.
Cube Q01 has n − 2 dimensions and δ(Q01 ∩ G) ≥ d − 1. By Lemma 1

|V (Q01 ∩ G)| ≥
n−2
min

i=(d−1)+1
S(i, d − 1) =

n−2
min
i=d

S(i, d − 1). (14)

It follows by induction that

|V (Q01 ∩ G)| ≥ n−2
min
i=d

⌈
2(d−1)+1 − 22(d−1)−i

⌉
. (15)

Size of Sets with Small Sensitivity: A Generalization of Simon’s Lemma 129

The minimum is achieved when i is the smallest, i = d. Thus |V (Q01 ∩ G)| ≥⌈
2d − 2d−2

⌉
. Similarly we prove that |V (Q10 ∩ G)| ≥ ⌈

2d − 2d−2
⌉
.

It remains to estimate the number of vertices of G in Q11. We deal with two
cases:
1.1. Some (n−3)-subcube of Qn in Q11 does not contain vertices of G. WLOG

we assume it is Q110, i.e., G∩Q110 = ∅. We again distinguish two cases:
1.1.1. One of the subcubes Q010 and Q100 does not contain vertices of G.

WLOG assume it is Q010, i.e., G ∩ Q010 = ∅. Then for the subcube
Q011 it holds that minv∈G∩Q011 deg(v,G∩Q∗11) ≥ d, since G∩Q001 =
∅ (because Q001 ⊂ Q00), G∩Q010 = ∅ and Q111 may contain vertices
of G. Applying Lemma 2 to G∩Q011 in Q∗11, we get |V (G∩Q∗11)| ≥
2d. Similarly we prove that |V (G ∩ Q10∗)| ≥ 2d. That gives us

|V | ≥ 2 · 2d = 2d+1 ≥ ⌈
2d+1 − 22d−n

⌉
(16)

and the case is done.
1.1.2. Both of the subcubes Q010 and Q100 contain vertices of G. Then for

the subcube Q010 it holds that minv∈G∩Q010 deg(v,G ∩ Q01∗) ≥ d,
since G∩Q000 = ∅, G∩Q110 = ∅, and Q011 may contain vertices of
G. Applying Lemma 2 to G∩Q010 in Q01∗, we get |V (G∩Q01∗)| ≥ 2d.
Similarly we prove that |V (G ∩ Q10∗)| ≥ 2d. That gives us

|V | ≥ 2 · 2d = 2d+1 ≥ ⌈
2d+1 − 22d−n

⌉
(17)

and this case also is done.
1.2. Each (n − 3)-subcube of Qn in Q11 contains vertices of G. Since Q11

is adjacent to Q01 and Q10, δ(G ∩ Q11) ≥ d − 2. From the inductive
assumption it follows that

|V (G ∩ Q11)| ≥ 2(d−2)+1 − 22(d−2)−(n−2) = 2d−1 − 22d−n−2. (18)

Thus

|V | = |V (G ∩ Q01)| + |V (G ∩ Q10)| + |V (G ∩ Q11)| ≥ (19)

≥ 2 · ⌈
2d − 2d−2

⌉
+

⌈
2d−1 − 22d−n−2

⌉ ≥ (20)

≥ ⌈
2 · (

2d − 2d−2
)

+ 2d−1 − 22d−n−2
⌉

= (21)

=
⌈
2d+1 − 2d−1 + 2d−1 − 22d−n−2

⌉
= (22)

=
⌈
2d+1 − 22d−n−2

⌉ ≥ (23)

≥ ⌈
2d+1 − 22d−n

⌉
. (24)

Hence this case is complete.
2. |V (G ∩ Q01)| = 2d−1 or |V (G ∩ Q10)| = 2d−1. WLOG assume that this holds

for Q01.

130 A. Ambainis and J. Vihrovs

By Theorem 1 it follows that G ∩ Q01 is a (d − 1)-dimensional subcube of
Qn, denote it by D0. On the other hand, we are assuming G∩Q00 = ∅. Thus
WLOG we can assume that D0 is induced on the set of vertices

{x | x1 = 0,∀i ∈ [2;n − d + 1] (xi = 1)} = V (G ∩ Q0). (25)

Observe that deg(v,G∩Q01) = d−1 for all v ∈ G∩Q01. Since δ(G) = d, each
x ∈ V (G∩Q01) has x(1) as a neighbour in G. Then {x(1) | x ∈ V (G∩Q01)} ⊆
V (G ∩ Q11), and G ∩ Q11 contains a (d − 1)-subcube of Qn adjacent to D0.
We denote it by D1, with

{x | x1 = 1,∀i ∈ [2;n − d + 1] (xi = 1)} ⊆ V (G ∩ Q1). (26)

Then D = D0 ∪ D1 is a d-dimensional subcube.

It remains to estimate the number of vertices of G in Q1 that do not belong
to D1, denote it by R = |V ((G∩Q1)\D1)|. We will prove the following claim:

Claim. By k denote the co-dimension of D1 in Q1, which is (n − 1) − (d − 1) =
n − d. Then R ≥ 2d − 2d−k.

Proof. We will denote the subcube of Q1 obtained by restricting some t bits
xi1 = b1, . . ., xit = bt by Q1(xi1 = b1, . . . , xit = bt). Further note that D1 ⊆
Q1(xi = 1, xj = 1) for i, j ∈ [2; k + 1].

Since G ∩ Q0 = D0, any vertex of (G ∩ Q1) \ D1 can have a neighbour in G
only in Q1. Thus we have that

min
v∈(G∩Q1)\D1

deg(v,G ∩ Q1) ≥ d. (27)

Pick any i ∈ [2; k + 1]. Examine the (n − 2)-subcube Q1(xi = 0). It does not
overlap with D. But G is irreducible, so G ∩ Q1(xi = 0) �= ∅.

Assume k = 1. Then D1 = Q11 and δ(G ∩ Q10) = d − 1. By Theorem 1, it
follows that

R = |V (G ∩ Q10)| ≥ 2d−1 = 2d − 2d−1. (28)

Otherwise k ≥ 2. We will prove it can be assumed that for any i, j ∈ [2; k+1],
i �= j and b ∈ {0, 1} we have G ∩ Q1(xi = 0, xj = b) �= ∅.

– Let G ∩ Q1(xi = 0, xj = 0) = ∅. Then δ(G ∩ Q1(xi = 0, xj = 1)) ≥ d − 1 and
δ(G ∩ Q1(xi = 1, xj = 0)) ≥ d − 1. By Theorem 1, we have |V (G ∩ Q1(xi =
0, xj = 1))| ≥ 2d−1 and |V (G ∩ Q1(xi = 1, xj = 0))| ≥ 2d−1. Thus in this case

R ≥ 2 · 2d−1 = 2d > 2d − 2d−k. (29)

– Let G ∩ Q1(xi = 0, xj = 1) = ∅. Then minv∈G∩Q1(xi=0,xj=0) deg(v,G ∩
Q1(xj = 0)) ≥ d and since G ∩ Q1(xj = 0) �= ∅, by Lemma 2 we have

R > |V (G ∩ Q1(xj = 0))| ≥ 2d > 2d − 2d−k. (30)

Now examine a subcube G ∩ Q1(xi = 0) for an i ∈ [2; k + 1]. Since G ∩
Q0(xi = 0) = ∅, we have δ(G ∩ Q1(xi = 0)) ≥ d − 1. By Lemma 1, either
|V (G ∩ Q1(xi = 0))| = 2d−1 or |V (G ∩ Q1(xi = 0))| ≥ minn−1

t=d S(t, d − 1).

Size of Sets with Small Sensitivity: A Generalization of Simon’s Lemma 131

– Assume it is the latter case; by the induction of this section, we have that the
minimum is achieved by t = d with |V (G ∩ Q1(xi = 0))| ≥ 2d − 22(d−1)−d =
2d − 2d−2.

We can now assume that G∩Q1(xi = 1, xj = 0) �= ∅, for j ∈ [2; k+1], i �= j.
Since G ∩ Q0(xi = 1, xj = 0) = ∅, we have δ(G ∩ Q1(xi = 1, xj = 0)) ≥ d − 2
and by Theorem 1 we have |V (G ∩ Q1(xi = 1, xj = 0))| ≥ 2d−2. Thus

R ≥ |V (G ∩ Q1(xi = 0))| + |V (G ∩ Q1(xi = 1, xj = 0))| ≥ (31)

≥ (2d − 2d−2) + 2d−2 = 2d > 2d − 2d−k. (32)

– Otherwise it is the former case in Lemma 1 for each i, |V (G ∩ Q1(xi = 0))| =
2d−1. By Theorem 1, G ∩ Q1(xi = 0) must be a (d − 1)-subcube of Qn.

Pick i1, i2 ∈ [2; k + 1], i1 �= i2. We have that Qa = G ∩ Q1(xi1 = 0) and
Qb = G ∩ Q1(xi2 = 0) are both (d − 1)-subcubes. We can now assume that
G ∩ Q1(xi1 = 0, xi2 = b) �= ∅, for b ∈ {0, 1}. This means that the i2-th bit
is not fixed for the subcube Qa. Thus G ∩ Q1(xi1 = 0, xi2 = 0) is a (d − 2)-
subcube. Hence Qa and Qb overlap exactly in a (d − 2)-subcube.

Examine Qa ∩ Qb. Two of its fixed bits are the i1-th and the i2-th, which
are distinct positions. Thus it has n − (d − 2) − 2 = n − d fixed positions not
in [2; k + 1]. Let the d-subcube defined by these restrictions be C. As Qa and
Qb are both (d − 1)-subcubes, they must share these n − d fixed positions.
As this applies for any i1 �= i2, we have that G ∩ Q1(xi = 0) ⊂ C for any
i ∈ [2; k+1]. We show that C ⊂ G. Pick x ∈ C. Suppose for some i ∈ [2; k+1],
we have xi = 0. Then x ∈ G ∩ Q1(xi = 0). Otherwise we have xi = 1 for each
i ∈ [2; k + 1]. But then x ∈ D.2

Examine the intersection of D and C. Each position of [2; k + 1] is fixed in
D (k positions). On the other hand, n − d more positions not in [2; k + 1] are
fixed in C. Thus their intersection is a (d − k)-subcube, and R = 2d − 2d−k.
Since k = n − d, we have R ≥ 2d − 22d−n. Ultimately we get

|V | = |V (D)| + R ≥ 2d + (2d − 22d−n) = 2d+1 − 22d−n. (33)

This completes the proof of Theorem 2.
�

4.3 Application for Boolean Functions

Theorem 2 implies:

Corollary 2. Let f(x) be a Boolean function on n variables. If ∀i ∈ [n]∀b ∈
{0, 1} ∃x (xi = b, f(x) = 1), then

|{x | f(x) = 1}| ≥ 2n−s1(f)+1 − 2n−2s1(f). (34)

2 In this case, we have obtained that G is a union of two d-dimensional subcubes D
and C, such that each bit position is fixed in at most one of them. This is essentially
the same construction as given in subsection 4.1.

132 A. Ambainis and J. Vihrovs

Proof. Let G be a subgraph of Qn induced by the set of vertices V = {x | f(x) =
1}. The minimum degree of G is δ(G) = n − s1(f). The given constraint means
that G is irreducible. Then, by Theorem 2,
�

|V | ≥ 2(n−s1(f))+1 − 22(n−s1(f))−n = 2n−s1(f)+1 − 2n−2s1(f). (35)

4.4 Generalization of Simon’s Lemma

We use Theorem 2 and Lemma 1 to prove Theorem 3, which is a stronger version
of Simon’s lemma (Theorem 1):

Theorem 3. Let G = (V,E) be a non-empty subgraph of Qn (n ≥ 0) with
δ(G) = d. Then either |V | = 2d or |V | ≥ 3

2 · 2d, with V = |2d| achieved if and
only if G is a d-subcube.

Proof. By Theorem 2 we may substitute
⌈
2d+1 − 22d−n

⌉
instead of S(n, d) in

Lemma 1. Then in
n

min
i=d+1

S(i, d) =
n

min
i=d+1

⌈
2d+1 − 22d−i

⌉
(36)

the minimum is obtained for i = d + 1. Thus either |V | = 2d or |V | ≥ 3 · 2d−1.
�

5 Conclusion

In this paper, we have shown two results on the structure of low sensitivity
subsets of Boolean hypercube:

– Theorem 2: a tight lower bound on the size of irreducible low sensitivity sets
S ⊆ {0, 1}n, that is, sets S that are not contained in any subcube of {0, 1}n
obtained by fixing one or more variables xi;

– Theorem 3: a gap theorem that shows that S ⊆ {0, 1}n of sensitivity s must
either have |S| = 2n−s or |S| ≥ 3

22n−s.

The gap theorem follows from the first result by classifying S ⊆ {0, 1}n into
irreducible sets and sets that are constructed from irreducible subsets S′ ⊆
{0, 1}n−k for some k ∈ {1, 2, . . . , s} and then using the first result for each of
those categories. We find this gap theorem quite surprising.

Both results contribute to understanding the structure of low-sensitivity sub-
sets of the Boolean hypercube. After this paper was completed, we have used
the gap theorem to obtain a new upper bound on block sensitivity in terms of
sensitivity:

bs(f) ≤ max
(

2s(f)−1

(
s(f) − 1

3

)
, s(f)

)
. (37)

We report this result in [2].

Size of Sets with Small Sensitivity: A Generalization of Simon’s Lemma 133

References

1. Ambainis, A., Bavarian, M., Gao, Y., Mao, J., Sun, X., Zuo, S.: Tighter relations
between sensitivity and other complexity measures. In: Esparza, J., Fraigniaud, P.,
Husfeldt, T., Koutsoupias, E. (eds.) ICALP 2014. LNCS, vol. 8572, pp. 101–113.
Springer, Heidelberg (2014)

2. Ambainis, A., Prūsis, K., Vihrovs, J.: Sensitivity versus Certificate Complexity of
Boolean Functions. Preprint available at http://arxiv.org/abs/1503.07691

3. Ambainis, A., Sun, X.: New separation between s(f) and bs(f). CoRR,
abs/1108.3494 (2011)

4. Beals, R., Buhrman, H., Cleve, R., Mosca, M., de Wolf, R.: Quantum lower bounds
by polynomials. J. ACM 48(4), 778–797 (2001)

5. Buhrman, H., de Wolf, R.: Complexity measures and decision tree complexity: a
survey. Theor. Comput. Sci. 288(1), 21–43 (2002). (Complexity and Logic)

6. Green, B., Sanders, T.: Boolean functions with small spectral norm. Geom. Funct.
Anal. 18(1), 144–162 (2008)

7. Kenyon, C., Kutin, S.: Sensitivity, block sensitivity, and �-block sensitivity of
boolean functions. Info. Comput. 189(1), 43–53 (2004)

8. Nisan, N.: CREW PRAMS and decision trees. In: Proceedings of the Twenty-first
Annual ACM Symposium on Theory of Computing, STOC 1989, pp. 327–335.
ACM, New York (1989)

9. Nisan, N., Szegedy, M.: On the degree of boolean functions as real polynomials.
Comput. Complex. 4(4), 301–313 (1994)

10. Rubinstein, D.: Sensitivity vs. block sensitivity of boolean functions. combinatorica
15(2), 297–299 (1995)

11. Simon, H.-U.: A tight Ω(log logN)-bound on the time for parallel Ram’s to com-
pute nondegenerated boolean functions. In: Karpinski, M. (ed.) Foundations of
Computation Theory. LNCS, vol. 158, pp. 439–444. Springer, Heidelberg (1983)

12. Virza, M.: Sensitivity versus block sensitivity of boolean functions. Inf. Process.
Lett. 111(9), 433–435 (2011)

http://arxiv.org/abs/1503.07691

Graph Theory

Star Shaped Orthogonal Drawing

Xin He(B) and Dayu He

Department of Computer Science and Engineering,
State University of New York at Buffalo, Buffalo, NY 14260, USA

{xinhe,dayuhe}@buffalo.edu

Abstract. An orthogonal drawing of a plane graph G is a planar draw-
ing, denoted by D(G), of G such that each vertex of G is drawn as a
point on the plane, and each edge is drawn as a sequence of horizontal
and vertical line segments with no crossings. D(G) is called orthogonally
convex if each of its faces is an orthogonally convex polygon P . (Namely,
for any horizontal or vertical line L, the intersection of L and P is a sin-
gle line segment or empty). Recently, Chang et al. [1] gave a necessary
and sufficient condition for a plane graph to have such a drawing.

D(G) is called a star-shaped orthogonal drawing (SSOD) if each of
its faces is a star-shaped polygon P . (Namely there is a point p ∈ P
such that the entire P is visible from p). Every SSOD is an orthogonally
convex drawing, but the reverse is false. SSOD is visually more appealing
than orthogonally convex drawings. In this paper, we show that if G sat-
isfies the same conditions as in [1], it not only has an orthogonally convex
drawing, but also a SSOD, which can be constructed in linear time.

1 Introduction

Among many graph drawing styles, orthogonal drawing has attracted much
attention due to its various applications in circuit schematics, relationship dia-
grams, data flow diagrams etc. [2]. An orthogonal drawing of a plane graph G is
a planar drawing, denoted by D(G), of G such that each vertex of G is drawn
as a point on the plane, and each edge is drawn as a sequence of horizontal and
vertical line segments with no crossings. A bend is a point where an edge changes
its direction. (See Fig. 1 (1) and (2). The point p is a bend).

Rahman et al. [8] gave a necessary and sufficient condition for a plane graph
G of maximum degree 3 to have an orthogonal drawing without bends. A linear
time algorithm to find such a drawing was also presented in [8]. In the drawing
obtained in [8], the faces of D(G) can be of complicated shapes. An orthogonal
polygon P is orthogonally convex if, for any horizontal or vertical line L, the
intersection of L and P is either empty or a single line segment. (Fig. 1 (3)
shows an orthogonally convex polygon. The face marked by F in Fig. 1 (2) is
not orthogonally convex). An orthogonal drawing D(G) is orthogonally convex
if all faces of D(G) are orthogonally convex polygons. The orthogonally convex
drawings are more visually appealing than arbitrary orthogonal drawings.

Research supported in part by NSF Grant CCR-1319732.

c© Springer International Publishing Switzerland 2015
R. Jain et al. (Eds.): TAMC 2015, LNCS 9076, pp. 137–149, 2015.
DOI: 10.1007/978-3-319-17142-5 13

138 X. He and D. He

(2)

F

p
p

g

(3) (4)(1)

Fig. 1. (1) A plane graph G; (2) An orthogonal drawing of G; (3) An orthogonally
convex polygon; (4) A star-shaped orthogonal polygon.

Chang et al. [1] gave a necessary and sufficient condition (which strengthens
the conditions in [8]) for a plane graph G of maximum degree 3 to have an
orthogonally convex drawing without bends. A linear time algorithm to find
such a drawing was also obtained in [1].

An orthogonal polygon P is called star-shaped if there exists a point p in
P such that the entire polygon P is visible from p. (See Fig. 1 (4)). It is easy
to see that any star-shaped orthogonal polygon is always orthogonally convex.
But the reverse is not true. An orthogonal drawing D(G) is called a star-shaped
orthogonal drawing (SSOD) if every inner face of D(G) is a star-shaped orthog-
onal polygon. The star-shaped orthogonal drawings are more visually appealing
than orthogonally convex drawings. In this paper, we show that if G satisfies the
same conditions as in [1], then G has a SSOD without bends. In addition, such
a drawing can be constructed in linear time.

To the best knowledge of the authors, SSOD is a new drawing style. Although
star-shaped drawings have been studied before [5], the polygons in their drawings
are required to be star-shaped but not orthogonal. In [7], the problem of covering
orthogonal polygons by star-shaped orthogonal polygons is studied.

The paper is organized as follows. In Sect. 2, we present the definitions and
preliminary results. Section 3 describes a special rectangular dual needed by our
algorithm. In Sect. 4, we present our SSOD algorithm. Section 5 concludes the
paper.

2 Preliminaries

Let G = (V,E) be a graph with n vertices. The degree of a vertex v is the
number of neighbors of v in G. A vertex of degree 2 is called a 2-vertex. G is
called a d-graph if the maximum degree of vertices of G is ≤ d. A planar graph
is a graph G that can be drawn on the plane without edge crossings. A plane
graph is a planar graph with a fixed plane embedding. For the rest of this paper,
as in [1,8], G always denotes a biconnected plane 3-graph.

The embedding of G divides the plane into a set of connected regions called
faces. The unbounded face of G is called the exterior face. Other faces are called
interior faces. The contour of a face is the cycle formed by the vertices and edges
on the boundary of the face. The contour of the exterior face of G is denoted by
Co(G). If a vertex a is on the contour of a face f , we say f is incident to a.

A cycle C of G with k edges is called a k-cycle. A triangle is a 3-cycle. G
is called internally triangulated if all of its interior faces are triangles. A cycle

Star Shaped Orthogonal Drawing 139

C divides the plane into its interior and exterior regions. A separating cycle of
G is a cycle C such that there are vertices in both its interior and exterior.
A separating cycle may be contained in other separating cycles. A separating
cycle C is called maximal if it’s not contained in other separating cycles.

Let D(G) be an orthogonal drawing of G without bends. Each cycle C of
G is drawn as an orthogonal polygon D(C) in D(G). Let a be a vertex of C.
We will also use a to denote the point in D(C) that corresponds to a. A vertex
a of D(C) is called a corner of D(C) if the interior angle of D(C) at a is 90◦

or 270◦. A corner with 90◦ (270◦, respectively) interior angle is called a convex
(concave, respectively) corner. For an orthogonal drawing D(G) without bends,
any concave corner a of D(G) must correspond to a 2-vertex in G.

In the definition of the orthogonal drawing of G, the exterior face Co(G) is
not necessarily drawn as a rectangle. However, the algorithm Bi-Orthogonal-
Draw in [8] (which finds an orthogonal drawing of G) produces an orthogonal
drawing such that Co(G) is actually a rectangle. The first step of algorithm Bi-
Orthogonal-Draw arbitrarily selects four degree-2 vertices on Co(G) as the
four corners of the exterior rectangle of the drawing. Since the drawing in [1] is
produced by a modified version of the algorithm Bi-Orthogonal-Draw, this is
also true for the drawing in [1]. Thus, without loss of generality, we assume the
input to our problem is a plane graph H with four specified degree-2 vertices
a, b, c, d on Co(H) in clockwise order. Our goal is to produce an orthogonal
drawing D(G) of G such that Co(H) is drawn as a rectangle with a, b, c, d as the
northwest, northeast, southeast and southwest corner of D(H), respectively.

To simplify the presentation, we construct a graph G from H (Fig. 2 (1)):

1. Add eight new vertices a′′, a′, b′′, b′, c′′, c′, d′′, d′ in the exterior face of G; con-
nect them into a clockwise cycle;

2. Add four new edges (a, a′), (b, b′), (c, c′), (d, d′).

Clearly, H has an orthogonal drawing with no bends (with four corners
a, b, c, d) if and only if G has an orthogonal drawing with no bends (with four
corners a′′, b′′, c′′, d′′, see Fig. 2 (2)). Note that G satisfies the following proper-
ties:

Property 1.

– G is a biconnected plane 3-graph; On the exterior face Co(G), there are four
degree-2 vertices and four degree-3 vertices; the degree-2 and degree-3 vertices
alternate on Co(G);

– The four degree-2 vertices on Co(G) are specified as the northwest, northeast,
southeast, southwest vertices.

In the rest of the paper, without loss of generality, we always assume G
satisfies Property 1. Let C be a cycle of G. A leg of C is an edge e that is in the
exterior of C and has exactly one vertex on C. The vertex of e that is on C is
called a leg vertex of C. C is a k-legged cycle if it has exactly k legs. The k leg
vertices divide C into k sub-paths. Each sub-path is called a contour path of C.

140 X. He and D. He

a b

d

a’
b’

c’
d’

a"

b"

c"

d"

c

a

a’
a"

b
b’

b"

c

c’
c"

d
d’

d"

(1) (2) (3)

a
b

c
d

a
b

c
d

a
b

c
d

(4) (5)

F

C C C

Fig. 2. (1) The construction of G from H; (2) drawings of H and G; (3) and (4)
Conditions in Theorem 1; (5) Conditions in Theorem 2.

Theorem 1 [8]. LetG be a plane graph that satisfies the conditions in Property 1.
Then G has an orthogonal drawing without bends if and only if the following two
conditions hold: (1) Every 3-legged cycle C has at least one 2-vertex and (2) Every
2-legged cycle C has at least two 2-vertices.

Figure 2 (3) shows a 3-legged cycle C = {a, b, c, d} and its orthogonal drawing.
Figure 2 (4) shows a 2-legged cycle C = {a, b, c, d} and its orthogonal drawing.

Theorem 2 [1]. LetG be a plane graph that satisfies the conditions in Property 1.
Then G has an orthogonally convex drawing without bends if and only if the follow-
ing two conditions hold: (1) Every 3-legged cycle C has at least one 2-vertex and
(2) Every 2-legged cycle C has at least two 2-vertices, at least one on each of its
two contour paths.

Figure 2 (5) shows a 2-legged cycle C = {a, b, c, d} and an orthogonal drawing
of C (b and d are two 2-vertices). Note that, in Fig. 2 (4), the 2-legged cycle
C satisfies the condition 2 in Theorem1, but not the condition 2 in Theorem2.
Hence there exists no orthogonally convex drawing: In any drawing, the face
outside of C (marked by F) cannot be orthogonally convex. In Sect. 4, we will
show that if G satisfies the conditions in Theorem 2, then G has a SSOD without
bends.

Let G∗ = (V ∗, E∗) be the dual graph of G. To avoid confusion, the members
of V ∗ are called nodes. Each node in V ∗ corresponds to an interior face f of G,
and two nodes in V ∗ are adjacent to each other if and only if their corresponding
faces in G share an edge as common boundary. Note that G∗ is an internally
triangulated plane graph and the exterior face of G∗ has four nodes. A rectangular
dual of such a graph G∗ is a rectangle R divided into smaller rectangles such
that the following hold:

– No four smaller rectangles meet at the same point.
– Each smaller rectangle corresponds to a node of G∗.
– Two nodes of G∗ are adjacent in G∗ if and only if their corresponding small

rectangles share a line segment as their common boundary.

See Fig. 3 (a) for an example. It’s easy to see that a rectangular dual R of G∗

is an orthogonal drawing D(G) of the original graph G, and each face of D(G) is
a rectangle. Not every internally triangulated plane graph G∗ has a rectangular
dual. The following theorem characterizes such graphs.

Star Shaped Orthogonal Drawing 141

v
N

v
E

v
S

v
W

v
N

v
E

v
S

v
W

v
N

v
E

v
S

v
E

N
v

v
S

v
W

a

c

d

h

c

h

a

e
h

e
g

b

e
g

a f d
d

g

c

f

b

b

f

W
v

c
b g
e

h

a df

(1) (2) (3) (4)

Fig. 3. (a) A rectangular dual of the graph shown in (b); (b) an REL R = {T1, T2};
(c) the subgraph consisting of edges in T1 and the 4 exterior edges oriented from vS to
vN ; (d) the subgraph consisting of edges in T2 and the 4 exterior edges oriented from
vW to vE (Color figure online).

Theorem 3 [6]. A plane graph G∗ has a rectangular dual with four rectangles
on its boundary if and only if: (1) Every interior face of G∗ is a triangle and
the exterior face of G∗ is a quadrangle; and (2) G∗ has no separating triangles.

G is called a proper triangular plane (PTP) graph if it satisfies the two conditions
in Theorem 3. Our algorithm heavily depends on the following concept:

Definition 1. A regular edge labeling REL R = {T1, T2} of a PTP graph G∗

is a partition of the interior edges of G∗ into two subsets T1, T2 of directed edges
such that the following conditions hold:

1. For each interior node v, the edges incident to v appear in clockwise order
around v as follows: a set of edges in T1 leaving v; a set of edges in T2 leaving
v; a set of edges in T1 entering v; a set of edges in T2 entering v. (All four
sets are not empty.)

2. Let vN , vE , vS , vW be the four exterior nodes of G∗ in clockwise order. All
interior edges incident to vN are in T1 entering vN . All interior edges incident
to vE are in T2 entering vE. All interior edges incident to vS are in T1 leaving
vS. All interior edges incident to vW are in T2 leaving vW .

Figure 3 (b) shows an example of REL of a PTP graph. The red solid lines are
edges in T1. The green dashed lines are edges in T2.

Theorem 4 [3,4]. Every PTP graph G∗ has an REL which can be constructed
in linear time. From an REL of G∗, a rectangular dual of G∗ can be constructed
in linear time.

3 A Special Rectangular Dual

A PTP graph G∗ may have many different RELs. From the same REL of G∗, we
may obtain different rectangular duals. In this section, we describe a rectangular
dual of G∗ with special properties, which is needed by our SSOD construction.

Lemma 1. Any PTP graph G∗ has a rectangular dual R such that the following
properties hold for any node u in G∗.

142 X. He and D. He

1. Let v1 → u be the first clockwise T1 edge entering u and u → v2 the first
clockwise T1 edge leaving u. Then there exists a vertical stripe in R that
intersects rv1 , ru, rv2 .

2. Let w1 → u be the first clockwise T2 edge entering u and u → w2 the first
clockwise T2 edge leaving u. Then there exists a horizontal stripe in R that
intersects rw1 , ru, rw2 .

The proof is omitted due to space limitation.

4 Star-Shaped Orthogonal Convex Drawing

Let G be a plane graph that satisfies the conditions in Theorem 2. In this section,
we describe how to find a SSOD without bends for G.

Let v be a 2-vertex in G with two neighbors u,w. The operation contracting
v is defined as follows: delete v and replace the two edges (u, v) and (v, w) by
a single edge (u,w). First we modify G as follows. For every 3-legged cycle C
in G with more than one 2-vertex on C, we arbitrarily choose one 2-vertex and
contract every other 2-vertices on C. For every 2-legged cycle C in G with more
than two 2-vertices on C, we arbitrarily choose one 2-vertex on each contour
path of C and contract every other 2-vertices on C. After this modification, the
resulting graph H has the following properties:

Property 2.

– Each 3-legged cycle C of H has exactly one 2-vertex on C.
– Each 2-legged cycle C of H has exactly one 2-vertex on each of the two contour

paths of C.

After we construct a SSOD D(H) of H, we can obtain a SSOD D(G) of G
as follows: Consider any 2-vertex v that was contracted from G. Let u,w be the
two neighbors of v in G. In the drawing D(H), the edge (u,w) is drawn as a
line segment L. We simply draw v in the middle of L. After doing this for every
contracted vertex v, we get a SSOD D(G) for G. Thus, without loss of generality,
we assume G satisfies the conditions in Property 2 from now on.

Let G∗ be the dual graph of G. So G∗ has exactly four nodes on its exterior
face. Each 2-vertex of G corresponds to a pair of parallel edges in G∗. We only
keep one of them in G∗. These edges in G∗ are called marked edges.

Note that every 3-legged cycle C in G corresponds to a separating triangle
C∗ in G∗, and every 2-legged cycle C in G corresponds to a separating 2-cycle
C∗ in G∗. A 3-legged cycle C is shown in Fig. 4 (1). The edges in G are drawn as
dashed lines, the edges in G∗ are drawn as solid lines. The nodes in G∗ are drawn
as empty cycles. g is a 2-vertex in G. It corresponds to two parallel edges (w, x)
in G∗. We keep only one of them in G∗ and (w, x) is a marked edge. Figure 4 (2)
shows a 2-legged cycle and its corresponding separating 2-cycle in G∗.

We first outline the main ideas of our algorithm. Basically, we want to con-
struct a rectangular dual R of G∗ which will be the “skeleton” of the drawing

Star Shaped Orthogonal Drawing 143

x
2

x
1

x

v

u

y
z

v
y

t z
w

w

(1) (2) (3)

c

d

e

f

a

h
g

b

i

a

b

c
v

e f

g
h

i
j

y

x

w

b c

da
z

g e

f

j

t

u

d

Fig. 4. (1) A 3-legged cycle C = {a, b, c, d, e, f, g, h} and the dual separating triangle
C∗ = {u, v, x}; (2) A 2-legged cycle C = {a, b, c, d, e, f, g} and the dual separating
2-cycle C∗ = {x, y}. (3) The drawing of the graph in (1).

D(G). However, because G∗ has separating 2-cycles and 3-cycles, it is not a PTP
graph and hence has no rectangular dual. We have to modify G∗ to get a PTP
graph G∗′ as follows. For each separating 2-cycle or 3-cycle C∗ in G∗ incident
to a node x, we perform a node split operation on x as follows: This operation
“splits” x into two nodes and “destroys” C∗. After all separating 2-cycles and
3-cycles in G∗ are destroyed, the resulting graph G∗′ is a PTP graph. Each node
x in G∗ either corresponds to a node in G∗′ (if x is not split); or a set of nodes
in G∗′ (since there may be multiple separating cycles incident to x, we may have
to split x multiple times). We then find an REL R′ of G∗′ and construct a
rectangular dual D(G∗′) of G∗′ by Lemma 1. D(G∗′) is a “skeleton” of a SSOD
D(G) of G. Each face f of D(G) corresponds to a node x in G∗, which either
corresponds to a single rectangle in D(G∗′) (if x is not split), or an orthogonal
polygon F that is the union of several rectangles in D(G∗′) (each rectangle cor-
responds to a split node of x). Figure 4 (3) illustrates the drawing D(G) for the
graph G in Fig. 4 (1) by using this process. We split the node x into two nodes
x1 and x2 in order to destroy the separating triangle C∗ = {u, v, x}. In Fig. 4
(3), each rectangle corresponds to a node in G∗′. The union of the two rectangles
marked by x1 and x2 corresponds to the node x. The drawing in Fig. 4 (3) is
an orthogonal drawing of the graph G in Fig. 4 (1). Note the location of the
2-vertex g in D(G).

4.1 Node Split Operation

Since we want D(G) to be a SSOD of G, we must make sure each face F in
D(G) is star-shaped. This is done by carefully constructing the REL R′ so that
certain properties are satisfied (to be defined later). Next we describe the details
of our algorithm. Let G∗

1 be the graph obtained from G∗ as follows:

– For each maximal separating triangle C∗, delete all interior nodes of C∗.
– For each maximal separating 2-cycle C∗, delete all interior nodes of C∗, and

replace the two edges of C∗ by a single edge. We call these edges the merged
2-cycle edges.

144 X. He and D. He

Clearly G∗
1 is a PTP graph. By Theorem 4, G∗

1 has an REL R1 = {T1, T2}.
We now need to add the deleted nodes back into G∗

1. We process the separating
cycles of G∗ one by one. Consider a maximal separating triangle C∗ in G∗. Let
G∗(C∗) denote the induced subgraph of G∗ consisting of the nodes on and in the
interior of C∗. Let G∗

1 ∪ G∗(C∗) be the graph obtained by adding the interior
nodes of C∗ back into G∗

1. We want to construct an REL for G∗
1 ∪ G∗(C∗).

However, G∗
1 ∪ G∗(C∗) is not a PTP graph because C∗ is a separating triangle.

We must modify G∗
1 ∪ G∗(C∗) so that C∗ is not a separating triangle in it.

Let C be the 3-legged cycle in G corresponding to C∗. By Property 2, there
is exactly one 2-vertex a in G on C. The vertex a corresponds to a marked edge
e∗

a in G∗. e∗
a must be incident to a node on C∗. Let x be this node. We say the

separating triangle C∗ is assigned to x. (In Fig. 4 (1), the marked edge e∗ = (x,w)
in G∗ corresponds to the 2-vertex g in G. e∗ is incident to the node x. So the
separating triangle C∗ = {u, v, x} is assigned to x). The node split operation at
x with respect to two specified edges (x, yi) and (x, yj) is illustrated in Fig. 5.

y
1

y
1

y
j

y

x

i

2

x1

y
j

(1) (2)

x

y
i

Fig. 5. Node split operation. (a) Before split; (b) After split.

Consider a separating triangle C∗ assigned to x. After splitting x into two
nodes, C∗ becomes a quadrangle. Then we can add back the deleted interior
nodes of C∗. Let e∗

1, e∗
2 and e∗

3 be the three edges of C∗. Two of them, say e∗
1

and e∗
2, are incident to x. Depending on the pattern of these two edges in R1,

there are eight cases (see Fig. 6). If both e∗
1 and e∗

2 are T1 edges entering x, we
call it the case south. If e∗

1 is a T2 edge entering x and e∗
2 is a T1 edge entering

x, we call it the case southwest. The other six cases are shown in Fig. 6.
For example, consider the case south. We split x with respect to two edges:

(z, x) is the marked edge in G∗ that is in the interior of C∗; and (x, y) is a
T1 edge in the exterior of C∗ leaving x (we will specify how to pick the edge
(x, y) later). In Fig. 6, the left figure for the case south shows the edge pattern
of C∗ before the node split operation. The right figure shows the edge pattern
of C∗ after the node split operation. In Fig. 6, a blue dotted circle indicates the
component inside C∗ that was deleted. The blue dotted arrow (z, x) indicates
the marked edge inside C∗.

Note that when looking from outside of C∗, the patterns of the involved
edges are identical before and after the node split operation. After the node
split operation, x is split into two nodes x1 and x2. Each of the two edges (z, x)
and (x, y) is split into two edges. C∗ becomes a quadrangle with four exterior
nodes x1, x2, u, v in clockwise order. We recursively construct an REL R(C∗)

Star Shaped Orthogonal Drawing 145

x1 x
2

e*
1 z

y

z

y

uv uv

x

e*
2 e*

2

e* e*

1
e*

3 3

(a) case south

3e*

e*1e*2

3e*

e*1e*2

x2
y

z
z

v v

y

x

uu

x1

(b) case north

2x

1e*

3e* 2e*

1e*

2e*

3e*
x

y

z

y
z

u

v

u

v x1

(c) case south-west

(d) case south-east (e) case north-east (f) case north-west

(g) case west (h) case east

x1 x
2

1y 2
y

z

u

v

u

x

u

v

y

(i) case 2-cycle

Fig. 6. Cases of node split operation (Color figure online).

for G∗(C∗) with x1, x2, u, v as the north, east, south and west node respectively.
Now we put the nodes and the edges in the interior of the subgraph G∗(C∗) back
into G∗

1, together with the edge pattern specified in R(C∗). It is easy to see that
after these operations, we get a valid REL of the graph G∗

1 ∪ G∗(C∗).
The other cases are similar as shown in Fig. 6. For each of the eight cases,

we get a valid REL of the graph G∗
1 ∪ G∗(C∗) after the node split operation.

Now consider a separating 2-cycle C∗ in G∗. We want to add the interior
nodes of C∗ back into G∗

1. C∗ corresponds to a merged 2-cycle edge e∗ = (x, y)
for some nodes x and y in G∗

1. Let C be the 2-legged cycle in G corresponding to
C∗. By Property 2, C has two 2-vertices, a and b, one on each of its two contour
paths. a and b correspond to two marked edges e∗

a and e∗
b in G∗. One of them,

say e∗
a, is incident to the node x. The other (e∗

b) is incident to the node y. We
say e∗ is assigned to both x and y. Or equivalently, we say the separating 2-cycle
C∗ is assigned to both x and y. (In Fig. 4 (2), the edges (x, v) and (y, w) are two
marked edges in G∗. They are incident to x and y, respectively. So the separating
2-cycle C∗ = {x, y} is assigned to both x and y). The processing of C∗ is similar
to a separating triangle. The only difference is that we need to split both x and y.
Depending on the pattern of e∗ = (x, y) in R1, there are four cases. For example,
if e∗ = y → x is in T1, then we split x according to the case south, and split y
according to the case north. (See Fig. 6 (i), case 2-cycle). After performing these
two node split operations, C∗ becomes a quadrangle with four exterior nodes
x1, x2, y2, y1 in clockwise order. We recursively construct an REL R(C∗) for
G∗(C∗) with x1, x2, y2, y1 as the north, east, south and west nodes respectively.
Putting R1 and R(C∗) together, we get a valid REL of G∗

1 ∪ G∗(C∗).

146 X. He and D. He

4.2 The Edge Pattern Around a Node

Although we can process the separating cycles of G∗ in arbitrary order to add
all deleted nodes back into G∗

1, doing so does not guarantee a SSOD of G at the
end. Consider a node x in G∗

1. Let C be the set of all separating cycles of G∗

assigned to x. If C contains several separating cycles, x must be split multiple
times in order to destroy all separating cycles in C. To make sure the union
of the rectangles corresponding to these split nodes constitutes a star-shaped
orthogonal polygon, we must split the node x carefully as described below.

Figure 7 (1) shows the general pattern of the edges in G∗
1 around x with

respect to the REL R1 = {T1, T2}. (In Fig. 7 (1), a blue dotted circle indicates
the component inside a separating triangle C∗ assigned to x. The blue dotted
arrow indicates the marked edge inside C∗. A thick line indicates a merged 2-
cycle edge assigned to x.) We partition C into four subsets (some subsets may
be empty):

– CS = {C∗ ∈ C | C∗ is a case south or southwest separating cycle}.
Let mS = |CS |. Denote the separating cycles in CS by C∗

si (1 ≤ i ≤ mS).
– CE = {C∗ ∈ C | C∗ is a case east or southeast separating cycle} .

Let mE = |CE |. Denote the separating cycles in CE by C∗
ei (1 ≤ i ≤ mE).

– CN = {C∗ ∈ C | C∗ is a case north or northeast separating cycle}.
Let mN = |CN |. Denote the separating cycles in CN by C∗

ni (1 ≤ i ≤ mN).
– CW = {C∗ ∈ C | C∗ is a case west or northwest separating cycle}.

Let mS = |CS |. Denote the separating cycles in CS by C∗
wi (1 ≤ i ≤ mW).

We create a subgraph around x as follows (Fig. 7 (1) and (2)):

– Replace x by a new node x0 and create a cycle K around x0. K contains
four corner nodes xsw, xse, xne, xnw. The edge xsw → x0 is in T2. The edge
xse → x0 is in T1. The edge x0 → xne is in T2. The edge x0 → xnw is in T1.

– Between xsw and xse, K has a sub-path KS containing max{1,mS} edges.
All edges in KS are in T2 directed counterclockwise. The nodes on KS are
named as xsi (1 ≤ i ≤ mS − 1) counterclockwise. For 1 ≤ i < mS , the edge
xsi → x0 is in T1. For 1 ≤ i ≤ mS , the edge (xs(i−1), xsi) is used to destroy
the separating cycle C∗

si. Namely, (xs(i−1), xsi) is an edge of the quadrangle
obtained from C∗

si. Here xs0 = xsw and xsmS
= xse.

– The other sides of K are similar.

When some of CS , CE , CN , CW are empty, they are treated as a special case.
For example, when CW = ∅, KW just contains one T1 edge xsw → xnw. Then we
split the edge (w1, x) into two edges (w1, xsw) and (w1, xnw). (See Fig. 7 (2)).

Note that, for each separating 2-cycle, both end nodes of e∗ are split. For
example, for the separating 2-cycle C∗

s3 represented by e∗ = (s3, x), C∗
s3 becomes

a quadrangle with nodes xs2, xse, s
′
3, s3 (s′

3 is a split node from s3).
This construction deals with the most general case. If some of the sets

CS , CE , CN , CW are empty, the construction can be simplified.

Star Shaped Orthogonal Drawing 147

p

(3)1
s

2
s s

3
s
4

w
2

w
1

1
e

2
e

e
3

1
b

x
0

n
1

xnw
xn1

xne

x
e1

xsex sw xs1 x
s2

3
e’

3
s’

x
0

xs1
x
s2

1
s

2
s

s
3

3
s’

xse

s
4

1
e

x
e1

xne

2
e

3
e’

w
2

w
1

3
n’ n

3 n
2

n
1

xn1

xnw

x sw

Cn1

1
b

1
a

1
s

1
e

e
3

s
4

s
32

s

2
e

w
1

w
2

n
3

n
3

n
2 n

1
n1C*

n
2

2
b

2
a

3
a

s2C*

C*s1

1
a

3
a

1
c

2
c

3
n’

x

(1)

(2)

n2C*

e1C*

s1C*
s2C* s3C*

n2C* n1C*

e1C*

s3C*

e1C*

3e
e2

2

1c

n2C*
2c

e2
C*

C*e2

C*s3s2C*

b
C*

C*s1
a
2

Fig. 7. (1) The edge pattern around a node x; (2) The subgraph created for x; (3) the
orthogonal drawing of the subgraph in (2).

Figure 7 (3) shows an orthogonal drawing D of the nodes in the subgraph
shown in Fig. 7 (2). Let rx be the union of the rectangle x0 and all rectangles xαi

(α ∈ {s, e, n, w} and 1 ≤ i ≤ mα). This orthogonal polygon rx is the face in the
drawing D(G) corresponding to the node x in G∗

1. In Fig. 7 (3), rx is outlined by
the thick line segments. A shaded rectangle indicates the region to draw interior
nodes in a separating cycle C∗

αi. Look at C∗
s2. The node a2 is in the interior of

C∗
s2. The edge (a2, x) is a marked edge in G∗, and it corresponds to a 2-vertex

in G. The northeast corner of the rectangle a2 in Fig. 7 (3) is this 2-vertex.

Lemma 2. For any node x in G∗
1, the orthogonal polygon rx is star-shaped.

Proof. rx is obtained by adding the rectangles xαi (α ∈ {s, e, n, w} and 1 ≤ i ≤
mα) to the rectangle x0. Let PS be the lower envelop of rx. PS consists of the
lower boundary of the rectangles xs0, xs1, . . . , xsmS−1, xsmS

(where xs0 = xsw

and xsmS
= xse). For 1 ≤ i ≤ mS , there is a marked edge (ai, x) in the interior

of the separating cycle C∗
si. Note that ai → xs(i−1) is a T1 edge and ai → xsi is a

T2 edge. So the rectangle xai
must touch the lower side of the rectangle xs(i−1)

and touch the left side of the rectangle xsi. So the lower side of xsi must be
below the lower side of xs(i−1). Since this is true for any 1 ≤ i ≤ mS , the lower
envelop PS of rx must be a downward staircase-like poly-line, with the lower
side of xse as its lowest horizontal segment.

Similarly, we can show that the upper envelop PN of rx must be an upward
staircase-like poly-line (from right to left, namely from xne to xnw) with
the upper side of xnw as the highest horizontal segment. Because xse → x0

is the first clockwise T1 edge entering x0 and x0 → xnw is the first clockwise
T1 edge leaving x0, by Lemma 1, there is a vertical stripe Lv in the drawing D
that intersects xse, x0, xnw. Any point p in the region x0 ∩ Lv can see the entire
lower envelop PS and the entire upper envelop PN . (See Fig. 7 (3)).

148 X. He and D. He

Similarly, we can show the left envelop PW of rx is a staircase-like poly-line
(from the left side of xnw to the left side of xsw), with the left side of xsw as the
leftmost vertical segment. The right envelop PE of rx is a staircase-like poly-line
(from the right side of xse to the right side of xne), with the right side of xne

as the rightmost vertical segment. Because xsw → x0 the first clockwise T2 edge
entering x0 and x0 → xne is the first clockwise T2 edge leaving x0, by Lemma 1,
there is a horizontal stripe Lh in the drawing D that intersects xsw, x0, xne. Any
point p in the region x0 ∩ Lh can see the entire left envelop PW and the entire
right envelop PE . (See Fig. 7 (3)).

Pick any point p in the region x0 ∩ Lv ∩ Lh, then the entire polygon rx is
visible from p. �

4.3 Algorithm

Algorithm SSOD-Draw:
Input: A graph G that satisfies the conditions in Theorem 2 and Property 2.

1. Construct the dual graph G∗ of G.
2. Construct the graph G∗

1, by deleting all nodes in the interior of maximal
separating cycles in G∗.

3. Construct a REL R1 of G∗
1.

4. By using the procedure described above, perform node split operation for all
nodes x with at least one maximal separating cycle C∗ assigned to it. When
C∗ is destroyed, make recursive call to construct a REL R(C∗) for G∗(C∗).
Let G∗′ be the PTP graph obtained from G∗

1 by adding all deleted nodes back
into G∗

1. Let R′ be the REL of G∗′ obtained in this process.
5. Construct a rectangular dual R′ of G∗′ by using R′ as in Lemma 1.
6. Let D(G) be the orthogonal drawing of G obtained from R′ as above.

By Lemma 2, for any node x in G∗
1, the orthogonal polygon rx corresponding

to x is star-shaped. Any node y not in G∗
1 is in the interior of a maximal sep-

arating cycle C∗. The orthogonal polygon ry for y in D(G) is contained in the
drawing for G∗(C∗). Our argument can be recursively applied to the drawing
of G∗(C∗) to show ry is a star-shaped orthogonal polygon. Hence D(G) is a
SSOD of G. All steps in Algorithm SSOD-Draw can be done in linear time by
Theorem 4 and basic algorithmic techniques for planar graphs. In summary:

Theorem 5. Let G be a graph that satisfies the conditions in Theorem2. Then
G has a SSOD drawing, which can be constructed in linear time.

5 Conclusion

In this paper, we strengthen the result in [1]. We show that if G satisfies the same
conditions as in [1], it not only has an orthogonally convex drawing, but also a
stronger star-shaped orthogonal drawing. The method we use is quite different
from the methods used in [1,8]. It will be interesting to see if this method can
be used to solve other orthogonal drawing problems.

Star Shaped Orthogonal Drawing 149

References

1. Chang, Y.-J., Yen, H.-C.: On orthogonally convex drawings of plane graphs. In:
Wismath, S., Wolff, A. (eds.) GD 2013. LNCS, vol. 8242, pp. 400–411. Springer,
Heidelberg (2013)

2. Duncan, C.A., Goodrich, M.T.: Planar orthogonal and polyline drawing algo-
rithms. In: Tammassia, R. (ed.) Handbook of Graph Drawings and Visualization,
Chap. 7, pp. 223–246. CRC Press (2013)

3. He, X.: On finding the rectangular duals of planar triangular graphs. SIAM J.
Comput. 22, 1218–1226 (1993)

4. He, X.: On floor-plan of plane graphs. SIAM J. Comput. 28, 2150–2167 (1999)
5. Hong, S.-H., Nagamochi, H.: A linear-time algorithm for star-shaped drawings of

planar graphs with the minimum number of concave corners. Algorithmica 62,
1122–1158 (2012)

6. Koźmiński, K., Kinnen, E.: Rectangular duals of planar graphs. Networks 5, 145–
157 (1985)

7. Lingas, A., Wasylewicz, A., Żyliński, P.: Note on covering monotone orthogonal
polygons with star-shaped polygons. Info. Proc. Lett. 104, 220–227 (2007)

8. Rahman, M., Nishizeki, T.: Orthogonal drawings of plane graphs without bends.
J. Gr. Algorithms Appl. 7, 335–362 (2003)

The Domination Number of On-line Social
Networks and Random Geometric Graphs

Anthony Bonato1(B), Marc Lozier1, Dieter Mitsche2, Xavier Pérez-Giménez1,
and Pawe�l Pra�lat1

1 Ryerson University, Toronto, Canada
{abonato,marc.lozier,xperez,pralat}@ryerson.ca
2 Université de Nice Sophia-Antipolis, Nice, France

dmitsche@unice.fr

Abstract. We consider the domination number for on-line social net-
works, both in a stochastic network model, and for real-world, networked
data. Asymptotic sublinear bounds are rigorously derived for the domi-
nation number of graphs generated by the memoryless geometric protean
random graph model. We establish sublinear bounds for the domination
number of graphs in the Facebook 100 data set, and these bounds are
well-correlated with those predicted by the stochastic model. In addition,
we derive the asymptotic value of the domination number in classical
random geometric graphs.

1 Introduction

On-line social networks (or OSNs) such as Facebook have emerged as a hot
topic within the network science community. Several studies suggest OSNs sat-
isfy many properties in common with other complex networks, such as: power-
law degree distributions [2,13], high local clustering [36], constant [36] or even
shrinking diameter with network size [23], densification [23], and localized infor-
mation flow bottlenecks [12,24]. Several models were designed to simulate these
properties [19,20], and one model that rigorously asymptotically captures all
these properties is the geometric protean model (GEO-P) [5–7] (see [16,25,30,31]
for models where various ranking schemes were first used, and which inspired
the GEO-P model). For a survey of OSN models see [8], and for more general
complex networks [3]. A fundamental difference with GEO-P versus other mod-
els [2,21–23] is that it posits an underlying feature or metric space. This metric
space mirrors a construction in the social sciences called Blau space [26]. In Blau
space, agents in the social network correspond to points in a metric space, and
the relative position of nodes follows the principle of homophily [27]: nodes with
similar socio-demographics are closer together in the space. We give the pre-
cise definition of the GEO-P model (actually, one of its variants, the so-called
MGEO-P model) below. We focus on the MGEO-P model, since it is simpler
than GEO-P and generates graphs with similar properties.

Supported by grants from NSERC.

c© Springer International Publishing Switzerland 2015
R. Jain et al. (Eds.): TAMC 2015, LNCS 9076, pp. 150–163, 2015.
DOI: 10.1007/978-3-319-17142-5 14

The Domination Number of On-line Social Networks 151

The study of domination and dominating sets plays a prominent role in graph
theory with a number of application to real-world networks. A dominating set
in a graph G is a set of nodes S in G such that every node not in S is adjacent
to at least one node in S. The domination number of G, written γ(G), is the
minimum cardinality of a dominating set in G. Computing γ(G) is a well-known
NP-complete problem, so typically heuristic algorithms are used to compute
it for large-scale networks. Dominating sets appear in numerous applications
such as: network controllability [11], as a centrality measure for efficient data
routing [34], and detecting biologically significant proteins in protein-protein
interaction network [28]. For more additional background on domination in graph
theory, see [15].

In social networks, we consider the hypothesis that minimum order dominat-
ing sets contain agents with strong influence over the rest of the network. Our
goal in the present paper is to consider the problem of finding bounds on dom-
inating sets in stochastic models of OSNs, and also in real-world data derived
from OSNs. We consider bounds on the domination number of a stochastic model
(see next paragraph), and upper bounds for that model are well-correlated with
real-world OSN data. We note that the domination number has been studied
previously in complex network models, including preferential attachment [9],
and recently in [29].

The OSN model we consider is called the memoryless geometric protean model
(MGEO-P), first introduced in [4]. The MGEO-P model depends on five parame-
ters which consist of: the number of nodes n, the dimension of the metric space
m, the attachment parameter 0 < α < 1, the density parameter 0 < β < 1 − α,
and the connection probability 0 < p ≤ 1.

The nodes and edges of the network arise from the following process. Initially,
the network is empty. At each of n steps, a new node v arrives and is assigned
both a random position qv in Rm within the unit-hypercube [0, 1)m and a random
rank rv from those unused ranks remaining in the set 1 to n. The influence radius
of any node v is computed based on the formula:

I(rv) = 1
2

(
r−α
v n−β

)1/m
.

With probability p, the node v is adjacent to each existing node u satisfying
D(v, u) ≤ I(ru), where the distances are computed with respect to the following
metric:

D(v, u) = min {‖qv − qu − z‖∞ : z ∈ {−1, 0, 1}m} ,

and where ‖·‖∞ is the infinity-norm. We note that this implies that the geometric
space is symmetric in any point as the metric “wraps” around like on a torus.
The volume of the space influenced by the node is r−α

v n−β . Then the next node
arrives and repeats the process until all n nodes have been placed. We refer to
this model by MGEO-P(n,m,α, β, p).

We give rigorous bounds on the domination number of a typical graph gen-
erated by the MGEO-P. An event An holds asymptotically almost surely (a.a.s.)
if it holds with probability tending to 1 as n tends to infinity. Our main result
on MGEO-P is the following.

152 A. Bonato et al.

Theorem 1. If m = o(log n), then a.a.s. the domination number of a graph G
sampled from the MGEO-P(n,m,α, β, p) model satisfies

γ(G) = Ω(C−m/(1−α)nα+β) and γ(G) = O(nα+β log n),

where C is any constant greater than 6. In particular, a.a.s. γ(G) = nα+β+o(1).

We defer the proof of Theorem 1 to Sect. 2. It is noteworthy that the domination
number of the preferential attachment model is linear in the order of the graphs
sampled; see [9]; this fact further demonstrates the differences between MGEO-P
and other complex graph models.

Theorem 1 suggests a sublinear bound on the domination number for OSNs,
and we evidence for this in real-world data. In Sect. 3, we find bounds for graphs
in the Facebook 100 data set, and compare these results to those for the sto-
chastic models. We chose to work with the so-called Facebook 100 (or FB100)
data set, as it provides representative samples from the network of increasing
orders. Hence, we may consider trends for the domination number in the data.
While the data presented is our first and initial study, the bounds we find for
the domination number of FB100 are of sublinear order, and these bounds are
well-correlated with those from MGEO-P. Sublinear domination results for other
complex networks were also reported in [29]; our approach is distinct as we con-
sider social networks of increasing orders.

In addition to the results above, we find rigorous bounds on the domination
number for classical random geometric graphs. Given a positive integer n, and
a non-negative real r, we consider a random geometric graph G = (V,E) ∈
G (n, r) defined as follows. The node set V of G is obtained by choosing n points
independently and uniformly at random in the square S = [0, 1]2. (Note that,
with probability 1, no point in S is chosen more than once, and hence, we may
assume that |V | = n.) For notational purposes, we identify each node v ∈ V
with its corresponding geometric position v = (vx, vy) ∈ S, where vx and vy

denote the usual x- and y-coordinates in S, respectively. Finally, the edge set E
is constructed by connecting each pair of nodes u and v by an edge if and only
if dE(u, v) ≤ r, where dE denotes the Euclidean distance in S.

Random geometric graphs were first introduced in a slightly different set-
ting by Gilbert [14] to model the communications between radio stations. Since
then several closely related variants on these graphs have been widely used as a
model for wireless communication, and have also been extensively studied from
a mathematical point of view. The basic reference on random geometric graphs
is the monograph by Penrose [32].

We note that our study is the first to explicitly provide provable bounds on
the domination number of random geometric graphs. In particular, we derive
the following result.

Theorem 2. Let G ∈ G (n, r) and let ω = ω(n) be any function tending to
infinity as n → ∞. Then a.a.s. the following holds:

The Domination Number of On-line Social Networks 153

(a)Denote by N(x) the minimal number of balls of radius x needed to cover S.
If r = Θ(1), then

Ω(1) = N(r +
√

ω log n /n) ≤ γ(G) ≤ N(r − ω /
√

n).

(b) Define C = 2π
√

3/9 ≈ 1.209. If ω
√

log n /n ≤ r = o(1), then

γ(G) = (C /π + o(1))r−2.

(c) If 1/
√

n ≤ r < ω
√

log n /n, then

γ(G) = Θ(r−2).

(d) If r < 1/
√

n, then
γ(G) = Θ(n).

It is straightforward to verify that the bounds on γ(G) in part (a) differ by at
most 1 if ω is sufficiently small, but in general we do not give accurate estimations
of N(r) for r = Θ(1). The proof of Theorem2 is deferred to Sect. 4. The final
section summarizes our results and presents open problems.

2 Proof of Theorem1

For each node v ∈ [n], we consider the ball Bv = {x ∈ [0, 1)m : D(x, v) ≤ I(rv)},
which has volume bv = r−α

v n−β . The next lemma will be useful to estimate the
sum of volumes of the balls corresponding to a set of nodes.

Lemma 1. Let T be a set of t nodes (fixed before ranks are chosen) with ωnα

log n ≤ t ≤ n, for a function ω going to infinity with n arbitrarily slowly.

(a) Then a.a.s. ∑
i∈T

ri
−α = (1 + o(1))

tn−α

1 − α
. (1)

(b) Furthermore, given any integer s such that 1 ≤ s ≤ t and s1−α ≥
ω(n/t)α log n, a.a.s. all subsets S ⊆ T of s nodes satisfy

∑
i∈S

ri
−α ≤ (1 + o(1))

s1−α(t/n)α

1 − α
. (2)

Observe that the sum in (1) is asymptotic to what one would expect. Indeed,
if the ranks of the nodes in T are distributed evenly, then one would obtain∑t

i∈T ri
−α =

∑t
i=1(in/t)−α = tn−α/(1 − α) + O(1).

Proof. Let s and t be integers satisfying all the conditions of the statement in
part (b). Set ω̂ = ω1/4 → ∞, so we have t ≥ ω̂4(t/s)1−αnα log n. This also
implies ω̂ = o((sn/t)1−α). Let Yj be the number of elements in T with rank
at most j. Observe that Yj has expectation jt/n, and follows a hypergeometric

154 A. Bonato et al.

distribution. For (sn/t)1−α/ω̂ ≤ j ≤ n, a Chernoff bound (see e.g. [17]) gives
that

Pr
(∣∣∣Yj − jt

n

∣∣∣ ≥ (1/ω̂)
jt

n

)
≤ 2 exp

(
− jt

3ω̂2n

)
≤ 2e−ω̂ log n/3 = o(1/n2).

We apply a union bound over all j, and conclude that a.a.s., for every (sn/t)1−α/
ω̂ ≤ j ≤ n,

(1 − 1/ω̂)jt/n < Yj < (1 + 1/ω̂)jt/n.

In order to estimate the sums in the statement, we assume w.l.o.g. that T = [t]
and r1 < r2 < · · · < rt (otherwise we permute the indices of the vertices in T).
It follows that a.a.s., for every (sn/t)1−α/ω̂ ≤ j ≤ n,

r�(1−1/ω̂)jt/n� ≤ j ≤ r�(1+1/ω̂)jt/n�.

Therefore, setting 	 = 2s1−αtαn−α/ω̂, we have that a.a.s., for every 	 ≤ i ≤ t,
⌊

1
1 + 1/ω̂

in/t

⌋
≤ ri ≤

⌈
1

1 − 1/ω̂
in/t

⌉
.

For the lower bound on ri below, we need to use the fact that
⌊

1
1+1/ω̂ in/t

⌋
≥

(sn/t)1−α/ω̂, which is easily verified to be true since ω̂ = o
(
(sn/t)1−α

)
. Finally,

we infer that a.a.s., for any choice of S,

∑

i∈S

ri
−α ≤

s
∑

i=1

ri
−α = (1 + o(1))

(n

t

)−α
s
∑

i=�

i−α + O(�) = (1 + o(1))
1

1 − α
s1−αtαn−α.

This proves statement (b). For statement (a), take s = t and note that for this
choice of s, for any ωnα log n ≤ t ≤ n, the condition s1−α ≥ ω(n/t)α log n is
satisfied. Observe that then S = T = [t], so the first inequality in the above
equation is an equality. ��

Upper Bound: Fix a constant K > 1−α
p , and let D be the set containing the

first t = Knα+β log n� nodes added in the process. We will show that a.a.s. D
is a dominating set. By Lemma 1, we may condition on the event that (1) holds
for t = |D| = Knα+β log n�. Note that this assumption on the ranks does not
affect the distribution of the location of the nodes in [0, 1)m. Therefore, given
a node u > t (appearing in the process later than nodes in D), the probability
that u is not dominated by D is

t∏
i=1

(1 − pri
−αn−β) ≤ exp

(
−pn−β

t∑
i=1

ri
−α

)
= exp

(
−(1 + o(1))

p

1 − α
tn−α−β

)

= exp
(

−(1 + o(1))
Kp

1 − α
log n

)
= o(1/n).

The Domination Number of On-line Social Networks 155

Taking a union bound over all nodes not in D, we can guarantee that a.a.s. all
nodes are dominated.

As an alternative and relatively simple approach, one may prove the same
upper bound on the domination number as follows. First, show that a.a.s. the
minimum degree δ is at least (1 + o(1))pn1−α−β . Then we may use Theorem
1.2.2 in [1], which states that for every graph G with minimum degree δ,

γ(G) ≤ n
1 + log(δ + 1)

δ + 1
. (3)

Lower Bound: We consider for convenience a natural directed version of
MGEO-P(n,m,α, β, p), by orienting each edge from its “younger” end node
(that is, appearing later in the process) to its “older” end node. For a set of
nodes D ⊆ [n], Nin(D) denotes the set of nodes u ∈ [n] \ D such that there
is a directed edge from u to some node in D or, equivalently, such that there
is an edge from u to some node in D that is older than u. Nout(D) is defined
analogously, replacing older by younger.

Define t = �nα+β�, and let T = [t] be the set of the oldest t nodes in the
process. We want to show that a.a.s. there is no dominating set of order at most
ξμ−mnα+β , where ξ and μ are specified later. We give more power to our adver-
sary by allowing her to pick (deterministically after the graph has been revealed)
two sets of nodes D1 and D2 of order ξμ−mnα+β� each (not necessarily dis-
joint). Her goal is also easier than the original one; she needs to achieve that, for
every node v ∈ T , either v is in-dominated by D1 (that is, v ∈ D1 ∪ Nin(D1))
or v is out-dominated by D2 (that is, v ∈ D2 ∪ Nout(D2)); nothing is required
for young nodes in [n] \ T . We show that a.a.s. the adversary cannot succeed,
that is, regardless of her choice of D1,D2 we have always some node in T not in
D1 ∪ D2 ∪ Nin(D1) ∪ Nout(D2).

Out-domination: Given a constant 0 < ε < 1, we define T ′ to be the set of
nodes in T with rank greater than (1− ε)n. Note that |T ′| has a hypergeometric
distribution, so it follows easily from Chernoff’s bound (see [17]) that a.a.s.
|T ′| ≥ (ε/2)nα+β . For convenience, we choose ε = ε(α) to be the only real in
(0, 1) satisfying ε = 2(1 − ε)α. For every node i ∈ T ′, the corresponding ball Bi

has length at most

((1 − ε)−αn−α−β)1/m = ((2/ε)n−α−β)1/m.

We consider a tessellation of [0, 1)2 into large cells. At the centre of each large
cell we consider a smaller cell. Small cells have side length ((2/ε)n−α−β)1/m and
large ones have side length 2((2/ε)n−α−β)1/m. There are

N =
⌊1
2
((ε/2)nα+β)1/m

⌋m

=
ε

2
(2 + o(1))−mnα+β → ∞

large cells fully contained in [0, 1)m (we discard the rest), and thus N small cells
inside of those. By construction, if a node in T ′ falls into a small cell, then its

156 A. Bonato et al.

ball is contained into in the corresponding large cell. Let X be the set of small
cells that contain at least one node in T ′, and let T ′′ ⊆ T ′ be a set of X = |X |
nodes such that each cell in X contains precisely one node in T ′′ (if a given small
cell contains at least two nodes in T ′, then a node is selected arbitrarily to be
placed in T ′′). Vertices in T ′′ are potentially dangerous for the adversary since,
one node in D2 can “out-dominate” at most one single node in T ′′. However,
she may in theory get lucky and in-dominate many of these nodes (in the next
section we will show that this will not happen a.a.s.).

We want to show that a.a.s. X ≥ N/4. The probability that there are at
least 3N/4 small cells containing no nodes in T ′ is at most

(
N

�3N/4�
)(

1 − (3N/4)(2/ε)n−α−β
)(ε/2)nα+β

≤ 2N exp(−3N/4) = o(1).

Therefore,

X ≥ N/4 =
ε

8
λ−mnα+β , for some λ = 2 + o(1). (4)

In-domination: Let ξ = ξ(α) be a sufficiently small positive constant, and define

μ =
(
λ

(
1 + 2(2/ε)1/m

))1/(1−α)

> 3λ.

The adversary chooses a set D1 ⊆ T of s = ξμ−mnα+β� nodes in her attempt
to in-dominate T ′. By Lemma 1(b), a.a.s. regardless of her choice,

∑
i∈D1

ri
−α ≤ (1+o(1))

1−α s−α+1tαn−α = (1 + o(1)) ξ1−α

1−α μ−(1−α)mnβ . (5)

We tessellate the space into cells of volume (2/ε)n−α−β (same size as the small
cells in the out-domination part, but now we have the whole space partitioned
into cells of that size). Recall that, for each node i ∈ D1, the ball Bi has length
bi

1/m ≥ n−(α+β)/m. Therefore, the volume of the set of cells intersected by Bi

is at most
(
bi

1/m + 2
(
(2/ε)n−α−β

)1/m
)m

≤
(
1 + 2(2/ε)1/m

)m

bi =
(
μ1−α/λ

)m
bi.

Combining this and (5), a.a.s. and regardless of the adversary’s choice, the total
volume of the cells intersected by the balls of the nodes in D1 is at most

∑
i∈D1

(
μ1−α/λ

)m
bi =

(
μ1−α/λ

)m
n−β

∑
i∈D1

ri
−α ≤ (1 + o(1)) ξ1−α

1−α λ−m. (6)

Let Y be the set of cells intersected by the balls of the nodes in D1, and put
Y = |Y|. By (6), a.a.s.

Y ≤ εξ1−α

2(1 − α)
λ−mnα+β .

The Domination Number of On-line Social Networks 157

Thus, in view of (4) we just need to make ξ small enough so that |X \Y| is larger
than |D2| = ξμ−mnα+β�. That is because dangerous cells in X \Y contain nodes
in T ′ that are not in-dominated by D1, and each one of these cells requires one
different node in D2 to out-dominate its nodes. Recall that our choice of ε ∈ (0, 1)
depends only on α. Then picking ξ sufficiently small so that εξ1−α

2(1−α) + ξ < ε
8 ,

we get

|X \ Y| ≥ X − Y ≥
(

ε

8
− εξ1−α

2(1 − α)

)

λ−mnα+β > ξμ−mnα+β ≥ �ξμ−mnα+β� = |D2|,

where we also used that μ > 3λ > λ. Finally, distinguishing the cases m = O(1)
and m → ∞, we observe that

μ−m =
(
λ(1 + 2(2/ε)1/m)

)−m/(1−α)

=

{
Θ(1) for m = O(1),
(6 + o(1))−m/(1−α) for m → ∞,

so the claimed lower bound follows.

3 Domination in Facebook 100 Graphs

Facebook distributed 100 samples of social networks from universities within
the United States measured as of September 2005 [35], which range in size from
700 nodes to 42,000 nodes. We call these networks the Facebook 100 (or simply
FB100) graphs. As the domination number is sensitive to nodes of low degree,
we used the k-core of the network, where 1 ≤ k ≤ 5; see [33]. For k ∈ N, the
k-core of a graph is the largest induced subgraph of minimum degree at least k.
The k-core can be found by a simple node deletion algorithm that repeatedly
deletes nodes with degree less than k. This algorithm always terminates with
the k-core of the graph, which is possibly empty.

Several algorithms were used to bound the domination number of the FB100
graphs, but one providing the smallest dominating sets is an adaptation of the
DS-DC algorithm [28]. In the algorithm, initially all nodes V are in the dom-
inating set S. It then selects a node u of minimum degree in S, and deletes it
only if the set S \ {u} remains dominating. The algorithm then repeats these
steps for all nodes in S in order of their increasing degrees. We considered other
algorithms, such as greedy algorithms where high degree nodes are added to
an empty dominating set sequentially, or by choosing a random dominating set,
but DS-DC outperformed these algorithms. We omit a detailed discussion of the
performance of other algorithms owing to space.

Figure 1 presents the DS-DC predicted upper bounds on γ(G), where G is
a graph in the FB100 data set. We plotted the upper bound predicted by the
MGEO-P model in Theorem 1, and we note the close similarity between that
bound and the ones for FB100. Note that we ignore constants in the big Oh
term in the upper bound from the model, and simply plot the bound generated
by nα+β log n. The values for α, β, and the dimension parameter m for each of
the FB100 graphs are taken from tables provided in [4]. (For example, in order

158 A. Bonato et al.

0

500

1000

1500

2000

2500

3000

3500

4000

0 5000 10000 15000 20000 25000 30000 35000 40000 45000

D
S

 S
iz

e
&

 U
p

p
er

 b
o

u
n

d

Number of Nodes

FB100 DS Size & MGEO-P Upperbound

1-core DC
2-core DC
3-core DC
4-core DC
5-core DC
Upperbound

Fig. 1. Upper bounds on the domination number of the FB100 networks vs MGEO-P.

to determine the power-law exponent, the Clauset-Shalizi-Newman power law
exponent estimator was used; see [4] for more details.) The MGEO-P bound
seems well-correlated with the bounds provided in the k-core, especially where
k = 3, 4, 5. See Table 1, which fits the domination number of the FB100 graphs
to the curve y = nx log n.

Table 1. Fitting the domination number of the k-cores of FB100 to y = nx log n,
suggesting a sub-linear trend.

k x R2

1 0.509 0.8472

2 0.492 0.8292

3 0.4818 0.8179

4 0.4741 0.8093

5 0.4677 0.803

To contrast the bounds provided in Fig. 1 with the bound in (3), we plot
them in Fig. 2. We plotted the theoretical bound using δ = 5 (that is, the min-
imum degree of the 5-core). The figure shows a significant over-estimate of the
domination number of the bound in (3), further corroborating the claim that
the domination numbers of the FB100 graphs are sublinear with respect to the
order of the graph.

The Domination Number of On-line Social Networks 159

0

2000

4000

6000

8000

10000

12000

14000

0 5000 10000 15000 20000 25000 30000 35000 40000 45000

D
S

 S
iz

e
&

 U
p

p
er

 b
o

u
n

d

Number of Nodes

FB100 DS Size & Upperbound

0-core DC
1-core DC
2-core DC
3-core DC
4-core DC
5-core DC
Upperbound

Fig. 2. Upper bounds on the domination number of the FB100 networks vs the bound
in (3), showing a substantial overestimation

4 Proof of Theorem2

We will relate the domination number to the problem of covering the plane with
circles. Given x ∈ R2 and ρ > 0, we denote by B(x, ρ) the ball with centre x and
of radius ρ. The following theorem is well known [18].

Theorem 3 ([18]). Given a bounded subset of the plane M , for ε > 0 let N(ε) be
the minimum number of balls of radius ε that can cover M . Then we have that

lim
ε→0

πε2N(ε) = C Area(M),

where M denotes the closure of M .

Observe that (C − 1) can therefore, be seen as measuring the proportion of
unavoidable overlapping. Moreover, [18] shows that an optimal covering of the
square S using balls of radius ε corresponds to arranging the balls in such a way
that their centers are the centers of the cells of a hexagonal tiling of length ε.
More precisely, consider the lattice

Lε = {iε(
√

3, 0) + jε(
√

3/2, 3/2) : i, j ∈ Z}. (7)

Then the set of balls of radius ε and centre in Lε that intersect S form a covering
of S that gives the limit in Theorem 3.

Note that for all G with maximum degree Δ, we trivially have γ(G) ≥ n/(1+
Δ(G)) (for further relations between γ(G) and other graph parameters, see, for
example, [15]). Given any constant c > 0, for G ∈ G (n, r) with r ≥ c

√
log n /n,

160 A. Bonato et al.

it is easy to show, by Chernoff bounds together with union bounds, that a.a.s.
Δ(G) = O(r2n). Therefore, a.a.s. we have γ(G) = Ω(r−2). On the other hand, we
can trivially construct a dominating set of G (n, r) by tessellating S into square
cells of side length r/

√
2 and picking one node from each cell (if the cell is not

empty). This holds deterministically for any geometric graph (not necessarily
random), with no restriction on r, and gives γ(G) = O(r−2). It follows that, for
G ∈ G (n, r) with r ≥ c

√
log n /n, a.a.s. γ(G) = Θ(r−2).

We first prove the lower bound in part (b). Fix an arbitrarily small constant
δ > 0. Tessellate S into cells of side length α =

√
ω log n /n = o(r). By Chernoff

bounds together with a union bound over all cells, we get that a.a.s. each cell
contains at least one node. We may condition on this event, and proceed deter-
ministically. For a contradiction, suppose that there exists a dominating set of
size s = (C/π − δ)r−2�. Consider then s balls whose centers are at the nodes
of the dominating set. When using radius r for all balls, each cell is at least
touched by some ball, since each cell is non-empty and each node is covered.
Hence, by using radius r′ = r + α

√
2, each square is totally covered by some

ball. Therefore, S can be covered by (C/π − δ)r−2� balls of radius r′. On the
other hand,

πr′2(C/π − δ)r−2� ≤ (r2 + 2
√

2rα + 2α2)(C − πδ)r−2 = (1 + o(1))(C − πδ),

since α = o(r). This contradicts Theorem 3 and so γ(G) > s. Since the argument
holds for any δ > 0, we get the desired lower bound.

For the upper bound, we will show that we can find a covering of S with
(C/π + o(1))r−2 balls of radius r that are centered at some nodes of G. Again,
fix some arbitrarily small constant δ > 0. Let r′ = (1 − δ)r, and consider the
lattice Lr′ , as defined in (7). Let L′

r′ be the set of all points x ∈ Lr′ such that the
ball with centre x and radius r′ intersects S. Recall that L′

r′ gives the optimal
covering of S with balls of radius r′, and therefore, attains the bound given by
Theorem 3

s = |L′
r′ | =

(
C

πr′2

)
(1 + o(1)) =

(
C

π

)
r−2(1 − δ)−2(1 + o(1)).

It might happen that some point x ∈ L′
r′ does not belong to S. In this case, we

replace x by the closest point x̂ on the boundary of S (this can be uniquely done,
since S is closed and convex). Note that B(x, r′) ∩ S ⊆ B(x̂, r′) ∩ S. We denote
L̂r′ the modified set of points that we obtained. By construction, L̂r′ ⊆ S, and
we can cover S using balls with centre in L̂r′ and radius r′ or larger. Moreover,
|L̂r′ | = s. Clearly, if we can guarantee that for each x ∈ L̂r′ there exists a node
of G inside B(x, δr)∩S, then G is dominated by these nodes, and hence, s yields
an upper bound for γ(G).

Observe that for any point x ∈ L̂r′ (and therefore, in S), the area of B(x, δr)∩
S is at least (δr)2π/4, since at least a quarter of a ball must be inside S. The
probability that there is no node of G in B(x, δr) ∩ S is at most

(
1 − (δr)2π

4

)n

≤ exp
(

−n(δr)2π
4

)
≤ exp

(
−ω2δ2π log n

4

)
= o(n−2).

The Domination Number of On-line Social Networks 161

Since there are s events that we need to investigate and clearly s ≤ n, by a union
bound, a.a.s., for every x ∈ L̂r′ , the region B(x, δr) ∩ S contains at least one
node of G. It follows that a.a.s. γ(G) ≤ s and since the argument holds for any
δ > 0, we derive the desired upper bound.

For the proof of part (a), note that N(x) is non-decreasing function of x,
and N(x) = 1 for x ≥ 1/

√
2. Fix r = Θ(1). Tessellate S into cells of side

length α =
√

(ω/2) log n /n. For the lower bound, suppose for contradiction that
γ(G) ≤ N(r+α

√
2)−1. By Chernoff bounds together with a union bound over all

cells, a.a.s. there is at least one node in each such cell. Now place N(r+α
√

2)−1
many balls with centers at the nodes of the dominating set. Since by using radius
r each cell is at least touched by some ball, by using radius r + α

√
2 each cell

is totally covered by a ball, and therefore S is covered by N(r + α
√

2) − 1
balls of radius r + α

√
2, contradicting the definition of N(x). Therefore, a.a.s.

γ(G) ≥ N(r + α
√

2).
For the upper bound, consider an optimal arrangement of N(r − β) balls of

radius r − β, where β = ω/
√

n. As before, if the centre p of a ball is outside S,
but B(p, r − β) ∩ S �= ∅, we may shift the centre of the ball towards its closest
point p′ on the boundary of S. Since B(p, r − β) ∩ S ⊆ B(p′, r − β) ∩ S, we still
preserve the covering property, and therefore, we can obtain an optimal covering
of S with balls of radius r −β and centered at points inside of S. As in part (a),
it suffices to show the existence of a node v ∈ V inside B(c, β)∩S for any centre
c in this optimal arrangement of balls. Since N(r − β) = O(1), the probability
that there exists a centre c such that (B(c, β) ∩ S) ∩ V = ∅ is at most

O(1)(1 − β2π / 4)n = O(exp(−nβ2π / 4)) = o(1),

and hence, a.a.s. for all centers c, we have that B(c, β) ∩ S contains at least one
node of G. These nodes form a dominating set, and so a.a.s. γ(G) ≤ N(r − β).

Finally, note that the lower bound in part (b) can be easily adopted to show
that a.a.s. γ(G) = Ω(r−2) as a.a.s. a positive fraction of cells contain at least one
node for the range of r considered in part (c). As already mentioned, the upper
bound of O(r−2) holds for any (deterministic) geometric graph and any r. Hence,
part (c) follows. For part (d), the upper bound is trivial. The lower bound comes
from the fact that a.a.s. there will be Θ(n) isolated nodes, and a dominating set
has to contain all of them. The proof of the theorem is finished. ��

5 Conclusions and Open Problems

We considered the domination number of a stochastic model for OSNs, the
MGEO-P model. Theorem 1 shows a sublinear bound on the domination num-
ber of OSNs, which is well correlated with estimates for the domination number
taken for the Facebook 100 data set. In addition, we provided bounds for the
domination number of random geometric graphs.

In future work, we would like to broaden our analysis of the domination
number to other data sets, and to test larger samples of OSNs. We will contrast
the estimates provided by other heuristic algorithms for computing minimum

162 A. Bonato et al.

order dominating sets, and provide a fitting of the data to bounds provided by
the model.

So-called “elites”, those who exert strong influence on the ambient network,
are studied extensively in the sociology literature (see [10] for an overview of
the literature on this topic). One approach to detecting elites is via their rel-
atively high degree; hence, the use of k-cores in [10]. A different approach to
detecting elites is to search for them within a minimum order dominating set, as
these sets reach the entire network. Further, if minimum order dominating sets
have much smaller order than the network (as we postulate), then that reduces
the computational costs of finding elites. We plan on considering this approach
to finding elites via dominating sets in future work.

References

1. Alon, N., Spencer, J.: The Probabilistic Method. Wiley, New York (2000)
2. Barabási, A.L., Albert, R.: Emergence of scaling in random networks. Science 286,

509–512 (1999)
3. Bonato, A.: A Course on the Web Graph. Graduate Studies Series in Mathematics.

American Mathematical Society, Providence (2008)
4. Bonato, A., Gleich, D.F., Kim, M., Mitsche, D., Pra�lat, P., Tian, A., Young, S.J.:

Dimensionality matching of social networks using motifs and eigenvalues. PLOS
ONE 9, e106052 (2014)

5. Bonato, A., Janssen, J., Pra�lat, P.: Geometric protean graphs. Internet Math. 8,
2–28 (2012)

6. Bonato, A., Janssen, J., Pra�lat, P.: The geometric protean model for on-line social
networks. In: Kumar, R., Sivakumar, D. (eds.) WAW 2010. LNCS, vol. 6516, pp.
110–121. Springer, Heidelberg (2010)

7. Bonato, A., Janssen, J., Pra�lat, P.: A geometric model for on-line social networks.
In: Proceedings of 3rd Workshop on Online Social Networks (WOSN 2010) (2010)

8. Bonato, A., Tian, A.: Complex networks and social networks, invited book chapter.
In: Kranakis, E. (ed.) Social Networks. Mathematics in Industry Series, pp. 269–
285. Springer, New York (2013)

9. Cooper, C., Klasing, R., Zito, M.: Lower bounds and algorithms for dominating
sets in web graphs. internet math. 2, 275–300 (2005)

10. Corominas-Murtra, B., Fuchs, B., Thurner, S.: Detection of the elite structure in a
virtual multiplex social system by means of a generalized k-core, Preprint (2014)

11. Cowan, N.J., Chastain, E.J., Vilhena, D.A., Freudenberg, J.S., Bergstrom, C.T.:
Nodal dynamics, not degree distributions, determine the structural controllability
of complex networks. PLOS ONE 7, e38398 (2012)

12. Estrada, E.: Spectral scaling and good expansion properties in complex networks.
Europhys. Lett. 73, 649 (2006)

13. Faloutsos, M., Faloutsos, P., Faloutsos, C.: On power-law relationships of the inter-
net topology. SIGCOMM Comput. Commun. Rev. 29, 251–262 (1999)

14. Gilbert, E.N.: Random plane networks. J. Soc. Ind. Appl. Math. 9, 533–543 (1961)
15. Haynes, T.W., Hedetniemi, S.T., Slater, P.J.: Fundamentals of Domination in

Graphs. CRC Press, Boca Raton (1998)
16. Janssen, J., Pra�lat, P.: Protean graphs with a variety of ranking schemes. Theoret.

Comput. Sci. 410, 5491–5504 (2009)

The Domination Number of On-line Social Networks 163

17. Janson, S., �Luczak, T., Rucinski, A.: Random Graphs. Wiley-Interscience Series
in Discrete Mathematics and Optimzation. John Wiley & Sons, New York (2000)

18. Kershner, R.: The number of circles covering a set. Am. J. Math. 61, 665–671
(1939)

19. Kim, M., Leskovec, J.: Multiplicative attribute graph model of real-world networks.
Internet Math. 8, 113–160 (2012)

20. Kolda, T.G., Pinar, A., Plantenga, T., Seshadhri, C.: A scalable generative graph
model with community structure, Preprint (2014)

21. Kumar, R., Raghavan, P., Rajagopalan, S., Sivakumar, S., Tomkins, A.: Stochastic
models for the web graph. In: Proceedings of the 41st Annual Symposium on
Foundations of Computer Science (2000)

22. Leskovec, J., Chakrabarti, D., Kleinberg, J., Faloutsos, C., Ghahramani, Z.: Kro-
necker graphs: an approach to modeling networks. J. Mach. Learn. Res. 11, 985–
1042 (2010)

23. Leskovec, J., Kleinberg, J., Faloutsos, C.: Graph evolution: densification and
shrinking diameters. ACM Trans. Knowl. Discov. Data 1, 1–41 (2007)

24. Leskovec, J., Lang, K.J., Dasgupta, A., Mahoney, M.W.: Community structure in
large networks: natural cluster sizes and the absence of large well-defined clusters.
Internet Math. 6, 29–123 (2009)

25. �Luczak, T., Pra�lat, P.: Protean graphs. Internet Math. 3, 21–40 (2006)
26. McPherson, J.M., Ranger-Moore, J.R.: Evolution on a dancing landscape: organi-

zations and networks in dynamic blau space. Soc. Forces 70, 19–42 (1991)
27. McPherson, M., Smith-Lovin, L., Cook, J.M.: Birds of a feather: homophily in

social networks. Annu. Rev. Sociol. 27, 415–444 (2001)
28. Milenković, T., Memǐsević, V., Bonato, A., Pržulj, N.: Dominating biological net-

works. PLOS ONE 6(8), e23016 (2013)
29. Molnár Jr., F., Derzsy, N., Czabarka, É., Székely, L., Szymanski, B.K., Korniss, G.:

Dominating scale-free networks using generalized probabilistic methods, Preprint
(2014)

30. Pra�lat, P.: A note on the diameter of protean graphs. Discrete Math. 308, 3399–
3406 (2008)

31. Pra�lat, P., Wormald, N.: Growing protean graphs. Internet Math. 4, 1–16 (2009)
32. Penrose, M.: Random Geometric Graphs. Oxford Studies in Probability. Oxford

University Press, Oxford (2003)
33. Seidman, S.B.: Network structure and minimum degree. Soc. Netw. 5, 269–287

(1983)
34. Stojmenovic, I., Seddigh, M., Zunic, J.: Dominating sets and neighbor elimination-

based broadcasting algorithms in wireless networks. IEEE Trans. Parallel Distrib.
Syst. 13, 14–25 (2002)

35. Traud, A.L., Mucha, P.J., Porter, M.A.: Social structure of facebook networks,
Preprint (2014)

36. Watts, D.J., Strogatz, S.H.: Collective dynamics of “small-world” networks. Nature
393, 440–442 (1998)

A Linear Time Algorithm for Determining
Almost Bipartite Graphs

Dayu He and Xin He(B)

Department of Computer Science and Engineering,
University at Buffalo, Buffalo, NY 14260, USA

xinhe@buffalo.edu

Abstract. A graph G = (V,E) is called almost bipartite if G is not
bipartite, but there exists a vertex v ∈ V such that G− {v} is bipartite.
We consider the problem of testing if G is almost bipartite or not.

This problem arises from the study on the k-arch layout problem. It
is known that, given a graph G and an integer k ≥ 2, it is NP-complete
to determine if G has a k-arch layout. On the other hand, G has a 1-arch
layout if and only if G is almost bipartite [3]. It is straightforward to test
if G is almost bipartite in O(n(n+m)) time by using depth first search.

In this paper, we present a simple linear time algorithm for solving
this problem. The efficiency of the algorithm is achieved by sophisticated
applications of depth first search tree and the study of the structure of
such graphs.

1 Introduction

Let G = (V,E) be an undirected graph with |V | = n vertices and |E| = m edges.
G is called k-colorable if the vertices of G can be colored by k colors such that no
two adjacent vertices have the same color. G is called almost k-colorable if G is
not k-colorable, but there exists a vertex v ∈ V such that G−{v} is k-colorable.
In particular, a 2-colorable graph is also called a bipartite graph, and an almost
2-colorable graph is called an almost bipartite graph. In this paper, we present a
linear time algorithm for testing if G is almost bipartite.

This problem arises from the study on linear layouts of graphs. Such lay-
outs have many applications and have been extensively studied in the literature
(see [3] for a survey). There are several different versions of linear layouts. The
version related to this paper is the k-arch layout. A k-arch layout of a graph
G = (V,E) consists of a total order σ of the vertices in V , and a partition of
the edges in E into k subsets E1, . . . , Ek such that any two edges e1 = (u1, v1)
and e2 = (u2, v2) within each subset Ei must overlap with respect to the total
order σ. The arch-number of G, denoted by an(G), is the minimum k such that
G has a k-arch layout. A basic question in this area is to determine an(G) for
an input graph G. Two results related to k-arch layouts were obtained in [3]:

1. For any graph G, an(G) ≤ k if and only if G is almost (k + 1)-colorable.

Research supported in part by NSF Grant CCR-1319732.

c© Springer International Publishing Switzerland 2015
R. Jain et al. (Eds.): TAMC 2015, LNCS 9076, pp. 164–176, 2015.
DOI: 10.1007/978-3-319-17142-5 15

A Linear Time Algorithm for Determining Almost Bipartite Graphs 165

2. Given G and an integer k ≥ 2, it is NP-complete to determine if an(G) ≤ k.

By result 1 above, an(G) = 1 if and only if G is almost bipartite. It is easy to
check if a given graph G is bipartite in O(n+m) time by using depth first search
(DFS) tree (for example see [2]). To test if G is almost bipartite, we can check,
for each vertex v ∈ V , if G − {v} is bipartite or not. The whole process takes
O(n(n + m)) time. It was posed as an open question in [3] whether there is a
sub-quadratic algorithm for determining if G is almost bipartite. The properties
of almost bipartite graphs are also studied in [5].

This problem is a special case of the odd cycle transversal (OCT) problem
which, given a graph G = (V,E), asks does there exist a set S ⊆ V of at most
k vertices such that G \ S is bipartite. Two recent papers [4,6] present linear
time algorithms for solving the OCT problem. These results imply linear time
algorithms for testing almost bipartite graphs. However, the algorithms in these
two papers use sophisticated (integer programming, max-flow, skew-symmetric
multicuts) concepts and their linear runtime are achieved by using a sequence
of reductions, and/or solving a complex related problem (such as finding pri-
mal/dual solution of an IP problem, finding max flows). So their implementa-
tions are complicated and the constants involved in the runtime are large.

In this paper, we present a simple O(n + m) time algorithm for solving this
problem. Our algorithm relies only on elementary graph algorithm techniques
and depth first trees. Hence our algorithm is easy to implement, and the constant
in its runtime is small. The efficiency of the algorithm is achieved by sophisti-
cated applications of the DFS tree and the study of the structure of almost
bipartite graphs. The paper is organized as follows. Section 2 introduces defini-
tions and preliminary results. In Sect. 3, we prove a theorem that is essential for
our algorithm. Section 4 discusses the details of the testing algorithm.

2 Preliminaries

In this paper, G = (V,E) always denotes an undirected graph. It is clear that
G is almost bipartite if and only if one connected component of G is almost
bipartite and all other connected components of G are bipartite. To test if G is
almost bipartite, we can test whether its connected components are bipartite or
almost bipartite. Thus, without loss of generality, we assume G is connected.

A path P of G is a sequence of vertices (v1, ..., vk) with (vi, vi+1) ∈ E (1 ≤
i < k). A cycle C of G is a sequence of vertices (v1, ..., vk) with (vi, vi+1) ∈ E
(1 ≤ i < k) and (vk, v1) ∈ E. The length of a path P (or a cycle C), denoted by
|P | (or |C|), is the number of edges in it. A cycle C is called an odd (or even)
cycle if |C| is odd (or even). The following result is well known.

Lemma 1. [1] G is bipartite if and only if G contains no odd cycles.

A depth first search (DFS) tree of G is a spanning tree T of G produced by
the depth-first search on G [2]. Let T be a DFS tree of G with root r. For any
vertex v, let T (v) denote the sub-tree of T rooted at v. A vertex w is called

166 D. He and X. He

an ancestor of another vertex u if the path in T from u to r contains w. If w
is an ancestor of u, T [w, u] denotes the path in T between w and u including
both w and u. T [w, u) denotes the path in T between w and u including w, but
excluding u. The meanings of the notations T (w, u] and T (w, u) are similar. The
lowest common ancestor of two vertices w and u, denoted by lca(w, u), is the
lowest (the farthest from r) vertex in T [r, w] ∩ T [r, u].

Let level(v) denote the level of a vertex v in T which is defined to be the
number of edges in the path T [r, v]. If level(v) is odd, v is called an odd vertex
and we say the parity of v is 1. If level(v) is even, v is called an even vertex and
we say the parity of v is 0. Let parity diff(w, v) = |parity(w) − parity(v)| denote
the parity difference between two vertices w and v, which is either 0 or 1.

For a given DFS tree T of G = (V,E), the edges in E can be partitioned into
two subsets: the tree edges and the non-tree edges. A non-tree edge e = (w, u)
is called a back edge (with respect to T) if w is an ancestor of u. Since we only
consider undirected graphs in this paper, we have the following property [2]:

Property 1. For an undirected graph G and a DFS tree T of G, all non-tree
edges are back edges.

In the remainder of this paper, for a non-tree edge e = (w, u), the first end
vertex w is always the ancestor of the second end vertex u. Hence w ∈ T [r, u).
A non-tree edge e = (w, u) in G together with the tree path T [w, u] form a
cycle in G. We call this cycle the cycle induced by e and denote it by C(e). The
non-tree edges of G can be divided into two subsets:

Definition 1. A non-tree edge e = (w, u) is called an odd-non-tree (ONT) edge if
C(e) is an odd cycle. Note that e is an ONT edge if and only if parity diff(w, u) = 0.
A non-tree edge e = (w, u) is called an even-non-tree (ENT) edge if C(e) is an even
cycle. Note that e is an ENT edge if and only if parity diff(w, u) = 1.

Fig. 1. An example of a DFS-tree with two ONT edges and one ENT edge. The blue
(red, resp.) dots represent even (odd, resp.) vertices. Thin blue lines represent ONT
edges, dashed red lines represent ENT edges. Bold black lines represent the tree edges
(Color figure online).

Figure 1 shows an example of ONT and ENT edges. The following is well-known:

Lemma 2. [1] Let G be a connected graph and T be a DFS tree of G. Then G
is bipartite if and only if it has no ONT edges.

A Linear Time Algorithm for Determining Almost Bipartite Graphs 167

Based on Lemma 2, we have the following algorithm for testing the bipartiteness
of G:

– Perform the depth first search on G and construct a DFS tree T of G. Calculate
the parity of the vertices with respect to T .

– Check the non-tree edges one by one. If the two end vertices of any non-tree
edge have the same parity, then G is not bipartite. Otherwise G is bipartite.

Clearly this algorithm takes O(n + m) time [2]. In this paper, we want to
test if a non-bipartite graph G is almost bipartite. From now on, we assume G
is not bipartite which means G has at least one ONT edge by Lemma 2.

3 Main Theorem

First, we prove a lemma needed by our algorithm. Let T be a DFS tree of G.

Lemma 3. A cycle C is odd if and only if C has an odd number of ONT edges.

Proof. Let C be a cycle in G. Suppose C has k non-tree edges. Let ei = (xi, yi)
(1 ≤ i ≤ k) denote the k non-tree edges in the order they appear in C. Let ti
(1 ≤ i ≤ k) be the tree path between yi and xi+1 in C (ti could be empty).
See Fig. 2 for an example. Let Pi = {ei} ∪ ti denote the sub-path of C from the
vertex xi to the vertex xi+1. The following properties are clear:

1. If ei is an ONT edge, then |Pi| ≡ parity diff(xi, xi+1) + 1 (mod 2).
2. If ei is an ENT edge, then |Pi| ≡ parity diff(xi, xi+1) + 0 (mod 2).

Suppose that C contains k1 ONT edges and k2 ENT edges. Then we have:

|C| =
k∑

i=1

|Pi| =
∑

ei is an ONT edge
|Pi| +

∑

ej is an ENT edge
|Pj |

≡ {
∑

ei is an ONT edge
(parity diff(xi, xi+1) + 1)+

∑

ej is an ENT edge
(parity diff(xj , xj+1) + 0)} (mod 2)

≡ {
k∑

i=1

(parity diff(xi, xi+1)) + k1} (mod 2) ≡ k1 (mod 2)

(Note that
∑k

i=1 parity diff(xi, xi+1) ≡ 0 (mod2), since C is a cycle.) Hence,
C is an odd cycle if and only if k1 is odd. 	

Definition 2. A vertex v in G is a witness vertex if G−{v} is a bipartite graph.

168 D. He and X. He

1t 3

e3

t 2 e2

t 1

x1

y1

y2

y3

x2
x3

e

Fig. 2. An example of a cycle C in G with non-tree edges and tree paths. Dashed lines
represent non-tree edges. Bold lines represent tree paths.

By this definition, a non-bipartite graph G is almost bipartite if and only if it
has a witness vertex. So testing if G is almost bipartite is the same as finding
witness vertices in G. However, it is not easy to search for witness vertices by
using this definition. In the following, we provide an alternative definition of the
witness vertex. The advantage is that we are able to search for such vertices
according to the alternative definition. For any vertex v in G, we partition the
vertices of G into three subsets with respect to the position of v in T :

– {v};
– Lower(v) = T (v) − {v} is the subset of the vertices that are “below” v;
– Upper(v) = T − T (v) is the subset of the vertices that are “above” v.

Definition 3. A vertex v is called a candidate vertex if and only if both of the
following conditions hold:

1. For any ONT edge ei = (wi, ui), either v ∈ {wi, ui}; or wi ∈ Upper(v) and
ui ∈ Lower(v).

2. For any ENT edge ej = (wj , uj), one of the following holds:
(a) Both wj and uj are in Upper(v) ∪ {v}.
(b) uj is in T (vchild) for a child vchild of v. If there exists an ONT edge ei =

(wi, ui) such that wi ∈ Upper(v) and ui ∈ T (vchild), then wj ∈ T [v, uj).
(If no such ONT edge ei exists, wj can be anywhere in T [r, uj).)

Note the conditions 2 (a) and 2 (b) are mutually exclusive. Figure 3 (a) shows
an example of a candidate vertex v with ONT and ENT edges that satisfy the
conditions in Definition 3. The following theorem shows that the definitions of
the witness vertex and the candidate vertex are equivalent.

Theorem 1. Let G be a non-bipartite graph. A vertex v of G is a witness vertex
if and only if v is a candidate vertex.

Proof. First, we prove the if part of Theorem 1. Let v be a candidate vertex. We
will show that any cycle C in G−{v} must be even (which implies v is a witness
vertex). C contains three types of edges: ONT edges, ENT edges and tree edges.

In G − {v}, any ONT edge ei = (wi, ui) of G must satisfy wi ∈ Upper(v)
and ui ∈ Lower(v) by the condition 1 in Definition 3. If C contains no ONT

A Linear Time Algorithm for Determining Almost Bipartite Graphs 169

e i

u1

u2

Upper

Lower

v

(a)

v
je

(c)

Upper

Lower

Upper

Lower

v

(b)

w1

w
2

w

w

u

u

j

i

i

j

Fig. 3. (a) A candidate vertex v with two ONT edges and three ENT edges that
satisfy the conditions in Definition 3. (b) Two ONT edges that violate the condition 1
in Definition 3. (c) An ENT edge that violates the condition 2 (b) in Definition 3.

edges, then C is even by Lemma 3. Suppose C contains at least one ONT edge
ei = (wi, ui). Let vchild be the child of v such that ui ∈ T (vchild). Imagine
we travel along C starting from wi. When passing through ei, we “jump” from
Upper(v) into T (vchild) ⊆ Lower(v). In order to complete our travel along C, we
must go back from T (vchild) to Upper(v). We consider the cases this can happen:

– Since v is deleted, we cannot travel from T (vchild) to Upper(v) or T (vchild′)
(where vchild′ �= vchild is any other child of v) by using tree paths.

– Consider any non-tree (either ONT or ENT) edge ek = (wk, uk) with uk ∈
T (vchild). Since ek is a back edge, wk must be in the tree path T [r, uk) (where
r is the root of T). So we cannot travel from T (vchild) to T (vchild′) (where
vchild′ �= vchild is any other child of v) by using ek.

– Consider any ENT edge ej = (wj , uj) with uj ∈ T (vchild). Since ej satisfies the
condition 2 (b) in Definition 3, wj must be a vertex in the tree path T [v, uj).
Thus, we cannot travel from T (vchild) to Upper(v) by using ej .

So, once within T (vchild), we are “stuck” in T (vchild). The only way to get out
of T (vchild) is to go back to Upper(v) by using another ONT edge. By repeating
this argument, we see that C must contain an even number of ONT edges. By
Lemma 3, C is even. So v is a witness vertex.

Next, we prove the only if part by contraposition. Suppose v is not a candidate
vertex. Then at least one of the two conditions in Definition 3 fails.

Case 1: The condition 1 in Definition 3 fails. Then there exists at least one
ONT edge ei = (wi, ui) such that either both wi and ui are in Upper(v); or both
in Lower(v). See Fig. 3 (b). Suppose both wi and ui are in Upper(v). Then C(ei)
is a cycle in G−{v} containing exactly one ONT edge ei. Thus C(ei) is odd and
G−{v} is not bipartite. So v is not a witness vertex. Suppose both wi and ui are
in Lower(v). Let vchild be the child of v such that ui ∈ T (vchild). Because ei is a
back edge, we must have wi ∈ T (vchild) also. Thus C(ei) is a cycle in T (vchild)
containing exactly one ONT edge ei. So C(ei) is an odd cycle in G − {v}, and v
is not a witness vertex.

170 D. He and X. He

Case 2: The condition 2 in Definition 3 fails. If all ONT edges of G have v
as an end vertex, then the condition 2 in Definition 3 is always satisfied. This
contradicts the assumption of this case. So there exists an ONT edge wi =
(wi, ui) with wi ∈ Upper(v) and ui ∈ Lower(v). Because the condition 2 of
Definition 3 fails, there exists an ENT edge ej = (wj , uj) with wj ∈ Upper(v)
and uj ∈ Lower(v), and both ui and uj belong to T (vchild) for a child vchild of
v. See Fig. 3 (c). Let P1 be the tree path in Upper(v) between wi and wj . Let
P2 be the tree path in T (vchild) between ui and uj . Then the union of ei, ej , P1

and P2 is a cycle in G − {v} with exactly one ONT edge ei and one ENT edge
ej . By Lemma 3, C is odd. So v is not a witness vertex. 	

4 Algorithm

We describe our algorithm for finding candidate vertices in this section. We
first outline the main idea of the algorithm. Basically, we want to identify the
subgraph Gs of G consisting of candidate vertices. Initially, Gs consists of all
vertices of G. We consider the non-tree edges one by one. For a non-tree edge
e = (w, u), the conditions in Definition 3 fails for e with respect to some vertices
v in Gs. Such vertices v are removed from Gs. After processing all non-tree
edges, the conditions in Definition 3 hold for all non-tree edges with respect to
any vertex v in the remaining Gs. In other words, these remaining vertices in
Gs are candidate vertices. If Gs becomes empty during the process, then there
exist no candidate vertices in G.

The processing is divided into two stages. The first stage processes the ONT
edges. The second stage processes ENT edges. We discuss them separately.

4.1 Processing ONT Edges

Let T be a DFS tree of G with root r. Let ei = (wi, ui) (1 ≤ i ≤ p) be all ONT
edges in G. Since G is non-bipartite, it has at least one ONT edge. The following
observation is clear:

Observation 1. An ONT edge ei = (wi, ui) satisfies the condition 1 in Defini-
tion 3 with respect to a vertex v if and only if v ∈ T [wi, ui].

The following lemma immediately follows from Observation 1:

Lemma 4. Let ei = (wi, ui)(1 ≤ i ≤ p) be all ONT edges in G. Define: T [x, y] =⋂p
i=1 T [wi, ui]. Then the condition 1 in Definition 3 is satisfied for all ONT edges

ei = (wi, ui)(1 ≤ i ≤ p) with respect to a vertex v if and only if v ∈ T [x, y].

Note that T [x, y] is a tree path in T (which may be empty). If T [x, y] = ∅, then
there exists no vertex v for which the condition 1 in Definition 3 is satisfied for
all ONT edges in G. In this case, there are no candidate vertices in G.

Next we describe the details of the processing of the ONT edges. The first
step of the algorithm is to construct a DFS tree T of G. When performing

A Linear Time Algorithm for Determining Almost Bipartite Graphs 171

DFS on G, we also calculate two integers (between 1 and 2n) for each vertex
v ∈ V : the start time of v, denoted by s(v), and the finish time, denoted by
f(v). We associate each v with an interval I(v) = [s(v), f(v)]. These values can
be computed in O(n + m) time as a by-product of DFS [2]. The following facts
are well known [2]:

Fact 1.

– A vertex w is an ancestor of another vertex u in T if and only if I(u) ⊂ I(w).
It takes O(1) time to determine if w is an ancestor of u or not (by checking
if I(u) ⊂ I(w)).

– For any vertex w with children w1, . . . , wd, the intervals I(w1), . . . , I(wd) are
pairwise disjoint. Moreover, for each 1 ≤ j < d, I(wj) is located to the left of
I(wj+1). (Namely, s(wj) < f(wj) < s(wj+1) < f(wj+1)).

Initially, we set T [x, y] ← T [w1, u1]. Then the algorithm performs a sequence
of steps. The step i (2 ≤ i ≤ p) processes the ONT edge ei = (wi, ui) and
updates T [x, y] ← T [x, y] ∩ T [wi, ui].

In order to compute T [x, y]∩T [wi, ui] in O(1) time, we need a data structure,
after initializing T [x, y] ← T [w1, u1], so that the following holds:

Fact 2. For a vertex u ∈ V , it takes O(1) time to determine the lowest common
ancestor z = lca(u1, u) and the child zchild of z such that u ∈ T (zchild).

The implementation of the operation in Fact 2 is outlined below. We number
the vertices of G in the left-to-right post-order with respect to T . Let r =
a1, a2, . . . , at = u1 be the vertices in the tree path T [r, u1]. For each ai (1 ≤ k <
t), let l1i , l

2
i . . . , lpi

i , ai+1, r
1
i , r

2
i , . . . , r

qi
i be the children of ai in T ordered from

left to right. For the vertex at, let l1t , l
2
t . . . , lpt

t , r1t , r
2
t , . . . , r

qt
t be the children of

at in T ordered from left to right. Then the vertices in V − T [r, u1] appear, in
the order, in the subtrees in the following list:

T (l11), . . . , T (lp1
1), T (l12), . . . , T (lp2

2), . . . , T (l1t−1), . . . , T (lpt−1
t−1), T (l1t), . . . , T (lpt

t),

T (r1t), . . . , T (rqtt), T (r1t−1), . . . , T (rqt−1
t−1), . . . , T (r11), . . . , T (rq11)

In O(n) time, we can set up a look-up table D[1..n] indexed by the vertices
of G. For a vertex v, the entry D[v] stores the identity of the vertex z such that
v ∈ T (z) in the above list . Then, given a vertex v, the information required in
the operation in Fact 2 can be retrieved in O(1) time from D[v].

After processing all ONT edges, we get T [x, y] at the end. In addition, we
also need to label the children y1 . . . , yd of y as marked or unmarked with the
following property. (These labels are needed for the processing of ENT edges
discussed later).

Property 2.

– If there is an ONT edge ei = (wi, ui) such that ui ∈ T (yl), then yl is labeled
“marked”.

172 D. He and X. He

Algorithm 1. Processing ONT Edges
1. Initialize T [x, y] ← T [w1, u1];
2. Set up the data structures so that the operations in Fact 1 and Fact 2 can be per-

formed in O(1) time;
3. For i = 2 to p do:

3a. Process the ONT edge ei = (wi, ui); calculate T [x′, y′] = T [x, y] ∩ T [wi, ui];
3b. If T [x′, y′] = ∅, stop and reports “no candidate vertex exists”;
3c. If T [x′, y′] �= ∅, update T [x, y] ← T [x′, y′];

4. Label all children y1, . . . , yd of y as “unmarked”.
5. For i = 1 to p do:

5a. Process the ONT edge ei = (wi, ui). Find the child yl of y such that ui ∈ T (yl)
and label yl as “marked”.

– Otherwise yl is labeled “unmarked”.

The algorithm for processing ONT edges is given in Algorithm 1.
Figure 4 shows an example of the processing of ONT edges and the labeling

of the children of the vertex y. Tree edges are marked as black bold lines and
ONT edges are marked as blue curve lines. Dashed line represents T [x, y].

Lemma 5. Algorithm 1 takes O(m + n) time.

Proof. The pre-processing (Steps 1 and 2) can be done in O(n + m) time. The
step 4 clearly takes O(n) time. By using the operations described in Fact 1 and
Fact 2, each iteration of the loop body in step 3 and step 5 can be done in O(1)
time. So Algorithm 5 takes O(n + m) time. 	

After processing all ONT edges, if the remaining T [x, y] = ∅, then G has no
candidate vertex. Otherwise, we get a non-empty tree path T [x, y]. At this point,
the condition 1 in Definition 3 is satisfied with respect to any vertex v ∈ T [x, y].
If x is an end vertex of every ONT edge ei = (wi, ui) of G, then x is clearly a
candidate vertex. Then the algorithm can stop and report so. So we assume this
is not the case in the rest of the paper. Hence the following properties hold:

Property 3. For any ONT edge ei = (wi, ui) (1 ≤ i ≤ p) of G, wi ∈ T [r, x] and
ui ∈ T (y). In addition, there exists at least one ONT edge ei = (wi, ui) such
that wi ∈ T [r, x).

4.2 Processing ENT Edges

In this subsection, we discuss the second stage of the algorithm, which processes
the ENT edges of G. At the beginning of this stage, we have a tree path T [x, y]
as Gs and the children y1, . . . , yd of y are labeled as “marked” and “unmarked”
as in Property 2.

Let ej (1 ≤ j ≤ q) be all ENT edges of G. When an ENT edge ej = (wj , uj) is
processed, the condition 2 in Definition 3 fails for ej with respect to some vertices

A Linear Time Algorithm for Determining Almost Bipartite Graphs 173

e
x

1
y2e

(marked)(unmarked)

3e

(marked)

Fig. 4. An example of ONT edge processing and the labeling of the children of y.

v ∈ Gs. Such vertices v are removed from Gs. If Gs �= ∅ after all ENT edges have
been processed, then every vertex v in the remaining Gs is a candidate vertex.
First, we need a lemma.

Lemma 6. Let ej = (wj , uj) be an ENT edge in G. Let z = lca(y, uj). Then the
condition 2 in Definition 3 is satisfied for ej with respect to a vertex v ∈ T [x, y]
if and only if one of the following two conditions holds:

1. If z = y and uj ∈ T (ychild) for a marked child ychild of y, then v ∈ T [x, y] −
T (wj , z].

2. Otherwise, v ∈ T [x, y] − T (wj , z).

(When z = wj or z is an ancestor of wj, T (wj , z) and T (wj , z] are empty
sets).

Proof. Partition the vertices of G = (V,E) into three subsets as follows:

– Top = V − T (x).
– Mid = (T (x) − T (y)) ∪ {y}. (Note that Mid contains both x and y).
– Bottom = T (y) − {y}.

The proof is divided into cases depending on the position of wj and uj .

Case 1: Both wj and uj are in Top (see the edge e1 in Fig. 5 (a)). We have
wj ∈ T [r, x) and z ∈ T [r, x). So T [x, y] − T (wj , z) = T [x, y]. The condition 2 in
the lemma holds in this case. It is clear that, for any v ∈ T [x, y], the condition
2 (a) in Definition 3 holds for ej = (wj , uj) with respect to v.

Case 2: both wj and uj are in Bottom (see the edge e2 in Fig. 5 (a)). We have
z = lca(y, uj) = y. So z is an ancestor of wj , and T (wj , z) = T (wj , z] = ∅. Hence
T [x, y]−T (wj , z) = T [x, y]−T (wj , z] = T [x, y]. In this case, either the condition
1 or the condition 2 in the lemma holds. In both cases, the condition 2 (b) in
Definition 3 holds for ej = (wj , uj) with respect to any v ∈ T [x, y].

Case 3: wj ∈ Top and uj ∈ Mid (Fig. 5 (b)). The condition 2 in the lemma
holds in this case. We have wj ∈ T [r, x) and z ∈ T [x, y) (when uj �= y) or z = y
(when uj = y). In either case, T [x, y] − T (wj , z) = T [z, y].

174 D. He and X. He

uj

e j

uj

e j

u2 u1

2e

1e

u2

2e
1e

u1

e1

2u

e 2

2w

Mid

Top

z

y

x

(c) case 4

Mid

Top

z

w

x

y

(b) case 3

Bottom
Bottom

Mid

Top Top

Mid

x

y

x

y

(d) case 5 (e) case 6

Bottom

w
2

1w

j

wj w

2w
1

Bottom

w

x

Top

u

1

1

Bottom

(a) case 1 and 2

Mid

z

y

Fig. 5. Cases of ENT edges with respect to their location in T [x, y].

Consider any vertex v ∈ T [x, z). Recall that there exists at least one ONT
edge ei = (wi, ui) such that wi ∈ T [r, x) and ui ∈ T (y). So both uj and ui are
in T (vchild) where vchild is the child of v in T [x, y]. Thus the condition 2 (b) in
Definition 3 fails for ej = (wj , uj) with respect to v.

Consider any vertex v ∈ T [z, y]. If v �= z, both end vertices of ej = (wj , uj)
are in Upper(v). So the condition 2 (a) in Definition 3 holds for ej . If v = z,
then uj ∈ T (vchild) for a child vchild of v. Note that there exists no ONT edges
ei = (wi, ui) such that ui ∈ T (vchild). (This is because for any ONT edge
ei = (wi, ui), ui ∈ T (y)). So the condition 2 (b) in Definition 3 holds for ej .
Thus T [x, y] − T (wj , z) = T [z, y] contains exactly those vertices v for which the
condition 2 in Definition 3 holds for ej .

Case 4: wj and uj both ∈ Mid (Fig. 5 (c).) The condition 2 in the lemma holds
in this case. We have wj ∈ T [x, y) and z ∈ T [x, y].

For any vertex v ∈ T (wj , z), the condition 2 (b) in Definition 3 fails for
ej = (wj , uj) with respect to v. Note that T [x, y] is “cut” by T (wj , z) into two
parts: T [x,wj] and T [z, y]. For any vertex v ∈ T [x, , wj], the condition 2 (b) in
Definition 3 holds for ej with respect to v. For any vertex v ∈ T [z, y], by using
the same argument as in Case 3, either the condition 2 (a) (when v �= z) or the
condition 2 (b) (when v = z) in Definition 3 holds for ej with respect to v. Thus
T [x, y] − T (wj , z) contains exactly those vertices v for which the condition 2 in
Definition 3 holds for ej .

Case 5: wj ∈ Mid and uj ∈ Bottom (Fig. 5 (d)). We have wj ∈ T [x, y] and
z = lca(y, uj) = y. Let ychild be the child of y such that uj ∈ T (ychild).

Case 5a: ychild is unmarked (see the edge e1 in Fig. 5 (d)). The condition 2 in
the lemma holds in this case.

For any vertex v ∈ T (wj , y), the condition 2 (b) in Definition 3 fails for
ej = (wj , uj) with respect to v. (Recall that there exists at least one ONT
edge ei = (wi, ui) such that wi ∈ T [r, x) and ui ∈ T (y).) Consider any vertex
v ∈ T [x, y] − T (wj , y) = T [x,wj] ∪ {y}. Regardless of whether v = y or v ∈
T [x,wj], the condition 2 (b) in Definition 3 holds for ej with respect to v. Thus
T [x, y] − T (wj , y) contains exactly those vertices v for which the condition 2 in
Definition 3 holds for ej .

A Linear Time Algorithm for Determining Almost Bipartite Graphs 175

Case 5b: ychild is marked (see the edge e2 in Fig. 5 (d)). The condition 1 in the
lemma holds in this case.

For any vertex v ∈ T (wj , y], the condition 2 (b) in Definition 3 fails for
ej = (wj , uj) with respect to v. For any vertex v ∈ T [x, y] − T (wj , y] = T [x,wj],
the condition 2 (b) in Definition 3 holds for ej with respect to v. Thus T [x, y] −
T (wj , y] contains exactly those vertices v for which the condition 2 in Definition 3
holds for ej .

Case 6: wj ∈ Top and uj ∈ Bottom. (Fig. 5 (e)). We have wj ∈ T [r, x) and
z = lca(y, uj) = y. Let ychild be the child of y such that uj ∈ T (ychild).

Case 6a: ychild is unmarked (see the edge e1 in Fig. 5 (e)).
Case 6b: ychild is marked (see the edge e2 in Fig. 5 (e)).
The proofs for Cases 6a and 6b are similar to the proofs for Cases 5a and 5b.

The only difference is that, because wj ∈ T [r, x), T [x, y] − T (wj , y) = {y}, and
T [x, y] − T (wj , y] = ∅. 	

Definition 4. Let ej = (wj , uj) be an ENT edges in G and let z = lca(y, uj).
Define w′

j , v
′
j to be the vertices in T [x, y] such that:

1. T [x, y] − T [w′
j , u

′
j] = T [x, y] − T (wj , z] if the condition 1 in Lemma6 holds.

2. T [x, y] − T [w′
j , u

′
j] = T [x, y] − T (wj , z) if the condition 2 in Lemma6 holds.

The following lemma immediately follows from Lemma 6 and Definition 4:

Lemma 7. Let ej = (wj , uj) (1 ≤ j ≤ q) be all ENT edges in G. Then v is a
candidate vertex of G if and only if

v ∈ Gs =
q⋂

j=1

(T [x, y] − T [w′
j , u

′
j]) = T [x, y] −

q⋃
j=1

T [w′
j , u

′
j]

Note that the final set Gs could be a series of tree paths contained in T [x, y]. If
Gs = ∅, then there are no candidate vertices in G. If Gs �= ∅, then every vertex
in Gs is a candidate vertex. The following algorithm calculates the final set Gs

of candidate vertices.

Lemma 8. Algorithm 2 takes O(m + n) time.

Proof. Let m1 < m be the number of ENT edges in G. Calculating (w′
j , u

′
j) for

each ENT edge ej = (wj , uj) can be done in O(1) time by using the operations
in Fact 1 and Fact 2. So the step 1 takes O(m1) time.

Algorithm 2. Processing ENT Edges
Input: The tree path T [x, y]. Label the vertices in T [x, y] as x = x1, x2, . . . , xt = y.
1. For each ENT edge ej = (wj , uj) (1 ≤ j ≤ q), calculate w′

j , u
′
j as in Definition 4.

2. Sort the intervals [w′
j , u

′
j] (1 ≤ j ≤ q) using bucket sort with w′

j as the key.
3. Scan the sorted intervals [w′

j , v
′
j] and calculate the union

⋃q
j=1 T [w′

j , v
′
j].

4. Return Gs = T [x, y] −⋃q
j=1 T [w′

j , v
′
j].

176 D. He and X. He

Because w′
j , v

′
j are in the range x1, . . . , xt with t ≤ n, the bucked sorting

operation takes O(m1 + n) time. Once the intervals [w′
j , v

′
j] are sorted, their

union (step 3) can be calculated in O(m1 + n) time. Thus, Algorithm 2 takes
O(n + m) time in total. �

In summary we have:

Theorem 2. Let G be a non-bipartite graph. We can determine if G is an almost
bipartite graph, and find the candidate vertices in G if it is, in O(n + m) time.

Proof. The preprocessing (constructing a DFS tree) takes O(n + m) time. By
Lemma 5, the processing of all ONT edges takes O(m + n) time. By Lemma 8,
the processing of all ENT edges takes O(m + n) time. The correctness of the
algorithm follows from the discussions in previous sections. 	

References

1. Boundy, J.A., Murty, U.S.R.: Graph Theory with Applications. Elsevier, North
Holland (1976)

2. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms,
3rd edn. The MIT Press, Cambridge (2009)

3. Dujmović, M., Wood, D.R.: On linear layout of graphs. Discrete Math. Theoret.
Comput. Sci. 6, 339–358 (2004)

4. Iwata, Y., Oka, K., Yoshida, Y.: Linear-time FPT algorithms via network flow. In:
Proceedings of the SODA, vol. 2014, pp. 1749–1761 (2014)

5. Proömel, H.J., Schickinger, T., Steger, A.: A note on triangle-free and bipartite
graphs. Discrete Math. 257(2–3), 531–540 (2002)

6. Ramanujan, M.S., Saurabh, S.: Linear time parameterized algorithms via skew-
symmetric multicuts. In: Proceedings of the SODA, vol. 2014, pp. 1739–1748 (2014)

The First-Order Contiguity of Sparse
Random Graphs with Prescribed Degrees

Nans Lefebvre(B)

LIAFA, Université Paris VII, Paris, France
nans.lefebvre@liafa.univ-paris-diderot.fr

Abstract. Two models are first-order contiguous if they satisfy asymp-
totically almost surely the same sets of first-order formulas, a notion
introduced to classify random structures from a logical point of view.
We study in particular the random graph defined as the uniform distri-
bution on graphs with a given degree sequence. We characterise degree
sequences that define contiguous random graph sequences, and in partic-
ular contiguous to an Erdős-Rényi random graph. The method allows to
extend a result of Lynch showing that a large class of degree sequences
define random graphs that have a convergence law.

Keywords: Logic · Finite model theory · Random graphs · Convergence
laws

1 Introduction

The logical analysis of random graphs began in [5] and independently in [4], and
throughout the years successfully charted all of the so-called Erdős-Rényi model,
as summarised in [12]. The ubiquity of graphs in computer science and other
fields, from biology to physics, introduced the need for more complex models of
graphs in order to model various phenomena. One such model is the random
graph with prescribed degrees, where a graph is taken uniformly among graphs
having a given degree sequence; the rationale is that various processes lead to
graphs having degree sequences very close to some probability distribution (often
power laws). Understanding these graphs may then give an insight into many
areas such as social networks or protein interactions. An account of the relevance
of this model for real-world networks can be found in [3].

The notion of first-order contiguity is the main concept introduced to charac-
terise sequences of graphs that have a similar behaviour with regard to first-order
logic. Two sequences of random graphs are (first-order) contiguous if they have
the same set of almost sure formulas. It is analogous to the statistical notion of
contiguity from [7]. This is a tool to compare various models of random graphs;
in recent years many random processes generating random graphs were intro-
duced, such as growing graphs, preferential attachment, etc., and some exhibit
new behaviours while some are contiguous to simple random graph models. Con-
tiguity also allows to determine how resilient a random process is, i.e. how much
it must it be modified to give non-contiguous random graphs.
c© Springer International Publishing Switzerland 2015
R. Jain et al. (Eds.): TAMC 2015, LNCS 9076, pp. 177–188, 2015.
DOI: 10.1007/978-3-319-17142-5 16

178 N. Lefebvre

In [10] Lynch proved that a large class of asymptotic degree sequences define
random graphs that have a convergence law, i.e. the probability that a formula
of first-order logic is satisfied converges to a limiting value for any formula. This
is the first result extending the logical convergence to a model studied for its
likeness to real-world networks, including power law graphs. This paper builds
upon [10], and extend it by giving a necessary and sufficient condition for which
the theorem applies. Besides this extension, the main results are:

– A criterion to determine if two random graphs with given degree sequences
are contiguous (Theorem 4), and in particular contiguous to the Erdős-Rényi
graph G(n, 1

n) (Theorem 5).
– A complete taxonomy of the ordered continuum of theories generated by these

degree sequences (Theorem 6).

The proof also gives a first-order axiomatisation of the first-order theories gen-
erated, as well as the limiting values of the formula probabilities.

In the second section the notations from random graphs, logic and probability
are introduced. In the third section the convergence law result is reproven, and
extended with a necessary and sufficient condition. The main results are stated
and proved in the fourth section, and some remarks on future work conclude.

2 Preliminaries

This section introduces the prerequisite from graph theory, logic, and probability,
to state the main results. Let D ∼ d denote a random variable sampled from
distribution d, and P(N) denote the set of distributions on N. Let (n)k denote
the k-falling factorial of n, (n)k =

∏k−1
i=0 (n − i).

2.1 Graph Theory

A graph Gn = (V,E) = ({1, . . . , n},

()) is a set of vertices equipped with an edge
relation, which is symmetric and irreflexive. A random graph, denoted by Gn,
is a probability distribution on the 2(

n
2) possible graphs; sequences of random

graphs (Gn)n∈N are usually denoted by G. A multigraph is a graph that can have
multiple edges between pairs of vertices as well as loops on a single vertex, and
the set of multigraphs is denoted by G.

Let C be the class of all connected graphs, and T ⊂ C be the class of all
connected trees. Let Ak, Pk, Ck and Kk denote respectively the anticlique, the
path, the cycle, and the clique on k vertices. The excess of a graph is |E| − |V |,
and is denoted exc(H). If H ∈ C then exc(H) � − 1, with exc(H) = −1 exactly
for trees, while exc(H) = 0 for unicyclic graphs (graphs that contain exactly one
cycle), and exc(H) > 0 for graphs that contain at least two cycles. The degree
of vertex i in a subgraph H is denoted deg(i,H).

For any subgraph H of a graph G, Φ(H) denote the formula asserting that
there is an embedding of H in G, and Ψ(H) that there is an isolated com-
ponent isomorphic to H. For example, Φ(K2) = ∃x1x2. (x1

() x2), and Ψ(K2) =

Contiguity of Graphs with Prescribed Degrees 179

∃x1x2∀y. (x1

()

x2)∧
∧

i∈{1,2}((y = xi)∨¬(y ()

x3−i)). Similarly, let Φ(H) denote
the formula with a set of |VH | free variables asserting that the subgraph restricted
to the free variables is homomorphic to H (so Φ(K2)(x1, x2) = (x1

() x2)),
so that E[Φ(H)] is the expected number of embeddings of H in G. A set of
vertices v1, v2, . . . is a realisation of H if Φ(H)(v1, . . .) holds, and if the asymp-
totic probability that a subgraph is embedded is nonzero, the graph is realisable.

A degree sequence is just a sequence of natural numbers d = (d(0), d(1), . . .),
where d(i) is the number of degree i vertices, and a sequence is feasible if there
is a graph with exactly that degree sequence; it implies that there exists a n
such that d(i) = 0 for all i � n,

∑
i∈N d(i) = n and that

∑
i∈N i · d(i) is even.

Sequences of feasible degree sequences are denoted by D = (d0, d1, . . .) and called
asymptotic degree sequences (short a.d.s.) if there is a probability distribution
dD ∈ P(N) such that limn→∞ dn(i)/n = dD(i) (usually the subscript is clear
from the context and therefore omitted). Given d define d∗ to be the degree
distribution d stripped of its degree 0 vertices, d∗(i) = d(i)/(1−d(0)) for all i 	= 0
and d∗(0) = 0. The random graph G(n,D) is defined as the uniform distribution
on n vertices graphs having degree sequence dn = (dn(0), dn(1), . . . , dn(n − 1)),
and defines naturally a random graph sequence G(D).

Definition 1. Let
D� be the set of indices of D that are asymptotically 0. Sim-
ilarly �D is the complementary set, i.e. the set of degrees that are asymptotically
represented with nonzero probability. The set �D is called the support of D.

The degree sequences considered here satisfy condition (H2) (they have a bounded
second moment) given by:

Definition 2. Let the condition (Hp) be:

lim
n→∞

1
n

n∑
i=0

ipdn(i) =
∞∑

i=0

ipd(i)

The configuration model is a way to generate graphs with a given degree sequence,
using the idea that it is much simpler to sample a multigraph having the degree
sequence than a simple graph. A configuration on degree sequence d on n vertices
is a set C of

∑n
i=0 i · d(i) elements provided with a partition in n equivalence

classes and a random matching of its elements. A multigraph is obtained from
this matching by collapsing each equivalence set of nodes into a vertex, and set
i () j for every node in the equivalence class of i matched with a node in the
class of j. This gives a distribution on multigraphs with degree sequence D, such
that, conditioned on the multigraph being simple, is the uniform distribution on
graphs with degree sequence D, provided that d satisfies (H2) (see [8]). There-
fore, the probability of a graph property can be obtained from the configuration
model, using for a formula ϕ

μ(ϕ,G(n,D)) =
μ(ϕ ∧ Φ,G(n,D))

μ(Φ,G(n,D))

180 N. Lefebvre

with Φ being the property that the multigraph is simple, i.e. has no loops nor
multiple edges (μ is defined in the next subsection). This allows to transfer
results on the configuration model to graphs with given degree sequence.

2.2 Logic

The language of first-order (FO) logic on graphs is defined as the closure under
logical connectives and quantifiers of atomic formulas, where variables stand for
vertices, with equality and one binary predicate interpreted by the edge relation.
The probability that a FO-formula ϕ is satisfied by Gn is denoted by μ(ϕ,Gn),
and, when it exists, μ(ϕ,G) = limn→∞ μ(ϕ,Gn) denotes the limiting probability.
A convergence law holds on G for the language L if any sentence of L has
a limiting probability, and a 0-1 law holds if the limiting probabilities are all
either 0 or 1. Here L is always FO-logic. If Φ is a set of sentences, called a set of
axioms, the set of implied formulas TΦ = {φ | Φ |= φ} is called the theory of Φ.
If every FO-sentence (or its negation) belongs to the theory, it is complete. It is
called an almost sure theory if Φ is a set of (asymptotically) almost sure axioms.
Similarly the theory TD of a class of (random) structures D is the set of formulas
that are (almost surely) true on this structure. Since every formula in a theory
may be deduced from a finite set of axioms, an almost sure theory is consistent
(it does not prove a formula and its negation). Now the notion of contiguity from
[7] is adapted to first-order logic to compare structures according to their limit
theories.

Definition 3. Two random graph sequences G and G′ are weakly FO-contiguous
if for all FO-sentences ϕ, μ(G, ϕ) exists and μ(G, ϕ) = 1 iff μ(ϕ,G′) exists and
μ(ϕ,G′) = 1 holds. If additionally μ(ϕ,G) exists iff μ(ϕ,G′) exists, then G and
G′ are FO-contiguous. Furthermore G and G′ are strongly FO-contiguous if for
all FO-sentences ϕ, μ(ϕ,G) = μ(ϕ,G′).

2.3 Galton-Watson Branching Processes and Local
Weak Convergence

In the random graphs studied here, the typical neighbourhood of a vertex con-
verges towards a simple object, a branching process. This is called the local weak
convergence [11]. For a distribution d ∈ P(N) with positive first moment, define
d∗∗ as

d∗∗(k − 1) =
kd(k)∑

i id(i)
.

The Galton-Watson tree with distribution d is defined by a unique root vertex
in generation 0, which has D ∼ d children in generation 1. Then each vertex in
generation i > 0 has independently D ∼ d∗∗ children in generation i + 1. Let
GW(d) denote the distribution on rooted trees induced by this process.

A graph G induces a distance between vertices dG(u, v) defined as the mini-
mum length of a path between u and v. A graph G induces for every vertex v a
rooted graph G[v], where v is called the root; if G is not connected, then G[v] is

Contiguity of Graphs with Prescribed Degrees 181

restricted to the connected component containing v. An isomorphism of rooted
graphs G1[v1] and G2[v2] is an isomorphism of graphs that maps the root v1 to
the root v2. For a graph G, let BG[v, i] be the rooted graph that is the ball of
diameter i (for the graph distance) centered on vertex v. This allows to define a
distance between two rooted graphs as d(G1[v1], G2[v2]) = 1/(1 + T) where

T = sup{t | there exists an isomorphism from BG1 [v1, t] to BG2 [v2, t]}
To a graph G can therefore be associated a probability measure on the set of all
rooted graphs defined by

U(G) =
1

|V |
∑
v∈V

δ[G[v]]

where δ is the Dirac function. Let � denote the weak convergence of probability
measures (see the textbook [1]).

Definition 4. A sequence (Gn)n∈N has local weak limit ρ if U(Gn) � ρ.

This machinery is applied in the next section to show that with some hypotheses
on the degree sequence, the local weak limit is a Galton-Watson tree.

3 Convergence of Graphs with Prescribed Degrees

To obtain a convergence law, it is necessary to put some restrictions on the
degree sequences considered. Throughout the literature the sequences satisfying
some conditions are called smooth, well-behaved, etc. Four conditions describe a
class of a.d.s., as in [10].

Definition 5. An asymptotic degree sequence D is an l-a.d.s., if the following
conditions hold:

(1) limn→∞ dn(i)/n = d(i) uniformly in i, and there exists an N such that for
all i with d(i) = 0, dn(i) = 0 for all n > N .

(2)
∑∞

i=0 i · d(i) = Δ < ∞.
(3) limn→∞

∑n−1
i=1 i · dn(i)/n = Δ.

(4) There exists a constant a < 1/4 such that for all n and i > na, dn(i) = 0.

These conditions are sufficient to derive the following theorem:

Theorem 1 [10]. Let D be an l-a.d.s., then G(n,D) has a convergence law.

Note that the theorem is stated in [10] for l-a.d.s. satisfying an additional con-
dition, which is that d(0) = 0, which is not a loss of generality by Lemma 2.1
of the original paper [10]. To show this, consider G(n, d) a random graph with
degree sequence d with k isolated vertices, then G ∼ G(n, d) has the same law
as G′ + Ak, with G′ ∼ G(n − k, d∗). Since the explicit values of formulas are
considered, it is easier to directly consider a.d.s. for which d(0) 	= 0, while the
subgraph counts are computed on d∗.

182 N. Lefebvre

The proof is in fact carried on configurations, using the fact that l-a.d.s.
satisfy (H2), so the distribution induced by configurations on simple graphs
is uniform. Therefore the convergence of first-order formulas on the configura-
tions is sufficient to deduce a convergence law for G(n,D). The main idea is to
use the Gaifman Locality Lemma, and Ehrenfeucht-Fräıssé games to reduce the
equivalence with regard to first-order logic to a game played on a finite set of
structures. If the duplicator has a winning strategy, then no first-order formula
can differentiate the two structures. Then it is shown that only certain classes
of neighbourhoods (defined by their excess) need to be considered, and finally
the theorem follows by counting the number of neighbourhoods in each class.

In some sense, a first-order formula with q quantifiers cannot count to more
than q, anything more is considered to be ‘infinite’. The notion of a q-sphere is
introduced to formalise this notion: a q sphere is a ball with root r of diameter
q where every vertex at distance i from r has at most q + 1 − i neighbours of
each type of (q − i)-sphere. The type of q-sphere associated to a ball BG(v, q)
is obtained by setting the number n of neighbours of a given type to q + 1 if it
is greater than q + 1. Fix q ∈ N, and for any i < 3q and B an isomorphism class
of i-spheres, let τj,B denote the number of vertices v such that the ball BGj

(v, i)
is in class B, for j ∈ {1, 2}. Then Hanf’s lemma states that G1 is equivalent
to G2 up to q-quantifiers formulas if and only if τ1,B = τ2,B or both τ1,B > q
and τ2,B > q, for all i-sphere B. Note that since the number of isomorphism
classes of q-spheres is finite, only a finite quantity of information is needed to
determine the truth of q-quantifiers formulas. Then the proof follows from the
three following lemmas:

(i) If exc(H) < 0 then there are either zero or an unbounded number of reali-
sations of H in G.

(ii) If exc(H) = 0 then the number of realisations of H in G converges to a
finite value.

(iii) If exc(H) > 0 then there are almost surely no realisations of H in G.

The condition (i) follows from the convergence to the local weak limit:

Theorem 2 [11]. Let D be an a.d.s. such that d satisfies (H2). Then, as n goes
to infinity, E[U(Gn)] � GW(d).

From which follows that all trees that appear as embedded or induced subgraphs
have an unbounded number of realisations. Furthermore a tree T appears as an
induced component if and only if d(deg(i)) > 0 for all i ∈ T .

Lemma 1 [8](Subgraph count). Let D be an a.d.s., H ∈ C be a graph on k
vertices with m edges, maximal degree p � 1 and number of automorphisms c.
Let D ∼ d∗. Suppose D respects condition (Hp), then the expected number of
realisations of H in G(n,D) is

lim
n→∞E[Φ(H)] = n−exc(H)

∏k
i=1 E[(D)deg(i,H)]

c(E[D])m

and converges in distribution to a Poisson variable.

Contiguity of Graphs with Prescribed Degrees 183

A detailed proof can be found in [2]. Since l-a.d.s. satisfy (H4) by (4), conditions
(ii) and (iii) can be deduced. However a weaker (and sufficient condition) is
required, as shown next.

Definition 6. An asymptotic degree sequence D is an L-a.d.s., if it satisfies
conditions (1)–(3) and (4’), which is that (H2) holds and E[(D)4] = o(n).

Theorem 3. The graph sequence G(n,D) has a convergence law and satisfies
(i)–(iii) if and only if D is an L-a.d.s.

Proof. First, note that (i) is implied by the local convergence, and (ii) holds
if and only if (H2) holds, as it is sufficient to consider the Cn subgraphs (more
details on the number of cycles are given in the next section, see corollary 1). For
condition (iii), any subgraph with positive excess contains a minimal subgraph
of excess exactly 1 with maximal degree 4 (in the case of two cycles joined by one
vertex) or two vertices of degree 3 and all the other vertices having degree 2. So
by plugging these parameters into lemma 1, for any subgraph H with exc(H) = 1
and maximal degree p, E[Φ(H)] = Θ(E[(D)p]/n), so this goes to zero exactly
when E[(D)p] = o(n), as given by condition (4’). To show that this is a necessary
condition, we consider a counterexample. Take d a power law of exponent 3, i.e.
d ∼ k−3. Then E[(D)4] = Θ(n), so E[(D)4]/n → l > 0. So in the case of power
law graphs, conditions (i)–(iii) hold exactly as long as (H3) is satisfied, since
(Hp) implies that the exponent is strictly greater than p. The reader is referred
to the original paper [10] for a formal proof of the combinatorial lemmas and the
winning strategy for Ehrenfeucht-Fräıssé used to deduce the convergence law. �

4 Main Results

The subgraph count lemma and the local weak convergence give explicit formulas
to compute the sets of realised subgraphs. This allows to describe the possible
limit theories in detail and to give first-order axiom schemes.

4.1 Asymptotic Degree Sequences and 0-1 Laws

The probabilities of first-order formulas therefore depend on d. One can ask
whenever 0-1 laws hold, so some notation is introduced to answer this question.

Let D0 be the set of a.d.s. that with d(0) = 1, D1 be the set of a.d.s. with
d(1) = 1, and D0,1 be the class of all a.d.s. such that �D = {0, 1}. By condition
1, the proportion of vertices of degree i is asymptotically 0 if and only if it is
always 0 after some N , so all a.d.s. in D0 can be truncated to an a.d.s. with
dn = (n, 0) for all n. Therefore any d-regular sequence can be considered to have
a unique L-a.d.s. representative.

Definition 7. An asymptotic degree sequence D is an L∗-a.d.s., if D is an L-
a.d.s. and D is not in D0, in D1, nor in D0,1.

184 N. Lefebvre

Lemma 2. Let D be an L-a.d.s., then G(n,D) has a 0-1 law if and only if D
belongs to D0, to D1, or to D0,1.

Therefore only the trivial L-a.d.s. have 0-1 laws.

Proof. The if part is direct, and proven first. The sequence G(n,D0) has for
every n only one support graph, the empty graph. This sequence converges to
the infinite empty graph, which has an ω-categorical theory (all infinite countable
models of the theory are isomorphic), axiomatised by the following formulas:

– No two vertices are adjacent: ∀xy. (x � y)
– There are at least k distinct vertices: Ak := ∃x1 . . . xk. (

∧
i�=j xi 	= xj)

The sequence G(n,D1) converges to an infinite collection of independent edges,
which has an ω-categorical theory, axiomatised by the Ak axiom scheme and the
formula

∀x∃y∀z. (x () y ∧ (x () z =⇒ z = y)).

Finally, for any D ∈ D0,1, the sequence converges to an infinite collection of iso-
lated vertices and isolated edges, which has an ω-categorical theory, axiomatised
by the Ak axiom scheme and the formula

∀x∃y∀z. ((x ()

y ∧ (x ()

z =⇒ z = y)) ∨ x � z).

The other direction is proved using the following lemma:

Lemma 3. Let D be an L∗-a.d.s., then for all cycles Cn, μ(Φ(Cn),G(n,D)) /∈
{0, 1}, the probability that there is an embedding of Cn is neither 0 nor 1.

Which follows from the subgraph count lemma specialised to cycles:

Corollary 1. (Cycles count) Using the same hypothesis as in 1, for all k � 3,
the expected number of cycles of length k in G(n,D) with D an L-a.d.s. is

lim
n→∞E[Φ(Ck)] =

(E[(D)2])k

2k(E[D])k

Now, this last corollary gives us that the number of expected cycles is finite, and
it is furthermore possible to show using Stein’s method that it converges in dis-
tribution to a Poisson variable. This expression can be rewritten as (2kΔk)−1 ×∑

i i(i − 1)d(i), so this number is positive if and only if �D contains values
greater than 1. Therefore for any L∗-a.d.s. D, 0 < μ(Φ(Cn),G(n,D)) < 1, so
G(n,D) has no 0-1 law, which concludes the proof. �

4.2 First-Order Contiguity of G(n,D) Graphs

The previous results show that the limit theory depends on d. This intuition is
formalised by the next theorem, which shows that the limit theory only depends
on the support of d, and the actual probabilities do not matter.

Contiguity of Graphs with Prescribed Degrees 185

Theorem 4. Let D, D′ be L-a.d.s., then G(n,D) and G(n,D′) are contiguous
if and only if
D� =
D′�.
Proof. The idea is to show, given a D, how to axiomatise the theory T	D
 from
�D. From condition (i)–(iii), only tree components appear in the almost sure
theory. The almost sure theory also contains the formulas stating that every
subgraph with exc(H) > 0 is not realised. From Corollary 1, sentences about
unicyclic components (or their negation) do not appear in the almost sure theory.
Let the axiom scheme Bk be ‘there is no set of k vertices with at least k + 1
edges’; Bk ∈ T	D
 for every k and �D. The axiom schemes corresponding to
condition (i) are:

– ΥT,k : There are at least k different exact realisations of T for all k ∈ N and
every T such that GW(d)[T] > 0. Let ΥD denote the set of ΥT,k axioms of D.

– degk : There are no vertices of degree exactly k for all k ∈
D�.
Where an exact realisation of a tree T is an embedding of T where deg(i, T) =
deg(i, G) for every vertex that is not a leaf in T if GW cannot die out isomorphic
to T , and including the degree of the leaves otherwise (for example if D is 3-
regular, then the corresponding GW cannot die out and induced components are
not considered). Note that the degk axiom scheme can be replaced by a single
sentence if and only if the set �D is finite or cofinite.

From the Gaifman locality lemma, these sets of axioms are sufficient to deter-
mine the truth of first-order formulas. Since they depend only on GW(d), and
GW(d)[T] > 0 depends only on �D, the claim follows. �

Corollary 2. Let D, D′ be L∗-a.d.s., then G(n,D) and G(n,D′) are strongly
contiguous if and only if dD = dD′ .

Note that this statement is false for L-a.d.s., any two D, D′ in D0,1 are strongly
contiguous since a 0-1 law holds.

Proof. Let i � 2 be such that d(i) 	= d′(i). Then consider the formula ϕ being
“there is a vertex of degree exactly i in a triangle”; the limiting probability of
this formula is a binomial random variable where the parameter n is three times
the number of triangles in the graph and the parameter p is Pr[deg(v) = i].
Since by assumption Pr[deg(v) = i] is different in G(n,D) and G(n,D′), either
μ(ϕ,G(n,D)) 	= μ(ϕ,G(n,D′)) or μ(Φ(C3),G(n,D)) 	= μ(Φ(C3),G(n,D′)).

In the other direction, from previous lemmas it follows that the local geom-
etry of the graph can be asymptotically computed from d alone. In particular
it is sufficient to consider the probability of unicyclic neighbourhoods since the
formulas that have a 0 or 1 limiting probability are the same. The claim follows
from the fact that these probabilities only depend on d. �

4.3 Contiguity with Erdős-Rényi Random Graphs

The Erdős-Rényi model G(n, p) is the simplest model of random graph, where
each edge is independently present with probability p(n). The sparse regime is

186 N. Lefebvre

when p(n) = c/n, so that the average degree is c. This regime is well-studied,
G(n, c/n) has a convergence law and furthermore G(n, c1/n) and G(n, c2/n) are
contiguous for any c1, c2 ∈ N.

Theorem 5. A random graph sequence G(n,D) is FO-contiguous to the Erdős-
Rényi graph G(n, c/n) for any c if and only if D is such that �D = N.

Proof. To show that the two models produce contiguous random graphs, observe
that conditions (i)–(iii) hold on G(n, c/n), as was proven in [9]. Condition (iii) is
immediate, since the probability that there is a graph with positive excess is given
by

(
n
k

) · (c
n)k+1 = Θ(1

n) since there are
(
n
k

)
possible sets of k vertices and each of

the k +1 edges is present independently with probability c/n. Condition (ii) can
be proved, as on the configuration model, by using the method of moments to
show that the number of cycles converges to a Poisson variable. Finally condition
(i) follows from the convergence to the local weak limit GW(Poic). Therefore
every T ∈ T is embedded in the graph and appears as an induced component,
so ΥG(n,c/n) = ΥN, where ΥN is the set of axioms for any G(n,D) with �D =
N. From this follows that for G(n, c/n), Φ = Ψ = {T | T ∈ T }. The other
direction follows, since the first-order contiguity is an equivalence relation, from
theorem 4, two sequences G(n,D) and G(n,D′) are contiguous if and only if
�D = �D′. �

A consequence in the Erdős-Rényi case is that the limiting probability of every
formula can be written using the constant 1, the values of Poi(c), subtraction
and multiplication. This result has an analogous for L-a.d.s. depending on d.

Corollary 3. For any formula of first-order logic, its limiting value can be writ-
ten using the constant 1, the values from GW(d) and E[Φ(Ck)] ∼ Poi(f(k)),
subtraction and multiplication.

Sketch of the proof. Since the only formulas that are not either almost surely true
nor almost surely false are about unicyclic neighbourhoods, they can be written
using the probabilities that any type of cycle is realised, and the probabilities
that the involved vertices branch in a certain way.

4.4 A Taxonomy of the Limit Theories

The previous subsections associate axiom schemes to every possible support,
which allows to order the limit theories. Two other natural orders can be defined.
Let ΦD = {Φ(H) | μ(Φ(H),G(n,D)) = 1 ∧ H ∈ C} denote the set of axioms
defined by the set of connected subgraphs almost surely embedded in G(n,D). Let
ΨD = {Ψ(H) | μ(Ψ(H),G(n,D)) = 1 ∧ H ∈ C} denote the set of axioms defined
by the set of subgraphs that almost surely appear as induced components. Note
that ΦD is never empty since A1 always belongs to it, while ΨD can be empty,
if there is no small isolated component occurring with high probability. For
example ΦD0 = ΨD0 = {A1}, while ΨD2 = ∅ and ΦD2 = {Pn | n ∈ N}. Let D be
such that �D = N, then ΦD = ΨD = {T | T ∈ T } (Fig. 1).

Contiguity of Graphs with Prescribed Degrees 187

Theorem 6. There is a continuum of different limit theories defined by G(n,D)
graphs with D an L-a.d.s., naturally ordered by their supports �D. The natural
orders correspond to natural orders on the Φ, Ψ and Υ axiom sets, and the theory
of G(n, 1/n) is maximal for all these orders.

Fig. 1. The orders defined by the limit theories

Proof. The �Υ order is defined by the inclusion order on supports, TD �Υ TD′

is true if �D ⊆ �D′. The maximum is � = N but there is no minimum since
⊥ = ∅ which is not a possible support, so this partial order is only a semi-lattice.
By definition if �D ⊆ �D′ then ΥD ⊆ ΥD′ . These theories are also ordered by
the Φ and Ψ sets of axioms corresponding respectively to the �Φ and �Ψ order
on supports. The order TD �Ψ TD′ is defined by max �D � max �D′, so this is
a linear order. Let the order �Ψ be the lattice defined by:

– ⊥ = ∅ for all D such that min �D � 2
• if 0 ∈ D and 0 ∈ D′, then D �Ψ D′ if and only if �D ⊆ �D′
• if 1 ∈ D and 1 ∈ D′, then D �Ψ D′ if and only if �D ⊆ �D′
• otherwise D and D′ are incomparable.

– � = {T | ∀T ∈ T }
Each different limit theory is defined by a set of contiguous random graph
sequences, each depending on the support of D. There is an uncountable number
of such supports since every nonempty subset of N can be the support of some
L-a.d.s. D. To see this, let S be a subset of N, take any d ∈ P(N) satisfying
(H3) with support S. One gets D by sampling n integers from d for every n; it is
known that every d satisfying (H2) is feasible for all n > N , for some N depend-
ing only on d. Some care has to be taken to make the sum of the degrees even,
which can be done by modifying only one vertex (unless the support contains
only odd numbers, in which case G(n,D) is only defined on odd n). This process
therefore generates a sequence of feasible degree sequences, and it converges to
d with support S. �
Sequences with a sublinear number of edges behave similarly, provided that
D∗ � d∗. The limit theories are exactly the same, only the rate of convergence
would be modified (in the obvious way). However no degree sequence can be
contiguous to an Erdős-Rényi graphs with a sublinear number of edges, e.g.
G(n, c/n1+1/k), since the realised subgraphs are exactly the trees on at most
k − 1 vertices, whereas no branching process can generate exactly these trees.

188 N. Lefebvre

5 Conclusion

In the light of first-order contiguity, the statistics of a degree sequence, important
for many applications, are lost; the only information needed is the support of
the distribution. Furthermore the L-a.d.s. generate an ordered continuum of
theories where the maximum is the theory of the Erdős-Rényi graph G(n, 1/n).
It includes the case of power law graphs for exponents greater than 3, so from
the point of view of first-order logic, there is nothing special about power law
graphs. The same question can be asked about other models of random graphs
with parameters, it would be interesting to know other cases where a similar
order of logical theories appear.

An interesting question asked in [10] is to consider non-sparse degree sequences.
It was settled for nα-regular graphs in [6] by sandwiching the limit theory
between the limit theory of two Erdős-Rényi graphs. So the model of specified
degree sequences is statistically different from Erdős-Rényi graphs, but in many
cases it is similar from the point of view of logic. More exotic degree sequences
need to be investigated to exhibit new logical behaviours. Such sequences are
for example a.d.s. for which (H1) holds but not (H2). The diameter of these
random graphs falls to Θ(ln lnn) because there is a core of highly connected ver-
tices. This behaviour cannot be obtained from Erdős-Rényi graphs, so it would
be interesting to know the logical theory of these graphs. In between, i.e. the
degree sequences for which (H2) holds but not (H3), there may be an analogous
order of theories as complex subgraphs start to appear.

References

1. Billingsley, P.: Convergence of Probability Measures. Wiley, New York (2009)
2. Bordenave, C.: Notes on random graphs and combinatorial optimization. Lecture

notes. http://www.math.univ-toulouse.fr/bordenave/coursRG.pdf
3. Chung, F.R.K., Lu, L.: Complex Graphs and Networks, vol. 107. American math-

ematical society, Providence (2006)
4. Fagin, R.: Probabilities on finite models. J. Symbolic Logic 41(01), 50–58 (1976)
5. Glebskii, Y.V., Kogan, D.I., Liogonki, M.I., Talanov, V.A.: Range and degree of

realizability of formulas in the restricted predicate calculus. Kibernetika 5, 17–27
(1969)

6. Haber, S., Krivelevich, M.: The logic of random regular graphs. J. Comb. 1(3–4),
389–440 (2010)

7. Janson, S.: Random regular graphs: asymptotic distributions and contiguity. Comb.
Probab. Comput. 4(04), 369–405 (1995)

8. Janson, S.: The probability that a random multigraph is simple, II. preprint (2013).
arXiv:1307.6344

9. Lynch, J.F.: Probabilities of sentences about very sparse random graphs. Random
Struct. Algorithms 3(1), 33–53 (1992)

10. Lynch, J.F.: Convergence law for random graphs with specified degree sequence.
ACM Trans. Comput. Log. (TOCL) 6(4), 727–748 (2005)

11. Mezard, M., Montanari, A.: Information, Physics, and Computation. Oxford Uni-
versity Press, Oxford (2009)

12. Spencer, J.: The Strange Logic of Random Graphs, vol. 22. Springer, Berlin (2001)

http://www.math.univ-toulouse.fr/ bordenave/coursRG.pdf
http://arxiv.org/abs/1307.6344

Streaming Algorithms for Smallest
Intersecting Ball of Disjoint Balls

Wanbin Son(B) and Peyman Afshani

MADALGO, Department of Computer Science, Aarhus University, Aarhus, Denmark
{wson,peyman}@cs.au.dk

Abstract. In this paper, we propose streaming algorithms for approxi-
mating the smallest intersecting ball of a set of disjoint balls in Rd. This
problem is a generalization of the 1-center problem, one of the most fun-
damental problems in computational geometry. We consider the single-
pass streaming model; only one-pass over the input stream is allowed and
a limited amount of information can be stored in memory. We introduce
three approximation algorithms: one is an algorithm for the problem in
arbitrarily dimensions, but in the other two we assume d is a constant.
The first algorithm guarantees a (2+

√
2+ε∗)-factor approximation using

O(d2) space and O(d) update time where ε∗ is an arbitrarily small posi-
tive constant. The second algorithm guarantees an approximation factor
3 using O(1) space and O(1) update time (assuming constant d). The
third one is a (1 + ε)-approximation algorithm that uses O(1/εd) space
and O(1/ε(d−1)/2) amortized update time. They are the first approxima-
tion algorithms for the problem, and also the first results in the streaming
model.

1 Introduction

Given a set D of n pairwise interior-disjoint balls in Rd, n > d, we consider the
problem of finding a center that minimizes the maximum distance between the
center and a ball in D. The distance between a point p and a ball b centered at c of
radius r is defined by dist(p, b) = max {0, |pc| − r} where |·| is a distance between
two points. The problem can be also formulated as finding the smallest ball that
intersects all the input balls, and hence we call it “the smallest intersecting ball of
disjoint balls (SIBB) problem”. Observe that if the input balls are points, which
we call “the smallest enclosing ball of points (SEBP) problem”, then we have
an instance of the 1-center problem. The 1-center problem is a fundamental
problem in computational geometry, specially in the area of facility location
problems [1]. So in our problem we model facilities that can be “relocated”
up to a fixed distance. Finally, as an additional motivation, we can view each
ball as an uncertain point [2] and thus a solution for the SIBB problem would
imply a lower bound for the 1-center problem in a set of uncertain points.

MADALGO—Center for Massive Data Algorithmics, a center of the Danish National
Research Foundation.

c© Springer International Publishing Switzerland 2015
R. Jain et al. (Eds.): TAMC 2015, LNCS 9076, pp. 189–199, 2015.
DOI: 10.1007/978-3-319-17142-5 17

190 W. Son and P. Afshani

Fig. 1. Three input balls b1 b2 and b3, and the smallest ball B that intersects b1 and b2.

Several properties of the SIBB problem are same as those of the SEBP
problem. Both problems are LP-type problems with combinatorial dimension
d + 1 [3], so the problem can be solved by a generic algorithm for an LP-type
problem in the static setting. Because of the similarity between the SEBP prob-
lem and the SIBB problem, few studies [1,2,4] consider the SIBB problem.

In this paper, we are interested in the problem in the single-pass streaming
model ; only one-pass over the input stream is allowed and only a limited amount
of information can be stored. The streaming model is attractive both in theory
and in practice due to massive increase in the volume of data over the last
decades, a trend that is most likely to continue. We assume that the memory
size is much smaller than the size of input data in the streaming model, so it
is important to develop an algorithm in which the space complexity does not
depend on the size of input data.

In the streaming model, the similarities between the SIBB and SEBP prob-
lems break down as it turns out that a set of balls is much more difficult to process
than a set of points. For example, let us consider a factor 1.5-approximation algo-
rithm for the SEBP problem [5] which works as follows: For the first two input
points, the algorithm computes the smallest enclosing ball B for them. For each
next input point pi, the algorithm updates B to be the smallest ball that contains
B and pi. For the SEBP problem, the algorithm gives the correct approximation
factor. The obvious extension of this algorithm to the SIBB problem would be as
follows: For the first two input balls b1 and b2, compute the smallest intersecting
ball B for them. For each next input ball bi, compute the smallest ball that con-
tains B and intersects bi. This algorithm gives a solution that intersects all the
input balls, but it does not guarantee any approximation factor. In fact, as Fig. 1
shows, the approximation factor could be arbitrarily large: the first two input balls
are b1 and b2, and B is the smallest intersecting ball for them. The third input ball
on the stream is b3 and the smallest ball that contains B and intersects b3 can be
arbitrarily larger than the optimal solution if b3 is located far way from B. The
reason why the algorithm does not work properly is that B does not “keep” enough
information about b1 and b2. Because of similar reasons, the other approximation
algorithms [5–7] for the SEBP problem also do not work for the SIBB problem.

Previous work in the static setting. Matoušek et al. [3] showed that the small-
est intersecting ball of convex objects problem is an LP-type problem, so it
can be solved in O(n) time in fixed dimensions. Löffler and Kreveld [2] con-
sidered the smallest intersecting ball of balls problem as the 1-center problem
for imprecise points. They mentioned that the problem is an LP-type problem.

Streaming Algorithms for Smallest Intersecting Ball of Disjoint Balls 191

Mordukhovich et al. [1] described sufficient conditions for the existence and
uniqueness of a solution for the problem. In the plane, Ahn et al. [4] proposed
an algorithm to compute the smallest two congruent disks that intersect all the
input disks in O(n2 log4 n log log n) time.

For the SEBP problem, it is known that the problem is an LP-type prob-
lem, so it can be solved by an LP-type framework in linear time in fixed constant
dimensions [3]. While the LP-type framework gives an exact solution, it is not
attractive when d may be large because a hidden constant in the time complexity
of the LP-type framework has exponential dependency on d. In high dimensions,
Bâdoiu and Clarkson [8] presented a (1+ ε)-approximation algorithm that com-
putes a solution in O(nd/ε + (1/ε)5) time.

The k-center problem is NP-hard if k is a part of input [9], so studies have
been focused on the problem for small k [10,11] or developing approximation
algorithms [12,13].

Previous work on data streams. To the best of our knowledge, our work contains
the first approximation algorithms for the SIBB problem, and also the first
results in the streaming model.

The SEBP problem, however, has been studied extensively in the streaming
model. Zarrabi-Zadeh and Chan [5] showed a 1.5 approximation algorithm which
uses the minimum amount of storage. Agarwal and Sharathkumar [6] presented
a ((1 +

√
3)/2 + ε)-approximation algorithm using O(d/ε3 log (1/ε)) space, and

Chan and Pathak [7] proved that the algorithm has approximation factor 1.22.
Agarwal and Sharathkumar [6] also showed that any algorithm in the single-
pass stream model that uses space polynomially bounded in d cannot achieve
an approximation factor less than (1 +

√
2)/2 > 1.207. In fixed dimensions, a

(1 + ε)-approximation algorithm can be derived using O(1/ε(d−1)/2) space and
O(1/ε(d−1)/2) update time [7]. For the k-center problem, several approximation
algorithms [14–16] also have been proposed.

Our results. We describe a (2+
√

2+ε∗)-approximation algorithm that uses O(d2)
space and O(d) update time for arbitrary dimension d where ε∗ is an arbitrarily
small positive constant. After that we present two approximation algorithms for
fixed constant dimension d. The first approximation algorithm guarantees a 3-
approximation using O(1) space and O(1) update time, and the next one guaran-
tees a (1+ε)-approximation using O(1/εd) space and O(1/ε(d−1)/2) update time.
One may think the last two approximation algorithms have the same complexity

Table 1. Results for the smallest intersecting ball of disjoint balls problem over the
single-pass streaming model. O∗(x) denotes O(x) amortized time, and ε∗ denotes an
arbitrarily small positive constant.

Dimension d Factor Space Update time

Arbitrary dim. d (2 +
√

2 + ε∗) O(d2) O(d)

Constant dim. d 3 O(1) O(1)

(1 + ε) O(1/εd) O∗(1/ε(d−1)/2)

192 W. Son and P. Afshani

for ε = 2, but the 3-approximation algorithm only uses space polynomial in d,
so it is more valuable than the (1+ε)-approximation algorithm in the streaming
model. Table 1 shows a summary of our results.

2 Preliminaries

Let D be a set of n pairwise interior-disjoint balls in Rd. The balls in D arrive
one by one over the single-pass stream. They are labeled in order, so bi is a ball
in D that has arrived at the i-th step, that is, D = {b1, b2,, bn}.

Let b(c, r) denote a ball centered at c of radius r, and let c(b) and r(b) denote
the center and the radius of a ball b, respectively. We denote B∗ the optimal
solution, and c∗ and r∗ denote c(B∗) and r(B∗), respectively.

The distance between any two points p and q is denoted by |pq|, and
the distance between any two balls b and b′ is denoted by dist(b, b′) =
max {|c(b)c(b′)| − (r(b) + r(b′)), 0}. We use dist(p, b) to denote the distance
between a point p and a ball b, that is,
max {|pc(b)| − r(b), 0}.

Our goal is to approximate the smallest ball B∗ that intersects all the input
balls.

3 (2 +
√
2 + ε∗)-Approximation Algorithm in Any

Dimensions d

We introduce an algorithm that guarantees (2 +
√

2 + ε∗)-approximation factor
for any d where ε∗ is an arbitrarily small positive constant. It is trivial to solve
the problem for d = 1, and the algorithm in Sect. 4 gives a better result for
d = 2, so we assume that d ≥ 3 in this section.

Lemma 1. The radius of d concurrent interior-disjoint balls is at most
√
d√

2(d−1)
r

where r is the radius of the smallest enclosing ball of the centers of the d balls.

Proof. Let us consider d points in a ball b with radius r. To maximize the distance
of the closest pair of the points, they should satisfy the following conditions.

– they should lie on the boundary of the ball,
– the distances between all the pairs should be same, and
– the hyper-plane h defined by them should contain c(b).

The above imply that they are vertices of a (d − 1)-dimensional regular simplex
on h. The side length of a (d−1)-dimensional regular simplex is 2

√
d√

2(d−1)
r where

r is the radius of the circumscribed ball of it. Therefore the lemma holds. ��

We can derive the following lemma from Lemma 1. Let cd =
√

2(d−1)
√
d+d

d−2 .

Streaming Algorithms for Smallest Intersecting Ball of Disjoint Balls 193

Fig. 2. The two input balls b1 and b2, B∗ (the gray ball), and one of our solution B1

(the dashed ball).

Lemma 2. There are at most d− 1 input balls such that radius of each of them
is greater than cdr

∗.

Proof. Assume to the contrary that there are d input balls such that radii of
all of them are cdr

∗ + ε∗ where ε∗ is an arbitrarily small positive constant.
Their centers should lie in b(c∗, (1 + cd)r∗ + ε∗) by the problem definition. Let
r = (1 + cd)r∗ + ε∗, then for d ≥ 3

√
d√

2(d − 1)
r = cdr

∗ +

√
d√

2(d − 1)
ε∗ < cdr

∗ + ε∗

By Lemma 1, at least one pair of the balls should intersect each other, a contra-
diction. ��
We propose a simple approximation algorithm by using Lemma2 as follows. We
keep the first d input balls, and then find the smallest ball bmin among them. We
set the center of our solution to c(bmin), and then expand radius of our solution
whenever a new input ball b arrives that does not intersect our solution.

By Lemma 2, r(bmin) is at most cdr
∗, so our solution guarantees an approxi-

mation factor 2+ cd. Because
√

2(d − 1)
√

d <
√

2(d− 1)+
√

d − 1 for any d ≥ 3
the following equation holds.

cd =

√
2(d − 1)

√
d + d

d − 2
< (1 +

√
2) +

√
d − 1 +

√
2 + 2

d − 2

We can use the algorithm in Sect. 4 for a small constant dimension, so following
theorem holds.

Theorem 1. For streaming balls in arbitrary dimensions d, there is an algo-
rithm that guarantees a (3+

√
2+ ε∗)-approximation to the smallest intersecting

ball of disjoint balls problem using O(d2) space and O(d) update time where ε∗

is an arbitrarily small positive constant.

194 W. Son and P. Afshani

3.1 Improved Approximation Algorithm

The above algorithm can be improved by maintaining two solutions B1 and B2

as follows. See Fig. 2. We keep the first d + 1 input balls, and then find the
two smallest balls b1 and b2 among them. Let s be the line segment connecting
c(b1) and c(b2) (remember that c(b1) and c(b2) are the centers of b1 and b2,
respectively). We set c(B1) and c(B2) to b1 ∩ s and b2 ∩ s, respectively, and then
expand each of them to make it intersects all the input balls. Our solution B at
the end is the smaller one between B1 and B2.

Let us consider the correctness and the approximation factor of the above
algorithm. Obviously, our solution B intersects all the input balls. As shown in
Fig. 2, one of ∠c(b1)c1c∗ and ∠c(b2)c2c∗ is greater than or equal to π/2. Without
loss of generality, let us assume that ∠c(b1)c1c∗ ≥ π/2. The approximation factor
of our solution is (|c1c∗| + r∗)/r∗, and

|c1c∗|2 ≤ |c(b1)c∗|2 − r(b1)2 ≤ (r∗ + r(b1))2 − r(b1)2 = (r∗)2 + 2r∗r(b1)

by the Pythagorean theorem. By Lemma 2, r(b1) ≤ (1 +
√

2 + ε∗)r∗, so

|c1c∗| ≤
√

1 + 2(1 +
√

2)r∗ + 2ε∗r∗ = (1 +
√

2)r∗ + 2ε∗r∗

which proves the following theorem.

Theorem 2. For streaming balls in arbitrary dimensions d, there is an algo-
rithm that guarantees a (2+

√
2+ ε∗)-approximation to the smallest intersecting

ball of disjoint balls problem using O(d2) space and O(d) update time.

Because of the curse of dimensionality, there can be d + 1 balls each of radius
is slightly smaller than cdr

∗ in high dimensions, and both of ∠c(b1)c1c∗ and
∠c(b2)c2c∗ can be π/2, so the analysis of our algorithm is tight. Next two sections
introduce approximation algorithms in fixed constant dimensions d.

Fig. 3. Proof of Lemma 3

Streaming Algorithms for Smallest Intersecting Ball of Disjoint Balls 195

4 3-Approximation Algorithm in Fixed Dimensions d

In this section, we introduce a 3-approximation algorithm in fixed constant
dimensions d. The following lemma is the heart of the algorithm.

Lemma 3. Any set D′ of d + 2 input balls satisfies the one of the following
conditions.

1. there is a ball b in D′ such that r(b) ≤ r∗, or
2. the smallest ball B+ that intersects all the balls in D′ intersects B∗.

Proof. If Condition 1 holds, then we are done. So let us assume that radius of
each of the balls in D′ is greater than r∗. B+ is determined by at most d + 1
balls, so there is a ball b+ ∈ D′ that does not determine B+.

Let us consider a bisector of b+ and B∗ (See Fig. 3). The bisector subdivides
the space into two parts; all the points in one of them are closer to B∗, and all
the points in the other part are closet to b+. Let S∗ be the subspace defined
by the bisector such that dist(p,B∗) ≤ dist(p, b+) for all points p in S∗. Since
r∗ < r(b+), S∗ is convex.

All the balls in D′ \ {b+} intersect B∗ and do not intersect interior of b+. It
means that dist(c(b), B∗) ≤ dist(c(b), b+) for all b ∈ D′\{b+}, so c(b) is contained
in S∗. B+ is determined by balls in D′ \{b+}, so c(B+) is also contained in S∗.1

By the definition of S∗, dist(c(B+), B∗) ≤ dist(c(B+), b+), and dist(c(B+),
b+) ≤ r(B+) by the definition of B+. Then dist(c(B+), B∗) ≤ r(B+), which
proves the lemma. ��
Our algorithm is as follows. We keep two solutions simultaneously; one is based
on the assumption that Condition 1 in Lemma3 holds, and the other is based on
the assumption that Condition 2 holds. We choose the better one among them
at the end.

The solution based on Condition 1 can be computed as follows. We keep
the first d + 2 input balls, and then find the smallest ball bmin among them.
We set the center of our solution to c(bmin), and then expand the radius of our
solution whenever a new input ball arrives that does not intersect our solution
while keeping the center unchanged.

The solution based on Condition 2 can be computed by the almost same way
except the way to choose the center of our solution. We keep the first d+2 input
balls, and then compute the optimal solution B+ for them. We set the center of
our solution to c(B+). The remaining parts are the same as our solution based
on Condition 1.

Both of our solutions obviously intersects all the input balls. By Lemma3
and the problem definition, one of bmin and B+ has radius r ≤ r∗ and intersects
B∗, which means that the algorithm guarantees a 3-approximate solution. Our
algorithm spends O(1) time [3] to compute B+ and O(1) update time by using
O(1) space.
1 c(B+) is contained in the convex hull of centers of balls in D′ \{b+}, and the convex

hull is contained in S∗.

196 W. Son and P. Afshani

Fig. 4. A tight example of Theorem 3: three input balls b3, b4 and b5, the optimal
solution B∗, and the optimal solution B+ (dashed) for the first five input balls.

Theorem 3. For streaming balls in fixed constant dimensions d, there is an
algorithm that guarantees a 3-approximation to the smallest intersecting ball of
disjoint balls problem using O(1) space and O(1) update time.

Note that the space of our algorithm does not depend on n, and it has polynomial
dependency on d.

Now we show that our approximation factor analysis for the algorithm is
tight by showing an example in R3 as follow. See Fig. 4. Let us consider the
first five input balls. If they satisfy Condition 1 in Lemma3, it is trivial to show
tightness, so let us assume that they only satisfy Condition 2.

The centers of the first two input balls b1 and b2 are at (0, 0, a) and (0, 0,−a),
respectively, where a is an arbitrarily large positive constant. We assume that
dist(b1, b2) = 2r∗ − ε∗ where ε∗ is an arbitrarily small positive constant, and
they determine B+; c(B+) = (0, 0, 0). The remaining three input balls b3, b4
and b5 are slightly greater than B∗ and their centers are on the xy-plane. Let us
assume that c∗ is also on the xy-plane, so they look like Fig. 4 on the xy-plane.
The figure shows that the five input balls are interior-disjoint, and they do not
satisfy Condition 1. As you see, we can make the intersecting area of B+ and
B∗ as small as possible, which proves the tightness of the analysis.

5 (1+ ε)-Approximation Algorithm in Fixed Dimensions d

We present a (1 + ε)-approximation algorithm in fixed constant dimensions
d in this section. Before we propose our algorithm, we describe a (1 + ε)-
approximation algorithm for the smallest enclosing ball of points problem.

Definition 1. Chan [17] Given a double-argument measure w(P, x) =
maxp,q∈P (p − q) · x that is monotone in its first argument, a subset R ⊂ P
is called an ε-core-set of P over all vectors x ∈ Rd if w(R, x) ≥ (1 − ε)w(P, x)
for all x.

For streaming points in any fixed dimensions d, one can devise an ε-core-set
by maintaining extreme points along a number of different directions using

Streaming Algorithms for Smallest Intersecting Ball of Disjoint Balls 197

O(1/ε(d−1)/2) space and O(1/ε(d−1)/2) update time [17]. A (1 + ε)-approximate
solution can be obtained by increasing the radius of the optimal solution for
points in an ε-core-set by 2εr∗

p where r∗
p is the optimal radius of the smallest

enclosing ball of points problem.
The basic idea of our algorithm is as follows. Let D< be a subset of D such

that r(b) ≤ εr∗ for b ∈ D<, and C< = {c(b) | b ∈ D<}. We also denote by εC<

an ε-core-set of C<, and εD< = {b | c(b) ∈ εC<}. We maintain εD< and all
balls in D \ D<. For εD<, the following lemma hold.

Lemma 4. Let B be a ball that intersects all the balls in εD<, then dist(B, b) ≤
5εr∗ for any b ∈ D< if 0 < ε < 1.

Proof. Let b ∈ D< be a ball that does not intersect B. It means that b /∈ εD<.
By Definition 1, there is a ball b′ ∈ εD< such that (c(b)− c(b′)) ·x ≤ ε ·w(C<, x)
where x = (c(b)−c(B))

|c(b)c(B)| . Let p be a point in B ∩ b′. The following equation proves
the lemma.

dist(B, b) ≤ dist(B, c(b)) ≤ (c(b) − p) · x = (c(b) − c(b′)) · x + (c(b′) − p) · x

≤ ε · w(C<, x) + εr∗ ≤ ε(2r∗ + 2εr∗) + εr∗ ≤ 5εr∗

��
So, we can get a (1 + 5ε)-approximate solution by increasing the radius of the
optimal solution for balls in εD< and D \ D< by 5εr∗ if 0 < ε < 1. We present
a 3-approximation algorithm in Sect. 4, so 0 < 5ε < 2 is enough.

Now, let us consider our algorithm in detail. We partition D into O(εd)
subsets. Let Di be the subset that contains
1/εd� input balls in order from the
((i − 1) ·
1/εd� + 1)-th input ball. We process Di one by one in order.

For D1, we compute the optimal solution B for balls in it. We find balls in D1

each ball b of them satisfies r(b) ≤ εr(B), and then compute εD< by considering
their centers. We insert all the other balls in a set D>. We only maintain εD<

and D> for the next step.
For D2, we compute the optimal solution B for the balls in D2 ∪ D> ∪ εD<.

Similarly, we find balls each of radius smaller than or equal to εr(B) from D2 ∪
D>, and then update εD< by considering them. We delete such balls from D2

and D>, and then update D> by inserting all remaining balls in D2. We repeat
this process for all Di where i is an integer between 1 and O(εd).

At the end of the algorithm, we compute the optimal solution B for balls in
D> ∪ εD<, and then increase the radius of B by 5εr+ where r+ is the radius
from the algorithm in Sect. 4. We use the algorithm in Sect. 4 simultaneously to
compute r+. Finally, we report B as our solution.

The correctness of our algorithm immediately follows from Lemma 4. In each
step, a ball b that satisfies r(b) ≤ εr(B) also guarantees that r(b) ≤ εr∗. At
the end of the algorithm, we maintain εD< and all the balls in D \ D<, so
the optimal solution for them guarantees that r(B) ≤ r∗ and dist(B, b) ≤ 5εr∗

by Lemma 4. The radius r+ guarantees that r∗ ≤ r+ ≤ 3r∗ by Theorem 3, so
5εr∗ ≤ 5εr+ ≤ 15εr∗. Therefore after increasing the radius of B by 5εr+, B

198 W. Son and P. Afshani

intersects all the input balls. The approximation factor is (1 + 15ε), and we can
get a (1 + ε′) approximation algorithm by adjusting a parameter ε′ = 15ε.

Let us analyze the complexity of the algorithm. To maintain εD<, the algo-
rithm uses O(1/ε(d−1)/2) space and O(1/ε(d−1)/2) update time [7]. The size of
D> can be computed by the following lemma.

Lemma 5. For given a ball b of radius r, there are at most O(1/εd) interior-
disjoint balls that intersect b if radius of each of them is greater than or equal to
εr in fixed constant dimensions d.

Proof. We are going to prove the lemma for the interior-disjoint balls each of
radius εr. Obviously, if there are at most O(1/εd) such balls, then the lemma
holds. Let us consider a ball b′ = b(c(b), r + 2εr). A ball that intersects b should
be contained in b′. We can compute the maximum number of the interior-disjoint
balls that are contained in b′ by considering their volumes. The volume of b′ is
Θ((r + 2εr)d), and the volume of a ball of radius εr is Θ((εr)d). The sum of
the volumes of all the balls contained in b′ can not exceed the volume of b′, so
the maximum number of the interior-disjoint balls in b′ is O((r + 2εr)/εr)d) =
O(1/εd), which prove the lemma. ��
By Lemma 5, the size of D> is O(1/εd). In each step the algorithm holds O(1/εd)
balls. We compute the optimal solution for them in each step and it takes linear
time [18], so we spend O(1) amortized time per update.

Theorem 4. For streaming balls in fixed constant dimensions d, there is an
algorithm that guarantees a (1 + ε) approximation to the smallest intersecting
ball of disjoint balls problem using O(1/εd) space and O(1/ε(d−1)/2) amortized
update time.

6 Conclusion

In this paper, we introduced three approximation algorithms for the smallest
intersecting ball of disjoint balls problem. One of them is for the problem in
any arbitrarily dimensions, and the others are for the problem in fixed constant
dimensions. As the exact problem is very difficult (no polynomial algorithm is
known if d is not constant), approximation seems to be the only way forward.

We do not know any better lower bound for the worst-case approximation
ratio than (1 +

√
2)/2 > 1.207 that is a lower bound for the smallest enclosing

ball of points problem in the streaming model if we use space only polynomially
bounded in d [6]. We believe that this lower bound is not tight for our problem
and it can be improved.

A natural extension of our algorithm is to allow the input balls to overlap.
However, this poses a great number of challenges since the size of the optimal
answer could be zero (when a point pierces all the balls). But if we allow over-
lapping with some restrictions it may be possible to solve the problem. Another
interesting question is how to improve our results in static setting. Even in the
static setting, no approximation algorithms are known for the problem except
our results in this paper.

Streaming Algorithms for Smallest Intersecting Ball of Disjoint Balls 199

References

1. Mordukhovich, B., Nam, N., Villalobos, C.: The smallest enclosing ball problem
and the smallest intersecting ball problem: existence and uniqueness of solutions.
Optim. Lett. 7(5), 839–853 (2013)

2. Löffler, M., van Kreveld, M.: Largest bounding box, smallest diameter, and related
problems on imprecise points. Comput. Geom. 43(4), 419–433 (2010)

3. Matoušek, J., Sharir, M., Welzl, E.: A subexponential bound for linear program-
ming. Algorithmica 16(4–5), 498–516 (1996)

4. Ahn, H.K., Kim, S.S., Knauer, C., Schlipf, L., Shin, C.S., Vigneron, A.: Covering
and piercing disks with two centers. Comput. Geom. 46(3), 253–262 (2013)

5. Zarrabi-Zadeh, H., Chan, T.: A simple streaming algorithm for minimum enclosing
balls. In: Proceedings of the 18th Canadian Conference on Computational Geom-
etry, pp. 139–142 (2006)

6. Agarwal, P.K., Sharathkumar, R.: Streaming algorithms for extent problems in
high dimensions. In: Proceedings of the 21st ACM-SIAM Symposium on Discrete
Algorithms, SODA 2010, pp. 1481–1489 (2010)

7. Chan, T.M., Pathak, V.: Streaming and dynamic algorithms for minimum enclosing
balls in high dimensions. Comput. Geom. 47(2, Part B), 240–247 (2014)

8. Bâdoiu, M., Clarkson, K.L.: Smaller core-sets for balls. In: Proceedings of the 14th
ACM-SIAM Symposium on Discrete Algorithms, SODA 2003, pp. 801–802 (2003)

9. Garey, M., Johnson, D.: Computers and Intractability: A Guide to the Theory of
NP-Completeness. W.H. Freeman, New York (1979)

10. Chan, T.: More planar two-center algorithms. Comput. Geom. 13(3), 189–198
(1999)

11. Agarwal, P., Avraham, R., Sharir, M.: The 2-center problem in three dimensions.
In: Proceedings of the 26th ACM Symposium Computational Geometry, pp. 87–96
(2010)

12. Gonzalez, T.: Clustering to minimize the maximum intercluster distance. Theoret.
Comput. Sci. 38, 293–306 (1985)

13. Feder, D., Greene, D.: Optimal algorithms for approximate clustering. In: Proceed-
ings of the 20th ACM Symposium on Theory of Computing, pp. 434–444 (1988)

14. Charikar, M., Chekuri, C., Feder, T., Motwani, R.: Incremental clustering and
dynamic information retrieval. SIAM J. Comput. 33(6), 1417–1440 (2004)

15. Guha, S.: Tight results for clustering and summarizing data streams. In: Proceed-
ings of the 12th International Conference on Database Theory, pp. 268–275 (2009)

16. Matthew McCutchen, R., Khuller, S.: Streaming algorithms for k -center cluster-
ing with outliers and with anonymity. In: Goel, A., Jansen, K., Rolim, J.D.P.,
Rubinfeld, R. (eds.) APPROX and RANDOM 2008. LNCS, vol. 5171, pp. 165–
178. Springer, Heidelberg (2008)

17. Chan, T.M.: Faster core-set constructions and data-stream algorithms in fixed
dimensions. Comput. Geom. 35(12), 20–35 (2006)

18. Chazelle, B., Matoušek, J.: On linear-time deterministic algorithms for optimiza-
tion problems in fixed dimension. J. Algorithms 21(3), 579–597 (1996)

Multi-player Diffusion Games on Graph Classes

Laurent Bulteau, Vincent Froese, and Nimrod Talmon(B)

Institut Für Softwaretechnik und Theoretische Informatik,
TU Berlin, Berlin, Germany
nimrodtalmon77@gmail.com

Abstract. We study competitive diffusion games on graphs introduced
by Alon et al. [1] to model the spread of influence in social networks.
Extending results of Roshanbin [7] for two players, we investigate the
existence of pure Nash equilibria for at least three players on different
classes of graphs including paths, cycles, and grid graphs. As a main
result, we answer an open question proving that there is no Nash equi-
librium for three players on m × n grids with min{m,n} ≥ 5.

1 Introduction

Social networks, and the diffusion of information within them, yields an interest-
ing and well-researched field of study. Among other models, competitive diffu-
sion games have been introduced by Alon et al. [1] as a game-theoretic approach
towards modelling the process of diffusion (or propagation) of influence (or infor-
mation in general) in social networks. Such models have applications in “viral
marketing” where several companies (or brands) compete in influencing as many
customers (of products) or users (of technologies) as possible by initially selecting
only a “small” subset of target users that will “infect” a large number of other
users. Herein, the network is modeled as an undirected graph where the vertices
correspond to the users, with edges modeling influence relations between them.
The companies, being the players of the corresponding diffusion game, choose an
initial subset of target vertices which then influence other neighboring vertices
via a certain propagation process. More concretely, a vertex adopts a company’s
product at some specific time during the process if he is influenced by (that
is, connected by an edge to) another vertex that already adopted this product.
After adopting a product of one company, a vertex will never adopt any other
product in the future. However, if a vertex gets influenced by several companies
at the same time, then he will not adopt any of them and he is removed from
the game (the reason being that the effects of these influencing companies on
the customer cancel out each other such that the customer is “too confused” to
adopt any of the products). See Sect. 1.3 for the formal definitions of the game.

A full version is available at http://arxiv.org/abs/1412.2544.
L. Bulteau—Supported by the Alexander von Humboldt Foundation, Bonn, Germany.
V. Froese—Supported by the DFG, project DAMM (NI 369/13).
N. Talmon—Supported by DFG Research Training Group MDS (GRK 1408).

c© Springer International Publishing Switzerland 2015
R. Jain et al. (Eds.): TAMC 2015, LNCS 9076, pp. 200–211, 2015.
DOI: 10.1007/978-3-319-17142-5 18

http://arxiv.org/abs/1412.2544

Multi-player Diffusion Games on Graph Classes 201

In their initial work, Alon et al. [1] studied how the existence of pure Nash
equilibria is influenced by the diameter of the underlying graph. Following this
line of research, Roshanbin [7] investigated the existence of Nash equilibria for
competitive diffusion games with two players on several classes of graphs such
as paths, cycles, and grid graphs. Notably, she proved that on sufficiently large
grids, there always exists a Nash equilibrium for two players, further conjecturing
that there is no Nash equilibrium for three players on grids. We extend the results
of Roshanbin [7] for two players to three or more players on paths, cycles, and
grid graphs, proving the conjectured non-existence of a pure Nash equilibrium
for three players on grids as a main result. An overview of our results is given
in Sect. 1.2. After introducing the preliminaries in Sect. 1.3, we discuss our results
for paths and cycles in Sect. 2, followed by the proof of our main theorem on grids
in Sect. 3. We finish with some statements considering general graphs in Sect. 4.

1.1 Related Work

The study of influence maximization in social networks was initiated by Kempe
et al. [5]. Several game-theoretic models have been suggested, including our
model of reference, introduced by Alon et al. [1]. Some interesting generalizations
of this model are the model by Tzoumas et al. [11], who considered a more
complex underlying diffusion process (there, depending on its neighborhood, a
general scheme is used to determine whether a vertex adopts a product), and the
model studied by Etesami and Basar [3], allowing each player to choose multiple
vertices. Dürr and Thang [2] and Mavronicolas et al. [6] studied so-called Voronoi
games, which are closely related to our model (but not identical; there, instead
of an underlying diffusion process, each vertex is assigned to its closest player
and vertices can be shared). Concerning our model, Alon et al. [1] claimed the
existence of pure Nash equilibria for any number of players on graphs of diameter
at most two, however, Takehara et al. [10] gave a counterexample consisting
of a graph with nine vertices and diameter two with no Nash equilibrium for
two players.

Our main point of reference is the work of Roshanbin [7], who studied the
existence (and non-existence) of pure Nash equilibria mainly for two players on
special graph classes (paths, cycles, trees, unicycles, and grids); indeed, our work
can be seen as an extension of that work to more than two players. Small [8]
already showed that there is a Nash equilibrium for any number of players on
any star or clique. Small and Mason [9] proved that there is always a pure Nash
equilibrium for two players on a tree, but not always for more than two players.
Janssen and Vautour [4] considered safe strategies on trees and spider graphs,
where a safe strategy is a strategy which maximizes the minimum pay-off of a
certain player, when the minimum is taken over the possible unknown actions
of the other players.

1.2 Our Results

We begin by characterizing the existence of Nash equilibria for paths and cycles,
showing that, except for three players on paths of length at least six, a Nash

202 L. Bulteau et al.

equilibrium exists for any number of players playing on any such graph (Theo-
rems 1 and 2). We then prove Conjecture 1 of Roshanbin [7], showing that there
is no Nash equilibrium for three players on Gm×n, as long as both m and n are
at least 5 (Theorem 3). Finally, we investigate the minimum number of vertices
such that there is an arbitrary graph with no Nash equilibrium for k players.
We prove an upper bound showing that there always exists a tree on � 3

2k� + 2
vertices with no Nash equilibrium for k players (Theorem 4). Due to space con-
straints, some of the proofs are omitted. Please refer to the full version (available
at http://arxiv.org/abs/1412.2544).

1.3 Preliminaries

Notation. For i, j ∈ N with i < j, we define [i, j] := {i, . . . , j} and [i] :=
{1, . . . , i}. We consider simple, finite, undirected graphs G = (V,E) with vertex
set V and edge set E ⊆ {{u, v} | u, v ∈ V }. A path Pn = (V,E) on n vertices is
the graph with V = [n] and E = {{i, i + 1} | i ∈ [n − 1]}. A cycle Cn = (V,E)
on n vertices is the graph with V = [n] and E = {{i, i+1} | i ∈ [n−1]}∪{{n, 1}}.

For m,n ∈ N, the m × n grid Gm×n = (V,E) is a graph with vertices V =
[m]×[n] and edges E = {{(x, y), (x′, y′)} | |x−x′|+|y−y′| = 1}. We use the term
position for a vertex x ∈ V . We define the distance of two positions x = (x1, y1),
y = (x2, y2) ∈ V as ‖x − y‖1 := |x1 − x2| + |y1 − y2| (note that this corresponds
to the length of a shortest path from x to y in the grid). We denote the number
of players by k and enumerate the players as Player 1, . . . , Player k.

Diffusion Game on Graphs. A game Γ = (G, k) is defined by an undirected
graph G = (V,E) and a number k of players, each having its distinct color
in [k]. The strategy space of each player is V , such that each Player i selects a
single vertex vi ∈ V at time 0, which is then colored by her color i. If two players
choose the same vertex v, then this vertex is removed from the graph. For Player
i, we use the terms strategy and position interchangeably, referring to its chosen
vertex. A strategy profile is a tuple (v1, . . . , vk) ∈ V k containing the initially
chosen vertex for each player. The pay-off Ui(v1, . . . , vk) of Player i is the number
of vertices with color i after the following propagation process. At time t + 1,
any so far uncolored vertex that has only uncolored neighbors and neighbors
colored in i (and no neighbors with other colors j ∈ [k] \ {i}) is colored in i.
Any uncolored vertex with more than two different colors among its neighbors is
removed from the graph. The process terminates when the coloring of the vertices
does not change between consecutive steps. A strategy profile (v1, . . . , vk) is a
(pure) Nash equilibrium if, for each Player i ∈ [k] and each vertex v′ ∈ V , it
holds that Ui(v1, . . . , vi−1, v

′, vi+1, . . . , vk) ≤ Ui(v1, . . . , vk).

2 Paths and Cycles

In this section, we fully characterize the existence of Nash equilibria on paths
and cycles, for any number k of players.

http://arxiv.org/abs/1412.2544

Multi-player Diffusion Games on Graph Classes 203

Fig. 1. Illustrations for Theorem 1, showing a Nash equilibrium for 6 players on P15

(top) and a Nash equilibrium for 5 players on P14 (bottom). The boxes show the colored
regions of each player.

Theorem 1. For any k ∈ N and any n ∈ N, there is a Nash equilibrium for k
players on Pn, except for k = 3 and n ≥ 6.

The general idea of the proof is to pair the players and distribute these pairs
evenly. In the rest of this section, we prove three lemmas whose straightforward
combination proves Theorem1.

Lemma 1. For any even k ∈ N and any n ∈ N, there is a Nash equilibrium
for k players on Pn.

Proof. If n ≤ k, then any strategy profile where each vertex of the path is chosen
by at least one player is clearly a Nash equilibrium.

Otherwise, if n > k, then the idea is to build pairs of players, which are
then placed such that two paired players are neighboring and the distance of
any two consecutive pairs is roughly equal (specifically, differs by at most two).
See Fig. 1 for an example. Intuitively, this yields a Nash equilibrium since each
player obtains roughly the same pay-off (specifically, differing by at most one),
therefore no player can improve. Since we have n vertices, we want each player’s
pay-off to be at least z := �n

k �. This leaves r := n(mod k) other vertices, which
we distribute between the first r players such that the pay-off of any player is at
most z + 1. This can be achieved as follows. Let pi ∈ [n] denote the position of
Player i, that is, the index of the chosen vertex on the path. We define

pi :=

{
z · i + min{i, r} if i is odd,

pi−1 + 1 if i is even.

Note that, by construction, it holds that p1 ∈ {z, z + 1} and pk = n − z + 1.
Moreover, for each odd indexed player i ≥ 3, we have that 2z − 1 ≤ pi − pi−1 ≤
2z + 1. We claim that ui := Ui(p1, . . . , pk) ∈ {z, z + 1} holds for each i ∈ [k].
Clearly, u1 = p1 ∈ {z, z + 1} and uk = n − pk + 1 = z. For all odd i ≥ 3, it is
not hard to see that ui = ui−1 = 1 + �(pi − pi−1 − 1)/2� ∈ {z, z + 1}, proving
the claim.

To see that the strategy profile (p1, . . . , pk) is a Nash equilibrium, consider
an arbitrary player i and any other strategy (pi
=) p′

i ∈ [n] that she picks.
Clearly, we can assume that p′

i
= pj holds for all j
= i since otherwise Player i’s
pay-off is zero. If p′

i < p1 or p′
i > pk, then Player i gets a pay-off of at most z.

If pj < p′
i < pj+1 for some even j ∈ [2, k − 2], then her pay-off is at most

1 + �(pj+1 − pj − 2)/2� ≤ z. �

204 L. Bulteau et al.

We can modify the construction given in the proof of Lemma1 to also work for
odd numbers k greater than three.

Lemma 2. For any odd k > 3 ∈ N and for any n ∈ N, there is a Nash equilib-
rium for k players on Pn.

Proof. We give a strategy profile based on the construction for an even number of
players (proof of Lemma 1). The idea is to pair the players, placing the remaining
lonely player between two consecutive pairs.

This is best explained using a reduction to the even case. Specifically, given
the strategy profile (p′

1, . . . , p
′
k+1) for an even number k+1 of players on Pn+1 as

constructed in the proof of Lemma1, we define the strategy profile (p1, . . . , pk) :=
(p′

1, . . . , p
′
k−2, p

′
k − 1, p′

k+1 − 1). To see why this results in a Nash equilibrium,
let z := �(n + 1)/(k + 1)� and note that by construction it holds that p1 ∈
{z, z + 1}, pk = n − z + 1, and 2z − 1 ≤ pi+1 − pi ≤ 2z + 1, for all i ∈ [2, k − 1].
Moreover, each player receives a pay-off of at least z, therefore all players (except
for Player (k − 2)) cannot improve by the same arguments as in the proof of
Lemma 1. Regarding Player (k − 2), note that her pay-off is

1 + �(pk−1 − pk−2 − 1)/2� + �(pk−2 − pk−3 − 1)/2� ≥ 2z − 1.

Hence, she clearly cannot improve by choosing any position outside of [pk−3, pk−1].
Moreover, she cannot improve by choosing any other position in [pk−3, pk−1]. To
see this, note that her maximum pay-off from any position in [pk−3, pk−1] is

1 + �(pk−1 − pk−3 − 2)/2� = 1 + �(pk−1 − pk−2 − 1 + pk−2 − pk−3 − 1)/2�,

which is equal to the above pay-off since pk−1 − pk−2 and pk−2 − pk−3 cannot
both be even, by construction. �

It remains to discuss the fairly simple (non)-existence of Nash equilibria for three
players. Note that Roshanbin [7] already stated without proof that there is no
Nash equilibrium for three players on G2×n and G3×n and that Small and Mason
[9] showed that there is no Nash equilibrium for three players on P7. For the sake
of completeness, we prove the following lemma.

Lemma 3. For three players, there is a Nash equilibrium on Pn if and only
if n ≤ 5.

Proof. If n ≤ 3, then a strategy profile where each vertex of the path is chosen
by at least one player is clearly a Nash equilibrium. For n ∈ {4, 5}, the strategy
profile (2, 3, 4) is a Nash equilibrium.

To see that there is no Nash equilibrium for n ≥ 6, consider an arbitrary
strategy profile (p1, p2, p3). Without loss of generality, we can assume that p1 <
p2 < p3 and consider the following two cases. First, we assume that p2 = p1 + 1
and p3 = p2 + 1. If p1 > 2, then Player 2 increases her pay-off by choosing
p1 − 1. Otherwise, it holds that p3 < n − 1 and Player 2 increases her pay-off
by moving to p3 + 1. Therefore, this case does not yield a Nash equilibrium.

Multi-player Diffusion Games on Graph Classes 205

For the remaining case, it holds that p1 < p2 − 1 or p3 > p2 + 1. If p1 < p2 − 1,
then Player 1 increases her pay-off by moving to p2 − 1, while if p3 > p2 + 1,
then Player 3 increases her pay-off by moving to p2 +1. Thus, this case does not
yield a Nash equilibrium as well, and we are done. �
We close this section with the following result considering cycles. Interestingly,
for cycles there exists a Nash equilibrium also for three players.

Theorem 2. For any k, n ∈ N, there is a Nash equilibrium for k players on Cn.

Proof. It is an easy observation that the constructions given in the proofs of
Lemmas 1 and 2 also yield Nash equilibria for cycles, that is, when the two
endpoints of the path are connected by an edge. Thus, it remains to show a
Nash equilibrium for k = 3 players for any Cn. We set p1 := 1, p2 := n and

p3 :=

{
�n/2� if n mod 4 = 1,

�n/2� otherwise.

It is not hard to check that (p1, p2, p3) is a Nash equilibrium. �

3 Grid Graphs

In this section we consider three players on the m × n grid Gm×n and prove the
following main theorem.

Theorem 3. If n ≥ 5 and m ≥ 5, then there is no Nash equilibrium for three
players on Gm×n.

Before proving the theorem, let us first introduce some general definitions and
observations. Throughout this section, we denote the strategy of Player i, that is,
the initially chosen vertex of Player i, by pi := (xi, yi) ∈ [m]× [n]. Note that any
strategy profile where more than one player chooses the same position is never
a Nash equilibrium since in this case each of these players gets a pay-off of zero,
and can improve its pay-off by choosing any free vertex (to obtain a pay-off of
at least one). Therefore, we will assume without loss of generality that p1
= p2,
p2
= p3, and p1
= p3. Further, note that the game is symmetric with respect to
the axes. Specifically, reflecting coordinates along a dimension or rotating the
grid by 90 degrees yields the same outcome for the game. Thus, in what follows,
we only consider possible cases up to these symmetries.

We define Δx := maxi,j∈[k] |xi − xj | and Δy := maxi,j∈[k] |yi − yj | to be the
maximum coordinate-wise differences among the positions of the players. We say
that a player strictly controls the other two players, if both reside on the same
side of the player, in both dimensions.

Definition 1. Player i strictly controls the other players, if either

∀j
= i : xi < xj ∧ yi < yj ,

or ∀j
= i : xi < xj ∧ yi > yj ,

or ∀j
= i : xi > xj ∧ yi < yj ,

or ∀j
= i : xi > xj ∧ yi > yj holds.

206 L. Bulteau et al.

The proof of Theorem3 proceeds as follows.

Proof (Theorem3). Let m ≥ 5 and n ≥ 5. We perform a case distinction based
on the relative positions of the three players. As a first case, we consider strategy
profiles where the players are playing “far” from each other, that is, there are
two players whose positions differ by at least four in some coordinate (formally,
max{Δx,Δy} ≥ 3). For these profiles, we distinguish two subcases, namely,
whether there exists a player who strictly controls the others (Lemma 4) or not
(Lemma 5). We prove that none of these cases yields a Nash equilibrium by
showing that there always exists a player who can improve her pay-off. Notably,
the improving player always moves closer to the other two players. We are left
with the case where the players are playing “close” to each other, specifically,
their positions all lie inside a 3×3 subgrid (that is, max{Δx,Δy} ≤ 2). For these
strategy profiles, we show that there always exists a player who can improve her
pay-off (Lemma 6), however the improving position depends not only on the
relative positions between the players, but also on the global positioning of this
subgrid on the main grid. This leads to a somewhat erratic behaviour, which we
overcome by considering all possible close positions (up to symmetries) in the
proof of Lemma 6. Altogether, Lemmas 4, 5, and 6, cover all possible strategy
profiles (ruling them out as Nash equilibria), thus implying the theorem. �

In order to conclude Theorem 3, it remains to prove the lemmas mentioned in the
case distinction discussed above. To this end, we start with two easy preliminary
results. First, we observe (as can be easily proven by induction) that a vertex
for which the player with the shortest distance to it is unique is colored in that
player’s color.

Observation 1. Let x ∈ [m]× [n] and i ∈ [k]. If ‖pi −x‖1 < ‖pj −x‖1 holds for
all j
= i, then x will be colored in color i at the end of the propagation process.

Based on Observation 1, we show that if a player has distance at least three to
the other players and both of them are positioned on the same side of that player
(with respect to both dimensions), then she can improve her pay-off by moving
closer to the others (see Fig. 2 for an illustration).

Fig. 2. Example of a strategy profile where Player 1 (white circle) has both other
players to her top right with distance at least three (the shaded region denotes the
possible positions for Player 2 and 3). Player 1 can increase her pay-off by moving
closer to the others (star).

Multi-player Diffusion Games on Graph Classes 207

Fig. 3. Possible cases (up to symmetry) for Player 1 (white) strictly controlling Player 2
(gray) and Player 3 (black). Circles denote the player’s strategies. The shaded region
contains the possible positions of both Player 2 and 3, whereas the black regions denote
possible positions for Player 3 only. A star marks the position improving the pay-off of
the respective player.

Proposition 1. If x1 ≤ xj, y1 ≤ yj, and ‖p1 − pj‖1 ≥ 3 holds for j ∈ {2, 3},
then Player 1 can increase her pay-off by moving to (x1 + 1, y1 + 1).

Proof. Let p′
1 := (x1 +1, y1 +1) and x ∈ [x1]× [y1]. Note that ‖p′

1 −x‖1 = ‖p1 −
x‖1 +2 < ‖pj −x‖1 = ‖p1 −pj‖1 +‖p1 −x‖1 ≥ ‖p1 −x‖1 +3 holds for j ∈ {2, 3}.
Hence, Player 1 still has the unique shortest distance to x. By Observation 1, x
gets color 1. Moreover, for any other position x
∈ [x1] × [y1], there is a shortest
path from p1 to x going through at least one of the positions (x1+1, y1), (x1, y1+
1), or p′

1. Clearly, there is also a shortest path from p′
1 to x of at most the same

length going through one of these positions. Thus, if x was colored in color 1
before, then x is still colored in color 1.

To see that Player 1 strictly increases her pay-off, note that ‖p′
1 − x‖1 =

‖p1 − x‖1 − 2 holds for all x ∈ [x1 + 1, n] × [y1 + 1,m]. Hence, Player 1 now has
the unique shortest distance to all those positions where the distance from p1
was at most one larger than the shortest distance from any other player (clearly,
there exists at least one such position with color j
= 1). By Observation 1, these
positions now get color 1, thus Player 1 strictly increases her pay-off. �

We go on to prove the lemmas needed for Theorem 3, starting with the case
that the players play far from each other. The following lemma handles the first
subcase, that is, where one of the players strictly controls the others.

Lemma 4. A strategy profile with max{Δx,Δy} ≥ 3 where one of the players
strictly controls the others is not a Nash equilibrium.

Proof. We assume without loss of generality that Player 1 strictly controls
Player 2 and Player 3, specifically, we assume that x1 < x2 and y1 < y2 and
x1 < x3 and y1 < y3 holds. Figure 3 depicts the three possible cases for the
positions of Player 2 and Player 3. For each case, we show that a player which
can improve her pay-off exists.

Case 1: We assume that (x2, y2)
= (x1+1, y1+1) and (x3, y3)
= (x1+1, y1+1).
By Proposition 1, Player 1 gets a higher pay-off from (x1 + 1, y1 + 1).

208 L. Bulteau et al.

Fig. 4. Possible cases (up to symmetry) when no player strictly controls the others.
Circles denote the positions of Player 1 (white) and Player 2 (gray). The black regions
contain the possible positions for Player 3. A star marks the position improving the
pay-off of the respective player.

Case 2: We assume without loss of generality that (x2, y2) = (x1 + 1, y1 + 1).
(a) We assume x2 < x3 and y2 < y3. Then, x3 > x2 + 1 or y3 > y2 + 1 holds

since max{Δx,Δy} ≥ 3. Note that Player 3 strictly controls Player 1
and Player 2 and that this case is symmetric to Case 1.

(b) We assume x2 ≥ x3 or y2 ≥ y3. Then, it holds that x3 = x2 or y3 = y2.
We assume x3 = x2 (the argument for y3 = y2 being analogous). Since
max{Δx,Δy} ≥ 3, we have y3 > y2 + 1, thus Player 3 can improve by
moving to (x2, y2 + 1) because then all positions in [m] × [y2 + 1, n] are
colored in color 3, and before only a strict subset of these positions were
colored in her color. �

The other subcase, where no player strictly controls the others, is handled by
the following lemma.

Lemma 5. A strategy profile with max{Δx,Δy} ≥ 3 where no player strictly
controls the others is not a Nash equilibrium.

Proof. If no player strictly controls the others, then it follows that at least two
players have the same coordinate in at least one dimension. We perform a case
distinction on the cases as depicted in Fig. 4.

Case 1: All three players have the same coordinate in one dimension. We assume
that x1 = x2 = x3 (the case y1 = y2 = y3 is analogous). Without loss of
generality also y1 < y2 < y3 holds. Since max{Δx,Δy} ≥ 3, it follows
that yi+1 − yi ≥ 2 holds for some i ∈ {1, 2}, say for i = 2. Clearly, Player 3
can improve her pay-off by choosing (x3, y2 + 1) (analogous to Case 2b in
the proof of Lemma 4).

Case 2: There is a dimension where two players have the same coordinate
but not all three players have the same coordinate in any dimension. We
assume x1 = x2 < x3 and y1 < y2 (all other cases are analogous). We also
assume that y1 ≤ y3 ≤ y2, since otherwise Player 3 strictly controls the
others, and this case is handled by Lemma 4.
(a) We assume that y2 = y1+1. Then x3 ≥ x1+3 holds since max{Δx,Δy} ≥

3. Player 3 increases her pay-off by moving to (x1 + 2, y1) (analogous to
Case 2b in the proof of Lemma4).

Multi-player Diffusion Games on Graph Classes 209

Fig. 5. Possible positions (up to symmetry) of three players playing inside a subgrid
of size at most 3 × 3.

(b) We assume that y2 = y1+2. Then x3 ≥ x1+3 holds since max{Δx,Δy} ≥
3. Player 3 increases her pay-off by moving to (x1 +2, y1 +1) (analogous
to Case 2b in the proof of Lemma 4).

(c) We assume that y2 > y1 + 2 and |y2 − y3| ≤ |y1 − y3|. That is, without
loss of generality, Player 3 is closer to Player 2. Then, by Proposition 1,
Player 1 increases her pay-off by moving to (x1 + 1, y1 + 1). �

It remains to consider the cases where the players play close to each other.

Lemma 6. A strategy profile with max{Δx,Δy} ≤ 2 is not a Nash equilibrium.

Proof. First, we assume that Δx + Δy ≥ 2, as otherwise there would be at least
two players on the same position (so each one of them can improve by moving
to any free vertex). Without loss of generality, we also assume that Δx ≤ Δy,
leaving the cases depicted in Figure 5 for consideration. Due to space constrains,
we omit this case analysis. Please refer to the full version. �

4 General Graphs

In this section, we study the existence of Nash equilibria on arbitrary graphs.
Using computer simulations, we found that for two players, a Nash equilibrium
exists on any graph with at most n = 7 vertices. For n = 8, we obtained the graph
depicted in Figure 6, for which there is no Nash equilibrium for two players. As
it is clear that adding isolated vertices to the graph in Figure 6 does not allow
for a Nash equilibrium, we conclude the following.

Fig. 6. A graph on 8 vertices with no Nash equilibrium for two players.

210 L. Bulteau et al.

Fig. 7. A tree with no Nash equilibrium for 9 players.

Corollary 1. For two players, there is a Nash equilibrium on each n-vertex
graph if and only if n ≤ 7.

For more than two players, we can show the following.

Theorem 4. For any k > 2 and any n ≥ � 3
2k� + 2, there exists a tree with n

vertices such that there is no Nash equilibrium for k players.

Proof. We describe a construction only for n = � 3
2k�+2, as we can add arbitrarily

many isolated vertices without introducing a Nash equilibrium.
We first describe the construction for k being odd. We create one P3, whose

vertices we denote by u1, u2, and u3, such that u2 is the middle vertex of this P3.
For each i ∈ [2, �k

2 �], we create a copy of P3, denoted by Pi, whose vertices we
denote by vi,1, vi,2, and vi,3, such that vi,2 is the middle vertex of Pi. For each
i ∈ [2, �k

2 �], we connect vi,1 to u3. An example for k = 9 is depicted in Fig. 7.
For k being even, we create one P2, whose vertices we denote by u1, u2.

For each i ∈ [2, k
2 + 1], we create a copy of P3, denoted by Pi, whose vertices

we denote by vi,1, vi,2, and vi,3, such that vi,2 is the middle vertex of Pi. For
each i ∈ [2, k

2 + 1], we connect vi,1 to u2. Due to space constraints, the analysis
showing that no Nash equilibrium exists for k players playing on these graphs is
omitted. Please refer to the full version. �

5 Conclusion

We studied competitive diffusion games for three or more players on paths,
cycles, and grid graphs, answering—as a main contribution—an open question
concerning the existence of a Nash equilibrium for three players on grids [7]
negatively. Moreover, we provide a first systematic study of this game for more
than two players. However, there are several questions left open, of which we
mention some here.

An immediate question (generalizing Theorem 3) is whether a Nash equili-
brium exists for more than three players on grids. Also, giving a lower bound
for the number of vertices n such that there is a graph with n vertices with no
Nash equilibrium for k players is an interesting question as it is not clear that
the upper bounds given in Theorem4 are optimal. In other words, is it true that
n ≤ 3

2k + 1 implies the existence of a Nash equilibrium for k players?

Multi-player Diffusion Games on Graph Classes 211

References

1. Alon, N., Feldman, M., Procaccia, A.D., Tennenholtz, M.: A note on competitive
diffusion through social networks. Inf. Process. Lett. 110(6), 221–225 (2010)

2. Dürr, C., Thang, N.K.: Nash equilibria in voronoi games on graphs. In: Arge, L.,
Hoffmann, M., Welzl, E. (eds.) ESA 2007. LNCS, vol. 4698, pp. 17–28. Springer,
Heidelberg (2007)

3. Etesami, S.R., Basar, T.: Complexity of equilibrium in diffusion games on social
networks. In: Proceedings of the 2014 American Control Conference, pp. 2065–2070
(2014)

4. Janssen, J., Vautour, C.: Finding safe strategies for competitive diffusion on trees.
Internet Math. (2014) http://arxiv.org/abs/1404.5356

5. Kempe, D., Kleinberg, J., Tardos, É.: Maximizing the spread of influence through
a social network. In: Proceedings of the Ninth ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining, pp. 137–146. ACM (2003)

6. Mavronicolas, M., Monien, B., Papadopoulou, V.G., Schoppmann, F.: Voronoi
games on cycle graphs. In: Ochmański, E., Tyszkiewicz, J. (eds.) MFCS 2008.
LNCS, vol. 5162, pp. 503–514. Springer, Heidelberg (2008)

7. Roshanbin, E.: The competitive diffusion game in classes of graphs. In: Gu, Q.,
Hell, P., Yang, B. (eds.) AAIM 2014. LNCS, vol. 8546, pp. 275–287. Springer,
Heidelberg (2014)

8. Small, L.: Information diffusion on social networks. Ph.D. thesis, National Univer-
sity of Ireland Maynooth (2012)

9. Small, L., Mason, O.: Nash equilibria for competitive information diffusion on trees.
Inf. Process. Lett. 113(7), 217–219 (2013)

10. Takehara, R., Hachimori, M., Shigeno, M.: A comment on pure-strategy Nash
equilibria in competitive diffusion games. Inf. Process. Lett. 112(3), 59–60 (2012)

11. Tzoumas, V., Amanatidis, C., Markakis, E.: A game-theoretic analysis of a com-
petitive diffusion process over social networks. In: Goldberg, P.W. (ed.) WINE
2012. LNCS, vol. 7695, pp. 1–14. Springer, Heidelberg (2012)

http://arxiv.org/abs/1404.5356

Reconfiguration of Cliques in a Graph

Takehiro Ito1, Hirotaka Ono2, and Yota Otachi3(B)

1 Graduate School of Information Sciences, Tohoku University,
Aoba-yama 6-6-05, Sendai 980-8579, Japan

takehiro@ecei.tohoku.ac.jp
2 Faculty of Economics, Kyushu University,

Hakozaki 6-19-1, Higashi-ku, Fukuoka 812-8581, Japan
hirotaka@econ.kyushu-u.ac.jp

3 School of Information Science, JAIST, Asahidai 1-1,
Nomi, Ishikawa 923-1292, Japan

otachi@jaist.ac.jp

Abstract. We study reconfiguration problems for cliques in a graph,
which determine whether there exists a sequence of cliques that trans-
forms a given clique into another one in a step-by-step fashion. As one
step of a transformation, we consider three different types of rules, which
are defined and studied in reconfiguration problems for independent sets.
We first prove that all the three rules are equivalent in cliques. We then
show that the problems are PSPACE-complete for perfect graphs, while
we give polynomial-time algorithms for several classes of graphs, such as
even-hole-free graphs and cographs. In particular, the shortest variant,
which computes the shortest length of a desired sequence, can be solved
in polynomial time for chordal graphs, bipartite graphs, planar graphs,
and bounded treewidth graphs.

1 Introduction

Recently, reconfiguration problems attract attention in the field of theoretical
computer science. The problem arises when we wish to find a step-by-step trans-
formation between two feasible solutions of a problem such that all interme-
diate results are also feasible and each step abides by a fixed reconfiguration
rule (i.e., an adjacency relation defined on feasible solutions of the original
problem). This kind of reconfiguration problem has been studied extensively
for several well-known problems, including satisfiability [10], independent
set [3,11,12,14,17,23], vertex cover [12,13,16,17], clique, matching [12],
vertex-coloring [2], and so on. (See also a recent survey [22].)

It is well known that independent sets, vertex covers and cliques are related
with each other. Indeed, the well-known reductions for NP-completeness proofs
are essentially the same for the three problems [7]. Despite reconfiguration prob-
lems for independent sets and vertex covers are two of the most well studied
problems, we have only a few known results for reconfiguration problems for
cliques (as we will explain later). In this paper, we thus systematically investi-
gate the complexity status of reconfiguration problems for cliques, and show that
c© Springer International Publishing Switzerland 2015
R. Jain et al. (Eds.): TAMC 2015, LNCS 9076, pp. 212–223, 2015.
DOI: 10.1007/978-3-319-17142-5 19

Reconfiguration of Cliques in a Graph 213

C0 C1 C2

v

w

v

w

C3 C4 C5 C6 = Cr

Fig. 1. A sequence 〈C0, C1, . . . , C6〉 of cliques in the same graph, where the vertices in
cliques are depicted by large (blue) circles (tokens) (Color figure online).

the problems can be solved in polynomial time for a variety of graph classes, in
contrast to independent sets and vertex covers.

1.1 Our Problems and Three Rules

Recall that a clique of a graph G = (V,E) is a vertex subset of G in which every
two vertices are adjacent. (Figure 1 depicts seven different cliques in the same
graph.) Suppose that we are given two cliques C0 and Cr of G, and imagine
that a token is placed on each vertex in C0. Then, we are asked to transform C0

into Cr by abiding a prescribed reconfiguration rule on cliques. In this paper,
we define three different reconfiguration rules on cliques, which were originally
defined as the reconfiguration rules on independents sets [14], as follows:

• Token Addition and Removal (TAR rule): We can either add or remove a single
token at a time if it results in a clique of size at least a given threshold k ≥ 0.
For example, in the sequence 〈C0, C1, . . . , C6〉 in Fig. 1, every two consecutive
cliques follow the TAR rule for the threshold k = 2. In order to emphasize the
threshold k, we sometimes call this rule the TAR(k) rule.

• Token Jumping (TJ rule): A single token in a clique C can “jump” to any
vertex in V \ C if it results in a clique. For example, consider the sequence
〈C0, C2, C4, C6〉 in Fig. 1, then two consecutive cliques C2i and C2i+2 follow
the TJ rule for each i ∈ {0, 1, 2}.

• Token Sliding (TS rule): We can slide a single token on a vertex v in a clique C
to another vertex w in V \C if it results in a clique and there is an edge vw in
G. For example, consider the sequence 〈C2, C4〉 in Fig. 1, then two consecutive
cliques C2 and C4 follow the TS rule, because v and w are adjacent.

A sequence 〈C0, C1, . . . , C�〉 of cliques of a graph G is called a reconfigura-
tion sequence between two cliques C0 and C� under TAR(k) (or TJ, TS) if
two consecutive cliques Ci−1 and Ci follow the TAR(k) (resp., TJ, TS) rule
for all i ∈ {1, 2, . . . , �}. The length of a reconfiguration sequence is defined
to be the number of cliques in the sequence minus one, that is, the length of
〈C0, C1, . . . , C�〉 is �.

Given two cliques C0 and Cr of a graph G (and an integer k ≥ 0 for TAR),
clique reconfiguration under TAR (or TJ, TS) is to determine whether there
exists a reconfiguration sequence between C0 and Cr under TAR(k) (resp., TJ,
TS). For example, consider the cliques C0 and Cr = C6 in Fig. 1; let k = 2 for
TAR. Then, it is a yes-instance under the TAR(2) and TJ rules as illustrated in
Fig. 1, but is a no-instance under the TS rule.

214 T. Ito et al.

In this paper, we also study the shortest variant, called shortest clique
reconfiguration, under each of the three rules which computes the shortest
length of a reconfiguration sequence between two given cliques under the rule.
We define the shortest length to be infinity for a no-instance, and hence this
variant is a generalization of clique reconfiguration.

1.2 Known and Related Results

Ito et al. [12] introduced clique reconfiguration under TAR, and proved
that it is PSPACE-complete in general. They also considered the optimization
problem of computing the maximum threshold k such that there is a recon-
figuration sequence between two given cliques C0 and Cr under TAR(k). This
maximization problem cannot be approximated in polynomial time within any
constant factor unless P = NP [12].

Independent set reconfiguration is one of the most well-studied recon-
figuration problems, defined for independent sets in a graph. Kamiński et al. [14]
studied the problem under TAR, TJ and TS. It is well known that a clique in a
graph G forms an independent set in the complement G of G, and vice versa.
Therefore, one may expect that several known results for independent set
reconfiguration can be converted into ones for clique reconfiguration.
However, as far as we checked, only two results can be obtained for clique
reconfiguration by this conversion, because we take the complement of a
graph. (These results will be formally discussed in Sect. 3.3.)

In this way, only a few results are known for clique reconfiguration.
In particular, there is almost no algorithmic result, and hence it is desired to
develop efficient algorithms for the problem and its shortest variant.

1.3 Our Contribution

In this paper, we embark on a systematic investigation of the computational sta-
tus of clique reconfiguration and its shortest variant. Figure 2 summarizes
our results, which can be divided into the following four parts.

(1) Rule equivalence (Sect. 3): We prove that all rules TAR, TS and TJ are
equivalent in clique reconfiguration. Then, any complexity result under
one rule can be converted into the same complexity result under the other
two rules. In addition, based on the rule equivalence, we show that clique
reconfiguration under any rule is PSPACE-complete for perfect graphs,
and is solvable in linear time for cographs.

(2) Graphs with bounded clique size (Sect. 4.1): We show that the shortest variant
under any ofTAR,TS andTJ can be solved in polynomial time for such graphs,
which include bipartite graphs, planar graphs, and bounded treewidth graphs.
Interestingly, independent set reconfiguration under any rule remains
PSPACE-complete even for planar graphs [2,11] and bounded treewidth
graphs [23]. Therefore, this result shows a nice difference between the recon-
figuration problems for cliques and independent sets.

Reconfiguration of Cliques in a Graph 215

PSPACE-comp.
[Prop 1]

linear time
[Prop 2]

linear time
[Thm 5]

Faster FPT
[Prop 3]

cograph

perfect

shortest CR is in PCR is in P

Graphs with bounded
clique size [Thm 3]

Graphs with polynomially
many maximal cliques [Thm 4]

bipartite

series-parallel

interval

chordal

planar bounded treewidth

tree

even-hole-free

Fig. 2. Our results under all rules TAR, TS and TJ, where CR means clique recon-
figuration. Each arrow represents the inclusion relationship between graph classes:
A → B represents that B is properly included in A [4]. Graph classes for which short-
est clique reconfiguration is solvable in polynomial time are indicated by thick
(red) boxes, while the ones for which clique reconfiguration is solvable in polyno-
mial time are indicated by thin (blue) boxes (Color figure online).

(3) Graphs with polynomially many maximal cliques (Sect. 4.2): We show that
clique reconfiguration under any of TAR, TS and TJ can be solved in
polynomial time for such graphs, which include even-hole-free graphs, graphs
of bounded boxicity, and Kt-subdivision-free graphs.

(4) Chordal graphs (Sect. 5): We give a linear-time algorithm to solve the shortest
variant under any of TAR, TS and TJ for chordal graphs. Note that the
clique size of chordal graphs is not always bounded, and hence this result is
independent from Result (2) above.

Due to the page limitation, we omit several proofs from this extended abstract.

2 Preliminaries

In this paper, we assume without loss of generality that graphs are simple and
undirected. For a graph G, we sometimes denote by V (G) and E(G) the vertex
set and edge set of G, respectively. For a graph G, the complement G of G is the
graph such that V (G) = V (G) and E(G) = {vw | v, w ∈ V (G), vw �∈ E(G)}. We
say that a graph class G (i.e., a set of graphs) is closed under taking complements
if G ∈ G holds for every graph G ∈ G.

In this paper, we deal with several graph classes systematically, and hence we
do not define those graph classes precisely; we simply give the properties used
for proving our results, with appropriate references.

2.1 Definitions for Clique Reconfiguration

As explained in Introduction, we consider three (symmetric) adjacency relations
on cliques in a graph. Let Ci and Cj be two cliques of a graph G. Then, we write

216 T. Ito et al.

• Ci ↔ Cj under TAR(k) for a nonnegative integer k if |Ci| ≥ k, |Cj | ≥ k, and
|Ci � Cj | =

∣∣(Ci \ Cj) ∪ (Cj \ Ci)
∣∣ = 1 hold;

• Ci ↔ Cj under TJ if |Ci| = |Cj |, |Ci \ Cj | = 1, and |Cj \ Ci| = 1 hold; and
• Ci ↔ Cj under TS if |Ci| = |Cj |, Ci\Cj = {v}, Cj \Ci = {w}, and vw ∈ E(G)

hold.

A sequence 〈C1, C2, . . . , C�〉 of cliques of G is called a reconfiguration sequence
between two cliques C1 and C� under TAR(k) (or TJ, TS) if Ci−1 ↔ Ci holds
under TAR(k) (resp., TJ, TS) for all i ∈ {2, 3, . . . , �}. A reconfiguration sequence
under TAR(k) (or TJ, TS) is simply called a TAR(k)-sequence (resp., TJ-sequence,
TS-sequence). We write C1 � C� under TAR(k) (or TJ, TS) if there exists a
TAR(k)-sequence (resp., TJ-sequence, TS-sequence) between C1 and C�.

Let k be a nonnegative integer, and let C and C ′ be two cliques of a graph
G. Then, we define TAR(C,C ′, k), as follows:

TAR(C,C ′, k) =
{
yes if C � C ′ under TAR(k);
no otherwise.

Given two cliques C0 and Cr of a graph G and a nonnegative integer k, clique
reconfiguration under TAR is to compute TAR(C0, Cr, k). By the definition,
TAR(C0, Cr, k) = no if |C0| < k or |Cr| < k hold, and hence we may assume
without loss of generality that both |C0| ≥ k and |Cr| ≥ k hold; we call such an
instance simply a TAR-instance, and denote it by (G,C0, Cr, k).

For two cliques C and C ′ of a graph G, we similarly define TJ(C,C ′) and
TS(C,C ′). Given two cliques C0 and Cr of G, we similarly define clique recon-
figuration under TJ and TS, and denote their instance by (G,C0, Cr). Then,
we can assume that |C0| = |Cr| holds in a TJ- or a TS-instance (G,C0, Cr).

2.2 Definitions for Shortest Clique Reconfiguration

Given a TAR-instance (G,C0, Cr, k), let C = 〈C0, C1, . . . , C�〉 be a TAR(k)-
sequence in G between C0 and Cr = C�. Then, the length of C is defined to
be the number of cliques in C minus one, that is, the length of C is �. We denote
by distTAR(G,C0, Cr, k) the minimum length of a TAR(k)-sequence in G between
C0 and Cr; we let distTAR(G,C0, Cr, k) = +∞ if there is no TAR(k)-sequence
in G between C0 and Cr. The shortest variant, shortest clique reconfig-
uration, under TAR is to compute distTAR(G,C0, Cr, k). Similarly, we define
distTJ(G,C0, Cr) and distTS(G,C0, Cr) for a TJ- and a TS-instance (G,C0, Cr),
respectively. Then, shortest clique reconfiguration under TJ or TS is
defined similarly. We sometimes drop G and simply write distTAR(C0, Cr, k),
distTJ(C0, Cr) and distTS(C0, Cr) if it is clear from context.

We note that clique reconfiguration under any rule is a decision problem
asking for the existence of a reconfiguration sequence, and its shortest variant
asks for simply computing the shortest length of a reconfiguration sequence.
Therefore, the problems do not ask for an actual reconfiguration sequence. How-
ever, our algorithms proposed in this paper can be easily modified so that they
indeed find a reconfiguration sequence.

Reconfiguration of Cliques in a Graph 217

3 Rule Equivalence and Complexity

In this section, we first prove that all three rules TAR, TS and TJ are equivalent
in clique reconfiguration. We then discuss some complexity results that
can be obtained from known results for independent set reconfiguration.

3.1 Equivalence of TS and TAR Rules

TS and TAR rules are equivalent, as in the following sense.

Theorem 1. TS and TAR rules are equivalent in clique reconfiguration,
as follows:

(a) for any TS-instance (G,C0, Cr), a TAR-instance (G,C ′
0, C

′
r, k

′) can be
constructed in linear time such that TS(C0, Cr) = TAR(C ′

0, C
′
r, k

′) and
distTS(C0, Cr) = distTAR(C ′

0, C
′
r, k

′)/2; and
(b) for any TAR-instance (G,C0, Cr, k), a TS-instance (G,C ′

0, C
′
r) can be con-

structed in linear time such that TAR(C0, Cr, k) = TS(C ′
0, C

′
r).

Proof sketch. We here explain only how to construct the corresponding instances
in linear time, and omit the correctness proofs.

(a) Let (G,C0, Cr) be a TS-instance with |C0| = |Cr| = k. Then, let C ′
0 = C0,

C ′
r = Cr and k′ = k, as the corresponding TAR-instance (G,C ′

0, C
′
r, k

′).
(b) Let (G,C0, Cr, k) be a TAR-instance; note that |C0| �= |Cr| may hold, and

both |C0| ≥ k and |Cr| ≥ k hold. Then, as the corresponding TS-instance
(G,C ′

0, C
′
r), let C ′

0 ⊆ C0 and C ′
r ⊆ Cr be any subsets of size exactly k. ��

By Theorem 1(a), note that the reduction from TS to TAR preserves the
shortest length of reconfiguration sequences.

3.2 Equivalence of TJ and TAR Rules

TJ and TAR rules are equivalent, as in the following sense.

Theorem 2. TJ and TAR rules are equivalent in clique reconfiguration,
as follows:

(a) for any TJ-instance (G,C0, Cr), a TAR-instance (G,C ′
0, C

′
r, k

′) can be
constructed in linear time such that TJ(C0, Cr) = TAR(C ′

0, C
′
r, k

′) and
distTJ(C0, Cr) = distTAR(C ′

0, C
′
r, k

′)/2; and
(b) for any TAR-instance (G,C0, Cr, k), a TJ-instance (G,C ′

0, C
′
r) can be con-

structed in linear time such that TAR(C0, Cr, k) = TJ(C ′
0, C

′
r).

Proof sketch. We again explain only how to construct the corresponding instances
in linear time, and omit the correctness proofs.

(a) Let (G,C0, Cr) be a TJ-instance with |C0| = |Cr| = k. Then, let C ′
0 = C0,

C ′
r = Cr and k′ = k − 1, as the corresponding TAR-instance (G,C ′

0, C
′
r, k

′).

218 T. Ito et al.

(b) Let (G,C0, Cr, k) be a TAR-instance; |C0| �= |Cr| may hold, and both |C0| ≥
k and |Cr| ≥ k hold. We first claim the following lemma.

Lemma 1. Let (G,C0, Cr, k) be a TAR-instance such that C0 �= Cr. Suppose
that there exists an index j ∈ {0, r} such that |Cj | = k and Cj is a maximal
clique in G. Then, TAR(C0, Cr, k) = no.

We thus assume without loss of generality that none of C0 and Cr is a
maximal clique in G of size k; note that the maximality of a clique can be
determined in linear time. Then, we construct the corresponding TJ-instance
(G,C ′

0, C
′
r), as in the following two cases (i) and (ii):

(i) for each j ∈ {0, r} such that |Cj | ≥ k+1, let C ′
j ⊆ Cj be an arbitrary subset

of size exactly k + 1; and
(ii) for each j ∈ {0, r} such that |Cj | = k, let C ′

j ⊃ Cj be an arbitrary superset
of size exactly k + 1. ��
By Theorem 2(a), note that the reduction from TJ to TAR preserves the

shortest length of reconfiguration sequences.

3.3 Results Obtained from Independent Set Reconfiguration

We here show two complexity results for clique reconfiguration, which can
be obtained from known results for independent set reconfiguration.

Consider a vertex subset C of a graph G. Then, C forms a clique in G if and
only if C forms an independent set in the complement G of G. Therefore, the
following lemma clearly holds.

Lemma 2. Let G be a graph, and let Cj be a clique of G for each j ∈ {0, 1, . . . , �}.
Then, 〈C0, C1, . . . , C�〉 is a TAR(k)-sequence of cliques in G if and only if 〈C0, C1,
. . . , C�〉 is a TAR(k)-sequence of independent sets in the complement G of G.

By Lemma 2 we can convert a complexity result for independent set
reconfiguration under TAR for a graph class G into one for clique recon-
figuration under TAR for G if the graph class G is closed under taking com-
plements. Note that, by Theorems 1 and 2, any complexity result under one
rule can be converted into the same complexity result under the other two rules.
Then, we have the following two results.

Proposition 1. Clique reconfiguration is PSPACE-complete for perfect
graphs under all rules TAR, TS and TJ.

Proposition 2. Clique reconfiguration can be solved in linear time for
cographs under all rules TAR, TS and TJ.

4 Polynomial-Time Algorithms

In this section, we show that clique reconfiguration is solvable in polyno-
mial time for several graph classes. We deal with two types of graph classes, that
is, graphs of bounded clique size (in Sect. 4.1) and graphs having polynomially
many maximal cliques (in Sect. 4.2).

Reconfiguration of Cliques in a Graph 219

4.1 Graphs of Bounded Clique Size

In this subsection, we show that shortest clique reconfiguration can be
solved in polynomial time for graphs of bounded clique size. For a graph G, we
denote by ω(G) the size of a maximum clique in G.

Theorem 3. Let G be a graph with n vertices such that ω(G) ≤ w for a posi-
tive integer w. Then, shortest clique reconfiguration under any of TAR,
TS and TJ can be solved in time O(w2nw) for G.

It is well known that ω(G) ≤ 4 for any planar graph G, and ω(G′) ≤ 2 for
any bipartite graph G′. We thus have the following corollary.

Corollary 1. Shortest clique reconfiguration under TAR, TS and TJ
can be solved in polynomial time for planar graphs and bipartite graphs.

By the definition of treewidth [1], we have ω(G) ≤ t+1 for any graph G whose
treewidth can be bounded by a positive integer t. By Theorem 3 this observation
gives an O

(
t2nt+1

)
-time algorithm for shortest clique reconfiguration.

However, for this case, we can obtain a faster fixed-parameter algorithm, where
the parameter is the treewidth t, as follows.

Proposition 3. Let G be a graph with n vertices whose treewidth is bounded by
a positive integer t. Then, shortest clique reconfiguration under any of
TAR, TS and TJ can be solved for G in time O(ctn), where c is some constant.

Proposition 3 implies that shortest clique reconfiguration under any
of TAR, TS and TJ can be solved in fixed-parameter time O(cwn) for chordal
graphs G when parameterized by the size w of a maximum clique in G, where n
is the number of vertices in G and c is some constant; because the treewidth of
a chordal graph G can be bounded by the size of a maximum clique in G minus
one [18]. However, we give a linear-time algorithm to solve the shortest variant
under any rule for chordal graphs in Sect. 5.

4.2 Graphs with Polynomially Many Maximal Cliques

In this subsection, we consider the class of graphs having polynomially many
maximal cliques, which properly contains the class of graphs with bounded clique
size (in Sect. 4.1). Note that, even if a graph G has a polynomial number of
maximal cliques, G may have a super-polynomial number of cliques.

Theorem 4. Let G be a graph with n vertices and m edges, and let M(G) be
the set of all maximal cliques in G. Then, clique reconfiguration under any
of TAR, TS and TJ can be solved for G in time O

(
mn|M(G)| + n|M(G)|2).

Before proving Theorem 4, we give the following corollary.

Corollary 2. Clique reconfiguration under TAR, TS and TJ can be solved
in polynomial time for even-hole-free graphs, graphs of bounded boxicity, and
Kt-subdivision-free graphs.

220 T. Ito et al.

Proof. By Theorem 4 it suffices to show that the claimed graphs have polyno-
mially many maximal cliques. Polynomial bounds on the number of maximal
cliques are shown for even-hole-free graphs in [5], for graphs of bounded boxicity
in [19], and for Kt-subdivision-free graphs in [15]. ��

In this subsection, we prove Theorem 4. However, by Theorems 1(a) and 2(a)
it suffices to give such an algorithm only for the TAR rule.

Let (G,C0, Cr, k) be any TAR-instance. Then, we define the k-intersection
maximal-clique graph of G, denoted by MCk(G), as follows:

(i) each node in MCk(G) corresponds to a (maximal) clique in M(G); and
(ii) two nodes in MCk(G) are joined by an edge if and only if |M ∩M ′| ≥ k holds

for the corresponding two maximal cliques M and M ′ in M(G).

Note that any maximal clique in M(G) of size less than k is contained in MCk(G)
as an isolated node. We now give the key lemma to prove Theorem 4.

Lemma 3. Let G be a graph, and let C and C ′ be any pair of cliques in G such
that |C| ≥ k and |C ′| ≥ k. Let M ⊇ C and M ′ ⊇ C ′ be arbitrary maximal cliques
in M(G). Then, C � C ′ under TAR(k) if and only if MCk(G) contains a path
between the two nodes corresponding to M and M ′.

Proof of Theorem 4. For any graph G with n vertices and m edges, Tsukiyama
et al. [20] proved that the set M(G) can be computed in time O

(
mn|M(G)|).

Thus, we can construct MCk(G) in time O
(
mn|M(G)| + n|M(G)|2). By the

breadth-first search on MCk(G) which starts from an arbitrary maximal clique
(node) M ⊇ C0, we can check in time O

(|M(G)|2) whether MCk(G) has a path
to a maximal clique M ′ ⊇ Cr. Then, the theorem follows from Lemma 3. ��

5 Linear-Time Algorithm for Chordal Graphs

Since any chordal graph is even-hole free, by Corollary 2 clique reconfigu-
ration is solvable in polynomial time for chordal graphs. Furthermore, we have
discussed in Sect. 4.1 that the shortest variant is fixed-parameter tractable for
chordal graphs when parameterized by the size of a maximum clique in a graph.
However, we give the following theorem in this section.

Theorem 5. Shortest clique reconfiguration under any of TAR, TS and
TJ can be solved in linear time for chordal graphs.

In this section, we prove Theorem 5. By Theorems 1(a) and 2(a) it suffices to
give a linear-time algorithm for a TAR-instance; recall that the reduction from
TS/TJ to TAR preserves the shortest length of reconfiguration sequences.

Our algorithm consists of two phases. The first is a linear-time reduction
from a given TAR-instance (G,C0, Cr, k) for a chordal graph G to a TAR-
instance (H,C0, Cr, k) for an interval graph H such that distTAR(H,C0, Cr, k) =
distTAR(G,C0, Cr, k). The second is a linear-time algorithm for interval graphs.

Reconfiguration of Cliques in a Graph 221

5.1 Definitions of Chordal Graphs and Interval Graphs

A graph is a chordal graph if every induced cycle is of length three. Recall that
M(G) is the set of all maximal cliques in a graph G, and we denote by M(G; v)
the set of all maximal cliques in G that contain a vertex v ∈ V (G). A tree T is
a clique tree of a graph G if it satisfies the following two conditions:

– each node in T corresponds to a maximal clique in M(G); and
– for each v ∈ V (G), the subgraph of T induced by M(G; v) is connected.

It is known that a graph is a chordal graph if and only if it has a clique tree [8].
A clique tree of a chordal graph can be computed in linear time (see [19,
Sect. 15.1]).

A graph is an interval graph if it can be represented as the intersection graph
of intervals on the real line. A clique path is a clique tree which is a path. It is
known that a graph is an interval graph if and only if it has a clique path [6,9].

5.2 Linear-Time Reduction from Chordal Graphs to Interval
Graphs

In this subsection, we describe the first phase of our algorithm.
Let (G,C0, Cr, k) be any TAR-instance for a chordal graph G, and let T be a

clique tree of G. Then, we find an arbitrary pair of maximal cliques M0 and Mt in
G (i.e., two nodes in T) such that C0 ⊆ M0 and Cr ⊆ Mt. Let (M0,M1, . . . , Mt)
be the unique path in T from M0 to Mt. We define a graph H ′ as the subgraph
of G induced by the maximal cliques M0,M1, . . . , Mt. Note that H ′ is an interval
graph, because (M0,M1, . . . , Mt) forms a clique path.

The following lemma implies that the interval graph H ′ has a TAR(k)-
sequence 〈C0, C1, . . . , C�′〉 such that �′ = distTAR(G,C0, Cr, k), and hence yields
that distTAR(H ′, C0, Cr, k) = distTAR(G,C0, Cr, k) holds.

Lemma 4. Let (G,C0, Cr, k) be a TAR-instance for a chordal graph G, and let
T be a clique tree of G. Suppose that 〈C0, C1, . . . , C�〉 is a shortest TAR(k)-
sequence in G from C0 to C� = Cr. Let (M0,M1, . . . Mt) be the path in T from
M0 to Mt for any pair of maximal cliques M0 ⊇ C0 and Mt ⊇ Cr. Then, there
is a monotonically increasing function f : {0, 1, . . . , �} → {0, 1, . . . , t} such that
Ci ⊆ Mf(i) for each i ∈ {0, 1, . . . , �}.

Although Lemma 4 implies that distTAR(H ′, C0, Cr, k) = distTAR(G,C0, Cr, k)
holds for the interval graph H ′, it seems difficult to find two maximal cliques
M0 ⊇ C0 and Mt ⊇ Cr (and hence construct H ′ from G) in linear time. However,
by a small trick, we can construct an interval graph H in linear time such that
distTAR(H,C0, Cr, k) = distTAR(G,C0, Cr, k), as follows.

Lemma 5. Given a TAR-instance (G,C0, Cr, k) for a chordal graph G, one can
obtain a subgraph H of G in linear time such that H is an interval graph,
C0, Cr ⊆ V (H) and distTAR(H,C0, Cr, k) = distTAR(G,C0, Cr, k).

222 T. Ito et al.

5.3 Linear-Time Algorithm for Interval Graphs

In this subsection, we describe the second phase of our algorithm.
Let H be a given interval graph, and we assume that its clique path P has

V (P) = M(H) = {M0,M1, . . . , Mt} and E(P) = {MiMi+1 | 0 ≤ i < t}. Note
that we can assume that t ≥ 1, that is, H has at least two maximal cliques;
otherwise we can easily solve the problem in linear time. For a vertex v in H,
let lv = min{i | v ∈ Mi} and rv = max{i | v ∈ Mi}; the indices lv and rv are
called the l-value and r-value of v, respectively. Note that v ∈ Mi if and only if
lv ≤ i ≤ rv. For an interval graph H, such a clique path P and the indices lv
and rv for all vertices v ∈ V (H) can be computed in linear time [21].

Let (H,C0, Cr, k) be a TAR-instance. We assume that C0 ⊆ M0, C0 �⊆ M1

and Cr ⊆ Mt; otherwise we can remove the maximal cliques Mi such that
i < min{rv | v ∈ C0} or i > max{lv | v ∈ Cr} in linear time. Our algorithm
greedily constructs a shortest TAR(k)-sequence from C0 to Cr, as follows:

(1) if C0 �⊆ Cr and |C0| ≥ k+1, then remove a vertex with the minimum r-value
in C0 \ Cr from C0;

(2) otherwise add a vertex in (Cr \C0)∩M0 if any; if no such vertex exists, add
a vertex with the maximum r-value in M0 \ C0.

We regard the clique obtained by one of the operations above as C0; if necessary,
we shift the indices of Mi so that C0 ⊆ M0 and C0 �⊆ M1 hold; and repeat. If
C0 �= Cr and none of the operations above is possible, we can conclude that
(H,C0, Cr, k) is a no-instance.

We omit the correctness proof of this greedy algorithm and the estimation
of its running time. This completes the proof sketch of Theorem 5. ��

6 Conclusion

In this paper, we have systematically shown that clique reconfiguration and
its shortest variant can be solved in polynomial time for several graph classes.
As far as we know, this is the first example of a reconfiguration problem such
that it is PSPACE-complete in general, but is solvable in polynomial time for
such a variety of graph classes.

Acknowledgments. This work is partially supported by MEXT/JSPS KAKENHI
25106504 and 25330003 (T. Ito), 25104521 and 26540005 (H. Ono), and 24106004 and
25730003 (Y. Otachi).

References

1. Bodlaender, H.L., Drange, P.G., Dregi, M.S., Fomin, F.V., Lokshtanov, D.,
Pilipczuk, M.: An O(ckn) 5-approximation algorithm for treewidth. In: Proceed-
ings of FOCS 2013, pp. 499–508 (2013)

Reconfiguration of Cliques in a Graph 223

2. Bonsma, P., Cereceda, L.: Finding paths between graph colourings: PSPACE-
completeness and superpolynomial distances. Theoret. Comput. Sci. 410, 5215–
5226 (2009)

3. Bonsma, P.: Independent set reconfiguration in cographs. In: Kratsch, D., Todinca,
I. (eds.) WG 2014. LNCS, vol. 8747, pp. 105–116. Springer, Heidelberg (2014)

4. Brandstädt, A., Le, V.B., Spinrad, J.P.: Graph Classes: A Survey, SIAM, Philadel-
phia (1999)

5. da Silva, M.V.G., Vušković, K.: Triangulated neighborhoods in even-hole-free
graphs. Discrete Math. 307, 1065–1073 (2007)

6. Fulkerson, D.R., Gross, O.A.: Incidence matrices and interval graphs. Pac. J. Math.
15, 835–855 (1965)

7. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. Freeman, San Francisco (1979)

8. Gavril, F.: The intersection graphs of subtrees in trees are exactly the chordal
graphs. J. Comb. Theory, Ser. B 16, 47–56 (1974)

9. Gilmore, P.C., Hoffman, A.J.: A characterization of comparability graphs and of
interval graphs. Can. J. Math. 16, 539–548 (1964)

10. Gopalan, P., Kolaitis, P.G., Maneva, E.N., Papadimitriou, C.H.: The connectiv-
ity of Boolean satisfiability: computational and structural dichotomies. SIAM J.
Comput. 38, 2330–2355 (2009)

11. Hearn, R.A., Demaine, E.D.: PSPACE-completeness of sliding-block puzzles and
other problems through the nondeterministic constraint logic model of computa-
tion. Theoret. Comput. Sci. 343, 72–96 (2005)

12. Ito, T., Demaine, E.D., Harvey, N.J.A., Papadimitriou, C.H., Sideri, M., Uehara,
R., Uno, Y.: On the complexity of reconfiguration problems. Theoret. Comput.
Sci. 412, 1054–1065 (2011)

13. Ito, T., Nooka, H., Zhou, X.: Reconfiguration of vertex covers in a graph. In:
Proceedings of IWOCA 2014 (2014, To appear)

14. Kamiński, M., Medvedev, P., Milanič, M.: Complexity of independent set recon-
figurability problems. Theoret. Comput. Sci. 439, 9–15 (2012)

15. Lee, C., Oum, S.: Number of cliques in graphs with forbidden subdivision.
arXiv:1407.7707 (2014)

16. Mouawad, A.E., Nishimura, N., Raman, V.: Vertex cover reconfiguration and
beyond. In: Ahn, H.-K., Shin, C.-S. (eds.) ISAAC 2014. LNCS, vol. 8889, pp.
447–458. Springer, Heidelberg (2014)

17. Mouawad, A.E., Nishimura, N., Raman, V., Simjour, N., Suzuki, A.: On the para-
meterized complexity of reconfiguration problems. In: Gutin, G., Szeider, S. (eds.)
IPEC 2013. LNCS, vol. 8246, pp. 281–294. Springer, Heidelberg (2013)

18. Robertson, N., Seymour, P.D.: Graph minors. II. Algorithmic aspects of tree-width.
J. Algorithms 7, 309–322 (1986)

19. Spinrad, J.P.: Efficient Graph Representations. American Mathematical Society,
Providence (2003)

20. Tsukiyama, S., Ide, M., Ariyoshi, H., Shirakawa, I.: A new algorithm for generating
all the maximal independent sets. SIAM J. Comput. 6, 505–517 (1977)

21. Uehara, R., Uno, Y.: On computing longest paths in small graph classes. Int. J.
Found. Comput. Sci. 18, 911–930 (2007)

22. van den Heuvel, J.: The complexity of change. Surveys in Combinatorics 2013,
London Mathematical Society Lecture Notes Series 409 (2013)

23. Wrochna, M.: Reconfiguration in bounded bandwidth and treedepth.
arXiv:1405.0847 (2014)

http://arxiv.org/abs/1407.7707
http://arxiv.org/abs/1405.0847

The Complexity of Finding Effectors

Laurent Bulteau, Stefan Fafianie, Vincent Froese, Rolf Niedermeier,
and Nimrod Talmon(B)

Institut Für Softwaretechnik Und Theoretische Informatik,
TU Berlin, Berlin, Germany

{l.bulteau,nimrodtalmon77}@gmail.com,
{stefan.fafianie,vincent.froese,rolf.niedermeier}@tu-berlin.de

Abstract. The NP-hard Effectors problem on directed graphs is
motivated by applications in network mining, particularly concerning
the analysis of (random) information-propagation processes. In the cor-
responding model the arcs carry probabilities and there is a probabilistic
diffusion process activating nodes by neighboring activated nodes with
probabilities as specified by the arcs. The point is to explain a given net-
work activation state best possible using a minimum number of “effector
nodes”; these are selected before the activation process starts.

We complement and extend previous work from the data mining com-
munity by a more thorough computational complexity analysis of Effec-
tors, identifying both tractable and intractable cases. To this end, we
also exploit a parameterization measuring the “degree of randomness”
(the number of ‘really’ probabilistic arcs) which might prove useful for
analyzing other probabilistic network diffusion problems.

1 Introduction

To understand and master the dynamics of information propagation in networks
(biological, chemical, computer, information, social) is a core research topic in
data mining and related fields. A prominent problem in this context is the NP-
hard problem Effectors [10]: The input is a directed (influence) graph with a
subset of nodes marked as active (the target nodes) and each arc of the graph
carries an influence probability between 0 and 1. The task is to find few “effec-
tor nodes” that can “best explain” the set of given active nodes, that is, the
activation state of the graph; herein, in one round (this is known as the indepen-
dent cascade model [9]) an activated node (initially consisting only the chosen
effectors) can activate every out-neighbor with the corresponding arc probabil-
ity; see Sect. 2 for a formal model and problem definition. It is important to

A full version is available at http://arxiv.org/abs/1411.7838.
Laurent Bulteau—Supported by the Alexander von Humboldt Foundation, Bonn,
Germany.
Stefan Fafianie—Supported by the DFG Emmy Noether-program (KR 4286/1).
Vincent Froese—Supported by the DFG, project DAMM (NI 369/13).
Nimrod Talmon—Supported by DFG Research Training Group MDS (GRK 1408).

c© Springer International Publishing Switzerland 2015
R. Jain et al. (Eds.): TAMC 2015, LNCS 9076, pp. 224–235, 2015.
DOI: 10.1007/978-3-319-17142-5 20

http://arxiv.org/abs/1411.7838

The Complexity of Finding Effectors 225

note that we allow effectors to be chosen from the whole set of graph nodes
and not only from the set of target nodes. This makes our model, in a sense,
more general than the original one by Lappas et al. [10].1 Our main contribu-
tion is to extend and clarify research on the computational complexity status
of Effectors, which has been initiated by Lappas et al. [10]. In particular,
as probabilistic information propagation is central in this model as well as in
other network diffusion models, we put particular emphasis on studying how the
“degree of randomness” in the network governs the computational complexity.
Moreover, compared to previous work, we make an effort to present the results
in a more formal setting conducting a rigorous mathematical analysis.

Informally speaking (concrete statements of our results appear in Sect. 2 after
having provided formal definitions), we gained the following main insights.

– With unlimited degree of randomness, finding effectors is computationally
very hard. In fact, even computing the “cost” (how well does a set of effectors
explain a given activation state) of a given set of effectors is intractable. This
significantly differs from deterministic models.

– Even if the directed input graph is acyclic, then this does not lead to a sig-
nificant decrease of the computational complexity.

– Bounding the degree of randomness (in other words, bounding the number
of arcs with probability different from 0 or 1), that is, parameterizing on the
degree of randomness, yields some encouraging (fixed-parameter) tractability
results for otherwise intractable cases.

– We identify some flaws in the work of Lappas et al. [10] (see the last part
of Sect. 4.3 for details), who claim one case to be intractable which in fact is
tractable and one case the other way around.

Admittedly, in real-world applications (where influence probabilities are deter-
mined through observation and simulation, often involving noise) the number of
probabilistic arcs may be high, thus rendering the parameter “number of prob-
abilistic arcs” doubtful. However, note that finding effectors is computationally
very hard (also in terms of polynomial-time approximability) and so in order
to make the computation of a solution more feasible one might round up (to 1)
arc probabilities which are close to 1 and round down (to 0) arc probabilities
which are close to 0. Thus, we can achieve a tradeoff between running time and
accuracy of the result. Depending on the degree of rounding (as much as a sub-
sequent fixed-parameter algorithm exploiting the mentioned parameter would
“allow”) in this way one might at least find a good approximation of an optimal
set of effectors in reasonable time.

Related Work. Our main point of reference is the work of Lappas et al. [10].
Indeed, we use a slightly different (and more general) problem definition: they
define the effectors to be necessarily a subset of the target nodes, whereas we
1 We conjecture that both models coincide if we have unlimited budget, that is, if the

number of chosen effectors does not matter. On the contrary, they do not coincide
if we have limited budget, see Sect. 2.

226 L. Bulteau et al.

allow the effectors to form an arbitrary subset of the nodes. It turns out that
these two definitions really yield different problems (see Sect. 2 for an extensive
discussion of the two models). The also NP-hard special case where all nodes are
target nodes (and hence where the two models above clearly coincide) is called
Influence Maximization and is also well studied in the literature [4,6,9].
Finally, a closely related deterministic version (called Target Set Selection)
with the additional difference of having node-individual thresholds specifying
how many neighboring nodes need to be active to make a node active has also
been extensively studied, in particular from a parameterized complexity point
of view [3,5,11].

2 Preliminaries and Model Discussion

In this section, we first provide the formal framework, overview our results, and
explain our modeling, particularly discussing the difference between our model
and the one by Lappas et al. [10].

Preliminaries. We basically use the same definitions as Lappas et al. [10] except
for few differences in notation.

Influence Graphs. An influence graph G = (V,E,w) is a simple directed graph
equipped with a function w : E → (0, 1]∩Q assigning an influence weight to each
arc (u → v) ∈ E which represents the influence of node u on node v. We denote
the number of nodes in G by n := |V | and the number of arcs in G by m := |E|.
Information Propagation. We consider the following information-propagation
process, called the Independent Cascade (IC) model [9]. Within this model, each
node is in one of two states: active or inactive. When a node u becomes active for
the first time, at time step t, it gets a single chance to activate its out-neighbors.
Specifically, u succeeds in activating a neighbor v with probability w(u → v). If
u succeeds, then v will become active at step t+1. Otherwise, u cannot make any
more attempts to activate v in any subsequent round. As usual, we assume that
the precision of the probabilities determined by the function w is polynomially
bounded in the number n of nodes in the input graph.

Cost Function. For a given influence graph G = (V,E,w), subset X ⊆ V of
effectors, and subset A ⊆ V of active nodes, we define a cost function

CA(G,X) :=
∑
v∈A

(1 − p(v|X)) +
∑

v∈V \A
p(v|X),

where for each v ∈ V , we define p(v|X) to be the probability of v being active
after the termination of the information-propagation process starting with X as
the active nodes. An alternative definition is that CA(G,X) :=

∑
v∈V CA(v,X),

where CA(v,X) := 1 − p(v|X) if v ∈ A and CA(v,X) := p(v|X) if v /∈ A.

Main Problem Definition. Our central problem Effectors is formulated as a
decision problem—it relates to finding few nodes which best explain (lowest cost)
the given network activation state specified by a subset A ⊆ V of nodes.

The Complexity of Finding Effectors 227

Effectors
Input: An influence graph G = (V,E,w), a set of target nodes A ⊆ V ,
a budget b ∈ N, and a cost c ∈ Q.
Question: Is there a subset X ⊆ V of effectors such that |X| ≤ b and
CA(G,X) ≤ c?

We will additionally consider the related problem Effectors-Cost (see Sect. 3)
where the set X of effectors is already given and one has to determine its cost.

Parameters. The most natural parameters to consider for a parameterized com-
plexity analysis are the maximum number b of effectors, the cost value c, and
the number a := |A| of target nodes. Moreover, we will be especially inter-
ested in quantifying the amount of randomness in the influence graph. To this
end, consider an arc (u → v) ∈ E: if w(u → v) = 1, then this arc is not
probabilistic. We define the parameter number r of probabilistic arcs, that is,
r := |{(u → v) ∈ E : 0 < w(u → v) < 1}|. We will also briefly discuss the
parameterization by the treewidth of the underlying undirected graph.

Graph Theory. We use the acronym DAG for directed acyclic graphs. The DAG
of strongly connected components of a directed graph is called its condensation.
A directed tree is an arbitrary orientation of an undirected tree.

Computational Complexity. We assume familiarity with the basic notions of algo-
rithms and complexity. Several of our results will be cast using the framework
of parameterized complexity analysis. An instance (I, k) of a parameterized
problem consists of the actual instance I and an integer k being the parame-
ter [7,8,12]. A parameterized problem is called fixed-parameter tractable (FPT)
if there is an algorithm solving it in f(k) · |I|O(1) time, whereas an algorithm
with running time O(|I|f(k)) only shows membership in the class XP (clearly,
FPT ⊆ XP). Thus, achieving fixed-parameter tractability is computationally
much more attractive. One can show that a parameterized problem L is (presum-
ably) not fixed-parameter tractable by devising a parameterized reduction from
a W[1]-hard or W[2]-hard problem (such as Clique or Set Cover, respec-
tively, each parameterized by the solution size) to L. A parameterized reduc-
tion from a parameterized problem L to another parameterized problem L′ is
a function that, given an instance (I, k), computes in f(k) · |I|O(1) time an
instance (I ′, k′) (with k′ ≤ g(k)) such that (I, k) ∈ L ⇔ (I ′, k′) ∈ L′. We
will also consider counting problems of the form “compute func(x)”. Informally
speaking, we can associate a decision problem in NP to a counting problem
in #P. Then, analogously to NP-hardness, showing that a counting problem is
#P-hard gives strong evidence for the intractability of the counting problem.

Our Results. Before we discuss our model and the one by Lappas et al. [10], we
overview our main results. We will treat the subproblem Effectors-Cost in
Sect. 3, and Effectors in Sect. 4. Our results are summarized in Table 1. Note
that most of our results transfer to the model of Lappas et al. [10]. In particular,
this implies that their claims that the “zero-cost” special case is NP-hard [10,
Lemma 1] and that the deterministic version is polynomial-time solvable are

228 L. Bulteau et al.

Table 1. Computational complexity of the different variants of Effectors. Note that
all hardness results hold also for DAGs. The parameter a stands for the number of active
nodes, b for the budget, c for the cost value, and r for the number of probabilistic arcs.

Deterministic
(r = 0)

Parameterized
(by r)

Probabilistic
(arbitrary r)

Effectors-
Cost

Effectors
(general case)

XP

Infinite budget
(b = ∞)

Influence
Maximization

(A = V)

both flawed, because from our results exactly the opposite follows (see the last
part of Sect. 4.3 for details). Due to lack of space, most of the proofs are omitted.
For full formal proofs, refer to the full version (available at http://arxiv.org/abs/
1411.7838).

Model Discussion. Our definition of Effectors differs from the problem
definition of Lappas et al. [10] in that we do not require the effectors to be
chosen among the target nodes. Before pointing out possible advantages and
motivating our problem definition, we give a simple example illustrating the
difference between these two problems.

Consider the influence graph in Fig. 1, consisting of one non-target node
(white) having three outgoing arcs of weight 1 to three target nodes (black).
Clearly, for b = c = 1, this is a “no”-instance if we are only allowed to pick
target nodes as effectors since the probability of being active will be 0 for two of
the three target nodes in any case, which yields a cost of at least 2. According to
our problem definition, however, we are allowed to select the non-target node,
which only incurs a cost of 1, showing that this is a “yes”-instance. We think
that our model captures the natural assumption that an effector node does not
have to remain active forever. Indeed, the modeling of Lappas et al. [10] might
be interpreted as a “monotone version” as for example discussed by Askalidis
et al. [2], while in this sense our model allows for “non-monotone explanations”.

Clearly, if all nodes are target nodes (this particular setting is called Influ-
ence Maximization), then the two models coincide. Furthermore, we strongly
conjecture that if we have an unlimited budget, then it suffices to search for a
solution among the target nodes, that is, also for b = ∞, we believe that the two
problem definitions are equivalent.

http://arxiv.org/abs/1411.7838
http://arxiv.org/abs/1411.7838

The Complexity of Finding Effectors 229

1 1 1

Fig. 1. A small example where it is optimal to choose a non-target node as effector
(Color figure online).

Conjecture 1. For b = ∞, it holds that for every “yes”-instance (G,A, b, c) of
Effectors there exists a solution X ⊆ A.

At least for directed trees (that is, the underlying undirected graph is a tree) we
can prove Conjecture 1. The idea of proof is that if an optimal solution contains
a non-target node, then this node only influences nodes reachable from it via
paths that do not visit other nodes in the solution. Within this smaller tree of
influenced nodes there must be some subtrees rooted at target nodes such that
the expected cost for such a subtree is smaller if its target root node is activated
during the propagation process compared to the case when it is not. Choosing
these target nodes directly as effectors, replacing the non-target node, yields
another optimal solution with fewer non-target nodes.

Theorem 1. Conjecture 1 holds for directed trees.

3 Computing the Cost Function

We consider the problem of computing the cost for a given set of effectors.

Effectors-Cost
Input: An influence graph G = (V,E,w), a set of target nodes A ⊆ V ,
and a set of effectors X ⊆ V .
Compute: The cost CA(G,X).

Effectors-Cost is polynomial-time solvable on directed trees [10]. On the
contrary, Effectors-Cost is unlikely to be polynomial-time solvable already
on DAGs. This follows from a result by Wang et al. [13, Theorem 1]. They
show that computing the expected number of activated nodes for a single given
effector is #P-hard on DAGs. Note that for the case A = ∅, the cost equals the
expected number of activated nodes at the end of the propagation process.

Corollary 1. Effectors-Cost on DAGs is #P-hard for |A| = 0 and |X| = 1.

On the positive side, Effectors-Cost is fixed-parameter tractable with respect
to the number r of probabilistic arcs. The general idea is to recursively simulate
the propagation process, branching over the probabilistic arcs, and to compute
a weighted average of the final activation state of the graph.

Theorem 2. Effectors-Cost can be solved in O(2r ·n(n+m)) time, where r
is the number of probabilistic arcs.

230 L. Bulteau et al.

4 Finding Effectors

We treat the general variant of Effectors in Sect. 4.1, the special case of
unlimited budget in Sect. 4.2, and the special case of influence maximization in
Sect. 4.3.

4.1 General Model

We consider the parameters number a of target nodes, the budget b, and the
cost c. We first notice that if at least one of them equals zero, then Effectors
is polynomial-time solvable. This holds trivially for parameters a and b; simply
choose the empty set as a solution. This is optimal for a = 0, and the only
feasible solution for b = 0. For parameter c, the following holds, using a simple
decomposition into strongly connected components.

Lemma 1. For c = 0, Effectors can be solved in O(n + m) time.

Based on Lemma 1, by basically checking all possibilities in a brute-force manner,
we obtain simple polynomial-time algorithms for Effectors in the cases of a
constant number a of target nodes, budget b, or cost c.

Proposition 1. For r = 0, Effectors is in XP with respect to each of the
parameters a, b, and c.

In the following, we show that, even for r = 0, Effectors is W[1]-hard with
respect to the combined parameter (a, b, c), and even W[2]-hard with respect to
the combined parameter (b, c). We briefly sketch the proof of the first statement,
and mention that the second statement is proven by a reduction from the W[2]-
complete Dominating Set problem.

Theorem 3. The following statements hold.

1. Effectors, parameterized by the combined parameter (a, b, c), is W[1]-hard,
even if r = 0 and the influence graph is a DAG.

2. Effectors, parameterized by the combined parameter (b, c), is W[2]-hard,
even if r = 0 and the influence graph is a DAG.

Proof (Sketch for the first statement). We describe a parameterized reduction
from the W[1]-hard problem Multi-Colored Clique, which asks for the exis-
tence of a colorful clique of size k in a simple and undirected graph whose vertices
are colored with k colors. Given an instance of Multi-Colored Clique(G =
(V,E), k), we construct an instance of Effectors with b =

(
k
2

)
, c =

(
k
2

)
+ k,

and an influence graph defined as follows. Add
(
k
2

)
+ k + 1 nodes for each pair

of distinct colors. Let us call these nodes color-pair nodes. Now, add a vertex
node nv for each v ∈ V , add an edge node eu,v for each e = {u, v} ∈ E, and
add arcs {eu,v → nu, eu,v → nv}. For each edge, let L be the color-pair nodes
corresponding to the colors of u and v, and add arcs {eu,v → l | l ∈ L}. Finally,
let the set of target nodes A contain all color-pair nodes and set the influence
weights of all arcs to 1.
�

The Complexity of Finding Effectors 231

X X X X
Vp

Xp

Xo

Yp

Yo
V ′

Fig. 2. Illustration for Theorem 5. Effectors of a solution are marked with an aura.
Probabilistic arcs are dashed, and nodes of Vp (with an outgoing probabilistic arc)
are marked with a cross. For readability, target nodes are not represented. Intuitively,
the algorithm guesses the partition of Vp into Xp (effectors) and Yp (non-effectors).
Node set Xp (respectively, Yp) is then extended to its closure Xo (respectively, its
closure Yo in the reverse graph). The remaining nodes form a deterministic subgraph
G[V ′], in which effectors, forming the set X ′, are selected by solving an instance of
Maximum Weight Closure.

4.2 Special Case: Unlimited Budget

Here, we concentrate on a model variant where we are allowed to choose any
number of effectors, that is, the goal is to minimize the overall cost with an
unlimited budget of effectors. In general, Effectors with unlimited budget
remains intractable, though (via reduction from a #P -hard counting problem).

Theorem 4. If P �= NP, then Effectors, even with unlimited budget, is not
polynomial-time solvable on DAGs.

However, with unlimited budget, Effectors is fixed-parameter tractable with
respect to the number r of probabilistic arcs.

Theorem 5. If b = ∞, then Effectors is solvable in O(4r ·n4) time, where r
is the number of probabilistic arcs.

Proof. The general idea is to fully determine the probabilistic aspects of the
graph, and then to remove all of the corresponding nodes and arcs. We can
show that this leaves an equivalent “deterministic graph” that we can solve
using a reduction to the problem Maximum Weight Closure, which is itself
polynomial-time solvable by a polynomial-time reduction to a flow maximization
problem [1, Chapter 19].

Maximum Weight Closure
Input: A directed graph G = (V,E) with weights on the vertices.
Compute: A maximum-weight set of vertices X ⊆ V with no arcs going
out of the set.

232 L. Bulteau et al.

We start with some notation (see Fig. 2 for an illustration). For an input graph
G = (V,E), let Ep := {(u → v) ∈ E | w(u → v) < 1} denote the set of
probabilistic arcs and let Vp := {u | (u → v) ∈ Ep} denote the set of nodes with
at least one outgoing probabilistic arc. For a node v ∈ V , let cldet(v) (cl-1det(v))
denote the set of all nodes u such that there exists at least one deterministic
path from v to u (respectively, from u to v), where a deterministic path is a path
containing only deterministic arcs. We extend the notation to subsets V ′ of V
and write cldet(V ′) =

⋃
v∈V ′ cldet(v) and cl-1det(V

′) =
⋃

v∈V ′ cl-1det(v). We call a
subset V ′ ⊆ V of nodes deterministically closed if and only if cldet(V ′) = V ′,
that is, there are no outgoing deterministic arcs from V ′ to V \ V ′.

Our algorithm will be based on a closer analysis of the structure of an optimal
solution. To this end, let G = (V,E,w) be an input graph with a set A ⊆ V of tar-
get nodes and let X ⊆ V be an optimal solution with minimum cost CA(G,X).
Clearly, we can assume that X is deterministically closed, that is, cldet(X) = X,
since we have an infinite budget b = ∞.

We write Vp as a disjoint union of Xp := Vp∩X and Yp := Vp\X. We also use
Xo := cldet(Xp), Yo := cl-1det(Yp) and Vo = Xo ∪ Yo. Since X is deterministically
closed, we have that Xo ⊆ X and Yo ∩ X = ∅. We write V ′ := V \ Vo and
X ′ := X \ Xo = X ∩ V ′. Note that X ′ is deterministically closed in G[V ′] and
that G[V ′] contains only deterministic arcs. Moreover, note that the sets Xo,
Yp, Yo, Vo, and V ′, are directly deduced from the choice of Xp, and that for a
given Xp, the set X ′ can be any closed subset of V ′.

We first show that the nodes in Vo are only influenced by effectors in Xo, that
is, for any node v ∈ Vo, it holds that p(v|X) = p(v|Xo). This is clear for v ∈ Xo,
since in this case p(v|X) = p(v|Xo) = 1. Assume now that there is a node x ∈ X ′

with a directed path to v ∈ Yo that does not contain any node from Xo. Two
cases are possible, depending on whether this path is deterministic. If it is, then
since v ∈ cl-1det(Yp), then there exists a deterministic path from x to some u ∈ Yp,
via v. Hence, x ∈ cl-1det(Yp) = Yo, yielding a contradiction. Assume now that the
path from x to v has a probabilistic arc and write u → u′ for the first such
arc. Hence, x ∈ cl-1det(u) and u ∈ Vp. Since we assumed that the path does not
contain any node from Xo, we have u /∈ Xp, and therefore u ∈ Yp. Again, we
have x ∈ cl-1det(Yp), yielding a contradiction.

Hence, the nodes in Vo are not influenced by the nodes in X ′. Now consider
nodes in V ′. Note that we have p(v|X) = 1 for v ∈ X ′ and p(v|X) = p(v|Xo)
for v ∈ V ′ \ X ′, since G[V ′] is deterministic and X ′ is deterministically closed.

Overall, CA(v,X) = CA(v,Xo) for all v ∈ V \ X ′. The total cost of solution
X can now be written as

CA(G,X) =
∑

v∈V \X′
CA(v,Xo) +

∑
v∈X′

CA(v,X)

=
∑
v∈V

CA(v,Xo) −
∑
v∈X′

(CA(v,Xo) − CA(v,X))

= α(Xo) − β(Xo,X
′),

The Complexity of Finding Effectors 233

where

α(Xo) :=
∑
v∈V

CA(v,Xo) and β(Xo,X
′) :=

∑
v∈X′

(CA(v,Xo) − CA(v,X)).

We further define, for all v ∈ V ′, γ(v,Xo) := 1−p(v|Xo) if v ∈ A, and γ(v,Xo) =
p(v|Xo) − 1 if v /∈ A. Note that, for v ∈ X ′, the difference CA(v,Xo) − CA(v,X)
is exactly γ(v,Xo), hence β(Xo,X

′) :=
∑

v∈X′ γ(v,Xo).
The algorithm can now be described directly based on the above formulas.

Specifically, we branch over all subsets Xp ⊆ Vp (note that the number of these
subsets is upper-bounded by 2r). For each such subset Xp ⊆ Vp, we can compute
Xo and Yo in linear time because this involves propagation only through deter-
ministic arcs (outgoing for Xo and ingoing for Yo). Then, for each node v ∈ V ,
we compute p(v|Xo) using Theorem 2 in O(2r · n(n + m)) time. This yields the
values α(Xo) and γ(v,Xo) for each v ∈ V ′. The closed subset X ′ of V ′ maximiz-
ing β(Xo,X

′) is then computed as the solution of Maximum Weight Closure
on G[V ′] (which is solved by a maximum flow computation in O(n3) time), where
the weight of any v ∈ V ′ is γ(v,Xo). Finally, we return the set Xo ∪ X ′ that
yields the minimum value for α(Xo) − β(Xo,X

′).
�

4.3 Special Case: Influence Maximization

In this section, we consider the special case of Effectors, called Influence
Maximization, where all nodes are targets (A = V). Note that in this case the
variant with unlimited budget and the parameterization by the number of target
nodes are irrelevant.

In the influence maximization case, on deterministic instances, one should
intuitively choose effectors among the “sources” of the influence graph, that is,
nodes without incoming arcs (or among strongly connected components without
incoming arcs). Moreover, the budget b bounds the number of sources that can
be selected, and the cost c bounds the number of sources that can be left
out. In the following theorem, we prove that deterministic Effectors remains
intractable even if either one of these parameters is small, but, on the contrary,
having b + c as a parameter yields fixed-parameter tractability in the determin-
istic case. We mention that the first statement is proven by a reduction from
the W[2]-hard Set Cover problem, while the second statement is proven by a
reduction from the W[1]-hard Independent Set problem.

Theorem 6. The following holds.

1. Effectors, parameterized by the maximum number b of effectors, is W[2]-
hard, even if G is a deterministic (r = 0) DAG and all nodes are target nodes
(A = V).

2. Effectors, parameterized by the cost c, is W[1]-hard, even if G is a deter-
ministic (r = 0) DAG and all nodes are target nodes (A = V).

3. If r = 0 and A = V , then Effectors can be solved in O(
(
b+c
b

)·(n+m)) time.

234 L. Bulteau et al.

Treewidth as a Parameter. As Effectors is in general not polynomial-time
solvable (unless P = NP (Theorem 4)), but polynomial-time solvable on trees,
it is natural to consider the treewidth of the underlying undirected graph as
a parameter. Indeed, treewidth is a well-known concept in algorithmic graph
theory. Informally, treewidth measures how “tree-like” a graph is—trees have
treewidth one. We note that for deterministic influence graphs (r = 0) under
the influence maximization model (A = V), Effectors corresponds to a spe-
cial case of a related problem, namely Target Set Selection (with constant
thresholds), for which fixed-parameter tractability for the parameter treewidth is
already known [3]. It is basically straightforward—but tedious and technical—to
extend this algorithm to the case where some nodes are non-targets (A � V). We
conjecture that, for influence graphs with r > 0 probabilistic arcs, the problem
is still fixed-parameter tractable for the combined parameter treewidth and r.
The most challenging open question is whether Effectors is fixed-parameter
tractable when parameterized by the treewidth, even with an unbounded number
of probabilistic arcs.

Results in Contradiction with Lappas et al. [10]. The following two claims
from the literature are contradicted by the results presented in this paper.

According to Lappas et al. [10, Lemma 1], in the Influence Maximization
case with c = 0, Effectors is NP-complete. The reduction is incorrect: it uses
a target node � which influences all other vertices with probability 1 (in at most
two steps). It suffices to select � as an effector in order to activate all vertices,
so such instances always have a trivial solution (X = {�}), and the reduction
collapses. On the contrary, we prove in Lemma 1 that all instances with c = 0
can be solved in linear time.

According to the discussion of Lappas et al. [10] following their Corollary 1,
there exists a polynomial-time algorithm for Effectors with deterministic
instances (with r = 0). Note that the selection model corresponds to our own
model in the case of Influence Maximization. However, the given algorithm
is flawed: it does not consider the influence between different strongly connected
components. Indeed, as we prove in Theorem 6, finding effectors under the deter-
ministic model is NP-hard, even in the case of Influence Maximization.

5 Conclusion

We leave several challenges for future research. First, it remains to (dis)prove that
Conjecture 1 also holds for arbitrary directed graphs. Further, we have made some
unproven claims about (fixed-parameter) tractability when restricting Effec-
tors to directed graphs whose underlying graphs have bounded treewidth. Two
more general directions could be to extend our results concerning the parameter
“degree of randomness” to other probabilistic diffusion models or to make the con-
sidered probabilistic information-propagation problems more tractable by devel-
oping simpler (and better to analyze) “linearized models”—the non-linearity in
computing the activation probabilities of nodes appears to be an important cause
for computational hardness.

The Complexity of Finding Effectors 235

References

1. Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network Flows: Theory, Algorithms, and
Applications. Prentice Hall, Upper Saddle River (1993)

2. Askalidis, G., Berry, R.A., Subramanian, V.G.: Explaining snapshots of network
diffusions: structural and hardness results. In: Cai, Z., Zelikovsky, A., Bourgeois, A.
(eds.) COCOON 2014. LNCS, vol. 8591, pp. 616–625. Springer, Heidelberg (2014)

3. Ben-Zwi, O., Hermelin, D., Lokshtanov, D., Newman, I.: Treewidth governs the
complexity of target set selection. Discrete Optim. 8(1), 87–96 (2011)

4. Bharathi, S., Kempe, D., Salek, M.: Competitive influence maximization in social
networks. In: Deng, X., Graham, F.C. (eds.) WINE 2007. LNCS, vol. 4858, pp.
306–311. Springer, Heidelberg (2007)

5. Chopin, M., Nichterlein, A., Niedermeier, R., Weller, M.: Constant thresholds can
make target set selection tractable. Theory Comput. Syst. 55(1), 61–83 (2014)

6. Domingos, P., Richardson, M.: Mining the network value of customers. In: Pro-
ceedings of the Seventh ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pp. 57–66. ACM (2001)

7. Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity.
Springer, London (2013)

8. Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer, Heidelberg
(2006)

9. Kempe, D., Kleinberg, J., Tardos, É.: Maximizing the spread of influence through
a social network. In: Proceedings of the Ninth ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining, pp. 137–146. ACM (2003)

10. Lappas, T., Terzi, E., Gunopulos, D., Mannila, H.: Finding effectors in social net-
works. In: Proceedings of the 16th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pp. 1059–1068. ACM (2010)

11. Nichterlein, A., Niedermeier, R., Uhlmann, J., Weller, M.: On tractable cases of
target set selection. Soc. Netw. Anal. Min. 3(2), 233–256 (2013)

12. Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford University
Press, New York (2006)

13. Wang, C., Chen, W., Wang, Y.: Scalable influence maximization for independent
cascade model in large-scale social networks. Data Min. Knowl. Disc. 25(3), 545–
576 (2012)

Common Developments of Three Incongruent
Boxes of Area 30

Dawei Xu1, Takashi Horiyama2(B), Toshihiro Shirakawa1,2,
and Ryuhei Uehara1

1 School of Information Science,
Japan Advanced Institute of Science and Technology, Nomi, Japan

{xudawei,uehara}@jaist.ac.jp
2 Information Technology Center, Saitama University, Saitama, Japan

horiyama@al.ics.saitama-u.ac.jp

Abstract. We investigate common developments that can fold into
plural incongruent orthogonal boxes. Recently, it was shown that there
are infinitely many orthogonal polygons that folds into three boxes of dif-
ferent size. However, the smallest one that folds into three boxes consists
of 532 unit squares. From the necessary condition, the smallest possible
surface area that can fold into two boxes is 22, which admits to fold into
two boxes of size 1×1×5 and 1×2×3. On the other hand, the smallest
possible surface area for three different boxes is 46, which may admit to
fold into three boxes of size 1×1×11, 1×2×7, and 1×3×5. For the area
22, it has been shown that there are 2,263 common developments of two
boxes by exhaustive search. However, the area 46 is too huge for search.
In this paper, we focus on the polygons of area 30, which is the second
smallest area of two boxes that admits to fold into two boxes of size
1 × 1 × 7 and 1 × 3 × 3. Moreover, when we admit to fold along diagonal
lines of rectangles of size 1 × 2, the area may admit to fold into a box of
size

√
5×√

5×√
5. That is, the area 30 is the smallest candidate area for

folding three different boxes in this manner. We perform two algorithms.
The first algorithm is based on ZDDs, zero-suppressed binary decision
diagrams, and it computes in 10.2 days on a usual desktop computer. The
second algorithm performs exhaustive search, however, straightforward
implementation cannot be run even on a supercomputer since it causes
memory overflow. Using a hybrid search of DFS and BFS, it completes
its computation in 3 months on a supercomputer. As results, we obtain
(1) 1,080 common developments of two boxes of size 1×1×7 and 1×3×3,
and (2) 9 common developments of three boxes of size 1×1×7, 1×3×3,
and

√
5 × √

5 × √
5.

1 Introduction

Since Lubiw and O’Rourke posed the problem in 1996 [10], polygons that can fold
into a (convex) polyhedron have been investigated in the area of computational
geometry. In general, we can state the development/folding problem as follows:
c© Springer International Publishing Switzerland 2015
R. Jain et al. (Eds.): TAMC 2015, LNCS 9076, pp. 236–247, 2015.
DOI: 10.1007/978-3-319-17142-5 21

Common Developments of Three Incongruent Boxes of Area 30 237

Fig. 1. Cubigami. Fig. 2. A polygon folding into two
boxes of size 1 × 1 × 5 and 1 × 2 × 3
in [12].

Input : A polygon P and a polyhedra Q
Output: Determine whether P can fold into Q or not

When Q is a tetramonohedron (a tetrahedron with four congruent triangular
faces), Akiyama and Nara gave a complete characterization of P by using the
notion of tiling [2,3]. Except that, we have quite a few results from the math-
ematical viewpoint. Hence we can tackle this problem from the viewpoint of
computational geometry and algorithms.

From the viewpoint of computation, one natural restriction is that consid-
ering the orthogonal polygons and polyhedra which consist of unit squares and
unit cubes, respectively. Such polygons have wide applications including packag-
ing and puzzles, and some related results can be found in the books on geometric
folding algorithms by Demaine and O’Rourke [6,14]. However, this problem is
counterintuitive. For example, the puzzle “cubigami” (Fig. 1) is a common devel-
opment of all tetracubes except one (since the last one has surface area 16, while
the others have surface area 18), which is developed by Miller and Knuth. One
of the many interesting problems in this area asks whether there exists a poly-
gon that folds into plural incongruent orthogonal boxes. This folding problem
is very natural but still counterintuitive; for a given polygon that consists of
unit squares, and the problem asks are there two or more ways to fold it into
simple convex orthogonal polyhedra (Fig. 2). Biedl et al. first gave two polygons
that fold into two incongruent orthogonal boxes [5] (see also Fig. 25.53 in the
book by Demaine and O’Rourke [6]). Later, Mitani and Uehara constructed infi-
nite families of orthogonal polygons that fold into two incongruent orthogonal
boxes [12]. Recently, Shirakawa and Uehara extended the result to three boxes
in a nontrivial way; that is, they showed infinite families of orthogonal polygons
that fold into three incongruent orthogonal boxes [16]. However, the smallest
polygon by their method contains 532 unit squares, and it is open if there exists
much smaller polygon of several dozens of squares that folds into three (or more)
different boxes.

238 D. Xu et al.

Table 1. A part of possible size a × b × c of boxes and its common surface area
2(ab + bc + ca).

2(ab + bc + ca) a × b × c

22 1 × 1 × 5, 1 × 2 × 3

30 1 × 1 × 7, 1 × 3 × 3

34 1 × 1 × 8, 1 × 2 × 5

38 1 × 1 × 9, 1 × 3 × 4

46 1 × 1 × 11, 1 × 2 × 7, 1 × 3 × 5

54 1 × 1 × 13, 1 × 3 × 6, 3 × 3 × 3

58 1 × 1 × 14, 1 × 2 × 9, 1 × 4 × 5

62 1 × 1 × 15, 1 × 3 × 7, 2 × 3 × 5

64 1 × 2 × 10, 2 × 2 × 7, 2 × 4 × 4

70 1 × 1 × 17, 1 × 2 × 11, 1 × 3 × 8, 1 × 5 × 5

88 1 × 2 × 14, 1 × 4 × 8, 2 × 2 × 10, 2 × 4 × 6

It is easy to see that two boxes of size a×b×c and a′×b′×c′ can have a common
development only if they have the same surface area, i.e., when 2(ab+ bc+ ca) =
2(a′b′ + b′c′ + c′a′) holds. We can compute small surface areas that admit to fold
into two or more boxes by a simple exhaustive search. We show a part of the table
for 1 ≤ a ≤ b ≤ c ≤ 50 in Table 1. From the table, we can say that the smallest
surface area is at least 22 to have a common development of two boxes, and their
sizes are 1 × 1 × 5 and 1 × 2 × 3. In fact, Abel et al. have confirmed that there
exist 2,263 common developments of two boxes of size 1×1×5 and 1×2×3 [1].
On the other hand, the smallest surface area that may admit to fold into three
boxes is 46, which may fold into three boxes of size 1 × 1 × 11, 1 × 2 × 7, and
1 × 3 × 5. However, the number of polygons of area 46 seems to be too huge
to search. This number is strongly related to the enumeration and counting
of polyominoes, namely, orthogonal polygons that consist of unit squares [7].
The number of polyominoes of area n is well investigated in the puzzle society,
but it is known up to n = 45, which is given by the third author (see the OEIS
(https://oeis.org/A000105) for the references). Since their common area consists
of 46 unit squares, it seems to be hard to enumerate all common developments
of three boxes of size 1 × 1 × 11, 1 × 2 × 7, and 1 × 3 × 5.

One natural step is the next one of the surface area 22 in Table 1. The next
area of 22 in the table is 30, which admits to fold into two boxes of size 1×1×7 and
1×3×3. When Abel et al. had confirmed the area 22 in 2011, it takes around 10 h.
Thus we cannot use the straightforward way in [1] for the area 30. We first employ
a nontrivial extention of the method based on a zero-suppressed binary decision
diagram (ZDD) used in [4], which is so-called frontier-based search algorithm for
enumeration [9]. Our first algorithm based on ZDD runs in around 10 days on
an ordinary PC. To perform double-check, we also use supercomputer (CRAY
XC30). We note that we cannot use the same way as one for area 22 shown in
[1] since it takes too huge memory even on a supercomputer. Therefore, we use

https://oeis.org/A000105

Common Developments of Three Incongruent Boxes of Area 30 239

(a)

(b)

Fig. 3. The common development shown
in [5]. (a) It folds into a box of size 1 ×
2 × 4 and (b) it also folds into a box of
size

√
2 × √

2 × 3
√

2.

(1) (2) (3)

(4) (5) (6)

(7) (9)(8)

Fig. 4. Nine polygons that fold into
three boxes of size 1 × 1 × 7, 1 × 3 × 3,
and

√
5 × √

5 × √
5. The last one can

fold into the third box in two different
ways (Fig. 5).

a hybrid search of the breadth first search and the depth first search. Our first
result is the number of common developments of two boxes of size 1 × 1 × 7 and
1 × 3 × 3, which is 1,080.

Based on the obtained common developments, we next change the scheme.
In [5], they also considered folding along 45◦ lines, and showed that there was a
polygon that folded into two boxes of size 1× 2× 4 and

√
2×√

2× 3
√

2 (Fig. 3).
In this context, we can observe that the area 30 may admit to fold into another
box of size

√
5 × √

5 × √
5 by folding along the diagonal lines of rectangles of

size 1 × 2. This idea leads us to the problem that asks if there exist common
developments of three boxes of size 1×1×7, 1×3×3, and

√
5×√

5×√
5 among

the common developments of two boxes of size 1 × 1 × 7 and 1 × 3 × 3.
We remark that this is a special case of the development/folding problem

above. In our case, P is one of the 1,080 polygons that consist of 30 unit squares,
and Q is the cube of size

√
5×√

5×√
5. We note that we can use a pseudopoly-

nomial time algorithm for Alexandrov’s Theorem proposed in [8], however, it
runs in O(n456.5) time, and it is not practical. Therefore, we develop the other
efficient algorithm specialized in our case that checks if a polyomino P of area
30 can fold into a cube Q of size

√
5×√

5×√
5. Using the algorithm, we check if

these common developments of two boxes of size 1× 1× 7 and 1× 3× 3 can also
fold into the third box of size

√
5 × √

5 × √
5, and give an affirmative answer.

We find that nine of 1,080 common developments of two boxes can fold into
the third box (Fig. 4). Moreover, one of the nine common developments of three

240 D. Xu et al.

(a) (b) (c) (d)

Fig. 5. The unique polygon folds into three boxes of size (a) 1 × 1 × 7, (b) 1 × 3 × 3,
and (c)(d)

√
5 × √

5 × √
5 in four different ways.

boxes has another way of folding. Precisely, the last one (Fig. 4(9)) admits to
fold into the third box of size

√
5 × √

5 × √
5 in two different ways. These four

ways of folding are depicted in Fig. 5.
We summarize the main results in this paper:

Theorem 1. (1) There are 1,080 polyominoes of area 30 that admit to fold
(along the edges of unit squares) into two boxes of size 1 × 1 × 7 and 1 × 3 × 3.
(2) Among the above 1,080, nine polyominoes can fold into the third box of size√

5×√
5×√

5 if we admit to fold along diagonal lines (Fig. 4). (3) Among these
nine polyominoes, one can fold into the third box in two different ways (Fig. 5).

2 Preliminaries

2.1 Problem Definitions

Demaine and O’Rourke [6, Chap. 21] give a formal definition of the development
of a polyhedron as the net1. Briefly, the development is the unfolding obtained
by slicing the surface of the polyhedron, and it forms a single connected sim-
ple polygon without self-overlap. The common development of two (or more)
polyhedra is the development that can fold into both (or all) of them. We only
consider connected orthogonal polygons that consist of unit squares, which are
called polyominoes [7], as developments. Polyominoes obtained from a develop-
ment by removing some unit squares are called partial developments of it. We
call a convex orthogonal polyhedron (folded from a polyomino) a box.

The cut edges of an edge development of a convex polyhedron form a spanning
tree of the 1-skeleton (i.e., the graph formed by the vertices and the edges) of the
polyhedron (See e.g., [6, Lemma 22.1.1]). Figure 6(a) and (b) are the 1-skeleton
of a cube and its spanning tree, respectively. In our problem, given a box of
size a × b × c, we divide the faces into unit squares, and cut the surface along
edges of the unit squares. We call such a development a unit square development.
1 Since the word “net” has several meaning, we use “development” instead of it to

make clear.

Common Developments of Three Incongruent Boxes of Area 30 241

Fig. 6. 1-skeletons and spanning trees of a cube and a box of size 1 × 1 × 3.

In Fig. 6(c), we regard the eight vertices (colored in white) as special, where the
angle sum at each corner is 270◦. We call them corners. The 1-skeleton of a box
is given as G = (Vc ∪ Vo, E), where Vc and Vo denote the sets of eight corners
and others, respectively, and E denote the set of edges of unit length. The cut
edges of a unit square development form a tree spanning to the eight corners.

Now, we go back to the common development. It is easy to see that two boxes
of size a × b × c and size a′ × b′ × c′ have a common unit square development
only if they have the same surface area, i.e., 2(ab+bc+ca) = 2(a′b′ +b′c′ +c′a′).
Such 3-tuples (a, b, c) can be computed by a simple enumeration for small areas
(Table 1), but it seems that we have many corresponding 3-tuples for large area.
In fact, this intuition can be proved as follows:

Theorem 2 [13]. We say two 3-tuples (a, b, c) and (a′, b′, c′) are distinct if and
only if a �= a′, b �= b′, or c �= c′. For any positive integer p, there are p distinct 3-
tuples (ai, bi, ci) for i = 1, 2, . . . , p such that aibi + bici +ciai = ajbj + bjcj +cjaj
for any 1 ≤ i, j ≤ p.

Proof. For a given p, we let ai = 2i − 1, bi = 22p−i − 1, ci = 1 for i = 1, 2, . . . , p.
Then we have aibi+bici+ciai = (22p−2i−22p−i+1)+(22p−i−1)+(2i−1) = 22p−1
for any i. It is easy to see that all 3-tuples (ai, bi, ci) are distinct. Thus we have
the theorem. �

By Theorem 2, we can consider any number of boxes that may share the common
developments.

2.2 Enumeration by Zero-Suppressed Binary Decision Diagrams

A zero-suppressed binary decision diagram (ZDD) [11] is directed acyclic graph
that represents a family of sets. As illustrated in Fig. 7, it has the unique source
node2, called the root node, and has two sink nodes 0 and 1, called the 0-node
and the 1-node, respectively (which are together called the constant nodes).
Each of the other nodes is labeled by one of the variables x1, x2, . . . , xn, and
has exactly two outgoing edges, called 0-edge and 1-edge, respectively. On every
path from the root node to a constant node in a ZDD, each variable appears at
most once in the same order. The size of a ZDD is the number of nodes in it.
2 We distinguish nodes of a ZDD from vertices of a graph (or a 1-skeleton).

242 D. Xu et al.

Fig. 7. A ZDD representing {{1, 2}, {1, 3, 4}, {2, 3, 4}, {3}, {4}}.

Every node v of a ZDD represents a family of sets Fv, defined by the subgraph
consisting of those edges and nodes reachable from v. If node v is the 1-node
(respectively, 0-node), Fv equals to {{}} (respectively, {}). Otherwise, Fv is
defined as F0-succ(v) ∪ {S | S = {var(v)} ∪ S′, S′ ∈ F1-succ(v)}, where 0-succ(v)
and 1-succ(v), respectively, denote the nodes pointed by the 0-edge and the 1-
edge from node v, and var(v) denotes the label of node v. The family F of sets
represented by a ZDD is the one represented by the root node. Figure 7 is a ZDD
representing F = {{1, 2}, {1, 3, 4}, {2, 3, 4}, {3}, {4}}. Each path from the root
node to the 1-node, called 1-path, corresponds to one of the sets in F.

Now, we focus on the enumeration of developments by ZDDs. As denoted
in Sect. 2.1, the cut edges of an edge development form a spanning tree of the
1-skeleton (e.g., edges {e1, e2, e4, e7, e6, e9, e10} in Fig. 6(b)). This conditions can
be interpreted as follows:

Property 1. Given the 1-skeleton G = (V,E) of a polyhedron, the cut edges of
its edge development is the set of edges Ed (⊆ E) satisfying: (1) Ed has no cycle.
(2) Subgraph of G induced by Ed has only one connected component. (3) Each
vertex in V is adjacent to at least one edge in Ed.

Algorithm 1 [4] gives the frontier-based search [9] to construct a ZDD represent-
ing a family of spanning trees. It can be considered as one of DP-like algorithms.
Each search node in the algorithm corresponds to a subgraphs of the given
graph G. The search begins with noderoot (i.e., the root node of the resulting
ZDD) corresponding to (V, {}). In the search, we check whether we can adopt
edge ei or not, in the order of i = 1, 2, . . . ,m, where m is the number of edges
in G. In Line 4 of Algorithm 1, current search node is n̂, and in case x = 1
(respectively, x = 0), we adopt (respectively, do not adopt) ei. Search node
n′ corresponds to the resulting graph, and is pointed by the x-edge of n̂ in
Line 13.

The key is to share nodes of the constructing ZDD (in Lines 9 and 10) by
simple “knowledge” of subgraphs, and not to traverse the same subproblems
more than once. Each search node n̂ in the algorithm has an array n̂.comp[] as
an knowledge, where n̂.comp[vj] indicates the ID of the connected component
vj belonging to. We can reduce the size of knowledge by maintaining the values
of n̂.comp[] just for vertices incident to both a processed and an unprocessed
edges. Such set of vertices are called the i-th frontier Fi (∈ V), which is formally

Common Developments of Three Incongruent Boxes of Area 30 243

Algorithm 1. Construct ZDD
Input : Graph G = (V,E) with n vertices and m edges
Output: ZDD representing a family of spanning trees in G
N1 := {noderoot}. Ni := {} for i = 2, 3, . . . ,m + 11

for i := 1, 2, . . .m do2

foreach n̂ ∈ Ni do3

foreach x ∈ {0, 1} do // 0-edge and 1-edge4

n′ := CheckTerminal(n̂, i, x) // returns 0, 1, or nil5

if n′ = nil then // n′ is neither 0 nor 16

Copy n̂ to n′
7

UpdateInfo(n′, i, x)8

if there exists n′′ ∈ Ni+1 that is identical to n′ then9

n′ := n′′
10

else11

Ni+1 := Ni+1 ∪ {n′}12

Create the x-edge of n̂ and make it point at n′
13

defined as Fi = (∪j=1,...,i ej)∩(∪j=i+1,...,m ej), F0 = Fm = {}. We check whether
the subgraph corresponding to the search node n̂ consists a spanning tree in
Procedure CheckTerminal. For more detail, see [9].

3 Algorithms for the First Two Boxes of Size 1 × 1 × 7
and 1 × 3 × 3

3.1 Algorithm Based on ZDDs

We first describe how to obtain all common unit cube developments of two incon-
gruent boxes of sizes 1 × 1 × 7 and 1 × 3 × 3 by ZDDs. The strategy is simple:
For each box, we enumerate sets of cut edges corresponding to unit cube devel-
opments, and convert them to the shapes of the developments, each of which
is represented by a sequence of interior angles of a polyomino. Then, we obtain
common developments that appear in both of the two boxes. The important
thing is to enumerate the sets of cut edges efficiently. For obtaining unit cube
developments, we generalize the algorithm given in Sect. 2.2. Once a ZDD is
obtained, each of its 1-paths represents a set of cut edges. By traversing the
ZDD, we can obtain 1-paths, and thus obtain the shapes of developments. The
difference between the problem in Sect. 2.2 and ours can be seen in Fig. 6(b)
and (c). In our problem, faces of our boxes are divided into unit squares, and
we need to make a tree spanning to the eight corners, not spanning to all ver-
tices. The cut edges of a unit square development of our box has the following
property:

Property 2. Given the 1-skeleton G = (Vc ∪ Vo, E) of a box, the cut edges of its
unit square development is the set of edges Ed (⊆ E) satisfying: (1) Ed has no
cycle. (2) Subgraph of G induced by Ed has only one connected component of

244 D. Xu et al.

size greater than 1. (3) Each vertex in Vc is adjacent to at least one edge in Ed.
(4) No vertex in Vo is adjacent to exactly one edge in Ed.

Conditions (1) and (2) are essentially equivalent to those in Property 1. Condition
(3) is to flatten the corners of the box into a plane. Conditions (2) and (3)
guarantees that all vertices in Vc are connected. Condition (4) is to avoid a
vertex in Vo adjacent to exactly one edge in Ed. (If there exists such an edge, we
can eliminate it from Ed.) Conditions (2) and (4) guarantees that all vertices in
Vo adjacent to two or more edges are connected to the vertices in Vc. Thus, we
have a tree spanning the vertices in Vc.

To check the above conditions, we modify Procedures UpdateInfo and Check-
Terminal. For counting the number of adopted edges adjacent to vj and the size of
connected component vj belonging to, we prepare two arrays n̂.deg[] and n̂.size[].
In Procedure 3, we initialize n̂.deg[vj] := 0 (i.e., the number of adopted edges in
Ed adjecent to vj is 0) and n̂.size[vj] := 1 (i.e., vertex vj is a singleton) in Line 3.
If edge ei = (vi1 , vi2) is adopted to Ed (i.e., x = 1), we update the degrees of vi1
and vi2 , and the size of their connected components in Lines 8, 9 and 12.

In Procedure 2, Condition (1) is checked in Lines 2–4. If vertex vj leaves from
the frontier, we have no chance to adopt its adjecent edges, which means the
degree of vj does not change. Thus, we check Conditions (3) and (4) in Lines
8 and 9, respectively. At the same time, we have no chance to grow the size
of vj ’s connected components. Thus, we check whether we have two or more
connected components in Lines from 14 to 16, and terminate the search if it
holds. Otherwise, we have only one connected component, and hence we cannot
adopt any edges in the remaining search. Thus, we check Conditions (3) and (4)
in Lines from 17 to 22, and returns the result.

3.2 Algorithm Based on Exhaustive Search

Here we describe the exhaustive algorithm for generating all common develop-
ments of two boxes of size 1 × 1 × 7 and 1 × 3 × 3. The basic idea is similar to
one in [1]: Let Li be the set of all common partial developments of area i of two
boxes. Then L1 consists of a unit square, and each Li with i > 1 is a subset
of polyominoes of size i that can be computed from Li−1 by the breadth first
search. Each Li is maintained by a huge hash table, which means that we use
O(maxi{i|Li| + (i − 1)|Li−1|}) space for the computation of step i.

This simple idea works up to 22 for two boxes of size 1 × 1 × 5 and 1 × 2 × 3
in [1] since the maximum number of |Li ∪ Li−1| takes 1.01 × 107 when i = 18.
However, for the surface area 30, it does not work even on a supercomputer
(CRAY XC30) due to memory overflow when i = 22.

Thus we divide the computation into two phases. In the first phase, we com-
pute Li for each i = 2, . . . , 16. As a result, we have L16 that consists of 7,486,799
common partial developments of two boxes of size 1× 1× 7 and 1× 3× 3. In the
second phase, we partition L16 into 75 disjoint subsets Lj

16 with 1 ≤ j ≤ 75. For
each Lj

16, we independently compute up to Lj
30 in parallel by the BFS algorithm

again. In the final step, we merge Lj
30 with 1 ≤ j ≤ 75, remove duplicates, and

obtain L30.

Common Developments of Three Incongruent Boxes of Area 30 245

Procedure 2. CheckTerminalRevised(n̂, i, x)

Let (vi1 , vi2) denote ei ∈ E1

if x = 1 then2

if n̂.comp[vi1] = n̂.comp[vi2] then // vi1 , vi2 are in the same component3

return 0 // we have a cycle by adding ei4

Copy n̂ to n′
5

UpdateInfo(n′, i, x)6

foreach vj ∈ {vi1 , vi2} satisfying vj �∈ Fi do // vj is leaving from the frontier7

// Check the degree constraints for vj8

if (vj is in Vc) and (n̂.deg[vj] = 0) then return 09

if (vj is in Vo) and (n̂.deg[vj] = 1) then return 010

if (∀vk ∈ Fi n̂.comp[vj] �= n̂.comp[vk]) then11

// vj ’s connected component cannot connect to any other components12

if (n̂.size[vj] > 1) then13

if (∃v� ∈ Fi (n̂.size[v�] > 1)) then14

// we have two or more connected components of size > 115

return 016

else // We cannot adopt any edges17

foreach vj′ ∈ ∪i′=i+1,...,mei′ do18

// Check the degree constraints for remaining vertices19

if (vj′ is in Vc) and (n̂.deg[vj′] = 0) then return 020

if (vj′ is in Vo) and (n̂.deg[vj′] = 1) then return 021

return 122

23

Fi := Fi \ {vj}24

return nil25

Procedure 3. UpdateInfoRevised(n̂, i, x)

Let (vi1 , vi2) denote ei ∈ E1

foreach vj ∈ {vi1 , vi2} such that vj �∈ Fi−1 do // vj is entering the frontier2

n̂.comp[vj] := j // The initial component ID is the index of vj3

n̂.deg[vj] := 0, n̂.size[vj] := 14

if x = 1 then // Merge two components of vi1 , vi25

cmin := min{n̂.comp[vi1], n̂.comp[vi2]}6

cmax := max{n̂.comp[vi1], n̂.comp[vi2]}7

n̂.deg[vi1] := n̂.deg[vi1] + 1, n̂.deg[vi2] := n̂.deg[vi2] + 18

s = n̂.size[vi1] + n̂.size[vi2]9

foreach vj ∈ Fi do10

if n̂.comp[vj] = cmax then n̂.comp[vj] := cmin11

if (n̂.comp[vj] = cmin) or (n̂.comp[vj] = cmax) then n̂.size[vj] := s12

foreach vj ∈ {vi1 , vi2} such that vj �∈ Fi do // vj is leaving the frontier13

Forget n̂.comp[vj], n̂.deg[vj] and n̂.size[vi2]14

246 D. Xu et al.

4 Algorithm for the Third Box

Let L30 be the set of all common developments of two boxes of size 1 × 1 × 7
and 1 × 3 × 3. We here note that if we can compute L30 efficiently, we can
check in the same manner; that is, we generate all developments of the cube
of size

√
5 × √

5 × √
5 by cutting along the line of unit squares, and check if

each one appears in L30 or not. Thus, in the first method based on ZDDs, we
can use the same way again; we construct all developments of the cube of size√

5 × √
5 × √

5 based on the connection network on unit squares, and check if
each one appears in L30 or not. In the second method based on the exhaustive
search for two boxes, we check if each development in L30 can be folded into a
cube of size

√
5 × √

5 × √
5.

The program of the first method based on ZDDs runs on a usual desktop com-
puter with Intel Xeon E5-2643 and 128 GB memory. It takes 0.10 and 71.53 s
for obtaining the sets of cut edges of two boxes of size 1 × 1 × 7 and 1 × 3 × 3,
respectively, and 7.7 days for converting the cut edges into the shapes of devel-
opments and for obtaining the common developments. For the third box of size√

5×√
5×√

5, It takes 354.64 s for obtaining cut edges, and 2.5 days for obtain-
ing the common developments of the three boxes. It takes 10.2 days in total. The
program of the second method runs, in total, in 3 months on the supercomputer
(CRAY XC30), and we obtain 1,080 common developments in L30 of two boxes
of size 1 × 1 × 7 and 1 × 3 × 33 and 9 common developments of three boxes of
size 1 × 1 × 7, 1 × 3 × 3 and

√
5 × √

5 × √
5.

5 Concluding Remarks

Recently, Shirakawa and Uehara showed infinite families of orthogonal poly-
gons that fold into three incongruent orthogonal boxes [16]. However, the small-
est polygon contains 532 unit squares. In this paper, we show that there exist
orthogonal polygons of 30 unit squares that fold into three incongruent orthog-
onal boxes if we allow us to fold along slanted lines. In the original framework
in [16], the smallest possible surface area that may fold into three different boxes
is 46, which may produce three boxes of size 1 × 1 × 11, 1 × 2 × 7, and 1 × 3 × 5.
We conjecture that there exists an orthogonal polygon of 46 unit squares that
admits to fold these three boxes. Some nontrivial properties in Figs. 4 and 5 may
help to find it.

There are many future work in this area. For example, does there exist a
polyomino that folds into four or more boxes? Is there some upper bound of
the number of boxes which can be folded from one polyomino? We remind that
Theorem 2 says that we have no upper bound by the constraint of the surface
areas. But it is hard to imagine that one polyomino can fold into, say, 10,000
different boxes. General development/folding problems are also remained open.
For example, Shirakawa et al. found a common development of a unit cube
and an almost regular tetrahedron (with relative error <2.89200×10−1796) [15],
however, a common development of two Platonic solids are still open.
3 We note that the maximum number of partial developments is given when j = 24.

Common Developments of Three Incongruent Boxes of Area 30 247

References

1. Abel, Z., Demaine, E., Demaine, M., Matsui, H., Rote, G., Uehara, R.: Common
development of several different orthogonal boxes. In: 23rd Canadian Conference
on Computational Geometry (CCCG 2011), pp. 77–82 (2011)

2. Akiyama, J.: Tile-makers and semi-tile-makers. Math. Assoc. Amerika 114, 602–
609 (2007)

3. Akiyama, J., Nara, C.: Developments of polyhedra using oblique coordinates. J.
Indonesia. Math. Soc. 13(1), 99–114 (2007)

4. Araki, Y., Horiyama, T., Uehara, R.: Common unfolding of regular Tetrahedron
and Johnson-Zalgaller solid. In: Rahman, M.S., Tomita, E. (eds.) WALCOM 2015.
LNCS, vol. 8973, pp. 294–305. Springer, Heidelberg (2015)

5. Biedl, T., Chan, T., Demaine, E., Demaine, M., Lubiw, A., Munro, J.I., Shallit, J.:
Notes from the University of Waterloo Algorithmic Problem Session, 8 September
1999

6. Demaine, E.D., O’Rourke, J.: Geometric Folding Algorithms: Linkages, Origami,
Polyhedra. Cambridge University Press, Cambridge (2007)

7. Golomb, S.W.: Polyominoes. Princeton University Press, Princeton (1994)
8. Kane, D., Price, G.N., Demaine, E.D.: A pseudopolynomial algorithm for Alexan-

drov’s theorem. In: Dehne, F., Gavrilova, M., Sack, J.-R., Tóth, C.D. (eds.) WADS
2009. LNCS, vol. 5664, pp. 435–446. Springer, Heidelberg (2009)

9. Kawahara, J., Inoue, T., Iwashita, H., Minato, S.: Frontier-based search for enumer-
ating all constrained subgraphs with compressed representation. Technical report
TCS-TR-A-14-76, Division of Computer Science, Hokkaido University (2014)

10. Lubiw, A., O’Rourke, J.: When can a polygon fold to a polytope? Technical report
048. Department of Computer Science, Smith College (1996)

11. Minato, S.: Zero-suppressed bdds for set manipulation in combinatorial problems.
In: 30th ACM/IEEE Design Automation Conference (DAC 1993), pp. 272–277
(1993)

12. Mitani, J., Uehara, R.: Polygons folding to plural incongruent orthogonal boxes.
In: Canadian Conference on Computational Geometry (CCCG 2008), pp. 39–42
(2008)

13. Okumura, T.: Personal communication, August 2014
14. O’Rourke, J.: How to Fold It: The Mathematics of Linkage, Origami and Polyhedra.

Cambridge University Press, Cambridge (2011)
15. Shirakawa, T., Horiyama, T., Uehara, R.: Construct of common development of

regular tetrahedron and cube. In: 27th European Workshop on Computational
Geometry (EuroCG 2011), pp. 47–50, 28–30 March 2011

16. Shirakawa, T., Uehara, R.: Common developments of three incongruent orthogonal
boxes. Int. J. Comput. Geom. Appl. 23(1), 65–71 (2013)

Finding Connected Dense k-Subgraphs

Xujin Chen(B), Xiaodong Hu, and Changjun Wang

Institute of Applied Mathematics, AMSS,
Chinese Academy of Sciences, Beijing 100190, China

{xchen,xdhu,wcj}@amss.ac.cn

Abstract. Given a connected graph G on n vertices and a positive
integer k ≤ n, a subgraph of G on k vertices is called a k-subgraph
in G. We design combinatorial approximation algorithms for finding a
connected k-subgraph in G such that its density is at least a factor
Ω(max{n−2/5, k2/n2}) of the density of the densest k-subgraph in G
(which is not necessarily connected). These particularly provide the first
non-trivial approximations for the densest connected k-subgraph prob-
lem on general graphs.

Keywords: Densest k-subgraphs · Connectivity · Combinatorial app-
roximation algorithms

1 Introduction

Let G = (V,E) be a connected simple undirected graph with n vertices, m edges,
and nonnegative edge weights. The (weighted) density of G is defined as its average
(weighted) degree. Let k ≤ n be a positive integer. A subgraph of G is called a k-
subgraph if it has exactly k vertices. The densest k-subgraph problem (DkSP) is to
find a k-subgraph of G that has the maximum density, equivalently, a maximum
number of edges. If the k-subgraph requires to be connected, then the problem
is referred to as the densest connected k-subgraph problem (DCkSP). Both DkSP
and DCkSP have their weighted generalizations, denoted respectively as HkSP
and HCkSP, which ask for a heaviest (connected) k-subgraph, i.e., a (connected)
k-subgraph with a maximum total edge weight. Identifying k-subgraphs with high
densities is a useful primitive, which arises in diverse applications – from social
networks, to protein interaction graphs, to the world wide web, etc. While dense
subgraphs can give valuable information about interactions in these networks, the
additional connectivity requirement turns out to be natural in various scenarios.

Related Work. An easy reduction from the maximum clique problem shows that
DkSP, DCkSP and their weighted generalizations are all NP-hard in general.
The NP-hardness remains even for some very restricted graph classes such as

Research supported in part by by NNSF of China under Grant No. 11222109,
11021161 and 10928102, by 973 Project of China under Grant No. 2011CB80800, and
by CAS Program for Cross & Cooperative Team of Science & Technology Innovation.

c© Springer International Publishing Switzerland 2015
R. Jain et al. (Eds.): TAMC 2015, LNCS 9076, pp. 248–259, 2015.
DOI: 10.1007/978-3-319-17142-5 22

Finding Connected Dense k-Subgraphs 249

chordal graphs, triangle-free graphs, comparability graphs and bipartite graphs
of maximum degree three.

Most literature on finding dense subgraphs focus on the versions without
requiring the subgraphs to be connected. For DkSP and its generalization HkSP,
narrowing the large gap between the lower and upper bounds on the approach-
ability is an important open problem.On the negative side, Feige [9] showed
that computing a (1 + ε) approximation for DkSP is at least as hard as refut-
ing random 3-SAT clauses for some ε > 0. Khot [15] showed that there does
not exist any polynomial time approximation scheme (PTAS) for DkSP assum-
ing NP does not have randomized algorithms that run in sub-exponential time.
Recently, constant factor approximations in polynomial time for DkSP have
been ruled out by Raghavendra and Steurel [20] under Unique Games with
Small Set Expansion conjecture. On the positive side, considerable efforts have
been devoted to finding good quality approximations for HkSP. Improving the
O(n0.3885)-approximation of Kortsarz and Peleg [17], Feige et al. [11] proposed
a combinatorial algorithm with approximation ratio O(nδ) for some δ < 1/3.
The latest algorithm of Bhaskara et al. [4] provides an O(n1/4+ε)-approximation
in nO(1/ε) time. If allowed to run for nO(log n) time, their algorithm guarantees
an approximation ratio of O(n1/4). The O(n/k)-approximation algorithm by
Asahiro et al. [3] is remarkable for its simple greedy removal method. Linear and
semidefinite programming relaxation approaches have been adopted in [10,13,21]
to design randomized rounding algorithms.

For some special graph classes, better approximations have been obtained for
DkSP and HkSP. Arora et al. [2] gave a PTAS for the restricted DkSP where m =
Ω(n2) and k = Ω(n), or each vertex of G has degree Ω(n). Demaine et al. [8]
developed a 2-approximation algorithm for DkSP on H-minor-free graphs, where
H is any given fixed graph. Chen et al. [5] showed that DkSP on a large family
of intersection graphs admits constant factor approximations.

The work on approximating densest/heaviest connected k-subgraphs are rel-
atively very limited. To the best of our knowledge, the existing polynomial time
algorithms deal only with special graphical topologies, including: (a) 2-approxi-
mation for the metric HkSP (HCkSP) [14], where the underlying graph G is com-
plete, and the connectivity is trivial; (b) exact algorithms for HkSP and HCkSP
on trees [7], for DkSP and DCkSP on h-trees, cographs and split graphs [7], and
for DCkSP on interval graphs whose clique graphs are simple paths [19].

Among the well-known relaxations of DkSP and HkSP is the problem of
finding a (connected) subgraph of maximum weighted density that does not have
any cardinality constraint. It is strongly polynomial time solvable using max-flow
based techniques [12,18]. Andersen and Chellapilla [1] and Khuller and Saha [16]
studied two relaxed variants of HkSP for finding a weighted densest subgraph
with at least or at most k vertices. The former variant was shown to be NP-
hard even in the unweighted case, and admit 2-approximation in the weighted
setting. The approximation of the latter variant was proved to be as hard as
that of DkSP/HkSP up to a constant factor.

250 X. Chen et al.

OurResults. Given the interest in finding densest/heaviest connected k-subgraphs
from both the theoretical and practical point of view, a better understanding
of the problems is an important challenge for the field. In this paper, we design
O(mn log n) time combinatorial approximation algorithms for finding a connec-
ted k-subgraph of G whose density (weighted density) is at least a factor Ω(max
{n−2/5, k2/n2}) (Ω(max{1/k, k2/n2})) of the density (weighted density) of the
densest (heaviest) k-subgraph of G which is not necessarily connected. These par-
ticularly provide the first non-trivial approximation ratios for DCkSP and HCkSP
on general graphs: O(min{n2/5, n2/k2}) for DCkSP and O(min{k, n2/k2}) for
HCkSP. Note that min{k, n2/k2} ≤ n2/3.

To evaluate the quality of our algorithms’ performance guarantees O(n2/5)
and O(n2/3), which are compared with the optimums of DkSP and HkSP, we
investigate the maximum ratio Λ (resp. Λw), over all graphs G (resp. over all
graphs G and all nonnegative edge weights), between the maximum density (resp.
weighted density) of all k-subgraphs and that of all connected k-subgraphs in G.
The following examples show Λ ≥ 1

3n1/3 and Λw ≥ 1
2n1/2.

Example 1. (a) The graph G is formed from � vertex-disjoint �-cliques L1, . . . , L�

by adding, for each i = 1, . . . , � − 1, a path Pi of length �2 + 1 to connect Li and
Li+1, where Pi intersects all the � cliques only at a vertex in Li and a vertex in
Li+1. Let k = �2. Note that G has n = �2 + �2(� − 1) = �3 vertices. The unique
densest k-subgraph of G is the disjoint union of L1, . . . , L� and has density �−1.
One of densest connected k-subgraphs of G is induced by the � vertices in L1

and certain �2 − � vertices in P1, and has density (�(�− 1)+2(�2 − �))/�2. Hence
Λ ≥ �2/(� + 2�) = 1

3n1/3.
(b) The graph G is a tree formed from a star on � + 1 vertices by dividing

each edge into a path of length � + 1. All pendant edges have weight 1 and
other edges have weight 0. Let k = 2�. Note that G has n = �2 + 1 vertices.
The unique heaviest k-subgraph of G is induced by the � pendant edges of G,
and has weighted density 1. Every heaviest connected k-subgraph of G is a path
containing exactly one pendant edge of G, and has weighted density 1/�. Hence
Λw ≥ � ≥ 1

2n1/2.

The remainder of this paper is organized as follows. Section 2 gives notations,
definitions and basic properties necessary for our discussion. Section 3 is devoted
to designing approximation algorithms for finding connected dense k-subgraphs.
Section 4 discusses extension to the weighted case, and future research direc-
tions.The omitted details can be found in [6].

2 Preliminaries

Graphs studied in this paper are simple and undirected. For any graph G′ =
(V ′, E′) and any vertex v ∈ V ′, we use dG′(v) to denote v’s degree in G′. The
density σ(G′) of G′ refers to its average degree, i.e., σ(G′) =

∑
v∈V ′ dG′(v)/|V ′| =

2|E′|/|V ′|. Following convention, we define |G′| = |V ′|. By a component of G′

we mean a maximal connected subgraph of G′.

Finding Connected Dense k-Subgraphs 251

Throughout let G = (V,E) be a connected graph on n vertices and m edges,
and let k ∈ [3, n] be an integer. Our goal is to find a connected k-subgraph C of
G such that its density σ(C) is as large as possible. Let σ∗(G) and σ∗

k(G) denote
the maximum densities of a subgraph and a k-subgraph of G, respectively, where
the subgraphs are not necessarily connected. It is clear that

σ∗(G) ≥ σ∗
k(G) and n − 1 ≥ σ(G) ≥ k · σ∗

k(G)/n. (2.1)

Let S be a subset of V or a subgraph of G. We use G[S] to denote the subgraph
of G induced by the vertices in S, and use G \ S to denote the graph obtained
from G by removing all vertices in S and their incident edges. If S consists of a
single vertex v, we write G \ v instead of G \ {v}.

The vertices whose removals increase the density of the graph play an impor-
tant role in our algorithm design.

Definition 1. A vertex v ∈ V is called removable in G if σ(G \ v) > σ(G).

Since σ(G\v) = 2(|E|−dG(v))/(|V |−1), the following lemma is straightforward.
It also provides an efficient way for identifying removable vertices.

Lemma 1. A vertex v ∈ V is removable in G if and only if dG(v) < σ(G)/2. ��
Lemma 2. Let G1 be a connected k-subgraph of G. For any connected subgraph
G2 of G1, it holds that σ(G1) ≥ σ(G2)/

√
k.

Proof. Suppose that G2 is a k2-subgraph of G with m2 edges. By the definition
of density, σ(G2) ≤ k2 − 1. The connectivity of G1 implies |E(G1)| ≥ |E(G2)| +
|V (G1 \ G2)|, and

σ(G1) ≥ 2(m2 + k − k2)
k

=
k2 · σ(G2) + 2(k − k2)

k
.

In case of k2 ≥ √
k, we have σ(G1) ≥ k2 · σ(G2)/k ≥ σ(G2)/

√
k. In case of

k2 <
√

k, since k ≥ 3, it follows that G1 has no isolated vertices, and σ(G1) ≥
1 > k2/

√
k > σ(G2)/

√
k. ��

For a cut-vertex v of G, we use Gv to denote a densest component of G \ v, and
use Gv+ to denote the connected subgraph of G induced by V (Gv) ∪ {v}. Note
that G \ Gv is a connected subgraph of G.

3 Algorithms

We design an O(n2/k2)-approximation algorithm (in Sect. 3.1) and further an
O(n2/5)-approximation algorithm (in Sect. 3.2) for DkSP that always finds a
connected k-subgraph of G. For ease of description we assume k is even. The
case of odd k can be treated similarly. Alternatively, if k is odd, we can first find
a connected (k − 1)-subgraph G1 satisfying σ∗

k−1(G)/σ(G1) ≤ O(α), where α ∈
{n2/k2, n2/5}. Notice that σ∗

k(G) ≤ 3·σ∗
k−1(G) [6]. It follows that σ∗

k(G)/σ(G1) ≤
O(α). Then we attach an appropriate vertex to G1, making a connected k-
subgraph G2 with density σ(G2) ≥ k−1

k σ(G1) ≥ 2
3σ(G1). This guarantees that

the approximation ratio is still σ∗
k(G)/σ(G2) ≤ O(α).

252 X. Chen et al.

3.1 O(n2/k2)-Approximation

We first give an outline of our algorithm (see Algorithm1) for finding a connected
k-subgraph C of G with density σ(C) ≥ Ω(k2/n2) · σ∗

k(G) (see Theorem 1).

Outline. We start with a connected graph G′ ← G and repeatedly delete remov-
able vertices from G′ to increase its density without destroying its connectivity.

– If we can reach G′ with |G′| = k in this way, we output C as the resulting G′.
– If we can find a removable cut-vertex r in G′ such that |G′

r| ≥ k, then we
recurse with G′ ← G′

r.
– If we stop at a G′ without any removable vertices, then we construct C from an

arbitrary connected (k/2)-subgraph by greedily attaching k/2 more vertices
(see Procedure 1).

– If we are in none of the above three cases, we find a connected subgraph of
G′ induced by a set S of at most k/2 vertices, and then expand the subgraph
in two ways: (1) attaching G′

r for all removable vertices r of G′ which are
contained in S, and (2) greedily attaching no more than k/2 vertices. From
the resulting connected subgraphs, we choose the one that has more edges
(breaking ties arbitrarily), and further expand it to be a connected k-subgraph
(see Procedure 2), which is returned as the output C.

Greedy Attachment. We describe how the greedy attaching mentioned in the
above outline proceeds. Let S and T be disjoint nonempty vertex subsets (or
subgraphs) of G. Note that 1 ≤ |S| < n. The set of edges of G with one end in S
and the other in T is written as [S, T]. For any positive integer j ≤ n−|S|, a set
S� of j vertices in G\S with maximum |[S, S�]| can be found greedily by sorting
the vertices in G \S as v1, v2, . . . , vj , . . . in a non-increasing order of the number
of neighbors they have in S. For each i = 1, 2 . . . , j, it can be guaranteed that vi

has either a neighbor in S or a neighbor in {v1, v2 . . . , vi−1}; in the latter case
i ≥ 2. Setting S� = {v1, v2, . . . , vj}. It is easy to see that

|[S, S�]| ≥ j
n · |[S,G \ S]|. (3.1)

Moreover, if G[S] is connected, the choices of vi’s guarantee that G[S ∪ S�] is
connected. We refer to this S� as a j-attachment of S in G. Given S, finding a j-
attachment of S takes O(m+n log n) time, which implies the following procedure
runs in O(|E(G′)| + |G′| · log |G′|) time.

Procedure 1. Input: a connected graph G′ without removable vertices, where
|G′| > k. Output: a connected k-subgraph of G′, written as Prc1(G′).

1. G1 = (V1, E1) ← an arbitrary connected (k/2)-subgraph of G′

2. V �
1 ← a (k/2)-attachment of V1 in G′

3. Output Prc1(G′) ← G[V1 ∪ V �
1]

Note that the definition of attachment guarantees that V1 ∩ V �
1 = ∅, |[V1, V

�
1]| is

maximum, and G[V1 ∪ V �
1] is connected.

Finding Connected Dense k-Subgraphs 253

Lemma 3. σ(Prc1(G′)) ≥ k
4|G′| · σ(G′).

Proof. Since G′ has no removable vertices, we deduce from Lemma 1 that every
vertex of G′ has degree at least σ(G′)/2. Therefore |[G1, G

′ \ G1]| ≥ k
2 · σ(G′)

2 −
2|E1|. Recalling (3.1), we see that the number of edges in Prc1(G′) is at least
|[V1, V

�
1]| ≥ (k·σ(G′)

4 − 2|E1|) · k/2
|G′| + |E1| ≥ k2

8|G′| · σ(G′), proving the lemma. ��

Procedure 2. Input: a connected graph G′ with |G′| > k, where every removable
vertex r is a cut-vertex and satisfies |G′

r| < k. Output: a connected k-subgraph
of G′, written as Prc2(G′).

1. H ← G′, R′ ← R = the set of removable vertices of G′

2. While R′ �= ∅ do
3. Take r ∈ R′

4. H ← H \ V (G′
r), R′ ← R′ \ V (G′

r+)
5. End-While
6. For each v ∈ V (H), define θ(v) = |G′

v+| if v ∈ R, and θ(v) = 1 otherwise
7. Let S be a minimal subset of V (H) s.t.H[S] is connected &

∑
v∈S θ(v)≥ k

2
8. Let S∗ be a min{k/2, |H \ S|}-attachment of S in H
9. V1 ← S ∪ (∪r∈R∩SV (G′

r)), V2 ← S ∪ S�

10. Let H ′ be one of G′[V1] and G′[V2] whichever has more edges (break ties
arbitrarily)

11. Expand H ′ to be a connected k-subgraph of G′

12. Output Prc2(G′) ← H ′

Under the condition that the resulting graph is connected, the expansion in
Step 11 can be done in an arbitrary way. It is easy to see that Procedure 2 runs
in O(|G′| · |E(G′)|) time.

Lemma 4. At the end of the while-loop (Step 5) in Procedure 2, we have

(i) H is a connected subgraph of G′.
(ii) If H contains two distinct vertices r and s that are removable in G′, then

(by the condition of the procedure both r and s are cut-vertices of G′, and
moreover) G′

r and G′
s are vertex-disjoint.

Proof. Note that in every execution of the while-loop, r ∈ R′ is a cut-vertex of H,
and V (H)∩V (G′

r) induces a component of H\r. Thus H is connected throughout
the procedure. For any two removable vertices r, s of G′ with |G′

r| ≤ |G′
s| and

r, s ∈ V (H), if G′
r and G′

s are not vertex-disjoint, then V (G′
r) ∪ {r} ⊆ V (G′

s).
It follows that all vertices of V (G′

r) ∪ {r} have been removed by Step 4 delete
when considering s ∈ R′, a contradiction. ��
Observe that for any two distinct r, s ∈ R, either G′

r+ and G′
s+ are vertex-

disjoint, or G′
r+ contains G′

s+, or G′
s+ contains G′

r+. This fact, along with an
inductive argument, shows that, throughout Procedure 2, for any s ∈ R\V (H),
there exists at least a vertex r ∈ V (H)∩R such that G′

r+ contains G′
s+, implying

254 X. Chen et al.

that (Ur∈R∩V (H)V (Gr+)) ∪ (V (H)\R) = V (G′) holds always. By Lemma 4(ii),
in Step 7, we see that V (G′) is the disjoint union of V (Gr+), r ∈ R ∩ V (H)
and V (H)\R, giving

∑
v∈V (H) θ(v) = |G′| > k. Hence, the connectivity of H

(Lemma 4 (i)) implies that the set S in Step 7 does exist.
Take u ∈ S such that u is not a cut-vertex of H. If |S| ≥ (k/2) + 1, then we

have
∑

v∈S\{u} θ(v) ≥ |S\{u}| ≥ k/2, a contradiction to the minimality of S.
Hence |S| ≤ k/2.

Since Step 4 has removed from H all vertices in V (G′
r) for all r ∈ R, we see

that V1 is the disjoint union of S and ∪r∈R∩SV (G′
r) Recall that |G′

r| < k for all
r ∈ R∩S. If |V1| > k, then |S| ≥ 2, and either θu ≥ k/2 or

∑
v∈S\{u} θ(v) ≥ k/2,

contradicting to the minimality of S. Noting that |V1| =
∑

v∈S θ(v), we have

k/2 ≤ |V1| ≤ k. (3.2)

We deduce that the output of Procedure 2 is indeed a connected k-subgraph
of G′.

Algorithm 1. Input: connected graph G = (V,E) with |V | ≥ k.
Output: a connected k-subgraph of G, written as Alg1(G).

1. G′ ← G
2. While |G′| > k and G′ has a removable vertex r that is not a cut-vertex do
3. G′ ← G′ \ r
4. End-While // either |G′| = k or any removable vertex of G′ is a cut-vertex

5. If |G′| = k then output Alg1(G) ← G′

6. If |G′| > k and G′ has no removable vertices
then output Alg1(G) ← Prc1(G′)

7. If |G′| > k and |G′
r| < k for each removable vertex r of G′

then output Alg1(G) ← Prc2(G′)
8. If |G′| > k and |G′

r| ≥ k for some removable vertex r of G′

then output Alg1(G) ← Alg1(G′
r)

In the while-loop, we repeatedly delete removable non-cut vertices from G′

until |G′| = k or G′ has no removable non-cut vertex anymore. The deletion
process keeps G′ connected, and its density σ(G′) increasing (cf. Definition 1).
When the deletion process finishes, there are four possible cases, which are han-
dled by Steps 5, 6, 7 and 8, respectively.

– In case of Step 5, the output G′ is clearly a connected k-subgraph of G.
– In case of Step 6, G′ qualifies to be an input of Procedure 1. With this input,

Procedure 1 returns the connected k-subgraph Prc1(G′) of G′ as the algo-
rithm’s output.

– In case of Step 7, G′ qualifies to be an input of Procedure 2. With this input,
Procedure 2 returns the connected k-subgraph Prc2(G′) of G′ as the algo-
rithm’s output.

– In case of Step 8, the algorithm recurses with smaller input G′
r, which satisfies

σ(G′
r) ≥ σ(G′) ≥ σ(G) and k ≤ |G′

r| < |G′| ≤ |G|.

Finding Connected Dense k-Subgraphs 255

Hence after O(n) recursions, the algorithm terminates at one of Steps 5 – 7 and
outputs a connected k-subgraph of G.

Theorem 1. Algorithm1 finds in O(mn) time a connected k-subgraph C of G
such that σ∗

k(G)/σ(C) ≤ 12n2/k2.

Proof. Let C = Alg1(G) be the output connected k-subgraph of G. If C is
output at Step 5, then its density is σ(C) ≥ σ(G) ≥ (k/n) · σ∗

k(G), where the
last inequality is by (2.1). If C is output by Procedure 1 at Step 6, then from
Lemma 3 we know its density is at least k

4|G′| · σ(G′) ≥ k
4n · σ(G) ≥ k2

4n2 · σ∗
k(G).

Now we are only left with the case that C =Prc2(G′) is output by Proce-
dure 2 at Step 7 of Algorithm1. Let R denote the set of removable vertices of
G′. For every r ∈ R, we see that r is a cut-vertex of G′ (cf. the note at Step 4
of the algorithm), and σ(G′

r) ≥ σ(G′ \ r) > σ(G′), where the first inequality is
from the definition of G′

r (it is the densest component of G′ \ r), and the second
inequality is due to the removability of r. Thus

σ(G′
r+) > σ(G′

r) · |G′
r|/(|G′

r| + 1) ≥ σ(G′)/2 for every r ∈ R.

Using the notations in Procedure 2, we note that each vertex of S \ R is non-
removable in G′, and therefore has degree at least σ(G′)/2 in G′ by Lemma 1.
Since V1 = S ∪ (∪r∈R∩SV (G′

r)) = (S \ R) ∪ (∪r∈S∩RV (G′
r+)) contains at least

k/2 vertices (recall (3.2)), it follows that G′ contains at least (k
2 · σ(G′)

2)/2 ≥
k
8 · σ(G) ≥ k2

8n · σ∗
k(G) edges each with at least one end in V1.

If there are at least k2

24n ·σ∗
k(G) edges with both ends in V1, then by Step 10 of

Procedure 2 we have |E(C)| ≥ k2

24n ·σ∗
k(G) and σ(C) = 2|E(C)|/k ≥ k

12n ·σ∗
k(G) ≥

k2

12n2 ·σ∗
k(G). It remains to consider the case where G′ contains at least k2

12n ·σ∗
k(G)

edges between V1 and G′ \V1. All these edges are between S and G′ \V1 = H \S,
since each edge incident with any vertex in G′

r (r ∈ R) must have both ends in
V1. So, by the definition of S� at Step 8 of Procedure 2, we deduce from (3.1) that
there are at least a number |[S, S�]| ≥ k/2

n ·|[S,H\S]| ≥ k3

24n2 ·σ∗
k(G) of edges in the

subgraph of G′ induced by V2 = S∪S�. Hence σ(C) ≥ 2|[S, S�]|/k ≥ k2

12n2 ·σ∗
k(G),

justifying the performance of the algorithm. See [6] for the runtime analysis. ��

3.2 O(n2/5)-Approximation

In this subsection we design algorithms for finding connected k-subgraphs of G
that jointly provide an O(n2/5)-approximation to DkSP. Among the outputs of
all these algorithms (with input G), we select the densest one, denoted as C.
Then it can be guaranteed that σ∗

k(G)/σ(C) ≤ O(n2/5). In view of the O(n2/k2)-
approximation of Algorithm 1, we may focus on the case of k < n4/5. (Note that
n2/k2 ≤ n2/5 if k ≥ n4/5.)

Let D be a densest connected subgraph of G, which is computable in time
O(mn log(n2/m)) [12,18], because every component of a densest subgraph of G
is also a densest subgraph of G. Thus

σ(D) = σ∗(G) ≥ σ∗
k(G).

256 X. Chen et al.

Moreover, the maximality of σ(D) implies that D has no removable vertices.

Algorithm 2. Input: connected graph G along with its densest connected sub-
graph D. Output: a connected k-subgraph of G, denoted as Alg2(G).

1. If |D| ≤ k then Expand D to be a connected k-subgraph H of G
Output Alg2(G) ← H

2. Else Output Alg2(G) ← Prc1(D)

Lemma 5. If k < n4/5, then σ(Alg2(G)) ≥ min{k/(4n), n−2/5} · σ∗(G).

Proof. In case of |D| ≤ k, by Lemma 2, it follows from σ∗(G) ≥ σ∗
k(G) that the

density of the output subgraph σ(H) ≥ σ(D)/
√

k = σ∗(G)/
√

k. Since k ≤ n4/5,
we see that σ(H) ≥ n−2/5 · σ∗(G).

In case of |D| > k, we deduce from Lemma 3 that the connected k-subgraph
Alg2(G)=Prc1(D) of D has density at least k

4|D| · σ(D) ≥ k
4n · σ∗(G). ��

Our next algorithm is an expansion of Procedure 2 by Feige et al. [11]. Let Vh be
a set of k/2 vertices of highest degrees in G, and let dh = 2

k

∑
v∈Vh

dG(v) denote
the average degree of the vertices in Vh.

Algorithm 3. Input: connected graph G with |G| ≥ k.
Output: a connected k-subgraph of G, denoted as Alg3(G).

1. V �
h ← a (k/2)-attachment of Vh in G

2. H ← a densest component of G[Vh ∪ V �
h]

3. Output Alg3(G) ← a k-connected subgraph of G that is expanded from H

In the above algorithm, the subgraph G[Vh ∪ V �
h] is exactly the output of Pro-

cedure 2 in [11], for which it has been shown (cf, Lemma 3.2 of [11]) that

σ̄ := σ(G[Vh ∪ V �
h]) ≥ kdh/(2n).

Recalling Lemma 2, we have σ(Alg3(G)) ≥ σ(H)/
√

k ≥ σ̄/
√

k, which implies
the following result.

Lemma 6. σ(Alg3(G)) ≥ σ̄√
k

≥
√

k
2n · dh. ��

Our last algorithm is a slight modification of Procedure 3 in [11], where we link
things up via a “hub” vertex. For vertices u, v of G, let W (u, v) denote the
number of walks of length 2 from u to v in G.

Algorithm 4. Input: connected graph G = (V,E) with |G| ≥ k.
Output: a connected k-subgraph of G, denoted as Alg4(G).

1. G� ← G[V \ Vh].
2. Compute W (u, v) for all pairs of vertices u, v in G�.
3. For every v ∈ V \ Vh, construct a connected k-subgraph Cv of G as follows:

Finding Connected Dense k-Subgraphs 257

– Sort the vertices u ∈ V \ Vh \ {v} with positive W (v, u) as v1, v2, . . . , vt

such that W (v, v1) ≥ W (v, v2) ≥ · · · ≥ W (v, vt) > 0.
– P v ← {v1, . . . , vmin{t,k/2−1}}
– Bv ← a set of min{dG�

(v), k/2} neighbors of v in G� such that the
number of edges between Bv and P v is maximized.

– Cv ← the component of G�[{v} ∪ Bv ∪ P v] that contains v
– Expand Cv to be a connected k-subgraph of G

4. Output Alg4(G) ← the densest Cv for v ∈ V \ Vh

In the above algorithm, Bv can be found in O(m + n log n) time, and v is the
“hub” vertex ensuring that Cv is connected. Hence the algorithm is correct, and
runs in O(mn + n2 log n) time, where Step 2 finishes in O(n2 log n) time. The
key point here is that Cv contains all edges between Bv and P v, where Bv and
P v are not necessarily disjoint. Using a similar analysis to that in [11] (see [6]),
we obtain the following.

Lemma 7. If k≤ 2
3n, then σ(Alg4(G)) ≥ (σ∗

k(G)−2σ̄)2

2max{k,2dh} · k−2
k ≥ (σ∗

k(G)−2σ̄)2

6max{k,2dh} . ��
We are now ready to prove that the four algorithms given above jointly guarantee
an O(n2/5)-approximation.

Theorem 2. A connected k-subgraph C of G can be found in O(mn log n) time
such that σ∗

k(G)/σ(C) ≤ O(n2/5).

Proof. Let C be the densest connected k-subgraph of G among the outputs
of Algorithms 1 – 4. As mentioned at the beginning of Sect. 3.2, it suffices to
consider the case of k < n4/5. The connectivity of C gives σ(C) ≥ 1. Clearly, we
may assume n ≥ 8, which along with k < n4/5 implies k ≤ 2n/3. By Lemmas 5–7,
we may assume that

σ(C) ≥ max

{
1,

kσ∗(G)
4n

,
σ̄√
k

,

√
kdh

2n
,
(σk(G) − 2σ̄)2

6max{k, 2dh}

}
.

If k ≥ n3/5, then σ(C) ≥ k · σ∗(G)/(4n) ≥ σ∗(G)/(4n2/5) ≥ σ∗
k(G)/(4n2/5). If

k ≤ n2/5, then σ(C) ≥ 1 ≥ σ∗
k(G)/k ≥ σ∗

k(G)/n2/5. So we are only left with the
case of n2/5 ≤ k ≤ n3/5.

Since σ(C) ≥ σ̄/
√

k ≥ σ̄/n3/10 ≥ σ̄/n2/5, we may assume σ̄ < σ∗
k(G)/4, and

hence σ∗
k(G) − 2σ̄ ≥ σ∗

k(G)/2. Next we use the geometric mean to prove the
performance guarantee as claimed.

In case of k ≥ 2dh, since σ∗(G) ≥ σ∗
k(G), we have

σ(C) ≥
(

1 · kσ∗(G)
4n

· (σ∗
k(G)/2)2

6k

)1/3

≥ σ∗
k(G)

5n2/5
,

In case of k < 2dh, we have

σ(C) ≥
(

1 ·
√

kdh

2n
· (σ∗

k(G)/2)2

12dh
·
√

kdh

2n
· (σ∗

k(G)/2)2

12dh

)1/5

≥ σ∗
k(G)

7n2/5
,

where the last inequality follows from the fact that k ≥ σ∗
k(G). ��

258 X. Chen et al.

4 Conclusion

In Sect. 3, we have given four strongly polynomial time algorithms that jointly
guarantee an O(min{n2/5, n2/k2})-approximation for the unweighted problem –
DCkSP. The approximation ratio is compared with the maximum density of all
k-subgraphs, and in this case no O(n1/3−ε)-approximation for any ε > 0 can
be expected (recall Λ ≥ 1

3n1/3 in Example 1(a)). When studying the weighted
generalization – HCkSP, we can extend the techniques developed in Sect. 3.1,
and obtain an O(n2/k2)-approximation for the weighted case. Besides, a simple
greedy approach can achieve a (k/2)-approximation [6]. As min{n2/k2, k} ≤
n2/3, the following result implies an O(n2/3)-approximation for HCkSP.

Theorem 3. For any connected graph G = (V,E) with weight w ∈ ZE
+, a con-

nected k-subgraph H of G can be found in O(nm) time such that σ∗
k(G,w)/σ(H,w)

≤ O(min{n2/k2, k}), where σ(H,w) is the weighted density of H, and σ∗
k(G,w)

is the weighted density of a heaviest k-subgraph of G (which is not necessarily
connected). ��
Since the weighted density of a graph is not necessarily related to its num-
ber of edges or vertices, a couple of the results in the previous sections (such
as Lemmas 2, 6 and 7) do not hold for the general weighted case. Neither the
techniques of extending unweighted case approximations to weighted cases in
[11,17] apply to our setting due to the connectivity constraint. An immedi-
ate question is whether an O(n2/5)-approximation algorithm exists for HCkSP.
Note from Λw ≥ 1

2n1/2 in Example 1(b) that no one can achieve an O(n1/2−ε)-
approximation for any ε > 0 if the solution value is compared with the maximum
weighted density of all k-subgraphs. Among other algorithmic approaches, ana-
lyzing the properties of densest/heaviest connected k-subgraphs is an important
and challenging task in obtaining improved approximation ratios for DCkSP and
HCkSP.

References

1. Andersen, R., Chellapilla, K.: Finding dense subgraphs with size bounds. In:
Avrachenkov, K., Donato, D., Litvak, N. (eds.) WAW 2009. LNCS, vol. 5427,
pp. 25–37. Springer, Heidelberg (2009)

2. Arora, S., Karger, D., Karpinski, M.: Polynomial time approximation schemes for
dense instances of NP-hard problems. In: Proceedings of the 27th Annual ACM
Symposium on Theory of Computing, pp. 284–293 (1995)

3. Asahiro, Y., Iwama, K., Tamaki, H., Tokuyama, T.: Greedily finding a dense sub-
graph. J. Algorithms 34(2), 203–221 (2000)

4. Bhaskara, A., Charikar, M., Chlamtac, E., Feige, U., Vijayaraghavan, A.: Detecting
high log-densities: an O(n1/4) approximation for densest k-subgraph. In: Proceed-
ings of the 42nd Annual ACM Symposium on Theory of Computing, pp. 201–210
(2010)

5. Chen, Danny Z., Fleischer, Rudolf, Li, Jian: Densest k -subgraph approximation
on intersection graphs. In: Jansen, Klaus, Solis-Oba, Roberto (eds.) WAOA 2010.
LNCS, vol. 6534, pp. 83–93. Springer, Heidelberg (2011)

Finding Connected Dense k-Subgraphs 259

6. Chen, X., Hu, X., Wang, C.: Finding connected dense k-subgraphs. CoRR abs/
1501.07348 (2015)

7. Corneil, D.G., Perl, Y.: Clustering and domination in perfect graphs. Discrete
Appl. Math. 9(1), 27–39 (1984)

8. Demaine, E.D., Hajiaghayi, M., Kawarabayashi, K.i.: Algorithmic graph minor
theory: decomposition, approximation, and coloring. In: Proceedings of the 46th
Annual IEEE Symposium on Foundations of Computer Science, pp. 637–646 (2005)

9. Feige, U.: Relations between average case complexity and approximation complex-
ity. In: Proceedings of the 34th Annual ACM Symposium on Theory of Computing,
pp. 534–543 (2002)

10. Feige, U., Langberg, M.: Approximation algorithms for maximization problems
arising in graph partitioning. J. Algorithms 41(2), 174–211 (2001)

11. Feige, U., Peleg, D., Kortsarz, G.: The dense k-subgraph problem. Algorithmica
29(3), 410–421 (2001)

12. Goldberg, A.V.: Finding a Maximum Density Subgraph. University of California
Berkeley, CA (1984)

13. Han, Q., Ye, Y., Zhang, J.: An improved rounding method and semidefinite pro-
gramming relaxation for graph partition. Math. Program. 92(3), 509–535 (2002)

14. Hassin, R., Rubinstein, S., Tamir, A.: Approximation algorithms for maximum
dispersion. Oper. Res. Lett. 21(3), 133–137 (1997)

15. Khot, S.: Ruling out ptas for graph min-bisection, dense k-subgraph, and bipartite
clique. SIAM J. Comput. 36(4), 1025–1071 (2006)

16. Khuller, S., Saha, B.: On finding dense subgraphs. In: Albers, S., Marchetti-
Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.) ICALP 2009, Part I.
LNCS, vol. 5555, pp. 597–608. Springer, Heidelberg (2009)

17. Kortsarz, G., Peleg, D.: On choosing a dense subgraph. In: Proceedings of the
34th Annual IEEE Symposium on Foundations of Computer Science, pp. 692–701
(1993)

18. Lawler, E.L.: Combinatorial Optimization: Networks and Matroids. Courier Dover
Publications, New York (1976)

19. Liazi, M., Milis, I., Zissimopoulos, V.: Polynomial variants of the densest/heaviest
k-subgraph problem. In: Proceedings of the 20th British Combinatorial Conference,
Durham (2005)

20. Raghavendra, P., Steurer, D.: Graph expansion and the unique games conjecture.
In: Proceedings of the 42nd Annual ACM Symposium on Theory of Computing,
pp. 755–764 (2010)

21. Srivastav, A., Wolf, K.: Finding dense subgraphs with semidefinite programming.
In: Jansen, K., Rolim, J.D.P. (eds.) APPROX 1998. LNCS, vol. 1444, pp. 181–191.
Springer, Heidelberg (1998)

The Complexity of Degree Anonymization
by Graph Contractions

Sepp Hartung and Nimrod Talmon(B)

Institut Für Softwaretechnik und Theoretische Informatik, TU Berlin,
Berlin, Germany

nimrodtalmon77@gmail.com

Abstract. We study the computational complexity of k-anonymizing a
given graph by as few graph contractions as possible. A graph is said to
be k-anonymous if for every vertex in it, there are at least k − 1 other
vertices with exactly the same degree. The general degree anonymization
problem is motivated by applications in privacy-preserving data publish-
ing, and was studied to some extent for various graph operations (most
notable operations being edge addition, edge deletion, vertex addition,
and vertex deletion). We complement this line of research by studying
several variants of graph contractions, which are operations of interest,
for example, in the contexts of social networks and clustering algorithms.
We show that the problem of degree anonymization by graph contrac-
tions is NP-hard even for some very restricted inputs, and identify some
fixed-parameter tractable cases.

1 Introduction

Motivated by concerns of data privacy in social networks, Clarkson et al. [10]
introduced the general degree anonymization problem, defined as follows. Given
an input graph G and an allowed operation O, the task is to transform G into
a k-anonymous graph by performing as few O operations as possible; a graph is
said to be k-anonymous if for every vertex in it, there are at least k − 1 other
vertices with exactly the same degree. This problem has been studied, both
theoretically and practically, for several graph modification operations such as
edge addition [10,17,20], edge deletion [8], vertex addition [5,9], and vertex dele-
tion [4]. This paper can be seen as complementing this line of research by consid-
ering graph contractions, as a natural graph modification operation, specifically
studying the (parameterized) complexity of this degree anonymization problem.

This paper also complements research done on the following problem: given
an input graph G = (V,E) and a family F of graphs, find a minimum-size
subset of edges E′ ⊆ E, such that after contracting the edges in E′, G would
be in the family F (indeed, in our case, F is the family of all k-anonymous
graphs). Asano and Hirata [1] defined a set of conditions on F , which is suffi-
cient for the NP-hardness of this problem. Others studied specific graph classes

A full version is available at http://fpt.akt.tu-berlin.de/talmon/abcfv.pdf.
N. Talmon—Supported by DFG Research Training Group MDS (GRK 1408).

c© Springer International Publishing Switzerland 2015
R. Jain et al. (Eds.): TAMC 2015, LNCS 9076, pp. 260–271, 2015.
DOI: 10.1007/978-3-319-17142-5 23

http://fpt.akt.tu-berlin.de/talmon/abcfv.pdf

The Complexity of Degree Anonymization by Graph Contractions 261

(as F), such as planar graphs [15], bipartite graphs [18], paths [18], trees [16], and
d-regular graphs [3]. This last work is of particular interest, as the concept of k-
anonymity is a generalization of the notion of regularity (in particular, a graph
is n-anonymous if and only if it is regular).

Studying graph contractions in the context of degree anonymization is inter-
esting for several reasons. First, some variants of contractions can preserve orig-
inal properties of the input graph (for example, connectivity). Second, vertex
contraction, where also non-adjacent vertices can be contracted, is the inverse
operation of vertex cleaving (as defined by Oxley [22, Chapter 3]), which was
studied in the context of degree anonymization by Bredereck et al. [5] (there,
called vertex cloning). We mention also the relation of graph contractions to
communities detection in social networks and to clustering (see, for example,
Delling et al. [11]).

2 Preliminaries

We assume familiarity with standard notions regarding algorithms, computa-
tional complexity, and graph theory. For a non-negative integer z, we denote
{1, . . . , z} by [z].

2.1 Parameterized Complexity

An instance (I, k) of a parameterized problem consists of the “classical” problem
instance I and an integer k being the parameter [13,21]. A parameterized prob-
lem is called fixed-parameter tractable (FPT) if there is an algorithm solving it
in f(k) · |I|O(1) time, for an arbitrary computable function f only depending on
the parameter k. In difference to that, algorithms running in |I|f(k) time prove
membership in the classXP (clearly, FPT ⊆ XP). One can show that a parame-
terized problem L is (presumably) not fixed-parameter tractable by devising a
parameterized reduction from a W[1]-hard or a W[2]-hard problem toL. A para-
meterized reduction from a parameterized problem L to another parameterized
problem L′ is a function that, given an instance (I, k), computes in f(k) · |I|O(1)

time an instance (I ′, k′) such that k′ ≤ g(k) and (I, k) ∈ L ⇔ (I ′, k′) ∈ L′.
A parameterized problem which is NP-hard even for instances for which the
parameter is a constant is said to be Para-NP-hard.

2.2 Graph Theory and Contractions

Given a graph G = (V,E), which may have self-loops and parallel edges, we
denote the degree of a vertex v ∈ V by deg(v), and define Bd = {v ∈ V :
deg(v) = d} as the set of vertices of degree d (called the block of degree d). As
usual, we define the degree of a vertex v with x neighbors and y self-loops to be
x+2y (in particular, we count a self-loop twice). We define a path-star of degree
d and length l to be the graph consisting of one center vertex, connected to d
disjoint paths of length l each (indeed, this is a spider graph with equal-length

262 S. Hartung and N. Talmon

legs). A caterpillar-tree is a tree for which removing the leaves and their incident
edges leaves a path graph (formally, a path graph is a tree with no vertices of
degree larger than 2).

Given an undirected graph G = (V,E) and two adjacent vertices, u and v,
contracting the vertices u and v (usually referred to as contracting the edge
e = {u, v}), means removing u and v from V , replacing them by one new vertex
(denoted by u⊕v), adjacent to exactly those vertices that were adjacent to u, to
v, or to both. The resulting graph is denoted by G/e. In general, given a set of
edges E1 ⊆ E, we denote by G/E1 the graph obtained from G after contracting
all the edges in E1. A graph G = (V,E) is said to be l-contractible to a graph
G′ = (V ′, E′) if there is a set of edges E1 ⊆ E of size at most l, such that
G/E1 = G′. It follows that G = (V,E) is contractible to G′ = (V ′, E′) if and
only if there exists a witness structure V = V1∪. . .∪V|V ′|, where each Vi is called
a witness set, such that for each Vi (for 1 ≤ i ≤ |V ′|) the subgraph ofG induced
by Vi is connected and for each pair of witness sets, Vi and Vj (1 ≤ i �= j ≤ |V ′|)
we have that {Vi, Vj} ∈ E′ ⇐⇒ ∃vi ∈ Vi, vj ∈ Vj : {vi, vj} ∈ E (indeed, the
vertices in each part Vi are contracted to form a single vertex). We denote by
deg(Vi) the resulting degree of the vertex corresponding to the contraction of
the witness set and we call graph G′ the witness graph.

We also define the closely related operation of vertex contraction, which is
defined similarly to edge contraction, with the only difference that it is allowed
to contract non-adjacent vertices as well (indeed, the vertices of a witness set
from a vertex-contracted graph are not assumed to be connected). It is clear that
a graph contraction operation can sometimes introduce self-loops and parallel
edges. We define three variants of edge contractions and vertex contractions,
differing by how self-loops and parallel edges are treated:

• Simple Contraction: Both self-loops and parallel edges are removed.
• Hybrid Contraction: Only self-loops are removed.
• Non-Simple Contraction: Nothing is removed.

For the Hybrid and Non-Simple variants, we allow the input graph to be non-
simple. See Fig. 1 for some examples.

2.3 Main Problem

Given an undirected input graph G, we are interested in k-anonymizing it by per-
forming at most c edge contractions (where a graph is said to be k-anonymous if
every vertex degree in it occurs at least k times; equivalently, if ∀i ∈ [n] : |Bi| =
0 ∨ |Bi| ≥ k).

Degree Anonymization by Graph Contractions
Input: An undirected graph G = (V,E), a budget c ∈ N, and an
anonymization level k ∈ N.
Question: Can G be made k-anonymous by performing at most c con-
tractions?

The Complexity of Degree Anonymization by Graph Contractions 263

v1 v2

v3

v4

v5

(a)

v1 v2

v3

v4

v5

(b)

v3

v4

v5v1 ⊕ v2

(c)

v2

v3

v4

v1 ⊕ v5

(d)

Fig. 1. Example of 2-anonymizing an input graph. The input graph is depicted in (a),
an optimal 2-anonymized graph with respect to edge addition is depicted in (b), an
optimal 2-anonymized graph with respect to simple edge contraction or hybrid edge
contraction is depicted in (c) (by contracting v1 and v2), and an optimal 2-anonymized
graph with respect to non-simple vertex contraction is depicted in (d) (by contracting
v1 and v5). Notice that there is no solution with respect to non-simple edge contraction,
and the solution with respect to edge addition is less efficient than the solutions by
edge contractions.

When the contraction operation is a simple (hybrid, non-simple) edge contraction
operation, we denote the corresponding degree anonymization problem by SEC-A
(respectively: HEC-A, NEC-A). Similarly, when the contraction operation is a
simple (hybrid, non-simple) vertex contraction operation, we denote the corre-
sponding degree anonymization problem by SVC-A (respectively:HVC-A,
NVC-A).

Interestingly, it is not always possible to anonymize a graph by performing
only graph contractions. As an example, consider n-anonymizing a complete
graph which has one missing edge: as the input graph is not n-anonymized,
at least one edge needs to be contracted, but then the number of remaining
vertices will be strictly less than n, thus the graph cannot be further made
n-anonymous. This phenomenon stands in contrast to anonymization by edge
additions, as completing any graph, by adding all missing edges to it, makes
it n-anonymous. However, some graphs can be anonymized more efficiently by
using edge contractions rather than edge additions (see Fig. 1 for an example).

2.4 Overview

We study the parameterized complexity of degree anonymization by graph con-
tractions, considering the solution size c, the anonymity level k, and the max-
imum degree Δ, as the most natural parameters. From the variants defined in
Sect. 2.3, we consider SEC-A and HEC-A as these are the most common (see, for

264 S. Hartung and N. Talmon

example, Diestel [12, Chapter 1.7] and Wolle and Bodlaender [23]), and we con-
sider NVC-A as it is equivalent to the underlying number problem (as defined
in Sect. 3). We state some important points of our work:

• Contrary to degree anonymization by some other graph operations (for exam-
ple, by edge addition), here even the underlying number problem (NVC-A)
is NP-hard. Moreover, SEC-A, HEC-A, and NVC-A, are all NP-hard even
on caterpillar trees.

• Parameterizing by either the solution size c, the maximum degree Δ, or the
anonymity level k, does not help for tractability. However, combining Δ with
c does help for tractability.

• Combining the maximum degree Δ with the anonymity level k helps for
tractability for some variants of the problem, and we could show evidence
suggesting intractability for some other variants.

Table 1 gives an overview of our results. Due to space constraints, some of the
proofs are omitted. Please refer to the full version (available at http://fpt.akt.
tu-berlin.de/talmon/abcfv.pdf).

Table 1. Parameterized complexity landscape of Degree Anonymization by Graph
Contractions. Rows and columns correspond to parameters, such that each cell cor-
responds to the combination of the corresponding parameters.

solution size c anonymization level k maximum degree Δ

c
W-ha (Th. 3) W-ha (Th. 3)

FPT (Th. 5)
XP (Obs. 1) XP (Obs. 1)

k Para-NP-ha (Th. 3) FPTb (Cor. 1)

Δ Para-NP-ha (Th. 4)

a Only for SEC-A and HEC-A.
b Only for NVC-A.

3 NP-hardness

We begin by considering NVC-A which, surprisingly, reduces to a number prob-
lem formed by the degrees in the input graph. This holds because (1) any two
vertices can be contracted, and (2) the degree sequence of the resulting graph
after performing a contraction only depends on the original degrees of the con-
tracted vertices (indeed, as self-loops and parallel edges are not removed). It
follows that NVC-A is equivalent to the following number problem. Therein, a
multiset of integers is k-anonymous if each integer in it occurs at least k times.

http://fpt.akt.tu-berlin.de/talmon/abcfv.pdf
http://fpt.akt.tu-berlin.de/talmon/abcfv.pdf

The Complexity of Degree Anonymization by Graph Contractions 265

An equivalent formulation of NVC-A
Input: A set V = {d1, . . . , dn} of n integers such that ∀i : 0 ≤ di ≤ Δ
and two integers k, c ∈ N.
Question: Is there a partition V =

⋃
j∈[z] Vj (where Vj1 ∩ Vj2 = ∅ for

1 ≤ j1 �= j2 ≤ z) such that the multiset S = {∑di∈Vj
di : j ∈ [z]} is

k-anonymous and
∑

j∈[z](|Vj | − 1) ≤ c?

Informally, the above number problem is in the heart of the graph anonymization
problem (for this reason we call it the underlying number problem). Interestingly,
contrary to the situation for other operations (such as edge addition), here the
underlying number problem is intractable (for formal correctness, we define the
input of this number problem to be in unary; this does not cause problems, as
we next prove a reduction from a strongly NP-hard problem).

Theorem 1. NVC-A is NP-hard even on caterpillar trees.

Proof. We provide a reduction from the following strongly NP-hard problem [14]:

Strictly Three Partition
Input: A set of numbers S = {a1, . . . , a3m} such that

∑
ai∈S ai = mB

and ∀i ∈ [3m] : B/4 < ai < B/2.
Question: Are there m disjoint sets S1, . . . , Sm, each of size 3, such that
∀j ∈ [m] :

∑
ai∈Sj

ai = B?

Given an instance for Strictly Three Partition, we create an instance for
NVC-A. Intuitively, the idea is to create a set of 3m vertices, such that each
number ai would have a corresponding vertex whose degree is proportional to ai.
Then, we will add a distinguished vertex with degree proportional to B, making
sure that the only way of anonymizing the block containing this distinguished
vertex is by contracting m triplets of vertices corresponding to triplets of num-
bers, each of sum exactly m. Details follow.

We first scale the input numbers. Specifically, we define a′
i = ai · mB and

B′ = B ·mB. We set k := m+1 and c := 2m. Then, for each number a′
i, we create

a node va′
i
and connect it to a′

i paths of length c+1 (consisting of new vertices),
such that deg(va′

i
) = a′

i holds for each i. We add a path-star of degree B′ and
length c+1 (indeed, G is a forest; we can easily transform it into a caterpillar tree
by placing all va′

i
’s on a path together with the path-star, adjusting the number

of additional new vertices connected to each va′
i

accordingly). The correctness
proof is omitted, due to space constraints. Please refer to the full version. ��
We can show NP-hardness on caterpillar trees also for SEC-A and HEC-A.

Theorem 2. SEC-A and HEC-A are both NP-hard even on caterpillar trees.

Proof. We provide a reduction from the following strongly NP-hard problem [14]:

Numerical Matching with Target Sums
Input: Three sets of integers: A = {a1, . . . , an}, B = {b1, . . . , bn}, and
C = {c1, . . . , cn}.
Question: Can the elements of A and B be paired such that, for each
i ∈ [n], ci is the sum of the ith pair?

266 S. Hartung and N. Talmon

The variant where all 3n input integers are distinct is also known to be NP-hard
in the strong-sense [19]. Without loss of generality, we assume all input integers to
be greater than 3. Given an instance for Numerical Matching with Target
Sums, we create an instance for SEC-A and HEC-A. Intuitively, the idea is to
create a set of k − 1 vertices for each ci and a pair of vertices for each pair of ai

and bj , such that the only possibility of anonymizing the vertices corresponding
to the ci’s is to contract the correct pairs of ai’s and bj ’s. Details follow.

We set k := n − 1 and c := n. We construct some c-gadgets: for each ci,
we create k − 1 path-stars of degree ci − 2 and length c + 1. We construct some
ab-gadgets: for each pair of integers, i ∈ [n] and j ∈ [n], we create two path-stars,
one of degree ai and another of degree bj , both of length c+1, and connect them
by an edge (indeed, the construction as such is a forest; we can transform it into a
caterpillar tree by carefully connecting each pair of disconnected components by
a path of length c+1). The correctness proof is omitted due to space constraints.
Please refer to the full version. ��

4 Non-structural Parameters

Following the hardness results from the last section, we continue our quest for
tractability by considering non-structural parameters. We observe first that for
constant solution size c we can simply enumerate all possible solutions, therefore
concluding the following.

Observation 1. Degree Anonymization by Graph Contractions is XP
with respect to c.

However, there is no hope for fixed-parameter tractability with respect to this
parameter, as even combining it with the anonymity level k does not help for
tractability.

Theorem 3. Both SEC-A and HEC-A are NP-hard and W-hard with respect
to c, even if k = 2.

Proof. For SEC-A, we provide a reduction from the following W[2]-hard prob-
lem, parameterized by the solution size [13]:

Set Cover
Input: Sets S1, . . . , Sm containing elements from x1, . . . , xn and h ∈ N.
Question: Is there a set of at most h sets covering all elements?

Given an instance for Set Cover, we create an instance for SEC-A. We set
k := 2 and c := h. For each xi we create a new vertex x′

i. For each Sj we
create two new vertices, S′

j and S′′
j , and connect them by an edge. Each S′

j and
S′′

j (corresponding to a set Sj) are connected to all x′
i’s which correspond to

elements xi ∈ Sj . We add several paths of length c + 1 to each x′
i such that the

degree of each x′
i will be f(i) = i(c + 1) + 2. Similarly, we add several paths of

length c + 1 to each S′
j and S′′

j , such that the degree of each S′
j and S′′

j will be

The Complexity of Degree Anonymization by Graph Contractions 267

f(n+1). For every i ∈ [n] and z ∈ [h], we add a path-star of degree f(i)− z and
length c + 1. We add k path-stars of degree f(n + 1) and length c + 1 in order
to anonymize the vertices corresponding to the sets.

Given a set cover, it is possible to anonymize the input graph, by contracting
together each pair of S′

j and S′′
j which correspond to a set Sj in the cover: the

degrees of each x′
i will decrease by the number of sets covering it, therefore the

graph would be anonymized. For the other direction, notice that each xi needs
to be anonymized, therefore, by a simple exchange argument, a solution must
correspond to a set cover.

For HEC-A, we provide a reduction from the following W[1]-hard problem,
parameterized by the solution size h (an h-coloring is a function color : V → [h],
assigning to each vertex v a color color(v) ∈ [h]) [13]:

Multi-Colored Clique
Input: An undirected graph G = (V,E) and an h-coloring of its vertices.
Question: Is there a size-h clique which includes vertices of all h colors?

Cai [6] showed that Multi-Colored Clique remains hard even on regular
graphs. We assume, without loss of generality, that there are no monochromatic
edges. Given an instance for Multi-Colored Clique, we create an instance
for HEC-A. We define the following function, f(i) = 2i · 2

(
h
2

)
, whose domain is

the set of colors (that is, i ∈ [h]).
We set k := 2 and c := h−1. For every vertex v, we add (f(color(v))−deg(v))

paths of length c + 1 such that the degree of each vertex colored in color i ∈ [h]
is f(i). We construct k+1 copies of this modified graph. We add k−1 path-stars
of degree ((

∑
i∈[h] f(i)) − 2

(
h
2

)
) and length c + 1.

Given a multi-colored clique of size h, it is possible to contract the vertices
of the clique into one vertex: the degree of the new vertex will be equal to the
degree of the k−1 path-stars, resulting in an anonymized graph, due to the k+1
copies.

For the other direction, notice that contracting edges of a path-star does
not change its degree. Moreover, as there are no monochromatic edges, we can
only contract edges of different colors. Due to the way we defined f(i), the only
possible way of reaching the degree of the path-star (that is,

∑
i∈[h] f(i) − 2

(
h
2

)
)

is by contracting a multi-colored clique, because all colors are needed for the
first part (that is,

∑
i∈[h] f(i)) and all edges between the colors are needed for

the second part (that is, 2
(
h
2

)
). ��

5 Structural Parameters

We go on to consider the maximum degree Δ of the input graph, as a nat-
ural structural parameter. For example, the edge addition variant admits an
FPT-algorithm and even a polynomial kernel with respect toΔ [17]. In contrast,
we next show that for our case (that is, for edge contractions), parameter Δ
alone does not help for tractability. The reductions, from Vertex Cover on

268 S. Hartung and N. Talmon

Cubic Graphs (for SEC-A) and Partition into Triangles (for HEC-A),
are omitted due to space constraints.

Theorem 4. Both SEC-A and HEC-A are Para-NP-hard with respect to Δ.

Contrary to the above hardness results, combining the maximum degree with the
solution size does help for tractability, for all variants of Degree Anonymiza-
tion by Graph Contractions.

Theorem 5. Degree Anonymization by Graph Contractions is FPT
with respect to (Δ, c).

Proof. Consider a yes-instance for Degree Anonymization by Graph Con-
tractions. There exists a set E′ of at most c edges such that contracting them
would result in a k-anonymous graph. Consider the set V ′ of vertices, containing
all the endpoints of the edges in E′, including also all of their neighbors (for-
mally, V ′ := N [{u, v|{u, v} ∈ E′}], where N [U] denotes the closed neighborhood
of U ⊆ V). As each edge has two endpoints and each vertex has at most Δ
neighbors, it follows that |V ′| ≤ 2c(Δ + 1). Consider the set V ′′ containing all
vertices whose degree will be changed as a result of contracting the edges in E′.
Roughly speaking, as it holds that V ′′ ⊆ V ′, it is enough to find the subgraph
induced by V ′.

To this end, we consider all possible graphs H containing at most 2c(Δ + 1)
vertices. For each such graph H, we consider all possible sets C of at most c edges
to be contracted. For each such pair of a graph H and a set C, we compute the
degree changes in H incurred by contracting the edges in C. If these degree
changes make the graph k-anonymous, then we try to find this graph H as a
subgraph in G. This step can be performed by using, for example, the result of
Cai et al. [7]. ��
We consider now the combined parameter Δ and k. The situation here is more
involved. First, for NVC-A, we can bound c in these parameters by a function
dependent only on Δ and k.

Lemma 1. For any yes-instance (V, k, c) of NVC-A it holds that (V, k, c′), with
c′ = k · (Δ · Δ!)Δ, is also a yes-instance.

Proof. Let (V, k, c) be a yes-instance of NVC-A and denote by copt ≤ c the
smallest number such that (V, k, copt) is still a yes-instance. Moreover, let the
partition P = {V1, . . . , Vi} of V be a solution which corresponds to copt (that
is, P is the witness structure corresponding to a solution of (V, k, copt)). In the
following we define two operations onP with the property that applying each
of them, when it is applicable, results in another solution with less than copt
contractions. Since we show that at least one of them is applicable in case copt >
k · (Δ · Δ!)Δ, this proves Lemma 1.

To formally describe our operations, we associate with each witness set Vi

a witness vector �vi ∈ NΔ with �vi[j] being equal to the number of vertices of
degree j in the witness set Vi. The degree of a witness set is defined to be the

The Complexity of Degree Anonymization by Graph Contractions 269

sum of the degrees of the vertices in the witness set (that is, the degree of the
vertex corresponding to contracting all of the vertices in the witness set).

Operation 1: This operation is applicable to P if there are at least k witness
sets in P , all of equal degree, such that in each of them, sayVi, there is at least
one j with �vi[j] ≥ Δ!. If there exists such a collection of witness sets, then
consider such a collection P which is maximal with respect to containment, and
do the following. For each witness setVi in this collection, let j be an integer with
�vi[j] ≥ Δ!. remove (Δ!/j)-many vertices of degree j from Vi (notice that Δ!/j is
always an integer), and form a new witness set containing these vertices.

We introduced at least k new witness sets, all of them of degree exactly Δ!,
and we decreased the degree of each of the initial witness sets by the same num-
ber Δ!. Since there are at least k of such witness sets, it follows that performing
this operation results in a partition ofV that is still a solution for (V, k, copt),
while requiring less edge contractions than P requires.

Operation 2: This operation is applicable to P if there is a collection of at least k
witness sets in P , such that the witness sets in the collection all have the same
witness vector, and this witness vector is of hamming weight of at least 2 (that
is, these are not singletons). If such a collection exists, then choose an arbitrary
integer j occurring in this witness vector. Then, for each witness set Vi in this
collection, remove one vertex of degree j from Vi and form a new witness set
containing only this vertex of degree j (that is, form a new singleton witness set).

Since there are at least k witness sets where a vertex of the same degree j is
cut out from them, the resulting partition is a solution forV which requires less
edge contractions than P requires.

Applicability: It remains to argue that in case of copt > k·(Δ·Δ!)Δ, at least one
of the two operations described above is applicable. First, assume that P contains
a witness set Vi of degree at least (Δ ·Δ!). Then, since P is k-anonymous, it holds
that there are at least k witness sets of the same degree, which is at least (Δ ·Δ!).
It follows that each of these witness sets must contain at least one integer j which
occurs at least Δ! times in it. Thus, Operation 1 is applicable.

So, let us assume now that the degree of each witness set in P is at most
(Δ ·Δ!). Then, we have that there are at most (Δ ·Δ!)Δ different witness vectors,
none of them with degree greater or equal to (Δ · Δ!). Hence, if P contains at
least k · (Δ ·Δ!)Δ witness sets of size at least two, then Operation 2 is applicable.

Finally, a solution for which copt > k · (Δ · Δ!)Δ edge contractions have been
performed either contains a set of size at least (Δ · Δ!) or it contains at least

k · (Δ · Δ!)Δ

(Δ · Δ!)
= k · (Δ · Δ!)Δ

witness sets of size at least two. ��
Using the above Lemma, we can show the following.

270 S. Hartung and N. Talmon

Corollary 1. NVC-A is FPT with respect to (Δ, k).

Proof. For a given instance (V, k, c) of NVC-A we decide the instance (V, k,
min{c, k·(Δ·Δ!)Δ}) using the FPT-algorithm with respect to (Δ, c) (Theorem 5).
By Lemma 1, these two instances are equivalent and the corresponding running
time proves fixed-parameter tractability with respect to (Δ, k). ��

6 Conclusion

We investigated the (parameterized) complexity of degree anonymization by
several variants of graph contractions. We showed that most of the variants are
intractable even on very restricted graph classes (indeed, even the underlying
number problem) and we could identify some fixed-parameter tractable cases.

For further research, one could consider related graph operations, such as
structure contraction (contracting a whole subgraph at unit cost), edge twisting
(see [22, Chapter 3]), and vertex dissolution (see [22, Chapter 3]).

Bazgan and Nichterlein [2] studied graph anonymization with edge/vertex
deletions from the viewpoint of approximation algorithms, while mainly obtain-
ing inapproximability result for the variant of minimizing the number of edit
operations. One way of extending this line of research would be to study whether
their results transfer to edge contractions and to look at different notions of
approximations. For example, partially anonymizing an input graph (only some
of the vertices are anonymized) or almost anonymizing an input graph (for each
vertex, there are at least k − 1 other vertices of roughly the same degree).

References

1. Asano, T., Hirata, T.: Edge-contraction problems. J. Comput. Syst. Sci. 26(2),
197–208 (1983)

2. Bazgan, C., Nichterlein, A.: Parameterized inapproximability of degree anonymiza-
tion. In: Cygan, M., Heggernes, P. (eds.) IPEC 2014. LNCS, vol. 8894, pp. 75–84.
Springer, Heidelberg (2014)

3. Belmonte, R., Golovach, P.A., Hof, P., Paulusma, D.: Parameterized complexity of
three edge contraction problems with degree constraints. Acta Informatica 51(7),
473–497 (2014)

4. Bredereck, R., Hartung, S., Nichterlein, A., Woeginger, G.J.: The complexity of
finding a large subgraph under anonymity constraints. In: Cai, L., Cheng, S.-W.,
Lam, T.-W. (eds.) Algorithms and Computation. LNCS, vol. 8283, pp. 152–162.
Springer, Heidelberg (2013)

5. Bredereck, R., Froese, V., Hartung, S., Nichterlein, A., Niedermeier, R., Talmon, N.:
The complexity of degree anonymization by vertex addition. In: Gu, Q., Hell, P.,
Yang, B. (eds.) AAIM 2014. LNCS, vol. 8546, pp. 44–55. Springer, Heidelberg (2014)

6. Cai, L.: Parameterized complexity of cardinality constrained optimization prob-
lems. Comput. J. 51(1), 102–121 (2008)

7. Cai, L., Chan, S.M., Chan, S.O.: Random separation: a new method for solv-
ing fixed-cardinality optimization problems. In: Bodlaender, H.L., Langston, M.A.
(eds.) IWPEC 2006. LNCS, vol. 4169, pp. 239–250. Springer, Heidelberg (2006)

The Complexity of Degree Anonymization by Graph Contractions 271

8. Casas-Roma, J., Herrera-Joancomart́ı, J., Torra, V.: An algorithm for k-degree
anonymity on large networks. In: Proceedings of ASONAM 2013, pp. 671–675.
ACM Press (2013)

9. Chester, S., Kapron, B.M., Ramesh, G., Srivastava, G., Thomo, A., Venkatesh,
S.: Why Waldo befriended the dummy? k-anonymization of social networks with
pseudo-nodes. Soc. Netw. Analys. Min. 3(3), 381–399 (2013)

10. Clarkson, K.L., Liu, K., Terzi, E.: Towards identity anonymization in social net-
works. In: Yu, P.S., Han, J., Faloutsos, C. (eds.) Link Mining: Models, Algorithms,
and Applications, pp. 359–385. Springer, New York (2010)

11. Delling, D., Görke, R., Schulz, C., Wagner, D.: Orca reduction and contraction
graph clustering. In: Goldberg, A.V., Zhou, Y. (eds.) AAIM 2009. LNCS, vol. 5564,
pp. 152–165. Springer, Heidelberg (2009)

12. Diestel, R.: Graph Theory. Graduate Texts in Mathematics, vol. 173, 4th edn.
Springer, Heidelberg (2010)

13. Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity.
Springer, Heidelberg (2013)

14. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. Freeman, New York (1979)

15. Golovach, P.A., van ’t Hof, P., Paulusma, D.: Obtaining planarity by contracting
few edges. In: Rovan, B., Sassone, V., Widmayer, P. (eds.) MFCS 2012. LNCS,
vol. 7464, pp. 455–466. Springer, Heidelberg (2012)

16. Guillemot, S., Marx, D.: A faster FPT algorithm for bipartite contraction. Inf.
Process. Lett. 113(22), 906–912 (2013)

17. Hartung, S., Nichterlein, A., Niedermeier, R., Suchý, O.: A refined complex-
ity analysis of degree anonymization in graphs. In: Fomin, F.V., Freivalds, R.,
Kwiatkowska, M., Peleg, D. (eds.) ICALP 2013, Part II. LNCS, vol. 7966,
pp. 594–606. Springer, Heidelberg (2013)

18. Heggernes, P., Hof, P., Lévêque, B., Lokshtanov, D., Paul, C.: Contracting graphs
to paths and trees. Algorithmica 68(1), 109–132 (2014)

19. Hulett, H., Will, T.G., Woeginger, G.J.: Multigraph realizations of degree
sequences: maximization is easy, minimization is hard. Oper. Res. Lett. 36(5),
594–596 (2008)

20. Lu, X., Song, Y., Bressan, S.: Fast identity anonymization on graphs. In: Liddle,
S.W., Schewe, K.-D., Tjoa, A.M., Zhou, X. (eds.) DEXA 2012, Part I. LNCS,
vol. 7446, pp. 281–295. Springer, Heidelberg (2012)

21. Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford University
Press, Oxford (2006)

22. Oxley, J.G.: Matroid theory, vol. 3. Oxford University Press, Oxford (2006)
23. Wolle, T., Bodlaender, H.L.: A note on edge contraction. Technical report, Tech-

nical Report UU-CS-2004 (2004)

An Improved Exact Algorithm for Maximum
Induced Matching

Mingyu Xiao1(B) and Huan Tan2

1 School of Computer Science and Engineering,
University of Electronic Science and Technology of China, Chengdu, China

myxiao@gmail.com
2 Library, University of Electronic Science and Technology of China,

Chengdu, China
huan1222@gmail.com

Abstract. This paper studies exact algorithms for the Maximum Ind-
uced Matching problem, in which an n-vertex graph is given and we
are asked to find a set of maximum number of edges in the graph such
that no pair of edges in the set have a common endpoint or are adjacent
by another edge. This problem has applications in many different areas.
We will give several structural properties of the problem and present an
O∗(1.4391n)-time algorithm, which improves previous exact algorithms
for this problem.

Keywords: Exact algorithms · Graph algorithms · Maximum induced
matching

1 Introduction

Recently, there has been an increasing interest in designing fast and nontrivial
exact exponential algorithms for basic NP-hard graph problems. Many inter-
esting exact algorithms have been developed for Maximum Independent Set
(MIS) [6,20], 3-Coloring [1], Feedback Vertex Set [5,18], Dominating
Set [6,17], Edge dominating Set [16,19] and many others. Maximum Inde-
pendent Set is undoubtedly one of the most important problems in exact
algorithms. There is a long list of contributions to the running-time bounds of
exact algorithms and it can be solved in O∗(1.1996n) time and polynomial space
now [20]. Maximum Independent Set is to find a maximum induced regular
graph of degree 0. Gupta, Raman and Saurabh [10] studied exact algorithms
for finding maximum induced regular graphs of degree r and presented an algo-
rithm with running time O∗((2 − ξ)n), where 0 < ξ < 1 depends on r. The
special case that r = 1, i.e., the problem to find a maximum induced regular
graph of degree 1, is known as Maximum Induced Matching (MIM). In this
paper, we will study structural properties and exact algorithms for Maximum
Induced Matching.

M. Xiao—Supported by NFSC of China under the Grant 61370071.

c© Springer International Publishing Switzerland 2015
R. Jain et al. (Eds.): TAMC 2015, LNCS 9076, pp. 272–283, 2015.
DOI: 10.1007/978-3-319-17142-5 24

An Improved Exact Algorithm for Maximum Induced Matching 273

To find an induced matching (i.e., an induced regular graph of degree 1) of
maximum size in a graph has received much attention because of the growing
number of applications. Stockmeyer and Vazirani [15] showed that MIM has
applications in the risk-free marriage problem – to find a maximum number of
married couples such that each married person is compatible with no married
person other than his/her spouse. Golumbic and Lewenstein [9] demonstrated
some applications of induced matchings in secure communication channels, VLSI
design and network flow problems. Golumbic and Laskar [8] gave the relations
between the size of a maximum induced matching and the irredundancy number
of a graph. MIM is also a subtask of the important problem of finding a strong
edge coloring (i.e., a proper coloring of the edges such that no edge is adjacent
to two edges of the same color) using a small number of colors (see [4,14] for
more information).

It is unsurprised that MIM has been extensively studied on computational
and algorithmic aspects. Although MIM is polynomial-time solvable in trees [9],
chordal graphs [2], circular arc graphs [8], interval graphs [9] and many others,
it has been known to be NP-hard in bipartite graphs with maximum degree 4
for more than 30 years [15]. In fact, it remains NP-hard even in planar 3-regular
graphs or in planar bipartite graphs with degree-2 vertices in one part and
degree-3 vertices in the other part [4,11]. Kobler and Rotics [12] also showed
the NP-hardness of MIM in Hamiltonian graphs, claw-free graphs, chair-free
graphs, line graphs and regular graphs.

MIM is hard to approximate or design parameterized algorithms. It is APX-
complete even in d-regular graphs for each fixed d ≥ 3 [4]. There is also an
approximation algorithm with asymptotic performance ratio d − 1 for MIM in
d-regular graphs [4]. In general graphs, MIM cannot be approximated within a
factor of n1/2−ε in polynomial time for any ε > 0 unless P = NP [14]. Take
the size k of the induced matching as the parameter. To decide whether there
is an induced matching of size at most k is W[1]-hard even in bipartite graphs,
but fixed-parameter tractable in planar graphs, line graphs, graphs of bounded
treewidth and graphs of girth at least 6 [13].

In terms of exact algorithms for MIM, Gupta, Raman and Saurabh [10] first
gave an algorithm with running-time bound O∗(1.6957n) and then improved it
to O∗(1.4786n). We also note another similar algorithm with the same running-
time bound O∗(1.4786n) [3]. In this paper, we will improve the running-time
bound to O∗(1.4391n) by presenting several new structural properties of MIM.
Similar to the O∗(1.4786n)-time algorithms in [10] and [3], our algorithm also
uses fast algorithms for Maximum Independent Set as a subalgorithm to
deal with graphs with maximum degree 4. Different from previous algorithms,
the bottleneck cases in our algorithm are not to deal with vertices of degree
≥ 5 in the graph but to solve MIM in graphs with maximum degree 4. So with
the results in this paper, faster algorithms for Maximum Independent Set
or faster algorithms for MIM in graphs with maximum degree 4 directly imply
faster algorithms for MIM in general graphs.

Proofs of some lemmas are omitted in this version due to space limitation.

274 M. Xiao and H. Tan

2 Preliminaries

In this paper, a graph always means a simple and undirected graph. Let G =
(V,E) be a graph with n = |V | vertices and m = |E| edges. We may simply use
v to denote the set {v} of a singleton. The vertex set and edge set of a graph G
are denoted by V (G) and E(G), respectively. The set of endpoints of edges in
an edge set E′ is also denoted by V (E′). For a subgraph (resp., a vertex subset)
X, the subgraph induced by V (X) (resp., X) is simply denoted by G[X], and
G[V −V (X)] (resp., G[V −X]) is also written as G−X. For a vertex subset X, let
N(X) denote the neighbors of X, i.e., the vertices y ∈ V −X adjacent to a vertex
x ∈ X, and denote N(X)∪X by N [X]. Let N2(v) denote the set of vertices with
distance exactly 2 from v. The degree of a vertex v in a graph G, denoted by
d(v), is defined to be the number of neighbors of v in G. A vertex v is dominated
by a neighbor u of it if v is adjacent to all neighbors of u. A vertex u ∈ N2(v) is
called a satellite of v if there is a neighbor p of v such that N [p] − N [v] = {u}.
The vertex p is also called the parent of the satellite u at v. A vertex subset V ′ is
called an independent set of a graph if there is no edge between any two vertices
in V ′. An edge subset E′ is called an induced matching of a graph if the induced
graph G[V (E′)] has maximum degree 1. We will use α(G) to denote the size of
a maximum induced matching in G. For dominated vertices and satellites, we
will use the following bounds on the number of vertices adjacent to an edge.

Lemma 1. In a graph without dominated vertices, for any edge vu it holds

|N [{v, u}]| ≥ 2 + max{d(v), d(u)}.

Lemma 2. If a vertex v is not dominated by another vertex and has no satel-
lites, then for any edge vu incident on v it holds

|N [{v, u}]| ≥ 3 + d(v).

2.1 Relations to MAXIMUM INDEPENDENT SET

Maximum Induced Matching is to find an induced regular subgraph of degree
1 and Maximum Independent Set is to find an induced regular subgraph of
degree 0. We show some relations between them.

There is a simple reduction from Maximum Independent Set to Maximum
Induced Matching. For a graph G, we construct a new graph G′ from G by
adding a new degree-1 vertex v′ for each vertex v in G such that v′ is adjacent
to v. It is not hard to prove that the graph G has an independent set of size k
if and only if the graph G′ has an induced matching of size k.

There is also a method to reduce an instance of Maximum Induced Match-
ing to an instance of Maximum Independent Set. This technique seems to
be firstly introduced by Cameron [2] and has been used in several previous algo-
rithms to solve Maximum Induced Matching in some special graph classes.
For a graph G = (V,E), let L(G) denote the line graph of G and G<i> denote the
graph with vertex set V and edge set {vjvk|vj , vk ∈ V & the distance between
vj and vk in G is at most i}. It is not hard to observe that

An Improved Exact Algorithm for Maximum Induced Matching 275

Proposition 1. [2] A graph G has an induced matching of size k if and only if
L(G)<2> has an independent set of size k.

Note that the number of vertices in L(G)<2> equals to the number of edges in G.
When the graph G has not many edges, we can use fast algorithms for MIS to
solve MIM based on the above proposition. But when the graph is a dense graph,
this method will not be effective. We will turn to branch-and-search algorithms.

2.2 Branch-and-Search Algorithms

We use the branch-and-search technique in our algorithm. We may search a
maximum induced matching of a given graph by recursively branching on the
current graph into several smaller graphs until the problem becomes polynomi-
ally solvable or satisfies some properties. To evaluate the size of the search tree
generated by this paradigm, we need to evaluate all branches in the algorithm.
In our algorithm, we will simply select the number n of vertices in the graph
as the measure. Let C(n) denote the maximum number of leaves in the search
tree generated by the algorithm for any graph with at most n vertices. When we
branch on a graph G with l branches such that in the i-th branch the number
of vertices decreases by at least ai, we obtain a recurrence

C(n) ≤ C(n − a1) + C(n − a2) + · · · + C(n − al).

The largest root of the function f(x) = 1 − ∑l
i=1 x−ai is called the branching

factor of the recurrence. Let γ be the maximum branching factor among all
branching factors in the algorithm. The size of the search tree that represents
the branching process of the algorithm applied to an input n-vertex graph is given
by O(γn). More details about the analysis and how to solve recurrences can be
found in the monograph [7]. Note that for two recurrences C(n) ≤ ∑l

i=1 C(n−ai)
and C(n) ≤ ∑l

i=1 C(n − bi) with ai ≥ bi (i = 1, 2, . . . , l), the branch factor of
the first recurrence is not greater than this of the second one. This property will
be frequently used in our analysis.

We can design branch-and-search algorithms for MIM mainly because of the
following fact:

Fact 1. Let G be a graph, if a vertex v is not in a maximum induced matching,
then α(G) = α(G − v); if there is a maximum induced matching containing an
edge vu, then α(G) = α(G − N [{v, u}]) + 1.

3 The Main Idea to Design Algorithms

By Proposition 1, we can reduce MIM to MIS and use fast algorithms for MIS
to solve MIM when the number of edges in the input graph is not too large.
When the maximum degree of the graph is at most 4, the number of edges in
the graph is at most two times of the number of vertices. For this case, we can
solve MIM in O∗(1.19962n) = O∗(1.4391n) time by using the O∗(1.1996n)-time
algorithm for MIS in [20]. When the graph has vertices of degree ≥ 5, we will
use some branching rules to search a solution. There is a simple branching rule:

276 M. Xiao and H. Tan

(B1) Branching on a vertex v of degree d is to generate d+1 branches by either
excluding v f rom the maximum induced matching or including each edge
incident on v to the maximum induced matching.

By Fact 1, we know that

α(G) = max{α(G − v), max
ui∈N(v)

(α(G − N [{v, ui}]) + 1)}.

Record that we use C(n) to denote the number of leaves in the search tree
generated by our algorithm when runs on a graph with at most n vertices. Let
d = d(v) be the degree of v. In the branch where edge vui is included to the
maximum induced matching in the above branching operation, at least d + 1
vertices in N [v] ⊆ N [{v, ui}] are deleted. We can get the following recurrence

C(n) ≤ C(n − 1) + d · C(n − (d + 1)). (1)

Note that it is possible N [v] = N [{v, ui}], since ui may be adjacent to vertices
only in N [v]. We use Rule (B1) only to deal with vertices of degree ≥ 5. Then
we have d ≥ 5 in (1). In fact, (1) has a largest branching factor when d = 5.
For this case, we get C(n) ≤ C(n − 1) + 5C(n − 6) and the branching factor is
1.5532.

To improve the above result in (1), we can first use effective operations to
deal with dominated vertices and then branch on vertices v of degree ≥ 5 with
Rule (B1) only when each neighbor u of v is adjacent to at least one vertex in
V − N [v]. By Lemma 1, we can improve (1) to

C(n) ≤ C(n − 1) + d · C(n − (d + 2)). (2)

For the worst case that d = 5, the branching factor is 1.4786. This is the idea
how the algorithms in [10] and [3] get the running time bound of O∗(1.4786n).

In this paper, we investigate more structural properties of MIM and deal
with satellites of vertices of degree ≥ 5 in effective ways. Then we can guarantee
that each neighbor ui of v is adjacent to at least two vertices in V − N [v] when
branching on a vertex v of degree ≥ 5 with Rule (B1). By Lemma 2 we can
improve (1) to

C(n) ≤ C(n − 1) + d · C(n − (d + 3)). (3)

For the worst case that d = 5, the branching factor is 1.4231. The new running
time bound will be O∗(1.4391n) to solve the problem in graphs with degree at
most 4 by using algorithms for MIS in [20].

In the next section, we first give some structural properties that will be used
to design our algorithm.

4 Structural Properties

Lemma 3. Let G′ be an induced subgraph of a graph G. If G has a maximum
induced matching S such that S ⊆ E(G′), then any maximum induced matching
of G′ is also a maximum induced matching of G.

An Improved Exact Algorithm for Maximum Induced Matching 277

The property in Lemma 3 is called the induced subgraph property of MIM. The
induced subgraph property will be used to prove some lemmas.

Lemma 4. If a graph G has two nonadjacent vertices v and u such that N(v) =
N(u), then α(G) = α(G′), where G′ = G − {v}.
By the induced subgraph property in Lemma 3, to prove this lemma we only
need to show that there is a maximum induced matching S of G such that
S ⊆ E(G′). More details can be found in the full version of this paper.

An edge vu is called pendent if one endpoint v of it is a degree-1 vertex and the
neighbor set of the other endpoint u induces two cliques, i.e., G[N(u)] consists
of two cliques. Note that one clique in G[N(u)] contains only one vertex v. We
have the following lemma to deal with pendent edges.

Lemma 5. If a graph has a pendent edge vu, then there is a maximum induced
matching containing vu.

Note that if a degree-1 vertex is adjacent to a degree-2 vertex or adjacent to a
degree-3 vertex contained in a triangle, then the edge incident on the degree-1
vertex is a pendent edge.

A path of 5 vertices v1v2v3v4v5 is called a chain if the three inner vertices
v2, v3 and v4 are degree-2 vertices and there is no edge between v1 and v5. We
can use the following lemma to deal with chains.

Lemma 6. Let G be a graph having a chain v1v2v3v4v5, and G∗ be the graph
obtained from G by deleting {v2, v3, v4} and adding a new edge between v1 and
v5. It holds that

α(G) = α(G∗) + 1.

The operation to construct G∗ from G in the above lemma is called chain reduc-
tion. We can apply chain reductions to eliminate all chains in the graph in poly-
nomial time. Note that v1v2v3v4v5 is not a chain when v1 and v5 are adjacent
and the chain reduction is not applicable on it for this case.

Recall that for two vertices v and u, if N [v] ⊇ N [u], we say that v is domi-
nated by u. We also say that a vertex v is strongly dominated by two neighbors
u1 and u2 if v is dominated by u1 and u2, respectively, and there is an edge
between u1 and u2. A dominated vertex is weakly dominated if it is not strongly
dominated by two neighbors. We use the following properties in our algorithms.

Lemma 7. If a graph G contains a strongly dominated vertex v, then α(G) =
α(G′), where G′ = G − {v}.
Lemma 8. Let v be a vertex dominated by u. If there is a maximum induced
matching S such that v ∈ V (S), then there is a maximum induced matching S′

containing edge vu.

Proof. If vu′ ∈ S but u′ �= u, then we obtain another maximum induced match-
ing S′ = (S − {vu′}) ∪ {vu} containing vu. �

278 M. Xiao and H. Tan

Lemma 8 has been used to design a branching rule to deal with dominated
vertices in previous algorithms [10]. In our algorithms, we will use it to design a
branching rule for some weakly dominated vertices.

(B2) Branching on a weakly dominated vertex v means to generate two instances
by deleting v from the graph or include an edge vu to the maximum induced
matching, where u dominates v.

Note that if v is weakly dominated by a degree-1 vertex u, then in the branch
where v is removed, the vertex u becomes a degree-0 vertex, which can be
removed directly. So for this case, we simply assume that v and u are removed
in the first branch.

We also consider another special kind of weakly dominated vertices, which
are dominated by a degree-2 vertex in a triangle.

Lemma 9. If there is a degree-2 vertex v in a triangle vu1u2, then there is a
maximum induced matching either containing one edge in {vu1, vu2} or con-
taining no edge incident on a vertex in {v, u1, u2}. Especially, if at least one
vertex in {u1, u2} is of degree ≤ 3, then there is a maximum induced matching
containing one edge in {vu1, vu2}.
Based on Lemma 9, we can design a good branching rule to deal with degree-2
vertices in triangles.

(B3) Branching on a degree-2 vertex v with two adjacent neighbors u1 and u2

means
(i) to generate three subbranches by either removing {v, u1, u2} from the

graph or including each of vu1 and vu2 to the maximum induced matching
if both of u1 and u2 are of degree ≥ 4;

(ii) to generate two subbranches by including either vu1 or vu2 to the maxi-
mum induced matching otherwise.

5 The Algorithm and Its Analysis

We will use MIM(G) to denote our algorithm that is to compute the size of a
maximum induced matching in the input graph G. For the purpose of presen-
tation, our algorithm returns the size of a maximum induced matching instead
of the maximum induced matching itself. Our algorithm MIM(G) is a recursive
algorithm that consists of 12 steps, each of which except the last step will call
the algorithm itself. We will analyze the correctness and running time of each
step after describing it.

In the first four steps, we just reduce the graph without branching. Step 5 will
branch on weakly dominated vertices with a branching factor at most 1.3803.
After Step 5, the graph has no dominated vertices. Step 6 will branch on a graph
having a degree-2 vertex with two degree-2 neighbors (the case not included in
chains) with a branching factor at most 1.2168 and Step 7 will branch on a graph
with two adjacent degree-2 vertices with a branching factor at most 1.4313. After

An Improved Exact Algorithm for Maximum Induced Matching 279

Step 7, each degree-2 vertex in the graph is adjacent to two vertices of degree ≥ 3.
In Step 8, the algorithm will branch with a branching factor at most 1.4227 if
there is degree-3 vertex in a triangle. Step 9 will deal with degree-2 vertices with
at least a neighbor of degree ≥ 4 by branching with a branching factor at most
1.4231. After all the above nine steps, the algorithm can branch on satellites of
vertices of degree ≥ 5 with a branching factor at most 1.4383. Finally, we can
branch vertices of degree ≥ 5 with (3) in Step 11 and use fast algorithms for
MIS to solve the problem in Step 12 when the graph has maximum degree 4.

Step 1 (Similar vertex pairs). If the graph has two nonadjacent vertices v
and u such that N(v) = N(u), return MIM(G − {v}).

Step 2 (Pendent edges). If there is a pendent edge vu, return MIM(G −
N [{v, u}]) + 1.

Step 3 (Chains). If there is a chain v1v2v3v4v5, then construct G∗ from the
current graph by deleting v2, v3 and v4 and adding an edge between v1 and v5,
and return MIM(G∗) + 1.

Step 4 (Strong dominated vertices). If there is a strong dominated vertex
v, return MIM(G − {v}).

The correctness of the first four steps are based on Lemmas 4, 5, 6 and 7,
respectively. Note that each application of the first four steps will decrease the
number of vertices in the graph by at least 1.

Step 5 (Weakly dominated vertices). If there is a vertex v weakly dominated
by u in the graph G, branch on v with Rule (B2) by returning

max{MIM(G − {v}),MIM(G − N [{v, u}]) + 1}.

The correctness of this step is based on Lemma 8. Next we analyze the
recurrence generated by this branch. Let d = d(v) be the degree of v. We have
that d ≥ 3, otherwise there would be a pendent edge or a strong dominated
vertex. In the branch where vu is included to the maximum induced matching,
the d + 1 vertices in N [v] are eliminated. This branch leads to the following
recurrence

C(n) ≤ C(n − 1) + C(n − (d + 1)) with d ≥ 3. (4)

For the worst case that d = 3, the recurrence has a maximum branching factor
of 1.3803. If u is a degree-1 vertex, in the first branch of removing v the vertex
u become a degree-0 vertex and will also be removed from the graph directly.
For this case, we can get the recurrence C(n) ≤ C(n − 2) + C(n − (d + 1)) with
d ≥ 3 indeed. After Step 5, the graph has no dominated vertex.

Step 6 (Pentagons with three adjacent degree-2 vertices). If there is a
5-cycle v1v2v3v4v5 such that v2, v3 and v4 are degree-2 vertices, then we branch
into three branches by including each edge in {v1v5, v2v3, v3v4} to the maximum
induced matching, i.e., return

1 + max{MIM(G − N [{v1, v5}]),MIM(G − N [{v2, v3}]),MIM(G − N [{v3, v4}])}.

280 M. Xiao and H. Tan

The correctness of this step is based on the following observation. There are
only three cases that either v1v5 is in the maximum induced matching or at
least one of v1 and v5 is not in the maximum induced matching. When v1 (resp.,
v5) is not in a maximum induced matching, we delete it and v2v3 (resp., v3v4)
becomes a pendent edge and can be included to the maximum induced matching
directly. Then it is equivalent to including v2v3 (resp., v3v4) to the maximum
induced matching.

Next we analyze the recurrence in this step. When v1v5 is included to the
maximum induced matching, at least the 5 vertices in the 5-cycle are eliminated.
When v2v3 (resp., v3v4) is included to the maximum induced matching, at least 4
vertices {v1, v2, v3, v4} (resp., {v2, v3, v4, v5}) are eliminated. We get a recurrence

C(n) ≤ C(n − 5) + 2C(n − 4), (5)

which is a branching factor of 1.2168.
Note that after Step 7 there is no degree-2 vertex adjacent to two degree-2

vertices, otherwise either Step 3 or Step 6 can be applied in the graph.

Step 7 (Pairs of adjacent degree-2 vertices). If there is a path v1v2v3v4
such that v2 and v3 are degree-2 vertices and v1 and v4 are of degree ≥ 3, then
we first branch on v1 with Rule (B1) and in the subbranch where v1 is deleted
we include the pendent edge v2v3 to the maximum induced matching directly,
i.e., return

max{1 + max
u∈N(v1)

{MIM(G − N [{v1, u}])}, 1 + MIM(G − {v1, v2, v3, v4})}.

Let d = d(v1) be the degree of v1. There is no dominated vertex in this step. By
Lemma 1, when v1u is included to the maximum induced matching, at least d+2
vertices are removed. So we get a recurrence C(n) ≤ dC(n − (d + 2)) + C(n − 4)
with d ≥ 3. For the worst case that d = 3, the recurrence has a maximum
branching factor of 1.3413.

Step 8 (Degree-3 vertices in triangles). If there is a degree-3 vertex v with
three neighbors u1, u2 and u3 such that u2 and u3 are adjacent, then we first
branch on u1 with Rule (B1) and in the subbranch where u1 is deleted we branch
on the degree-2 vertex v in the triangle vu2u3 with Rule (B3), i.e., return

max{1 + max
u′∈N(u1)

{MIM(G − N [{u1, u
′}])},MIM(G − {v, u1, u2, u3}),

1 + MIM(G − N [{v, u2}]), 1 + MIM(G − N [{v, u3}])}
if both of u2 and u3 are of degree ≥ 4, and

1+max{ max
u′∈N(u1)

{MIM(G−N [{u1, u
′}])},MIM(G−N [{v, u2}]),MIM(G−N [{v, u3}])}

if at least one of u2 and u3 is of degree ≤ 3.
Let d ≥ 2 be the degree of u1. By Lemma 1, when u1u

′ is included to the
maximum induced matching, at least d + 2 vertices are removed. When vui

An Improved Exact Algorithm for Maximum Induced Matching 281

(i ∈ {2, 3}) is included to the maximum induced matching, at least 5 vertices
are removed if the degree of ui is 3 and at least 6 vertices are removed if the
degree of ui is at least 4. So we get recurrences

C(n) ≤ dC(n − (d + 2)) + C(n − 4) + 2C(n − 6) with d ≥ 2, or

C(n) ≤ dC(n − (d + 2)) + 2C(n − 5) with d ≥ 2.

When d = 3, the above two recurrences have the maximum branching factors of
1.4227 and 1.3798, respectively.

Step 9 (Degree-2 vertices adjacent to a vertex of degree ≥ 4). If there is
a degree-2 vertex v adjacent to a vertex u1 of degree ≥ 4, then the other neighbor
u2 of v is a vertex of degree ≥ 3, since there are no two adjacent degree-2 vertices
now. For this case, we first branch on u1 with Rule (B1) and in the subbranch
where u1 is deleted we branch on the dominated vertex u2 with Rule (B2), i.e.,
return

max{1 + max
u′∈N(u1)

{MIM(G−N [{u1, u
′}])},MIM(G− {u1, v, u2}), 1 +MIM(G−N [{v, u2}])}.

Let d1 ≥ 4 and d2 ≥ 3 be the degree of u1 and u2, respectively. By Lemma 1, at
least d1 +2 vertices are removed when u1u

′ is included to the maximum induced
matching, and at least d2 + 2 vertices are removed when vu2 is included to the
maximum induced matching. We get a recurrence

C(n) ≤ d1C(n − (d1 + 2)) + C(n − 3) + C(n − (d2 + 2)) with d1 ≥ 4, d2 ≥ 3.

For the worst case that d1 = 4 and d2 = 3, the recurrence has a maximum
branching factor of 1.4231.

Step 10 (Satellites of vertices of degree ≥ 5). Assume that there is a
satellite v of a vertex u with d(u) ≥ 5. Case (i): If u is also a satellite of v, we
branch on u with Rule (B1) and in the subbranch where u is deleted we branch
on the dominated vertex v with Rule (B2), i.e., return

max{1 + max
u′∈N(u)

{MIM(G−N [{u, u′}])},MIM(G− {u, v}), 1 + MIM(G−N [{v, p′}])},

where p′ dominates v in G − {u}.
Case (ii): If u is not a satellite of v, we branch on v with Rule (B1) and in

the subbranch where v is deleted we branch on the dominated vertex u with
Rule (B2), i.e., return

max{1 + max
v′∈N(v)

{MIM(G−N [{v, v′}])},MIM(G− {u, v}), 1 + MIM(G−N [{u, p′}])},

where p′ dominates u in G − {v}.
Let d1 and d2 be the degrees of u and v, respectively. We have that d1 ≥ 5

by the assumption. We can see that d2 ≥ 3. If v is a degree-2 vertex then v
would be adjacent to a vertex of degree ≥ 4 or a degree-3 vertex in a triangle or
a degree-2 vertex and then at least one of previous steps could be applied. We
also let p denote the parent of v at u. Then p ∈ N(v) ∩ N(u).

282 M. Xiao and H. Tan

First, we analyze Case (i). By Lemma 1, at least d1 + 2 vertices are removed
when an edge uu′ incident on u is included to the maximum induced matching,
and at least d2 + 2 vertices are removed when vp is included to the maximum
induced matching. We get a recurrence C(n) ≤ d1C(n − (d1 + 2)) + C(n − 2) +
C(n − (1 + d2 + 2)) with d1 ≥ 5 and d2 ≥ 3. When d1 = 5 and d2 = 3, the
recurrence has a maximum branching factor of 1.4348.

Next, we consider Case (ii). By Lemma 1, at least d1+2 vertices are removed
when an edge vv′ incident on v is included to the maximum induced matching,
and at least d1 + 2 vertices are removed when up is included to the maximum
induced matching. Furthermore, we prove that at least d1+3 vertices are removed
when vp is included to the maximum induced matching. Since u is not a satellite
of v, we know that there is a neighbor u∗ �= u of p not adjacent to v. Then there
are at least d1 + 3 vertices in N [v] ∪ {u, u∗} ⊆ N [{v, p}]. We get a recurrence
C(n) ≤ (d2−1)C(n−(d2+2))+C(n−(d2+3))+C(n−2)+C(n−(d1+2)) with
d1 ≥ 5 and d2 ≥ 3. When d1 = 5 and d2 = 3, the recurrence has a maximum
branching factor of 1.4383.

Step 11 (Vertices of maximum degree ≥ 5). If there is a vertex v of degree
≥ 5, then branch on it with Rule (B1), i.e., return

max{1 + max
u∈N(v)

{MIM(G − N [{v, u}])},MIM(G − v)}.

Since in this step there is no dominated vertex and each vertices of degree ≥ 5
has no satellites, this branch leads to (3), i.e., C(n) ≤ C(n−1)+d ·C(n−(d+3))
with d = d(v) ≥ 5. For the worst case that d = 5, the branching factor is 1.4231.

Step 12 (Graphs with maximum degree at most 4). Construct the graph
L(G)<2> in Proposition 1, use the O∗(1.1996n)-time algorithm for MIS [20] to
compute the size θ of a maximum independent set in L(G)<2>, and return θ.

Since the graph in this step is of maximum degree 4, we know that there are
at most 2n′ vertices in L(G)<2>, where n′ is the number of vertices in the graph
G in this step. This step can be executed in O∗(1.4391n′

) time. We can regard
that the algorithm always branch with branching factor 1.4391 in this step.

Among all the steps above, Step 12 has the worst performance. In the worst
case, for example the input graph is a graph with maximum degree 4, the algo-
rithm may only excuse Step 12 and the running time will be O∗(1.4391n). Note
that the algorithm for MIS in [20] uses only polynomial space and each of the
first eleven steps uses polynomial space. Then our algorithm uses only polyno-
mial space.

Theorem 2. A maximum induced matching in a graph with n vertices can be
computed in O∗(1.4391n) time and polynomial space.

References

1. Beigel, R., Eppstein, D.: 3-coloring in time o(1.3289n). J. Algorithms 54(2), 168–
204 (2005)

2. Cameron, K.: Induced matchings. Discret. Appl. Math. 24, 97–102 (1989)

An Improved Exact Algorithm for Maximum Induced Matching 283

3. Chang, M.-S., Hung, L.-J., Miau, C.-A.: An O∗(1.4786n)-time algorithm for the
maximum induced matching problem. In: Chang, R.-S. et al. (eds.): Advances in
Intelligent Systems and Applications, SIST 20, pp. 49–58 (2013)

4. Duckwortha, W., Manloveb, D.F., Zito, M.: On the approximability of the maxi-
mum induced matching problem. J. Discret. Algorithms 3(1), 79–91 (2005)

5. Fomin, F.V., Gaspers, S., Pyatkin, A.V., Razgon, I.: On the minimum feedback
vertex set problem: exact and enumeration algorithms. Algorithmica 52(2), 293–
307 (2008)

6. Fomin, F.V., Grandoni, F., Kratsch, D.: A measure & conquer approach for the
analysis of exact algorithms. J. ACM 56(5), 1–32 (2009)

7. Fomin, F.V., Kratsch, D.: Exact Exponential Algorithms. Springer, New York
(2010)

8. Golumbic, M.C., Laskar, R.: Irredundancy in circular arc graphs. Discret. Appl.
Math. 44, 79–89 (1993)

9. Golumbic, M.C., Lewenstein, M.: New results on induced matchings. Discret. Appl.
Math. 101, 157–165 (2000)

10. Gupta, S., Raman, V., Saurabh, S.: Maximum r-regular induced subgraph problem:
fast exponential algorithms and combinatorial bounds. SIAM J. Discret. Math.
26(4), 1758–1780 (2012)

11. Ko, C.W., Shepherd, F.B.: Bipartite domination and simultaneous matroid covers.
SIAM J. Discret. Math. 16(4), 517–523 (2003)

12. Kobler, D., Rotics, U.: Finding maximum induced matchings in subclasses of
clawfree and p5-free graphs, and in graphs with matching and induced matching
of equal maximum size. Algorithmica 37, 327–346 (2003)

13. Mosera, H., Sikdar, S.: The parameterized complexity of the induced matching
problem. Discret. Appl. Math. 157, 715–727 (2009)

14. Orlovicha, Y., Finkeb, G., Gordonc, V., Zverovichd, I.: Approximability results for
the maximum and minimum maximal induced matching problems. Discret. Optim.
5, 584–593 (2008)

15. Stockmeyer, L.J., Vazirani, V.V.: NP-completeness of some generalizations of the
maximum matching problem. Inf. Process. Lett. 15(1), 14–19 (1982)

16. Van Rooij, J.M., Bodlaender, H.L.: Exact algorithms for edge domination. Algo-
rithmica 64(4), 535–563 (2012)

17. Van Rooij, J.M., Bodlaender, H.L.: Exact algorithms for dominating set. Discret.
Appl. Math. 159(17), 2147–2164 (2011)

18. Xiao, M., Nagamochi, H.: An improved exact algorithm for undirected feedback
vertex set. J.Comb. Optim. (2014). doi:10.1007/s10878-014-9737-x

19. Xiao, M., Nagamochi, A.: A refined exact algorithm for edge dominating. Theoret.
Comput. Sci. 560, 207–216 (2014)

20. Xiao, M., Nagamochi, H.: Exact algorithms for maximum independent set. In:
Cai, L., Cheng, S.-W., Lam, T.-W. (eds.) Algorithms and Computation. LNCS,
vol. 8283, pp. 328–338. Springer, Heidelberg (2013)

http://dx.doi.org/10.1007/s10878-014-9737-x

Completion of the Mixed Unit Interval
Graphs Hierarchy

Alexandre Talon1(B) and Jan Kratochvil2

1 ENS Lyon, Lyon, France
alexandre.talon@ens-lyon.fr

2 Department of Applied Mathematics, Faculty of Mathematics and Physics,
Charles University, Praha, Czech Republic

honza@kam.mff.cuni.cz

Abstract. We describe the missing class of the hierarchy of mixed unit
interval graphs, generated by the intersection graphs of closed, open and
one type of half-open intervals of the real line. This class lies strictly
between unit interval graphs and mixed unit interval graphs. We give
a complete characterization of this new class, as well as a polynomial
time algorithm to recognize graphs from this class and to produce a
corresponding interval representation if one exists.

Keywords: Unit interval graph · Mixed unit interval graph · Proper
interval graph · Intersection graph

1 Introduction

A graph is an interval graph if one can associate with each of its vertices an
interval of the real line such that two vertices are adjacent if and only if the
corresponding intervals intersect. A well-studied subclass of the class of interval
graphs is the one of proper interval graphs where it is required that no inter-
val properly contains another one. This class coincides with the class of unit
interval graphs where all intervals have length one [6].

However, in this description no particular attention is paid to the types
of intervals we use: are they open, closed, or semi-closed? Dourado and al.
proved in [1] that this is of no importance as far as interval graphs are con-
cerned. This is no longer the case, though, for unit interval graphs: deciding
which types of intervals are allowed to represent the vertices of a graph is cru-
cial. This fact was notably studied in [1–3,5–7]. In these papers one can find
results about the classes of graphs we can get depending on the types of unit
intervals we allow for their representations. In particular it is shown that if all
intervals in a representation are required to be of the same type (all closed, all
open, all left-closed-right-open, or all left-open-right-closed), one gets the same

Supported by CE-ITI project GACR P202/12/G061.
A full version can be found at http://arxiv.org/abs/1412.0540.

c© Springer International Publishing Switzerland 2015
R. Jain et al. (Eds.): TAMC 2015, LNCS 9076, pp. 284–296, 2015.
DOI: 10.1007/978-3-319-17142-5 25

http://arxiv.org/abs/1412.0540

Completion of the Mixed Unit Interval Graphs Hierarchy 285

class of unit interval graphs which is a proper subclass of mixed unit interval
graphs, i.e., graphs obtained if no restriction – apart from the unit length – on
the intervals is imposed. Recently, Joos [3] gave a characterization of mixed unit
interval graphs by an infinite class of forbidden induced subgraphs, and Shuchat
et al. [7] complemented it by a polynomial-time recognition algorithm. In [4],
Le and Rautenbach take a different approach and study the graphs which are
representable by intervals beginning at integer positions.

The aim of this paper is to complete this hierarchy of classes. We consider
all subsets of the four types of unit intervals, show that several of them lead to
the classic unit interval graphs (where all intervals are closed), recall the previ-
ously studied and characterized class determined by open and closed unit inter-
vals, and then show that – with respect to this parametrization – there exists
exactly one other proper subclass of the class of mixed unit interval graphs. We
characterize this class by an infinite list of forbidden induced subgraphs, give a
polynomial-time algorithm to check whether a graph belongs to this class, as well
as an algorithm to produce an appropriate interval representation of any graph of
this class.

2 Preliminaries

2.1 First Definitions and Notations

All the graphs we consider here are finite, undirected, and simple. Let G be a
graph. We denote the vertex and edge set of G by V (G) and E(G), respectively,
or V and E if there is no ambiguity. We say that two vertices u and v are
neighbors, adjacent, or connected if {u, v} ∈ E(G). For a vertex v ∈ V (G), let
the neighborhood NG(v) of v be the set of all vertices which are adjacent to v
and let the closed neighborhood NG[v] be defined by NG(v) ∪ {v}. Two distinct
vertices u and v are twins (in G) if NG[u] = NG[v]. If G contains no twins, then
G is twin-free. If C is a set of vertices, then we denote by G[C] the subgraph of
G induced by C. Let M be a set of graphs. We say that G is M-free if for every
H ∈ M, the graph H is not an induced subgraph of G. Let N be a family of
intervals. We say that a graph G has an N -representation if there is a function
I : V (G) → N such that for any two distinct vertices u and v, there is an edge
joining u and v if and only if I(u) ∩ I(v) �= ∅. We say that G is an N -graph if
there is an N -representation of G. Let x, y ∈ R. We define the closed interval
[x, y] = {z ∈ R : x ≤ z ≤ y}, the open interval (x, y) = {z ∈ R : x < z < y}, the
open-closed interval (x, y] = {z ∈ R : x < z ≤ y} and the closed-open interval
[x, y) = {z ∈ R : x ≤ z < y}. We will draw the different types of intervals as
follows (Fig. 1):

Fig. 1. The closed, open, closed-open, and open-closed intervals.

286 A. Talon and J. Kratochvil

For an interval A, let �(A) = inf({x ∈ R | x ∈ A}) and r(A) = sup({x ∈ R |
x ∈ A}). If I is an interval representation of G and v ∈ V (G), then we write �(v)
and r(v) instead of �(I(v)) and r(I(v)), if there are no ambiguities.

Let U++ be the set of all closed unit intervals, U−− be the set of all open
unit intervals, U−+ be the set of all open-closed unit intervals, U+− be the set
of all closed-open unit intervals, and U be the set of all unit intervals. We also
define U± = U++ ∪U−− and UX =

⋃
x∈{X}

Ux for every {X} ⊂ P({++,−−,−+,

+−,±}). For instance, U = U±,+−,−+. In this terminology, U-graphs are mixed
unit interval graphs. Let us call a U±,+−-graph an almost-mixed unit interval
graph.

2.2 Previous Results

First we can see that if a graph contains twins, then they can be assigned the
same intervals, so in what follows we will mostly consider twin-free graphs. We
will denote by GX the set of all twin-free UX -graphs. We begin by recalling the
results about classifying the unit interval classes and characterizing them.

Theorem 1 (Roberts [6]). A graph G is a U++-graph if and only if it is a
K1,3-free interval graph.

Theorem 2 (Dourado et al., Frankl and Maehara [1,2]). The classes of
U++-graphs, U−−-graphs, U+−-graphs, U−+-graphs, and U+−,−+-graphs are the
same.

Theorem 3 (Rautenbach and Szwarcfiter [5]). A graph G is in G± if and
only if G is a {K1,4,K

∗
1,4,K

∗
2,3,K

∗
2,4}-free interval graph (Fig. 2).

K1,4 K∗
1,4 K∗

2,3 K∗
2,4

Fig. 2. Forbidden induced subgraphs for twin-free U±-graphs

It is easy to see that these three classes of interval graphs are not the same.
Indeed, K1,3 is a U±-graph but not a U++-graph. Also, the graph of Fig. 3 is a
U-graph but not a U±-graph. A characterization of twin-free U-graphs was
recently given by Joos (the classes R, S, S ′, and T of forbidden induced sub-
graphs are depicted in Figs. 4, 5, 6 and 7):

Fig. 3. A graph, which is a U-graph, but not a U±-graph

Completion of the Mixed Unit Interval Graphs Hierarchy 287

Fig. 4. The class R

Fig. 5. The class S

Fig. 6. The class S ′

Fig. 7. The class T

Theorem 4 (Joos [3]). A graph G is in G if and only if G is a {K∗
2,3} ∪ R ∪

S ∪ S ′ ∪ T -free interval graph.

To summarize, so far we have the following inclusions, all being proper:
{(∅, ∅)} � {U++,U−−,U+−,U−+, or U+−,−+}-graphs � U±-graphs �

U-graphs.
However so far we have seen only 9 different sets of unit interval types, out

of the 16 which exist. In the next section we will complete the picture.

3 Our Results

In this part we take care of each of the 7 missing subsets for the unit interval
representations of graphs. We first consider the subsets which lead to the class
of U++-graph, and then introduce the new one.

3.1 Completion of the Unit Interval Graphs Hierarchy

Theorem 5. The classes of U++-graphs, U++,+−-graphs, U++,−+-graphs,
U−−,+−-graphs, U−−,−+-graphs, U++,+−,−+ and U−−,+−,−+ are the same.

288 A. Talon and J. Kratochvil

Proof. The proof is straightforward and appears in the full version. �

We now deal with the remaining two subsets of intervals: U±,+− and U±,−+

which lead, by symmetry, to the same class of graphs. We first show that this is a
proper new class. In order to do so, we introduce a lemma about the essence of the
U±,+− class: the existence of an induced K∗

1,4. We call a representation injective
if no two vertices are represented by the same interval. Every representation of
a twin-free graph is injective.

Lemma 1. Up to symmetry, there are only two injective U-representations of
K∗

1,4, shown in Fig. 8 (the leftmost interval is either open-closed or closed).

Fig. 8. The unique representations of K∗
1,4

Proof. Let us consider I a U-representation of K∗
1,4. First from the proof of

Theorem 5, we can see that every K1,3 must be represented this way (Fig. 9) :

Fig. 9. The unique injective U-representation of K1,3

Let us denote the two leaves of K∗
1,4 by a and b, the vertex of maximum

degree by c, and the other two nodes by d and e. We have the following claws:
cabd and cabe. Since c is connected to all the other vertices, I(c) must be the
middle closed interval. Then I(a) and I(b) must only intersect I(c), so one must
be the middle open interval, and the other one for instance the leftmost one.

Once this is done, the positions of the intervals representing d and e are
uniquely determined, but the two intervals cannot be equal since I is injec-
tive. They must also intersect I(c), and must not intersect I(b), so they are
uniquely determined as in Fig. 8. Note that the left end of the leftmost interval is
free. �

Theorem 6. The following strict inclusions hold: U±-graphs � U±,+−-graphs
� U-graphs.

Proof. The inclusions are immediate, we only need to show that they are strict.
The proof can be found in the full version. �

To conclude this part, we now have a complete picture of the different sub-
classes of the mixed unit interval class. In the schematic figure below, UX

� UY

Completion of the Mixed Unit Interval Graphs Hierarchy 289

is a shorthand notation for UX -graphs � UY -graphs. Sets separated by commas
define the same classes of graphs (Fig. 10).

∅

�

U++, U−−, U+−, U−+, U+−,−+, U++,+−,
U++,−+, U−−,+−, U−−,−+, U++,+−,−+, U−−,+−,−+

�

U±

�
U±,+−, U±,−+

�

U

Fig. 10. Classification of the mixed unit interval graphs subclasses

3.2 Characterization of the New Class

In this part, we characterize the new G±,+− class by a list of minimal forbid-
den induced subgraphs. We begin by finding this list through a reasoning by
inference, and afterwards check that all these graphs are indeed forbidden, and
minimal.

We begin by a very important lemma for what follows. It guarantees that
any graph belonging to G \ G±,+− has a “good” interval representation in which
almost each half-closed interval is surrounded by a certain neighborhood.

Lemma 2. Let G ∈ G \ G± and I a U-representation of it. Then one of the
following statements is true:

(i) There exists a U-representation I′ of G with fewer open-closed (resp. closed-
open) intervals

(ii) For every vertex u′ (resp. d′) such that I(u′) (resp. I(d′)) is an open-closed
(resp. closed-open) interval there exist vertices u, v, w, x, y (resp. a, b, c, d, e)
in the same connected component as u′ (resp. d′) such that their intervals
are the following:

Proof. We prove the lemma only for the case with u′, the other one being com-
pletely symmetrical. Also, up to translation, we will assume that �(u) = 0. We
assume that (i) is false, and show that in this case (ii) is true. We first set u = u′.

290 A. Talon and J. Kratochvil

The overall idea of the proof is that, if one of the mentioned intervals is
missing, then we can shift some intervals and close the left end of I(u) so as to
get a representation I′, equivalent to I, with the same number of closed-open
intervals but with one fewer open-closed intervals, hence a contradiction. To do
so, we first define

ε = min({1} ∪ {|x − y| | x, y ∈
⋃

t∈V (G)

{l(t), r(t)} ∧ x �= y}).

This quantity equals the smallest non-zero distance between any two distinct
ends of any two (non necessarily different) intervals, or 1 if such a distance does
not exist.

Remark 1. Let 0 < ε′ < ε. If a vertex x is such that I(x) has an open left (resp.
right) end, we can either shift it by ε′ (resp. −ε′) or shift any other set of intervals
by −ε′ (resp. ε′) without loosing any intersection involving I(x).

Definition 1. We say that the interval of a vertex x is left-free (resp. right-free)
if there is no other vertex t such that r(t) = �(x) (resp. �(t) = r(x)).

Remark 2. Let 0 < ε′ < ε and I(x) be a left-free (resp. right-free) interval.
Closing its left (resp. right) end does not create any intersection.

Definition 2. We say that a vertex x has an integer interval if �(x) ∈ Z.

Claim 1. If I(u) is open-closed, then there exists some closed I(v) at the same
position.

Proof (of Claim 1). We assume for contradiction that there is no such I(v). We
would like to close the left end of I(u). To do so, let us define I′ the following way:

– I′(t) = I(t) − ε/2 if �(I(t)) ∈ Z, �(I(t)) ≤ 0 and t �= u
– I′(u) = [0, 1] (now it is closed)
– I′(t) = I(t) otherwise

We now show that I and I′ are equivalent.
By the definition of ε, we modify no intersection involving any non-integer

interval. Since we do not shift the intervals beginning from 1 on, and we shift all
integer intervals J such that �(J) ≤ 0 by the same quantity, the only intersections
we can change involve I(u) or an interval at the same position as I(u). Since I is
injective and there is no [0, 1] interval, any interval sharing the position of I(u)
must have an open right end. Therefore it had no intersection at 1, and shifting
it does not remove any intersection. The same applies for I(u): since its left end
is open, it does not loose any intersection. Moreover, since we shifted all other
integer intervals, we can close it without creating any new intersection.

This shows the equivalence between I and I′, so (i) is true, which is a contra-
diction. �

Completion of the Mixed Unit Interval Graphs Hierarchy 291

Claim 2. If I(u) is open-closed, then there exists some closed I(w) like in (i).

Claim 3. If I(u′) is open-closed, then there exist, in the same connected com-
ponent as u′, some vertices u, v, w and y with intervals like in (i) and such that
there is no open-closed interval at the same position.

The proofs of Claims 2 and 3 are similar to the one of Claim 1 and can be found,
as well as the proof of the existence of I(z), in the full version. �

Now we look for all possible forbidden induced minimal subgraphs of any
G ∈ G \ G±,+−. Let us take such a graph G and consider I a U-representation of
G with minimum number of open-closed intervals, and subject to this condition,
minimum number of closed-open intervals.

First, since G /∈ G±,+−, there exist one open-closed interval I(u) and one
closed-open interval I(d). By Lemma 2, they come with some neighbors a, b, c, e, v,
w, y, z represented by intervals exactly like in the lemma.

Remark 3. We may assume that I(u) and I(d) are connected through a succession
of intervals.

Proof. We proceed by contradiction. If every such pair (u, d) was composed of
“disconnected” vertices, then by symmetrizing all components containing (only)
open-closed intervals we would get an interval representation I′ with intervals in
U±,+−. �

So from now on, we assume that u and d are in a same component. We also
assume, translating the whole interval representation if necessary, that the inter-
vals for a, b, c, d, e are fixed and that �(a) = 0. We now explore all the possible
values for �(u):

– �(u) < −2: This leads (see the full version for details) to class A:

Fig. 11. The class A and its interval representation

– �(u) ≥ 3: This leads (see the full version for details) to classes B, B′ and B′′:

292 A. Talon and J. Kratochvil

Fig. 12. The classes B, B′, B′′ and their interval representations

– �(u) ∈ Z and −2 ≤ �(u) < 3:
• �(u) = −2 (Fig. 13):

Fig. 13. The graph C−2

• �(u) = −1 (Fig. 14):

Fig. 14. The graph C−1

Completion of the Mixed Unit Interval Graphs Hierarchy 293

• �(u) = 0 (Fig. 15):

Fig. 15. The graph C0

• �(u) = 1 (Fig. 16):

Fig. 16. The graph C1

• �(u) = 2 (Fig. 17):

Fig. 17. The graph C2

– −2 < �(u) < 3 and �(u) /∈ Z:
• −2 < �(u) < −1 (Fig. 18):

Fig. 18. The graph C′
−2

294 A. Talon and J. Kratochvil

• −1 < �(u) < 0 (Fig. 19):

Fig. 19. The graph C′
−1

• 0 < �(u) < 1 (Fig. 20):

Fig. 20. The graph C′
0

• 1 < �(u) < 2 (Fig. 21):

Fig. 21. The graph C′
1

• 2 < �(u) < 3 (Fig. 22):

Fig. 22. The graph C′
2

Completion of the Mixed Unit Interval Graphs Hierarchy 295

We have to add the graphs which are forbidden even for G. From the class
R we only need R0 and R1 since the other ones are supergraphs of graphs in B.
We need all the graphs in S and S ′. We only have to add the graphs T0,j for
j ≥ 0 and T1,1 because the Ti,j with i > 0 or j > 0 are supergraphs of graphs in
B and because for every i, j ≥ 0, Ti,j = Tj,i.

Now we check that all these graphs are indeed forbidden. Since G±,+− ⊂ G,
we only need to check the classes we introduce in this article: A, B, B′, B′′, C
and C′.

First, we justify the fact that the classes B, B′ and B′′ are forbidden. This is
because they contain the following pattern:

Indeed, Lemma 1 specifies that the two copies of K∗
1,4 must be represented,

up to symmetry, as in Fig. 8. Since there is a path between e and v, which is
vertex-disjoint from the vertices of the copies of K∗

1,4, the two interval represen-
tations must be symmetrical, hence the need for the two types of semi-closed
intervals. For the class A, we have the following pattern:

Here again we must have two occurrences of Fig. 8, but here vertices a and z
are connected by a path which is vertex-disjoint from the two K∗

1,4, so these two
occurrences must be symmetrical, hence the fact that these graphs are forbidden.

For the graphs C ′
−2, C ′

−1, C ′
0, C ′

1 and C ′
2 the point is that we have two

vertex-disjoint K∗
1,4 (decba and uvwyz). By Lemma 1 we know that they can be

represented by only two sets of intervals. However if we begin to draw the inter-
vals for decba, then there is only one choice for uvwyz, up to a small translation.

For the graphs C−2, C−1, C0, C1 and C2 the argument is the same, except
that the two K∗

1,4 share some vertices. We first begin to draw decba, and then
realize that the other intervals must be exactly like in the above figures.

From what precedes we can state:

Theorem 7. A graph G is in G±,+− if and only if it is a A ∪ B ∪ B′ ∪ B′′ ∪ C ∪
C′ ∪ S ∪ S ′ ∪ {T0,j | j ≥ 0} ∪ {T1,1} ∪ {R0, R1}-free interval graph.

Furthermore:

Theorem 8. The graphs of Theorem7 are minimal forbidden induced subgraphs
for the class G±,+−.

296 A. Talon and J. Kratochvil

Proof. The proof is not difficult and can be found in the full version. �

From Theorem 7 we can design an algorithm to recognize an almost-mixed
unit interval graph: first check whether it is a mixed unit interval graph. After
this, prune it to make it twin-free and search the result for the graphs in C∪C′. To
check for the infinity of graphs in the remaining classes we look for all the copies
of K∗

1,4 and how they connect to one another, to find two of them connected
like in Fig. 11 to Fig. 12. In fact, it is sufficient to check for every vertex-disjoint
copies of K1, 4∗ that there exist two vertices u and v such that:

– u and v are not in the same copy of K∗
1,4

– none of them is of maximum degree (ie degree 4) in K∗
1,4

– they are of equal degrees (ie they have the same “roles” in K∗
1,4)

and look for a path between u and v which is vertex-disjoint from the two K∗
1,4’s.

This leads to:

Theorem 9. The class of almost-mixed unit interval graphs can be recognized
in polynomial time.

In addition to that:

Theorem 10. There exists a polynomial-time algorithm which, given a U±,+−-
graph G, produces a U±,+−-representation of G.

Proof. Let G be a U±,+−-graph. We first use prune G into G′ which is twin-free.
We then use the algorithm of [7] to get a U-representation of G′ in quatratic
time. After this, we use the arguments of the proof of Lemma 2 to try to close
first all open-closed intervals, and then all closed-open intervals. This can be
done in time polynomial in the number of intervals, hence the result. We get
a representation of G by assigning to each vertex the same interval as its twin
which is in G′. At the end, we get a representation of G with at most one type
of semi-closed intervals. �

References

1. Dourado, M.C., Le, V.B., Protti, F., Rautenbach, D., Szwarcfiter, J.L.: Mixed unit
interval graphs. Discrete Math. 312, 3357–3363 (2012)

2. Frankl, P., Maehara, H.: Open interval-graphs versus closed interval-graphs. Discrete
Math. 63, 97–100 (1987)

3. Joos, F.: A characterization of mixed unit interval graphs. In: Kratsch, D., Todinca,
I. (eds.) WG 2014. LNCS, vol. 8747, pp. 324–335. Springer, Heidelberg (2014)

4. Le, V.B., Rautenbach, D.: Integral mixed unit interval graphs. In: Gudmundsson,
J., Mestre, J., Viglas, T. (eds.) COCOON 2012. LNCS, vol. 7434, pp. 495–506.
Springer, Heidelberg (2012)

5. Rautenbach, D., Szwarcfiter, J.L.: Unit interval graphs of open and closed intervals.
J. Graph Theory 72(4), 418–429 (2013)

6. Roberts, F.S.: Indifference graphs. In: Harary, F. (Ed.) Proof Techniques in Graph
Theory, pp. 139–146. Academic Press, New York (1969)

7. Shuchat, A., Shull, R., Trenk, A.N., West, L.C. Unit Mixed Interval Graphs, arXiv
preprint arXiv:1405.4247 (2014)

http://arxiv.org/abs/1405.4247

Bounded Treewidth and Space-Efficient
Linear Algebra

Nikhil Balaji(B) and Samir Datta

Chennai Mathematical Institute (CMI), Chennai, India
{nikhil,sdatta}@cmi.ac.in

Abstract. Motivated by a recent result of Elberfeld, Jakoby and Tantau
[EJT10] showing that MSO properties are Logspace computable on
graphs of bounded treewidth, we consider the complexity of comput-
ing the determinant of the adjacency matrix of a bounded treewidth
graph and as our main result prove that it is in Logspace. It is impor-
tant to notice that the determinant is neither an MSO-property nor
counts the number of solutions of an MSO-predicate. This technique
yields Logspace algorithms for counting the number of spanning arbores-
cences and directed Euler tours in bounded treewidth digraphs.

We demonstrate some linear algebraic applications of the determi-
nant algorithm by describing Logspace procedures for the characteristic
polynomial, the powers of a weighted bounded treewidth graph and fea-
sibility of a system of linear equations where the underlying bipartite
graph has bounded treewidth.

Finally, we complement our upper bounds by proving L-hardness of
the problems of computing the determinant, and of powering a bounded
treewidth matrix. We also show the GapL-hardness of Iterated Matrix
Multiplication where each matrix has bounded treewidth.

1 Introduction

The determinant is a fundamental algebraic invariant of a matrix. For an n × n
matrix A the determinant is given by the expression Det(A) =

∑
σ∈Sn

sign(σ)∏
i∈[n] ai,σ(i) where Sn is the symmetric group on n elements, σ is a permutation

from Sn and sign(σ) is the parity of the number of inversions in σ (sign(σ) = 1 if
the number of inversions in σ is even and 0 if it is odd). Even though the summa-
tion in the definition runs over n! many terms, there are many efficient sequential
[vzGG13] and parallel [Ber84] algorithms for computing the determinant.

Apart from the inherently algebraic methods to compute the determinant
there are also combinatorial algorithms (see, for instance, Mahajan and Vinay
[MV97]) which extend the definition of determinant as a signed sum of cycle
covers in the weighted adjacency matrix of a graph. Mahajan and Vinay [MV97]
are thus able to give another proof of the GapL-completeness of the determinant,
a result first proved by Toda [Tod91]. For a more complete discussion on the
known algorithms for the determinant, see [MV97].

S. Datta—Part of the work was done on a visit to the Institute for Theoretical
Computer Science at Leibniz University Hannover.

c© Springer International Publishing Switzerland 2015
R. Jain et al. (Eds.): TAMC 2015, LNCS 9076, pp. 297–308, 2015.
DOI: 10.1007/978-3-319-17142-5 26

298 N. Balaji and S. Datta

Armed with this combinatorial interpretation of the determinant and faced
with its GapL-hardness, one can ask if the determinant is any easier when the
underlying matrix represents simpler classes of graphs. Datta, Kulkarni, Limaye,
Mahajan [DKLM10] study the complexity of the determinant and permanent,
when the underlying directed graph is planar and show that they are as hard as
the general case - GapL and #P-hard, respectively. We revisit these questions in
the context of bounded treewidth graphs.

Many NP-complete graph problems become tractable when restricted to
graphs of bounded treewidth. In an influential paper, Courcelle [Cou90] proved
that any property of graphs expressible in Monadic Second Order MSO logic can
be decided in linear time on bounded treewidth graphs. For example, Hamiltonic-
ity is an MSO property and hence deciding if a bounded treewidth graph has a
Hamiltonian cycle can be done in linear time. More recently Elberfeld, Jakoby,
Tantau [EJT10] showed that in fact, MSO properties on bounded treewidth
graphs can be decided in L.

We study the Determinant problem when the underlying directed graph has
bounded treewidth and show a Logspace upper bound. In the same vein we
also compute other linear algebraic invariants of a bounded treewidth matrix,
such as the characteristic polynomial, rank and powers of a matrix in Logspace.
Interpreting rectangular matrices as (weighted) bipartite graphs, we are also
able to show that checking for the feasibility of a system of linear equations for
such matrices arising from bounded treewidth bipartite graphs is in L. FSLE has
previously been studied for general graphs in [ABO99] where it is shown to be
complete for the first level of the Logspace counting hierarchy: LC=L.

We give a tight bound on the complexity of the determinant by showing
that it is L-hard via a reduction from directed reachability in paths. We also
show that it is unreasonable to attempt to extend the Logspace upper bound of
determinant and powering to Iterated Matrix Multiplication (IMM) of bounded
treewidth matrices, by showing GapL-hardness for IMM. It is worthwhile to
contrast this with the case of general graphs, where the Determinant, IMM
and Matrix Powering are known to be inter-reducible to each other and hence
complete for GapL.

1.1 Our Results and Techniques

Throughout this paper, we work with matrices with entries from Q, unless stated
otherwise. We show that the following can be computed/tested in L:

1. (Main Result) The Determinant of an (n × n) matrix A whose underlying
undirected graph has bounded treewidth. As a corollary we can also compute
the coefficients of the characteristic polynomial of a matrix.

2. The inverse of an (n × n) matrix A whose underlying undirected graph
has bounded treewidth. As a corollary we get a Logspace algorithm to com-
pute the powers Ak of a matrix A (with rational entries) whose support is a
bounded treewidth digraph.

Bounded Treewidth and Space-Efficient Linear Algebra 299

3. Testing if a system of rational linear equations Ax = b is feasible where A is
(a not necessarily square) matrix whose support is the biadjacency matrix of
an undirected bipartite graph of bounded treewidth.

4. The number of Spanning Trees in graphs of bounded treewidth.
5. The number of Euler tours in a bounded treewidth directed graph.

We also show hardness results to complement the above easiness results:

1. Computing the determinant of a bounded treewidth matrix is L-hard which
precludes further improvement in the Logspace upper bound.

2. Computing the iterated matrix multiplication of bounded treewidth matrices
is GapL-hard which precludes attempts to extend the L-bound on powering
matrices of bounded treewidth to iterated matrix multiplication.

3. Powering matrices are however L-hard which prevents attempts to further
improve the L-bound on matrix powering.

At the core of the upper bound results is our algorithm to compute the
determinant by writing down an MSO formula that evaluates to true on every
valid cycle cover of the bounded treewidth graph underlying A. The crucial
point being that the cycle covers are parameterised by the number of cycles in
the cycle cover, a quantity closely related to the sign of the cycle covers. This
makes it possible to invoke the cardinality version of Courcelle’s theorem (for
Logspace) due to [EJT10] to compute the determinant. A more subtle point is
that in order to keep track of the number of cycles as the size of a set of vertices,
we need to pick one vertex per cycle. Picking one vertex per cycle is done by
choosing the “smallest” vertex in the cycle. In order to pick a vertex in a cycle
cover, we need to define a total order on the vertices which makes this part of
the proof technically challenging.

We use this determinant algorithm and the Kirchoff matrix tree theorem
along with the BEST theorem to count directed Euler tours.

1.2 Organization of the Paper

Section 2 introduces some notation and terminology required for the rest of the
paper. In Sect. 3, we give a Logspace algorithm to compute the Determinant of
matrices of bounded treewidth and give some linear algebraic and graph theo-
retic applications. In Sect. 4, we give some L-hardness results to complement our
Logspace upperbounds. In Sect. 5, we mention some problems that remain open.

2 Preliminaries

2.1 Background on Graph Theory

Definition 1. Given an undirected graph G = (VG, EG) a tree decomposition of
G is a tree T = (VT , ET)(the vertices in VT ⊆ 2VG are called bags), such that

300 N. Balaji and S. Datta

1. Every vertex v ∈ VG is present in at least one bag, i.e., ∪X∈VT
X = VG.

2. If v ∈ VG is present in bags Xi,Xj ∈ VT , then v is present in every bag Xk

in the unique path between Xi and Xj in the tree T .
3. For every edge (u, v) ∈ EG, there is a bag Xr ∈ VT such that u, v ∈ Xr.

The width of a tree decomposition is the maxX∈VT
(|X| − 1). The treewidth of a

graph is the minimum width over all possible tree decomposition of the graph.

Definition 2. Given a weighted directed graph G = (V,E) by its adjacency
matrix [aij]i,j∈[n], a cycle cover C of G is a set of vertex-disjoint cycles that cover
the vertices of G. i.e., C = {C1, C2, . . . , Ck}, where V (Ci) = {ci1 , . . . , cir} ⊆
V such that (ci1 , ci2), (ci2 , ci3), . . ., (cir−1 , cir), (cir , ci1) ∈ E(Ci) ⊆ E and
�k

i=1V (Ci) = V . The least numbered vertex in cycle Ci, denoted hi, is called
the head of the cycle.

Fact 1. The weight of the cycle Ci =
∏

j∈[r] wt(aij) and the weight of the cycle
cover wt(C) =

∏
i∈[k] wt(Ci). The sign of the cycle cover C, sign(C) is (−1)n+k.

Every permutation σ ∈ Sn can be written as a union of vertex disjoint cycles.
Hence a permutation corresponds to a cycle cover of a graph on n vertices. In
this light, the determinant of an (n × n) matrix A can be seen as a signed sum
of cycle covers: det(A) =

∑
C sign(C)wt(C)

2.2 Background on MSO-Logic

Definition 3 (Monadic Second Order Logic). Let the variables V = {v1, v2,
. . . , vn} denote the vertices of a graph G = (V,E). Let X,Y denote subsets1 of
V or E. Let E(x, y) be the predicate that evaluates to 1 when there is an edge
between x and y in G. A logical formula φ is called an MSO-formula if it can be
constructed using the following: (1) v ∈ X (2) v1 = v2 (3) E(v1, v2) (4) φ1 ∨φ2,
φ1 ∧ φ2, ¬φ (5) ∃xφ,∀xφ (6) ∃Xφ,∀Xφ

In addition, if the Gaifman graph2 of a relation R(x1, . . . , xn) is bounded
treewidth, then we can use R in item (3) above. A property Π of graphs is MSO-
definable, if it can be expressed as a MSO formula φ such that φ evaluates to
TRUE on a graph G if and only if G has property Π. (See [FG06] for more
background on MSO)

Definition 4 (Solution Histogram). Given a graph G = (V,E) and an MSO
formula φ(X1, . . . , Xd) in free variables X1, . . . , Xd, where Xi ⊆ V (or E), the
(i1, . . . , id)-th entry of histogram(G,φ) gives the number of subsets S1, . . . , Sd

such that |Sj | = ij for which φ(S1, . . . , Sd) is true.
1 The case when quantification over subset of edges is not allowed is referred to as
MSO1 which is known to be strictly less powerful than MSO2, the case when edge
set quantification is allowed. Throughtout our paper, we will work with MSO2 and
hence we will just refer to it as MSO.

2 The Gaifman graph (also called the Primal Graph) of a binary relation R ⊆ A × A
is the graph whose nodes are elements of A and an edge joins a pair of variables x, y
if (x, y) ∈ R.

Bounded Treewidth and Space-Efficient Linear Algebra 301

We need the following results from [EJT10]:

Theorem 1 (Logspace Version of Bodlaender’s Theorem). For every
k ≥ 1, there is a Logspace machine that on input of any graph G of treewidth
at most k outputs a width-k tree decomposition of G.

Theorem 2 (Logspace Version of Courcelle’s Theorem). For every k ≥ 1
and every MSO-formula φ, there is a Logspace machine that on input of any
logical structure A of treewidth at most k decides whether A � φ holds.

Theorem 3 (Cardinality Version of Courcelle’s Theorem). Let k ≥ 1 and
let φ(X1, . . . , Xd) be an MSO-formula on free variables X1, . . . , Xd. Then there
is a Logspace machine that on input of the tree decomposition of a graph G
of treewidth at most k, MSO-formula φ and (i1, . . . , id), outputs the value of
histogram(G,φ) at |X1| = i1, . . . , |Xd| = id.

3 Determinant Computation

Given a square {0, 1}-matrix A, we can view it as the bipartite adjacency matrix
of a bipartite graph HA. The permanent of this matrix A counts the number of
perfect matchings in HA, while the determinant counts the signed sum of perfect
matchings in HA.

If G is a bounded treewidth graph then we can count the number of perfect
matchings in G in L[EJT10] (see also [DDN13]). Hence the complexity of the
permanent of A, above is well understood in this case while the complexity of
computing the determinant is not clear.

On the other hand the determinant of a {0, 1}-matrix reduces to counting
the number of paths in another graph (see e.g. [MV97]). Also counting s, t-paths
in a bounded treewidth graph is again in L via [EJT10] (see also [DDN13]). But
the problem with this approach is that that the graph obtained by reducing a
bounded treewidth G is not of bounded treewidth.

However, we can also view A as the adjacency matrix of a directed graph GA.
If GA has bounded treewidth (which implies that HA also has bounded tree-
width), then we have a way of computing the determinant of A. The following
lemma will be a useful preprocessing step:

Let G be the input graph of bounded treewidth. We will augment G with
some new vertices and edges to yield a graph G′ again with a tree decomposition
T ′ of bounded treewidth. Then we have:

Lemma 1. There exists a relation NXT on vertices of G′ which satisfies the
following:

1. NXT is compatible3 with the tree decomposition T ′

2. NXT is a partial order on the vertices of G′

3 Binary relation R is said to be compatible with the tree decomposition T ′ of G if
the Gaifman graph of R has T ′ as its tree decomposition.

302 N. Balaji and S. Datta

3. NXT is computable in L
4. The transitive closure NXT∗ is a total order when restricted to the vertices of G
5. NXT∗ is expressible as an MSO-formula over the vocabulary of G′ along

with NXT.

The construction of such a relation is fairly straight forward and considered
folklore in the Finite Model Theory literature (See for example Theorem VI.4 in
[CF12]).

Lemma 2. There is an MSO-formula φ(X,Y) with free variables X,Y that take
values from the set of subsets of vertices and edges respectively, such that φ(X,Y)
is true exactly when X is the set of heads of a cycle cover Y of the given graph.

Proof. We write an MSO formula φ on free variables X,Y , such that Y ⊆ E and
X ⊆ V , such that φ evaluates to true on any set of heads of a cycle cover S. The
MSO predicate essentially verifies that the subgraph induced by Y indeed forms
a cycle cover of G. Our MSO formula is of the form4:

φ(X,Y) ≡ (∀v ∈ V)(∃!h ∈ X)[DEG(v, Y)∧PATH(h, v, Y)∧(NXT∗(h, v)∨(h=v))]

where,

1. DEG(v, Y) is the predicate that says that the in-degree and out-degree of v
(in the subgraph induced by the edges in Y) is 1.

2. PATH(x, y, Y) is the predicate that says that there is a path from x to y in
the graph induced by edges of Y .

One can check that all the predicates above are MSO-definable.

Lemma 2 along with the Fact 1 yields:

Lemma 3. For any matrix An × n of treewidth k ≥ 2 and having integer entries,
there is a Logspace algorithm that constructs an (m × m)(where m = poly(n))
matrix B with entries from {0, 1}, such that det(A) = det(B) and the treewidth
of B is the same as the treewidth of A.

Thus, using the histogram version of Courcelle’s theorem from [EJT10] and
Lemma 3, we get:

Theorem 4. The determinant of a matrix A with integer entries, which can be
viewed as the adjacency matrix of a weighted directed graph of bounded treewidth,
is in L.

4 Note that since we require that for a given X, Y , every v ∈ V has a unique h ∈ X,
our formula is not monotone, i.e., If X ⊆ X ′ are two sets of heads then if φ(X, Y) is
true doesn’t imply φ(X ′, Y) is also true (consider vertices in X ′ \ X, since X ′ ⊆ X,
they will have two different h, h′ such that the PATH and NXT∗ predicates are true
contradicting uniqueness of h.

Bounded Treewidth and Space-Efficient Linear Algebra 303

Proof. Firstly, obtain the matrix B from A using Lemma 3. The histogram ver-
sion of Courcelle’s theorem as described in [EJT10] when applied to the formula
φ(X,Y) above yields the number of cycle covers of GB parametrized on |X|, |Y |.
But in the notation of Fact 1 above, |X| = k and |Y | = n, so we can easily
compute the determinant as the alternating sum of these counts. ��
Corollary 1. There is a Logspace algorithm that takes as input a (n × n)
bounded treewidth matrix A, 1m, where 1 ≤ m ≤ n and computes the coeffi-
cient of xm in the characteristic polynomial (χA(x) = det(xI − A)) of A.

The characteristic polynomial of an (n × n) matrix A is the determinant of the
matrix A(x) = xI − A. We could use Theorem 4 to compute this quantity (since
A(x) is bounded treewidth, if A is bounded treewidth). However, Theorem4
holds only for matrices with integer entries while the matrix A(x) contains entries
in the diagonal involving the indeterminate x.

We proceed as follows: In the directed graph corresponding to A, replace a
self loop on a vertex of weight x − d by a gadget of weight −d in parallel with a
self loop of weight x (In the event that there is no self loop on a vertex in A, add
a self loop of weight x on the vertex). Replace the weights on the other edges
according to the gadget in Lemma 3. We have added exactly n self loops, each
of weight x (for the original vertices of A).

We first consider a generalisation of the determinant of {0, 1}-matrices of
bounded treewidth viz. the determinant of matrices where the entries are from a
set whose size is a fixed universal constant and the underlying graph consisting
of the non-zero entries of A is of bounded treewidth.

Lemma 4. Let A be a matrix whose entries belong to a set S of fixed size inde-
pendent of the input or its length. If the underlying digraph with adjacency matrix
A′, where A′

ij = 1 iff Aij �= 0, is of bounded treewidth then the determinant of
A can be computed in L.

Proof. Let s = |S| be a universal constant, S = {c1, . . . , cs} and let vali be the
predicates that partitions the edges of G according to their values i.e., vali(e)
is true iff the edge e has value ci ∈ S. Our modified formula ψ(X,Y1, . . . , Ys)
will contain s unquantified new edge-set variables Y1, . . . , Ys along with the old
vertex variable X, and is given by:

∀e ∈ E((e ∈ Yi → vali(e)) ∧ (e ∈ Y ↔ ∨s
i=1(e ∈ Yi) ∧ φ(X,Y))

Notice that we verify that the edges in the set Yi belong to the ith partition and
each eadge in Y is in one of the Yi’s. The fact that the Yi’s form a partition of
Y follows from the assumption that vali(e) is true for exactly one i ∈ [s] for any
edge e.

To obtain the determinant we consider the histogram parameterised on the s
variables Y1, . . . , Ys and the heads X. For an entry indexed by x, y1, . . . , ys, we
multiply the entry by (−1)n+x

∏s
i=1 ci

yi and take a sum over all entries. ��
In light of the Lemma above, we can compute the characteristic polynomial as
follows:

304 N. Balaji and S. Datta

Proof (of Corollary 1). While counting the number of cycle covers with k cycles,
we can keep track of the number of self-loops occurring in a cycle cover. It is
easy to see that we can obtain the coefficient of xr in the characteristic polyno-
mial from the histogram outlined in Lemma4. Hence we can also compute the
characteristic polynomial in L. ��
Corollary 2. Given a bounded treewidth matrix Am × n the rank of A can be
computed in L.

Proof. A can be interpreted as the biadjacency matrix of a bipartite graph.

Now, consider the matrix B =
(

0 A
AT 0

)
– this is a matrix of dimension (m +

n) × (m + n). It is easy to see that B corresponds to the adjacency matrix
of A. Let row-rank(A) = column-rank(A) = r. Since A and AT have the same
rank, rank(A) + rank(AT) = 2r = rank(B). Now we use Mulmuley’s method
[Mul87]: Let Zii = zi−1 be a diagonal matrix in the indeterminate z. Compute
the characteristic polynomial of ZB = det(xI − ZB) and use the fact that the
rank of ZB is a number r such that xn−r is the smallest power of x with a
non-zero coefficient. We are now done with the help of Corollary 1. ��
FSLE(A, b) is the following problem: Given a system of m linear equations (with
integer coefficients, w.l.o.g) in variables z1, . . . , zn and a target vector b, we want
to check if there is a feasible solution to Az = b. That is, we want to decide
if there is a setting of the variable vector z ∈ Qn such that, Az = b holds for
a bounded treewidth matrix A ∈ Zm × n (when we say a rectangular matrix is
bounded treewidth, we mean the underlying bipartite graph on (m+n) vertices
has bounded treewidth).

Corollary 3. For a bounded treewidth matrix Am × n and vector bn × 1, FSLE(A, b)
is in L.

Proof. We know that the system of linear equations given by A, b is feasible if and
only if rank(A) = rank([A : b]). Therefore, we can use the Logspace procedure
for matrix rank given by Corollary 2 to decide FSLE. ��
Corollary 4. There is a Logspace algorithm that takes as input a (n × n)
bounded treewidth matrix A, 1i, 1j , 1k and computes the k-th bit of A−1

ij .

Proof. The inverse of a matrix A is the matrix B = CT

det(A) where C= (Cij)1≤i,j≤n

is the cofactor matrix, whose (i, j)-th entry Cij = (−1)i+jdet(Aij) is the deter-
minant of the (n − 1) × (n − 1) matrix obtained from A by deleting the i-th
row and j-th column. If we can compute Cij in L, we can compute the entries
of B via integer division which is known to be in L from [HAB02]. To this end,
consider the directed graph GA represented by A. To compute det(Aij), swap
the columns of A such that the j-th column becomes the i-th column. The graph
so obtained is of bounded treewidth (To see this, notice that the swapping oper-
ation just re-routes all incoming edges of j to i and those of i to j. The tree

Bounded Treewidth and Space-Efficient Linear Algebra 305

decomposition of this graph is just obtained by adding vertices (i, j) to every bag
in the tree decomposition of GA and also the edges rerouted to the respective
bags. This increases the treewidth by 2). Now, remove the i-th vertex in GA and
all edges incident to it to get a graph GA′

ij
on (n − 1) vertices. The swapping

operation changes the determinant of Aij by a sign that is (−1)i−j = (−1)i+j .
Computing the determinant of this modified matrix A′

ij yields Cij as required.
Since A′

ij is obtained from A by removing a vertex and all the edges incident
on it, the treewidth of A′

ij is at most the treewidth of A. By Theorem 4, Cij is
in FL. ��
Corollary 5. There is a Logspace algorithm that on input an (n × n) bounded
treewidth matrix A, 1m, 1i, 1j , 1k gives the k-th bit of (i, j)-th entry of Am.

Proof. Consider A′ = (I−tA)−1 where I is the (n × n) identity matrix and t is a
small constant to be chosen later. Notice that A′ = (I − tA)−1 =

∑
j≥0 tjAj . By

choosing t as a suitably small power of 2 (say 2−p = t such that 2p > ‖A‖) and
computing A′ to a suitable accuracy, we can read the (i, j)-th entry of Am off the
appropriate bit positions of the (i, j)-th entry of A′. So, in essence the problem
of powering bounded treewidth matrix A reduces to the problem of computing
the inverse of a related matrix which is known to be in L via Corollary 4. ��

3.1 Spanning Trees and Directed Euler Tours

Fact 2. The number of arborescences5 of a digraph equals any cofactor of its
Laplacian.

where the Laplacian of a directed graph G is D − A where D is the diagonal
matrix with the Dii being the out-degree of vertex i and A is the adjacency
matrix of the underlying undirected graph. The BEST Theorem states:

Fact 3 ([AEB87,TS41]). The number of Euler Tours in a directed Eulerian
graph K is exactly: t(K)

∏
v∈V (deg(v) − 1)! where t(K) is the number of arbores-

cences in K rooted at an arbitrary vertex of K and deg(v) is the indegree as well
as the outdegree of the vertex v.

We combine Facts 2 and 3 with Theorem 4 to compute the number of directed
Euler Tours in a directed Eulerian graph in L. Use the Kirchoff Matrix Tree
theorem [Sta13] and Fact 3:

Corollary 6. Counting arborescences and directed Euler Tours in a directed
Eulerian graph G (where the underlying undirected graph is bounded treewidth)
is in L.

5 Alternately, arborescences are MSO2-definable and, thus, counting them in bounded
treewidth graphs can be implemented in L via [EJT10].

306 N. Balaji and S. Datta

Fig. 1. s occurs before t

Fig. 2. t occurs before s

4 Hardness Results

Proposition 1 (Hardness of Bounded Treewidth Determinant). For all
constant k ≥ 2, computing the determinant of an (n × n) matrix A whose
underlying undirected graph has treewidth at most k is L-hard.

Proof. We reduce the problem ORD of deciding for a directed path P and two
vertices s, t ∈ V (P) if there is a path from s to t (known to be L-complete via
[Ete97]) to computing the determinant of bounded treewidth matrices (Note
that P is a path and hence it has treewidth 1). Our reduction is as follows:
Given a directed path P with source a, sink b and distinguished vertices s and t,
we construct a new graph P ′ as follows: Add edges (s′, a), (s′, t), (t, s), (s, a) and
(b, t′) and remove edges (s′, s), (t, t′) where s′ and t′ are vertices in P such that
(s′, s), (t, t′) ∈ E(P) (See Fig. 1).

We claim that there is a directed path between s and t if and only if the
determinant of the adjacency matrix of P ′ is zero. If there is a directed path
from s to t in P , then there are two cycle covers in P ′ : (a, s′)(s, t)(t′, b), with
three cycles and (a, s′, t, s), (t′, b), with two cycles. Using Fact 1, the signed sum
of these cycle covers is (−1)n+3 + (−1)n+2 = 0, which is the determinant of P ′.

In the case that P has a directed path from t to s (see Fig. 2), then there is one
cycle namely (a, t, s, b, t′, s′). We argue as follows: The edges (t, s), (s, b), (b, t′),
(t′, s′) are in the cycle cover since they are the only incoming edges to s, b, t′, s′

respectively. So (t, s, b, t′, s′) is a part of any cycle cover of the graph. This forces
one to pick the edge (s′, a) and hence we have one cycle in the cycle cover
for P ′. ��

Proposition 2 (Hardness of Bounded Treewidth Matrix Powering).
Bounded Treewidth Powering is L-hard under disjunctive truth table reductions.

Bounded Treewidth and Space-Efficient Linear Algebra 307

Proof. We reduce ORD to matrix powering. Given an directed path P on n
vertices and distinguished vertices s and t, we argue as follows: There is a directed
path between s and t, then it must be of length i for an unique i ∈ [n]. Consider
the matrix (I+AP)n: s and t are connected by a path if and only if (I+AP)n

s,t �= 0.
This is because (I + AP)n

s,t gives the walks from s to t, and if at all there is a
path from s to t, then there is definitely a walk of length at most n between
them. Checking if this entry is zero can be done by a DNF which takes as input
the bits of (I + AP)n

s,t. ��
Proposition 3 (Hardness of Bounded Treewidth IMM). Given a sequ-
ence of bounded treewidth matrices with rational entries M1,M2, . . . , Mn and
1i, 1j , 1k as input, computing the k-th bit of (i, j)-th entry of

∏n
l=1 Ml is GapL-

hard.

5 Open Problems

What is the complexity of other linear algebraic invariants such as minimal
polynomial of a bounded treewidth matrix? What is the complexity of counting
Euler Tours in undirected tours in bounded treewidth graphs? On general graphs,
this problem is known to be #P-complete [BW05]. See [CCM12,CCM13] for
some recent progress on this problem.

Acknowledgement. We would like to thank Abhishek Bhrushundi, Arne Meier,
Rohith Varma and Heribert Vollmer for illuminating discussions regarding this paper.
Special thanks are due to Johannes Köbler and Sebastian Kuhnert who were involved
in the initial discussions on the proof of Theorems 4, 6; to Stefan Mengel for proof read-
ing the paper and finding a gap in a previous “proof” of Theorem 4; and to Raghav
Kulkarni for suggesting proof strategies for Corollary 5 and Lemma 3; and to Sebastian
Kuhnert for the proof of Proposition 2. Thanks are also due to anonymous referees for
pointing out errors in a previous version of the paper and for greatly simplifying the
proof of Corollary 3. This work is partially funded by a grant from Infosys Foundation.

References

[ABO99] Allender, E., Beals, R., Ogihara, M.: The complexity of matrix rank and
feasible systems of linear equations. Comput. Complex. 8(2), 99–126 (1999)

[AEB87] Aardenne-Ehrenfest, T., Bruijn, N.G.: Circuits and trees in oriented linear
graphs. In: Gessel, I., Rota, G.-C. (eds.) Classic Papers in Combinatorics.
Modern Birkhäuser Classics, pp. 149–163. Birkhäuser, Boston (1987)

[Ber84] Berkowitz, S.J.: On computing the determinant in small parallel time using
a small number of processors. Inf. Process. Lett. 18(3), 147–150 (1984)

[BW05] Brightwell, G., Winkler, P.: Counting eulerian circuits is# p-complete. In:
ALENEX/ANALCO, pp. 259–262. Citeseer (2005)

[CCM12] Chebolu, P., Cryan, M., Martin, R.: Exact counting of euler tours for gen-
eralized series-parallel graphs. J. Discrete Algorithms 10, 110–122 (2012)

[CCM13] Chebolu, P., Cryan, M., Martin, R.: Exact counting of euler tours for graphs
of bounded treewidth. In: CoRR, abs/1310.0185 (2013)

308 N. Balaji and S. Datta

[CF12] Chen, Y., Flum, J.: On the ordered conjecture. In: Proceedings of the 2012
27th Annual IEEE/ACM Symposium on Logic in Computer Science, pp.
225–234. IEEE Computer Society (2012)

[Cou90] Courcelle, B.: The monadic second-order logic of graphs. i. recognizable
sets of finite graphs. Inf. comput. 85(1), 12–75 (1990)

[DDN13] Das, B., Datta, S., Nimbhorkar, P.: Log-space algorithms for paths and
matchings in k-trees. Theor. Comput. Syst. 53(4), 669–689 (2013)

[DKLM10] Datta, S., Kulkarni, R., Limaye, N., Mahajan, M.: Planarity, determinants,
permanents, and (unique) matchings. TOCT 1(3) (2010)

[EJT10] Elberfeld, M., Jakoby, A., Tantau, T.: Logspace versions of the theorems
of bodlaender and courcelle. In: FOCS, pp. 143–152 (2010)

[Ete97] Etessami, K.: Counting quantifiers, successor relations, and logarithmic
space. J. Comput. Syst. Sci. 54(3), 400–411 (1997)

[FG06] Flum, J., Grohe, M.: Parameterized Complexity Theory, vol. 3. Springer,
Heidelberg (2006)

[HAB02] Hesse, W., Allender, E., Barrington, D.A.M.: Uniform constant-depth
threshold circuits for division and iterated multiplication. J. Comput. Syst.
Sci. 65, 695–716 (2002)

[Mul87] Mulmuley, K.: A fast parallel algorithm to compute the rank of a matrix
over an arbitrary field. Combinatorica 7(1), 101–104 (1987)

[MV97] Mahajan, M., Vinay, V.: Determinant: combinatorics, algorithms, and com-
plexity. Chicago J. Theor. Comput. Sci. 1997, 26 (1997)

[Sta13] Stanley, R.P.: Algebraic Combinatorics. Springer-Verlag, New York (2013)
[Tod91] Toda, S.: Counting problems computationally equivalent to the determi-

nant. Technical report CSIM 91–07, Dept of Comp Sc & Information Math-
ematics, Univ of Electro-Communications, Chofu-shi, Tokyo (1991)

[TS41] Tutte, W.T., Smith, C.A.B.: On unicursal paths in a network of degree 4.
Am. Math. Monthly 48(4), 233–237 (1941)

[vzGG13] von zur Gathen, J., Gerhard, J.: Modern Computer Algebra (3. ed.). Cam-
bridge University Press, New York (2013)

Quantum Computing

Quantum Game Players Can Have Advantage
Without Discord

Zhaohui Wei1(B) and Shengyu Zhang2

1 School of Physics and Mathematical Sciences, Nanyang Technological University
and Centre for Quantum Technologies, Singapore, Singapore

weizhaohui@gmail.com
2 Department of Computer Science and Engineering,

The Chinese University of Hong Kong, Hong Kong, China
syzhang@cse.cuhk.edu.hk

Abstract. The last two decades have witnessed a rapid development
of quantum information processing, a new paradigm which studies the
power and limit of “quantum advantages” in various information process-
ing tasks. Problems such as when quantum advantage exists, and if exist-
ing, how much it could be, are at a central position of these studies. In
a broad class of scenarios, there are, implicitly or explicitly, at least two
parties involved, who share a state, and the correlation in this shared
state is the key factor to the efficiency under concern. In these scenarios,
the shared entanglement or discord is usually what accounts for quan-
tum advantage. In this paper, we examine a fundamental problem of this
nature from the perspective of game theory, a branch of applied math-
ematics studying selfish behaviors of two or more players. We exhibit a
natural zero-sum game, in which the chance for any player to win the
game depends only on the ending correlation. We show that in a certain
classical equilibrium, a situation in which no player can further increase
her payoff by any local classical operation, whoever first uses a quantum
computer has a big advantage over its classical opponent. The equilib-
rium is fair to both players and, as a shared correlation, it does not
contain any discord, yet a quantum advantage still exists. This indicates
that at least in game theory, the previous notion of discord as a measure
of non-classical correlation needs to be reexamined, when there are two
players with different objectives.

1 Introduction

Quantum computers have exhibited tremendous power in algorithmic, crypto-
graphic, information theoretic, and many other information processing tasks,
compared with their classical counterparts. Meanwhile, for a large number of
problems, quantum computers are not able to offer much advantage over clas-
sical ones. When and why quantum computers are more powerful are always
at a central position in studies on quantum computation and quantum infor-
mation processing. A particularly interesting class of scenarios is when there
are, implicitly or explicitly, at least two parties involved who share a state, the
c© Springer International Publishing Switzerland 2015
R. Jain et al. (Eds.): TAMC 2015, LNCS 9076, pp. 311–323, 2015.
DOI: 10.1007/978-3-319-17142-5 27

312 Z. Wei and S. Zhang

correlation in this state is the key factor. What accounts for the quantum advan-
tage is often entanglement, one of the most distinctive characters of quantum
information. Indeed, it has been showed that a quantum algorithm with only
slight entanglement can be simulated efficiently by a classical computer [Vid03].
In certain potential applications of quantum algorithms, it is also shown that
entangled measurement is necessary for the existence of efficient quantum algo-
rithms [HMR+10].

Recently people started to realize that entanglement is not always a nec-
essary resource needed for generating quantum correlations. It has been found
that discord, another unique character of quantum states, also plays an impor-
tant role in quantum information processing [OZ01]. Discord is a relaxed version
of entanglement—states with positive entanglement must also have positive dis-
cord, but there are states with positive discord but zero entanglement. People has
discovered cases where quantum speed-up exists without entanglement involved,
and discord is considered to be responsible for the quantum advantage [DSC08].
Till today, discord is widely considered as necessary for the existence of quantum
advantages.

In this paper, we reexamine this notion from the perspective of game theory
[OR94]. Game theory studies the situation in which there are two or more players
with possibly different goals. There are two broad classes of games, one is strategic-
form (or normal-form) games, in which all players make their choice simultane-
ously; a typical example is Rock-Paper-Scissors. The other class is extensive-form
games, in which players make their moves in turn; a typical example is chess.

The research on quantum games began about one decade ago, starting with
two pioneering papers.1 The first one [EWL99] aimed to quantize a specific
strategic-form game called Prisoners’ Dilemma [EWL99], and it unleashed a
long sequence of follow-up works in the same model. Despite the rapid growth
of literature, controversy also largely exists [BH01,vEP02,CT06], which ques-
tioned the meaning of the claimed quantum solution, the ad hoc assumptions
in the model, and the inconsistency with standard settings of classical strategic
games. Recently a new model was proposed for quantizing general strategic-
form games [Zha12]. Compared with [EWL99], the new model corresponds to
the classical games more precisely, and has rich mathematical structures and
game-theoretic questions; also see later theoretical developments [KZ12,WZ13,
JSWZ13,PKL+15].

Back to the early stage of the development of quantum game theory, the other
pioneering paper was [Mey99], which demonstrated the power of using quantum
strategies in an extensive-form game. More specifically, Meyer considered the
quantum version of the classical Penny Matching game. The basic setting is as
follows. There are two players, and each has two possible actions on one bit:
Flip it or not. Starting with the bit being 0, Player 1 first takes an action, and

1 Note that there is also a class of “nonlocal games”, such as CHSH or GHZ games
[BCMdW10], where all the players have the same objective. But general game theory
focuses more on situation that the players have different objective functions, and the
players are selfish, each aiming to optimize her own objective function only.

Quantum Game Players Can Have Advantage Without Discord 313

then Player 2 takes an action, and finally Player 1 takes another action, and the
game is finished. If the bit is finally 0, then Player 1 wins; otherwise Player 2
wins. It is not hard to see that if Player 2 flips the bit with half probability, then
no matter what Player 1 does, each player wins the game with half probability.
Now consider the following change of setting: The bit becomes a qubit; the first
player uses a quantum computer in the sense that she can perform any quantum
admissible operation on the bit; the second player uses a classical computer

in the sense that she can perform either Identity or the flip operation
[
0 1
1 0

]
.

In this new setting, Player 1 can win the game with certainty! Her winning
strategy is simple: she first applies a Hadamard gate to change the state to
|+〉 = (|0〉 + |1〉)/√

2, and then no matter whether Player 2 applies the flip
operation or not, the state remains the same |+〉, thus in the third step Player
1 can simply apply a Hadamard gate again to rotate the state back to |0〉. This
shows that a player using a quantum computer can have big advantage over one
using a classical computer.

Despite a very interesting phenomena it exhibits, the quantum advantage is
not the most convincing due to a fairness issue. After all, the quantum player
takes two actions and the classical player takes just one. And the order of “Player
1 → Player 2 → Player 1” is also crucial for the quantum advantage. One rem-
edy is to consider normal-form games, in which the players give their strategies
simultaneously, thus there is no longer the issue of the action order. Taking the
model in [Zha12], two players play a complete-information normal-form game,
with a starting state ρ in systems (A1, A2), and Ai being given to Player i. A
classical player can only measure her part of the state in the computational basis,
followed by whatever classical operation C (on the computational basis). In pre-
vious works [EWL99,Mey99,ZWC+12] the classical player is usually assumed
to be able to apply any classical operation on computational basis (such as X-
gate), followed by a measurement in the computational basis. A classical oper-
ations there is implicitly assumed to be unitary, so the operation in the matrix
form is a permutation matrix. Here we allow classical player to measure first
and then perform any classical operation, which gives her more power since the
second-step classical operation does need to be unitary. Indeed, in Meyer’s Penny
Matching game, in the second step Player 2 could measure the state first and
then randomly set it to be |0〉 or |1〉 each with half probability. Then in the third
step, Player 1’s Hadamard gate will change the state to |+〉 or |−〉, in either
case, Player 1 could win with only half probability.

Even if we now enlarge the space of possible operations of the classical player,
we will show examples where the quantum player has advantage of winning the
game. Furthermore, the examples have the following nice properties respecting
the fairness of the game:

1. If both players are classical, then both get expected payoff 0, and ρ is a
correlated equilibrium in the sense that any classical operation C by one
player cannot increase her expected payoff.

314 Z. Wei and S. Zhang

2. Suppose that one player remains classical and the other player uses a quantum
computer. To illustrate the power of using quantum strategies, we cut the
classical player some slack as follows. The classical player can (1) pick one
subsystem, A1 or A2, of ρ, leaving the other subsystem to the quantum player,
and (2) “take side” by picking one of the two payoff matrices, leaving the other
to the quantum player.

Examples were found that even with the advantage of taking side and taking
part of the shared state, the classical player still has a disadvantage compared
to the quantum player. Consider the canonical 2 × 2 zero-sum game with the
payoff matrices being

U1 =
(

1 −1
−1 1

)
and U2 =

(−1 1
1 −1

)
. (1)

Quantum game with entanglement. Each player i owns a 2-dimensional Hilbert
space, and they share the quantum state

|ψ〉 =
1√
2
(| + 0〉 + | − 1〉) =

1√
2
(|0+〉 + |1−〉), (2)

where |+〉 = 1√
2
(|0〉 + |1〉), and |−〉 = 1√

2
(|0〉 − |1〉). It is not difficult to verify

that if both players measure their parts in the computational basis, then each
gets payoff 1 and −1 with equal probability, resulting an average payoff of zero
for both players. This is a correlated equilibrium for classical operations.

Now suppose that Player 1 employs a quantum computer. Since the state is
symmetric, it does not matter which part Player 2, the classical player, chooses.
Let us assume that Player 2 chooses part 2, and the payoff matrix U2. Then
Player 1 can apply the Hadamard transformation on her qubit, followed by the
measurement in computational basis. The state immediately before the measure-
ment is |ψ′〉 = (|00〉+|11〉)/√

2. Therefore the measurement in the computational
basis gives Player 1 and Player 2 payoff 1 and −1, respectively, with certainty.
In other words, Player 1 wins with certainty, whereas she could only win with
half probability when using a classical computer.

In this example where the quantum player has an advantage, the state shared
by players is highly entangled, which motivates the following natural question:
Is entanglement necessary for quantum advantage in the game? It turns out that
the answer is no. Consider the example below.

Quantum Game with Discord. The payoff matrices are the same as before, but
the quantum state shared by players is the following.

ρ =
1
4
(|+〉〈+| ⊗ |0〉〈0| + |0〉〈0| ⊗ |+〉〈+| + |−〉〈−| ⊗ |1〉〈1| + |1〉〈1| ⊗ |−〉〈−|). (3)

This state is separable and thus does not have any entanglement. It can be
checked that if the players measure this state in computational basis, the prob-
ability of getting each of the four possible outcomes is 1/4. Thus the overall

Quantum Game Players Can Have Advantage Without Discord 315

payoff of each player is zero, and it can be verified that it is a classical correlated
equilibrium.

In the quantum setting, again without loss of generality assume that the
classical computer picks the second part of ρ and the second payoff matrix.
The quantum player can again perform a Hadamard operation on her system,
resulting in a new state

ρ′ =
1
4
(|0〉〈0|⊗ |0〉〈0|+ |+〉〈+|⊗ |+〉〈+|+ |1〉〈1|⊗ |1〉〈1|+ |−〉〈−|⊗ |−〉〈−|). (4)

Measuring the new state, the quantum player gets state |00〉, |01〉, |10〉, |11〉 with
probability 3/8, 1/8, 1/8, 3/8 respectively. As a result, her winning probability
increases from 1/2 to 3/4; in other words, she gets an expected payoff of 1/2.

Note that the quantum state in Eq. (4) is separable, and there is no any
entanglement, but the quantum player still gets a quantum advantage. Thus,
entanglement is not necessary for quantum advantage to exist in this game. Note
that, however, the state in Eq. (4) has a positive discord. As we have mentioned,
it was known that in some scenarios, it is discord, rather than entanglement,
that produces non-classical correlations. So the above example confirms this
traditional notion in the new game-theoretic setting.

These two examples were also experimentally verified recently [ZWC+12].
The present paper makes further studies on the foregoing notion by asking the
following fundamental question.

Is discord necessary for quantum advantage to exist in games where play-
ers share a symmetric state?

It is tempting to conjecture that the answer is Yes. In the rest of the paper, we
will show that, first, discord is indeed necessary for any quantum advantage to
exist in a 2-player games where each player has n = 2 strategies. We will then
show that when n ≥ 3, however, there are games where the quantum player has
a positive advantage even when the shared symmetric state has zero discord.

2 Preliminaries

Suppose that in a classical game there are k players, labeled by {1, 2, . . . , k}.
Each player i has a set Si of strategies. To play the game, each player i selects a
strategy si from Si. We use s = (s1, . . . , sk) to denote the joint strategy selected
by the players and S = S1 × . . . × Sk to denote the set of all possible joint
strategies. Each player i has a utility function ui : S → R, specifying the payoff
or utility ui(s) of Player i on the joint strategy s. For simplicity of notation, we
use subscript −i to denote the set [k] − {i}, so s−i is (s1, . . . , si−1, si+1, . . . , sk),
and similarly for S−i, p−i, etc. In this paper, we will mainly consider 2-player
games.

Nash equilibrium is a fundamental solution concept in game theory. Roughly,
it says that in a joint strategy, no player can gain more by changing her strategy,
provided that all other players keep their current strategies unchanged. The
precise definition is as follows.

316 Z. Wei and S. Zhang

Definition 1. A pure Nash equilibrium is a joint strategy s = (s1, . . . , sk) ∈ S
satisfying that

ui(si, s−i) ≥ ui(s′
i, s−i), ∀i ∈ [k],∀s′

i ∈ Si.

Pure Nash equilibria can be generalized by allowing each player to independently
select her strategy according to some probability distribution, leading to the
following concept of mixed Nash equilibrium.
Definition 2. A (mixed) Nash equilibrium (NE) is a product probability distri-
bution p = p1 × . . . × pk, where each pi is a probability distributions over Si,
satisfying that
∑

s−i

p−i(s−i)ui(si, s−i) ≥
∑

s−i

p−i(s−i)ui(s
′
i, s−i), ∀i ∈ [k], ∀si, s′

i ∈ Si with pi(si) > 0.

A fundamental fact proved by Nash [Nas51] is that every game with a finite
number of players and a finite set of strategies for each player has at least one
mixed Nash equilibrium.

There are various further extensions of mixed Nash equilibria. Aumann
[Aum74] introduced a relaxation called correlated equilibrium. This notion assumes
an external party, called Referee, to draw a joint strategy s = (s1, ..., sk) from
some probability distribution p over S, possibly correlated in an arbitrary way,
and to suggest si to Player i. Note that Player i only sees si, thus the rest strat-
egy s−i is a random variable over S−i distributed according to the conditional
distribution p|si , the distribution p conditioned on the i-th part being si. Now p
is a correlated equilibrium if any Player i, upon receiving a suggested strategy
si, has no incentive to change her strategy to a different s′

i ∈ Si, assuming that
all other players stick to their received suggestion s−i.

Definition 3. A correlated equilibrium (CE) is a probability distribution p over
S satisfying that

∑
s−i

p(si, s−i)ui(si, s−i) ≥
∑
s−i

p(si, s−i)ui(s′
i, s−i), ∀i ∈ [k],∀si, s

′
i ∈ Si.

The above statement can also be restated as

Es−i←µ|si [ui(si, s−i)] ≥ Es−i←µ|si [ui(s′
i, s−i)]. (5)

where μ|si is the distribution μ conditioned on the i-th component being si.
Notice that a classical correlated equilibrium p is a classical Nash equilibrium if
p is a product distribution.

Correlated equilibria captures natural games such as the Traffic Light and
the Battle of the Sexes ([VNRET97], Chap. 1). The set of CE also has good
mathematical properties such as being convex (with Nash equilibria being some
of the vertices of the polytope). Algorithmically, it is computationally benign for
finding the best CE, measured by any linear function of payoffs, simply by solving
a linear program (of polynomial size for games of constant players). A natural
learning dynamics also leads to an approximate CE ([VNRET97], Chap. 4) which
we will define next, and all CE in a graphical game with n players and with log(n)
degree can be found in polynomial time ([VNRET97], Chap. 7).

Quantum Game Players Can Have Advantage Without Discord 317

3 Quantum Game Without Discord

In this section, we will address the question proposed at the end of the first
section. Suppose that a game has two players and both of them have n strategies.
In other words, each player holds an n-dimensional quantum system. Recall
that we also require the shared quantum state ρ ∈ H ⊗H be symmetric, so that
swapping the two systems does not change the state. It is not hard to derive from
the general criteria of zero-discord state [DVB10] that these quantum states ρ
have the form of

ρ =
n−1∑
i,j=0

p(i, j)|ψi〉〈ψi| ⊗ |ψj〉〈ψj |, (6)

where {|ψi〉} is a set of orthogonal basis of the n-dimensional Hilbert space
H, and P = [p(i, j)]ij ∈ R

n×n
+ is a symmetric matrix with nonnegative entries

satisfying that
∑

ij p(i, j) = 1. (In general, we use the upper case letter P to
denote the matrix and the lower case letter p to denote the corresponding two-
variate distribution p(i, j).) We sometimes also write the state as

ρ =
∑
i

p1(i)|ψi〉〈ψi| ⊗ σi (7)

where p1(i) =
∑

j p(i, j) is the marginal distribution on the first system, and

σi =
∑

j
p(i,j)
p1(i)

|ψj〉〈ψj | (if p1(i) = 0 then let σi = |0〉〈0|).
Consider the following game as a natural extension of the Penny Matching

game in Sect. 1. The payoff matrices are

U1 = nI − J and U2 = −U1, (8)

where J is the all-one matrix. Intuitively, whoever takes the first matrix bets
that the two n-sided dice give the same side, and the other player bets that
the two dice give different sides. We first show that there is a unique correlated
equilibrium in the game.

Lemma 1. The game given by Eq. (8) has only one classical correlated equilib-
rium Q = J/n2.

Proof. According to the definition of correlated equilibrium, if a distribution q
on [n] × [n] is a classical correlated equilibrium, then the following relationships
hold:

∑
j

q(i, j)U1(i, j) ≥
∑
j

q(i, j)U1(i′, j), ∀i, i′ ∈ {0, 1, ..., n − 1}, (9)

and
∑
i

q(i, j)U2(i, j) ≥
∑
i

q(i, j)U2(i, j′), ∀j, j′ ∈ {0, 1, ..., n − 1}. (10)

Plugging the definition of U1 and U2 into the above inequalities, one can verify
that Q = J/n2 is the only solution.

318 Z. Wei and S. Zhang

Recall that ρ =
∑

i p1(i)|ψi〉〈ψi|⊗σi. Since ρ is symmetric, it does not matter
which part the classical player, Player 2, chooses to hold. For the convenience of
discussions, let us assume that the classical player takes the second part. We use
supp(p) to denote the support of a distribution p, i.e., the set of elements with
non-zero probability. The next lemma gives a sufficient and necessary condition
for the existence of quantum advantage.

Lemma 2. Suppose that measuring the state ρ gives a classical correlated equi-
librium for the game given in Eq. (8). Then Player 1 (who is quantum) does not
have any advantage if and only if

〈i|σj |i〉 = 1/n, ∀i ∈ {0, 1, ..., n − 1} and j ∈ supp(p1). (11)

Proof. “Only if”: Assume that Player 1 first measures her part in the orthonor-
mal basis {|ψi〉}. Note that this does not affect the state. If outcome j occurs,
then Player 1 knows that the state of Player 2 is σj . We consider which utility
matrix in Eq.(8) Player 1 has. In the first case, Player 1 takes the utility matrix
U1. It is not hard to see that her optimal strategy is to replace her part |ψj〉
by |i〉, where i is a maximizer of maxi〈i|σj |i〉. Thus Player 1 has a strict pos-
itive advantage if and only if there is some i and j, where j ∈ supp(p1), with
〈i|σj |i〉 > 1/n, which is equivalent to saying that there is some i and j ∈ supp(p1)
with 〈i|σj |i〉
= 1/n.

Similarly, if Player 1 takes the utility matrix U2, then her optimal strategy is
to replace |ψj〉 with |i〉, where i is a minimizer of mini〈i|σj |i〉. Thus Player 1 has
a strict positive advantage if and only if there is some i and j with 〈i|σj |i〉 < 1/n,
which is again equivalent to saying that there is some i and j with 〈i|σj |i〉
= 1/n.

“If”: Player 2 measures her part in the computational basis, yielding the
state

1
n

∑
i,j

p1(j)|ψj〉〈ψj | ⊗ |i〉〈i|.

Now whatever quantum operation Player 1 applies, the probability of observing
the same bits (i.e., the state after the measurement is |ii〉 for some i) is 1/n,
with the expected payoff of 0 for both players.

Though the above lemma gives a sufficient and necessary condition, it is
still not always clear whether quantum advantage could exist for any symmetric
state ρ with zero discord. Next we will further the study by considering a related
matrix M ∈ R

n×n
+ , whose (i, j)-th entry is defined to be

M(i, j) = |〈i|ψj〉|2. (12)

It turns out that the rank of M is an important criteria to our question. In
the rest of this section, we will consider two cases, depending on whether M is
full rank or not.

Quantum Game Players Can Have Advantage Without Discord 319

3.1 Case 1: M Is Full-Rank

We will first show that if M is full-rank, then the quantum player cannot have
any advantage.

Theorem 3. Suppose that the two players of the game Eq. (8) share a symmetric
state ρ, measuring which gives a classical correlated equilibrium. Then Player 1
(who is quantum) does not have any advantage if M in Eq. (12) is full-rank.

Proof. By Lemma 1, for any 0 ≤ k, j ≤ n − 1 we have

n−1∑
i=0

p1(i)|〈k|ψi〉|2 · 〈j|σi|j〉 =
1
n2

Summing over j, we obtain another equality

n−1∑
i=0

p1(i)|〈k|ψi〉|2 =
1
n

.

Combining these two equalities, we have

n−1∑
i=0

|〈k|ψi〉|2 · p1(i)
(

〈j|σi|j〉 − 1
n

)
= 0.

Define a matrix A = [a(i, j)]ij ∈ R
n×n by a(i, j) = p1(i)

(〈j|σi|j〉 − 1
n

)
. Then

the above equality is just
∑

i M(k, i)a(i, j) = 0 for all k, j. In other words,
we have M · A = 0. Since the matrix M is assumed to be full-rank, we have
A = M−10 = 0. The conclusion thus follows by Lemma 2.

Two corollaries are in order. First, note that M is full-rank for a generic
orthogonal basis {|ψi〉}, it is generically true that no discord implies no quantum
advantage.

Corollary 4. If a set of orthonormal basis {|ψi〉} is picked uniformly at random,
then with probability 1, the quantum player does not have any advantage.

The second corollary considers the case of n = 2, which is settled by the
above theorem completely. Indeed, when n = 2, the rank of M is either 1 or 2.
The rank-2 case is handled by the above theorem. If the rank is 1, it is not hard

to see that the only possible M is M =
[
1/2 1/2
1/2 1/2

]
. In this case, for any i and

any k it holds that

〈k|σi|k〉 = 〈k|
(∑

j

p(j|i)|ψj〉〈ψj |
)
|k〉 =

∑
j

p(j|i)|〈k|ψj〉|2 =
1
2

∑
j

p(j|i) =
1
2
.

Applying Lemma 2, we thus get the following corollary.

Corollary 5. There is no quantum advantage for the game defined in Eq. (1)
on any symmetric state ρ with zero discord.

320 Z. Wei and S. Zhang

3.2 Case 2: M Is Not Full Rank

Somewhat surprisingly, the quantum player can have an advantage when M is
not full-rank. In this section we exhibit a counterexample for n = 3. In this case,
recall that the payoff matrices are

U1 =

⎛
⎝

2 −1 −1
−1 2 −1
−1 −1 2

⎞
⎠ and U2 =

⎛
⎝

−2 1 1
1 −2 1
1 1 −2

⎞
⎠ . (13)

We consider the following quantum state,

ρ =
2∑

i,j=0

p(i, j)|ψi〉〈ψi| ⊗ |ψj〉〈ψj |, (14)

where

|ψ0〉 =
1√
2

(|0〉 + |1〉) , |ψ1〉 =
1√
2

(|0〉 − |1〉) , |ψ2〉 = |2〉. (15)

It is not hard to calculate M :

M =

⎛
⎝

1/2 1/2 0
1/2 1/2 0
0 0 1

⎞
⎠ . (16)

which has rank 2. Define

P =

⎛
⎝

4/9 0 0
0 0 2/9
0 2/9 1/9

⎞
⎠ . (17)

It can be easily verified that if the two players measure the state in computa-
tional basis, the probability distribution yielded is uniform, which is a classical
Nash equilibrium.

Now suppose that Player 1 uses a quantum computer. One can verify that the
condition in Lemma 2 does not hold. For a concrete illustration, let us consider
the protocol in Lemma 2 again. Player 1 first measures in the basis {|+〉, |−〉, |2〉}.
With probability 4/9, she observes |+〉, then changes it to |0〉. Player 2’s state
is also |+〉 in this case, thus a measurement in the computational basis gives the
|00〉 and |01〉 each with half probability. Thus Player 1’s payoff in this case is
2· 12 −1· 12 = 1

2 . The second case is that Player 1 observes |−〉, which happens with
probability 2/9, and Player 2’s state is |2〉 for sure. Player 1 changes her part to
|2〉, and gets payoff 2. The third case is that Player 1 observes |2〉, which happens
with probability 1/3, leaving Player 2 σ3 = (2/3)|1〉〈1| + (1/3)|2〉〈2|. Player 1
then changes her qubit to |1〉, collides with Player 2’s outcome with probability
1/3, thus Player 1’s payoff is 2 · 1

3 − 1 · 2
3 = 0. On average, the quantum player

has a payoff of (4/9)(1/2) + (2/9) · 2 + (1/3) · 0 = 2/3.

Quantum Game Players Can Have Advantage Without Discord 321

It should be pointed out that the matrix P achieving the quantum advantage
of 2/3 is not unique. For example, the following matrix also works with the same
effect:

P =

⎛
⎝

2/9 2/9 0
0 0 2/9

1/9 1/9 1/9

⎞
⎠ . (18)

3.3 Optimization

In this subsection, we show that the 3-dimensional example in the above subsec-
tion is actually optimal for M defined in Eq. (16). Actually the theorem below
shows more. Note that if the rank of M is 1, it is easy to prove that M must
be the uniform matrix, and the quantum advantage must be zero, thus in the
following we suppose the rank of M to be 2.

Theorem 6. Suppose that measuring the state ρ gives a classical correlated equi-
librium. Suppose the columns of M are M0,M1 and M2. Without loss of gen-
erality, suppose M0 = xM1 + (1 − x)M2, where 0 ≤ x ≤ 1. Then the quantum
advantage

QA ≤ 1
3

+
1

3xb
, where xb = max{x, 1 − x}. (19)

Proof. By Lemma 1, for any 0 ≤ k, l ≤ 2 we have
∑2

i,j=0 p(i, j)|〈k|ψi〉|2 ·
|〈l|ψj〉|2 = 1

9 ., which turns out to be equivalent to M · P · MT = J
9 . Noting

that M · (J/9) · MT = J/9, we know that P can be expressed as

P =
J

9
+ P̄ , (20)

where M ·P̄ ·MT = 0. By straightforward calculation, one can show that Eq. (20)
indicates M · P̄ = 0. Considering the form of M , P̄ can now be expressed as

P̄ =

⎛
⎝

k0 k1 k2
−k0x −k1x −k2x

−k0(1 − x) −k1(1 − x) −k2(1 − x)

⎞
⎠ , (21)

where k0, k1 and k2 are real numbers.
According to the discussion above, we know that the maximal quantum

advantage is

QA =
2∑

i=0

p1(i)[2 · 〈li|σi|li〉 − 1 · (1 − 〈li|σi|li〉)], (22)

where li = maxl〈l|σi|l〉. Then it holds that

QA = 3
2∑

i=0

p1(i) · 〈li|σi|li〉 − 1 = 3
2∑

i,j=0

p(i, j)|〈li|ψj〉|2 − 1

= 3
2∑

i,j=0

(
1
9

+ p̄(i, j)
)

|〈li|ψj〉|2 − 1 = 3
2∑

i=0

⎛
⎝

2∑
j=0

p̄(i, j)|〈li|ψj〉|2
⎞
⎠ ,

322 Z. Wei and S. Zhang

where p̄(i, j) is the element of P̄ . At the same time, it can be obtained that
li = maxl

∑
j p̄(i, j)|〈l|ψj〉|2. Besides, recall that the rank of M is 2, then there

must be one row of M , say M2, has the form of aM0 + (1 − a)M1, where M0

and M1 are the other two rows of M , and 0 ≤ a ≤ 1. Then it can be known
that every li must be 0 or 1. Based on the form of P̄ , we have that l0
= l1 = l2.
Without loss of generality, we suppose l0 = 0, and l1 = l2 = 1. Then

QA = 3
2∑

j=0

p̄(0, j)|〈0|ψj〉|2 + 3
2∑

j=0

(p̄(1, j) + p̄(2, j))|〈1|ψj〉|2

= 3
2∑

j=0

p̄(0, j)|〈0|ψj〉|2 − 3
2∑

j=0

p̄(0, j)|〈1|ψj〉|2.

Note that P̄+J/9 is a matrix with nonnegative elements. Thus, for any 0 ≤ i ≤ 2,
if ki ≥ 0 we have −kix ≥ − 1

9 and − ki(1 − x) ≥ − 1
9 , and if ki < 0, we

have −ki ≤ 1
9 . And the above inequality indicates that if 0 < x < 1, ki ≤

1
9x and ki ≤ 1

9(1−x) , which is equivalent to ki ≤ 1
9xb

. Actually, this also holds
when x = 0 or x = 1. Therefore, we obtain that

QA = 3
2∑

j=0

p̄(0, j)|〈0|ψj〉|2 − 3
2∑

j=0

p̄(0, j)|〈1|ψj〉|2

= 3
2∑

j=0

kj |〈0|ψj〉|2 − 3
2∑

j=0

kj |〈1|ψj〉|2 ≤ 3 · 1
9xb

+ 3 · 1
9

=
1
3

+
1

3xb
,

where the relationship
∑

j |〈0|ψj〉|2 =
∑

j |〈1|ψj〉|2 = 1 is utilized.

Go back to the example in the above subsection. Note that for M in Eq. (16)
we have M0 = 1 · M1 + 0 · M2(thus in order to utilize Theorem 6, we need to
adjust the order of the columns). Thus we can choose x = 0, and then xb = 1.
As a result, the discussion above shows that QA ≤ 2/3, which means the choice
of P in Eq. (17) is optimal for M in Eq. (16).

Open Problems. From the mathematical perspective, some questions remain
open. Two of them are listed as below: (1) What is the maximum gain in a
zero-sum [−1, 1]-normalized game2 on a state in symmetric subspace without
entanglement? (2) What is the maximum gain in a zero-sum [−1, 1]-normalized
game on a state in symmetric subspace without discord?

Acknowledgments. Z.W. thanks Leong Chuan Kwek and Luming Duan for helpful
comments. Z.W. was supported by the Singapore National Research Foundation under
NRF RF Award No. NRF-NRFF2013-13 and the WBS grant under contract no. R-710-
000-007-271. S.Z. was supported by Research Grants Council of the Hong Kong (Project
no. CUHK419011, CUHK419413), and this research benefited from visits to Tsinghua

2 A game is [−1, 1]-normalized if all utility functions have ranges within [−1, 1].

Quantum Game Players Can Have Advantage Without Discord 323

University partially supported by China Basic Research Grant 2011CBA00300 (sub-
project 2011CBA00301) and to Centre for Quantum Technologies partially under their
support.

References

[Aum74] Aumann, R.: Subjectivity and correlation in randomized strategies. J.
Math. Econ. 1, 67–96 (1974)

[BCMdW10] Buhrman, H., Cleve, R., Massar, S., de Wolf, R.: Nonlocality and com-
munication complexity. Rev. Mod. Phys. 82, 665–698 (2010)

[BH01] Benjamin, S., Hayden, P.: Comment on “quantum games and quantum
strategies”. Phys. Rev. Lett. 87(6), 069801 (2001)

[CT06] Cheon, T., Tsutsui, I.: Classical and quantum contents of solvable game
theory on hilbert space. Phys. Lett. A 348, 147–152 (2006)

[DSC08] Datta, A., Shaji, A., Caves, C.M.: Quantum discord and the power of
one qubit. Phys. Rev. Lett. 100, 050502 (2008)

[DVB10] Dakic, B., Vedral, V., Brukner, C.: Necessary and sufficient condition for
nonzero quantum discord. Phys. Rev. Lett. 105, 190502 (2010)

[EWL99] Eisert, J., Wilkens, M., Lewenstein, M.: Quantum games and quantum
strategies. Phys. Rev. Lett. 83(15), 3077–3080 (1999)

[HMR+10] Hallgren, S., Moore, C., Roetteler, M., Russell, A., Sen, P.: Limitations of
quantum coset states for graph isomorphism. J. ACM 57(6), 1–33 (2010)

[JSWZ13] Jain, R., Shi, Y., Wei, Z., Zhang, S.: Efficient protocols for generating
bipartite classical distributions and quantum states. IEEE Trans. Inf.
Theor. 59(8), 5171–5178 (2013)

[KZ12] Kerenidis, I., Zhang, S.: A quantum protocol for sampling correlated
equilibria unconditionally and without a mediator. In: Kawano, Y. (ed.)
TQC 2012. LNCS, vol. 7582, pp. 13–28. Springer, Heidelberg (2012)

[Mey99] Meyer, D.: Quantum strategies. Phys. Rev. Lett. 82(5), 1052–1055 (1999)
[Nas51] Nash, J.: Non-cooperative games. The Ann. Math. 54(2), 286–295 (1951)
[OR94] Osborne, M.J., Rubinstein, A.: A Course in Game Theory. MIT Press,

Cambridge (1994)
[OZ01] Ollivier, H., Zurek, W.H.: Quantum discord: a measure of the quantum-

ness of correlations. Phys. Rev. Lett. 88, 017901 (2001)
[PKL+15] Pappa, A., Kumar, N., Lawson, T., Santha, M., Zhang, S., Diamanti, E.,

Kerenidis, I.: Nonlocality and conflicting interest games. Phys. Rev. Lett.
114, 020401 (2015)

[vEP02] van Enk, S.J., Pike, R.: Classical rules in quantum games. Phys. Rev. A
66, 024306 (2002)

[Vid03] Vidal, G.: Efficient classical simulation of slightly entangled quantum
computations. Phys. Rev. Lett. 91, 147902 (2003)

[VNRET97] Vazirani, V., Nisan, N., Roughgarden, T., Éva, T.: Algorithmic Game
Theory. Cambridge University Press, New York (1997)

[WZ13] Wei, Z., Zhang, S.: Full characterizing quantum correlated equilibria.
Quantum Inf. Comput. 13(9–10), 0846–0860 (2013)

[Zha12] Zhang, S.: Quantum strategic game theory. In: Proceedings of the 3rd
Innovations in Theoretical Computer Science, pp. 39–59 (2012)

[ZWC+12] Zu, C., Wang, Y., Chang, X., Wei, Z., Zhang, S., Duan, L.: Experimen-
tal demonstration of quantum gain in a zero-sum game. New J. Phys.
14(033002), 39–59 (2012)

Quantum Circuits for the
Unitary Permutation Problem

Stefano Facchini1 and Simon Perdrix2(B)

1 LIG, University of Grenoble Alpes, 38000 Grenoble, France
stefano.facchini@imag.fr

2 CNRS, LORIA, Inria Project Team Carte, Nancy, France
simon.perdrix@loria.fr

Abstract. We consider the Unitary Permutation problem which con-
sists, given n unitary gates U1, . . . , Un and a permutation σ of {1, . . . , n},
in applying the unitary gates in the order specified by σ, i.e. in perform-
ing Uσ(n) ◦ . . . ◦ Uσ(1).

This problem has been introduced and investigated in [6] where two
models of computations are considered. The first is the (standard) model
of query complexity: the complexity measure is the number of calls to
any of the unitary gates Ui in a quantum circuit which solves the prob-
lem. The second model provides quantum switches and treats unitary
transformations as inputs of second order. In that case the complexity
measure is the number of quantum switches. In their paper, Colnaghi
et al. [6] have shown that the problem can be solved within n2 calls in

the query model and n(n−1)
2

quantum switches in the new model, more-
over both results was claimed to be optimal.

We refine these results and contradict their optimality, by proving that
n log2(n) + Θ(n) quantum switches are necessary and sufficient to solve
this problem, whereas n2 − 2n + 4 calls are sufficient to solve this prob-
lem in the standard quantum circuit model. We prove, with an additional
assumption on the family of gates used in the circuits, that n2−o(n7/4+ε)
queries are required, for any ε > 0. The upper and lower bounds for the
standard quantum circuit model are established by pointing out connec-
tions with the permutation as substring problem introduced by Karp.

1 Introduction

The problem of applying two unitary gates U and V in an order specified by a
control bit x is a natural problem: one wants to apply V U if x = 0 and UV if
x = 1. Surprisingly, Chiribella et al. [4] showed that in the standard model of
quantum circuits, this task cannot be realised using a single call to U and a single
call to V , whereas, in the lab, a simple procedure can be implemented – using
standard tools in quantum optics for instance – that performs this task using a
single call to U and single call to V (see [4] for details). To model such procedure,
they introduced the notion of quantum switch (QS) which is a gate that inputs
two unitary transformations and a control bit and performs a switch or not of the
unitary transformations depending on the control bit: QS(x,U0, U1) = (Ux, Ux̄).
c© Springer International Publishing Switzerland 2015
R. Jain et al. (Eds.): TAMC 2015, LNCS 9076, pp. 324–331, 2015.
DOI: 10.1007/978-3-319-17142-5 28

Quantum Circuits for the Unitary Permutation Problem 325

To point out a separation between the standard model of quantum circuits
and the quantum switch model, Colnaghi et al. [6] considered the generalisa-
tion of the previous problem: given n unitary transformations U1, . . . , Un, and
a permutation σ of [n], the task consists in performing Uσ(n) ◦ . . . Uσ(1), where
[n] denotes the interval {1, . . . , n}. This problem is called the Unitary Permu-
tation problem of size n or UPn problem for short. They proved that the UPn

problem can be solved within n2 queries in the standard model of quantum cir-
cuits whereas n(n−1)

2 quantum switches suffice to solves this problem. Moreover,
they claimed the optimality of their constructions in both cases. However, we
improve both constructions: in the standard model of quantum circuits we show
that n2 − 2n + 4 queries are sufficient. To this end we reduce the problem to the
existence of a complete sequence over the set {1, . . . , n}, i.e. a sequence which
contains all permutations of [n] as subsequences. This problem has been origi-
nally introduced by Karp [5, Problem 36] and bounds on the size of the minimal
complete sequences are known [1,7,11].

Moreover, we show that the complexity of the problem in the quantum switch
model is n log2(n) + Θ(n). This problem is actually strongly related to the clas-
sical problem of permutation networks [14], i.e. the problem of implementing a
permutation in the classical binary circuit model.

2 Bounds for the Standard Model

In [6] a simple circuit is provided which solves UPn within n2 calls to the unitary
gates. The circuit is made of n + 1 layers, each composed of controlled-swaps,
interspersed by n Ui’s in parallel (see Fig. 1).

|0〉
|0〉
|0〉
|φ〉
|σ〉

R0 R1 R2 R3 R4

U1

U2

U3

U4

U1

U2

U3

U4

U1

U2

U3

U4

U1

U2

U3

U4

Fig. 1. Circuit introduced by Colnaghi et al. [6] for the UPn problem.

Each layer of generalised controlled-swap (ΛRi) performs a rewiring of the
qubits: the first layer maps qubit 1 (the data qubit) to qubit σ(1), on which
Uσ(1) is applied, then the second layer of controlled-swap maps qubit σ(1) to
qubit σ(2) and so on.

In this section we provide a more efficient circuit to solve UPn using the
permutation as substrings problem introduced by Karp (see [5], Problem 36).

326 S. Facchini and S. Perdrix

|0〉
|φ〉
|σ〉

R0 R1 R2 R3 R4 R5 R6 R7
U1 U2 U1 U3 U1 U2 U1

Fig. 2. Circuit based on complete sequences for the UPn problem.

A sequence over the finite set [n] is complete if it contains all permutations of
[n] as a (not necessarily consecutive) subsequence. For instance w = 1213121 is
a complete sequence for n = 3. Finding the shortest complete sequence is known
as the permutation as substring problem.

Definition 2.1. Given n ≥ 1, let S(n) be the size of the shortest sequence over
[n] which contains each permutation of [n] as a subsequence.

Sequences of size n2 − 2n + 4 are known to be complete [1,7,9,11,13], and n2 −
2n + 4 is actually the size of the shortest complete subsequences for 3 ≤ n ≤ 7.
When n ≥ 10, the size of the shortest complete sequence is upper bounded by
n2−2n+3 [15], whereas the best known upper bound for n ≥ 13 is �n2− 7

3n+ 19
3 �

[12]. Regarding the lower bound, Kleitman and Kwiatkowski [8] proved that
S(n) ≥ n2 − Cεn

7/4+ε for any ε > 0 where Cε is a constant depending on ε.

Theorem 2.2. There exists a quantum circuit which solves the UPn problem
with S(n) calls.

Proof. Given a complete sequence w of [n] of size S(n), for any permutation
σ of [n] let fσ be the indices of a subsequence of w which corresponds to σ,
i.e. fσ : [n] → [S(n)] is an increasing function s.t. ∀i ∈ [n], σ(i) = wfσ(i). We
consider the circuit acting on 3 sub-registers: the control register which contains
the description of the permutation σ, the second register is the data register,
and the third one is an auxiliary register initialised in an arbitrary state, say |0〉.
The circuit is composed of n+1 layers of “controlled-swap” gates ΛR0, . . . ,ΛRn

defined as

ΛRi |σ,x,y〉 =

{
|σ, x, y〉 if both or none of i and i+1 are in Im(fσ)
|σ, y, x〉 otherwise

where Im(fσ) = {fσ(i) | i ∈ [n]} is the image of fσ. The unitary transformations
ΛRi−1 and ΛRi are interspersed by a call to Uwi

on the auxiliary register and the
identity on the data register. Given a permutation σ, the Ri act either as a swap
or as the identity in such a way that the unitary transformations applied on the
data register are Uσ(1) then Uσ(2) and so on. An example of complete sequence
for n = 3 is w = 1213121 which leads to the circuit described in Fig. 2. ��

Corollary 2.3. The UPn problem can be solved within n2 − 2n + 4 calls in the
standard model.

Quantum Circuits for the Unitary Permutation Problem 327

Solving the UPn problem within n2 − 2n + 4 calls contradicts Theorem 2 in
[6] which claims that Colnaghi et al. construction is the most efficient imple-
mentation of a circuit which solves the unitary permutation problem. Indeed,
Corollary 2.3 implies that construction in [6] is not optimal in terms of number of
calls, however in terms of depth or total number of quantum operations our result
does not disprove the optimality of the construction proposed by Colnaghi et al.

We conjecture that S(n) is also a lower bound on the number of calls nec-
essary to solve the unitary permutation problem in the standard model, which
would imply that any circuit which solves the unitary permutation problem uses
at least n2 − o(n7/4+ε) queries for any ε > 0.

Conjecture 2.4. The UPn problem requires n2−o(n7/4+ε) calls in the standard
quantum circuit model, for any ε > 0.

We prove the conjecture in a particular setting where only rewiring gates – like
controlled swaps – are allowed.

Definition 2.5 (Rewiring gates). A rewiring gate R is a unitary gate acting
on a control register and a k-qubit target register as follows: for any permutation
σ of [n], R |σ, x1, . . . xk〉 = |σ, xτ1 , . . . xτk

〉 where τ is a permutation of [k] which
depends on σ.

Lemma 2.6. Any circuit composed of rewiring gates and calls to the Ui which
solves the UPn problem is composed of at least n2 − o(n7/4+ε) calls to the oracle
for any ε > 0.

Proof. The circuit that solves the UPn problem has 3 inputs: the permutation
|σ〉, the input state |φ〉 and some ancillary qubits that we assume w.l.o.g. in
the state |0〉. The calls to the oracle are performed in a certain order, inde-
pendent of the permutation σ, which can be represented by a sequence w over
the set {1, . . . , n}: the first call is to Uw1 , the second to Uw2 and so on. If
two or more calls are made in parallel we arbitrarily sequentialise the calls.
Each call to the oracle is preceded and followed by a rewiring gate (or by the
identity which is a particular rewiring gate). Thus for any fixed input permu-
tation σ, the input state goes through some of the U -gates. So the applied
unitary is Uτ(m) . . . Uτ(1) for some sub sequence τ of w of size m, such that
Uσ(n) . . . Uσ(1) = αUτ(m) . . . Uτ(1) for some α ∈ C (unitary transformations
are usually defined up to a global phase). We consider the following particu-
lar family of unitary gates Uj acting on 2 registers as follows ∀d ∈ N,∀x ∈
{0, 1}, Uj |d, x〉 = eixjnd |d + 1, x〉. Uσ(n) . . . Uσ(1) = αUτ(m) . . . Uτ(1) implies
Uσ(n) . . . Uσ(1) |0, 0〉 = αUτ(m) . . . Uτ(1) |0, 0〉 so |n, 0〉 = α |m, 0〉, as a conse-
quence α = 1 and n = m. Moreover Uσ(n) . . . Uσ(1) |0, 1〉 = Uτ(n) . . . Uτ(1) |0, 1〉
=⇒ ei

∑n−1
d=0 σ(d)nd |n, 1〉 = ei

∑n−1
d=0 τ(d)nd |n, 1〉, thus τ = σ. As a consequence

any permutation is a subsequence of w, so w is complete and its size, i.e. the
number of calls, is at least n2 − Cεn

7/4+ε, for any ε > 0 [8]. So, for any ε > 0,
the minimal number of calls is at least n2 − C ε

2
n7/4+ ε

2 = n2 − o(n7/4+ε). ��

328 S. Facchini and S. Perdrix

Although the unitary permutation problem seems to be strongly related to the
permutation as substring problem, Conjecture 2.4 is false if one considers a slightly
different model. For instance, theUPn problem can be solved with a non zero prob-
ability using n calls only. Such circuit is based on the quantum teleportation and
generalises the construction given for the particular case n = 2 in [4]. In a post-
selected quantum circuit model where one can choose the outcome of each mea-
surement among those which occur with a non zero probability, the UPn problem
can be solved within n calls. The probabilistic and postselection settings point out
that the proof of Conjecture 2.4 should rely on some fundamental properties of the
quantum circuits, like causality. In [4], the case n = 2 of the conjecture is proved.
The proof is based on the fact that time loops are forbidden in quantum circuits.

3 Bounds for the Quantum Switch Circuit Model

A quantum switch (QS) is a gate that inputs two unitary transformations and a
control bit and performs a switch or not of the unitary transformations depend-
ing on the control qubit: QS(x,U0, U1) = (Ux, Ux̄). Following [6], QS gate are
represented as follows.

In [6], it is proved that the following network (for n = 4) solves the unitary
permutation problem:

More generally, the UPn problems can be solved using n(n−1)
2 quantum

switches as described in Fig. 3.
Even if this network is claimed to solve the UPn problem in the most effi-

cient way, minimising the number of QS (Theorem 3 in [6]), we show that the
problem can be solved much more efficiently using n log2(n) QS only. The flaw in
Theorem 3 in [6] comes from the fact that the authors claim that a permutation
on [n] needs to be specified by the relative ordering of each pair of different
unitaries, whereas any permutation is characterised by n − 1 pairs of unitaries.

Quantum Circuits for the Unitary Permutation Problem 329

Fig. 3. Inductive definition of Cσ, where σ\n is the permutation over [n−1] and x
(n)
i

are control bits defined as follows: ∀i ∈ [1, σ−1(n)), σ\n(i) := σ(i) and x
(n)
i := 0,

∀i ∈ [σ−1(n), n), σ\n(i) := σ(i + 1) and x
(n)
i := 1. Intuitively, Cσ\n

produces the
permutation of the {Ui, 1≤i<n} according to σ\n, then Un is added at the appropriate
position. The number sn of QS in the circuit Cσ which solves the UPn problem satisfies
sn+1 = sn + n and s1 = 0, thus sn = n(n−1)

2
.

To prove that n log2(n) QS are sufficient to solve the UPn problem, we use the
Beneš network that solves the classical permutation network problem [2,10,14].

Lemma 3.1. For any n ≥ 1 there exists a circuit composed of less than n log2(n)
QS which solves the UPn problem.

Proof. Following the definition of the Beneš networks used for implementing
arbitrary permutations (see [14] when n is a power of two and [3] in the general
case), let B(n) be a QS-circuit inductively defined as follows – where the control
bits are omitted – depending on the parity of the number of inputs. For any n > 0,

• B(2n) is defined as follows:

B(n)

B(n)

QS

QS

QS

QS

QS

QS

QS

U1

U2

U3

U4

U2n−3

U2n−2

U2n−1

U2n

Uσ(1)

Uσ(2)

Uσ(3)

Uσ(4)

Uσ(2n−3)

Uσ(2n−2)

Uσ(2n−1)

Uσ(2n)

330 S. Facchini and S. Perdrix

• B(2n+1) is defined as follows:

B(n)

B(n+1)

QS

QS

QS

QS

QS

QS

U1

U2

U3

U4

U2n−1

U2n

U2n+1

Uσ(1)

Uσ(2)

Uσ(3)

Uσ(4)

Uσ(2n−1)

Uσ(2n)

Uσ(2n+1)

Moreover we define B(1) to be the identity. Notice that according to this defin-
ition, B(2) is, as expected, a single QS. Beneš networks are known to implement
any permutation, see for instance [14] for a proof. Roughly speaking, given a
permutation σ, the control bits can be assigned as follows: assume n is even, the
first input i.e., the input which is associated with U1, has to be connected to
the output σ−1(1) through the bottom subnetwork. Thus the control bit of the
right QS connected to the output σ−1(1) is forced by this constraint. Moreover,
for the output u = σ−1(1) ± 1 which is connected to the same right QS as the
output σ−1(1), the path from its corresponding input σ(u) has to go through
the upper subnetwork, which forces the control bit of the left QS connected to
σ(u). Then the constraint is propagated to the input u ± 1 which is connected
to the same left QS as u and so on. These constraints propagate until a loop is
created. At that step if not all the control bits have been assigned, a control bit
of a left QS which has not been assigned yet is assigned to 0, and the constraints
generated by this assignment are propagated, and so on, until all control bits
have been assigned.
Regarding the number of QS, the size bn of the Beneš network B(n) satisfies
b2n = 2n − 1 + 2bn, b2n+1 = 2n + bn + bn+1, and b(1) = 0. As a consequence, for
any n > 0, bn ≤ n log2(n). ��
The previous circuit is optimal, indeed any circuit which solves the UPn problem
is composed of at least n log2(n) − 2n QS gates:

Lemma 3.2. For any n ≥ 1, a QS circuit solving the UPn problem is composed
of at least �log2(n!)� ≥ n log2(n) − 2n quantum switches.

Proof. A circuit composed of k quantum switches can produce at most 2k

different orderings of the Ui. As the Ui can be chosen such that for every distinct
permutations σ, τ , Uσ(n) . . . Uσ(1) �= Uτ(n) . . . Uτ(1) (see proof of Lemma 2.6), 2k

must be larger than n! the number of possible permutations. So k ≥ �log2(n!)� ≥
n log2(n) − n−1

ln(2) ≥ n log2(n) − 2n. ��

Quantum Circuits for the Unitary Permutation Problem 331

Acknowledgements. The authors want to thank G. Chiribella, P. Perinotti, and B.
Valiron for fruitful discutions. This work has been funded by the ANR-10-JCJC-0208
CausaQ grant.

References

1. Adleman, L.: Short permutation strings. Discrete Math. 10, 197 (1974)
2. Beneš, V.: Mathematical Theory of Connecting Networks and Telephone Traffic.

Academic Press, New York (1965)
3. Chang, C., Melhem, R.: Arbitrary size benes networks. Parallel Process. Lett. 7,

279–284 (1997)
4. Chiribella, G., D’Ariano, G.M., Perinotti, P., Valiron, B.: Quantum computations

without definite causal structure. Phys. Rev. A 88, 022318 (2013)
5. Chvátal, V., Klarner, D.A., Knuth, D.E.: Selected combinatorial research problems.

Technical report 292 (1972)
6. Colnaghi, T., D’Ariano, G.M., Facchini, S., Perinotti, P.: Quantum computation

with programmable connections between gates. Phys. Lett. A 376, 2940 (2012)
7. Galbiati, G., Preparata, F.P.: On permutation embedding sequences. SIAM J.

Appl. Math. 30, 421 (1976)
8. Kleitman, D., Kwiatkowsky, D.: A lower bound on the length of a sequence con-

taining all permutations as subsequences. J. Comb. Theory Ser. A 21, 129 (1976)
9. Mohanty, S.P.: Shortest string containing all permutations. Discrete Math. 31, 91

(1980)
10. Nassimi, D., Sahni, S.: A self-routing benes network and parallel permutation algo-

rithms. IEEE Trans. Comput. 30, 332 (1981)
11. Newey, M.: Notes on a problem involving permutations as subsequences. Technical

report 340 (1973)
12. Radomirović, S.: A construction of short sequences containing all permutations of

a set as subsequences. Electron. J. Comb. 19, 31 (2012)
13. Savage, C.: Short strings containing all k-element permutations. Discrete Math.

42, 281 (1982)
14. Waksman, A.: A permutation network. J. Ass. Comput. Mach. 15, 159 (1968)
15. Zălinescu, E.: Shorter strings containing all k-element permutations. Inf. Process.

Lett. 111, 605 (2011)

Parallelism and Statistics

Algorithms in the Ultra-Wide Word Model

Arash Farzan1, Alejandro López-Ortiz2, Patrick K. Nicholson3,
and Alejandro Salinger4(B)

1 Facebook Inc., New York, NY, USA
afarzan@fb.com

2 David R. Cheriton School of Computer Science, University of Waterloo,
Waterloo, ON, Canada
alopez-o@uwaterloo.ca

3 Max-Planck-Institut Für Informatik, Saarbrücken, Germany
pnichols@mpi-inf.mpg.de

4 SAP SE, Walldorf, Germany
alejandro.salinger@sap.com

Abstract. The effective use of parallel computing resources to speed up
algorithms in current multi-core parallel architectures remains a difficult
challenge, with ease of programming playing a key role in the even-
tual success of various parallel architectures. In this paper we consider
an alternative view of parallelism in the form of an ultra-wide word
processor. We introduce the Ultra-Wide Word architecture and model,
an extension of the word-ram model that allows for constant time oper-
ations on thousands of bits in parallel. Word parallelism as exploited by
the word-ram model does not suffer from the more difficult aspects of
parallel programming, namely synchronization and concurrency. For the
standard word-ram algorithms, the speedups obtained are moderate, as
they are limited by the word size. We argue that a large class of word-
ram algorithms can be implemented in the Ultra-Wide Word model,
obtaining speedups comparable to multi-threaded computations while
keeping the simplicity of programming of the sequential ram model.
We show that this is the case by describing implementations of Ultra-
Wide Word algorithms for dynamic programming and string searching.
In addition, we show that the Ultra-Wide Word model can be used to
implement a non-standard memory architecture, which enables the side-
stepping of lower bounds of important data structure problems such as
priority queues and dynamic prefix sums. While similar ideas about oper-
ating on large words have been mentioned before in the context of mul-
timedia processors [27], it is only recently that an architecture like the
one we propose has become feasible and that details can be worked out.

1 Introduction

In the last few years, multi-core architectures have become the dominant com-
mercial hardware platform. The potential of these architectures to improve per-
formance through parallelism remains to be fully attained, as effectively using
all cores on a single application has proven to be a difficult challenge. In this
c© Springer International Publishing Switzerland 2015
R. Jain et al. (Eds.): TAMC 2015, LNCS 9076, pp. 335–346, 2015.
DOI: 10.1007/978-3-319-17142-5 29

336 A. Farzan et al.

paper we introduce the Ultra-Wide Word architecture and model of computa-
tion, an alternate view of parallelism for a modern architecture in the form of an
ultra-wide word processor. This can be implemented by replacing one or more
cores of a multi-core chip with a very wide word Arithmetic Logic Unit (alu)
that can perform operations on a very large number of bits in parallel.

The idea of executing operations on a large number of bits simultaneously
has been successfully exploited in different forms. In Very Long Instruction Word
(VLIW) architectures [14], several instructions can be encoded in one wide word
and executed in one single parallel instruction. Vector processors allow the exe-
cution of one instruction on multiple elements simultaneously, implementing
Single-Instruction-Multiple-Data (SIMD) parallelism. This form of parallelism
led to the design of supercomputers such as the Cray architecture family [26]
and is now present in Graphics Processing Units (GPUs) as well as in Streaming
SIMD Extensions (SSE) to scalar processors.

In 2003, Thorup [27] observed that certain instructions present in some SSE
implementations were particularly useful for operating on large integers and
speeding up algorithms for combinatorial problems. To a certain extent, some
of the ideas in the Ultra Wide Word architecture are presaged in the paper by
Thorup, which was proposed in the context of multimedia processors. Our archi-
tecture developed independently and differs on several aspects (see discussion in
full version [15]) but it is motivated by similar considerations.

As CPU hardware advances, so does the model used in theory to analyze
it. The increase in word size was reflected in the word-ram model in which
algorithm performance is given as a function of the input size n and the word
size w, with the common assumption that w = Θ(log n). In its simplest version,
the word-ram model allows the same operations as the traditional ram model.
Algorithms in this model take advantage of bit-level parallelism through packing
various elements in one word and operating on them simultaneously. Although
similar to vector processing, the word-ram provides more flexibility in that the
layout of data in a word depends on the algorithm and data elements can be
packed in an arbitrary way. Unlike VLIW architectures, the Ultra-Wide Word
model we propose is not concerned with the compiler identifying operations
which can be done in parallel but rather with achieving large speedups in imple-
mentations of word-ram algorithms through operations on thousands of bits in
parallel.

As multi-core chip designs evolve, chip vendors try to determine the best
way to use the available area on the chip, and the options traditionally are
an increased number of cores or larger caches. We believe that the current
stage in processor design allows for the inclusion of an architecture such as
the one we propose. In addition, ease of programming is a major hurdle to the
eventual success of parallel and multi-core architectures. In contrast, bit paral-
lelism as exploited by the word-ram model does not suffer from this drawback:
there is a large selection of word-ram algorithms (see, e.g., [2,11,19,21]) that
readily benefit from bit parallelism without having to deal with the more dif-
ficult aspects of concurrency such as mutual exclusion, synchronization, and
resource contention. In this sense, the advantage of an on-chip ultra-wide word

Algorithms in the Ultra-Wide Word Model 337

architecture is that it can enable word-ram algorithms to achieve speedups com-
parable to those of multi-threaded computations, while at the same time keeping
the simplicity of sequential programming that is inherent to the ram model. We
argue that this is the case by showing several examples of implementations of
word-ram algorithms using the wide word, usually with simple modifications
to existing algorithms, and extending the ideas and techniques from the word-
ram model.

In terms of the actual architecture, we envision the ultra-wide alu together
with multi-cores on the same chip. Thus, the Ultra-Wide Word architecture adds
to the computing power of current architectures. The results we present in this
paper, however, do not use multi-core parallelism.

Summary of Results. We introduce the Ultra-Wide Word architecture and
model, which extends the w-bit word-ram model by adding an alu that oper-
ates on w2-bit words. We show that several broad classes of algorithms can be
implemented in this model. In particular:

– We describe Ultra-Wide Word implementations of dynamic programming
algorithms for the subset sum problem, the knapsack problem, the longest
common subsequence problem, as well as many generalizations of these prob-
lems. Each of these algorithms illustrates a different technique (or combination
of techniques) for translating an implementation of an algorithm in the word-
ram model to the Ultra-Wide Word model. In all these cases we obtain a
w-fold speedup over word-ram algorithms.

– We also describe Ultra-Wide Word implementations of popular string search-
ing algorithms: the Shift-And/Shift-Or algorithms [3,28] and the Boyer-Moore-
Horspool algorithm [22]. Again, we obtain a w-fold speedup over the original
algorithms.

– Finally, we show that the Ultra-Wide Word model is powerful enough to
simulate a non-standard memory architecture in which bytes can overlap,
which we shall call fs-ram [16]. This allows us to implement data structures
and algorithms that circumvent known lower bounds for the word-ram model.

Due to space constraints, we only present a high-level description of our
results. The full details can be found in the full version of this paper [15].

2 The Ultra-Wide Word-RAM Model

The Ultra-Wide word-ram model (uw-ram) we propose is an extension of the
word-ram model. The word-ram is a variant of the ram model in which a
word has length w bits, and the contents of memory are integers in the range
{0, . . . , 2w −1} [19]. This implies that w ≥ log n, where n is the size of the input,
and a common assumption is w = Θ(log n) (see, e.g., [7,24]). Algorithms in this
model take advantage of the intrinsic parallelism of operations on w-bit words.
We provide a more detailed description of the word-ram in the full version [15].

The Ultra-Wide word-ram model extends the word-ram model by introduc-
ing an ultra-wide alu with w2-bit wide words. The ultra-wide alu supports the

338 A. Farzan et al.

basic operations available in a word-ram on the entire word at once. As in the
word-ram model, the available set of instructions can be assumed to be those of
the restricted, multiplication, or the AC0 models. For the results in this paper
we assume the instructions of the restricted model (addition, subtraction, left
and right shift, and bitwise boolean operations), plus two non-standard straight-
forward AC0 operations that we describe at the end of this section.

The model maintains the standard w-bit alu as well as w-bit memory address-
ing. In general, we use the parameter w for the word size in the description and
analysis of algorithms, although in some cases we explicitly assume w = Θ(log n).
In terms of real world parameters, the wide word in the ultra-wide alu would
presently have between 1,000 and 10,000 bits and could increase even further in the
future. In reality, the addition of an alu that supports operations on thousands on
bits would require appropriate adjustments to the data and instruction caches of
a processor as well as to the instruction pipeline implementation. Similarly to the
abstractions made by the ram and word-ram models, the uw-ram model ignores
the effects of these and other architectural features and assumes that the execution
of instructions on ultra-wide words is as efficient as the execution of operations on
regular w-bit words, up to constant factors.

Provided that the uw-ram supports the same operations as the word-ram,
the techniques to achieve bit-level parallelism in the word-ram extend directly
to the uw-ram. However, since the word-ram assumes that a word can be read
from memory in constant time, many operations in word-ram algorithms can
be implemented through constant time table lookups. With words of w2 bits, we
cannot expect to achieve constant time lookups since the size of the tables would
be prohibitive. However, the memory access operations of our model allow for
the implementation of simultaneous table lookups of several w-bit words within
a wide word, as we shall explain below.

We first introduce some notation. Let W denote a w2-bit word. Let W [i]
denote the i-th bit of W , and let W [i..j] denote the contiguous subword of
W from bit i to bit j, inclusive. The least significant bit of W is W [0], and
thus W =

∑w2−1
i=0 W [i] × 2i. For the sake of memory access operations, we

divide W into w-bit blocks. Let Wj denote the j-th contiguous block of w bits
in W , for 0 ≤ j ≤ w − 1, and let Wj [i] denote the i-th bit within Wj . Thus,
Wj = W [jw..(j+1)w−1]. The division of a wide word in blocks is solely intended
for certain memory access operations, but basic operations of the model have
no notion of block boundaries. Figure 1 shows a representation of a wide word,
depicting bits with increasing significance from left to right. In the description of
operations with wide words we generally refer to variables with uppercase letters,
whereas we use lowercase to refer to regular variables that use one w-bit word.
Thus, shifts to the left (right) by i are equivalent to division (multiplication) by
2i. In addition, we use 0 to denote a wide word with value 0. We use standard C-
like notation for operations and (‘&’), or (‘|’), not (‘∼’) and shifts (‘<<’,‘>>’).

Memory Access Operations. In this architecture w (not necessarily contigu-
ous) words from memory can be transferred into the w blocks of a wide word
W in constant time. These blocks can be written to memory in parallel as well.

Algorithms in the Ultra-Wide Word Model 339

W1W0 W2 Ww−1

lsb msb

Fig. 1. A wide word in the Ultra-Wide Word architecture. The wide word is divided
in w blocks of w bits each, shown here in increasing number of block from left to right.

As with PRAM algorithms, the memory access type of the model can be assumed
to allow or disallow concurrent reads and writes. For the results in this paper
we assume the Concurrent-Read-Exclusive-Write (CREW) model.

The memory access operations that involve wide words are of three types:
block, word, and content. We describe read accesses (write accesses are analo-
gous). A block access loads a single w-bit word from memory into a given block
of a wide word. A word access loads w contiguous w-bit words from memory
into an entire wide word in constant time. Finally, a content access uses the
contents of a wide word W as addresses to load (possibly non-contiguous) words
of memory simultaneously: for each block j within W , this operation loads from
memory the w-bit word whose address is Wj (plus possibly a base address). The
specifics of read and write operations are shown in Table 1.

Note that accessing several (possibly non-contiguous) words from memory
simultaneously is an assumption that is already made by any shared memory
multiprocessing model. While, in reality, simultaneous access to all addresses in
actual physical memory (e.g., DRAM) might not be possible, in shared memory
systems, such as multi-core processors, the slowdown is mitigated by truly par-
allel access to private and shared caches, and thus the assumption is reasonable.
We therefore follow this assumption in the same spirit.

In fact, for w equal to the regular word size (32 or 64 bits), the choice of w
blocks of w bits each for the wide word alu was judiciously made to provide the
model with a feasible memory access implementation. w2 lines to memory are
well within the realm of the possible, as they are of the same order of magnitude
(a factor of 2 or 8) as modern GPUs, some of which feature bus widths of
512 bits (see, e.g., [1,18]). We note that a more general model could feature
a wide word with k blocks of w bits each, where k is a parameter, which can
be adjusted in reality according to the feasibility of implementation of parallel
memory accesses. Although described for w blocks, the algorithms presented in
this paper can easily be adapted to work with k blocks instead. Naturally, the
speedups obtained would depend on the number of blocks assumed, but also on
the memory bandwidth of the architecture. A practical implementation with a
large number of blocks would likely suffer slowdowns due to congestion in the
memory bus. We believe that an implementation with k equal to 32 or 64 can
be realized with truly parallel memory access, leading to significant speedups.

UW-RAM Subroutines. A procedure called compress serves to bring together
bits from all blocks into one block in constant time, while a procedure called
spread is the inverse function1. Both operations can be implemented by straight-
1 These operations are also known as PackSignBits and UnPackSignBits [27].

340 A. Farzan et al.

Table 1. Wide word memory access operations of the uw-ram. mem denotes regular
ram memory, which is indexed by addresses to words, and base is some base address.

Name Input Semantics

read block W , j, base Wj ←MEM[base+j]

read word W , base for all j in parallel: Wj ←MEM[base+j]

read content W , base for all j in parallel: Wj ←MEM[base+Wj]

write block W , j, base MEM[base+j]← Wj

write word W , base for all j in parallel: MEM[base+j]← Wj

write content W , V , base for all j in parallel: MEM[base+Vj]← Wj

W1W0 W2 Ww−1
W

X

Fig. 2. The compress operation takes a wide word W whose set bits are restricted to
the first bit of each block and compresses them to the first block of a wide word.

forward constant-depth circuits. We will also use parallel comparators, a stan-
dard technique used in word-ram algorithms [19] (see details in full version [15]).
Although these are all the subroutines that we need for the results in this paper,
other operations of similar complexity could be defined if proved useful.

– Compress: Let W be a wide word in which all bits are zero except possibly
for the first bit of each block. The compress operation copies the first bit of
each block of W to the first block of a word X. I.e., if X = compress(W),
then X[j] ← Wj [0] for 0 ≤ j < w, and X[j] = 0 for j ≥ w (see Fig. 2).

– Spread: This operation is the inverse of the compress operation. It takes a
word W whose set bits are all in the first block and spreads them across blocks
of a word X so that Xj [0] ← W [j] for 0 ≤ j < w.

Relation to Other Models. We provide a discussion of similarities and differ-
ences between the uw-ram and other existing models in the full version [15].

3 Simulation of FS-RAM

In the standard ram model of computation memory is organized in registers
or words, each word containing a set of bits. Any bit in a word belongs to that
word only. In contrast, in the fs-ram model [16]—also known as Random Access
Machine with Byte Overlap (rambo)—words can overlap, that is, a single bit
of memory can belong to several words. The topology of the memory, i.e., a
specification of which bits are contained in which words, defines a particular
variant of the fs-ram model. Variants of this model have been used to sidestep
lower bounds for important data structure problems [9,10].

Algorithms in the Ultra-Wide Word Model 341

B4

B8 B9

B5

B10 B11

B6

B12 B13

B7

B!4 B15

B2 B3

B1

Register 0 1 2 3 4 5 6 7

Bit
0

1

2

3

Fig. 3. Yggdrasil memory layout [9]: each node in a complete binary tree is an fs-
ram bit and registers are defined as paths from a leaf to the root. For example, register
3 contains bits B11,B5,B2, and B1 (shaded nodes).

We show how the uw-ram can be used to implement memory access opera-
tions for any given fs-ram of word size at most w bits in constant time. Thus,
the time bounds of any algorithm in the fs-ram model carry over directly to the
uw-ram. Note that each fs-ram layout requires a different specialized hardware
implementation, whereas a uw-ram architecture can simulate any fs-ram lay-
out without further changes to its memory architecture.

Let B1, . . . ,BB denote the bits of fs-ram memory. A particular fs-ram mem-
ory layout can be defined by the registers and the bits contained in them [8].
For example, in the Yggdrasil model in Fig. 3, reg[0]=B8B4B2B1, and in general
reg[i].bit[j]= Bk, where k = �i/2j� + 2m−j−1 (m = 4 in the example) [9].

In order to implement memory access operations on a given fs-ram using
the uw-ram, we need to represent the memory layout of fs-ram in standard
ram. Assume an fs-ram memory of r registers of b ≤ w bits each and B ≤ br
distinct fs-ram bits. We assume that the fs-ram layout is given as a table
R that stores, for each register and bit within the register, the number of the
corresponding fs-ram bit. Thus, if reg[i].bit[j]= Bk, for some k, then R[i, j] = k.
We assume R is stored in row major order. We simply store the value of each
fs-ram bit Bi in a different w-bit entry of an array A in ram, i.e., A[i] = Bi.

Given an index t of a register of an fs-ram represented by R, we can read the
values of each bit of reg[t] from ram and return the b bits in a word in constant
time using the parallel reading and compress operations. Let reg[t]= Bi0 . . . Bib−1 .
The read operation first obtains the address in A of each bit of register t from
R. Then, it uses a content access to read the value of each bit Bij into block Wj

of W , thus assigning Wj ← A[R[t, j]]. Finally, it applies one compress operation,
after which the b bits are stored in W0. In order to implement the write operation
reg[t]← Bi0 . . . Bib−1 of fs-ram, we first set W0 ← Bi0 . . . Bib−1 and perform a
spread operation to place each bit Bj in block Wj . We then write the contents
of each Wj in A[R[t, j]]. Both read and write take constant time. We describe
these operations in pseudocode in the full version [15].

Since the read and write operations described above are sufficient to imple-
ment any operation that uses fs-ram memory (any other operation is imple-
mented in ram), we have the following result (see [15] for the proof).

342 A. Farzan et al.

Theorem 1. Let R be any fs-ram memory layout of r registers of at most b
bits each and B distinct fs-ram bits, with b ≤ w and log B ≤ w. Let A be
any fs-ram algorithm that uses R and runs in time T . Algorithm A can be
implemented in the uw-ram to run in time O(T), using rb+B additional words
of ram.

Constant Time Priority Queue. Brodnik et al. [9] use the Yggdrasil fs-
ram memory layout to implement priority queue operations in constant time
using 3M −1 bits of space (2M of ordinary memory and M −1 of fs-ram mem-
ory), where M is the size of the universe. This problem has non-constant lower
bounds for several models, including the ram model [5]. For a universe of size
M = 2m, for some m, the Yggdrasil fs-ram layout consists of r = M/2 registers
of b = log M bits each and B = M − 1 distinct fs-ram bits (Figure 3 is an
example with M = 16). Thus, by Theorem 1 we obtain the following result:

Corollary 1. The discrete extended priority queue problem can be solved in the
uw-ram in O(1) time per operation using 2M +w(M/2) log M +w(M −1) bits,
thus in O(M log M) words of ram.

Constant Time Dynamic Prefix Sums. Brodnik et al. [10] use a modified
version of the Yggdrasil fs-ram to solve the dynamic prefix sums problem in
constant time. This problem consists of maintaining an array A of size N over a
universe of size M that supports the operations update(j, d), which sets A[j] to
A[j] ⊕ d, and retrieve(j), which returns ⊕j

i=0A[i] [10,17], where ⊕ is any asso-
ciative binary operation. This fs-ram implementation sidesteps lower bounds
on various models [17,20]. See the full version [15] for more details.

Corollary 2. The operations of the dynamic prefix sums problem can be sup-
ported in O(1) time in the uw-ram with O(M

√
log N) bits of ram.

4 Dynamic Programming

In this section we describe uw-ram implementations of dynamic programming
algorithms for the subset sum, knapsack, and longest common subsequence prob-
lems. A word-ram algorithm that only uses bit parallelism can be translated
directly to the uw-ram. The algorithm for subset sum is an example of this. In
general, however, word-ram algorithms that use lookup tables cannot be directly
extended to w2 bits, as this would require a mechanism to address Θ(w2)-bit
words in memory as well as lookup tables of prohibitively large size. Hence,
extra work is required to simulate table lookup operations. The knapsack imple-
mentation that we present is a good example of such case. We note that these
problems have many generalizations that can be solved using the same techniques
and describe them further in the full version [15].

Subset Sum. Given a set S = {a1, a2, . . . , an} of nonnegative integers (weights)
and an integer t (capacity), the subset sum problem is to find S′ ⊆ S such that

Algorithms in the Ultra-Wide Word Model 343

∑
ai∈S′ ai = t [12]. This problem is NP-hard, but it can solved in pseudopoly-

nomial time via dynamic programming in O(nt) time, using the following recur-
rence [6]: for each 0 ≤ i ≤ n and 0 ≤ j ≤ t, Ci,j = 1 if and only if there is a
subset of elements {a1, . . . , ai} that adds up to j. Thus, C0,0 = 1, C0,j = 0 for
all j > 0, and Ci,j = 1 if Ci−1,j = 1 or Ci−1,j−ai

= 1 (Ci,j = 0 for any j < 0).
The problem admits a solution if Cn,t = 1.

Pisinger [25] gives an algorithm that implements this recursion in the word-
ram with word size w by representing up to w entries of a row of C. Using
bit parallelism, w bits of a row can be updated simultaneously in constant
time from the entries of the previous row: Ci is updated by computing Ci =
(Ci−1 | (Ci−1 >> ai)) (which might require shifting words containing Ci−1 first
by �ai/w� words and then by ai − �ai/w�) [25]. Assuming w = Θ(log t), this
approach leads to an O(nt/ log t) time solution in O(t/ log t) space.

This algorithm can be implemented directly in the uw-ram: entries of row
Ci are stored contiguously in memory; thus, we can load and operate on w2 bits
in O(1) time when updating each row. Hence, the uw-ram implementation runs
in O(nt/ log2 t) time using the same O(t/ log t) space (number of w-bit words).

Knapsack. Given a set S of n elements with weights and values, the knapsack
problem asks for a subset of S of maximum value such that the total weight is
below a given capacity bound b. Let S = {(wi, vi)}n

i=1, where wi and vi are the
weight and value of the i-th element. Like subset sum, this problem is NP-hard
but can be solved in pseudopolynomial time using the following recurrence [6]:
let Ci,j be the maximum value of a solution containing elements in the subset
Si = {(wk, vk)}i

k=1 with maximum capacity j. Then, C0,j = 0 for all 0 ≤ j ≤ b,
and Ci,j = max{Ci−1,j , Ci−1,j−wi

+ vi}. The value of the optimal solution is
Cn,b. This leads to a dynamic program that runs in O(nb) time.

The word-ram algorithm by Pisinger [25] represents partial solutions of the
dynamic programming table with two binary tables g and h and operates on
O(w) entries at a time. More specifically, gi,u = 1 and hi,v = 1 if and only if there
is a solution with weight u and value v that is not dominated by another solution
in Ci,∗ (i.e., there is no entry Ci,u′ such that u′ < u and Ci,u′ ≥ v). Pisinger
shows how to update each entry of g and h with a constant time procedure,
which can be encoded as a constant size lookup table T . A new lookup table Tα

is obtained as the product of α times the original table T . Thus, α entries of g
and h can be computed in constant time. Setting α = w/10, an entire row of g
and h can be computed in O(m/w) time and O(m/w) space [25], where m is the
maximum of the capacity b and the value of the optimal solution. The optimal
solution can then be computed in O(nm/w) time.

Compared to the subset sum algorithm, which relies mainly on bit-parallel
operations, this word-ram algorithm for knapsack relies on precomputation and
use of lookup tables to achieve a w-fold speedup. While we cannot precompute
a composition of Θ(w2) lookup tables to compute Θ(w2) entries of g and h at a
time, we can use the same tables with α = w/10 as in Pisinger’s algorithm and
use the read content operation of the uw-ram to make w simultaneous lookups
to the table. Since the entries in a row i of h and g depend only on entries in
row i − 1, then there are no dependencies between entries in the same row.

344 A. Farzan et al.

One difficulty is that in order to compute the entries in row i in parallel we
must first preprocess row i − 1 in both h and g, such that we can return the
number of one bits in both gi−1,0, ..., gi−1,j and hi−1,0, ..., hi−1,j in O(1) time for
any column j ∈ {0,m − 1}. That is, the prefix sums of the one bits in row i − 1.
Note that this is not the same as the dynamic problem described in Sect. 3, but
it is a static prefix sums problem. We describe how to compute the prefix sums
of a row of g and h in O(m/w2) time in the full version [15]. Then, each row of
g and h takes O(m/w2) time to compute, and since there are n rows, the total
time to compute g and h (and hence the optimal solution) on the uw-ram is
O(nm/w2). This achieves a w-fold speedup over Pisinger’s word-ram solution.

Longest Common Subsequence. The final dynamic programming problem
we examine is that of computing the longest common subsequence (LCS) of two
string sequences (see the full version [15] for a definition). This problem can
be solved via a classic dynamic programming algorithm in O(nm) time [12].
In [15] we describe a uw-ram algorithm for LCS based on an algorithm by
Masek and Paterson [23]. We note that there exist other approaches to solving
the LCS problem with bit-parallelism (e.g., [13]) that could also be adapted
to work in the uw-ram. The approach we show here is a good example of bit
parallelism combined with the parallel lookup power of the model, which we use
to implement the Four Russians technique. We obtain the following results:

Theorem 2. The length of the LCS of two strings X and Y over an alphabet
of size σ, with |X| = m and |Y | = n, can be computed in the uw-ram in
O(nm

w2 log σ + m + n) time and O(min(n,m)
w log σ) words in addition to the input.

Theorem 3. The length of the LCS of two strings X and Y of length n over
an alphabet of size σ can be computed in the uw-ram in O(n2 log2(σ)/w3 +
n log(σ)/w) time. For σ = O(1) and w = Θ(log n) this time is O(n2/ log3 n).

5 String Searching

Another example of a problem where a large class of algorithms can be sped up
in the uw-ram is string searching. Given a text T of length n and a pattern P
of length m, both over an alphabet Σ, string searching consists of reporting all
the occurrences of P in T . We assume in general that n � m. We use two classic
algorithms for this problem to illustrate different ways of obtaining speedups
via parallel operations in the wide word. More specifically, we obtain speedups
of w = Ω(log n) for uw-ram implementations of the Shift-And and Shift-Or
algorithms [3,28], and the Boyer-Moore-Horspool algorithm [22].

Shift-And and Shift-Or. These algorithms simulate an (m + 1)-state non-
deterministic automaton that recognizes P starting from every position of T . For
a window T [i−m+1..i] in T , the j-th state of the automaton (0 ≤ j ≤ m) is active
if and only if P [1..j] = T [i− j +1..i]. These algorithms represent the automaton
as a bit vector and update the active states using bit-parallelism. Their running
time is O(mn/w + n), achieving linear time on the size of the text for small

Algorithms in the Ultra-Wide Word Model 345

patterns. We describe in the full version [15] two uw-ram algorithms for Shift-
And that illustrate different techniques, noting that the uw-ram implementation
of Shift-Or is analogous. We obtain the following theorem:

Theorem 4. Given a text T of length n and a pattern P of length m, we can
find the occ occurrences of P in T in the uw-ram in time O(nm/w2+n/w+occ).

Boyer-Moore-Horspool. bmh [22] keeps a sliding window of length m over
the text T and searches backwards in the window for matching suffixes of both
the window and the pattern. The worst case running time of bmh is O(nm)
(when the entire window is checked for all window positions) but on average the
window can be shifted by more than one character, making the running time
O(n) [4]. In the uw-ram, we can take advantage of the wide word to make
several character comparisons in parallel, thus achieving a w-fold speedup over
the worst case behaviour of bmh. Full details are described in [15].

Theorem 5. Given T of length n and P of length m over an alphabet of size σ,
we can find the occurrences of P in T with a uw-ram implementation of BMH
in O(mn log σ/w2 + 1) time in the worst-case and O(n) time on average.

6 Conclusions

We introduced the Ultra-Wide Word architecture and model and showed that
several classes of algorithms can be readily implemented in this model to achieve
a speedup of Ω(log n) over traditional word-ram algorithms. The examples we
describe already show the potential of this model to enable parallel implemen-
tations of existing algorithms with speedups comparable to those of multi-core
computations. We believe that this architecture could also serve to simplify many
existing word-ram algorithms that in practice do not perform well due to large
constant factors. We conjecture as well that this model will lead to new efficient
algorithms and data structures that can sidestep existing lower bounds.

References

1. AMD: AMD FirePro W9100 Workstation Graphics. http://www.amd.com/
Documents/FirePro W9100 Data Sheet.pdf. Acessed 20 Nov 2014

2. Andersson, A., Thorup, M.: Dynamic ordered sets with exponential search trees.
J. ACM 54(3), 13 (2007)

3. Baeza-Yates, R., Gonnet, G.H.: A new approach to text searching. Commun. ACM
35(10), 74–82 (1992)

4. Baeza-Yates, R.A., Régnier, M.: Average running time of the Boyer-Moore-
Horspool algorithm. Theoret. Comput. Sci. 92(1), 19–31 (1992)

5. Beame, P., Fich, F.: Optimal bounds for the predecessor problem and related
problems. J. Comput. Syst. Sci. 65, 2002 (2002)

6. Bellman, R.: Dynamic Programming, 1st edn. Princeton University Press,
Princeton (1957)

http://www.amd.com/Documents/FirePro_W9100_Data_Sheet.pdf
http://www.amd.com/Documents/FirePro_W9100_Data_Sheet.pdf

346 A. Farzan et al.

7. Bose, P., Chen, E.Y., He, M., Maheshwari, A., Morin, P.: Succinct geometric
indexes supporting point location queries. In: Proceedings of SODA, pp. 635–644
(2009)

8. Brodnik, A.: Searching in Constant Time and Minimum Space. Ph.D. thesis, Uni-
versity of Waterloo (1995), also available as Technical Report CS-95-41

9. Brodnik, A., Carlsson, S., Fredman, M.L., Karlsson, J., Munro, J.I.: Worst case
constant time priority queue. J. Syst. Softw. 78(3), 249–256 (2005)

10. Brodnik, A., Karlsson, J., Munro, J., Nilsson, A.: An O(1) solution to the prefix
sum problem on a specialized memory architecture. In: Navarro, G., Bertossi, L.,
Kohayakawa, Y. (eds.) TCS 2006. IFIP, vol. 209, pp. 103–114. Springer, Boston
(2006)

11. Chan, T.M.: Point location in o(log n) time, Voronoi diagrams in o(n log n) time,
and other transdichotomous results in computational geometry. In: Proceedings of
FOCS, pp. 333–344 (2006)

12. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms,
2nd edn. The MIT Press, Cambridge (2001)

13. Crochemore, M., Iliopoulos, C.S., Pinzon, Y.J., Reid, J.F.: A fast and practical
bit-vector algorithm for the longest common subsequence problem. Inf. Process.
Lett. 80(6), 279–285 (2001)

14. Fisher, J.A.: Very long instruction word architectures and the ELI-512. SIGARCH
Comput. Archit. News 11, 140–150 (1983)

15. Frazan, A., López-Ortiz, A., Nicholson, P.K., Salinger, A.: Algorithms in the Ultra-
Wide Word Model (2014). http://arxiv.org/pdf/1411.7359v2

16. Fredman, M., Saks, M.: The cell probe complexity of dynamic data structures. In:
Proceedings of STOC, pp. 345–354 (1989)

17. Fredman, M.L.: The complexity of maintaining an array and computing its partial
sums. J. ACM 29(1), 250–260 (1982)

18. GeForce: GeForce GTX 285 Specifications. http://www.geforce.com/hardware/
desktop-gpus/geforce-gtx-285/specifications. Accessed 20 Nov 2014

19. Hagerup, T.: Sorting and searching on the word RAM. In: Meinel, C., Morvan, M.
(eds.) STACS 1998. LNCS, vol. 1373, pp. 366–398. Springer, Heidelberg (1998)

20. Hampapuram, H., Fredman, M.L.: Optimal biweighted binary trees and the com-
plexity of maintaining partial sums. SIAM J. Comput. 28(1), 1–9 (1998)

21. Han, Y.: Deterministic sorting in O(nlog logn) time and linear space. J. Algorithms
50, 96–105 (2004)

22. Horspool, R.N.: Practical fast searching in strings. Softw. Pract. Exp. 10(6), 501–
506 (1980)

23. Masek, W.J., Paterson, M.: A faster algorithm computing string edit distances. J.
Comput. Syst. Sci. 20(1), 18–31 (1980)

24. Munro, J.: Tables. In: Chandru, V., Vinay, V. (eds.) FSTTCS 1996. LNCS, vol.
1180, pp. 37–42. Springer, Heidelberg (1996)

25. Pisinger, D.: Dynamic programming on the word RAM. Algorithmica 35, 128–145
(2003)

26. Russell, R.M.: The CRAY-1 computer system. Comm. ACM 21(1), 63–72 (1978)
27. Thorup, M.: Combinatorial power in multimedia processors. SIGARCH Comput.

Archit. News 31(4), 5–11 (2003)
28. Wu, S., Manber, U.: Fast text searching: allowing errors. Commun. ACM 35(10),

83–91 (1992)

http://arxiv.org/pdf/1411.7359v2
http://www.geforce.com/hardware/desktop-gpus/geforce-gtx-285/specifications
http://www.geforce.com/hardware/desktop-gpus/geforce-gtx-285/specifications

Uniformity of Point Samples in Metric Spaces
Using Gap Ratio

Arijit Bishnu1(B), Sameer Desai1, Arijit Ghosh2,
Mayank Goswami2, and Subhabrata Paul1

1 ACM Unit, Indian Statistical Institute, Kolkata, India
arijit@isical.ac.in

2 MPI for Informatics, Saarbrücken, Germany

Abstract. Teramoto et al. [22] defined a new measure called the gap
ratio that measures the uniformity of a finite point set sampled from S,
a bounded subset of R2. We attempt to generalize the definition of this
measure over all metric spaces. We solve optimization related questions
about selecting uniform point samples from metric spaces; the uniformity
is measured using gap ratio. We give lower bounds for specific metric
spaces, prove hardness and approximation hardness results. We also give
a general approximation algorithm framework giving different approxi-
mation ratios for different metric spaces and give a (1 + ε)-approximation
algorithm for a set of points in a Euclidean space.

Keywords: Discrepancy · Metric space · Hardness · Approximation

1 Introduction

Generating uniformly distributed points over a specific domain has applications
in digital halftoning; see [1,22,24] and the references therein, numerical integra-
tion [10,17], computer graphics [10], etc. Meshing also requires uniform distri-
bution of points over a region of interest [5]. There are different measures of
uniformity of points that we discuss below.

One such notion is the discrepancy [10,17] of a point set. For a formaliza-
tion of this notion, an interested reader is referred to [10,17]. Let |P | = n and
vol(B) denote the area of B. The expected number of points that would lie inside
B if P is distributed uniformly and independently at random is n · vol(B). Let
D(P,B) denote the deviation of P from uniform distribution inside a particular
B, i.e. D(P,B) = n ·vol(B)−|P ∩ B|. Let R denote the set of all shapes similar to
B. The quantity D(P,R) = supR∈R |D(P,R)| is the discrepancy of P for shapes
similar to B. The function D(n,R) = infP⊂S & |P |=n D(P,R) captures the notion
of the least possible discrepancy of any point set sized n. To compute uniformity
using the above measure, the quantity D(n,R) is to be computed for all possible
scales and positions of B.

Another notion of uniformity has been captured by the idea of maximizing
the minimum distance among points inside S. This is equivalent to packing equal

A more comprehensive version of this paper is available at http://arxiv.org/abs/
1411.7819.

c© Springer International Publishing Switzerland 2015
R. Jain et al. (Eds.): TAMC 2015, LNCS 9076, pp. 347–358, 2015.
DOI: 10.1007/978-3-319-17142-5 30

http://arxiv.org/abs/1411.7819
http://arxiv.org/abs/1411.7819

348 A. Bishnu et al.

radius circles inside S [11,18–20]. Packing equal radius circles has remained a
difficult problem [16]. This measure does not take into effect large empty areas
inside S.

One can observe that both of the above measures are hard to compute.
Motivated by problems in digital halftoning, Teramoto et al. [22] defined a new
measure of uniformity called the gap ratio that measures uniformity in R2. The
basic notion of this uniformity measure is a ratio between the maximum and
minimum gaps among points. The minimum gap is the distance between the
closest pair of points of P . The maximum gap is the radius of the maximum
empty circles among points in P and is linked to the Voronoi diagram [7] of P .

Definition of Gap Ratio. Teramoto et al. [22], who introduced the problem
motivated by combinatorial approaches and applications in digital halftoning
[1,3,4,21], were interested in the online version of the gap ratio problem. We
generalise their definition as follows.

Definition 1. Let (M, δ) be a metric space and P be a set of k points sampled
from M. Define the minimum gap as rP := minp,q∈P, p �=qδ(p, q)/2. The maximum
gap brings into play the interrelation between the metric space M and P (⊂ M),
the set sampled from M, and is defined as RP := supq∈M δ(q, P), where δ(q, P) :=
minp∈P δ(q, p). The gap ratio for the point set P is defined as GRP := RP /rP . In
the rest of the paper, we would mostly not use the subscript P .

Gap ratio need not be greater than 1. See the example in [8]. In a geometric sense,
the maximum gap is analogous to the covering radius of P , and the minimum
gap is analogous to the packing radius of P . In a uniformly distributed point
set, we expect the covering to be thin and the packing to be tight. Thus the gap
ratio can be a good measure of estimating uniformity of point samples.

The space M, as in Definition 1 can be both continuous and discrete. Using
this generalized definition, we can pose the following combinatorial optimization
question.

Definition 2 (The gap ratio problem). Given a metric space (M, δ), an
integer k and a parameter g, find a set P ⊂ M such that |P | = k and GRP � g.

Asano [2] in his work opened this area of research, where he asked discrepancy
like questions in a discrete setting. Asano opined that the discrete version of this
discrepancy-like problem will make it amenable to ask combinatorial optimiza-
tion related questions. We initiate this line of study in this paper for different
metric spaces. As we would go back and forth between different metric spaces,
we summarize the results of the paper in the following table.

Previous Results. Teramoto et al. [22] proved a lower bound of 2�k/2�/(�k/2�+1)

for the gap ratio in the one dimensional case where k points are inserted in the
interval [0, 1] and also proposed a linear time algorithm to achieve the same.
They got a gap ratio of 2 in 2-dimension using ideas of Voronoi insertion where
the new point was inserted in the centre of a maximum empty circle [7]. They
also proposed a local search based heuristic for the problem and provided exper-
imental results in support.

Uniformity of Point Samples in Metric Spaces Using Gap Ratio 349

Metric space Lower bounds Hardness Approximation

General None Yes 2-approx. hard

Discrete Graph (connected) 2
3

Yes Approx. factor: 3; 3
2
-approx. hard

Euclidean - - (1 + ε)-algorithm

Continuous Path-connected 1 Yes Approx. factor: 2

Unit square in R2 2√
3

− o(1) - Approx. factor:
√
3 + o(1)

Asano [2] discretized the problem and showed a gap ratio of at most 2 where
k integral points are inserted in the interval [0, n] where n is also a positive
integer and 0 < k < n. He also showed that such a point sequence may not
always exist, but a tight upper bound on the length of the sequence for given
values of k and n can be proved.

Zhang et al. [24] focused on the discrete version of the problem and proposed
an insertion strategy that achieved a gap ratio of at most 2

√
2 in a bounded two

dimensional grid. They also showed that no online algorithm can achieve a gap
ratio strictly less than 2.5 for a 3 × 3 grid.

In Sects. 2 and 3, we deal with continuous and discrete metric spaces respec-
tively, where we give lower bounds, hardness, and approximation results. We
show a general approximation hardness result in Sect. 4.

2 Continuous Metric Spaces

2.1 Lower Bounds

Here we study the lower bounds for the gap ratio in continuous metric spaces.
We first point out that there does not exist a general lower bound on gap ratio.
See Example 2 in [8], where we consider two disjoint balls as our metric space.
However, if the space is path connected we can fix a general lower bound.

Lemma 3. The lower bound of gap ratio is 1 when M path connected.

For the proof of the above lemma, see Lemma 3 of [8].
Next we consider the metric space, [0, 1]2 ⊂ R2 as in Teramoto et al.’s prob-

lem [22]. To prove the lower bound on gap ratio, we would want to increase r
and reduce R, as much as possible. To this end we need the definition of packing
and covering densities, which can be found in [15,23].

Lemma 4. The lower bound for gap ratio is
(

2√
3

− o (1)
)
, when M = [0, 1]2.

Proof. Let 2r be the minimum pairwise distance between the point of P . Con-
sider a circle of radius r around each point of P . This forms a packing of k
circles of radius r in a square of side length (1 + 2r). Suppose the density of
such a packing is d1. Now, we can tile the plane with such squares packed with
circles. Thus we have a packing of the plane of density d1. It is known that the
density of the densest packing of equal circles in a plane is π/

√
12 [15]. Then

obviously d1 � π/
√

12 as we have packed the plane with density d1. Hence,

d1 = kπr2/(1 + 2r)2 � π/
√

12. Consequently we have, r �
(√

k
√

12 − 2
)−1

.

350 A. Bishnu et al.

On the other hand, let R = supx∈M δ(x, P). Clearly, circles of radius R
around each point of P cover M. Suppose the density of such a covering is
D1. Now, we can tile the plane with this unit square. Thus we have a cover-
ing of the plane with density D1. It is known that the density of the thinnest
covering of the plane by equal circle is 2π/

√
27 [15]. Then obviously D1 �

2π/
√

27 as we have covered the plane with density D1. Thus we have, D1 =
kπR2/1 � 2π/

√
27, giving us R �

√
2/

√
k
√

27. Hence, the gap ratio is R
r �(√

k
√

12 − 2
) √

2/
√

k
√

27 = 2√
3

− o (1). ��

Teramoto et al. [22] had obtained a gap ratio of 2 in the online version, whereas,
the lower bound for the problem is asymptotically 1.1547.

2.2 Hardness

General NP-Hardness. In this section, we show that the gap ratio problem is
hard for a continuous metric space. To show this hardness, we reduce from the
problem of system of distant representatives in unit disks [12]. We first define
the problem.

Definition 5 (S (q, l)-DR). [12] Given a parameter q > 0 and a family F =
{Fi|i ∈ I, Fi ⊆ X} of subsets of X, a mapping f : I → X is called a System of
q-Distant Representatives (shortly an Sq-DR) if (i) f(i) ∈ Fi for all i ∈ I and
(ii) distance between f(i) and f(j) is at least q, for i, j ∈ I and i
= j. When the
family F is a set of unit diameter disks with centres that are at least l distance
apart, we denote the mapping by S (q, l)-DR.

Fiala et al. proved that S(1, l)-DR is NP-hard [12]. For the general version
S (q, l)-DR, we give a proof sketch using Fiala et al.’s technique. Note that for
q � l, the centres of the disks suffice as our representatives. So assume that
q > l. We restate a generalised version of their result below, see the proof of
Theorem 10 in [8].

Theorem 6. S (q, l)-DR is NP-hard for q > l on the Euclidean plane.

Next we show that the above holds even for a constrained version of the problem.

Lemma 7. S (q, l)-DR-1 is NP-complete for q > l, where S (q, l)-DR-1 denotes
S (q, l)-DR with one representative point constrained to lie on the boundary of
one of the disks.

Proof. Clearly, a solution to S (q, l)-DR-1 is a solution to S (q, l)-DR. Conversely,
a solution of S (q, l)-DR can be translated until one point hits the boundary to
obtain a solution to S (q, l)-DR-1.

It is easy to see that S (q, l)-DR-1 is in NP, as any claimed solution can be
checked by using a voronoi diagram in polynomial time. Hence, it is NP-complete
for q > l. ��
We now use the above result to prove the hardness of the gap ratio problem.

Uniformity of Point Samples in Metric Spaces Using Gap Ratio 351

Theorem 8. Let M be a continuous metric space and q > 2. It is NP-hard to
find a finite set P ⊂ M of cardinality k such that GRP � 2

q .

Proof. We show that if there is a polynomial algorithm to find a finite set P ⊂ M
of cardinality k such that the gap ratio of P is at most 2

q for some q > 2, then
there is also a polynomial algorithm for S (q, l)-DR-1.

Consider an instance of S (q, l)-DR-1, a family F = {F1, F2, . . . , Fk} of k
disks of unit diameter such that their centres are at least distance l apart, where
q > l > 2 (even with this restriction the proof of Theorem6 goes through).

We run the algorithm for the gap ratio problem k times, each time on a sepa-
rate instance. The instance for the i-th iteration would have the disks {Fj |j
= i}
and a circle of unit diameter with its centre being the same as the centre of Fi.
The following claim, whose proof follows later completes the proof.

Claim 9. If a single iteration of the above process results “yes”, then we have
a solution to the S (q, l)-DR-1 instance.

Since S (q, l)-DR-1 is NP-hard, the gap ratio problem must also be NP-hard. ��
Proof of Claim 9. Suppose that the gap ratio of a given point set is at most 2

q for
the ith instance. If it so happens that two points are within the same disk, then
r � 1

2 . Thus for the gap ratio to fall below 2
q we need R � 2r

q � 1/q < 1. But
considering the number of points that we are choosing, we must have an empty
disk, which would contain a point x such that R � d(P, x) � l − 1

2 > 1, giving
us a contradiction. Thus we have that each disk contains exactly one point from
P . Since, l > 2 and Fi is a circle, R = 1. Thus, we get r = 1

GR � q
2 , making the

closest pair to be at least a distance q apart. ��

(a) ε-paths

(b) The graph and the met-
ric space. The open ended
lines are the ε-paths

Fig. 1. The reduction for
path connected spaces.

Path Connected Spaces. Next, we show that it is
NP-hard to find k points in a path connected space
such that GR = 1. To prove this, we start by proving
that in a path connected space it is NP-Hard to find
k points such that R = r = 3

2 by reducing from the
efficient dominating set problem. Later we extend
the result for all positive real values of r.

Theorem 10. It is NP-hard to find a set P of k
points in a path connected space M such that RP =
rP = 3

2 .

Proof. Let us consider an instance of the efficient
domination problem, an undirected graph G (V,E),
and a parameter k. From this graph we form a met-
ric space (M, δ) as follows. In M, each edge of E
corresponds to a unit length path. We place at each
vertex of V an ε-path, where 0 < ε < 1

4 , which is
merely an ε long curve protruding from the vertex as shown in Fig. 1a. The
vertices merely become points on a path formed by consecutive edges as shown

352 A. Bishnu et al.

in Fig. 1b. If there are edge-crossings, we do not consider the crossing to be an
intersection but rather consider it as an embedding in R3. This ensures that
different paths only intersect at vertices of the graph (this makes sure that there
is direct correspondence between the path lengths in the graph and the path
lengths of the metric space). The distance, δ, between two points in this space
is defined by the length of the shortest curve joining the two points.

We show that finding a set P of k points in M such that RP = rP = 3
2 is

equivalent to finding an efficient dominating set of size k in G, using a series of
claims.

Claim 11. Suppose D ⊂ V is an efficient dominating set in G. Then we have
a set P ⊂ M with |D| = |P | such that RP = rP = 3

2 .

Conversely, given a set P ′ of k points in M such that RP ′ = rP ′ = 3
2 , we want

to find an efficient dominating set in G. If P ′ ⊂ V , then we are done as P ′ is
an efficient dominating set in G (refer to Claim 21). Otherwise, if P ′
⊂ V , then
from P ′ we construct another set P ⊂ V such that RP = rP = 3

2 . We form P
by appropriately moving points of P ′ to the points corresponding to V .

Claim 12. P ′ ⊂ V or P ′ ∩ V = ∅.
By Claim 12, if P ′
⊂ V , then P ′ ∩ V = ∅. Note that in this case P ′ cannot have
midpoints of the graph edges as between any two midpoints at distance 3 from
each other, there is a vertex with an ε-path which is distance 3

2 from both points.
Thus the other end of this ε-path must be at a distance 3

2 + ε from both points
contradicting the fact that RP ′ = 3

2 . Thus each point in P ′ must have a closest
vertex. We form the set P by moving each point of P ′ to its closest vertex.

Claim 13. RP = rP = 3
2 .

For the proofs of Claims 11, 12 and 13 refer to the proofs of Claims 8, 16 and 17
of [8].

By Claim 13, without loss of generality, we can assume that the sampled set
is a subset of V . Using ideas we present in the proof of Claim 21, it is easy to
see that, if we can find a set P of k points in M such that RP = rP = 3

2 , then
we can find an efficient dominating set of k vertices in G.

Hence, it is NP-hard to find a set P of k points in a path connected space
such that RP = rP = 3

2 . ��
In the above reduction, taking the edge lengths to be 2x

3 instead of 1 and 2xε
3 -

paths instead of ε-paths we have that it is NP-hard to find a set of k points in a
path connected space such that RP = rP = 3

2 × 2x
3 = x. Since this can be done

for any positive x, the following theorem follows as a corollary to Theorem10.

Theorem 14. It is NP-hard to find a set of k points in a path connected space
such that gap ratio is 1.

Uniformity of Point Samples in Metric Spaces Using Gap Ratio 353

2.3 Approximation Algorithms

In this section we show that Gonzalez’s [14] farthest point insertion method
(with a slightly tweaked initiation) for k-centre clustering gives a constant factor
approximation for gap ratio. We will call it Algorithm 1. The following is an
outline of the algorithm.

Let (M, δ) be a metric space of n points and k be the number of points to
be sampled. The first two points chosen are a pair of farthest points. Let Si

denote the set of first i points. Then, Si+1 = Si ∪ {qi+1} for 2 < i � k, where
δ (qi+1, Si) = supq∈M δ(q, Si).

We now analyse the algorithm. Without loss of generality, let P = {p1, . . . , pk}
be the set with optimal gap ratio, and let GR = α.

Lemma 15. In Algorithm1, RSi
� RSi−1 for each i ∈ {2, . . . , k} and the gap

ratio GRSi
is at most 2 after each iteration.

For the proof of the above lemma, see Lemma 23 of [8]. The main theorem of
this section is as follows.

Theorem 16. Farthest point insertion gives the following approximation guar-
antees: (i) if α � 1, then the approximation ratio is 2

α � 2, (ii) if 2
3 � α < 1,

the approximation ratio is 2
α � 3, and (iii) if α < 2

3 , the approximation ratio is
4

2−α < 3.

Proof. Case (i) and (ii) follow directly from Lemma 15. We deal with Case (iii).
Let us define closed balls centred at pi’s as follows: Bi = {x ∈ M : δ(pi, x) � rP }
and B′

i = {x ∈ M : δ(pi, x) � αrP }. We need the following claim.

Claim 17. For all i ∈ {2, . . . , k}, 2rSi
� (2 − α)rP .

Proof. Note that B′
j ’s cover whole of P . The case of i = 2 follows from the fact

that 2rS2 = diam (M). Assume the result is true for some i � 2. We will show it
is true for Si+1, if i � k−1, by contradiction. Suppose qi+1 falls into a ball B′

j that
contains qt, for some t � i. This would imply 2rSi+1 � δ(qt, qi+1) � 2αrP . Note
that as α < 2/3, we have 2αrP < (2−α)rP . But since, i � k −1, there exists pt′

such that B′
t′ is empty. That implies we could have selected pt′ instead of qi+1 to

get 2rSi+1 = min{2rSi
, δ(pt′ , Si)} � (2 − α)rP . Note that last inequality follows

from the fact that 2rSi
� (2 − α)rP (by induction) and δ(pt′ , Si) � (2 − α)rP .

Now that we know qi+1 falls into a separate ball B′
j , it is easy to see that

2rSi+1 � min{2rSi
, δ(pj , Si)} � (2 − α)rP . ��

From the proof of Claim 17, we have for all j ∈ {1, . . . , k}, |B′
j ∩ Sk| = 1.

Thus we have RSk
� 2αrP , since B′

j cover M. Combining this with the fact
that 2rSk

� (2 − α)rP (Claim 17), we have GRSk
� 4α

2−α and consequently
GRSk

GRP
� 4

2−α < 3. ��

From the results in Sect. 2.1, we have the following corollary to Theorem16.

354 A. Bishnu et al.

Corollary 18. The approximation algorithm gives an approximation ratio of
(i) 2 when the metric space is continuous, compact and path connected, and (ii)
ρ (k), when the metric space is restricted to a unit square in the Euclidean plane,
where ρ (k) =

4√27
√

k
4√3

√
k−√

2
=

√
3 + o(1).

3 Discrete Metric Space

3.1 Graph

Lower Bounds. Here we study the lower bounds for the gap ratio problem in
discrete metric spaces. Again we point out that there does not exist a general
lower bound for gap ratio, in discrete spaces as well. See Example 1 in [8] for
details.

Next we study the lower bound of gap ratio on a metric space M which is
the vertex set V of an undirected connected graph G = (V,E). The distance
between a pair of vertices is the length of the shortest path between them.

Lemma 19. Gap ratio has a lower bound of 2
3 when the metric space M is a

connected undirected graph. The bound is achieved only when R = 1 and r = 3
2 .

Proof. Suppose a set of vertices P ⊂ M is sampled. Let a closest pair of vertices
in P be distance q apart. Thus r = q

2 . Now between these two vertices, there is a
path of q−1 vertices in M\P . Among these q−1 vertices, the vertex farthest from
P is at a distance

⌊
q
2

⌋
from P . Thus R �

⌊
q
2

⌋
and GR = R

r � 2
q

⌊
q
2

⌋
. Note that,

when q = 1, clearly we have a gap ratio greater or equal to 2. Now, we analyse
this expression for even and odd values of q. If q is even, GR � 2

q

⌊
q
2

⌋
= 2

q
q
2 = 1

and if q is odd and q � 3, GR � q−1
q . Since, this function is monotonically

increasing, GR � 2
3 , and the equality only occurs for q = 3.

Thus, the gap ratio GR = 2
3 implies q = 3, which means r = 3

2 . Therefore,
R = GR × r = 1. Hence, GR = 2

3 only when R = 1 and r = 3
2 . ��

Hardness. In this section, we show that the problem of finding minimum gap
ratio is NP-complete even for graph metric space. To this end, we need the
concept of a variation of domination problem, called efficient domination prob-
lem. A subset D ⊆ V is called an efficient dominating set of G = (V,E) if
|NG[v] ∩ D| = 1 for every v ∈ V , where NG[v] = {v} ∪ {x|vx ∈ E}. An efficient
dominating set is also known as independent perfect dominating set [6]. Given a
graph G = (V,E) and a positive integer k, the efficient domination problem is to
find an efficient dominating set of cardinality at most k. The efficient domination
problem is known to be NP-complete [9].

Theorem 20. In graph metric space, gap ratio problem is NP-complete.

Proof. First note that, the gap ratio problem in graph metric space is in NP. To
prove the hardness, we use a reduction from efficient domination problem, to the
gap ratio problem. Given an instance of efficient domination problem G = (V,E)
and k, set M = V as the metric space and the shortest path distance between
two vertices as the metric δ.

Uniformity of Point Samples in Metric Spaces Using Gap Ratio 355

Claim 21. G = (V,E) has an efficient dominating set of cardinality k if and
only if there exists a sampled set P of k points (vertices) whose gap ratio is 2/3.

See Claim 8 of [8] for the proof of this claim. Thus the gap ratio problem is
NP-complete for graph metric space. ��

Approximation Hardness. Here we use the hardness of path connected space
from Sect. 2.2 to show that the gap-ratio problem is APX-hard on the graph
metric.

M G1

ε

Fig. 2. Illustration of the reduction

Theorem 22. In an
unweighted graph, it
is NP-hard to approx-
imate the gap ratio
better than a factor
of 3

2 .

Proof. In Sect. 2.2, we
reduced the problem
of finding a set of
k points in a graph
such that the gap
ratio is 2

3 to the prob-
lem of finding a set
of k points in a path-
connected space such that the gap ratio is 1. We use this hardness of gap ratio
being 1 on instances similar to the one created in the reduction to prove 3

2
approximation hardness on graphs.

Our starting instance is a space formed by joining integer length curves at
their ends (so that points that divide these curves into unit length curves form a
connected graph with the unit length curves as edges). Also for some 0 < ε < 1

4
we join curves of length ε (at one end) at points such that the integer length
curves are divided into unit length curves. Let us call this path connected space
M. Note that M is similar to the path connected space formed in Sect. 2.2, but,
the general shape of the space may vary. The reduction is illustrated in Fig. 2.
The metric on this space is defined by the length of the shortest path between
pairs of points. We form the graph G = (V,E) by putting vertices at the place
where the ε-length curves are joined to the integer length curves. The ε-length
protrusions are discarded and the unit length curves between the vertices form
the edge set.

Claim 23. There exists a polynomial time algorithm to find P ⊂ M such that
|P | = k and RP = rP = 2t+1

2 for some t ∈ {1, 2, ..., } if and only if there exists
a polynomial time algorithm to find a set of k vertices in G such that the gap
ratio of the set is strictly less than 1.

356 A. Bishnu et al.

See Theorem 22 of [8] for the proof of the above claim.
This gives us that it is NP-hard to find a set with gap ratio less than 1 in

graphs, i.e. it is NP-hard to find an algorithm which approximates gap ratio
within a factor better than 3

2 .
Note here that if we could have proven Claim 23 for |P | = k and RP = rP = t

2
for some t ∈ {2, 3, ..., }, then we wouldn’t need to say strictly less than 1 in the
statement. ��

Approximation Algorithm. We start by pointing out that Algorithm 1 and
Theorem 16 hold in a discrete metric space as well. Thus, as a consequence of
Lemma 19, we have the following corollary to Theorem16.

Corollary 24. The approximation algorithm gives an approximation ratio of 3
when the metric space is restricted to graph metric space.

3.2 Euclidean Space

Next we discuss a (1 + ε)- approximation algorithm when the space M is a set
of n points in a Euclidean space. We will call it Algorithm 2.

Suppose, M is a set of n points in Rd and the metric δ on M is the Euclidean
metric on Rd. We propose Algorithm 2, and prove that it gives a gap ratio within
(1 + ε) factor of the minimum gap ratio, where ε ∈ (

0, 1
2

)
and ε1 := ε

(3+2ε) . The
algorithm is as follows.

Obtain a set P1 ⊂ M of k points by the farthest point method. Create a grid
of side-length ε2 = ε1RP1

2
√

d
. Get a set S by choosing 1 point of M from each grid

cell. Of all the O
(|S|k)

subsets of S choose the one with the lowest gap ratio.
For analysing the algorithm we need the following definitions and lemmas.
Define ROPT := minP⊂M,|P |=k maxq∈M δ(q, P) and rOPT := maxP⊂M,|P |=k

minp,q∈P,p �=q
δ(p,q)

2 . We try to bound the time complexity by estimating the num-
ber of grid cells needed to cover M.

Lemma 25. In Algorithm2, at most N := O(k 1
ε1

�d) cells cover M.

Proof. Consider a set (say Pcov) of k points in M, such that
ROPT = maxq∈M δ (q, Pcov). Now, we know that balls of radius ROPT around the
points of Pcov cover M. Each of these balls intersect O(2ROPT

ε2
�d) = O(1

ε1
�d)

grid cells. Thus, N := O(k 1
ε1

�d) cells cover M. ��
The above lemma shows that the brute force calculation of gap ratio over S takes
O

(
Nk (k log k + (n − k) k)

)
time, where O(k log k) is required to compute r and

O(k(n − k)) is required to compute R in each iteration; all other steps in Algo-
rithm 2 are polynomial in n and k. Note that the time is not polynomial in k.

We are now ready to prove the main theorem for this section.

Theorem 26. In Algorithm2 we have, GRP � (1 + ε) · GROPT .

Uniformity of Point Samples in Metric Spaces Using Gap Ratio 357

Proof. Consider the set P ∗ of k points in M, which gives the minimum gap
ratio, α, in M. Let r := rP ∗ . We have RP1 � 2ROPT from [14]. For each pi

in P ∗, there exists a point qi in S, such that δ (qi, pi) �
√

dε2, because
√

dε2
is the diameter of each grid cell. From the definition of ε2, we have δ (qi, pi) �
ε1RP1

2 � ε1ROPT � ε1RP ∗ = ε1αr. Also note that α � 2, as the farthest point
method itself will yield gap ratio at most 2. Thus, we have δ (qi, pi) � r (as
ε1 < 1

2), i.e., i
= j =⇒ qi
= qj . Let P2 := {q1, q2, . . . , qk} be a set of such
k distinct points in S. Let us compute the gap ratio of P2. Triangle inequality
gives us RP2 � (1 + ε1) αr and rP2 � (1 − ε1α) r. Then the gap ratio of P2

is � (1+ε1)α
(1−ε1α) � (1+ε1)α

(1−2ε1)
= (1 + ε) α.

Also by definition, the gap ratio of P is less than the gap ratio of P2. Thus
we have that gap ratio of P in S is at most (1 + ε) α. ��

4 A General Approximation Hardness Result

In this section we show that the gap ratio problem is hard to approximate within
a factor of 2 for the general metric space.

Theorem 27. In a general metric space, it is NP-hard to approximate the gap
ratio better than a factor of 2.

Proof. To show this hardness, we make a reduction from independent dominating
set problem, where the dominating set is also independent set. This problem is
known to be NP-hard [13].

Let G = (V,E) and k be an instance of independent domination problem.
We make a weighted complete graph over V such that all edges present in G
have weight 1 and all other edges have weight 2. Now the metric space M is
given by the vertex set of the complete graph and the metric is defined by the
edge weights. The result is easy to see from the following claim.

Claim 28. G = (V,E) has an independent dominating set of cardinality k if
and only if there exists a sampled set P in M of k points with gap ratio 1.

See Theorem 20 of [8] for the proof of the above claim and other details of the
proof. ��

Acknowledgements. The authors want to thank Tetsuo Asano and Geevarghese
Philip.

References

1. Asano, T.: Computational geometric and combinatorial approaches to digital
halftoning. In: CATS, p. 3 (2006)

2. Asano, T.: Online uniformity of integer points on a line. Inf. Process. Lett. 109(1),
57–60 (2008)

358 A. Bishnu et al.

3. Asano, T., Katoh, N., Obokata, K., Tokuyama, T.: Combinatorial and geometric
problems related to digital halftoning. In: Asano, T., Klette, R., Ronse, C. (eds.)
Geometry, Morphology, and Computational Imaging. LNCS, vol. 2616, pp. 58–71.
Springer, Heidelberg (2003)

4. Asano, T., Katoh, N., Obokata, K., Tokuyama, T.: Matrix rounding under the Lp-
discrepancy measure and its application to digital halftoning. SIAM J. Comput.
32(6), 1423–1435 (2003)

5. Asano, T., Teramoto, S.: On-line uniformity of points. In: Book of Abstracts for
8th Hellenic-European Conference on Computer Mathematics and its Applications,
Athens, Greece, pp. 21–22 (2007)

6. Bange, D., Barkauskas, A., Host, L., Slater, P.: Generalized domination and effi-
cient domination in graphs. Discrete Math. 159(13), 1–11 (1996)

7. Berg, M., Cheong, O., Kreveld, M., Overmars, M.: Computational Geometry: Algo-
rithms and Applications. Springer-Verlag TELOS, Santa Clara (2008)

8. Bishnu, A., Desai, S., Ghosh, A., Goswami, M., Paul, S.: Uniformity of point
samples in metric spaces using gap ratio. CoRR, abs/1411.7819v1 (2014)

9. Chain-Chin, Y., Lee, R.: The weighted perfect domination problem and its variants.
Discrete Appl. Math. 66(2), 147–160 (1996)

10. Chazelle, B.: The Discrepancy Method - Randomness and Complexity. Cambridge
University Press, New York (2001)

11. Collins, C.R., Stephenson, K.: A circle packing algorithm. Comput. Geom. 25(3),
233–256 (2003)

12. Fiala, J., Kratochv́ıl, J., Proskurowski, A.: Systems of distant representatives. Dis-
crete Appl. Math. 145(2), 306–316 (2005)

13. Garey, M.R., Johnson, D.S.: Computers and Intractability; A Guide to the Theory
of NP-completeness. W. H. Freeman & Co., New York (1990)

14. Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theor.
Comput. Sci. 38, 293–306 (1985)

15. Kuperberg, W.: An inequality linking packing and covering densities of plane con-
vex bodies. Geom. Dedicata. 23(1), 59–66 (1987)

16. Locatelli, M., Raber, U.: Packing equal circles in a square: a deterministic global
optimization approach. Discrete Appl. Math. 122(13), 139–166 (2002)

17. Matoušek, J.: Geometric Discrepancy: An Illustrated Guide. Springer, Heidelberg
(1999)

18. Nurmela, K.J., Österg̊ard, P.R.J.: Packing up to 50 equal circles in a square. Dis-
crete Comput. Geom. 18(1), 111–120 (1997)

19. Nurmela, K.J., Österg̊ard, P.R.J.: More optimal packings of equal circles in a
square. Discrete Comput. Geom. 22(3), 439–457 (1999)

20. Nurmela, K.J., Österg̊ard, P.R.J., aus dem Spring, R.: Asymptotic behavior of
optimal circle packings in a square. Can. Math. Bull. 42(3), 380–385 (1999)

21. Sadakane, K., Chebihi, N.T., Tokuyama, T.: Discrepancy-based digital halftoning:
automatic evaluation and optimization. In: Asano, T., Klette, R., Ronse, C. (eds.)
Geometry, Morphology, and Computational Imaging. LNCS, vol. 2616, pp. 301–
319. Springer, Heidelberg (2003)

22. Teramoto, S., Asano, T., Katoh, N., Doerr, B.: Inserting points uniformly at every
instance. IEICE Trans. 89D(8), 2348–2356 (2006)

23. Tóth, G.: New results in the theory of packing and covering. In: Gruber, P., Wills,
J. (eds.) Convexity and Its Applications, pp. 318–359. Birkhuser basel, Basel (1983)

24. Zhang, Y., Chang, Z., Chin, F.Y.L., Ting, H.-F., Tsin, Y.H.: Uniformly inserting
points on square grid. Inf. Process. Lett. 111(16), 773–779 (2011)

On Pure Nash Equilibria in Stochastic Games

Ankush Das1, Shankara Narayanan Krishna1, Lakshmi Manasa1(B),
Ashutosh Trivedi1, and Dominik Wojtczak2

1 Department of Computer Science and Engineering, IIT Bombay, Mumbai, India
lakshmimanasa.g@gmail.com

2 Department of Computer Science, The University of Liverpool, Liverpool, UK

Abstract. Ummels and Wojtczak initiated the study of finding Nash equ-
ilibria in simple stochastic multi-player games satisfying specific bounds.
They showed that deciding the existence of pure-strategy Nash equilibria
(pureNE) where a fixed player wins almost surely is undecidable for games
with 9 players. They also showed that the problem remains undecidable
for the finite-strategy Nash equilibrium (finNE) with 14 players. In this
paper we improve their undecidability results by showing that pureNE
and finNE problems remain undecidable for 5 or more players.

Keywords: Stochastic games · Nash equilibrium · Pure strategy · Finite-
state strategy

1 Introduction

Stochastic games are well established formalism for analyzing reactive systems
under the influence of random events [1]. Such systems are often modeled as
games between the system and its environment, where the environment’s objec-
tive is the complement of the system’s objective: the environment is considered
hostile. Therefore, research in this area has traditionally focused on two-player
games where each play is won by precisely one of the two players, so-called two-
player zero-sum games. However, often in the practical settings the system may
consist of several components with independent objectives, a situation which is
naturally modeled by a multi-player game.

In this paper, we study multi-player stochastic games [9] played on finite direc-
ted graphs whose vertices are either stochastic or controlled by one of the play-
ers. A play of such a game evolves by moving a token along edges of the graph in
the following manner. The game begins in an initial vertex. Whenever the token
arrives at a non-stochastic vertex, the player who controls this vertex must move
the token to a successor vertex; when the token arrives at a stochastic vertex, a
fixed probability distribution determines the successor vertex. In the most gen-
eral case, a measurable function maps plays to payoffs. In this paper we consider
so-called simple stochastic games, where the possible payoffs of a single play are
either 0 or 1 (i.e. each player either wins or loses a given play) and depend only
on the terminal vertex of the play, i.e. a vertex which only has a self-loop edge.

c© Springer International Publishing Switzerland 2015
R. Jain et al. (Eds.): TAMC 2015, LNCS 9076, pp. 359–371, 2015.
DOI: 10.1007/978-3-319-17142-5 31

360 A. Das et al.

However, due to the presence of stochastic vertices, a player’s expected payoff (i.e.
her probability of winning) can be an arbitrary probability.

The most common interpretation of rational behavior in multi-player games
is captured by the notion of a Nash equilibrium [8]. In a Nash equilibrium, no
player can improve her payoff by unilaterally switching to a different strategy.
Chatterjee et al. in [3] gave an algorithm for computing a Nash equilibrium in
a stochastic multi-player game with ω-regular winning conditions. However—as
observed by Ummels and Wojtczak [11]—the algorithm proposed by Chatterjee
et al. may compute an equilibrium where all players lose almost surely, even when
there exist other equilibria where all players win almost surely. The equilibrium
where all players win almost surely is more optimal than the one where all players
lose almost surely.

Ummels and Wojtczak [11] successfully argue that in practice it is desirable
to look for an equilibrium where as many players as possible win almost surely
or where it is guaranteed that the expected payoff of the equilibrium falls into
a certain interval. They studied the so-called NE problem as a decision prob-
lem where, given a k-player game G with initial vertex v0 and two thresholds
x̄, ȳ ∈ [0, 1]k1, the goal is to decide whether (G, v0) has a Nash equilibrium with
expected payoff at least x̄ and at most ȳ. This problem can be considered as
a generalization of the quantitative decision problem for two-player zero-sum
games, which asks whether in such a game player 0 has a strategy that ensures
to win the game with a probability that exceeds a given threshold.

There are several variants of the NE problem depending on the type of
strategies permitted. On the one hand, strategies may be randomized (allow-
ing randomization over actions) or pure (not allowing such randomization). On
the other hand, one can restrict to strategies that use (unbounded or bounded)
finite memory or even to stationary ones (strategies that do not use any mem-
ory at all). For the quantitative decision problem, this distinction is often not
meaningful since in a two-player zero-sum simple stochastic game with ω-regular
objectives both players have optimal pure strategies with finite memory. More-
over, in many games even positional (i.e. both pure and stationary) strategies
suffice for optimality. However, regarding NE this distinction leads to distinct
decision problems with completely different computational complexity [11].

Contributions. Ummels and Wojtczak [11] showed that deciding the existence
of pure-strategy Nash equilibria (pureNE) where a fixed player wins almost
surely is undecidable for games with 9 players. They also showed that the prob-
lem remains undecidable for the finite-strategy Nash equilibrium (finNE) with
13 players. In this paper we further refine their undecidability results by showing
that pureNE and finNE problems remain undecidable for 5 or more players.

Related Work. Determining the complexity of Nash equilibria has attracted
much interest in recent years. In particular, a series of papers culminated in
the result that computing a Nash equilibrium of a two-player game in strategic
form is complete for the complexity class PPAD [4,7]. More in the spirit of our

1 The ith element of vector x̄ corresponds to the payoff of player i.

On Pure Nash Equilibria in Stochastic Games 361

work, [6] showed that deciding whether there exists a Nash equilibrium in a two-
player game in strategic form where player 0 receives payoff at least x and related
decision problems are all NP-hard. For non-stochastic infinite games, a qualita-
tive version of the NE problem was studied in [10]. In particular, it was shown
that the problem is NP-complete for games with parity winning conditions but
in P for games with Büchi winning conditions.

For stochastic games, most results concern the computation of values and
optimal strategies in two player case. In the multi-player case, [3] showed that
the problem of deciding whether a (concurrent) stochastic game with reachability
objectives has a Nash equilibrium in positional strategies with payoff at least x̄
is NP-complete.

Ummels and Wojtczak showed in [11] that the NE problem is undecidable
if we allow either arbitrary randomized strategies or arbitrary pure strategies.
In fact, even the following, presumably simpler, problem was showed undecid-
able: Given a game G, decide whether there exists a Nash equilibrium (in pure
strategies) where player 0 wins almost surely. Moreover, the problem remains
undecidable if one restricts to randomized or pure strategies with finite memory.
However, it was also shown there that if one restricts to simpler types of strate-
gies like stationary ones, NE becomes decidable [11]. In particular, for positional
strategies the problem is NP-complete, and for arbitrary stationary strategies it
is NP-hard but contained in Pspace. Also, the strictly qualitative fragment of
NE is decidable. This fragment arises from NE by restricting the two thresholds
to be the same binary payoff. Hence, they were only interested in equilibria where
each player either wins or loses almost surely. Formally, the task is to decide,
given a k-player game G with initial vertex v0 and a binary payoff x̄ ∈ {0, 1}k,
whether the game has a Nash equilibrium with expected payoff x̄. It was shown
there that for simple stochastic games, this problem is P-complete [11].

Ummels and Wojtczak studied, in [12], the computational complexity of Nash
equilibria in concurrent games with limit-average objectives. They showed that
the existence of a Nash equilibrium in randomized strategies is undecidable (for
at least 14 players), while the existence of a Nash equilibrium in pure strategies
is decidable, even if a constraint is put on the payoff of the equilibrium. Their
undecidability result holds even for a restricted class of concurrent games, where
nonzero rewards occur only on terminal states. Moreover, they showed that the
constrained existence problem is undecidable not only for concurrent games but
for turn-based games with the same restriction on rewards. They also showed
undecidability of the existence of an (unconstrained) Nash equilibrium in con-
current games with terminal-reward payoffs. Finally, Bouyer et al. [2] showed
undecidability of the existence of constrained Nash equilibrium in a very similar
model – players do no observe the actions taken but only the state of the game –
with only three players and 0/1-rewards (i.e., reachability objectives).

2 Simple Stochastic Multi-player Games

We study multi-player extension of simple stochastic game introduced by Con-
don [5] as studied by Ummels and Wojtczak [11].

362 A. Das et al.

Definition 1 (Simple Stochastic Multi-player Games). A simple stochas-
tic multi-player game(SSMG) is a tuple (Π,V, (Vi)i∈Π ,Δ, (Fi)i∈Π) where:

– Π = {0, 1, . . . , k − 1} is a finite set of players;
– V is a finite set of vertices;
– Vi ⊆ V is the set of vertices controlled by player i such that Vi ∩ Vj = ∅ for

every i �= j ∈ Π;
– Δ ⊆ V × ([0, 1] ∪ {⊥}) × V is the transition relation, and
– Fi ⊆ V for each i ∈ Π.

We say that a vertex v ∈ V is controlled by player i if v ∈ Vi. A vertex
v ∈ V is called a stochastic vertex if v �∈ ⋃

i∈Π Vi, that is, v is not contained
in any of the sets Vi. We require that a transition is labeled by a probability
iff it originates in a stochastic vertex: If (v, p, w) ∈ Δ then p ∈ [0, 1] if v is a
stochastic vertex and p = ⊥ if v ∈ Vi for some i ∈ Π. Moreover, for each pair
of a stochastic vertex v and an arbitrary vertex w, we require that there exists
precisely one p ∈ [0, 1] such that (v, p, w) ∈ Δ. As usual, for computational
purposes we require that all these probabilities are rational.

For a given vertex v ∈ V , the set of all w ∈ V such that there exists p ∈
(0, 1]∪{⊥} with (v, p, w) ∈ Δ is denoted by vΔ. For technical reasons, it is required
that vΔ �= ∅ for all v ∈ V . Moreover, for each stochastic vertex v, the outgoing
probabilities must sum up to 1:

∑
(p,w):(v,p,w)∈Δ p = 1. Finally, it is required that

each vertex v that lies in one of the sets Fi is a terminal (sink) vertex : vΔ = {v}.
So if F is the set of all terminal vertices, then Fi ⊆ F for each i ∈ Π.

A (mixed) strategy of player i in G is a mapping σ : V ∗Vi → D(V) assigning
to each possible history xv ∈ V ∗Vi of vertices ending in a vertex controlled by
player i a (discrete) probability distribution over V such that σ(xv)(w) > 0 only
if (v,⊥, w) ∈ Δ. Instead of σ(xv)(w), we usually write σ(w | xv). A (mixed)
strategy profile of G is a tuple σ̄ = (σi)i∈Π where σi is a strategy of player i in
G. Given a strategy profile σ̄ = (σj)j∈Π and a strategy τ of player i, we denote
by (σ̄−i, τ) the strategy profile resulting from σ̄ by replacing σi with τ .

A strategy σ of player i is called pure if for each xv ∈ V ∗Vi there exists
w ∈ vΔ with σ(w | xv) = 1. Note that a pure strategy of player i can be
identified with a function σ : V ∗Vi → V . A strategy profile σ̄ = (σi)i∈Π is called
pure if each σi is pure. More generally, a pure strategy σ is called finite-state
if it can be implemented by a finite automaton with output or, equivalently, if
the equivalence relation ∼ ⊆ V ∗ × V ∗ defined by x ∼ y if σ(xz) = σ(yz) for all
z ∈ V ∗Vi has only finitely many equivalence classes. In general, this definition is
applicable to mixed strategies as well, but here, we identify finite-state strategies
with pure finite-state strategies. Finally, a finite-state strategy profile is a profile
consisting of finite-state strategies only.

It is sometimes convenient to designate an initial vertex v0 ∈ V of the game.
We call the tuple (G, v0) an initialized SSMG. A strategy (strategy profile) of
(G, v0) is just a strategy (strategy profile) of G. In the following, we will use the
abbreviation SSMG also for initialized SSMGs. It should always be clear from
the context if the game is initialized or not.

When drawing an SSMG as a graph, we continue to use the conventions
of [11]. The initial vertex is marked by an incoming edge that has no source

On Pure Nash Equilibria in Stochastic Games 363

vertex. Vertices that are controlled by a player are depicted as circles, where the
player who controls a vertex is given by the label next to it. Stochastic vertices
are depicted as diamonds, where the transition probabilities are given by the
labels on its outgoing edges. Finally, terminal vertices are generally represented
by their associated payoff vector. In fact, we allow arbitrary vectors of rational
probabilities as payoffs. This does not increase the power of the model since such
a payoff vector can easily be realized by an SSMG consisting of stochastic and
terminal vertices only.

Given an SSMG (G, v0) and a strategy profile σ̄ = (σi)i∈Π , the conditional
probability of w ∈ V given the history xv ∈ V ∗V is the number σi(w | xv) if
v ∈ Vi and the unique p ∈ [0, 1] such that (v, p, w) ∈ Δ if v is a stochastic vertex.
We abuse notation and denote this probability by σ̄(w | xv). The probabilities
σ̄(w | xv) induce a probability measure on the space V ω in the following way: The
probability of a basic open set v1 . . . vk ·V ω is 0 if v1 �= v0 and the product of the
probabilities σ̄(vj | v1 . . . vj−1) for j = 2, . . . , k otherwise. It is a classical result
of measure theory that this extends to a unique probability measure assigning
a probability to every Borel subset of V ω, which we denote by Prσ̄

v0
. For a set

U ⊆ V , let Reach(U) := V ∗ · U · V ω.
Given a strategy profile σ̄, a strategy τ of player i is called a best response to

σ̄ if τ maximizes the expected payoff of player i, i.e. for all strategies τ ′ of player i

we have that Pr(σ̄−i,τ
′)

v0
(Reach(Fi)) ≤ Pr(σ̄−i,τ)

v0
(Reach(Fi)). A Nash equilibrium

is a strategy profile σ̄ = (σi)i∈Π such that each σi is a best response to σ̄.
Hence, in a Nash equilibrium no player can improve her payoff by (unilaterally)
switching to a different strategy. In this paper we study the following decision
problem.

Definition 2 (Decision Problem NE). Given an initialized simple stochastic
multi-player game (G, v0) and two thresholds x̄, ȳ ∈ [0, 1]Π , decide whether there
exists a Nash equilibrium with payoff ≥ x̄ and ≤ ȳ.

As usual, for computational purposes we assume that the thresholds x̄ and ȳ
are vectors of rational numbers. The threshold-free variant of the above prob-
lem which omits the thresholds just asks about a Nash equilibrium where some
distinguished player, say player 0, wins almost surely.

The following is the key result of this paper.

Theorem 1. The existence of a pure-strategy-Nash equilibrium SSMG where
player 0 wins almost surely is undecidable for games with 5 or more players.

3 Improved Undecidability Result

In this section we construct an SSMG G for which we show the undecidability
of the existence of pure-strategy Nash equilibria of (G, v0) where player 0 wins
almost surely, whenever G has 5 or more players. We then explain how this proof
can be adapted to show undecidability of

– finite-strategy Nash equilibrium where player 0 wins almost surely whenever
G has 5 or more players.

364 A. Das et al.

3.1 Pure-Strategy Equilibria

In this section, we show that the problem pureNE is undecidable by exhibit-
ing a reduction from an undecidable problem about two-counter machines. Our
construction is inspired by a construction used in [11]. A two-counter machine
M is given by a list of instructions ι1, . . . , ιm where each instruction is one of
the following:

– “inc(j); goto k” (increment counter j by 1 and go to instruction k);
– “zero(j) ? goto k: dec(j); goto l” (if the value of counter j is zero, go to

instruction k; otherwise, decrement counter j by one and go to instruction l);
– “halt” (stop the computation).

Here j ranges over 1, 2 (the two counters), and k �= l range over 1, . . . , m.
A configuration of M is a triple C = (i, c1, c2) ∈ {1, . . . , m} × N × N, where i
denotes the number of the current instruction and cj denotes the current value
of counter j. A configuration C ′ is the successor of configuration C, denoted
by C C ′, if it results from C by executing instruction ιi; a configuration
C = (i, c1, c2) with ιi = “halt” has no successor configuration. Finally, the
computation of M is the unique maximal sequence ρ = ρ(0)ρ(1) . . . such that
ρ(0) ρ(1) . . . and ρ(0) = (1, 0, 0) (the initial configuration). Note that ρ is
either infinite, or it ends in a configuration C = (i, c1, c2) such that ιi = “halt”.

The halting problem is to decide, given a machine M, whether the com-
putation of M is finite. It is well-known that two-counter machines are Turing
powerful, which makes the halting problem and its dual, the non-halting problem,
undecidable.

In order to prove Theorem1, we show that one can compute from a two-
counter machine M an SSMG (G, v0) with five players such that the computation
of M is infinite iff (G, v0) has a pure Nash equilibrium where player 0 wins almost
surely. This establishes a reduction from the non-halting problem to pureNE.

The game G is played by player 0 and four other players At and Bt, indexed by
t ∈ {0, 1}. Let Γ = {init, inc(j),dec(j), zero(j) : j = 1, 2}, and let q1 = 2, q2 = 3
be two primes. If M has instructions ι1, . . . , ιm, then for each i ∈ {1, . . . , m},
each γ ∈ Γ , each j ∈ {1, 2} and each t ∈ {0, 1}, the game G contains the
gadgets St

i,γ , It
i,γ and Ct

j,γ , which are depicted in Fig. 1. In the figure, squares
represent terminal vertices (the edge leading from a terminal vertex to itself
being implicit), and the labeling indicates which players win at the respective
vertex. Moreover, the dashed edge inside Ct

j,γ is present iff γ �∈ {init, zero(j)}.
The initial vertex v0 of G is the black vertex inside the gadget S0

1,init.
For any pure strategy profile σ̄ of G where player 0 wins almost surely, let

x0v0 ≺ x1v1 ≺ x2v2 ≺ . . . (xi ∈ V ∗, v ∈ V , x0 = ε) be the (unique) sequence
of all consecutive histories such that, for each n ∈ N, vn is a black vertex and
Prσ̄

v0
(xnvn · V ω) > 0. Additionally, let γ0, γ1, . . . be the corresponding sequence

of instructions, i.e. γn = γ for the unique instruction γ such that vn lies in one
of the gadgets St

i,γ (where t = n mod 2). For each j ∈ {1, 2} and n ∈ N, we
define two conditional probabilities an and pn as follows:

an := Prσ̄
v0

(Reach(FAn mod 2) | xnvn · V ω) and
pn := Prσ̄

v0
(Reach(FAn mod 2) | xnvn · V ω \ xn+2vn+2 · V ω).

On Pure Nash Equilibria in Stochastic Games 365

Finally, for each j ∈ {1, 2} and n ∈ N, we define an ordinal number cn
j ≤ ω

as follows: After the history xnvn, with probability 1
4 the play proceeds to the

vertex controlled by player 0 in the counter gadget Ct
j,γn

(where t = n mod 2).
The number cn

j is defined to be the maximal number of subsequent visits to the
grey vertex inside this gadget (where cn

j = ω if, on one path, the grey vertex

St
i,γ :

A0 (0, 2
3 , . . . , 2

3)

B0 (0, 1
3 , . . . , 1

3)

A1 (0, 2
3 , . . . , 2

3)

B1 (0, 1
3 , . . . , 1

3)

Ct
1,γ

Ct
2,γ

It
i,γ

1
2

1
4

1
4

Ct
j,γ :

0

0,At,Bt̄

0,At,Bt̄ 0,At,At̄ 0,At,At̄

0,Bt,At̄

if γ = inc(j);

1− 1
qj

1
qj

1
qj

1− 1
qj

1
qj

1− 1
qj

1
2

1
2

0

0,At,Bt̄

0,At,Bt̄

0,At,Bt̄

0,At,At̄

0,Bt,Bt̄

0,Bt,At̄

if γ = dec(j);

1− 1
qj

1
qj

1
q2
j

1− 1
q2
j

1
2

1
2

1− 1
qj

1
qj

1
qj

1− 1
qj

0

0,At,Bt̄

0,At,Bt̄ 0,At,At̄

0,Bt,At̄

if γ {∈� inc(j), dec(j)}.

1− 1
qj

1
qj

1
q2
j

1− 1
q2
j

1
2

1
2

It
i,γ :

0

St̄
k,inc(j)

if ιi = “inc(j); goto k”;

0
St̄

k,zero(j)

St̄
l,dec(j)

if ιi = “zero(j) ? goto k : dec(j); goto l”;

0

(0, . . . , 0)

if ιi = “halt”.

Fig. 1. Simulating a two-counter machine.

366 A. Das et al.

is visited infinitely often). Note that, by the construction of Ct
j,γ , it holds that

cn
j = 0 if γn = zero(j) or γn = init.

Lemma 1. Let σ̄ be a pure strategy profile of (G, v0) where player 0 wins almost
surely. Then σ̄ is a Nash equilibrium if and only if the following equation holds.

cn+1
j =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

1 + cn
j if γn+1 = inc(j),

cn
j − 1 if γn+1 = dec(j),

cn
j = 0 if γn+1 = zero(j),

cn
j otherwise

(1)

for all j ∈ {1, 2} and n ∈ N.

Here + and − denote the usual addition and subtraction of ordinal numbers
respectively (satisfying 1 + ω = ω − 1 = ω). The proof of Lemma 1 goes through
several claims. In the following, let σ̄ be a pure strategy profile of (G, v0) where
player 0 wins almost surely. The first claim gives a necessary and sufficient
condition on the probabilities an for σ̄ to be a Nash equilibrium.

Proposition 1. The profile σ̄ is a Nash equilibrium iff an = 2
3 for all n ∈ N.

Proof. (⇒) Assume that σ̄ is a Nash equilibrium. Clearly, this implies that an ≥
2
3 for all n ∈ N since otherwise some player At could improve her payoff by
leaving one of the gadgets St

i,γ . Let bn := Prσ̄
v0

(Reach(FBn mod 2) | xnvn · V ω).
We have bn ≥ 1

3 for all n ∈ N since otherwise some player Bt could improve
her payoff by leaving one of the gadgets St

i,γ . Note that at every terminal vertex
of the counter gadgets Ct

j,γ and C t̄
j,γ either player At or player Bt wins. The

conditional probability that, given the history xnvn, we reach either of those
gadgets is

∑
k∈Z(12)k · 1

2 = 1 for all n ∈ N, so we have an = 1 − bn for all n ∈ N.
Since bn ≥ 1

3 , we arrive at an ≤ 1 − 1
3 = 2

3 , which proves the claim.
(⇐) Assume that an = 2

3 for all n ∈ N. Clearly, this implies that none of
the players At can improve her payoff. To show that none of the players Bt can
improve her payoff, it suffices to show that bn ≥ 1

3 for all n ∈ N. But with the
same argumentation as above, we have bn = 1 − an and thus bn = 1

3 for all
n ∈ N, which proves the claim. ��
The second claim relates the probabilities an and pn.

Proposition 2. an = 2
3 for all n ∈ N if and only if pn = 1

2 for all n ∈ N.

Proof. (⇒) Assume that an = 2
3 for all n ∈ N. We have an = pn + 1

4 · an+2 and
therefore 2

3 = pn + 1
6 for all n ∈ N. Hence, pn = 1

2 for all n ∈ N.
(⇐) Assume that pn = 1

2 for all n ∈ N. Since an = pn + 1
4 ·an+2 for all n ∈ N,

the numbers an must satisfy the following recurrence: an+2 = 4an − 2. Since all
the numbers an are probabilities, we have 0 ≤ an ≤ 1 for all n ∈ N. It is easy
to see that the only values for a0 and a1 such that 0 ≤ an ≤ 1 for all n ∈ N are
a0 = a1 = 2

3 . But this implies that an = 2
3 for all n ∈ N. ��

On Pure Nash Equilibria in Stochastic Games 367

Finally, the last claim relates the numbers pn to Eq. (1).

Proposition 3. pn = 1
2 for all n ∈ N if and only if Eq. (1) holds for all n ∈ N.

Proof. Let n ∈ N, and let t = n mod 2. The probability pn can be expressed as
the sum of the probability that the play reaches a terminal vertex that is winning
for player At inside Ct

j,γn
(this probability is denoted as αj

n) and the probability
that the play reaches a terminal vertex winning for player At̄ inside C t̄

j,γn+1

(denoted as αj
n+1). For counter 1 gadgets, the probability α1

n of At winning in
counter gadget Ct

1,γn
is

α1
n = Σ0≤i≤cn1 −1

(
1 − 1

q1

)
1
qi
1

+
1

q
cn1
1

{(
1 − 1

q21

)
+

1
2q21

}

= 1 − 1

q
cn1
1

+
1

q
cn1
1

{(
1 − 1

q21

)
+

1
2q21

}

= 1 − 1

q
cn1
1

+
1

q
cn1
1

{
1 − 1

2q21

}

= 1 − 1

2q
cn1 +2
1

Suppose γn+1 = inc(1).

Then the probability α1
n+1 of At̄ winning in counter gadget C t̄

1,γn+1
is

1

q
cn+1
1

1

· 1
q1

Similarly, the probabilities α2
n and α2

n+1 corresponding to counter 2 gadgets are
as follows:

α2
n = 1 − 1

2q
cn1 +2
1

and α2
n+1 =

1

q
cn+1
2

2

· 1
q22

Given, these probabilities, pn is as follows.

pn =
1
4

[
α1

n +
1
2
α1

n+1

]
+

1
4

[
α2

n +
1
2
α2

n+1

]

=
1
4

[
1 − 1

2q
cn1 +2
1

+
1

2q
cn+1
1 +1

1

]
+

1
4

[
1 − 1

2q
cn2 +2
2

+
1

2q
cn+1
2 +2

2

]

=
1
2

− 1
8

[
1

q
cn1+2
1

− 1

q
cn+1
1 +1

1

]
− 1

8

[
1

q
cn2 +2
2

− 1

q
cn+1
2 +2

2

]

As q1 and q2 are primes, this sum is equal to 1
2 iff cn+1

1 = 1 + cn
1 and cn+1

2 = cn
2 .

For γn+1 being any other instruction like decrement, other instructions, the
argument is similar. ��

368 A. Das et al.

Proof (Proof of Lemma 1). By Proposition 1, the profile σ̄ is a Nash equilibrium
iff an = 2

3 for all n ∈ N. By Proposition 2, the latter is true if pn = 1
2 for all

n ∈ N. Finally, by Proposition 3, this is the case iff Eq. (1) holds for all j ∈ {1, 2}
and n ∈ N. ��

To establish the reduction, it remains to show that the computation of M
is infinite iff the game (G, v0) has a pure Nash equilibrium where player 0 wins
almost surely.

(⇒) Assume that the computation ρ = ρ(0)ρ(1) . . . of M is infinite. We
define a pure strategy σ0 for player 0 as follows: For a history that ends in one of
the instruction gadgets It

i,γ after visiting a black vertex exactly n times, player 0
tries to move to the neighboring gadget S t̄

k,γ′ such that ρ(n) refers to instruction
number k (which is always possible if ρ(n − 1) refers to instruction number i; in
any other case, σ0 might be defined arbitrarily). In particular, if ρ(n−1) refers to
instruction ιi = “zero(j) ? goto k : dec(j); goto l”, then player 0 will move to the
gadget S t̄

k,zero(j) if the value of the counter in configuration ρ(n − 1) is 0 and to
the gadget S t̄

l,dec(j) otherwise. For a history that ends in one of the gadgets Ct
j,γ

after visiting a black vertex exactly n times and a grey vertex exactly m times,
player 0 will move to the grey vertex again iff m is strictly less than the value of
the counter j in configuration ρ(n−1). So after entering Ct

j,γ , player 0’s strategy
is to loop through the grey vertex exactly as many times as given by the value
of the counter j in configuration ρ(n − 1).

Any other player’s pure strategy is “moving down at any time”. We claim that
the resulting strategy profile σ̄ is a Nash equilibrium of (G, v0) where player 0
wins almost surely.

Since, according to her strategy, player 0 follows the computation of M, no
vertex inside an instruction gadget It

i,γ where ιi is the halt instruction is ever
reached. Hence, with probability 1 a terminal vertex in one of the counter gadgets
is reached. Since player 0 wins at any such vertex, we can conclude that she wins
almost surely.

It remains to show that σ̄ is a Nash equilibrium. By the definition of player 0’s
strategy σ0, we have the following for all n ∈ N: 1. cn

j is the value of counter j in
configuration ρ(n); 2. cn+1

j is the value of counter j in configuration ρ(n + 1); 3.
γn+1 is the instruction corresponding to the counter update from configuration
ρ(n) to ρ(n+1). Hence, Eq. (1) holds, and σ̄ is a Nash equilibrium by Lemma 1.

(⇐) Assume that σ̄ is a pure Nash equilibrium of (G, v0) where player 0
wins almost surely. We define an infinite sequence ρ = ρ(0)ρ(1) . . . of pseudo
configurations (where the counters may take the value ω) of M as follows. Let
n ∈ N, and assume that vn lies inside the gadget St

i,γn
(where t = n mod 2);

then ρ(n) := (i, cn
1 , cn

2).
We claim that ρ is, in fact, the (infinite) computation of M. It suffices to

verify the following two properties:

1. ρ(0) = (1, 0, 0);
2. ρ(n) ρ(n + 1) for all n ∈ N.

On Pure Nash Equilibria in Stochastic Games 369

Note that we do not have to show explicitly that each ρ(n) is a configuration
of M since this follows easily by induction from 1. and 2. Verifying the first
property is easy: v0 lies inside S0

1,init (and we are at instruction 1), which is
linked to the counter gadgets C0

1,init and C0
2,init. The edge leading to the grey

vertex is missing in these gadgets. Hence, c01 and c02 are both equal to 0.
For the second property, let ρ(n) = (i, c1, c2) and ρ(n+1) = (i′, c′

1, c
′
2). Hence,

vn lies inside St
i,γ and vn+1 inside S t̄

i′,γ′ for suitable γ, γ′ and t = n mod 2. We
only prove the claim for the case that ιi = “zero(2) ? goto k : dec(2); goto l”; the
other cases are straightforward. Note that, by the construction of the gadget It

i,γ ,
it must be the case that either i′ = k and γ′ = zero(2), or i′ = l and γ′ = dec(2).
By Lemma 1, if γ′ = zero(2), then c′

2 = c2 = 0 and c′
1 = c1, and if γ′ =

dec(2), then c′
2 = c2 − 1 and c′

1 = c1. This implies ρ(n) ρ(n + 1): On the one
hand, if c2 = 0, then c′

2 �= c2−1, which implies γ′ �= dec(2) and thus γ′ = zero(2),
i′ = k and c′

2 = c2 = 0. On the other hand, if c2 > 0, then γ′ �= zero(2) and thus
γ′ = dec(2), i′ = l and c′

2 = c2 − 1. ��

3.2 Finite-State Equilibria

Theorem 2. The existence of a finite-strategy-Nash equilibrium SSMG where
player 0 wins almost surely is undecidable for games with 5 or more players.

We now move on to prove Theorem 2. Before showing the undecidability of the
existence of finNE, we first note that finNE is recursively enumerable: To decide
whether an SSMG (G, v0) has a finite-state Nash equilibrium with payoff ≥ x̄ and
≤ ȳ, one can just enumerate all possible finite-state profiles and check for each
of them whether the profile is a Nash equilibrium with the desired properties
by analyzing the finite Markov chain that is generated by this profile (where
one identifies states that correspond to the same vertex and memory state).
Hence, to show the undecidability of finNE, we cannot reduce from the non-
halting problem but from the halting problem for two-counter machines (which
is recursively enumerable itself).

We now explain how to adapt the proof of Theorem1 to show the undecidabil-
ity of finNE. The construction is similar to the one for proving undecidability of
pureNE. Given a two-counter machine M, we modify the SSMG G constructed
in the proof of Theorem1 by adding another “counter” (sharing the four players
from the other two gadgets, but using an additional new prime, say q3 = 5 for
checking whether the counter is updated correctly) that has to be incremented
in each step. Moreover, additionally to the terminal vertices in the gadgets Ct

j,γ ,
we let player 0 win at the terminal vertex in each of the gadgets Ii,γ where
ιi = “halt”. The gadget γ = inc(j) in Fig. 1 is a generic one and when we put
qj = 5, it becomes the increment gadget for this new counter. Correctly incre-
menting this counter comes from Proposition 3 that pn = 1

2 iff Eq. (1) is correct.
With the extra counter, pn is the sum of At winning in the gadgets of all the
three counters. Hence, this will ensure correct updates of all counters.

Let us denote the new game by G′. Now, if M does not halt, any pure Nash
equilibrium of (G′, v0) where player 0 wins almost surely needs infinite memory:

370 A. Das et al.

to win almost surely, player 0 must follow the computation of M and increment
the new counter at each step. On the other hand, if M halts, then we can easily
construct a finite-state Nash equilibrium of (G′, v0) where player 0 wins almost
surely. Hence, (G′, v0) has a finite-state Nash equilibrium where player 0 wins
almost surely iff the machine M halts.

We shall now compare the above described improved results with their coun-
terparts in [11]. The pureNE undecidability proof in [11] reduced the non-halting
problem to a game with 9 players. The game has 4 dedicated players to ensure cor-
rectness of each counter - thus using 8 additional players. While we follow their
idea of reduction, with the help of primes q1, q2 we re-use the 4 players At and Bt,
t ∈ {0, 1} across the gadgets of both counters. Addtionally, finNE undecidability
proof is achieved by incrementing a third additional counter. While the proof for
finNE in [11] uses 4 new players for the third counter, we use another prime q3
and re-use the 4 players (At and Bt, t ∈ {0, 1}) for the third counter.

4 Conclusion

We have showed that pureNE where player 0 wins almost surely is undecidable
when the game has 5 or more players. A closely related open problem is pureNE
where player 0 wins with probability p ∈ [0, 1). The decidability of the existence
of mixed-strategy NE is an interesting open problem. A further line of work
is to explore concurrent moves by all the non-stochastic players, and study the
decidability of the existence of various kinds of Nash equilibrium. This concurrent
extension of SSMGs is inspired by [12], where the authors consider concurrent
moves of all players on finite graphs, with reward vectors attached to the terminal
vertices.

References

1. Baier, C., Größer, M., Leucker, M., Bollig, B., Ciesinski, F.: Probabilistic controller
synthesis. In: International Conference on Theoretical Computer Science, IFIP
TCS 2004, pp. 493–506. Kluwer Academic Publishers (2004)

2. Bouyer, P., Markey, N., Stan, D.: Mixed Nash equilibria in concurrent games. In:
FSTTCS (to appear, 2014)

3. Chatterjee, K., Majumdar, R., Jurdziński, M.: On nash equilibria in stochastic
games. In: Marcinkowski, J., Tarlecki, A. (eds.) CSL 2004. LNCS, vol. 3210, pp.
26–40. Springer, Heidelberg (2004)

4. Chen, X., Deng, X., Teng, S.-H.: Settling the complexity of computing two-player
Nash equilibria. J. ACM 56(3), 1–57 (2009)

5. Condon, A.: On algorithms for simple stochastic games. Adv. Comput. Complex.
Theor. 13, 51–73 (1993)

6. Conitzer, V., Sandholm, T.: Complexity results about Nash equilibria. In: Proceed-
ings of the 18th International Joint Conference on Artificial Intelligence, IJCAI
2003, pp. 765–771. Morgan Kaufmann (2003)

7. Daskalakis, C., Goldberg, P.W., Papadimitriou, C.H.: The complexity of computing
a Nash equilibrium. SIAM J. Comput. 39(1), 195–259 (2009)

On Pure Nash Equilibria in Stochastic Games 371

8. Nash, J.F.: Equilibrium points in N -person games. Proc. National Acad. Sci. USA
36, 48–49 (1950)

9. Neyman, A., Sorin, S. (eds.): Stochastic Games and Applications. NATO Science
Series C, vol. 570. Springer, Berlin (2003)

10. Ummels, M.: The complexity of Nash equilibria in infinite multiplayer games.
In: Amadio, R.M. (ed.) FOSSACS 2008. LNCS, vol. 4962, pp. 20–34. Springer,
Heidelberg (2008)

11. Ummels, M., Wojtczak, D.: The complexity of Nash equilibria in simple sto-
chastic multiplayer games. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y.,
Nikoletseas, S., Thomas, W. (eds.) ICALP 2009, Part II. LNCS, vol. 5556,
pp. 297–308. Springer, Heidelberg (2009)

12. Ummels, M., Wojtczak, D.: The complexity of Nash equilibria in limit-average
games. In: Katoen, J.-P., König, B. (eds.) CONCUR 2011. LNCS, vol. 6901,
pp. 482–496. Springer, Heidelberg (2011)

Learning, Automata
and Probabilistic Models

Learning from Non-iid Data: Fast Rates
for the One-vs-All Multiclass Plug-in Classifiers

Vu Dinh1, Lam Si Tung Ho2(B), Nguyen Viet Cuong3, Duy Nguyen4,
and Binh T. Nguyen5

1 Department of Mathematics, Purdue University, West Lafayette, USA
vdinh@math.purdue.edu

2 Department of Biostatistics, University of California, Los Angeles, USA
lamho@ucla.edu

3 Department of Computer Science, National University of Singapore,
Singapore, Singapore

nvcuong@comp.nus.edu.sg
4 Department of Statistics, University of Wisconsin-Madison, Madison, USA

dnguyen@stat.wisc.edu
5 Department of Computer Science, University of Science,

Ho Chi Minh City, Vietnam
ngtbinh@hcmus.edu.vn

Abstract. We prove new fast learning rates for the one-vs-all multiclass
plug-in classifiers trained either from exponentially strongly mixing data
or from data generated by a converging drifting distribution. These are
two typical scenarios where training data are not iid. The learning rates
are obtained under a multiclass version of Tsybakov’s margin assump-
tion, a type of low-noise assumption, and do not depend on the number of
classes. Our results are general and include a previous result for binary-
class plug-in classifiers with iid data as a special case. In contrast to
previous works for least squares SVMs under the binary-class setting,
our results retain the optimal learning rate in the iid case.

1 Introduction

Fast learning of plug-in classifiers from low-noise data has recently gained much
attention [1–4]. The first fast/super-fast learning rates1 for the plug-in classi-
fiers were proven by Audibert and Tsybakov [1] under the Tsybakov’s margin
assumption [5], which is a type of low-noise condition. Their plug-in classifiers
employ the local polynomial estimator to estimate the conditional probability of
a label Y given an observation X and use it in the plug-in rule. Subsequently,
Kohler and Krzyzak [2] proved the fast learning rate for plug-in classifiers with

Vu Dinh and Lam Si Tung Ho—These authors contributed equally to this work.
LST Ho was supported by NSF IIS 1251151.

1 Fast learning rate means the trained classifier converges with rate faster than n−1/2,
while super-fast learning rate means the trained classifier converges with rate faster
than n−1.

c© Springer International Publishing Switzerland 2015
R. Jain et al. (Eds.): TAMC 2015, LNCS 9076, pp. 375–387, 2015.
DOI: 10.1007/978-3-319-17142-5 32

376 V. Dinh et al.

a relaxed condition on the density of X and investigated the use of kernel, parti-
tioning, and nearest neighbor estimators instead of the local polynomial estima-
tor. Monnier [3] suggested to use local multi-resolution projections to estimate
the conditional probability of Y and proved the super-fast rates of the corre-
sponding plug-in classifier under the same margin assumption. Fast rates for
plug-in classifiers were also achieved in the active learning setting [4].

Nevertheless, these previous analyses of plug-in classifiers typically focus on
the binary-class setting with iid (independent and identically distributed) data
assumption. This is a limitation of the current theory for plug-in classifiers since
(1) many classification problems are multiclass in nature and (2) data may also
violate the iid data assumption in practice. In this paper, we contribute to the
theoretical understandings of plug-in classifiers by proving novel fast learning
rates of a multiclass plug-in classifier trained from non-iid data. In particular,
we prove that the multiclass plug-in classifier constructed using the one-vs-all
method can achieve fast learning rates, or even super-fast rates, with the fol-
lowing two types of non-iid training data: data generated from an exponentially
strongly mixing sequence and data generated from a converging drifting distribu-
tion. To the best of our knowledge, this is the first result that proves fast learning
rates for multiclass classifiers with non-iid data. Moreover, these learning rates
do not depend on the number of classes.

Our results assume a multiclass version of Tsybakov’s margin assumption. In
the multiclass setting, this assumption states that the events in which the most
probable label of an example is ambiguous with the second most probable label
have small probabilities. This margin assumption was previously considered in
the analyses of multiclass empirical risk minimization (ERM) classifiers with
iid data [6] and in the context of active learning with cost-sensitive multiclass
classifiers [7]. Our results are natural generalizations for both the binary-class
and the iid data settings. As special cases of our results, we can obtain fast
learning rates for the one-vs-all multiclass plug-in classifiers in the iid data setting
and the fast learning rates for the binary-class plug-in classifiers in the non-iid
data setting. Our results can also be used to obtain the previous fast learning
rates [1] for the binary-class plug-in classifiers in the iid data setting.

In terms of theory, the extension from binary class to multiclass problem is
usually not trivial and depends greatly on the choice of the multiclass classifiers.
In this paper, our results show that this extension can be achieved with plug-in
classifiers and the one-vs-all method. The one-vs-all method is a practical way to
construct a multiclass classifier using binary-class classification [8]. This method
trains a model for each class by converting multiclass data into binary-class data
and then combines them into a multiclass classifier.

Our paper considers two types of non-iid data. Exponentially strongly mix-
ing data is a typical case of identically but not independently distributed data.
Fast learning from exponentially strongly mixing data has been previously ana-
lyzed for least squares support vector machines (LS-SVMs) [9,10] and ERM
classifiers [10]. On the other hand, data generated from a drifting distribu-
tion (or drifting concept) is an example of independently but not identically

Learning from Non-iid Data: Fast Rates 377

distributed data. Some concept drifting scenarios and learning bounds were pre-
viously investigated in [11–14]. In this paper, we consider the scenario where the
parameters of the distributions generating the training data converge uniformly
to those of the test distribution with some polynomial rate.

We note that even though LS-SVMs can be applied to solve a classification
problem with binary data, the previous results for LS-SVMs cannot retain the
optimal rate in the iid case [9,10]. In contrast, our results in this paper still
retain the optimal learning rate for the Hölder class in the iid case. Besides, the
results for drifting concepts can also achieve this optimal rate. Other works that
are also related to our paper include the analyses of fast learning rates for binary
SVMs and multiclass SVMs with iid data [15,16] and for the Gibbs estimator
with φ-mixing data [17].

2 Preliminaries

2.1 Settings

Let {(Xi, Yi)}n
i=1 be the labeled training data where Xi ∈ Rd and Yi ∈ {1, 2,

. . . , m} for all i. In the data, Xi is an observation and Yi is the label of Xi. The
binary-class case corresponds to m = 2, while the multiclass case corresponds
to m > 2. For now we do not specify how {(Xi, Yi)}n

i=1 are generated, but we
assume that test data are drawn iid from an unknown distribution P on Rd ×
{1, 2, . . . ,m}. In Sects. 4 and 5, we will respectively consider two cases where the
training data {(Xi, Yi)}n

i=1 are generated from an exponentially strongly mixing
sequence with stationary distribution P and where {(Xi, Yi)}n

i=1 are generated
from a drifting distribution with the limit distribution P. The case where training
data are generated iid from P is a special case of these settings.

Given the training data, our aim is to find a classification rule f : Rd →
{1, 2, . . . ,m} whose risk is as small as possible. The risk of a classifier f is defined
as R(f) � P(Y �= f(X)). One minimizer of the above risk is the Bayes classifier
f∗(X) � arg maxj ηj(X), where ηj(X) � P(Y = j|X) for all j ∈ {1, 2, . . . ,m}.
For any classifier f̂n trained from the training data, it is common to characterize
its accuracy via the excess risk E(f̂n) � ER(f̂n) − R(f∗), where the expectation
is with respect to the randomness of the training data. A small excess risk for
f̂n is thus desirable as the classifier will perform close to the optimal classifier
f∗ on average.

For any classifier f , we write ηf (X) as an abbreviation for ηf(X)(X), which
is the value of the function ηf(X) at X. Let 1{·} be the indicator function.
The following proposition gives a property of the excess risk in the multiclass
setting. This proposition will be used to prove the theorems in the subsequent
sections.

Proposition 1. For any classifier f̂n, we have E(f̂n) = E
[
ηf∗(X) − η

̂fn
(X)

]
,

where the expectation is with respect to the randomness of both the training data
and the testing example X.

378 V. Dinh et al.

Proof. R(f̂n) − R(f∗)

= P(Y �= f̂n(X)) − P(Y �= f∗(X)) = P(Y = f∗(X)) − P(Y = f̂n(X))

= EX,Y

[
1{Y =f∗(X)} − 1{Y = ̂fn(X)}

]
= EX

[
EY

[
1{Y =f∗(X)} − 1{Y = ̂fn(X)}

∣∣X
]]

= EX

⎡
⎣

m∑
j=1

ηj(X)
(
1{f∗(X)=j} − 1{ ̂fn(X)=j}

)
⎤
⎦ = EX

[
ηf∗(X) − η

̂fn
(X)

]
.

Thus, E(f̂n) = E
[
ηf∗(X) − η

̂fn
(X)

]
. �

Following the settings for the binary-class case [1], we assume the following
Hölder assumption: all the functions ηj ’s are in the Hölder class Σ(β, L,Rd). We
also assume that the marginal distribution PX of X satisfies the strong density
assumption. The definition of Hölder classes and the strong density assumption
are briefly introduced below by using the notations in [1].

For β > 0 and L > 0, the Hölder class Σ(β, L,Rd) is the set of all functions
g : Rd → R that are �β� times continuously differentiable, and for any x, x′ ∈ Rd,
we have |g(x′) − gx(x′)| ≤ L||x − x′||β , where || · || is the Euclidean norm and
gx is the �β�th-degree Taylor polynomial of g at x. The definition of gx can be
found in Sect. 2 of [1].

Fix c0, r0 > 0 and 0 < μmin < μmax < ∞, and fix a compact set C ⊂ Rd.
The marginal PX satisfies the strong density assumption if it is supported on
a compact (c0, r0)-regular set A ⊆ C and its density μ (w.r.t. the Lebesgue
measure) satisfies: μmin ≤ μ(x) ≤ μmax for x ∈ A and μ(x) = 0 otherwise. In
this definition, a set A is (c0, r0)-regular if λ[A ∩ B(x, r)] ≥ c0λ[B(x, r)] for all
0 < r ≤ r0 and x ∈ A, where λ is the Lebesgue measure and B(x, r) is the
Euclidean ball in Rd with center x and radius r.

2.2 Margin Assumption for Multiclass Setting

As in the binary-class case, fast learning rates for the multiclass plug-in classi-
fier can be obtained under an assumption similar to Tsybakov’s margin assump-
tion [5]. In particular, we assume that the conditional probabilities ηj ’s satisfy
the following margin assumption, which is an extension of Tsybakov’s margin
assumption to the multiclass setting. This is a form of low noise assumption and
was also considered in the context of active learning to analyze the learning rate
of cost-sensitive multiclass classifiers [7].

Assumption (Margin Assumption). There exist constants C0 > 0 and α ≥ 0
such that for all t > 0,

PX(η(1)(X) − η(2)(X) ≤ t) ≤ C0t
α

where η(1)(X) and η(2)(X) are the largest and second largest conditional proba-
bilities among all the ηj(X)’s.

Learning from Non-iid Data: Fast Rates 379

3 The One-vs-All Multiclass Plug-In Classifier

We now introduce the one-vs-all multiclass plug-in classifier which we will analyze
in this paper. Let η̂n(X) = (η̂n,1(X), η̂n,2(X), . . . , η̂n,m(X)) be an m-dimensional
function where η̂n,j is a nonparametric estimator of ηj from the training data. The
corresponding multiclass plug-in classifier f̂n predicts the label of an observation
X by

f̂n(X) = arg max
j

η̂n,j(X).

In this paper, we consider plug-in classifiers where η̂n,j ’s are estimated using the
one-vs-all method and the local polynomial regression function as follows. For
each class j ∈ {1, 2, . . . ,m}, we first convert the training data {(Xi, Yi)}n

i=1 to
binary class by considering all (Xi, Yi)’s such that Yi �= j as negative (label 0) and
those such that Yi = j as positive (label 1). Then we construct a local polynomial
regression function η̂ LP

n,j (x) of order �β� with some appropriate bandwidth h > 0
and kernel K from the new binary-class training data (see Sect. 2 of [1] for the
definition of local polynomial regression functions). The estimator η̂n,j can now
be defined as

η̂n,j(x) �

⎧
⎪⎨
⎪⎩

0 if η̂ LP
n,j (x) ≤ 0

η̂ LP
n,j (x) if 0 < η̂ LP

n,j (x) < 1
1 if η̂ LP

n,j (x) ≥ 1
.

In order to prove the fast rates for the multiclass plug-in classifier, the bandwidth
h and the kernel K of the local polynomial regression function have to be chosen
carefully. Specifically, K has to satisfy the following assumptions, which are
similar to those in [1]:

∃c > 0 such that for all x ∈ Rd, we have K(x) ≥ c1{||x||≤c},
∫

Rd

K(u)du = 1, sup
u∈Rd

(1+||u||2β)K(u) < ∞, and
∫

Rd

(1+||u||4β)K2(u)du < ∞.

Note that Gaussian kernels satisfy these conditions. The conditions for the band-
width h will be given in Sects. 4 and 5.

4 Fast Learning for Exponentially Strongly Mixing Data

In this section, we consider the case where training data are generated from an
exponentially strongly mixing sequence [9,18]. Let Zi = (Xi, Yi) for all i. Assume
that {Zi}∞

i=1 is a stationary sequence of random variables on Rd × {1, 2, . . . ,m}
with stationary distribution P. That is, P is the marginal distribution of any
random variable in the sequence. For all k ≥ 1, we define the α-mixing coeffi-
cients [9]:

α(k) � sup
A1∈σt

1,A2∈σ∞
t+k,t≥1

|P(A1 ∩ A2) − P(A1)P(A2)|

380 V. Dinh et al.

where σb
a is the σ-algebra generated by {Zi}b

i=a. The sequence {Zi}∞
i=1 is expo-

nentially strongly mixing if there exist positive constants C1, C2 and C3 such
that for every k ≥ 1, we have

α(k) ≤ C1 exp(−C2k
C3). (1)

We now state some key lemmas for proving the convergence rate of the multiclass
plug-in classifier in this setting. Let ne �

⌊
n

	{8n/C2}1/(C3+1)

⌋
be the effective

sample size. The following lemma is a direct consequence of Bernstein inequality
for an exponentially strongly mixing sequence [18].

Lemma 1. Let {Zi}∞
i=1 be an exponentially strongly mixing sequence and φ be a

real-valued Borel measurable function. Denote Wi = φ(Zi) for all i ≥ 1. Assume
that |W1| ≤ C almost surely and E[W1] = 0. Then for all n ≥ 1 and ε > 0, we
have

P⊗n

(∣∣∣∣∣
1
n

n∑
i=1

Wi

∣∣∣∣∣ ≥ ε

)
≤ 2(1 + 4e−2C1) exp

(
− ε2ne

2E|W1|2 + 2εC/3

)
,

where P⊗n is the joint distribution of {Zi}n
i=1 and C1 is the constant in Eq. (1).

The next lemma is about the convergence rate of the local polynomial regression
functions using the one-vs-all method. The proof for this lemma is given in
Sect. 7.1.

Lemma 2. Let β, r0, and c be the constants in the Hölder assumption, the
strong density assumption, and the assumption for the kernel K respectively.
Then there exist constants C4, C5, C6 > 0 such that for all δ > 0, all bandwidth
h satisfying C6h

β < δ and 0 < h ≤ r0/c, all j ∈ {1, 2, . . . ,m} and n ≥ 1, we
have

P⊗n(|η̂n,j(x) − ηj(x)| ≥ δ) ≤ C4 exp(−C5neh
dδ2)

for almost surely x with respect to PX , where d is the dimension of the observa-
tions (inputs).

Given the above convergence rate of the local polynomial regression functions,
Lemma 3 below gives the convergence rate of the excess risk of the one-vs-all
multiclass plug-in classifier. The proof for this lemma is given in Sect. 7.2.

Lemma 3. Let α be the constant in the margin assumption. Assume that there
exist C4, C5 > 0 such that P⊗n(|η̂n,j(x) − ηj(x)| ≥ δ) ≤ C4 exp(−C5anδ2) for
almost surely x with respect to PX , and for all j ∈ {1, 2, . . . ,m}, δ > 0. Then
there exists C7 > 0 such that for all n ≥ 1,

E(f̂n) = ER(f̂n) − R(f∗) ≤ C7a
−(1+α)/2
n .

Using Lemmas 2 and 3, we can obtain the following theorem about the conver-
gence rate of the one-vs-all multiclass plug-in classifier when training data are
exponentially strongly mixing. This theorem is a direct consequence of Lemmas
2 and 3 with h = n

−1/(2β+d)
e and an = n

2β/(2β+d)
e .

Learning from Non-iid Data: Fast Rates 381

Theorem 1. Let α and β be the constants in the margin assumption and the
Hölder assumption respectively, and let d be the dimension of the observations.
Let f̂n be the one-vs-all multiclass plug-in classifier with bandwidth h = n

−1/(2β+d)
e

that is trained from an exponentially strongly mixing sequence. Then there exists
some constant C8 > 0 such that for all n large enough that satisfies 0 <

n
−1/(2β+d)
e ≤ r0/c, we have

E(f̂n) = ER(f̂n) − R(f∗) ≤ C8n
−β(1+α)/(2β+d)
e .

The convergence rate in Theorem 1 is expressed in terms of the effective sample
size ne rather than the sample size n since learning with dependent data typi-
cally requires more data to achieve the same level of accuracy as learning with
independent data (see e.g., [9,19,20]). However, Theorem 1 still implies the fast
rate for the one-vs-all multiclass plug-in classifier in terms of the sample size n.
Indeed, the rate in the theorem can be rewritten as O(n− β(1+α)

2β+d · C3
C3+1), so the fast

learning rate is achieved when 2(α − 1/C3)β > (1 + 1/C3)d and the super-fast
learning rate is achieved when (α − 1 − 2/C3)β > d(1 + 1/C3).

5 Fast Learning from a Drifting Concept

In this section, we consider the case where training data are generated from a
drifting concept that converges to the test distribution P. Unlike the setting in
Sect. 4 where the training data form a stationary sequence of random variables,
the setting in this section may include training data that are not stationary.
Formally, we assume the training data {Zi}n

i=1 = {(Xi, Yi)}n
i=1 are generated as

follows. The observations Xi are generated iid from the marginal distribution
PX satisfying the strong density assumption. For each i ≥ 1, the label Yi of
Xi is generated from a categorical distribution on {1, 2, . . . ,m} with parame-
ters ηi(Xi) � (ηi

1(Xi), ηi
2(Xi), . . . , ηi

m(Xi)). That is, the probability of Yi = j
conditioned on Xi is ηi

j(Xi), for all j ∈ {1, 2, . . . ,m}.
Note that from our setting, the training data are independent but not identi-

cally distributed. To prove the convergence rate of the multiclass plug-in classi-
fier, we assume that ‖ηn

j − ηj‖∞ � supx∈Rd |ηn
j (x) − ηj(x)| = O(n−(β+d)/(2β+d))

for all j, i.e., ηn
j converges uniformly to the label distribution ηj of test data with

rate O(n−(β+d)/(2β+d)). We now state some useful lemmas for proving our result.
The following lemma is a Bernstein inequality for the type of data considered in
this section [21].

Lemma 4. Let {Wi}n
i=1 be an independent sequence of random variables. For

all i ≥ 1 and l > 2, assume EWi = 0, E|Wi|2 = bi, and E|Wi|l ≤ biH
l−2l!/2 for

some constant H > 0. Let Bn �
∑n

i=1 bi. Then for all n ≥ 1 and ε > 0, we have

P⊗n

(∣∣∣∣∣
n∑

i=1

Wi

∣∣∣∣∣ ≥ ε

)
≤ 2 exp

(
− ε2

2(Bn + Hε)

)
,

where P⊗n is the joint distribution of {Wi}n
i=1.

382 V. Dinh et al.

The next lemma states the convergence rate of the local polynomial regression
functions in this setting. The proof for this lemma is given in Sect. 7.3. Note that
the constants in this section may be different from those in Sect. 4.

Lemma 5. Let β, r0, and c be the constants in the Hölder assumption, the
strong density assumption, and the assumption for the kernel K respectively.
Let η̂n,j be the estimator of ηj estimated using the local polynomial regression
function with h = n−1/(2β+d). If ‖ηn

j − ηj‖∞ = O(n−(β+d)/(2β+d)) for all j, then
there exist constants C4, C5, C6 > 0 such that for all δ > 0, all n satisfying
C6n

−β/(2β+d) < δ < 1 and 0 < n−1/(2β+d) ≤ r0/c, and all j ∈ {1, 2, . . . ,m}, we
have

P⊗n(|η̂n,j(x) − ηj(x)| ≥ δ) ≤ C4 exp(−C5n
2β/(2β+d)δ2)

for almost surely x with respect to PX , where d is the dimension of the observa-
tions.

Note that Lemma 3 still holds in this setting. Thus, we can obtain Theorem2
below about the convergence rate of the one-vs-all multiclass plug-in classifier
when training data are generated from a drifting concept converging uniformly
to the test distribution. This theorem is a direct consequence of Lemmas 3 and 5
with an = n2β/(2β+d). We note that the convergence rate in Theorem 2 is fast
when αβ > d/2 and is super-fast when (α − 1)β > d.

Theorem 2. Let α and β be the constants in the margin assumption and the
Hölder assumption respectively, and let d be the dimension of the observations. Let
f̂n be the one-vs-all multiclass plug-in classifier with bandwidth h = n−1/(2β+d) that
is trained from data generated from a drifting concept converging uniformly to the
test distribution. Then there exists some constant C8 > 0 such that for all n large
enough that satisfies 0 < n−1/(2β+d) ≤ r0/c, we have

E(f̂n) = ER(f̂n) − R(f∗) ≤ C8n
−β(1+α)/(2β+d).

6 Remarks

The rates in Theorems 1 and 2 do not depend on the number of classes m. They
are both generalizations of the previous result for binary-class plug-in classifiers
with iid data [1]. More specifically, C3 = +∞ in the case of iid data, thus we
have ne = n and the data distribution also satisfies the condition in Theorem 2.
Hence, we can obtain the same result as in [1].

Another important remark is that our results for the one-vs-all multiclass
plug-in classifiers retain the optimal rate O(n−β(1+α)/(2β+d)) for the Hölder class
in the iid case [1] while the previous results in [9,10] for LS-SVMs with smooth
kernels do not (see Example 4.3 in [10]). Besides, from Theorem 2, the one-vs-
all multiclass plug-in classifiers trained from a drifting concept can also achieve
this optimal rate. We note that for LS-SVMs with Gaussian kernels, Hang and
Steinwart [10] proved that they can achieve the essentially optimal rate in the
iid scenario (see Example 4.4 in [10]). That is, their learning rate is nζ times of

Learning from Non-iid Data: Fast Rates 383

the optimal rate for any ζ > 0. Although this rate is very close to the optimal
rate, it is still slower than log n times of the optimal rate.2

7 Technical Proofs

7.1 Proof of Lemma 2

Fix j ∈ {1, . . . , m}. Let Y ′
i � 1{Yi=j} be the binary class of Xi constructed from

the class Yi using the one-vs-all method in Sect. 3. By definition of ηj , note that
P[Y ′

i = 1|Xi] = ηj(Xi). Let μ be the density of PX . We consider the matrix
B � (Bs1,s2)|s1|,|s2|≤�β with the elements Bs1,s2 �

∫
Rd us1+s2K(u)μ(x + hu)du,

and the matrix B̂ � (B̂s1,s2)|s1|,|s2|≤�β with the elements B̂s1,s2 � 1
nhd

∑n
i=1

(Xi−x
h)s1+s2K(Xi−x

h), where s1, s2 are multi-indices in Nd (see Sect. 2 of [1] for
details on multi-index). Let λB be the smallest eigenvalue of B. Then, there
exists a constant c1 such that λB ≥ c1 > 0 (see Eq. (6.2) in [1]).

Fix s1 and s2. For any i = 1, 2, . . . , n, we define

Ti � 1
hd

(
Xi − x

h

)s1+s2

K

(
Xi − x

h

)
−

∫

Rd

us1+s2K(u)μ(x + hu)du.

It is easy to see that E[T1] = 0, |T1| ≤ c2h
−d, and E|T1|2 ≤ c3h

−d for some
c2, c3 > 0. By applying Lemma 1, for any ε > 0, we have

P⊗n(|B̂s1,s2 − Bs1,s2 | ≥ ε) = P⊗n

(∣∣∣∣∣
1
n

n∑
i=1

Ti

∣∣∣∣∣ ≥ ε

)

≤ 2(1 + 4e−2C1) exp
(

− ε2neh
d

2c3 + 2εc2/3

)
.

Let λ
̂B be the smallest eigenvalue of B̂. From Eq. (6.1) in [1], we have

λ
̂B ≥ λB −

∑
|s1|,|s2|≤�β

|B̂s1,s2 − Bs1,s2 |.

Let M be the number of columns of B̂. Then, there exists c4 > 0 such that

P⊗n(λ
̂B ≤ c1/2) ≤ 2(1 + 4e−2C1)M2 exp(−c4neh

d). (2)

Let ηx
j be the �β�th-degree Taylor polynomial of ηj at x. Consider the vec-

tor a � (as)|s|≤�β ∈ RM where as � 1
nhd

∑n
i=1 [Y ′

i − ηx
j (Xi)](Xi−x

h)sK(Xi−x
h).

Applying Eq. (6.5) in [1] for λ
̂B ≥ c1/2, we have

|η̂n,j(x) − ηj(x)| ≤ |η̂ LP
n,j (x) − ηj(x)| ≤ λ−1

̂B
M max

s
|as| ≤ (2M/c1)max

s
|as|. (3)

2 The optimal rates in Example 4.3 and 4.4 of [10] may not necessarily be the same
as our optimal rate since Hang and Steinwart considered Sobolev space and Besov
space instead of Hölder space.

384 V. Dinh et al.

We also define: T
(s,1)
i � 1

hd
[Y ′

i − ηj(Xi)](
Xi − x

h
)sK(

Xi − x

h
), and

T
(s,2)
i � 1

hd
[ηj(Xi) − ηx

j (Xi)](
Xi − x

h
)sK(

Xi − x

h
).

Note that E[T (s,1)
1] = 0, |T (s,1)

1 | ≤ c5h
−d and E|T (s,1)

1 |2 ≤ c6h
−d for some

c5, c6 > 0. Similarly, |T (s,2)
1 −ET

(s,2)
1 | ≤ c7h

β−d + c8h
β ≤ c9h

β−d and E|T (s,2)
1 −

ET
(s,2)
1 |2 ≤ c10h

2β−d, for some c7, c8, c9, c10 > 0. Thus, by applying Lemma 1
again, for any ε1, ε2 > 0, we have

P⊗n

(∣∣∣∣∣
1
n

n∑
i=1

T
(s,1)
i

∣∣∣∣∣ ≥ ε1

)
≤ 2(1 + 4e−2C1) exp

(
− ε21neh

d

2c6 + 2c5ε1/3

)
, and

P⊗n(| 1
n

n
∑

i=1

(T
(s,2)
i − ET

(s,2)
i)| ≥ ε2) ≤ 2(1 + 4e−2C1) exp

(−ε22neh
d

2c10h2β + 2c9hβε2/3

)

.

Moreover, |ET
(s,2)
1 | ≤ c8h

β . By choosing hβ ≤ c1δ/(6Mc8), there exists c11 > 0

such that P⊗n

(
|as| ≥ c1δ

2M

)

≤ P⊗n

(∣∣∣∣∣
1
n

n∑
i=1

T
(s,1)
i

∣∣∣∣∣ ≥ c1δ

6M

)
+ P⊗n

(∣∣∣∣∣
1
n

n∑
i=1

(T (s,2)
i − ET

(s,2)
i)

∣∣∣∣∣ ≥ c1δ

6M

)

≤ 4(1 + 4e−2C1) exp(−c11neh
dδ2). (4)

Let C6 = 6Mc8/c1. By (2), (3), and (4), there exist C4, C5 > 0 such that

P⊗n(|η̂n,j(x) − ηj(x)| ≥ δ)
≤ P⊗n(λ

̂B ≤ c1/2) + P⊗n(|η̂n,j(x) − ηj(x)| ≥ δ, λ
̂B > c1/2)

≤ C4 exp(−C5neh
dδ2).

Note that the constants C4, C5, C6 can be modified so that they are the same
for all δ, h, j, and n. Thus, Lemma 2 holds.

7.2 Proof of Lemma 3

Since ηf∗(x) − η
̂fn

(x) ≥ 0 for all x ∈ Rd, we denote, for any δ > 0,

A0 � {x ∈ Rd : ηf∗(x) − η
̂fn

(x) ≤ δ}, and

Ai � {x ∈ Rd : 2i−1δ < ηf∗(x) − η
̂fn

(x) ≤ 2iδ}, for i ≥ 1.

By Proposition 1, ER(f̂n) − R(f∗) = E[(ηf∗(X) − η
̂fn

(X))1{ ̂fn(X) �=f∗(X)}]

=
∞∑

i=0

E
[
(ηf∗(X) − η

̂fn
(X))1{ ̂fn(X) �=f∗(X)} 1{X∈Ai}

]

≤ δP
(
0 < ηf∗(X) − η

̂fn
(X) ≤ δ

)

+
∞∑

i=1

E
[
(ηf∗(X) − η

̂fn
(X))1{ ̂fn(X) �=f∗(X)} 1{X∈Ai}

]
.

Learning from Non-iid Data: Fast Rates 385

Let η̂n, ̂fn
(x) denote η̂n, ̂fn(x)(x). For any x, since η̂n, ̂fn

(x) is the largest among
η̂n,j(x)’s, we have ηf∗(x) − η

̂fn
(x) ≤ |ηf∗(x) − η̂n,f∗(x)| + |η̂n, ̂fn

(x) − η
̂fn

(x)|.
For any i ≥ 1, we have

E
[
(ηf∗(X) − η

̂fn
(X))1{ ̂fn(X) �=f∗(X)} 1{X∈Ai}

]

≤ 2iδE
[
1{|ηf∗ (X)−η̂n,f∗ (X)|+|η̂

n, ̂fn
(X)−η

̂fn
(X)|≥2i−1δ} 1{0<ηf∗ (X)−η

̂fn
(X)<2iδ}

]

≤ 2iδEX [P⊗n(|ηf∗(X) − η̂n,f∗(X)| + |η̂n, ̂fn
(X) − η

̂fn
(X)| ≥ 2i−1δ) ·

1{0<ηf∗ (X)−η
̂fn

(X)<2iδ}]

≤ c12iδ exp
(−c2an(2i−2δ)2

)
PX(0 < ηf∗(X) − η

̂fn
(X) < 2iδ),

for some c1, c2 > 0. We have PX(0 < ηf∗(X) − η
̂fn

(X) < δ) ≤ PX [ηf∗(X) −
η(2)(X) < δ], and by the margin assumption, for all t > 0, we get PX [ηf∗(X) −
η(2)(X) < t] ≤ C0t

α. Therefore,

E
[
(ηf∗(X) − η

̂fn
(X))1{ ̂fn(X) �=f∗(X)} 1{X∈Ai}

]

≤ c1C02i(α+1)δα+1 exp
(−c2an(2i−2δ)2

)
.

By choosing δ = a
−1/2
n , there exists C7 > 0 that does not depend on n and

ER(f̂n) − R(f∗) ≤ C0a
−(α+1)/2
n + 2c1C0a

−(α+1)/2
n

∑
i≥1

2i(α+1)/2 exp(−c222i−4)

≤ C7a
−(α+1)/2
n .

7.3 Proof of Lemma 5

The proof for this lemma is essentially similar to the proof for Lemma2 in
Sect. 7.1, except that we use the Bernstein inequality for iid random variables
to bound P⊗n(|B̂s1,s2 − Bs1,s2 | ≥ ε) and thus obtain P⊗n(λ

̂B ≤ c1/2) ≤
2M2 exp(−c4nhd) as an analogy of Eq. (2) in Sect. 7.1. Besides, Eq. (3) can be
obtained in the same way as in Sect. 7.1. To obtain the bound similar to Eq. (4),
we define

T
(s,1)
i � 1

hd
[Y ′

i − ηi
j(Xi)](

Xi − x

h
)sK(

Xi − x

h
)

T
(s,2)
i � 1

hd
[ηi

j(Xi) − ηj(Xi)](
Xi − x

h
)sK(

Xi − x

h
)

T
(s,3)
i � 1

hd
[ηj(Xi) − ηx

j (Xi)](
Xi − x

h
)sK(

Xi − x

h
).

Note that E[T (s,1)
i] = 0, |T (s,1)

i | ≤ c5h
−d, and E|T (s,1)

i |2 ≤ c6h
−d for some

c5, c6 > 0. Thus, E|T (s,1)
i |l ≤ (c5h−d)l−2E|T (s,1)

i |2 ≤ H l−2
1 E|T (s,1)

i |2l!/2, where
H1 � c5h

−d and l > 2. Similarly, |T (s,2)
i − ET

(s,2)
i | ≤ c7h

−d and Var[T (s,2)
i] ≤

386 V. Dinh et al.

c8h
2−d for some c7, c8 > 0. Thus, E|T (s,2)

i − ET
(s,2)
i |l ≤ H l−2

2 Var[T (s,2)
i]l!/2,

for H2 � c7h
−d and l > 2. Furthermore, |T (s,3)

i − ET
(s,3)
i | ≤ c9h

β−d and
Var[T (s,3)

i] ≤ c10h
2β−d for some c9, c10 > 0. Hence, E|T (s,3)

i − ET
(s,3)
i |l ≤

H l−2
3 Var[T (s,3)

i]l!/2 for H3 � c9h
β−d and l > 2. Thus, from Lemma 4,

P⊗n(
1
n

n∑
i=1

|T (s,1)
i | ≥ ε1) ≤ 2 exp(− nhdε21

2(c6 + c5ε1)
)

P⊗n(
1
n

n∑
i=1

|T (s,2)
i − ET

(s,2)
i | ≥ ε2) ≤ 2 exp(− nhdε22

2(c8h2 + c7ε2)
)

P⊗n(
1
n

n∑
i=1

|T (s,3)
i − ET

(s,3)
i | ≥ ε3) ≤ 2 exp(− nhdε23

2(c10h2β + c9hβε3)
),

for all ε1, ε2, ε3 > 0. Moreover, E|T (s,3)
i | ≤ c11h

β for some c11 > 0, and 1
n

∑n
i=1

E|T (s,2)
i | ≤ O(h−d 1

n

∑n
i=1 ‖ηi

j − η‖∞) ≤ O(h−d 1
n

∑n
i=1 i−(β+d)/(2β+d)) ≤

O(h−d 1
n (1 +

∫ n

u=1
u−(β+d)/(2β+d)du)) ≤ O(h−dn−(β+d)/(2β+d)) ≤ c12h

β for some
c12 > 0 since h = n−1/(2β+d). Thus, we can obtain the new Eq. (4) as
P⊗n

(|as| ≥ c1δ
2M

) ≤ 6 exp(−c13nhdδ2) for some C6 > 0 and c13 > 0. And from
the new Eqs. (2), (3), and (4), we can obtain Lemma 5.

References

1. Audibert, J.Y., Tsybakov, A.B.: Fast learning rates for plug-in classifiers. Ann.
Stat. 35(2), 608–633 (2007)

2. Kohler, M., Krzyzak, A.: On the rate of convergence of local averaging plug-in
classification rules under a margin condition. IEEE Trans. Inf. Theory 53(5), 1735–
1742 (2007)

3. Monnier, J.B.: Classification via local multi-resolution projections. Electron. J.
Stat. 6, 382–420 (2012)

4. Minsker, S.: Plug-in approach to active learning. J. Mach. Learn. Res. 13, 67–90
(2012)

5. Tsybakov, A.B.: Optimal aggregation of classifiers in statistical learning. Ann. Stat.
32, 135–166 (2004)

6. Zhang, T.: Statistical analysis of some multi-category large margin classification
methods. J. Mach. Learn. Res. 5, 1225–1251 (2004)

7. Agarwal, A.: Selective sampling algorithms for cost-sensitive multiclass prediction.
In: Proceedings of the International Conference on Machine Learning (2013)

8. Rifkin, R., Klautau, A.: In defense of one-vs-all classification. J. Mach. Learn. Res.
5, 101–141 (2004)

9. Steinwart, I., Christmann, A.: Fast learning from non-iid observations. In: Bengio,
Y., Schuurmans, D., Lafferty, J., Williams, C.K.I., Culotta, A. (eds.) Advances
in Neural Information Processing Systems, pp. 1768–1776. MIT Press, Cambridge
(2009)

10. Hang, H., Steinwart, I.: Fast learning from alpha-mixing observations. J. Multivar.
Anal. 127, 184–199 (2014)

Learning from Non-iid Data: Fast Rates 387

11. Bartlett, P.L.: Learning with a slowly changing distribution. In: COLT 1992
12. Long, P.M.: The complexity of learning according to two models of a drifting

environment. Mach. Learn. 37(3), 337–354 (1999)
13. Barve, R.D., Long, P.M.: On the complexity of learning from drifting distributions.

In: COLT 1996
14. Mohri, M., Muñoz Medina, A.: New analysis and algorithm for learning with drift-

ing distributions. In: Bshouty, N.H., Stoltz, G., Vayatis, N., Zeugmann, T. (eds.)
ALT 2012. LNCS (LNAI), vol. 7568, pp. 124–138. Springer, Heidelberg (2012)

15. Steinwart, I., Scovel, C.: Fast rates for support vector machines using gaussian
kernels. Ann. Stat. 35, 575–607 (2007)

16. Shen, X., Wang, L.: Generalization error for multi-class margin classification. Elec-
tron. J. Stat. 1, 307–330 (2007)

17. Pierre, A., Xiaoyin, L., Olivier, W.: Prediction of time series by statistical learning:
general losses and fast rates. Depend. Model. 1, 65–93 (2014)

18. Modha, D.S., Masry, E.: Minimum complexity regression estimation with weakly
dependent observations. IEEE Trans. Inf. Theory 42(6), 2133–2145 (1996)

19. Cuong, N.V., Ho, L.S.T., Dinh, V.: Generalization and robustness of batched
weighted average algorithm with v-geometrically ergodic markov data. In: Jain,
S., Munos, R., Stephan, F., Zeugmann, T. (eds.) ALT 2013. LNCS (LNAI), vol.
8139, pp. 264–278. Springer, Heidelberg (2013)

20. Ané, C.: Analysis of comparative data with hierarchical autocorrelation. Ann.
Appl. Stat. 2(3), 1078–1102 (2008)

21. Yurinskĭı, V.: Exponential inequalities for sums of random vectors. J. Multivar.
Anal. 6(4), 473–499 (1976)

Deletion Operations on Deterministic
Families of Automata

Joey Eremondi1, Oscar H. Ibarra2, and Ian McQuillan3(B)

1 Department of Information and Computing Sciences, Utrecht University,
P.O. Box 80.089, 3508 TB Utrecht, The Netherlands

j.s.eremondi@students.uu.nl
2 Department of Computer Science, University of California,

Santa Barbara, CA 93106, USA
ibarra@cs.ucsb.edu

3 Department of Computer Science, University of Saskatchewan,
Saskatoon, SK S7N 5A9, Canada

mcquillan@cs.usask.ca

Abstract. Many different deletion operations are investigated applied
to languages accepted by one-way and two-way deterministic reversal-
bounded multicounter machines as well as finite automata. Operations
studied include the prefix, suffix, infix and outfix operations, as well as
left and right quotient with languages from different families. It is often
expected that language families defined from deterministic machines
will not be closed under deletion operations. However, here, it is shown
that one-way deterministic reversal-bounded multicounter languages are
closed under right quotient with languages from many different lan-
guage families; even those defined by nondeterministic machines such
as the context-free languages, or languages accepted by nondeterminis-
tic pushdown machines augmented by any number of reversal-bounded
counters. Also, it is shown that when starting with one-way determin-
istic machines with one counter that makes only one reversal, taking
the left quotient with languages from many different language fami-
lies, again including those defined by nondeterministic machines such
as the context-free languages, yields only one-way deterministic reversal-
bounded multicounter languages (by increasing the number of counters).
However, if there are even just two more reversals on the counter, or
a second 1-reversal-bounded counter, taking the left quotient (or even
just the suffix operation) yields languages that can neither be accepted
by deterministic reversal-bounded multicounter machines, nor by 2-way
nondeterministic machines with one reversal-bounded counter. A number
of other results with deletion operations are also shown.

The research of O. H. Ibarra was supported, in part, by NSF Grant CCF-1117708.
The research of I. McQuillan was supported, in part, by the Natural Sciences and
Engineering Research Council of Canada.

c© Springer International Publishing Switzerland 2015
R. Jain et al. (Eds.): TAMC 2015, LNCS 9076, pp. 388–399, 2015.
DOI: 10.1007/978-3-319-17142-5 33

Deletion Operations on Deterministic Families of Automata 389

1 Introduction

This paper involves the study of various types of deletion operations applied
to languages accepted by one-way deterministic reversal-bounded multicounter
machines (DCM). These are machines that operate like finite automata with
an additional fixed number of counters, where there is a bound on the number
of times each counter switches between increasing and decreasing [2,10]. These
languages have many decidable properties, such as emptiness, infiniteness, equiv-
alence, inclusion, universe and disjointness [10].

These machines have been studied in a variety of different applications, such
as to membrane computing, verification of infinite-state systems and Diophantine
equations.

Recently, in [5], a related study was conducted for insertion operations; specif-
ically operations defined by ideals obtained from the prefix, suffix, infix and out-
fix relations, as well as left and right concatenation with languages from different
language families. It was found that languages accepted by one-way deterministic
reversal-bounded counter machines with one reversal-bounded counter are closed
under right concatenation with Σ∗, but having two 1-reversal-bounded counters
and right concatenating Σ∗ yields languages outside of DCM and 2DCM(1) (lan-
guages accepted by two-way deterministic machines with one counter that is
reversal-bounded). It also follows from this analysis that the right input end-
marker is necessary for even one-way deterministic reversal-bounded counter
machines, when there are at least two counters. Also, concatenating Σ∗ to the
left of some one-way deterministic 1-reversal-bounded one counter languages
yields languages that are neither in DCM nor 2DCM(1). Other recent results on
reversal-bounded multicounter languages include a technique to show languages
are outside of DCM [3].

Closure properties of some variants of nondeterministic counter machines
under deletion operations were studied in [14]. However, in this paper we inves-
tigate deterministic machines which were not examined in [14].

2 Preliminaries

The set of non-negative integers is denoted by N0, and the set of positive integers
by N. For c ∈ N0, let π(c) be 0 if c = 0, and 1 otherwise.

We assume knowledge of standard formal language theoretic concepts such as
languages, finite automata, determinism, nondeterminism, semilinearity, recur-
sive and recursively enumerable languages [2,9]. Next, we will give some notation
used in the paper. The empty word is denoted by λ. If Σ is a finite alpha-
bet, then Σ∗ is the set of all words over Σ and Σ+ = Σ∗ \ {λ}. For a word
w ∈ Σ∗, if w = a1 · · · an where ai ∈ Σ, 1 ≤ i ≤ n, the length of w is denoted
by |w| = n, and the reversal of w is denoted by wR = an · · · a1. A language
over Σ is any subset of Σ∗. Given a language L ⊆ Σ∗, the complement of L,
Σ∗ \ L is denoted by L. Given two languages L1, L2, the left quotient of L2

by L1, L−1
1 L2 = {y | xy ∈ L2, x ∈ L1}, and the right quotient of L1 by L2 is

L1L
−1
2 = {x | xy ∈ L1, y ∈ L2}.

390 J. Eremondi et al.

A language L is word-bounded or simply bounded if L ⊆ w∗
1 · · · w∗

k for some
k ≥ 1 and (not-necessarily distinct) words w1, . . . , wk. Further, L is letter-bounded
if each wi is a distinct letter. Also, L is bounded-semilinear if L ⊆ w∗

1 · · · w∗
k and

Q = {(i1, . . . , ik) | wi1
1 · · · wik

k ∈ L} is a semilinear set [12].
We now present notation for common word and language operations used

throughout the paper.

Definition 1. For a language L ⊆ Σ∗, the prefix, suffix, infix and outfix opera-
tions are defined by:

– pref(L) = {w | wx ∈ L, x ∈ Σ∗},
– suff(L) = {w | xw ∈ L, x ∈ Σ∗},
– inf(L) = {w | xwy ∈ L, x, y ∈ Σ∗},
– outf(L) = {xy | xwy ∈ L,w ∈ Σ∗}.
Note that pref(L) = L(Σ∗)−1 and suff(L) = (Σ∗)−1L.

The outfix operation has been generalized to the notion of embedding [13]:

Definition 2. The m-embedding of a language L ⊆ Σ∗ is the following set:
emb(L,m) = {w0 · · · wm | w0x1 · · · wm−1xmwm ∈ L, wi ∈ Σ∗, 0 ≤ i ≤ m,
xj ∈ Σ∗, 1 ≤ j ≤ m}.
Note that outf(L) = emb(L, 1).

A nondeterministic multicounter machine is a finite automaton augmented by
a fixed number of counters. The counters can be increased, decreased, tested for
zero, or tested to see if the value is positive. A multicounter machine is reversal-
bounded if every counter makes a fixed number of changes between increasing
and decreasing.

Formally, a one-way k-counter machine is a tuple M = (k,Q,Σ, $, δ, q0, F),
where Q,Σ, $, q0, F are respectively the finite set of states, the input alphabet,
the right input end-marker, the initial state in Q, and the set of final states
that is a subset of Q. The transition function δ (defined as in [10] except with
only a right end-marker since we only use one-way inputs) is a mapping from
Q×(Σ∪{$})×{0, 1}k into Q×{S,R}×{−1, 0,+1}k, such that if δ(q, a, c1, . . . , ck)
contains (p, d, d1, . . . , dk) and ci = 0 for some i, then di ≥ 0 to prevent negative
values in any counter. The direction of the input tape head movement is given by
the symbols S are R for either stay or right respectively. The machine M is deter-
ministic if δ is a function. A configuration of M is a k+2-tuple (q, w$, c1, . . . , ck)
for describing the situation where M is in state q, with w ∈ Σ∗ still to read
as input, and c1, . . . , ck ∈ N0 are the contents of the k counters. The deriva-
tion relation �M is defined between configurations, where (q, aw, c1, . . . , ck) �M

(p,w′ , c1 + d1, . . . , ck + dk), if (p, d, d1, . . . , dk) ∈ δ(q, a, π(c1), . . . , π(ck)) where
d ∈ {S,R} and w′ = aw if d = S, and w′ = w if d = R. Extended deriva-
tions are given by �∗

M , the reflexive, transitive closure of �M . A word w ∈ Σ∗

is accepted by M if (q0, w$, 0, . . . , 0) �∗
M (q, $, c1, . . . , ck), for some q ∈ F , and

c1, . . . , ck ∈ N0. The language accepted by M , denoted by L(M), is the set of all
words accepted by M . The machine M is l-reversal bounded if, in every accept-
ing computation, the count on each counter alternates between increasing and
decreasing at most l times.

Deletion Operations on Deterministic Families of Automata 391

We denote by NCM(k, l) the family of languages accepted by one-way non-
deterministic l-reversal-bounded k-counter machines. We denote by DCM(k, l)
the family of languages accepted by one-way deterministic l-reversal-bounded
k-counter machines. The union of the families of languages are denoted by
NCM =

⋃
k,l≥0 NCM(k, l) and DCM =

⋃
k,l≥0 DCM(k, l). We will also some-

times refer to a multicounter machine as being in NCM(k, l) (DCM(k, l)), if it
has k l-reversal bounded counters (and is deterministic).

We denote by REG the family of regular languages, and by NPCM the family
of languages accepted by nondeterministic pushdown automata augmented by a
fixed number of reversal-bounded counters [10]. We also denote by 2DCM(1) the
family of languages accepted by two-way input, deterministic finite automata
(both a left and right input tape end-marker are required) augmented by one
reversal-bounded counter [11]. A machine of this form is said to be finite-crossing
if there is a fixed c such that the number of times the boundary between any
two adjacent input cells is crossed is at most c [6]. A machine is finite-turn if the
input head makes at most k turns on the input, for some k. Also, 2NCM is
the family of languages accepted by two-way nondeterministic machines with a
fixed number of reversal-bounded counters, while 2DPCM is the family of two-
way deterministic pushdown machines augmented by a fixed number of reversal-
bounded counters.

The next result proved in [12] gives examples of weak and strong machines
that are equivalent over word-bounded languages.

Theorem 1. [12] The following are equivalent for every word-bounded lan-
guage L:

1. L can be accepted by an NCM.
2. L can be accepted by an NPCM.
3. L can be accepted by a finite-crossing 2NCM.
4. L can be accepted by a DCM.
5. L can be accepted by a finite-turn 2DCM(1).
6. L can be accepted by a finite-crossing 2DPCM
7. L is bounded-semilinear.

We also need the following result in [11]:

Theorem 2. [11] Let L ⊆ a∗ be accepted by a 2NCM (not necessarily finite-
crossing). Then L is regular, hence, semilinear.

3 Closure and Non-closure for Erasing Operations

3.1 Right Quotient for DCM

We begin by showing the closure of DCM under right quotient with any non-
deterministic reversal bounded machine, even when augmented with a pushdown
store.

392 J. Eremondi et al.

Proposition 1. Let L1 ∈ DCM and let L2 ∈ NPCM. Then L1L2
−1 ∈ DCM.

Proof. Consider a DCM machine M1 = (k1, Q1, Σ, $, δ1, s0, F1) and NPCM mach-
ine M2 over Σ with k2 counters where L(M1) = L1 and L(M2) = L2. A DCM
machine M ′ will be constructed accepting L1L2

−1.
Let Γ = {a1, . . . , ak1} be new symbols. For each q ∈ Q1, let Mc(q) be

an interim k1 + k2 counter (plus a pushdown) NPCM machine over Γ con-
structed as follows: on input ap1

1 · · · apk1
k1

, Mc(q) increments the first k1 counters to
(p1, . . . , pk1). Then Mc(q) nondeterministically guesses a word x ∈ Σ∗ and simu-
lates M1 on x$ starting from state q and from the counter values of (p1, . . . , pk1)
using the first k1 counters, while in parallel, simulating M2 on x using the next k2
counters and the pushdown. This is akin to the product automaton construction
described in [10] showing NPCM is closed under intersection with NCM. Then
Mc(q) accepts if both M1 and M2 accept.

Claim. Let Lc(q) = {ap1
1 · · · apk1

k1
| ∃x ∈ L2 such that (q, x$, p1, . . . , pk1) �∗

M1

(qf , $, p′
1, . . . p

′
k1

), p′
i ≥ 0, 1 ≤ i ≤ k1, qf ∈ F1}. Then L(Mc(q)) = Lc(q).

Proof. Consider w = ap1
1 · · · apk1

k1
∈ Lc(q). Then there exists x where x ∈ L2 and

(q, x$, p1, . . . , pk1) �∗
M1

(q1f , $, p′
1, . . . p

′
k1

), where q1f ∈ F1. There must then be
some final state q2f ∈ F2 reached when reading x$ in M2. Then, Mc(q), on input
w places (p1, . . . , pk1 , 0, . . . , 0) on the counters and then can nondeterministically
guess x letter by letter and simulate x in M1 from state q on the first k1 counters
and simulate x in M2 from its initial configuration on the remaining counters
and pushdown. Then Mc(q) ends up in state (q1f , q2f), which is final. Hence,
w ∈ L(Mc(q)).

Consider w = ap1 · · · apk1 ∈ L(Mc(q)). After adding each pi to counter i,
Mc(q) guesses x and simulates M1 on the first k1 counters from q and simulates
M2 on the remaining counters from an initial configuration. It follows that x ∈
L2, and (q, x$, p1, . . . , pk1) �∗

M1
(q1f , $, p′

1, . . . p
′
k1

), p′
i ≥ 0, 1 ≤ i ≤ k1, q

1
f ∈ F1.

Hence, w ∈ Lc(q). 	

Since for each q ∈ Q1, Mc(q) is in NPCM, it accepts a semilinear language [10],
and since the accepted language is bounded, it is bounded-semilinear and can
therefore be accepted by a DCM-machine by Theorem 1. Let M ′

c(q) be this DCM
machine, with k′ counters, for some k′.

Thus, a final DCM machine M ′ with k1 +k′ counters is built as follows. In it,
M ′ has k1 counters used to simulate M1, and also k′ additional counters, used
to simulate some M ′

c(q), for some q ∈ Q1. Then, M ′ reads its input x$, where
x ∈ Σ∗, while simulating M1 on the first k1 counters, either failing, or reaching
some configuration (q, $, p1, . . . , pk1), for some q ∈ Q1, upon first hitting the
end-marker $. If it does not fail, we then simulate the DCM-machine M ′

c(q) on
input ap1

1 · · · apk1
k1

, but this simulation is done deterministically by subtracting
1 from the first k1 counters, in order, until each are zero instead of reading
input characters, and accepts if ap1

1 · · · apk1
k1

∈ L(M ′
c(q)) = Lc(q). Then M ′ is

Deletion Operations on Deterministic Families of Automata 393

deterministic and accepts

{x | either (s0, x$, 0, . . . , 0) �∗
M1

(q′, a$, p′
1, . . . , p

′
k1

) �M1 (q, $, p1, . . . , pk1),

a ∈ Σ, or (s0, x$, 0, . . . , 0) = (q, $, p1, . . . , pk1), s.t. ap1
1 · · · apk1

k1
∈ Lc(q)}

= {x | either (s0, x$, 0, . . . , 0) �∗
M1

(q′, a$, p′
1, . . . , p

′
k1

) �M1 (q, $, p1, . . . , pk1),
a ∈ Σ, or (s0, x$, 0, . . . , 0) = (q, $, p1, . . . , pk1), where ∃y ∈ L2 s.t.
(q, y$, p1, . . . , pk1) �∗

M1
(qf , $, p′′

1 , . . . , p′′
k1

), qf ∈ F1}
= {x | xy ∈ L1, y ∈ L2}
= L1L

−1
2 . 	

These immediately show closure for the prefix operation.

Corollary 1. If L ∈ DCM, then pref(L) ∈ DCM.

We can modify this construction to show a strong closure result for one-counter
languages that does not increase the number of counters.

Proposition 2. Let l ∈ N. If L1 ∈ DCM(1, l) and L2 ∈ NPCM, then L1L2
−1 ∈

DCM(1, l).

Proof. The construction is similar to the one in Proposition 1. However, we note
that since the input machine for L1 has only one counter, Lc(q) is unary (regard-
less of the number of counters needed for L2). Thus Lc(q) is unary and semilinear,
and Parikh’s theorem states that all semilinear languages are letter-equivalent
to regular languages [8], and all unary semilinear languages are regular. Thus
Lc(q) is regular, and can be accepted by a DFA.

We can then construct M ′ accepting L1L2
−1 as in Proposition 1 without

requiring any additional counters or counter reversals, by transitioning to the
DFA accepting Lc(q) when we reach the end of input at state q. 	

Corollary 2. Let l ∈ N. If L ∈ DCM(1, l), then pref(L) ∈ DCM(1, l).

In fact, this construction can be generalized from NPCM to any class of automata
that can be defined using Definition 3. These classes of automata are described
in more detail in [7]. We only define it in a way specific to our use in this paper.
Only the first two conditions are required for Corollary 3, while the third is
required for Corollary 5.

Definition 3. A family of languages F is said to be reversal-bounded counter
augmentable if

– every language in F is effectively semilinear,
– given DCM machine M1 with k counters, state set Q and final state set F , and

L2 ∈ F , we can effectively construct, for each q ∈ Q, the following language
in F ,

{ap1
1 · · · apk

k | ∃x ∈ L2 such that (q, x$, p1, . . . , pk) �∗
M1

(qf , $, p′
1, . . . p

′
k),

p′
i ≥ 0, qf ∈ F},

394 J. Eremondi et al.

– given DCM machine M1 with k counters, state set Q, and L2 ∈ F , we can
effectively construct, for each q ∈ Q, the following language in F ,

{ap1
1 · · · apk

k | ∃x ∈ L2 such that (q, x, 0, . . . , 0) �∗
M1

(q, λ, p1, . . . pk)}.

There are many reversal-bounded counter augmentable families that L2 could
be from in this corollary, such as:

Corollary 3. Let L1 ∈ DCM and L2 ∈ F , a family of languages that is reversal-
bounded counter augmentable. Then L1L2

−1 ∈ DCM. Furthermore, if L1 ∈
DCM(1, l) for some l ∈ N, then L1L2

−1 ∈ DCM(1, l).

This construction could be applied to several other families of semilinear lan-
guages such as:

– MPCA’s: one-way machines with k pushdowns where values may only be
popped from the first non-empty stack, augmented by a fixed number of
reversal-bounded counters [7].

– TCA’s: NFA’s augmented with a two-way read-write tape, where the number
of times the read-write head crosses any tape cell is finitely bounded, again
augmented by a fixed number of reversal-bounded counters [7].

– QCA’s: NFA’s augmented with a queue, where the number of alternations
between the non-deletion phase and the non-insertion phase is bounded by a
constant [7].

– EPDA’s: embedded pushdown automata, modelled around a stack of stacks,
introduced in [17]. These accept the languages of tree-adjoining grammars,
a semilinear subset of the context-sensitive languages. As was stated in [7],
we can augment this model with a fixed number of reversal-bounded counters
and still get an effectively semilinear family.

3.2 Right and Left Quotients of Regular Sets

Let F be any family of languages (which need not be recursively enumerable).
It is known that REG is closed under right quotient by languages in F [9].
However, this closure need not be effective, as it will depend on the properties
of F . The following is an interesting observation which connects decidability of
the emptiness problem to effectiveness of closure under right quotient:

Proposition 3. LetF be any family of languages which is effectively closed under
intersection with regular sets and whose emptiness problem is decidable. Then REG
is effectively closed under both left and right quotient by languages in F .

Proof. We will start with right quotient.
Let L1 ∈ REG and L2 be in F . Let M be a DFA accepting L1. Let q be

a state of M , and Lq = {y | M from initial state q accepts y}. Let Q′ = {q |
q is a state of M,Lq ∩ L2 �= ∅}. Since F is effectively closed under intersection
with regular sets and has a decidable emptiness problem, Q′ is computable.

Deletion Operations on Deterministic Families of Automata 395

Then a DFA M ′ accepting L1L
−1
2 can be obtained by just making Q′ the set of

accepting states in M .
Next, for left quotient, let L1 be in F , and L2 in REG be accepted by a DFA

M whose initial state is q0.
Let Lq = {x | M on input x ends in state q}. Let Q′ = {q | Lq ∩ L1 �= ∅}.

Then Q′ is computable, since F is effectively closed under intersection with
regular sets and has a decidable emptiness problem.

We then construct an NFA (with λ-transitions) M ′ to accept L−1
1 L2 as fol-

lows: M ′ starting in state q0 with input y nondeterministically goes to a state q
in Q′ without reading any input, and then simulates the DFA M . 	

Corollary 4. REG is effectively closed under left and right quotient by lan-
guages in:

1. the families of languages accepted by NPCM and 2DCM(1) machines,
2. the family of languages accepted MPCAs, TCAs, QCAs, and EPDAs,
3. the families of ET0L and Indexed languages.

Proof. These families are closed under intersection with regular sets. They have
also a decidable emptiness problem [1,7,16]. The family of ET0L languages and
Indexed languages are discussed further in [16] and [1] respectively. 	

3.3 Suffix, Infix and Left Quotient for DCM(1, 1)

In the case of one-counter machines that makes only one counter reversal, it will
be shown that a DCM-machine that can accept their suffix and infix languages
can always be constructed. However, in some cases, these resulting machines
often require more than one counter. Thus, unlike prefix, DCM(1, 1) is not closed
under suffix, left quotient, or infix. But, the result is in DCM.

The proof of Lemma 1 is quite lengthy, and due to space constraints is omit-
ted but can be found online in [4]. We will give some intuition for the result
here. First, DCM is closed under union and so the second statement of Lemma1
follows from the first. For the first statement, an intermediate NPCM machine is
constructed from L1 and L that accepts a language Lc. This language contains
words of the form qai where there exists some word w such that both w ∈ L1,
and also from the initial configuration of M (accepting L), it can read w and
reach state q with i on the counter. Then, it is shown that this language is actu-
ally a regular language, using the fact that all semilinear unary languages are
regular (as (q)−1Lc is unary; see [4] for full details). Then, DCM(1, 1) machines
are created for every state q of M . These accept all words w such that qai ∈ Lc,
and in M , from state q and counter i with w to read as input, M can reach a
final state while emptying the counter. The fact that Lc is regular allows these
machines to be created.

Lemma 1. Let L ∈ DCM(1, 1), L1 ∈ NPCM. Then L−1
1 L is the finite union of

languages in DCM(1, 1). Furthermore, it is in DCM.

396 J. Eremondi et al.

From this, we obtain the following general result (proof also omitted due to space
and is found in [4]).

Theorem 3. Let L ∈ DCM(1, 1), L1, L2 ∈ NPCM. Then both (L−1
1 L)L−1

2 and
L−1
1 (LL−1

2) are a finite union of languages in DCM(1, 1). Furthermore, both
languages are in DCM.

And, as with Corollary 3, this can be generalized to any language families that
are reversal-bounded counter augmentable.

Corollary 5. Let L ∈ DCM(1, 1), L1 ∈ F1, L2 ∈ F2, where F1 and F2 are
any families of languages that are reversal-bounded counter augmentable. Then
(L−1

1 L)L−1
2 and L−1

1 (LL−1
2) are both a finite union of languages in DCM(1, 1).

Furthermore, both languages are in DCM.

As a special case, when using the fixed regular language Σ∗ for the right and
left quotient, we obtain:

Corollary 6. Let L ∈ DCM(1, 1). Then suff(L) and inf(L) are both DCM
languages.

It is however necessary that the number of counters increase to accept suff(L)
and inf(L), for some L ∈ DCM(1, 1). The result also holds for the outfix operator.
The proof is omitted due to space and is found in [4].

Proposition 4. There exists L ∈ DCM(1, 1) where all of suff(L), inf(L), outf(L)
are not in DCM(1, 1).

3.4 Non-closure of Suffix, Infix and Outfix with Multiple Counters
or Reversals

In [5], a technique was used to show languages are not in DCM and 2DCM(1)
simultaneously. The technique uses undecidable properties to show non-closure.
As 2DCM(1) machines have two-way input and a reversal-bounded counter, it is
difficult to derive “pumping” lemmas for these languages. Furthermore, unlike
DCM and NCM machines, 2DCM(1) machines can accept non-semilinear lan-
guages. For example, L1 = {aibk | i, k ≥ 2, i divides k} can be accepted by a
2DCM(1) whose counter makes only one reversal. However, L2 = {aibjck | i, j,
k ≥ 2, k = ij} cannot be accepted by a 2DCM(1) [11]. This technique from [5]
works as follows. The proof uses the fact that there is a recursively enumer-
able but not recursive language Lre ⊆ N0 that is accepted by a deterministic
2-counter machine [15]. Thus, the machine when started with n ∈ N0 in the first
counter and zero in the second counter, eventually halts (i.e., accepts n ∈ Lre).

Examining the constructions in [15] of the 2-counter machine demonstrates
that the counters behave in a regular pattern. Initially one counter has some
value d1 and the other counter is zero. Then, the machine’s operation can be
divided into phases, where each phase starts with one of the counters equal to
some positive integer di and the other counter equals 0. During the phase, the

Deletion Operations on Deterministic Families of Automata 397

positive counter decreases, while the other counter increases. The phase ends
with the first counter containing 0 and the other counter containing di+1. In
the next phase, the modes of the counters are interchanged. Thus, a sequence of
configurations where the phases are changing will be of the form:

(q1, d1, 0), (q2, 0, d2), (q3, d3, 0), (q4, 0, d4), (q5, d5, 0), (q6, 0, d6), . . .

where the qi’s are states, with q1 = qs (the initial state), and d1, d2, d3, . . . are
positive integers. The second component of the configuration refers to the value
of the first counter, and the third component refers to the value of the second.
Also, notice that in going from state qi in phase i to state qi+1 in phase i + 1,
the 2-counter machine goes through intermediate states.

For each i, there are 5 cases for the value of di+1 in terms of di: di+1 = di,
2di, 3di, di/2, di/3 (the division operation only occurs if the number is divisible
by 2 or 3, respectively). The case applied is determined by qi. Hence, a function
h can be defined such that if qi is the state at the start of phase i, di+1 = h(qi)di,
where h(qi) is one of 1, 2, 3, 1/2, 1/3.

Let T be a 2-counter machine accepting a recursively enumerable language
that is not recursive. Assume that q1 = qs is the initial state, which is never
re-entered, and if T halts, it does so in a unique state qh. Let Q be the states of
T , and 1 be a new symbol.

In what follows, α is any sequence of the form #I1#I2# · · · #I2m# (thus we
assume that the length is even), where for each i, 1 ≤ i ≤ 2m, Ii = q1k for some
q ∈ Q and k ≥ 1, represents a possible configuration of T at the beginning of
phase i, where q is the state and k is the value of the first counter (resp., the
second) if i is odd (resp., even).

Define L0 to be the set of all strings α such that

1. α = #I1#I2# · · · #I2m#;
2. m ≥ 1;
3. for 1 ≤ j ≤ 2m − 1, Ij ⇒ Ij+1, i.e., if T begins in configuration Ij , then after

one phase, T is in configuration Ij+1 (i.e., Ij+1 is a valid successor of Ij);

Then, the following was shown in [5].

Lemma 2. L0 is not in DCM ∪ 2DCM(1).

We will use this language exactly to show taking either the suffix, infix or outfix
of a language in DCM(1, 3),DCM(2, 1) or 2DCM(1) can produce languages that
are in neither DCM nor 2DCM(1).

Theorem 4. There exists a language L in all of L ∈ DCM(1, 3), L ∈ DCM(2, 1),
and L ∈ 2DCM(1) (which makes no turn on the input and 3 reversals on the
counter) such that suff(L) �∈ DCM ∪ 2DCM(1), inf(L) �∈ DCM ∪ 2DCM(1), and
outf(L) �∈ DCM ∪ 2DCM(1).

Proof. Let L0 be the language defined above, which is not in DCM ∪ 2DCM(1).
Let a, b be new symbols. Clearly, bL0b is also not in DCM ∪ 2DCM(1). Let
L = {aib#I1#I2# · · · #I2m#b | I1, . . . , I2m are configurations of the 2-counter

398 J. Eremondi et al.

machine T , i ≤ 2m − 1, Ii+1 is not a valid successor of Ii}. Clearly L is in
DCM(1, 3), in DCM(2, 1), and in 2DCM(1) (as DCM(1, 3) is a subset of 2DCM(1)).

Let L1 be suff(L). Suppose L1 is in DCM (resp., 2DCM(1)). Then L2 = L1

is also in DCM (resp., 2DCM(1)).
Let R = {b#I1#I2 · · · #I2m#b | I1, . . . , I2m are configurations of T}. Then

since R is regular, L3 = L2 ∩ R is in DCM (resp, 2DCM(1)). We get a contradic-
tion, since L3 = bL0b.

Non-closure under infix and outfix can be shown similarly. 	

This implies non-closure under left-quotient with regular languages, and this
result also extends to the embedding operation, a generalization of outfix.

Corollary 7. There exists L ∈ DCM(1, 3), L ∈ DCM(2, 1), L ∈ 2DCM(1) (which
makes no turn on the input and 3 reversals on the counter), and R ∈ REG such
that R−1L �∈ DCM ∪ 2DCM(1).

Corollary 8. Let m > 0. Then there exists L ∈ DCM(1, 3), L ∈ DCM(2, 1),
L ∈ 2DCM(1) (which makes no turn on the input and 3 reversals on the counter)
such that emb(L,m) �∈ DCM ∪ 2DCM(1).

The results of Theorem 4 and Corollary 7 are optimal for suffix and infix as these
operations applied to DCM(1, 1) are always in DCM by Corollary 6 (and since
DCM(1, 2) = DCM(1, 1)). But whether the outfix and embedding operations
applied to DCM(1, 1) languages is always in DCM is an open question.

3.5 Closure for Bounded Languages

In this subsection, deletion operations applied to bounded and letter-bounded
languages will be examined.

The following is a required straightforward corollary to Theorem2.

Corollary 9. Let L ⊆ #a∗# be accepted by a 2NCM. Then L is regular.

Theorem 5. If L is a bounded language accepted by either a finite-crossing
2NCM, an NPCM or a finite-crossing 2DPCM, then all of pref(L), suff(L),
inf(L), outf(L) can be accepted by a DCM.

Proof. By Theorem 1, L can always be converted to an NCM. Further, one can
construct NCM’s accepting pref(L), suff(L), inf(L), outf(L) since one-way NCM
is closed under prefix, suffix, infix and outfix. In addition, it is known that apply-
ing these operations on bounded languages produce only bounded languages.
Thus, by another application of Theorem1, the result can then be converted to
a DCM. 	

The “finite-crossing” requirement in the theorem above is necessary:

Proposition 5. There exists a letter-bounded language L accepted by a 2DCM(1)
machine which makes only one reversal on the counter such that suff(L) (resp.,
inf(L), outf(L),pref(L)) is not in DCM ∪ 2DCM(1).

Deletion Operations on Deterministic Families of Automata 399

Proof. Let L = {ai#bj# | i, j ≥ 2, j is divisible by i}. Clearly, L can be accepted
by a 2DCM(1) which makes only one reversal on the counter. If suff(L) is in
DCM∪2DCM(1), then L′ = suff(L)∩#b+# would be in DCM∪2DCM(1). From
Corollary 9, we get a contradiction, since L′ is not semilinear. The other cases
are shown similarly. 	

References

1. Aho, A.V.: Indexed grammars–an extension of context-free grammars. J. ACM
15(4), 647–671 (1968)

2. Baker, B.S., Book, R.V.: Reversal-bounded multipushdown machines. J. Comput.
Syst. Sci. 8(3), 315–332 (1974)

3. Chiniforooshan, E., Daley, M., Ibarra, O.H., Kari, L., Seki, S.: One-reversal counter
machines and multihead automata: Revisited. Theor. Comput. Sci. 454, 81–87
(2012)

4. Eremondi, J., Ibarra, O., McQuillan, I.: Deletion operations on deterministic fam-
ilies of automata. Technical report 2014–03, University of Saskatchewan (2014).
http://www.cs.usask.ca/documents/techreports/2014/TR-2014-03.pdf

5. Eremondi, J., Ibarra, O.H., McQuillan, I.: Insertion operations on deterministic
reversal-bounded counter machines. In: Dediu, A.-H., Formenti, E., Mart́ın-Vide, C.,
Truthe, B. (eds.) LATA 2015. LNCS, vol. 8977, pp. 200–211. Springer, Heidelberg
(2015)

6. Gurari, E.M., Ibarra, O.H.: The complexity of decision problems for finite-turn
multicounter machines. J. Comput. Syst. Sci. 22(2), 220–229 (1981)

7. Harju, T., Ibarra, O., Karhumäki, J., Salomaa, A.: Some decision problems concern-
ing semilinearity and commutation. J. Comput. Syst. Sci. 65(2), 278–294 (2002)

8. Harrison, M.: Introduction to Formal Language Theory. Addison-Wesley Series in
Computer Science. Addison-Wesley Publishing Company, Boston (1978)

9. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages, and
Computation. Addison-Wesley, Reading (1979)

10. Ibarra, O.H.: Reversal-bounded multicounter machines and their decision prob-
lems. J. ACM 25(1), 116–133 (1978)

11. Ibarra, O.H., Jiang, T., Tran, N., Wang, H.: New decidability results concerning
two-way counter machines. SIAM J. Comput. 23(1), 123–137 (1995)

12. Ibarra, O.H., Seki, S.: Characterizations of bounded semilinear languages by one-
way and two-way deterministic machines. Int. J. Found. Comput. Sci. 23(6), 1291–
1306 (2012)

13. Jürgensen, H., Kari, L., Thierrin, G.: Morphisms preserving densities. Int. J. Com-
put. Math. 78, 165–189 (2001)

14. Kari, L., Seki, S.: Schema for parallel insertion and deletion: Revisited. Int. J.
Found. Comput. Sci. 22(07), 1655–1668 (2011)

15. Minsky, M.L.: Recursive unsolvability of post’s problem of “tag” and other topics
in theory of turing machines. Ann. Math. 74(3), 437–455 (1961)

16. Rozenberg, G., Salomaa, A.: The Mathematical Theory of L Systems. Academic
Press Inc, New York (1980)

17. Vijayashanker, K.: A Study of Tree Adjoining Grammars. Ph.D. thesis,
Philadelphia, PA, USA (1987)

http://www.cs.usask.ca/documents/techreports/2014/TR-2014-03.pdf

ExplicitPRISMSymm: Symmetry Reduction
Technique for Explicit Models in PRISM

Reema Patel1(B), Kevin Patel2, and Dhiren Patel1

1 Computer Engineering Department,
NIT Surat, Surat, India

{reema.mtech,dhiren29p}@gmail.com
2 Department of Computer Science and Engineering,

IIT Bombay, Mumbai, India
kevin.patel@cse.iitb.ac.in

Abstract. Probabilistic model checking of concurrent system involves
exhaustive search of the reachable state space associated with the sys-
tem model. Symmetry reduction is a commonly employed technique that
enables model checking of exponentially large models. Most work on sym-
metry reduction focuses on symbolically represented probabilistic models,
which are easy to build and perform reasonably well at property checking.
In this work, we rather focus on explicitly represented probabilistic mod-
els. We report that explicitly represented models perform well at property
checking, but face hurdles in model construction. We present an on-the-fly
symmetry reduction technique for explicitly represented models. It signif-
icantly reduces build time and thus explicit model representation as an
efficient alternative to symbolic model representation.

Keywords: On-the-fly symmetry reduction · Probabilistic model check-
ing · Explicit state representation

1 Introduction

Probabilistic model checking is used to quantitatively analyze the properties of
stochastic systems [10]. Properties such as “an adversary will compromise the
security protocol with negligible probability” or “message will be delivered with
the probability 0.5” can be analyzed with it.

Generally these techniques involve modeling a system as Discrete Time Markov
Chains (DTMCs), Markov Decision Process (MDPs), etc. [15]. These models are
graph based models, where the vertices represent states, and edges represent tran-
sitions among these states. The analysis is then performed using various iterative
numerical computation methods e.g. value iteration for MDP.

Real world models tend to be complex, often comprising large number of
states and transitions. For instance, a model of concurrent system executing n
identical components, each of which can be in one of k possible conditions, have
kn upper bound for reachable states. Such state space explosion invariantly ren-
ders analysis through certain algorithms intractable. One of the best techniques
c© Springer International Publishing Switzerland 2015
R. Jain et al. (Eds.): TAMC 2015, LNCS 9076, pp. 400–412, 2015.
DOI: 10.1007/978-3-319-17142-5 34

Symmetry Reduction of Explicit Models in PRISM 401

that can be employed to overcome this issue, especially in the case of concurrent
systems, is symmetry reduction.

Concurrent systems frequently contain symmetrical components in form of
identical processes. For example, consider a concurrent system of n processes,
where ni processes are in ith condition (1 ≤ i ≤ k) then the number of symmet-

rical states is
(

n!
Πk

i ni!

)
. Analyzing all but one of these states is unnecessary.

Symmetry reduction exploits this fact and reduces the state space: only one rep-
resentative from each equivalence class is chosen. The chosen representative shall
preserve the state labeling and transitions. Key challenge in symmetry reduction
is to find out the states that belong to the same equivalence class.

Symmetry reduction techniques work on both symbolic and explicit repre-
sentation of system models. In symbolic, the reachable state space of system
model is stored in a very concise manner with the help of Multi Terminal Binary
Decision Diagram (MTBDD) [7]. Whereas in explicit, the complete reachable
state space is enumerated in memory. Our proposed symmetry reduction tech-
nique works with explicitly represented models. We implement this technique in
PRISM probabilistic model checker [10].

PRISM works with both symbolic and explicit model representations. How-
ever, the existing symmetry reduction technique in PRISM works only with sym-
bolic representations. The structure used for symbolic representation in PRISM
is MTBDD [7]. Even though it performs well in general, in certain cases of prob-
abilistic model checking, symmetry reduction results in explosion of MTBDD
size by a factor of up to ten [18]. Thus, a study of techniques that can employ
representation mechanisms other than MTBDD is warranted.

Thus, we decided to work with explicit state representation of probabilistic
models. Our initial explorations showed significant improvement in time required
for property checking when explicit models are used instead of symbolic models.
However, except for certain trivial cases, explicit model construction is intractable.
Major problem with explicit model construction is state space enumeration.

In this paper, we present an on-the-fly symmetry reduction technique to build
a quotient reduced model at the time of exploration of reachable states. Using
this technique, we are able to build explicit models of concurrent systems with
extensive state space. Our algorithm is applicable to well-known probabilistic
models e.g. DTMC, MDP and CTMC.

We evaluated our technique using PRISM’s benchmark case studies. We com-
pared the performance of our method with the existing PRISM’s built-in sym-
bolic symmetry reduction technique. Experimental results indicate substantial
improvement in the performance of probabilistic model checking compared to
the existing methods.

The rest of the paper is organized as follows: Sect. 2 presents a review of
associated work in the literature; Sect. 3 establishes the mathematical notions
behind symmetry reduction of DTMCs, MDPs and CTMCs; Sect. 4 explains an
on-the-fly symmetry reduction algorithm for explicitly represented probabilistic
models; Sect. 5 provides experimental results, followed by conclusion.

402 R. Patel et al.

2 Related Work

There has been various symmetry reduction techniques developed for both prob-
abilistic and non-probabilistic model checking. [14,17,18] cover the mathematical
foundation of symmetry reduction and explain different approaches of symmetry
reduction for symbolic and explicit-state representation. Here, we focus on sym-
metry reduction techniques that are applicable in probabilistic setting.

First symmetry reduction techniquePRISM-symm for probabilistic setting [13]
was applicable to symbolically represented probabilistic models. This technique is
based on dynamic symmetry reduction concept [6] that is implemented for non-
probabilistic model checking. Author has integrated this technique in the popular
probabilistic model checker PRISM [10]. PRISM-symm reduces the state-space in
order of magnitude for system having a large number of processes. It also reduces
the size of the MTBDD by a factor of more than two, but in some cases, size of
MTBDD increases by a factor of up to ten. Despite this blow-up in MTBDD size,
symmetry reduction is beneficial for probabilistic model checking.

Donaldson and Miller have further extended the generic representative app-
roach [5] to the probabilistic setting. This technique performs the language level
symmetry reduction of given system model using GRIP tool [3]. GRIP translates
a subset of PRISMs language known as Symmetric Probabilistic Specification
Language [4] to a reduced form that can be analyzed using PRISM.

Thesis entitled as “Probabilistic Symmetry Reduction” by Christopher Power
[16] has presented a new probabilistic model specification language known as
Probabilistic Symmetric System (PSS). Author has introduced the extended
channel diagram approach to detect component and data symmetries from PSS
language. For symmetry reduction, they have presented a novel approach to com-
pute the representative state which is based on constraint satisfaction problem.
Author has also build a tool by implementing proposed symmetry detection and
reduction techniques. This tool generates the symmetry reduced model of given
system and set of PCTL formulas which can be analyzed using PRISM. Though
unlike PRISM, this tool is not freely available.

On the fly symmetry reduction techniques have been developed for non-
probabilistic model checking [1,8]. The major benefit of these techniques is that
symmetric states are discovered while exploring state space, and the correspond-
ing search subtrees are pruned at that instant (thus the name “on the fly”),
thereby constraining state space explosion.

In this paper, we present an on-the-fly symmetry reduction technique for
explicitly represented probabilistic models. We also discuss the results of inte-
grating this technique in PRISM.

3 Symmetry in Probabilistic Model Checking

In this section, we review some background material on probabilistic models,
automorphisms and quotient models. A probabilistic model is a transition system
with the state space X, whose behavior is specified by a transition function

Symmetry Reduction of Explicit Models in PRISM 403

on X. The best known probabilistic models are: Discrete-time Markov Chains
(DTMCs), Markov Decision Processes (MDPs) and Continuous-time Markov
Chains (CTMCs). The following definitions are adapted from [5,13,15].

The system with purely probabilistic behavior can be modeled as DTMC.

Definition 1: DTMC is defined as a tuple D = (S, s0, P) where

– S is a finite set of states,
– s0 ∈ S, is the initial state,
– P : S×S → [0, 1] is the transition probability matrix where

∑
s′∈S P (s, s′) = 1

for all s ∈ S.

The system which exhibits both non-deterministic and probabilistic behavior
can be modeled as an MDP.

Definition 2: MDP is an ordered tuple M = (S, s0, Steps) where

– S and s0 are as for DTMC,
– Steps : S → 2Dist(S) is a probability transition function where Dist(S)

denotes the set of discrete probability distributions over a set S i.e., the set
of functions of the form μ : S → [0, 1] such that

∑
s∈S μ(s) = 1.

For each state s ∈ S, Steps(s) maps s to a finite non-empty subset of Dist(S).
At a given state s, a distribution μ is chosen non-deterministically from the
elements of Steps(s). Now the next state s′ from s is chosen probabilistically
according to the selected distribution μ ∈ Steps(s).

In DTMC and MDP, the progress of time is modeled by discrete time steps,
one for each transition of the model. CTMC on the other hand, allows the
modeling of real time.

Definition 3: CTMC is defined by a tuple C = (S, s0, R) where

– S and s0 are as for DTMC.
– R : S × S → R. This gives the rate R(s, s′) at which transition occur between

each pair of states s, s′.

3.1 Automorphisms

In concurrent system, all the indistinguishable components preserve the system
structure (transition relation) under any interchange of the components. An
automorphism is a way of mapping the object to itself while preserving all of its
structure.

Let’s consider a probabilistic model of a concurrent system executing n
components. Let I = {1, 2, . . . , n} represents a set of component identifiers.
For some k ≥ 0, let L = {0, 1, 2, . . . , k} be the set of possible local states
of the components. A state s ∈ S of the system can be represented as s =
(glb, l1, l2, . . . , ln), where glb indicates global variables if any. The set of all
permutations of I forms a group under composition of mappings, denoted by
Aut(I). Let α ∈ Aut(I). When applied to a state s, α acts in the following way:
α(s) : (glbα, lα(1), lα(2), . . . , lα(n)).

404 R. Patel et al.

In case of DTMC D, if for all s, t ∈ S, P (s, t) there exists P ′(α(s), α(t))
such that P (s, t) = P ′(α(s), α(t)), then α is an automorphism of D. The set of
all automorphisms of D forms a group Aut(D) ≤ Aut(I) under composition of
mappings. Similarly, Aut(C) is a set of all automorphisms of CTMC C under
composition of mappings.

In case of MDP M , if for all s ∈ S, for each μ ∈ Steps(s), there exists
μ′ ∈ Steps(α(s)) such that μ(s) = μ′(α(s)), then α is an automorphism of M .
Let Aut(M) ≤ Aut(I) be the set of all automorphisms of M under composition
of mappings.

Note that the permutation α preserves the initial state and probabilistic
transition relation of a particular model. Now consider a subgroup G of either
of Aut(D), Aut(M) or Aut(C). This G induces an orbit relation θ on the corre-
sponding DTMC, MDP or CTMC respectively.

3.2 Quotient Probabilistic Models

Definition 4: The orbit relation for G is the set θ : {(s, α(s)) : s ∈ S, α ∈ G} ⊆
S × S. The orbit of s under G is the set [s] = {t|(s, t) ∈ θ}. The elements of the
orbit of s under G are said to be symmetric to each other.

The quotient model can be constructed by choosing a representative from
each orbit. Suppose that we have a total ordering for S and let min[s] denote
the lexicographically smallest element of [s] for any state s. Then for all s ∈ S,
min[s] can be chosen as a representative in the quotient state space S.

Let D = (S, s0, P), M = (S, s0, Steps), and C = (S, s0, R) be the quotient
models corresponding to D, M and C respectively.

The common denominator among the different model types is a set of reduced
states S and the corresponding initial state s0 ∈ S, which can be computed as
follows: S : {min[s] : s ∈ S} and s0 = min[s0].

In case of DTMC D, P (min[s],min[t]) =
∑

x∈[t] P (min[s], x).
Similarly, for MDP M , for each min[s] ∈ S and μ ∈ Steps(min[s]), Steps(min

[s]) contains a distribution μ ∈ Dist(S) where, for min[ŝ] ∈ S, μ(min[ŝ]) =∑
x∈[ŝ] μ(x).
For quotient CTMC C, R(min[s],min[t]) =

∑
x∈[t] R(min[s], x).

The quotient model is probabilistic bi-simulation equivalent to the original
unreduced model [13]. For the formulas in the temporal logics PCTL [9] which
is preserved by symmetry, probabilistic model checking can be performed equiv-
alently on the quotient model rather than the unreduced original model [13].

4 Extending Explicit PRISM with Symmetry Reduction

PRISM [10] is one of the most widely used probabilistic model checker in the
literature. Though primarily symbolic, it has evolved over the years, and now
offers, among other things, the following components for the different represen-
tation approaches:

Symmetry Reduction of Explicit Models in PRISM 405

– Symbolic: Model Builder, Symmetry Reduction Technique, Property Checker.
– Explicit: Model Builder, Property Checker.

We begin this section by justifying the need for exploration of symmetry
reduction technique for explicitly represented models. We then present Explic-
itPRISMSymm: our contribution that extends the functionality of PRISM’s
explicit engine by providing it with a mechanism for symmetry reduction.

4.1 PRISM’s Existing Explicit Technique Vs. Symbolic Technique

A first step of quantitative analysis is to build a probabilistic model of a given
system. In PRISM, user can choose whether to use symbolic or explicit rep-
resentation of probabilistic models. As mentioned earlier, symbolic model uses
MTBDD [7] structure for compact representation, whereas explicit model enu-
merate whole reachable state space.

Consider the “Consensus” case study from PRISM’s benchmark suite [2].
Table 1 shows the results of quantitative analysis using both symbolic and expli-
cit model. Here N represents the number of symmetric processes in the system.
Next two columns give the time taken to build a symbolic and explicit model.
Last two columns shows the time required to evaluate one particular quantitative
property using both type of models.

From Table 1, we observe that explicit performs really well at model check-
ing, but takes a lot of time for model construction. For verification of any system,
building a model is one time process whereas model checking can be performed
more than once. So explicit is a better choice. However, current explicit model con-
struction in PRISM takes a lot of resources (both time and memory). For instance,
for the given case study, it was not even possible to build an explicit model with
more than 6 number of processes1. In fact, this is the primary reason for symbolic
representation being preferred over explicit representation in the literature.

4.2 On-the-Fly Quotient Model Construction

We now discuss our primary contribution which addresses the problem of explicit
model construction. Explicit model construction involves enumeration of the

Table 1. Comparison of Symbolic and Explicit model

Case Study N Model Build Time (in Seconds) Model Checking Time (in Seconds)

Symbolic Model Explicit Model Symbolic Model Explicit Model

Consensus Shared
Coin Protocol

2 0.133 0.123 0.218 0.058

4 0.047 0.704 46.734 2.812

6 0.214 38.17 848.684 373.77

1 The system configuration is given in experiment section.

406 R. Patel et al.

entire state space. This invariably includes redundant exploration of symmetrical
states in the case of concurrent system. This leads to unnecessary consumption
of time and memory, thereby limiting the system’s (with a given configuration)
capability for further analysis. For instance, as mentioned in previous Sect. 4.1,
our testbed was not able to analyze the “consensus” protocol with N greater
than 6. However, this redundancy can be eliminated using “on-the-fly” approach,
which applies symmetry reduction at the time of state space exploration.

Algorithm 1. Original State
Space Exploration

// Initialization
S := {s0};
T := ∅;
Explore := {s0};

while Explore �= ∅ do
remove a state s from Explore;
//compute transitions for states
for each transition s → s′ do

if s′ /∈ S then
insert s′ into S and
Explore;

end if
//add transition according to
type of probabilistic model
insert s → s′ into T ;

end for
end while

Algorithm 2. On-the-fly Quo-
tient Model Construction

// Initialization
S := {min[s0]};
T := ∅;
Explore := {min[s0]};

while Explore �= ∅ do
remove a state s from Explore;
//compute transitions for states
for each transition s → ŝ do

s′ = min[ŝ];
if s′ /∈ S then

insert s′ into S and
Explore;

end if
//add transition according to
type of probabilistic model
insert s → s′ into T ;

end for
end while

Algorithm 1 represents the original state space enumeration strategy, whereas
Algorithm 2 shows our on-the-fly variant. In Algorithm2, S and T is defined to
store the reduced states and transitions respectively. S contains representative
from each equivalence class of states. The representative state that is required
for further transition computation is also stored in the set Explore. T stores the
transitions of each representative state stored into S.

In the beginning, S and Explore are initialized with initial state s0. A state
s is extracted from Explore, and is explored by computing the number of tran-
sitions and successor state for each transition. Next, the representative for each
successor state of s is computed (discussed later). If the representative of succes-
sor state has not been encountered before, then it is added to S and Explore.
The corresponding transitions of the explored state are added into T . The next
state from the set Explore is then extracted, and the process is repeated. Once
the Explore set is empty, the state space would have been fully explored, and S
and T will contain the states and transitions of quotient model.

Symmetry Reduction of Explicit Models in PRISM 407

408 R. Patel et al.

4.3 Representative Computation

As far as symmetry reduction strategy is concerned, representative computation
method should be implementable in efficient way.

Algorithm 3 shows the method to compute the representative of a given state.
Let I = {1, 2, . . . , n} be the set of component identifiers. A state s ∈ S has
the representation s = (glb, l1, l2, . . . , ln), where li denotes the local state of
component i and glb indicates global variables if any. The usual lexicographical
ordering of vectors provides a total ordering on S. From each equivalence class
of states, we have chosen lexicographically smaller state as a representative of
that equivalence class. Kindly refer to an example given beside to Algorithm 3
for a sample dry run of the algorithm.

Once a state is generated, we check if the state consists of any global variables
and components which are not symmetric. In the standard explicit representa-
tion of a state, non-symmetric components can be defined either before and/or
after symmetrical components. But, all symmetrical components must be rep-
resented in consecutive manner. In PRISM, as symmetry reduction parameters,
we can specify the number of non-symmetric components that appear before
and after the symmetric components. To compute the representative, we sort
the symmetrical components. This sorted state is lexicographically smaller and
is considered as a representative. In the representative state, global variables and
non-symmetrical components will be as it is.

Note that on-the-fly symmetry reduction algorithm bypasses the major limi-
tation of explicit models - the requirement to enumerate all reachable states and
transitions. The algorithm computes the representative of a state at the time
of exploration itself. So those states, whose representative is already explored,
need not be stored. This frees up the storage space. Also, such states are not
even explored, thereby saving time. Thus using on-the-fly symmetry reduction,
we can build an explicit model with a large number of states (the exact figure
depends on the model, the degree of symmetry within, and the hardware con-
figuration). In the next section, we present our experimental results for the two
different case studies.

5 Experimental Results

In this section we present experimental results for two different case studies -
“the randomized consensus shared coin protocol” from [11] and “IEEE 802.3
CSMA/CD protocol” analyzed in [12]. Both the case studies are PRISM bench-
marks and available in PRISM distribution [2]. All experiments were executed
on a 2.4 GHz Intel Zeon quad core processor, with 8 GB RAM running Linux
(Ubuntu 14.0).

Table 2 shows the comparison between full (original) and symmetry reduced
quotient explicit model. For two case studies, N denotes the number of symmet-
ric processes in the system. Columns 3–4 gives the state space size of original and
symmetry reduced explicit model. As expected, using symmetry reduction we
obtained a large reduction in state space size and it increases with N . Next two

Symmetry Reduction of Explicit Models in PRISM 409

Table 2. Experimental Results of Original and Quotient Explicit Model

Case N Model Size Explicit Model Build Model Checking

Study (States) Time (in Seconds) Time (in Seconds)

In Full In Full Quotient Full Quotient

Model Quotient Explicit Explicit Explicit Explicit

Model Model Model Model Model

(Proposed) (Proposed)

Consensus
Shared Coin
Protocol

2 272 154 0.123 0.068 0.058 0.048

4 22656 2e + 3 0.704 0.562 2.812 0.371

6 1.2e + 6 1e + 4 38.17 2.134 373.77 3.856

8 6.1e + 7 4e + 4 memory out 6.379 - 28.483

10 2.8e + 9 1.3e + 5 memory out 21.568 - 155.864

12 1.2e + 11 3.3e + 5 memory out 59.619 - 600.353

14 5.04e + 12 7.4e + 5 memory out 224.492 - 2006.925

16 2.08e + 14 1.4e + 6 memory out 1637.064 - 5883.866

IEEE
CSMA/CD
Protocol

4 7.6e + 5 4e + 4 16.72 3.013 71.32 3.639

5 1.5e + 7 1.8e + 5 memory out 11.32 - 23.285

6 2.7e + 8 7e + 5 memory out 51.206 - 115.385

7 4.6e + 9 2.2e + 6 memory out 211.659 - 481.434

8 7.7e + 10 6.6e + 6 memory out 3571.901 - 3453.867

columns show the time taken for building the each model. Last two columns
shows the time required to performing probabilistic model checking on each of
the two models. In “Consensus” and “CSMA”, full explicit model cannot be
built with more than 6 and 4 number of processes respectively. However, using
on-the-fly symmetry reduction, we are able to build a quotient model with 16 and
8 number of processes for “Consensus” and “CSMA” respectively. Thus, the on-
the-fly symmetry reduction technique enables verification of systems with larger
number of processes.

We evaluated our technique’s performance against PRISM’s built-in sym-
bolic technique. For quantitative evaluation of given property, PRISM has four
different engines i.e., MTBDD, Explicit and Hybrid. Detail of these engines is
given at [2].

Experiment results for comparison between PRISM’s built-in symbolic and
our on-the-fly symmetry reduction technique are shown in Table 3. Columns 3–
4 give the time required to build the quotient model using PRISM’s built-in
symbolic and our proposed on-the-fly symmetry reduction technique. Here we
can see that time to build a model with explicit is more as compared to symbolic
technique.

410 R. Patel et al.

Table 3. Experimental Results of Quotient Symbolic and Quotient Explicit Model

Case N Model Build Model Checking Time Total Time (in Seconds)

Study Time (in (in Seconds)

Seconds)

Quotient Quotient MTBDD Hybrid Explicit MTBDD Hybrid Explicit

Symbolic Explicit

(Proposed)

Consensus
Shared
Coin
Protocol

2 0.037 0.068 0.17 0.02 0.048 0.207 0.057 0.116

4 0.071 0.562 17.259 0.918 0.371 17.33 0.989 0.933

6 0.251 2.134 276.058 12.829 3.856 276.309 13.068 5.99

8 0.628 6.379 1713.06 90.857 28.483 1713.688 91.46 34.862

10 1.306 21.568 7654.605 392.825 155.864 7655.911 394.108 177.432

12 3.476 59.619 mem-out 1449.134 600.353 - 1452.61 659.972

14 6.648 224.492 mem-out 4455.717 2006.925 - 4462.365 2231.417

16 11.983 1637.064 mem-out 11438.624 5883.866 - 11450.607 7520.93

IEEE
CSMA/
CD
Protocol

4 3.307 3.013 71.432 12.414 3.639 74.739 15.721 6.652

5 16.434 11.32 671.374 64.328 23.285 687.808 80.762 34.605

6 49.99 51.206 4750.193 322.208 115.385 4800.183 372.198 166.591

7 132.508 211.659 mem-out 1724.687 481.434 - 1857.195 693.093

8 376.231 3571.901 mem-out 7093.89 3453.867 - 7470.121 7025.768

A comparison of symbolic and explicit in terms of probabilistic model check-
ing is interesting. Time required for performing model checking using MTBDD,
Hybrid and Explicit engine is given in columns 5–7. For model checking, we
have evaluated first and the first two quantitative properties in the “Consen-
sus” and “CSMA” case studies respectively. Model checking using explicit is
much faster than MTBDD and Hybrid engine, despite the fact that symmetry
reduced model is same for all. In the last three columns we have given a total
time (quotient model build+model checking) required by MTBDD, Hybrid and
Explicit engine. The model construction time is same as symbolic model for
property evaluation using MTBDD and Hybrid engine.

As is observed, the explicit engine outperforms the other two, when it is used
in conjunction with the symmetry reduction technique. One should also note
here, that for verification of any system, complete builds are typically one-time
process, whereas model checking operations can be performed multiple times.
So we can conclude that, with increasing number of model checking operations,
the explicit model is bound to perform better.

6 Conclusion

We reported significant time gains achieved in property checking by using explicit
representation instead of symbolic representation. Our on-the-fly symmetry reduc-
tion technique overcomes the major hurdle of explicit model construction thereby
expanding the usage of explicit representation beyond trivial cases and into the
realm of highly symmetric concurrent systems. We integrated this technique in

Symmetry Reduction of Explicit Models in PRISM 411

PRISM, thus extended the functionality of PRISM’s explicit engine. Our encour-
aging results support in establishing explicit model representations as a significant
representation mechanism in probabilistic model checking.

References

1. Barner, S., Grumberg, O.: Combining symmetry reduction and under-
approximation for symbolic model checking. In: Brinksma, E., Larsen, K.G. (eds.)
CAV 2002. LNCS, vol. 2404, pp. 93–106. Springer, Heidelberg (2002)

2. Kwiatkowska, M., Norman, G., Parker, D.: PRISM: probabilistic symbolic
model checker. In: Field, T., Harrison, P.G., Bradley, J., Harder, U. (eds.)
TOOLS 2002. LNCS, vol. 2324, pp. 200–204. Springer, Heidelberg (2002).
http://www.prismmodelchecker.org/casestudies/index.php

3. Donaldson, A., Miller, A., Parker, D.: GRIP: generic representatives in PRISM. In:
Proceeding of the Fourth International Conference on the Quantitative Evaluation
of Systems (QEST 2007), pp. 115–116, September 2007

4. Donaldson, A., Miller, A., Parker, D.: Language-level symmetry reduction for prob-
abilistic model checking. In: Proceeding of the Sixth International Conference on
the Quantitative Evaluation of Systems (QEST 2009), pp. 289–298, September
2009

5. Donaldson, A.F., Miller, A.: Symmetry reduction for probabilistic model checking
using generic representatives. In: Graf, S., Zhang, W. (eds.) ATVA 2006. LNCS,
vol. 4218, pp. 9–23. Springer, Heidelberg (2006)

6. Emerson, E.A., Wahl, T.: Dynamic symmetry reduction. In: Halbwachs, N., Zuck,
L.D. (eds.) TACAS 2005. LNCS, vol. 3440, pp. 382–396. Springer, Heidelberg
(2005)

7. Fujita, M., McGeer, P.C., Yang, J.C.Y.: Multi-terminal binary decision diagrams:
an efficient datastructure for matrix representation. Formal Methods Syst. Des.
10(2–3), 149–169 (1997)

8. Gyuris, V., Prasad Sistla, A.: On-the-fly model checking under fairness that
exploits symmetry. In: Grumberg, O. (ed.) Computer Aided Verification. LNCS,
vol. 1254, pp. 232–243. Springer, Heidelberg (1997)

9. Hansson, H., Jonsson, B.: A logic for reasoning about time and reliability. Formal
Aspects Comput. 6(5), 512–535 (1994)

10. Hinton, A., Kwiatkowska, M., Norman, G., Parker, D.: PRISM: a tool for automatic
verification of probabilistic systems. In: Hermanns, H., Palsberg, J. (eds.) TACAS
2006. LNCS, vol. 3920, pp. 441–444. Springer, Heidelberg (2006)

11. Kwiatkowska, M., Norman, G., Segala, R.: Automated verification of a randomized
distributed consensus protocol using cadence SMV and PRISM. In: Berry, G.,
Comon, H., Finkel, A. (eds.) CAV 2001. LNCS, vol. 2102, pp. 194–206. Springer,
Heidelberg (2001)

12. Kwiatkowska, M., Norman, G., Sproston, J., Wang, F.: Symbolic model checking
for probabilistic timed automata. Inf. Comput. 205(7), 1027–1077 (2007)

13. Kwiatkowska, M., Norman, G., Parker, D.: Symmetry reduction for probabilistic
model checking. In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp.
234–248. Springer, Heidelberg (2006)

14. Miller, A., Donaldson, A., Calder, M.: Symmetry in temporal logic model checking.
ACM Comput. Surv. 38(3), 8 (2006)

http://www.prismmodelchecker.org/casestudies/index.php

412 R. Patel et al.

15. Parker, D.: Implementation of symbolic model checking for probabilistic systems.
Ph.d. thesis, University of Birmingham (2002)

16. Power, C.: Probabilistic symmetry reduction. Ph.d. thesis, University of Glasgow
(2012). http://theses.gla.ac.uk/3493/

17. Sistla, A.: Employing symmetry reductions in model checking. Comput. Lang. Syst.
& Struct. 30(3–4), 99–137 (2004)

18. Wahl, T., Donaldson, A.: Replication and abstraction: symmetry in automated
formal verification. Symmetry 2(2), 799–847 (2010)

http://theses.gla.ac.uk/3493/

Parameterised Complexity

Kernelization Algorithms for Packing
Problems Allowing Overlaps

Henning Fernau1, Alejandro López-Ortiz2, and Jazmı́n Romero2(B)

1 FB 4-Abteilung Informatikwissenschaften,
Universität Trier, Trier, Germany

2 David R. Cheriton School of Computer Science,
University of Waterloo, Waterloo, Canada

hjromero@uwaterloo.ca

Abstract. We consider the problem of discovering overlapping commu-
nities in networks which we model as generalizations of the Set and Graph
Packing problems with overlap. As usual for Set Packing problems we seek
a collection S ′ ⊆ S consisting of at least k sets subject to certain disjoint-
ness restrictions. In the r-Set Packing with t-Membership, each element
of U belongs to at most t sets of S ′ while in r-Set Packing with t-Overlap
each pair of sets in S ′ overlaps in at most t elements. For both problems,
each set of S has at most r elements.

Similarly, both of our graph packing problems seek a collection K of
at least k subgraphs in a graph G each isomorphic to a graph H ∈ H
where each member of H has at most r vertices. In H-Packing with
t-Membership, each vertex of G belongs to at most t subgraphs of K
while in H-Packing with t-Overlap each pair of subgraphs in K overlaps
in at most t vertices.

Here, we show NP-Completeness results for all of our packing prob-
lems. Furthermore, we give a dichotomy result for H-Packing with
t- Membership analogous to the Kirkpatrick and Hell [12]. Given this
intractability, we reduce r-Set Packing with t-Membership and t-Overlap
to problem kernels with O((r+1)rkr) and O(rrkr−t−1) elements, respec-
tively. Similarly, we reduce H-Packing with t-Membership and t-Overlap
to instances with O((r + 1)rkr) and O(rrkr−t−1) vertices, respectively.
In all cases, k is the input parameter while t and r are constants.

1 Introduction

Networks are commonly used to model complex systems that arise in real life,
for example, social and protein-interaction networks. A community emerges in a
network when two or more entities have common interests, e.g., groups of people
or related proteins. Naturally, a given person can have more than one social circle,
and a protein can belong to more than one protein complex. Thus, communities
can share members [15]. The way a community is modeled is highly dependent
on the application being modeled by the network. One flexible approach is to
use a family of graphs where each graph would be a community model.

c© Springer International Publishing Switzerland 2015
R. Jain et al. (Eds.): TAMC 2015, LNCS 9076, pp. 415–427, 2015.
DOI: 10.1007/978-3-319-17142-5 35

416 H. Fernau et al.

The H-Packing with t-Overlap problem [17] captures the problem of discov-
ering overlapping communities. The goal is to find at least k subgraphs (the
communities) in a graph G (the network) where each subgraph is isomorphic
to a member of a family of graphs H (the community models) and each pair
of subgraphs overlaps in at most t vertices (the shared members). Such type of
overlap can be found in certain clustering algorithms as, e.g., in [2]. Here, we
also consider the H-Packing with t-Membership problem to bound the number
of communities that a member of a network can belong to (instead of bounding
the shared members). In any case, each member of H has at most r vertices.
This type of overlap was also previously studied, for instance, in [5] in the con-
text of graph editing. Our graph packing problems generalize the H-Packing
problem which consists in finding within G at least k vertex-disjoint subgraphs
isomorphic to a graph H.

Similarly, we also consider overlap for the r-Set Packing problem. Given a
collection of sets S each of size at most r drawn from a universe U , an r-Set
Packing with t-Overlap consists of at least k sets from S such that each pair
of sets overlaps in at most t elements. In contrast, in an r-Set Packing with
t-Membership, each member of U is contained in at most t of the k sets. The pair
S and U can be treated as an hypergraph, where the vertices are the members
of U and the hyper-edges are the members of S. Thus, an r-Set Packing with
t-Overlap can be seen as k hyper-edges that pairwise intersect in no more than
t vertices while an r-Set Packing with t-Membership can be interpreted as k
hyper-edges where every vertex is contained in at most t of them.

Some of our generalized problems are NP-complete. This follows immediately
from the NP-completeness of the classical H-Packing and Set Packing problems.
Our goal is to design kernelization algorithms; that is, algorithms that in poly-
nomial time reduce any instance to a size bounded by f(k) (a problem kernel),
where f is some arbitrary computable function depending only on a parameter.
After that a brute-force search on the kernel gives a solution in g(k)nO(1) run-
ning time, where g is some computable function. An algorithm that runs in that
time is a fixed-parameter algorithm. For all our problems, we consider k as the
parameter, while t and r are constants.

Related Results. An FPT-algorithm for the H-Packing with t-Overlap problem
was developed in [18]. The running time is O(rrkk(r−t−1)k+2nr), where r =
|V (H)| for an arbitrary graph H ∈ H, |H| = 1, and 0 ≤ t < r. A 2(rk−r) kernel
when {Kr} = H and t = r − 2 is given in [17].

The smallest kernel for the H-Packing problem has size O(kr−1), where H
is an arbitrary graph and r = |V (H)| [14]. More kernels results when H is a
prescribed graph can be found in [7,9,11,16]. There is an O(rrkk(r−t−1)k+2nr)
algorithm for the Set Packing with t-Overlap [18] while the Set Packing (element-
disjoint) has an O(rrkr−1) kernel [1].

Summary of Results. Each member in S has at most r elements while each
H ∈ H has at most r vertices. For the problems with t-Membership, t ≥ 1 and
for t-Overlap problems, 0 ≤ t ≤ r − 1. In any case, t and r are constants.

Kernelization Algorithms for Packing Problems Allowing Overlaps 417

In Sect. 3, we show that the H-Packing with t-Membership problem is NP-
Complete for all values of t ≥ 1 when H = {H} and H is an arbitrary connected
graph with at least three vertices, but polynomial-time solvable for smaller
graphs. Hence, we obtain a dichotomy result for the {H}-Packing with t-Mem-
bership which is analogous to the one of Kirkpatrick and Hell [12]. Moreover,
we prove that for any t ≥ 0, there always exists a connected graph Ht such that
the H-Packing problem with t-Overlap is NP-Complete where H = {Ht}.

In Sect. 4, we give a polynomial parameter transformation (PPT) from
r-Set Packing with t-Membership to an instance of (r+1)-Set Packing. With this
transformation, we reduce r-Set Packing with t-Membership to a problem kernel
with O((r + 1)rkr) elements. In addition, we obtain a kernel with O((r + 1)rkr)
vertices for H-Packing with t-Membership by reducing it to r-Set Packing with
t-Membership. PPTs are commonly used to show kernelization lower bounds [3].
To our knowledge, this is the first time that PPTs are used to obtain kernels.

Inspired by [6,14], in Sect. 5, we give a kernelization algorithm that reduces
r-Set Packing with t-Overlap to a kernel with O(rrkr−t−1) elements. We also
achieve a kernel with O(rrkr−t−1) vertices for H-Packing with t-Overlap.

Due to the lack of space, technical details as well as additional complexity
and kernelization results, can be found in [8].

2 Terminology

Let S be a collection of sets drawn from U . For S ′ ⊆ S, val(S ′) denotes the
union of all members of S ′. For P ⊆ U , P is contained in S ∈ S, if P ⊆ S. Two
sets S, S′ ∈ S overlap in |S ∩ S′| elements and they conflict if |S ∩ S′| ≥ t + 1.

Our graph problems deal with a family of graphs H where each H ∈ H is
an arbitrary graph. Let r(H) = max{|V (H)| : H ∈ H} denote the order of the
biggest graph in H. Observe that to have this as a reasonable notion, we always
(implicitly) require H to be a finite set. We simply write r instead of r(H) if H
is clear from the context. A subgraph of G that is isomorphic to some H ∈ H is
called an H-subgraph. We denote as HG the set of all H-subgraphs in G.

We next introduce the formal definitions of the t-Membership problems. Let
r, t ≥ 1 be fixed, that in actual fact defines a whole family of problems.

The r-Set Packing with t-Membership problem
Input : A collection S of distinct sets, each of size at most r, drawn from a
universe U of size n, and a non-negative integer k.
Parameter : k
Question: Does S contain a (k, r, t)-set membership, i.e., at least k sets K =
{S1, . . . , Sk} where each element of U is in at most t sets of K ?

418 H. Fernau et al.

The H-Packing with t-Membership problem.
Input : A graph G, and a non-negative integer k.
Parameter : k
Question: Does G contain a (k, r, t)-H-membership, i.e., a set of at least k
H-subgraphs K = {H1, . . . , Hk}, where V (Hi) �= V (Hj) for i �= j, and every
vertex in V (G) is contained in at most t subgraphs of K ?

Our t-Overlap problems are defined next. Again, r ≥ 1 and t ≥ 0 are fixed.

The r-Set Packing with t-Overlap problem
Instance: A collection S of distinct sets, each of size at most r, drawn from
a universe U of size n, and a non-negative integer k.
Parameter : k.
Question: Does S contain a (k, r, t)-set packing, i.e., a collection of at least k
sets K = {S1, . . . , Sk} where |Si ∩ Sj | ≤ t, for any pair Si, Sj with i �= j?

The H-Packing with t-Overlap problem
Input : A graph G, and a non-negative integer k.
Parameter : k
Question: Does G contain a (k, r, t)-H-packing, i.e., a set of at least k H-
subgraphs K = {H1, . . . , Hk} where |V (Hi) ∩ V (Hj)| ≤ t for any pair Hi,Hj

with i �= j?

Notice that when t = 1 and t = 0 for t-Membership and t-Overlap, respec-
tively, we are back to the classical r-Set Packing and H-Packing problems.

Sometimes the size l will be dropped from the size of a packing, e.g., an
(l, r, t)-set membership can be simply denoted as (r, t)-set membership. An (r, t)-
H-membership P of G is maximal if every H-subgraph of G that is not in P
has at least one vertex v contained in t H-subgraphs of P . Similarly, an (r, t)-
set packing M of S ′ ⊆ S is maximal if any set of S ′ that is not already in
M conflicts with some set in M. That is, for each set S ∈ S ′ where S /∈ M,
|S ∩ S′| ≥ t + 1 for some S′ ∈ M.

3 Hardness of Packing Problems Allowing Overlaps

Let us first present one concrete H-Packing with t-Membership problem that is
hard for all possible values of t.

Theorem 1. For all t ≥ 1, the {P3}-Packing with t-Membership problem is
NP-complete.

Proof (Sketch). We show a reduction from {P3}-Packing with t-Membership to
{P3}-Packing with (t + 1)-Membership, which proves the claim by induction.
Without loss of generality, assume that n is divisible by t+ 1; otherwise, simply
add some isolated vertices to obtain an equivalent instance.

Kernelization Algorithms for Packing Problems Allowing Overlaps 419

Let (G, k) be an instance of the {P3}-Packing with t-Membership problem,
where V = {v0, . . . , vn−1}. Let U = {u0, . . . , u(2n)/(t+1)−1} be a set of new
vertices. Create a graph G′ = (V ′, E′) as follows: V ′ = V ∪ U and E′ = E ∪
{vi+ju2i/(t+1), u2i/(t+1)u2i/(t+1)+1 | 0 ≤ i < n, i (mod t + 1) ≡ 0, 0 ≤ j ≤ t}.

G has a (k, 3, t)-{P3}-membership if and only if G′ has a (n+k, 3, t+1)-{P3}-
membership, where n = |V |. If P is a (3, t)-{P3}-membership set for G, then P ′ =
P∪X is a (3, t+1)-{P3}-membership for G′,where X = {vi+ju2i/(t+1)u2i/(t+1)+1 |
0 ≤ i < n, i (mod t + 1) ≡ 0, 0 ≤ j ≤ t}. Clearly, |P ′| = |P | + |X| = |P | + n.

Conversely, let P ′ be a (3, t + 1)-{P3}-membership for G′ = (V ′, E′) of size
at least n + k. We gradually modify P ′ in two separate steps, in both of them
we always preserve its size and the property that is a (3, t+1)-{P3}-membership
for G′. First, we can always alter P ′ by replacing some paths to end up with P ′

containing only two types of paths: paths completely consisting of vertices from
G (PG), and those containing exactly one vertex from G and two from U (PX).
After that, we can gradually alter P ′ once more to force that every vertex in G
is contained in exactly one path of PX . This implies that PG = P ′\PX would be
a (3, t)-{P3}-membership G of size |PG| = |P ′| − |PX | ≥ n + k − |PX | ≥ k.
�
A similar reduction can be constructed for each {H}-Packing with t-Membership
problem for each H containing at least three vertices based on classical results
due to Kirkpatrick and Hell [12].

On the positive side, we next show that the {P2}-Packing with t-Membership
problem can be solved in polynomial time. A (k, 2, t)-{P2}-membership P of a
graph G is a subset of at least k edges of E(G) such that every vertex of G
is contained in at most t edges of P . Let us denote as G∗ the subgraph of G
induced by P , i.e., G∗ = (VG∗ , P) where VG∗ = V (P).

Lemma 1. The graph G∗ has maximum degree t.

Let b : V (G) → N a degree constraint for every vertex. The problem of finding a
subgraph G∗ of G such that each vertex v ∈ V (G∗) has degree at most b(v) in G∗

and the number of edges in G∗ is maximized is known as the degree-constrained
subgraph problem [19], while G∗ is called a degree-constrained subgraph. Shiloach
[19] constructs a graph G′ from a given graph G and shows that G has a degree-
constrained subgraph with k edges if and only if G′ has a maximum matching
of size |E(G)| + k.

By Lemma 1, we can find a (k, 2, t)-{P2}-membership P of G, by solving the
degree-constrained subgraph problem with b(v) = t, for all v ∈ V (G). Having a
closer look at Shiloach’s construction of G′, we observe that |V (G′)| = 2|E(G)|+
t|V (G)| and that |E(G′)| = 2t|E(G)| + t|E(G)|=3t|E(G)|. Thus, the maximum
matching can be solved in O(

√
2|E(G)| + t|V (G)|3t|E(G)|) by running Micali

and Vazirani’s algorithm [13]. Hence, we can state:

Corollary 1. Let t ≥ 1. P2-Packing with t-Membership can be solved in time
that is polynomial both in the size of the input graph G and in t.

We can summarize our comments following Theorem 1 and Corollary 1 by stating
the following dichotomy result that is analogous to the classical one due to
Kirkpatrick and Hell [12].

420 H. Fernau et al.

Theorem 2. (Dichotomy Theorem) Let t ≥ 1. Assuming that P is not equal to
NP, then the {H}-Packing with t-Membership problem can be solved in polyno-
mial time if and only if |V (H)| ≤ 2.

On the other hand, the next theorem explains at least that there are NP-hard
{H}-Packing with t-Overlap problems for each level t ≥ 0.

Theorem 3. For any t ≥ 0, there exists a connected graph Ht such that the
{Ht}-Packing with t-Overlap problem is NP-complete.

4 Packing Problems with Bounded Membership

In this section, we introduce a polynomial parametric transformation (PPT)
from the r-Set Packing with t-Membership problem to the (r + 1)-Set Packing
problem. We obtain a kernel result for r-Set Packing with t-Membership by
running a kernelization algorithm on the transformed instance of the (r+1)-Set
Packing problem. This compression (or bikernel) result can be turned into a
proper kernel result by re-interpreting the (r + 1)-Set Packing kernel within the
original problem.

4.1 Packing Sets with t-Membership

We create an instance for the (r+ 1)-Set Packing problem (a universe UT and a
collection ST) using an instance of the r-Set Packing with t-Membership prob-
lem.

Transformation 1. The universe UT equals (U × {1, . . . , t}) ∪ S.
The collection ST contains all subsets of UT each with at most r + 1 ele-

ments of the following form: {{(u1, j1),. . . ,(ui, ji),. . . ,(ur′ , jr′), S} | S ∈ S, S =
{u1, . . . , ur′}, for each 1 ≤ ji ≤ t and 1 ≤ i ≤ r′, where r′ ≤ r}.

The size of UT is bounded by |U| · t + |S| < tn + rnr = O(nr). Each set in ST

has size at most r + 1. For each S ∈ S, we can form at most tr sets with the tr
ordered pairs from the elements in S. In this way, for each S ∈ S there are tr

sets in ST , and |ST | = tr|S| = O(trnr). This leads us to the following result.

Lemma 2. Transformation 1 can be computed in O(trnr) time.

Note that the parameter k stays the same in this transformation, and t only
influences the running time of the whole construction, as the (r+1)-Set Packing
instance will grow if t gets bigger.

Lemma 3. S has a (k, r, t)-set membership if and only if ST has k disjoint sets
(i.e., a (k, r + 1, 0)-set packing).

Then, we run the currently best kernelization algorithm for the (r+1)-Set Pack-
ing problem [1]. This algorithm would leave us with a new universe U ′T with at
most 2r!((r + 1)k − 1)r elements, as well with a collection S ′T of subsets. The
following property is borrowed from [1].

Kernelization Algorithms for Packing Problems Allowing Overlaps 421

Lemma 4. ST has a (k, r+1, 0)-set packing if and only if S ′T has a (k, r+1, 0)-
set packing.

Next, we construct the reduced U ′ and S ′ which together with k, give the reduced
r-Set Packing with t-Membership instance we are looking for. To this end, the
reduced universe U ′ contains each element u appearing in U ′T . In each set of S ′T ,
there is an element S that will correspond to a set of S ′. By our construction,
U ′ will have at most 2r!((r + 1)k − 1)r elements. This reduction property allows
us to state:

Theorem 4. The r-Set Packing with t-Membership has a problem kernel with
O((r + 1)rkr) elements from the given universe.

4.2 Packing Graphs with t-Membership

To reduce H-Packing with t-Membership to a kernel, we will transform it to
the r-Set Packing with t-Membership. Note that in G there could exist more
than one H-subgraph with the same set of vertices (but different set of edges).
However, we claim next that only one of those H-subgraphs can be in a solution.

Lemma 5. Let Hi and Hj be a pair of H-subgraphs in G such that V (Hi) =
V (Hj) but E(Hi) �= E(Hj). Any (k, r, t)-H-membership of G that contains Hi

does not contain Hj (and vice versa). Furthermore, we can replace Hi by Hj in
such a membership.

We denote as HG the set of all H-subgraphs in G; thus, |HG| = O(|H|n(r(H))2).
We can find a (k, r, t)-H-membership from G by selecting k H-subgraphs from
HG such that every vertex of V (G) is contained in at most t of those subgraphs.
By Lemma 5, we can apply the following reduction rule to HG. After applying
this rule, |HG| = O(|H|nr(H)).

Reduction Rule 1. For any pair of H-subgraphs H1,H2 in HG such that
V (H1) = V (H2), we arbitrary select one and remove the other from HG.

Next, we construct an instance for the r-Set Packing with t-Membership as
follows.

Transformation 2. The universe U equals V (G).
There is a set in S for each H-subgraph H in HG and S = V (H).
Furthermore, let r = r(H).

In this way, |U| = O(n) and |S| = |HG| = O(|H|nr(H)). Each set in S has size
at most r(H).

Lemma 6. G has a (k, r, t)-H-membership if and only if S has a (k, r, t)-set
membership.

We obtain the reduced universe U ′ and S ′ for the constructed instance of the
r-Set Packing with t-Membership as shown in Subsect. 4.1. Then, the reduced
graph for the original instance is G′ = G[U ′].

422 H. Fernau et al.

Lemma 7. G′ has a (k, r, t)-H-membership if and only if S ′ has a (k, r, t)-set
membership.

This reduction property allows us to state:

Theorem 5. H-Packing with t-Membership has a problem kernel with O((r +
1)rkr) vertices where r = r(H).

5 Packing Problems with Bounded Overlap

In this section, we develop kernelization algorithms for all our packing with
t-Overlap problems.

5.1 Packing Sets with t-Overlap

We assume that each set in S has size at least t + 1. Otherwise, we can add
the sets with size at most t straight to a (k, r, t)-set packing and decrease the
parameter k by the number of those sets. We start with a simple reduction rule.

Reduction Rule 2. Remove any element of U that is not contained in at least
one set of S.

Notice that every pair of sets in S overlaps in at most r − 1 elements; otherwise
there would be two identical sets. Thus for t = r − 1, if |S| ≥ k then S is a
(k, r, t)-set packing; in the other case, S does not have a solution. Henceforth,
we assume that t ≤ r−2. We say that a set Se ∈ S is extra if there is a (k, r, t)-set
packing that does not include Se.

Algorithm 1 reduces r-Set Packing with t-Overlap to a kernel in two steps.
First, in Lines 3–9 the goal is to identify extra sets of S, and second in Line
16, unnecessary elements are removed from U by triggering a reduction. Lines
3–9 in Algorithm 1 basically keep reducing a maximal (r, r − 2)-set packing R
using Algorithm 2. The need to run possibly more than once Algorithm 2 is to
preserve the maximality of R.

The basic idea of Algorithm 2 is that if there is more than a specific number
of members of S that pairwise overlap in exactly the same subset of elements
P ⊂ U , then some of those members are extra. For each set S in R, Algorithm 2
considers every subset of elements P � S from sizes from tIni to t+1 in decreas-
ing order (Lines 3–5). Given the construction of R in Algorithm 1, tIni = r − 2.
Note that the size of S should be at least i + 1 to run Lines 4–13; otherwise S
will be considered at a later iteration of the for-loop of Line 3. For every P , we
count the number of sets in R that contain P (collected in P, Line 6). If that
number is greater than a specific threshold (Line 7) then we can remove the ones
above the threshold (Lines 8–11). The size of P is determined by the variable i
in Line 3, and the threshold f(i) is defined as f(i) = (r − t)(k − 1)f(i + 1) + 1
where f(tIni+1) is initialized to one (Line 2). The function f(i) basically bounds
the number of sets in R that contains a subset P with i elements. Observe that

Kernelization Algorithms for Packing Problems Allowing Overlaps 423

Algorithm 1. Kernelization Algorithm - Set Packing with t-Overlap
Input: An instance U ,S
Output: A reduced instance U ′,S ′

1: Apply Reduction Rule 2
2: R = ∅, E = ∅
3: repeat
4: Greedily add sets from S\(R ∪ E) to R such that every pair of sets in R

overlaps in at most r − 2 elements (i.e., a maximal (r, r − 2)-set packing).
5: if at least one set was added to R then
6: E ′ = Algorithm 2(R)
7: R = R\E ′, E = E ∪ E ′

8: end if
9: until no more sets have been added to R

10: Reduce S = S\E and re-apply Reduction Rule 2
11: Compute a maximal (r, t)-set packing M of R
12: if |M| ≥ k then
13: Let S ′ be any subset of M of size k
14: Return U and S ′

15: end if
16: Let U ′ and S ′ be the reduced universe and collection of sets, respectively,

after applying Reduction Rule 3.
17: Return U ′ and S ′

Algorithm 2. Extra Sets Reduction
Input: A set R ⊆ S of sets
Output: A set E ⊆ R of sets
1: tIni = max {|Si ∩ Sj | : Si, Sj ∈ R, i �= j}
2: f(tIni + 1) = 1, E = ∅
3: for i = tIni downto t + 1 do
4: for each S ∈ R such that |S| > i do
5: for each P � S where |P | = i do
6: P = {S′ ∈ R : S′

� P}
7: f(i) = (r − t)(k − 1)f(i + 1) + 1
8: if |P| > f(i) then
9: Choose any P ′ ⊂ P of size f(i)

10: Set E ← E ∪ (P\P ′) (extra sets)
11: R ← R\(P\P ′)
12: end if
13: end for
14: end for
15: end for
16: Return E

424 H. Fernau et al.

f(i) = (r− t)(k−1)f(i+1)+1 =
∑tIni−i+1

j=0 [(r− t)(k−1)]j . Algorithm 2 returns
E which is the set of extra sets in R (Line 16). The next lemma states that
Algorithm 2 correctly reduces the given set R.

Lemma 8. R has a (k, r, t)-set packing if and only if R\E has a (k, r, t)-set
packing.

Lemma 9. After running Lines 1–9 of Algorithm 1, S has a (k, r, t)-set packing
if and only if S\E has a (k, r, t)-set packing.

By Lemma 9, we reduce S by removing E in Line 10 of Algorithm 1. As a
consequence, we re-apply Reduction Rule 2. Then we compute a maximal (r, t)-
set packing in R. This maximal solution will help us to determine an upper-
bound for the number of sets in R. From now on, we assume that the maximal
solution was not a (k, r, t)-set packing and Algorithm 1 continues executing.

An element u ∈ U is extra if there is a (k, r, t)-set packing K of S where u /∈ S
for each set S ∈ K. We will identify extra elements in U\val(R), denoted as O
henceforth. Before giving our reduction rule, we give a characterization of O.

Lemma 10. Let O = U\val(R). (i) Each element in O is contained in at least
one set S. (ii) Only sets in S\R contain elements from O. (iii) No pair of
different elements in O is contained in the same set S for any S ∈ S\R. (iv)
Each S ∈ S\R contains one element in O and r − 1 elements of some set in R.

We will reduce O by applying similar ideas as in [14]. To this end, we first
construct an auxiliary bipartite graph B = (VO, VS\R, E) as follows. There is a
vertex vo in VO for each element o ∈ O. For each set S in S\R and each subset
P � S where |P | = r − 1, if there is at least one element o ∈ O such that
{o} ∪ P ∈ S\R, add a vertex vp to VS\R. We say that vo and vp correspond
to o and P , respectively. We add an edge (vo, vp) to E for each pair vo, vp if
{o} ∪ P ∈ S\R. Then, we apply the following reduction rule.

Reduction Rule 3. Compute a maximum matching M in B. Let V ′
O be the

set of unmatched vertices of VO and O′ be the elements of O ⊂ U corresponding
to those vertices. Likewise, let S(O′) be the sets in S\R that contain elements
of O′. Reduce to U ′ = U\O′ and S ′ = S\S(O′).

Lemma 11. S has a (k, r, t)-set packing if and only if S ′ has a (k, r, t)-set
packing.

Note that after Reduction Rule 3, each element of U ′ is contained in at least one
element of S ′. The correctness of our kernelization algorithm (Algorithm 1) is
given by Lemmas 8–11.

Lemma 12. Algorithm 1 runs in polynomial time.

After Reduction Rule 3, we obtained a reduced collection S ′ and U ′ = val(S ′).
Thus, we will use S ′ to upper-bound U ′. The collection S ′ is equivalent to S ′ =
(S ′\R)∪R. Since (S ′\R) ⊆ (S\R), by Lemma 10 each set in (S ′\R) contains one

Kernelization Algorithms for Packing Problems Allowing Overlaps 425

element in O and r− 1 elements in a set of R. Thus, val(S ′) = O ∪ val(R). The
elements in O′ were removed from O (Reduction Rule 3); therefore, val(S ′) =
(O\O′) ∪ val(R) = U ′.

Upper bounds for the size of R and O are given in Lemmas 13 and 14,
respectively.

Lemma 13. The size of R is at most 2rr−1kr−t−1, i.e., |val(R)| ≤ 2rrkr−t−1.

Lemma 14. After applying Reduction Rule 3, there are at most 2rrkr−t−1 ele-
ments in O\O′.

By Lemmas 12, 13, and 14, we can hence state.

Theorem 6. The r-Set Packing with t-Overlap possesses a problem kernel with
O(rrkr−t−1) elements from the given universe.

5.2 Packing Graphs with t-Overlap

We next sketch our methodology to reduce our H-Packing with t-Overlap prob-
lems to a kernel (see [8] for details). First, we transform an instance of H-Packing
with t-Overlap to an instance of r-Set Packing with t-Overlap using Transforma-
tion 2. Next, we reduce this transformed instance to a kernel with Algorithm 1.
Finally, we re-interpret that kernel as a kernel for the original (graph) problem.
Specifically, Algorithm 1 returns a reduced universe U ′ which we use to obtain
the reduced graph G′ = G[U ′]. Since |U ′| = O(rrkr−t−1), we can conclude:

Theorem 7. The H-Packing with t-Overlap possesses a problem kernel with
O(rrkr−t−1) vertices, where r = r(H).

6 Conclusions

We commenced a study on the parameterized algorithmics of packing problems
allowing overlap, focusing on kernelization issues. This leads to whole new fam-
ilies of problems, whose problem names contain the constant t and the finite set
of objects (mostly graphs) H from which the constant r(H) can be derived. In
addition, we have a natural parameter k. In the extended version of this paper,
we also added according results on packings with induced overlapping subgraphs
or with subgraphs with overlapping edges and discussed additional disjointness
conditions between subgraphs.

We list here some of the open problems in this area. Our kernel bounds are not
known to be tight. In particular, we have shown no lower bound results, like [4].
Recently, Giannopoulou et al. introduced the notion of uniform kernelization [10]
for problem families similar to what we considered. This basically raises the
question if polynomial kernel sizes could be proven such that the exponent of
the kernel bound does not depend (in our case) on r or on t. Notice that for t-
Membership, we somehow came half the way, as we have shown kernel sizes that

426 H. Fernau et al.

are uniform with respect to t. In particular, {K3}-Packing with t-Membership
has a uniform kernelization. This could be interesting on its own, as only few
examples of uniform kernelizations are known. Very recent work by Marx and
his colleagues has shown renewed interest in dichotomy results like the one that
we presented in this paper. Apart from the natural questions mentioned above,
the case of admitting an infinite number of graphs in the family H is another
natural path for future research. In both respects, Jansen and Marx [11] have
obtained very interesting results on classical graph packing problems.

References

1. Abu-Khzam, F.N.: An improved kernelization algorithm for r-set packing. Inf.
Process. Lett. 110(16), 621–624 (2010)

2. Banerjee, S., Khuller, S.: A clustering scheme for hierarchical control in multi-hop
wireless networks. In: Proceedings of 20th Joint Conference of the IEEE Computer
and Communications Societies (INFOCOM 2001), vol. 2, pp. 1028–1037. IEEE
Society Press (2001)

3. Bodlaender, H.L., Thomassé, S., Yeo, A.: Analysis of data reduction: transfor-
mations give evidence for non-existence of polynomial kernels. Technical report.
UU-CS-2008-030, Department of Information and Computer Sciences, Utrecht Uni-
versity (2008)

4. Dell, H., Marx, D.: Kernelization of packing problems. In: Rabani, Y. (ed.) Proceed-
ings of the Twenty-Third Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA. pp. 68–81. SIAM (2012)

5. Fellows, M., Guo, J., Komusiewicz, C., Niedermeier, R., Uhlmann, J.: Graph-based
data clustering with overlaps. Discrete Optim. 8(1), 2–17 (2011)

6. Fellows, M., Knauer, C., Nishimura, N., Ragde, P., Rosamond, F., Stege, U., Thi-
likos, D., Whitesides, S.: Faster fixed-parameter tractable algorithms for matching
and packing problems. Algorithmica 52(2), 167–176 (2008)

7. Fellows, M., Heggernes, P., Rosamond, F.A., Sloper, C., Telle, J.A.: Finding k
disjoint triangles in an arbitrary graph. In: Hromkovič, J., Nagl, M., Westfechtel,
B. (eds.) WG 2004. LNCS, vol. 3353, pp. 235–244. Springer, Heidelberg (2004)

8. Fernau, H., López-Ortiz, A., Romero, J.: Kernelization algorithms for packing prob-
lems allowing overlaps (Extended Version) (2014). arXiv:1411.6915

9. Fernau, H., Raible, D.: A parameterized perspective on packing paths of length
two. J. Comb. Optim. 18(4), 319–341 (2009)

10. Giannopoulou, A.C., Jansen, B.M.P., Lokshtanov, D., Saurabh, S.: Uniform kernel-
ization complexity of hitting forbidding minors (2014, unpublished). http://www.
win.tue.nl/∼bjansen/publications.html

11. Jansen, B.M.P., Marx, D.: Characterizing the easy-to-find subgraphs from the
viewpoint of polynomial-time algorithms, kernels, and Turing kernels. CoRR
abs/1410.0855 (2014)

12. Kirkpatrick, D., Hell, P.: On the completeness of a generalized matching problem.
In: Proceedings of the Tenth Annual ACM Symposium on Theory of Computing
(STOC), pp. 240–245 (1978)

13. Micali, S., Vazirani, V.V.: An O(
√|V ||E|) algorithm for finding maximum match-

ing in general graphs. In: Proceedings of the 21st Annual Symposium on Founda-
tions of Computer Science, SFCS 1980, pp. 17–27. IEEE Computer Society (1980)

http://arxiv.org/abs/1411.6915
http://www.win.tue.nl/~bjansen/publications.html
http://www.win.tue.nl/~bjansen/publications.html

Kernelization Algorithms for Packing Problems Allowing Overlaps 427

14. Moser, H.: A problem kernelization for graph packing. In: Nielsen, M., Kučera,
A., Miltersen, P.B., Palamidessi, C., Tůma, P., Valencia, F. (eds.) SOFSEM 2009.
LNCS, vol. 5404, pp. 401–412. Springer, Heidelberg (2009)

15. Palla, G., Derényi, I., Farkas, I., Vicsek, T.: Uncovering the overlapping community
structure of complex networks in nature and society. Nature 435(7043), 814–818
(2005)

16. Prieto, E., Sloper, C.: Looking at the stars. Theoret. Comput. Sci. 351(3), 437–445
(2006)

17. Romero, J., López-Ortiz, A.: The G-packing with t-overlap problem. In: Pal, S.P.,
Sadakane, K. (eds.) WALCOM 2014. LNCS, vol. 8344, pp. 114–124. Springer,
Heidelberg (2014)

18. Romero, J., López-Ortiz, A.: A parameterized algorithm for packing overlapping
subgraphs. In: Hirsch, E.A., Kuznetsov, S.O., Pin, J.É., Vereshchagin, N.K. (eds.)
CSR 2014. LNCS, vol. 8476, pp. 325–336. Springer, Heidelberg (2014)

19. Shiloach, Y.: Another look at the degree constrained subgraph problem. Inf.
Process. Lett. 12(2), 89–92 (1981)

Parameterized Complexity of Asynchronous
Border Minimization

Robert Ganian1(B), Martin Kronegger1, Andreas Pfandler1,2,
and Alexandru Popa3

1 Vienna University of Technology, Vienna, Austria
{robert.ganian,martin.kronegger,andreas.pfandler}@tuwien.ac.at

2 University of Siegen, Siegen, Germany
3 Nazarbayev University, Astana, Kazakhstan

alexandru.popa@nu.edu.kz

Abstract. Microarrays are research tools used in gene discovery as well
as disease and cancer diagnostics. Two prominent but challenging prob-
lems related to microarrays are the Border Minimization Problem (BMP)
and the Border Minimization Problem with given placement (P-BMP).
In this paper we investigate the parameterized complexity of natural
variants of BMP and P-BMP, termed BMPe and P-BMPe respectively,
under several natural parameters. We show that BMPe and P-BMPe

are in FPT under the following two combinations of parameters: (1) the
size of the alphabet (c), the maximum length of a sequence (string) in
the input (�) and the number of rows of the microarray (r); and, (2) the
size of the alphabet and the size of the border length (o). Furthermore,
P-BMPe is in FPT when parameterized by c and �. We complement our
tractability results with corresponding hardness results.

1 Introduction

DNA and peptide microarrays [3,12] are important research tools used in gene
discovery, multi-virus discovery as well as disease and cancer diagnosis. Apart
from measuring the amount of gene expression [18], microarrays are an efficient
tool for making a qualitative statement about the presence or absence of biolog-
ical target sequences in a sample. For example, peptide microarrays are used for
detecting tumor biomarkers [2,16,19].

A microarray is a plastic or glass slide consisting of thousands of sequences of
nucleotides called probes that are assigned to one cell in the array. The synthesis
process [10] consists of two components: probe placement and probe embedding.
In the probe placement, the goal is to determine an assignment of each probe to a
unique cell of the array. If the placement is given one has to create the sequences
at their respective cells (probe embedding). This can be achieved with help of
the following two operations: It is possible to mask a certain set of cells. Further-
more, one can append a certain nucleotide to the probes in all those cells which

Supported by the Austrian Science Fund (FWF): P25518-N23 and P26696, and the
German Research Foundation (DFG) under grant ER 738/2-1.

c© Springer International Publishing Switzerland 2015
R. Jain et al. (Eds.): TAMC 2015, LNCS 9076, pp. 428–440, 2015.
DOI: 10.1007/978-3-319-17142-5 36

Parameterized Complexity of Asynchronous Border Minimization 429

C

AA

A

T

T

C C

M4C

A M3

M2T

M1C

unmasked region

masked region

CA AT

CACT

Fig. 1. Asynchronous synthesis of a 2 × 2 microarray. The deposition sequence D =
CTAC corresponds to four masks M1, M2, M3, and M4. The masked regions are
shaded and the border between the masked and unmasked regions is represented by
bold lines.

are currently unmasked. Essentially, the nucleotides are represented as charac-
ters and the probes as strings. In probe embedding we want to find a common
supersequence of all probes, called the deposition sequence, and a sequence of 2D
arrays describing the masks. The cells of a mask can be either masked (opaque)
or unmasked (transparent) allowing the deposition of the nucleotide associated
with the mask. For any cell, the concatenation of the nucleotides for which the
cell is transparent has to match the probe in that cell of the microarray. See
Fig. 1 for an example [15].

Due to diffraction, the cells on the border between the masked and the
unmasked regions are often subject to unintended illumination [10], and can
compromise experimental results. Therefore, unintended illumination should be
minimized. The magnitude of unintended illumination can be measured by the
border length of the masks used, which is the number of borders shared between
masked and unmasked regions, e.g., in Fig. 1, the border length of M1,M3,M4

is 2 and M2 is 4 which yields a total border length of 10.
The problem of finding both the placement and the embedding is termed the

Border Minimization Problem (BMP). If the placement is given and the task is
to find only the embedding, we speak of P-BMP. We refer the reader to Sect. 2
for formal definitions of BMP and P-BMP.

Variants of border minimization. In this paper we consider the exhaustive
variants of BMP and P-BMP, termed BMPe and P-BMPe respectively. The dif-
ference is that in P-BMPe (and, consequently, in BMPe) we assume that a mask
is always applied exhaustively (we call this the exhaustive rule). More precisely,
when a mask that synthesizes a character c is applied, the mask has a transparent
cell wherever the corresponding sequence begins with the character c.

Without this assumption it is possible to artificially increase the length of
the deposition sequence which, as a consequence, also increases the length of the
sequence of masks. In most application scenarios this is undesirable, since apply-
ing a mask requires an additional cycle of work that causes a waste of material
and can also introduce new errors. A second advantage of these exhaustive vari-
ants is that they allow the concise description of solutions: a solution to P-BMPe

is fully characterized by the deposition sequence, while for P-BMP it is also nec-
essary to explicitly describe each mask in the sequence. To clarify, we remark

430 R. Ganian et al.

Table 1. Overview of results.

c or c, r c, � c, �, r c, o

P-BMPe paraNP-h (Proposition 2) FPT

(Proposi-

tion 4)

FPT (Proposi-

tion 4)

FPT

(Theorem4)

BMPe paraNP-h (Theorem1) open FPT

(Theorem3)

FPT

(Theorem5)

that an optimal exhaustive solution need not always be an optimal solution for
P-BMP (or BMP): there are cases where the border length can increase.

We illustrate the usefulness of the assumption by a simple example. In the
P-BMPe instance a|b|a, this assumption indeed helps to reduce the number of
masks without increasing the border length. A non-exhaustive optimal solution
might work on the left a first, while an exhaustive optimal solution works on
both a concurrently. Even though the border length is in both cases 4, the non-
exhaustive case could require an additional mask.

Our results. Our results are summarized in Table 1. In this paper we investi-
gate the parameterized complexity of the BMPe and P-BMPe problems under
several natural parameters. First of all, throughout this work we consider the
number of available nucleotides c (i.e., the alphabet size) as a parameter. Notice
that this assumption does not impose a serious restriction, since in practice the
number of available nucleotides is very limited (or even constant). Orthogonal
to this assumption we explore the parameterized complexity of the BMPe and
P-BMPe problem with respect to three natural parameters, i.e., the maximum
length of a sequence in the array (�), the maximum border length cost (o), and
the maximum number of rows in the array (r). Since errors become more likely
as the length of the sequence grows, the length of the constructed probes will
be rather limited. Notice that the parameter o models the cost of a solution and
hence is also a natural parameter. Finally, with the maximum number of rows r
the shape of the array is restricted in the sense that the one dimension does not
grow arbitrarily. This is, in particular, interesting because it allows to generalize
from the one-dimensional case studied in [17].

More precisely, we show fpt-algorithms for BMPe and P-BMPe if we are given
either c, �, r or c, o as parameters. We complement these results with parameter-
ized intractability results, i.e., by showing paraNP-hardness. We use a polynomial
time reduction from P-BMPe to BMPe to build upon the result that P-BMPe

parameterized by c and r is paraNP-hard1 and obtain hereby paraNP-hardness
for BMPe parameterized by c and r. Notice that with the exception of BMPe

parameterized by c and �, we obtain a full parameterized complexity map of the
two considered problems with respect to all additional parameters considered in
this paper. We furthermore provide a reduction relating the complexity of BMPe

1 Although in [17] only NP-hardness is proven for P-BMP, the reduction can also be
used to show paraNP-hardness for P-BMPe when parameterized by c and r.

Parameterized Complexity of Asynchronous Border Minimization 431

parameterized by c and � to k-Balanced Partition on grids, a well-studied
problem whose parameterized complexity on grids is open (Proposition 3).

The rest of the paper is organized as follows. In Sect. 2 we introduce the
problems formally and give preliminaries. Then, in Sect. 3 we show the reduction
from P-BMPe to BMPe. Section 4 introduces the fpt-algorithms and, finally, in
Sect. 5 we present conclusions and open problems.

2 Preliminaries

For n ∈ N, we use [n] to denote the set {1, . . . , n}. For two sequences s1, s2, we
use s1 · s2 to mark their concatenation.

The microarray has size r × m, where r is the number of rows and m is
the number of columns. The multiset of input sequences (also called probes) is
denoted by S = {s1, s2, . . . , sr·m} and the input alphabet by Σ. Moreover, let
c = |Σ|. For any sequence si, we denote the length of the sequence by �i and
the t-th character of a sequence si by si[t]. We use � for the maximum length
of the probes, i.e., � = maxi∈[r·m] �i. Two cells of the array v1 = (x1, y1) and
v2 = (x2, y2) are said to be neighbors if |x1 − x2| + |y1 − y2| = 1. For each cell v,
we denote the set of neighbors of v by N (v).

In order to give the formal definition of BMP, we introduce several notions
related to the synthesis process.

Definition 1. A placement of the probe sequences is a bijective function ϕ that
maps each probe sequence to a unique cell in the array.

Definition 2. A deposition sequence D for a set of sequences S is a sequence
of characters which is a common supersequence of all sequences in S.

Definition 3. An embedding of a sequence si into a deposition sequence D is
a length-|D| sequence εi over alphabet Σ ∪ {−} such that:

1. εi contains precisely |si| characters other than “−” occurring at positions
εi[u1], εi[u2], . . . , εi[u|si|],

2. u1 is the minimum position such that εi[u1] = si[1],
3. for 2 ≤ j ≤ |si|, uj is the minimum position such that εi[uj] = si[j] and

uj−1 < uj.

Informally, εi captures how a sequence is built (or, equivalently, deleted) by
the deposition sequence; notice that due to the exhaustive rule, the embedding is
uniquely determined by the deposition sequence. An embedding of a set of probes
S into a deposition sequence D is then denoted by εD = {ε1, ε2, . . . , ε|S|}. Note
that we will drop the subscript when the associated deposition sequence is clear
from the context. The final key notion we need are masks.

Definition 4. A mask M (for some character c) is a 2D-array such that M(i, j)
is either c or a space “−” (here the space means that the character is not
deposited into this cell).

432 R. Ganian et al.

The sequence of masks associated with a deposition sequence D and a placement
ϕ is ω = M1, . . . ,M|D| where Mi(a, b) = εϕ−1(a,b)[i] for i ∈ [|D|]. Notice that
due to the exhaustive rule, a mask for character c is always maximal with respect
to c, i.e., there is no “−” in the mask that could be replaced by c. We introduce
now the border length of a given placement of the probes in the array, which is
the value we aim to optimize.

Definition 5. Let borderD(si, sj) be the Hamming distance between εi and εj

(with respect to deposition sequence D). The border length of a placement ϕ and
a deposition sequence D is then defined as the sum of borders over all pairs of
neighboring probe sequences

BL(ϕ,D) =
∑

∀i, j ∈ N : i < j < |S|
∧ ϕ(sj) ∈ N (ϕ(si))

borderD(si, sj). (1)

We can also equivalently define border length in terms of the border length of
all the masks.

Definition 6. For any mask M of deposition character x, the border length of
M, denoted by BL(M), is defined as the number of pairs of neighboring cells
(i1, j1) and (i2, j2) such that M(i1, j1) = x and M(i1, j1) �= M(i2, j2). For a
placement and deposition sequence that corresponds to a sequence of masks M1,
M2, · · · , M|D|, we let

BL(ϕ,D) =
|D|∑
h=1

BL(Mh) (2)

The BMPe and the P-BMPe problem are defined as follows.

Problem 1. In the BMPe problem, we are given r,m ∈ N and a multiset of r ·m
sequences S. The objective is to find a placement ϕ and a deposition sequence D
so that BL(ϕ,D) is minimized.

Problem 2. In the P-BMPe problem, we are given r,m ∈ N and a multiset
of r · m sequences S and a placement ϕ. The objective is to find a deposition
sequence D so that BL(ϕ,D) is minimized.

For a set π ⊆ {c, r, �, o}, we denote by BMPe
π (P-BMPe

π) the BMPe (P-BMPe)
problem parameterized by π. For a problem BMPe

π (P-BMPe
π) where o ∈ π, we

assume that an upper bound on the border length o is additionally given in the
input and only solutions with minimum border length ≤ o are admitted.

We conclude this section with some useful observations. A deposition sequ-
ence D is called redundant if it contains a character D[i] such that εj [i] = “−”
for each εj ∈ ε. Note that for any redundant deposition sequence D and any
placement ϕ, it holds that BL(ϕ,D) = BL(ϕ,D′), where D′ is obtained by
deleting the redundant character D[i]. We say that a deposition sequence D is
good if it is not redundant.

Parameterized Complexity of Asynchronous Border Minimization 433

Observation 1. Let (ϕ,D) be such that BL(ϕ,D) is minimized for some
(S, r,m). If D is redundant, then there exists a subsequence D′ of D such that
BL(ϕ,D′) = BL(ϕ,D) and D′ is good.

As a consequence, when searching for optimal solutions of these problems it
suffices to consider only good deposition sequences. Aside from the trivial (quad-
ratic) algorithm for computing the border length for a fixed deposition sequence
and placement, we will utilize another algorithm which will in some cases yield
better running times:

Proposition 1. For any given (ϕ,D,S, r,m), there exists an algorithm which
computes BL(ϕ,D) in time O(|S| + p2 · |D|), where p is the number of distinct
sequences in S.

2.1 Parameterized Complexity

Parameterized algorithmics is a promising approach to obtain efficient algorithms
for fragments of computationally hard problems. The aim is to find a parameter
that describes the structure of the instance such that the combinatorial explosion
can be confined to this parameter. In a parameterized complexity analysis the
runtime of an algorithm is studied with respect to the input size n and a para-
meter k ∈ N (or a combination of parameters). For a more detailed introduction
we refer to the literature [4,9].

Formally, a parameterized problem is a subset of Σ∗×N, where Σ is the input
alphabet. If a combination of parameters k1, . . . , kl is considered, the second
component of an instance (x, k) is given by k =

∑
1≤i≤l ki. The class FPT (fixed-

parameter tractable) contains all problems that can be decided by an algorithm
running in f(k) ·nO(1) time, where f is a computable function and n is the input
size. Such algorithms are often called fixed-parameter tractable (fpt).

Let L1 and L2 be parameterized problems, with L1 ⊆ Σ∗
1 × N and L2 ⊆

Σ∗
2 ×N. A parameterized reduction (or fpt-reduction) from L1 to L2 is a mapping

P : Σ∗
1 × N → Σ∗

2 × N such that (1) (x, k) ∈ L1 iff P (x, k) ∈ L2; (2) the mapping
can be computed by an fpt-algorithm with respect to parameter k; (3) there is
a computable function g such that k′ ≤ g(k), where (x′, k′) = P (x, k).

There is a variety of classes capturing parameterized intractability. For our
results, we require only the class paraNP [8], which is defined as the class of
problems that are solvable by a nondeterministic Turing-machine in fpt-time.
We will make use of the characterization of paraNP-hardness given by Flum
and Grohe [9], Theorem 2.14: any parameterized problem that remains NP-hard
when the parameter is set to some constant is paraNP-hard. Showing paraNP-
hardness for a problem rules out the existence of an fpt-algorithm under the
usual complexity theoretic assumptions.

3 Hardness

In this section we overview and present new (parameterized) intractability results
for BMPe and P-BMPe with respect to several combinations of parameters.

434 R. Ganian et al.

As our starting point, we notice that the NP-hardness proof for P-BMP of Popa,
Wong and Yung [17] can be straightforwardly adapted to P-BMPe

c,r.

Proposition 2 (cf. [17, Theorem 1]). P-BMPc,r is paraNP-hard.

The hardness result for BMPe relies on a new polynomial-time reduction from
P-BMPe to BMPe. We believe that this reduction is an interesting result on
its own, as it is one of the first results that relates the complexity of these
two problems in a general setting. We begin by showcasing a tool for forcibly
“separating” any optimal deposition sequence.

Lemma 1. Let I = (S, r,m) be an instance of BMPe such that each s ∈ S
consists of a prefix spre ∈ Σ∗

pre, a fixed separator sep ∈ (x∗y∗)∗ and a suffix ssuf ∈
Σ∗

suf, where Σpre, Σsuf, {x, y} form a partition of Σ. Let u ≥ 8 ·maxs∈S(|spre|)+
8 · maxs∈S(|ssuf|) + 1. If sep = (xr·m·u · yr·m·u)r·m·u then every optimal good
deposition sequence has the form Dpre · sep · Dsuf where Dpre ∈ Σ∗

pre and Dsuf ∈
Σ∗

suf.

Observe that “flipping” the array horizontally or vertically preserves the optimal
border length but formally changes the placement ϕ. The purpose of the following
key lemma is to provide a tool to fix the optimal positions of probes in the array;
to this end, we will be considering placements which are unique up to these simple
symmetries.

Lemma 2. Let a, b, x, y ∈ Σ and r,m, t ∈ N. Consider an r × m array, and
probes S = {ai·t · sep · bj·t | i ∈ [r] and j ∈ [m]}. Then:

1. the unique optimal placement ϕ0 (up to simple symmetries) places each probe
ai·t · sep · bj·t in cell (i, j),

2. the unique optimal good deposition sequence is D0 = ar·t · sep · bm·t, and
3. for any placement ϕ �= ϕ0 (except for symmetries of ϕ0) and any deposition

sequence D, it holds that BL(ϕ,D) ≥ BL(ϕ0,D0) + t.

With Proposition 2 and Lemma 2, we can proceed to:

Theorem 1. BMPe
c,r is paraNP-hard.

Theorem 1 and Proposition 2 show that one cannot hope to find an fpt-algorithm
for BMPe or P-BMPe parameterized by any subset of {c, r}. These results com-
plete the hardness part of our complexity map for BMPe or P-BMPe. For BMPe

c,�

it remains open whether the problem is fixed parameter tractable. Still, we can
relate this problem to k-Balanced Partition, a problem studied well in the
literature [1,5,6].

In a k-Balanced Partition instance we are given a graph G = (V,E) with
|V | = n. The question is to find a partition of the vertices V into k sets V1, . . . , Vk

such that |Vi| ≤ 	n
k
 for all 1 ≤ i ≤ k, and the cut size (i.e., the number of edges

{x, y} such that x ∈ Vi, y ∈ Vj , and i �= j) is minimized. We remark that,
to the best of our knowledge, the parameterized complexity of k-Balanced
Partition parameterized by k is open on solid rectangular grids [5]. Below we
show that k-Balanced Partition on solid rectangular grids can be reduced
to BMPe and hence BMPe is at least as hard as k-Balanced Partition.

Parameterized Complexity of Asynchronous Border Minimization 435

Proposition 3. There is a polynomial time reduction from k-Balanced Par-
tition on solid rectangular grids to BMPe.

4 Fpt-Algorithms

In the following sections we discuss fpt-algorithms for several parameters. The
first group focuses on sequences of moderate length and an array whose size
is primarily growing in one dimension, i.e., on the parameters c, �, and r. In
contrast, the second group parameterizes by c and the maximum admissible
border length o.

4.1 Fpt-Algorithm for P-BMPe
c,�

Our first algorithm provides a basic introduction to the techniques used later on.

Observation 2. For any instance (S, r,m) of BMPe
c,�, there are at most c�

unique sequences in S.

Lemma 3. For any instance (S, r,m) of BMPe
c,� or any instance (S, ϕ, r,m) of

P-BMPe
c,� it holds that |D| ≤ c� · � for any good deposition sequence D.

At this point we can already prove:

Proposition 4. P-BMPe
c,� is fixed parameter tractable, and there exists an algo-

rithm for P-BMPe
c,� which runs in time ccO(�) |S|.

4.2 Fpt-Algorithm for BMPe
c,�,r

We first introduce some notation for our arrays. Given an r × m array A, a
column is an r × 1 sub-array of A. A column placement into a column of A is a
mapping ϕ : [r] → S from the cells of A to the multiset of probes.

Observation 3. For any instance (S, r,m) of BMPe, it holds that there are at
most c�·r distinct column placements.

Hence for any fixed r and S, we can enumerate all possible column placements as
ϕ1, ϕ2, . . . , ϕc�·r . Observe that, for any two column placements ϕt, ϕt′ , it holds
that either (i) t = t′ and ϕt(x) = ϕt′(x) for all x ∈ [r], or (ii) t �= t′ and
ϕt(x) �= ϕt′(x) for at least one x ∈ [r].

Any placement ϕ : s ∈ S �→ (a ∈ N, b ∈ N) into A can be uniquely
decomposed into a sequence of column placements (ϕi(1), ϕi(2), . . . ϕi(m)) where
ϕi(x)(y) = ϕ(x, y) and i : [m] → [c�·r]. The column placement ϕi(j) with j ∈ [m]
denotes that the j-th column of A is of placement i(j). Furthermore, since ϕ
is closed under permutation of non-distinct sequences in S, each column place-
ment can be uniquely identified by an r-tuple of sequences from S, formally
ϕi(x) = (s1, s2, . . . , sr) ⇐⇒ ϕi(x)(y) = sy for all y ∈ [r].

Next, we prove that when searching for optimal solutions for BMPe it suffices
to restrict ourselves to placements such that identical column placements appear
in “consecutive blocks”.

436 R. Ganian et al.

Lemma 4. Let (S, r,m) be an instance of BMPe, D be a deposition sequence
and ϕ be a placement which decomposes into (ϕi(1), ϕi(2), . . . ϕi(m)). Then if there
exist a, b ∈ [m], a + 1 < b, such that ϕi(a) = ϕi(b) but ϕi(a+1) �= ϕi(b), then
BL(ϕ,D) ≥ BL(ϕ′,D), where ϕ′ decomposes into

(ϕi(1), . . . ϕi(a), ϕi(b), ϕi(a+1), ϕi(a+2), . . . , ϕi(b−1), ϕi(b+1), . . . , ϕi(m)).

We say that a placement ϕ is consecutive if it decomposes into column placements
(ϕi(1), ϕi(2), . . . ϕi(m)) where for each ϕi(a), ϕi(b) such that ϕi(a) = ϕi(b) and a < b
it holds that ϕi(a) = ϕi(c) for all a < c < b.

Corollary 1. For any BMPe instance (S, r,m), there exists an optimal solution
(ϕ,D) such that ϕ is consecutive.

The next algorithm uses an Integer Linear Programming (ILP) subroutine. ILP
is a well-known framework for formulating problems and a powerful tool for the
development of fpt-algorithms for optimization problems. In following we only
give a brief overview of the framework before we present the algorithm.

Definition 7 (p-Variable Integer Linear Programming Optimization).
Let A ∈ Zq×p, b ∈ Zq×1 and c ∈ Z1×p. The task is to find a vector x ∈ Zp×1

which minimizes the objective function c× x̄ and satisfies all q inequalities given
by A and b, specifically satisfies A · x̄ ≥ b. The number of variables p is the
parameter.

Lenstra [14] showed that p-ILP, together with its optimization variant p-OPT-
ILP (defined above), are in FPT. His running time was subsequently improved
by Kannan [13] and Frank and Tardos [11] (see also [7]).

Theorem 2 ([7,11,13,14]). p-OPT-ILP can be solved using O(p2.5p+o(p) · L)
arithmetic operations in space polynomial in L, L being the number of bits in
the input.

We are now ready to prove the main theorem of this subsection.

Theorem 3. BMPe
c,�,r is fixed parameter tractable, and there exists an algo-

rithm for BMPe
c,�,r which runs in time ccO(�·r) · |S|.

Proof (Sketch of Proof). We use Observation 1 and Lemma 3 to branch over the
at most ccO(�)

good deposition sequences. Then, we use Corollary 1 along with
Observation 3 to branch over which column placements appear in ϕ and the
order in which they appear from left to right. In each such branch, we denote
the obtained sequence of column placements by the template Qf .

For each such Qf , we proceed by computing the total cost of the borders
between adjacent elements of one specific column placement occurring in Qf ; we
refer to these as the “vertical borders” and denote the cost of vertical borders in
column placement i as bdvert

i . We also compute the total cost of the “horizontal
borders” between different adjacent column placements in Qf .

Parameterized Complexity of Asynchronous Border Minimization 437

Next, we compute the optimal number of times each column placement needs
to occur in Qf so as to minimize the total border length. This step is carried
out by using a suitable p-OPT-ILP encoding, where we use one variable for
each column placement to denote the number of times it occurs in the consecu-
tive placement. Solving this encoding by Theorem2 then allows us compute the
total optimal cost for any consecutive placement which matches each template
Qf . Finally, we pick the combination of D and Qf which admits the cheapest
border length, and output (ϕ,D) where ϕ is computed from Qf and the optimal
multiplicity of each column placement obtained by the p-OPT-ILP encoding. ��

4.3 Fpt-Algorithm for P-BMPe
c,o

Given an r × m array, a mask M is called trivial if M(i, j) �= “−” for all
i ∈ [r], j ∈ [m]. Given a deposition sequence D, we say that a subsequence D′ of
D is primal if it is obtained from D by deleting all characters which are associated
with a trivial mask. Notice that the border length of each mask associated with
each character in a primal sequence is at least one, and the border length of all
trivial masks is 0. For the purpose of providing concise running times, we use n
to denote the size of the input.

Observation 4. For any instance of P-BMPe and BMPe, the number of primal
sequences is bounded by

∑o
i=1 ci ≤ o · co.

Additionally, since the number of “borders” between distinct probes is bounded
from below by the number of distinct probes, we obtain:

Observation 5. Given a multiset S of probes. For any Yes-instance of
P-BMPe and BMPe over S, the number of distinct probes in S is upper-bounded
by o + 1.

Lemma 5. For any instance of P-BMPe and BMPe, any primal sequence D′

corresponds to at most one good deposition sequence D. Furthermore, there exists
an algorithm which runs in time O(o ·n) and which either computes this D from
D′ or correctly outputs that no such D exists.

Theorem 4. P-BMPe
c,o is fixed-parameter tractable, and there exists an algo-

rithm for P-BMPe
c,o which runs in time O(oco · (n + o2)).

Proof. This algorithm builds upon Observation 4. We can branch on all primal
sequences. For each candidate sequence D′ we check whether the primal sequence
corresponds to a deposition sequence D via Lemma 5. For each such D, we
compute and store BL(ϕ,D). Finally, a solution with a minimum BL(ϕ,D) is
selected. Observe that an applicable trivial mask can be found in linear time.
Along with Observation 5, this yields a total runtime of O(oco · (n + o2)) by
Proposition 1 and Lemma 5. ��

438 R. Ganian et al.

4.4 Fpt-Algorithm for BMPe
c,o

For a multiset S and s ∈ S, we denote by S−s the set of sequences in S which
are distinct from s. An instance (S, r,m, o) of BMPe

c,o is then called s-enveloped
if |S−s| ≤ o2.

Lemma 6. Any instance (S, r,m, o) of BMPe
c,o such that r > o and m > o

which is not s-enveloped for any s ∈ S is a no-instance.

We now consider two specific subcases of the problem before giving the theorem.

Lemma 7. There is an algorithm which solves any instance (S, r,m, o) of
BMPe

c,o such that m > 2o and r > 2o in time O(o3 · co · (n + o2)).

Lemma 8. There is an algorithm which solves any instance (S, r,m, o) of
BMPe

c,o such that m > 2o and r ≤ 2o in time n · coO(o)
.

Theorem 5. BMPe
c,o is fixed parameter tractable, and there exists an algorithm

for BMPe
c,o which runs in time n · coO(o)

.

Proof. In case m > 2o and r > 2o we use the algorithm described in the proof of
Lemma 7. In case m > 2o and r ≤ 2o (or, by symmetry, if m ≤ 2o and r > 2o) we
use the algorithm described in the proof of Lemma8. In case m ≤ 2o and r ≤ 2o
we branch over all of the at most (4o2)! placements ϕ, resulting in at most (4o2)!
instances of P-BMPe

c,o which can be solved individually in time O(oco · (n+ o2))
by Theorem 4. ��

5 Conclusion

In this work we considered the parameterized complexity of BMPe and P-BMPe,
two fundamental problems related to the optimal design of microarrays, with
respect to combinations of parameters centered around the number of distinct
characters c. We presented fpt-algorithms for both BMPe and P-BMPe if the max-
imum probe length and the number of rows are viewed as additional parameters
(c, �, r); and if the border length is the additional parameter (c, o). In addition,
we showed that P-BMPe parameterized by c and � is in FPT. For c, r (and also c
alone) we showed paraNP-hardness for both BMPe and P-BMPe. Hence, under the
usual complexity theoretic assumptions, one cannot hope to find an fpt-algorithm
for these settings.

On our agenda for future work is to settle the question whether there is
an fpt-algorithm for BMPe, parameterized by c, �. Another direction for future
research is to study further (structural) parameters for these two problems. Fur-
thermore, in our complexity analysis we plan to consider more sophisticated
target functions that take other criteria in addition to the border length into
account.

Parameterized Complexity of Asynchronous Border Minimization 439

References

1. Andreev, K., Räcke, H.: Balanced graph partitioning. Theor. Comput. Syst. 39(6),
929–939 (2006)

2. Chatterjee, M., Mohapatra, S., Ionan, A., Bawa, G., Ali-Fehmi, R., Wang, X.,
Nowak, J., Ye, B., Nahhas, F.A., Lu, K., Witkin, S.S., Fishman, D., Munkarah,
A., Morris, R., Levin, N.K., Shirley, N.N., Tromp, G., Abrams, J., Draghici, S.,
Tainsky, M.A.: Diagnostic markers of ovarian cancer by high-throughput antigen
cloning and detection on arrays. Cancer Res. 66(2), 1181–1190 (2006)

3. Cretich, M., Chiari, M.: Peptide Microarrays Methods and Protocols. Methods in
Molecular Biology, vol. 570. Humana Press, New York (2009)

4. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Monographs in Com-
puter Science. Springer, New York (1999)

5. Feldmann, A. E.: Balanced partitions of grids and related graphs. Ph.D. thesis,
ETH Zürich (2012)

6. Feldmann, A.E.: Fast balanced partitioning is hard even on grids and trees. Theor.
Comput. Sci. 485, 61–68 (2013)

7. Fellows, M.R., Lokshtanov, D., Misra, N., Rosamond, F.A., Saurabh, S.: Graph
layout problems parameterized by vertex cover. In: Hong, S.-H., Nagamochi, H.,
Fukunaga, T. (eds.) ISAAC 2008. LNCS, vol. 5369, pp. 294–305. Springer,
Heidelberg (2008)

8. Flum, J., Grohe, M.: Describing parameterized complexity classes. Inf. Comput.
187(2), 291–319 (2003)

9. Flum, J., Grohe, M.: Parameterized Complexity Theory. Texts in Theoretical Com-
puter Science. An EATCS Series, vol. XIV. Springer, Berlin (2006)

10. Fodor, S., Read, J.L., Pirrung, M.C., Stryer, L., Lu, A.T., Solas, D.: Light-
directed, spatially addressable parallel chemical synthesis. Science 251(4995), 767–
773 (1991)

11. Frank, A., Tardos, É.: An application of simultaneous diophantine approximation
in combinatorial optimization. Combinatorica 7(1), 49–65 (1987)

12. Gerhold, D., Rushmore, T., Caskey, C.T.: DNA chips: promising toys have become
powerful tools. Trends Biochem. Sci. 24(5), 168–173 (1999)

13. Kannan, R.: Minkowski’s convex body theorem and integer programming. Math.
Oper. Res. 12(3), 415–440 (1987)

14. Lenstra, H.: Integer programming with a fixed number of variables. Math. Oper.
Res. 8, 538–548 (1983)

15. Li, C.Y., Wong, P.W.H., Xin, Q., Yung, F.C.C.: Approximating border length for
DNA microarray synthesis. In: Agrawal, M., Du, D.-Z., Duan, Z., Li, A. (eds.)
TAMC 2008. LNCS, vol. 4978, pp. 410–422. Springer, Heidelberg (2008)

16. Melle, C., Ernst, G., Schimmel, B., Bleul, A., Koscielny, S., Wiesner, A., Bogumil,
R., Möller, U., Osterloh, D., Halbhuber, K.-J., von Eggeling, F.: A technical triade
for proteomic identification and characterization of cancer biomarkers. Cancer Res.
64(12), 4099–4104 (2004)

17. Popa, A., Wong, P.W.H., Yung, F.C.C.: Hardness and approximation of the asyn-
chronous border minimization problem. In: Agrawal, M., Cooper, S.B., Li, A. (eds.)
TAMC 2012. LNCS, vol. 7287, pp. 164–176. Springer, Heidelberg (2012)

440 R. Ganian et al.

18. Slonim, D.K., Tamayo, P., Mesirov, J.P., Golub, T.R., Lander, E.S.: Class pre-
diction and discovery using gene expression data. In: Proceedings of Fourth
RECOMB, pp. 263–272 (2000)

19. Welsh, J.B., Sapinoso, L.M., Kern, S.G., Brown, D.A., Liu, T., Bauskin, A.R.,
Ward, R.L., Hawkins, N.J., Quinn, D.I., Russell, P.J., Sutherland, R.L., Breit,
S.N., Moskaluk, C.A., Frierson Jr., H.F., Hampton, G.M.: Large-scale delineation
of secreted protein biomarkers overexpressed in cancer tissue and serum. PNAS
100(6), 3410–3415 (2003)

Parametrized Complexity of Length-Bounded
Cuts and Multi-cuts

Pavel Dvořák(B) and Dušan Knop(B)

Department of Applied Mathematics, Charles University, Prague, Czech Republic
{koblich,knop}@kam.mff.cuni.cz

Abstract. We show that the minimal length-bounded L-cut can be
computed in linear time with respect to L and the tree-width of the input
graph as parameters. We derive an FPT algorithm for a more general
multi-commodity length bounded cut problem when parameterized by
the number of terminals also. For the former problem we show a W[1]-
hardness result when the parameterization is done by the path-width
only (instead of the tree-width).

Keywords: Length bounded cuts · Parameterized algorithms · W[1]-
hardness

1 Introduction

The study of network flows and cuts begun in 1960s by the work of Ford and
Fulkerson [8]. It has many generalizations and applications now. We are inter-
ested in a generalization of cuts related to the flows using only short paths.

Length Bounded Cuts. Let s, t ∈ V be two distinct vertices of a graph G = (V,E) –
we call them source and sink, respectively. We call a subset of edges F ⊆ E of G an
L-bounded cut (or L-cut for short), if the length of the shortest path between
s and t in the graph (V,E \ F) is at least L + 1. We measure the length of the
path by the number of its edges. In particular, we do not require s and t to be in
distinct connected components as in the standard cut, instead we do not allow s
and t to be close to each other. We call the set F a minimum L-cut if it has the
minimum size among all L-bounded cuts of the graph G.

We state the cut problem formally:

PROBLEM: Minimum Length Bounded Cut (MLBC)
Instance: graph G = (V,E), vertices s, t and integer L ∈ N

Goal: find a minimum L-bounded s, t cut F ⊂ E

Length bounded flows were first considered by Adámek and Koubek [1]. They
showed that the max-flow min-cut duality cannot hold and also that integral

Research was supported by the project SVV-2014-260103.
Dušan Knop— Author supported by the project Kontakt LH12095, project GAUK
1784214 and project CE-ITI P202/12/G061.

c© Springer International Publishing Switzerland 2015
R. Jain et al. (Eds.): TAMC 2015, LNCS 9076, pp. 441–452, 2015.
DOI: 10.1007/978-3-319-17142-5 37

442 P. Dvořák and D. Knop

capacities do not imply integral flow. Finding a minimum length bounded cut is
NP-hard on general graphs for L ≥ 4 as was shown by Itai et al. [11]. They also
found algorithms for finding L-bounded cut with L = 1, 2, 3 in polynomial time
by reducing it to the usual network cut in an altered graph. The algorithm of
Itai et al. [11] uses the fact that paths of length 1, 2 and 3 are edge disjoint from
longer paths, while this does not hold for length at least 4.

Baier et al. [2] studied linear programming relaxation and approximation of
MLBC together with inapproximability results for length bounded cuts. They
also showed instances of the MLBC having O(L) integrality gap for their linear
programming approach, which are series-parallel graphs and thus have constant
bounded tree-width. First parametrized complexity study of this and similar
topics was made by Golovach and Thilikos [9] who studied parametrization by
paths-length and the size of the solution for cuts. They also proved hardness
results – finding disjoint paths in graphs of bounded tree-width is a W[1]-hard
problem.

The MLBC problem has its applications in the network design and in the
telecommunications. Huygens et al. [10] use a MLBC as a subroutine in the
design of 2-edge-connected networks with cycles at most L long. The MLBC
problem is called hop constrained in the telecommunications and the number L
is so called number of hops. The main interest is in the constant number of hops,
see for example the article of Dahl and Gouveia [4].

Note that the standard use of the Courcelle theorem [3] gives for each fixed
L a linear time algorithm for the decision version of the problem. But there is no
apparent way of changing these algorithms into a single linear time algorithm.
Moreover there is a nontrivial dependency between the formula (and thus the
parameter L) and the running time of the algorithm given by Courcelle theorem.

Our Contribution. Our main contribution is an algorithm for the MLBC prob-
lem, its consequences and an algorithm for a more general multi-terminal version
problem.
Theorem 1. Let G be a graph of tree-width k. Let s and t be two distinct vertices
of G. Then for any L ∈ N an minimum L-cut between s and t can be found in
time O((Lk2

)2 · 2k2 · n).

Corollary 1. Let G be a graph, k be the size of a vertex cover of G and s and t
be two distinct vertices of G. Then for any L ∈ N an minimum L-cut between s
and t can be found in time f(k)n, where f is a computable function.

Corollary 2. Let G = (V,E) be a graph of tree-width k, s �= t ∈ V and L ∈ N.
There exists a computable function f : N → N, such that a minimum L-cut
between s and t can be found in time O(nf(k)), where n = |V |.
Theorem 1 gives us that the MLBC problem is fixed parameter tractable (FPT)
when parametrized by the length of paths and the tree-width and that it belongs
to XP when parametrized by the tree-width only (and thus solvable in polynomial
time for graph classes with constant bounded tree-width).

We want to mention that our techniques apply also for more general version
of the MLBC problem.

Parametrized Complexity of Length-Bounded Cuts and Multi-cuts 443

Length-Bounded multi-cut. We consider a generalized problem, where instead of
only two terminals, we are given a set of terminals. For every pair of terminals,
we are given a constraint—a lower bound on the length of the shortest path
between these terminals. More formally:

Let S = {s1, . . . , sk} ⊂ V be a subset of vertices of the graph G = (V,E)
and let a : S × S → N be a mapping. We call a subset of edges F ⊆ E of G
an a-bounded multi-cut if length of the shortest path between si and sj in the
graph (V,E \F) is at least a(si, sj) long for every i �= j. Again if F has smallest
possible size, we call it minimum a-bounded {s1, . . . , sk}-multi-cut. We call the
vertices s1, . . . , sk terminals. Finally, as there are only finitely many values of the
mapping a we write as,t instead of a(s, t), we also write a instead of function a.
Let L ≥ maxs,t∈S a(s, t), we say that the problem is L-limited.

PROBLEM: Minimum Length Bounded Multi-Cut (MLBMC)
Instance: graph G = (V,E), set S ⊂ V and as,t ∈ N for all s, t ∈ S,

satisfying the triangle inequalities
Goal: find a minimum length bounded S multi-cut F ⊂ E

Theorem 2. Let G = (V,E) be a graph of tree-width k, S ⊆ V with |S| = t and
let p := t + k. Then for any L ∈ N and any L-limited length-constraints a on S
an minimum a-bounded multi-cut can be computed in time O((Lp)2 · 2p2 · n).

2 Preliminaries

In this section we recall some standard definitions from graph theory and state
what a tree decomposition is. After this we introduce changes of the tree decom-
position specific for our algorithm. Finally we give the notion of auxiliary graphs
used in proofs of correctness of our algorithm.

We use the notion of tree decomposition of the graph:

Definition 1. Let G = (V,E) be graph. We say that T = (W, F), B : W → 2V

is a tree decomposition of the graph G, T is a tree and the following holds:

1. for each v ∈ V there exists a X ∈ W such that v ∈ B(X),
2. for each e ∈ E there exists a X ∈ W such that e ⊆ B(X),
3. for each v ∈ V the graph T [Xv] is connected, where Xv = {X ∈ W : v ∈

B(X)}.
We call the elements of the set W the nodes, and the elements of the set F the
decomposition edges.

We define a width of a tree decomposition (W, F) as maxX∈W |X| − 1 and the
tree-width tw(G) of a graph G as the minimum width of a tree decomposition of
the graph G. Moreover if the decomposition is a path we speak about path-width
of G, which we denote as pw(G). For abbreviation, we use same denoting for
node X and also for the set B(X)—we denote both of them by X. The meaning
of the definition with function B is that there can be two nodes X,Y ∈ W, such
that B(X) = B(Y).

444 P. Dvořák and D. Knop

Nice Tree Decomposition [12]. For algorithmic purposes it is common to define a
nice tree decomposition of the graph. We root the decomposition tree in an
arbitrary node. We naturally orient the decomposition edge towards the root
and for an oriented decomposition edge (Y,X) from Y to X we call X the
parent of Y and Y a child of X.

We also adjust a tree decomposition such that for each decomposition-edge
(X,Y) it holds that ||X| − |Y || ≤ 1 (i.e. it joins nodes that differ in at most one
vertex). The in-degree of each node is at most 2 and if the in-degree of the node
Y is 2 then for its children X1,X2 holds that X1 = X2 = Y (i.e. they represent
the same vertex set).

We classify the nodes of a nice decomposition into four classes—namely intro-
duce nodes, forget nodes, join nodes and leaf nodes. We call the node X an intro-
duce node of the vertex x, if it has a single child Y and X \Y = {x}. We call the
node X a forget node of the vertex x, if it has a single child Y and Y \X = {x}.
If the node X has two children, we call it a join node (of nodes Y1 and Y2).
Finally we call a node X a leaf node, if it has no child.

Proposition 1 [12]. Given a tree decomposition of a graph G with n vertices
that has width k and O(n) nodes, we can find a nice tree decomposition of G
that also has width k and O(n) nodes in time O(n).

So far we have described a standard nice tree decomposition. Now we change
the introduce nodes. Let Y be an introduce node and X its parent. We add
another two copies Y1, Y2 of Y to the decomposition. We remove decomposition
edge (Y,X) and add three decomposition edges (Y, Y1), (Y2, Y1) and (Y1,X).
Note that by these further modifications we preserve linear number of nodes in
the decomposition.

Auxiliary Subgraphs. Recall that for each edge there is at least one node contain-
ing that particular edge. We choose for each edge a node, moreover it is possible
to choose a leaf in our decomposition. Note that after our modification of the
decomposition for each edge e there is at least one leaf X of the decomposition
satisfying e ⊆ X. To see this, suppose this is not the case and that some edge, say
e, must be placed into a non-leaf node Y . We may suppose that Y is an introduce
node (for join or forget node choose its descendant). But in our construction any
introduce node has a sibling Y2 that is a leaf in the decomposition tree.

Thus we choose an arbitrary leaf satisfying the condition and say that the
edge e belongs to the leaf X. By this process we have chosen set E(X) ⊂ E(G)
for each leaf node X, we further use the notion of auxiliary graph GX . For a leaf
node X we set graph GX = (X,E(X)). For a non-leaf node X we set the graph
GX = (V,E), where V = X ∪⋃

Y child of X V (GY) and E =
⋃

Y child of X E(GY).

3 Minimal Length Bounded Multi-cuts

In this section we give a more detailed study of the length constraints for the
length-bounded multi-cut and the triangle inequalities. From this we derive
Lemma 1 for merging solutions for edge-disjoint graphs.

Parametrized Complexity of Length-Bounded Cuts and Multi-cuts 445

The Triangle Inequalities. Note that the solution for MLBMC problem has
to satisfy the triangle inequalities with respect to its instance. This means
that for any three terminals s, t, u ∈ S and the distance function dist it holds
that dist(s, u) + dist(u, t) ≥ dist(s, t) ≥ as,t. Thus we can restrict instances of
MLBMC problem only to those satisfying these triangle inequalities.

Definition 2 (Length Constraints). Let G = (V,E) be a graph, S ⊂ V and
let k = |S|. We call a vector a = (as1,s2 , . . . , ask−1,sk

) a length constraint if for
every s, t, u ∈ S it holds that as,u + au,t ≥ as,t.

For our approach it is important to see the structure of the solution on a graph
composed from two edge disjoint graphs.

Lemma 1. Let G1 = (V1, E1), G2 = (V2, E2) be edge disjoint graphs. Then for
the graph G = G1 ∪ G2 and S = V1 ∩ V2 and an arbitrary length constraints
a ∈ N(|S|

2) it holds that the minimum length bounded (S,a) multi-cut F for G is
the (disjoint) union of the (S,a) multi-cuts F1 and F2 for G1 and G2.

4 Restricted Bounded Multi-cut

In this section we present our approach to the L-bounded cut for the graphs of
bounded tree-width. We present our algorithm together with some remarks on
our results.

Recall that we use dynamic programming techniques on a tree decomposition
of input graph. First we want to root the decomposition in a node containing both
source and sink of the L-cut problem. This can be achieved by adding both source
and sink to all nodes on the unique path in the decomposition tree between any
node containing the source and any node containing the sink. Note that this
may add at most 2 to the width of the decomposition.

Length Vectors and Tables. As it was mentioned in the previous section, we solve
the L-cut by reducing it to simple instances of generalized MLBMC problem.
We begin with a mapping a : S × S → N with meaning a(s, t) = ls,t. For
simplicity we represent the mapping a by a vector, calling it a length vector a
and relax it for a node X a = (ax1,x2 , . . . , axk−1,xk

) ∈ N(k2), where k = |X|
and X = {x1, . . . , xk}. We reduce the problem to a-bounded multi-cut for k
terminals, where k = tw(G) + 2 and the additional two is for changing the
decomposition. Let us introduce a relation on length vectors a,b ∈ N(k2) on X
of the same size. We write a � b, if axi,xj

≤ bxi,xj
for all 1 ≤ i < j ≤ |X|.

Let the set of vertices X = {x1, . . . , xk}, a be a length vector, let I ⊂ [k] and
let Y = {xi ∈ X : i ∈ I}. By a|Y we denote the length vector a containing axi,xj

if and only if both i ∈ I and j ∈ I (in an appropriate order) – in this case we
say a|Y is a contracted on the set Y .

Recall that for each node X we have defined the auxiliary graph GX (see Sect. 2
for definition). With a node X we associate the table TabX . The table entry a =
(a1,2, . . . , ak−1,k) of TabX (denoting TabX [a]) for node X = {x1, . . . , xk} con-
tains the size of the a-bounded multi-cut for the set X in the graph GX . Note
that for two length vectors a � b it holds that TabX [a] ≤ TabX [b].

446 P. Dvořák and D. Knop

4.1 Node Lemmas

The leaf nodes are the only nodes bearing some edges. We use an exhaustive
search procedure for building tables for these nodes. For this we need to compute
the lengths of the shortest paths between all the vertices of the leaf node, for
which we use the well known procedure due to Floyd and Warshall [6,13]:

Proposition 2. Let G be a graph with nonnegative length f : G(E) → N. It is
possible to compute the table of lengths of the shortest paths between any pair
u, v ∈ V (G) with respect to f in time O(|V (G)|3).
Lemma 2 (Leaf Nodes). For all L-limited length vectors and a leaf node X
the table TabX of sizes of minimum length-bounded multi-cuts can be computed
in time O(Lk2 · 2k2 · k3), where k = |X|.
We now use Lemma 1 to prove time complexity of finding a dynamic program-
ming table for join nodes from the table of its children.

Lemma 3 (Join Nodes). Let X be a join node with children Y and Z, let L
be the limit on length vectors components and let k = |X|. Then the table TabX

can be computed in time O(Lk2
) from the table TabY and TabZ .

Proof. Recall that graphs GY and GZ are edge disjoint and that we store sizes
of a-bounded multi-cuts. Note also that X = V (GY) ∩ V (GZ) and so we can
apply Lemma 1 and set TabX [a] := TabY [a] +TabZ [a], for each a satisfying the
triangle inequalities.

As there are O(Lk2
) entries in the table TabX we have the complexity we

wanted to prove. �
As the forget node expects only forgetting a vertex and thus forgetting part of
the table of the child. This is the optimizing part of our algorithm.

Lemma 4 (Forget Nodes). Let X be a forget node, Y its child, let L be the
limit on length vectors components and let k = |X|. Then the table TabX can be
computed in time O((Lk2

)2) from the table TabY .

Proof. Fix one length vector a and compute the set A(a) of all Y -augmented
length vectors. Formally b ∈ A(a) if b is a length vector satisfying the triangle
inequalities for Y and b|X = a. After this we set TabX [a] := minb∈A(a) TabY [b].

There are at most Lk2
of Y -augmented length vectors for each a and this

gives the claimed time. �
Also the introduce node (as the counter part for forget node) only adds coordi-
nates to the table of its child. It does no computation as there are no edges it
can decide about – these nodes now only add isolated vertex in the graph.

Lemma 5 (Introduce Nodes). Let X be an introduce node, Y its child, let L
be the limit on length vectors components and let k = |X|. Then the table TabX

can be computed in time O(Lk) from the table TabY .

Parametrized Complexity of Length-Bounded Cuts and Multi-cuts 447

Proof. Let x be the vertex with the property x ∈ X \ Y . The key property
is that the vertex x is an isolated vertex in GX and thus we can set TabX [a] :=
TabY [a|Y], because x is arbitrarily far from any vertex in GY , especially from
the set Y . �

4.2 Proofs of Theorems

We use Lemmas 2, 3, 4 and 5 to prove the theorem about computing L-bounded
(s, t)-cut in graph of bounded tree-width. For this, note that we can use k =
O(tw(G)) and put it into all the Lemmas as it is an upper bound on the size of
any node in the decomposition (the O notation is because +1 in the definition
and possible +2 for producing of node with both s and t in it).

We compute all the L-bounded length-constraint that satisfy the triangle
inequalities in advance. This takes additional time O(Lk2 · k3) which can be
upper-bounded by O((Lk2

)2 · 2k) for k ≥ 2 and L ≥ 2 and so this does not
make the overall time complexity worse.

Proof of Theorem 1. As there are O(n) nodes in nice tree decomposition
(by Proposition 1) and as we can upper-bound time needed to compute any
type of node by O((Lk2

)2 · 2k2
), we have complexity proposed in state of the

Theorem 1. �
Let us now point out that the value of the parameter L can be upper-bounded
by the number of vertices n of the input graph G (in fact by n1−ε as it is proved
in [2]).

We now want to sum-up the key ideas leading to Theorem 1. First, it is the
use of dynamic program for computing all options of cuts for bounded number
of possible choices and for second it is the idea of creating a node that includes
both the source and the sink while not harming the tree-width too much. On
the other hand, we can use this idea to solve also the generalized version of the
problem – length-bounded multi-cut – with the additional parameter the number
of terminals. It is easy to see that in this setting that again it is possible to achieve
node containing every terminal and thus this yields following Theorem 3. �
Theorem 3. Let G = (V,E) be a graph of tree-width k, S ⊆ V with |S| = t
and let p := t + k. Then for any L ∈ N and any L-limited length-constraints b
satisfying the triangle inequalities on S an minimum b-bounded multi-cut can be
computed in time O((Lp)2 · 2p2 · n).

5 Hardness of the L-bounded Cut

In this section we prove MLBC parametrized by path-width is W[1]-hard [7] by
FPT-reduction from k-Multicolor Clique.

PROBLEM: k-Multicolor Clique
Instance: k-partite graph G = (V1 ∪̇ V2 ∪̇ . . . ∪̇ Vk, E), where Vi is

independent set for every i and they are pairwise disjoint
Parameter: k
Goal: find a clique of size k

448 P. Dvořák and D. Knop

Denoting. In this section, sets V1, . . . , Vk are always partites of k-partite graph
G. We denote edges between Vi and Vj by Eij . The problem is W[1]-hard even if
every independent set Vi has same size and the number of edges between every
Vi and Vj is same. In whole Sect. 5 we denote the size of arbitrary Vi by N and
size of arbitrary Eij by M . For FPT-reduction from k-Multicolor Clique to
MLBC we need:

1. Create a MLBC instance G′ = (V ′, E′), s, t, L from k-Multicolor Clique
instance G = (V1 ∪̇ V2 ∪̇ . . . ∪̇ Vk, E) where size of G′ is polynomial from the
size of G.

2. Prove that G contains k-clique if and only if G′ contains L-bounded cut of
size f(k,N,M) where f is polynomial.

3. Prove that path-width of H is smaller than g(k) where g is computable function.

Our ideas were inspired by work of Michael Dom et al. [5]. They proved W[1]
hardness of Capacitated Vertex Cover and Capacitated Dominating
Set parametrized tree width of input graph. We remarked that their reduction
also proves W[1] hardness of these problems parametrized by path-width.

5.1 Basic Gadget

In k-Multicolor Clique problem we need select exactly one vertex from each
independent set Vi and exactly one edge from each Eij . And we have to make
certain that if e ∈ Eij is the selected edge and u ∈ Vi, v ∈ Vj are the selected
vertices then e = {u, v}. The idea of the reduction is to have a basic gadget for
every vertex and edge. We connect gadgets gv for every v in Vi into a path Pi.
The path Pi is cut in the gadget gv if and only if the vertex v ∈ Vi is selected
into clique. The same idea will be used for selecting the edges.

Definition 3. Let h,Q ∈ N. Butte B(s′, t′, h,Q) is graph which contains h paths
of length 2 and Q paths of length h + 2 between s′ and t′. The short paths
(of length 2) are called shortcuts, the long paths are called ridgeways and the
parameter h is called height.

In our reduction all buttes will have the same parameter Q (it will be computed
later). Let B(s′, t′, h,Q) be a butte. We denote by s(B), t(B), h(B), Q(B) the
parameters of butte B s′, t′, h and Q, respectively. We state easy but important
observation about butte path-width:

Observation 4. Path-width of arbitrary butte B is at most 3.

Let B(s′, t′, h,Q) be a butte. Let Puv be a shortest path between u and v, which
enters into B in s′ and leaves it in t′. The important properties of the butte B are:

1. By removing one edge from all h shortcuts of butte B, we extend path Puv

by h. If we cut all shortcuts of butte B we say the butte B is ridged.
2. Let size of the cut is bounded by K ∈ N and we can remove edges only from

B. If we increase Q to be bigger than K then Puv cannot be cut by removing
edges from B (only extended by ridging the butte B).

Parametrized Complexity of Length-Bounded Cuts and Multi-cuts 449

5.2 Butte Path

In this section we define how we connect buttes into a path, which we call
highland. The main idea is to have highland for every pair (i, j), i �= j ∈ [k].
In highland for (i, j), there are buttes for every vertex v ∈ Vi and every edge
e ∈ Ei,j . We connect vertex buttes and edge buttes into a path. Then we set the
butte heights and limit the size of the cut in such way that:

1. Exactly one vertex butte and exactly one edge butte have to be ridged.
2. If buttes for vertex v is ridged, then only buttes for edges incident with v can

be ridged.

Formal description of highland is in the following definition.

Definition 4. Highland H(X,Y, s, t) is a graph containing 2 vertices s and t
and Z = X + Y buttes B1, . . . , BZ where:

1. s = s(B1), t = t(BZ) and t(Bi) = s(Bi+1) for every 1 ≤ i < Z.
2. h(Bi) = X2 + i for 1 ≤ i ≤ X.
3. h(Bi) ∈ {X4, . . . , X4 + X − 1} for X + 1 ≤ i ≤ Z.
4. Q(Bi) = X4 + X2 for every i.

Let H(X,Y, s, t) be a highland. We call buttes B1, . . . , BX from H low and buttes
BX+1, . . . , BX+Y high (low buttes will be used for vertices and high buttes for
edges). The vertex t(BX) = s(BX+1), where low and high buttes meet, is called
the center of highland H. Note that there can be more buttes with the same
height among high buttes and they are not ordered by height as the low buttes.

Proposition 3. Let H(X,Y, s, t) be a highland. Let L = 2(X +Y)+X4 +X2 +
X − 1. Let C be the L-cut of size X4 + X2 + X, which cut all path of length L
and shorter between s and t then:

1. The cut C contains only edges obtained by ridging the exactly two buttes
Bi, Bj, such that Bi is low and Bj is high.

2. Let Bi be the ridged low butte and Bj be the ridged high butte. Then, h(Bj) =
X4 + X − i.

5.3 Reduction

In this section we present our reduction. Let G = (V1 ∪̇ V2 ∪̇ . . . ∪̇ Vk, E) be the
input for k-Multicolor Clique. As we stated in the last section, the main
idea is to have low butte Bv for every vertex v and high butte Be for every
edge e. Vertex v and edge e is selected into the k-clique if and only if butte Bv

and butte Be are ridged. From G we construct MLBC input G′, s, t, L:

1. For every 1 ≤ i, j ≤ k, i �= j we create highland Hi,j(N,M, s, t) of buttes
Bi,j

1 , . . . , Bi,j
N+M .

2. Let Vi = {v1, . . . , vN}. Vertex v� ∈ Vi is represented by low butte Bi,j
� of the

highland Hi,j for every j �= i. Thus, we have k −1 copies of buttes (in different
highlands) for every vertex. Hence, we need to be certain that only buttes rep-
resenting the same vertex are ridged. Note that buttes representing the same
vertex have the same height and the same distance from the vertex s.

450 P. Dvořák and D. Knop

3. Let Eij = {e1, . . . , eM}, i < j. Edge e� = {u, v} ∈ Eij(u ∈ Vi, v ∈ Vj) is
represented by high butte Bi,j

N+� of the highland Hi,j and by high butte Bj,i
N+�

of the highland Hj,i. Note that two buttes represented the same edge has same
distance from the vertex s. Let hi, hj be the heights of buttes representing
vertices u and v, respectively. We set the height of high buttes:
(a) h(Bi,j

N+�) = N4 + N − hi

(b) h(Bj,i
N+�) = N4 + N − hj

4. We add edge
{
t(Bi,j

�), t(Bi,j+1
�)

}
for every 1 ≤ i ≤ k, 1 ≤ j < k, i �= j and

1 ≤ � < N .
5. We add paths of length N − 1 connected t(Bi,j

�) and t(Bj,i
�) for every 1 ≤

i, j ≤ k, i �= j and 1 ≤ � < M .
6. L = 2(N + M) + N4 + N2 + N − 1

We call paths between highlands in Items 4 and 5 the valley paths.

Observation 5. Graph G′ has polynomial size from graph G.

Theorem 6. If graph G has a clique of size k then (G′, s, t) has an L-cut of
size k(k − 1)(N4 + N2 + N).

Proof. Let G has a k-clique {v1, . . . , vk} where vi ∈ Vi for every i and eij =
{vi, vj} ∈ Eij . For every i we ridge all k − 1 buttes representing the vertex vi in
G′. And for every i < j we ridge both buttes representing the edge eij .

We claim that set of removed edges from ridged buttes forms the L-cut. Let
Hi,j be an arbitrary highland. There is no st-path shorter than L in Hi,j . Let
h(Bv) = N2 + � where Bv is arbitrary butte representing the vertex vi. By
construction of G′, the high butte representing the edge eij in Hi,j has height
N4 + N − �. Thus, ridged buttes in Hi,j extend the shortest st-path by N4 +
N2 + N and it has length 2(M + N) + N4 + N2 + N . Buttes representing the
vertex vi have same height. Thus, path through the low buttes of highlands using
some valley path is always longer than path going through low buttes of only
one highland. Therefore, it is useless to use valley paths among low buttes for
the shortest st-path.

Other situation is among high buttes because buttes representing the same
edge have different heights. Butte Bv representing vertex vi extend the shortest
path at least by N2 + 1. Butte Be representing edge ei,j extend the shortest at
least by N4. However, if h(Bv) + h(Be) < N4 + N2 + N then Bv and Be have
to be in different highlands. Therefore, the st-path going through Bv and Be

has to use a valley path between high buttes, which has length N − 1. And such
st-path has length at least 2(N + M) + N4 + N2 + N .

We remove N4 + N2 + N edges from each highland and there are k(k − 1)
highlands in G′. Therefore, G′ has L-cut of the size k(k − 1)(N4 + N2 + N). �
Theorem 7. If (G′, s, t) has an L-cut of size k(k − 1)(N4 + N2 + N) then G
has a clique of size k.

Parametrized Complexity of Length-Bounded Cuts and Multi-cuts 451

Proof. Let C be an L-cut of G′. Every shortest st-path going through every
highland has to be extended by N4+N2+N . By Proposition 3 (Item 1), exactly
one low butte and exactly one high butte of each highland has to be ridged. We
remove (N4 + N2 + N) from every highland in G′. Therefore, there can be only
edges from ridged buttes in C.

For fixed i, highlands Hi,j are the highlands which low buttes represent
vertices from Vi. We claim that ridged low buttes of Hi,1, . . . , Hi,k represent
the same vertex. Suppose for contradiction, there exists two low ridged buttes
B� of Hi,� and Bm of Hi,m which represent different vertex from Vi. Without
loss of generality Hi,� and Hi,m are next to each other (i.e. |� − m| = 1) and
distance from s to s(B�) is smaller than distance from s to s(Bm). Let B′

� be
a butte of Hi,m such that it has same distance from s as butte B�. The path
s–t(B′

�)–t(B�)–t does not go through any ridged low butte. Therefore, this path
is shorter than L, which is contradiction. We can use the same argument to
show that there are not two high ridged buttes of highland Hi,j and Hj,i which
represent different edges from Eij .

We put into the k-clique K ⊂ V (G) the vertex vi ∈ Vi if and only if arbitrary
butte representing the vertex vi is ridged. We proved in the previous paragraph
that exactly one vertex from Vi can be put into the clique K. Let eij ∈ Eij

is an edge represented by ridged buttes. We claim that vi ∈ eij . Let B ∈ Hi,j

be a butte representing vi with height N2 + �. Then by Proposition 3 (Item
2), butte B′ ∈ Hi,j of height N4 + N − � has to be ridged. By construction of
G′, only buttes representing edges incident with vi have such height. Therefore,
chosen edges are incident with chosen vertices and they form the k-clique of the
graph G. �
Observation 8. Graph G′ has path-width in O(k2).

The following theorem is corollary of Observations 5 and 8 and Theorems 6
and 7.

Theorem 9. Minimal Length Bounded Cut parametrized by path-width is
W[1]-hard.

6 Conclusions

There is another standard generalization of the length bounded cut problem –
where we add to each edge also its length. If this length is integral it is possible
to extend and use our techniques (we only subdivide edges longer than 1 – this
doesn’t raise the tree-width of the graph on the input). On the other hand, if we
allow fractional numbers, it is uncertain how to deal with such a generalization.

Acknowledgments. Authors thank to Jǐŕı Fiala, Petr Kolman and Lukáš Folwarczný
for fruitful discussions about the problem. We would like to mention that part of this
research was done during Summer REU 2014 at Rutgers University.

452 P. Dvořák and D. Knop

References

1. Adámek, J., Koubek, V.: Remarks on flows in network with short paths. Commen-
tationes Mathematicae Universitatis Carolinae 12, 661–667 (1971)

2. Baier, G., Erlebach, T., Hall, A., Köhler, E., Kolman, P., Pangrác, O., Schilling, H.,
Skutella, M.: Length-bounded cuts and flows. ACM Trans. Algorithms 7, 4:1–4:27
(2010)

3. Courcelle, B.: Graph rewriting: an algebraic and logic approach. In: van Leeuwen,
J. (ed.) Handbook of Theoretical Computer Science, pp. 194–242. Elsevier,
Amsterdam (1990)

4. Dahl, G., Gouveia, L.: On the directed hop-constrained shortest path problem.
Oper. Res. Lett. 32, 15–22 (2004)

5. Dom, M., Lokshtanov, D., Saurabh, S., Villanger, Y.: Capacitated domination
and covering: a parameterized perspective. In: Grohe, M., Niedermeier, R. (eds.)
IWPEC 2008. LNCS, vol. 5018, pp. 78–90. Springer, Heidelberg (2008)

6. Floyd, R.W.: Algorithm 97: shortest path. Commun. ACM 5, 345 (1962)
7. Flum, J., Grohe, M.: Parameterized Complexity Theory. Texts in Theoretical Com-

puter Science. An EATCS Series. Springer-Verlag New York Inc., Secaucus (2006)
8. Ford, L.R., Fulkerson, D.R.: Maximal flow through a network. Can. J. Math. 8,

399–404 (1956)
9. Golovach, P.A., Thilikos, D.M.: Paths of bounded length and their cuts: parame-

terized complexity and algorithms. Discrete Optim. 8, 72–86 (2011)
10. Huygens, D., Labbé, M., Mahjoub, A.R., Pesneau, P.: The two-edge connected

hop-constrained network design problem: valid inequalities and branch-and-cut.
Networks 49, 116–133 (2007)

11. Itai, A., Perl, Y., Shiloach, Y.: The complexity of finding maximum disjoint paths
with length constraints. Networks 12, 277–286 (1982)

12. Kloks, T. (ed.): Treewidth, Computations and Approximations. LNCS, vol. 842.
Springer, Heidelberg (1994)

13. Warshall, S.: A theorem on boolean matrices. J. ACM 9, 11–12 (1962)

Algorithms and Hardness for Signed Domination

Jin-Yong Lin1 and Sheung-Hung Poon2(B)

1 Department of Computer Science, National Tsing Hua University,
Hsinchu, Taiwan, R.O.C.
yongdottw@hotmail.com

2 School of Computing and Informatics, Institut Teknologi Brunei,
Gadong, Brunei Darussalam
sheung.hung.poon@gmail.com

Abstract. A signed dominating function for a graph G = (V, E) is a
function f : V → {+1, −1} such that for all v ∈ V , the sum of the function
values over the closed neighborhood of v is at least one. The weight
w(f(V)) of signed dominating function f for vertex set V is the sum of
f(v) for v ∈ V . The signed domination number γs of G is the minimum
weight of a signed dominating function for G. The signed domination
(SD) problem asks for a signed dominating function which contributes
the signed domination number. First we show that the SD problem is
W[2]-hard. Next we show that the SD problem on graphs of maximum
degree six is APX-hard. Then we present constant-factor approximation
algorithms for the SD problem on subcubic graphs, graphs of maximum
degree four, and graphs of maximum degree five, respectively. In addition,
we present an alternative and more direct proof for the NP-completeness
of the SD problem on subcubic planar bipartite graphs. Lastly, we obtain
an O∗(5.1957k)-time FPT-algorithm for the SD problem on subcubic
graphs G, where k is the signed domination number of G.

1 Introduction

A signed dominating function for a graph G = (V,E) is a function f : V →
{+1,−1} such that f(NG[v]) ≥ 1 for all v ∈ V , where NG[v] denotes the closed
neighborhood of a vertex v in G, that is, the union of v and all the adjacent
vertices of v. The closed neighborhood NG(U) of a subset of vertices U in G
is the union of NG[v] of all vertices v in U . The weight w(f(V)) of a signed
dominating function f for vertex set V is the sum of f(v) for v ∈ V . The
signed domination number γs of G is the minimum weight of a signed dominating
function for G. The signed domination (SD) problem asks for a signed dominating
function which contributes the signed domination number. By assigning value
+1 or −1 to each vertex in graph G, we can model G as real-world networks
in sociology, electronics and operation research [5]. For example, in electronics,
value +1 or −1 for vertex v may represent a positive or negative spin of electron
v; and in social network, value +1 or −1 for vertex v may represent an agreeing
or disagreeing vote of voter v. In such model of signed domination, although
the total negative votes might be more than the total positive votes, we can still
c© Springer International Publishing Switzerland 2015
R. Jain et al. (Eds.): TAMC 2015, LNCS 9076, pp. 453–464, 2015.
DOI: 10.1007/978-3-319-17142-5 38

454 J.-Y. Lin and S.-H. Poon

assure that all local groups of voters (represented by closed neighborhoods) have
more positive votes than negative votes.

A graph is planar if it can be embedded in the plane (drawn with points for
vertices and curves for edges) without any edge crossing. A graph is bipartite if
its vertex set can be partitioned into two independent sets. A graph is subcubic if
the degrees of its vertices are all at most three. A graph is grid if it is an induced
subgraph of a grid. Note that a grid graph is a planar bipartite graph.

Next, we describe the related work on the SD problem. First, Hattingh
et al. [5] showed that the SD problem is NP-complete for chordal and bipartite
graphs, respectively. Thus the SD problem for general graphs is NP-complete.
Damaschke [2] then showed that the SD problem is NP-complete for subcubic
planar graphs. Later, Lee [6] showed that the SD problem for planar bipartite
graphs is NP-complete. Furthermore, Zheng et al. [7] showed that the SD prob-
lem for subcubic grid graphs is NP-complete.

A problem is called fixed-parameter tractable (FPT) with respect to a para-
meter k if there exists a solution running in f(k)·nO(1) time, where f is a function
of the solution size k which is independent of n, and the corresponding algorithm
which contributes such a solution is called an FPT-algorithm. Zheng et al. [7]
showed that the SD problem has a kernel of size (k2 + k)/2 for general graphs,
where the parameter k is the number of +1 values assigned to vertices of the
given graph. Thus, there is an FPT-algorithm for SD problem on general graphs
in such a parameter k [3]. Note that FPT = W [0] ⊆ W [1] ⊆ W [2] ⊆ ... ⊆ W [t].
However, for the specific parameter k in our paper, which is the weight of the
signed dominating function for a given graph, we show that the SD problem on
general graphs is W[2]-hard. Furthermore, for subcubic graphs, we are able to
obtain an FPT-algorithm for our parameter.

2 W[2]-hardness for SD Problem

A dominating set of a graph G = (V,E) is a vertex set D ⊆ V such that for
each vertex v ∈ V , there exists at least one vertex in NG[v] belonging to set D.
In other words, we can label V with {0,+1}, such that the closed neighborhood
of each vertex is positive. The domination number γ(G) is the cardinality of the
minimum dominating set of G. Dominating set problem asks for a dominating set
which contributes the domination number. Downey et al. [3] showed that dom-
ination problem on general connected graphs is W[2]-complete. In this section,
we show that the SD problem on general connected graphs is W [2]-hard.

In our reduction, we need to make use of a graph X, which was first intro-
duced by Hattingh [5]. The graph X is defined as in Fig. 1(a). Faria [4] found
that if we label the vertices of X as shown in Fig. 1(b) such that the weight of
such a signed domination function is −1. In the following lemma, we proceed to
show that −1 is in fact the minimum weight of a legitimate signed domination
function the graph X can have.

Lemma 1. The weight of any signed domination function for the graph X is
greater than or equal to −1.

Algorithms and Hardness for Signed Domination 455

Fig. 1. (a) Graph X. (b) Graph X with weight −1.

Proof. Let f be a singed dominating function for graph X. First, we focus on
vertex x5. Since x5 has 7 vertices in its closed neighborhood N [x5], at least
four of the seven vertices x2, x3, x4, x5, x6, x13, x14 of N [x5] are labeled with
+1 by function f . Similarly, for vertex x11, at least four of the seven vertices
x8, x9, x10, x11, x12, x14, x15 of N [x11] are labeled with +1 by function f . As there
is only one common vertex x14 in N [x5] and N [x11], we obtain that at least 7
vertices in graph X are labeled with +1. Then at most 8 vertices in X are labeled
with −1. Hence, the weight of function f will be greater than or equal to −1. ��
Then we are prepared to show the W[2]-hardness of the SD problem.

Theorem 1. The SD problem on general connected graphs is W [2]-hard.

Proof. We describe our reduction from dominating set problem as follows. Given
a graph G = (V,E), we construct a new graph G′ as described below. Initially
we set G′ to be G. Then we add each vertex v of G′ a set of degG(v) + 1 paths
of length two, where degG(v) is the degree of vertex v in G, and we let U be the
set of newly added vertices on the paths of length two. Note that |U | = 4m+2n,
where n is number of vertices of G and m is number of edges of G. Next, we add
4m+n copies of graph X into graph G′ and denote them by X1,X2, . . . , X4m+n,
respectively. Y = X1 ∪ . . . ∪ X4m+n. Then we take any previously added length-
two path, say ρ. Let p be the degree-1 vertex of ρ, and q the neighbor of p
on ρ. Now, we join the vertex q with the corresponding vertex x2 of each copy
Xi(i = 1, . . . , 4m + n) of graph X. This completes the construction of the graph
G′. Let V ′ be the set of vertices in G′. As G is a connected graph, graph G′ is
also a connected graph by our construction. We then show that the graph G has
a dominating set of size at most k if and only if there is a signed dominating
function with weight at most 2k in G′.

Assume that there is a dominating set D of size k in G. Then we will show
that there is a signed dominating function f with weight at most 2k in G′. We
construct a function f , which labels the vertices in U and vertices in D with
value +1, and label the corresponding vertices x2, x3, x5, x8, x9, x11, x14 for each
Xi(i = 1, . . . , 4m + n) with value +1. Then we label the other vertices in G′
with value −1. Now, we claim that f is a signed dominating function of G′ with
weight at most 2k. Clearly, the weight of the closed neighborhood of any vertex
in U or in Y is positive. Then we consider vertices in V ′ \ (U ∪ V (Y)). For any
vertex v in V ′ \ (U ∪V (Y)), there is at least one vertex in NG[v]∩D. Thus more

456 J.-Y. Lin and S.-H. Poon

than half of the vertices in NG′ [x] are labeled with +1 in function f . Thus the
weight of N ′

G[x] is positive. Hence, f is a legitimate signed dominating function
of G′. Now, we construct two subsets of V ′, P (V ′) and M(V ′), where P (V ′)
contains the vertices labeled with +1 in V ′ for function f , and M(V ′) contains
the vertices labeled with −1 in V ′ for function f . Hence, we obtain that

w(f(V ′)) = |P (V ′)|− |M(V ′)| ≤ k+(4m+2n)+7(4m+n)− (n−k)−8(4m+n) = 2k.

Conversely, we assume that f is a signed dominating function of G′ with
weight at most 2k. We collect the vertices in V ′ \ (U ∪ V (Y)) labeled with +1
as a set D. Then we claim that D is a dominating set of G of size at most k.
We only need to show that the vertices in V \ D are dominated by vertices
in D. Let v be a vertex in V \ D. As v lies in V \ D, we have f(x) = −1.
As f is a signed dominating function and degG′(v) = 2degG(v) + 1, at least
degG(v)+2 vertices are labeled with +1 by function f . Thus at least one vertex
u in NG′ [v] \ (U ∪ V (Y)) is labeled with +1. This implies that u ∈ D such that
u ∈ NG[v]. Thus, D is a dominating set of G. Now, we compute the size of set D.
We use the same notations P (V ′) and M(V ′) as defined above. We are going to
bound the number of vertices in P (V) = P (V ′) \ (U ∪ V (Y)), which is equal to
the size of D. First, we have

w(f(V ′)) = w(f(U)) + w(f(V (Y))) + w(f(V ′ \ (U ∪ V (Y)))) ≤ 2k.

As w(f(V (Y))) ≥ −(4m + n), it implies that:

(4m + 2n) − (4m + n) + w(f(V ′ \ (U ∪ V (Y)))) ≤ 2k,

w(f(V ′ \ (U ∪ V (Y)))) ≤ 2k − n.

Consequently,

w(f(V ′\(U∪V (Y)))) = |P (V)|−|M(V)| = 2|P (V)|−|V | = 2|P (V)|−n ≤ 2k−n.

Thus we obtain that |D| = |P (V)| ≤ k. This completes the proof. ��

3 APX-hardness for Graphs of Maximum Degree Six

Alimonti and Kann [1] show that the domination problem is APX-hard on sub-
cubic graphs. For the signed domination problem, we manage to show that the
SD problem for graphs of maximum degree six is APX-hard in the following
theorem, whose proof is omitted due to lack of space. Whether the SD-problem
is APX-hard for graphs of maximum degree lower than six is open.

Theorem 2. The SD problem on graphs of maximum degree six is APX-hard.

4 Approximation Algorithm for Small Degree Graphs

In this section, we present constant-factor approximation algorithms for the SD
problem on subcubic graphs, graphs of maximum degree four, and graphs of
maximum degree five, respectively.

Algorithms and Hardness for Signed Domination 457

4.1 3-approximation for Subcubic Graphs

Theorem 3. There is a linear-time 3-approximation algorithm for the SD prob-
lem on subcubic graphs.

Proof. Let G = (V,E), and let f∗ be the optimal signed domination function
of G. We use the 3-element subsets as defined in the proof of Lemma 3. Then
by the same reasoning as the proof of Lemma 3, we know that for each such
subset, one of its elements is labeled with value −1. Moreover, other vertices

in V must be labeled with +1. Thus we have w(f∗(V)) ≥ |V |
3

. By labeling all
the vertices in V with +1, we can obtain a signed domination function with
weight |V |. Hence we have a 3-approximation for the SD problem on subcubic
graphs. ��

4.2 13-approximation Graphs with Maximum Degree Four

In our approximation algorithm for graphs of maximum degree four, we use
similar terminologies as Damaschke [2]. Let P be the set of vertices with label
value +1, and M be the set of vertices with label value −1. Let Di be the set
of vertices of degree i. Let Pi denote the set of vertices labeled with +1, each of
which has exactly i neighbors labeled with −1. Similarly, Mi denotes the set of
vertices labeled with −1, each of which has exactly i neighbors labeled with +1.
Furthermore, we let p,m, pi and mi denote the cardinalities of sets P,M,Pi

and Mi, respectively. Moreover, we use N [·] to represent NG[·] for simplicity.
Damaschke [2] showed the following lemma.

Lemma 2 (Damaschke [2]). Any signed dominating function in a graph of
maximum degree five satisfies p − m = p0 + p1/2 + m3/2 + m4 + 3m5/2.

As all the terms on the right hand side of the equality are non-negative, this
lemma implies that the weight of a signed domination function of a graph of
maximum degree five is greater than or equal to zero. Moreover, Damaschke [2]
also showed that it can be checked in linear time whether γs = 0 for a graph of
maximum degree five. Thus in following theorems, namely Theorems 4 and 5,
the designed algorithms are executed only when γs > 0 after such a linear-time
checking procedure has been executed. Since γs may not be bounded in graphs
of maximum degree greater than five, γs can be a negative value with arbitrary
large magnitude in graphs of degree greater than five. Hence, such graphs cannot
be approximated.

Theorem 4. There is a linear-time 13-approximation algorithm for the SD
problem on graphs of maximum degree four.

Proof. Let G = (V,E) be a graph with maximum degree at most four and γs > 0.
As the maximum vertex degree in G is four, we have m5 = 0. By substituting
this into the equation in Lemma 2, we thus have:

γs = p − m = p0 + p1/2 + m3/2 + m4.

458 J.-Y. Lin and S.-H. Poon

Now we bound p2 − m2. By considering the number of edges which incident
to vertices labeled with +1 and vertices labeled with −1, respectively, we have
p1 + 2p2 = 2m2 + 3m3 + 4m4. Thus

p2 − m2 = 3m3/2 + 2m4 − p1/2.

Let R be the set of vertices in P2,which have neighbors in P ∩ D2. Then we
have that |R| ≤ 2p0 + p1. Note that vertices in P2 also lie in D4. Now let S be
the set of vertices in D4, which at most two neighbors in D2. It is clear that
P2 ⊆ (R ∪ S), and (P2 \ S) ⊆ R. Thus we have |P2 \ S| ≤ 2p0 + p1.

Next, at most p1 vertices of M2 may have neighbors not in P2. In other
words, there are at least m2 − p1 vertices which have both neighbors in P2, and
we have seen above that at most 2p0 + p1 of them lie in P2 \ S. Then at most
4p0 + 2p1 vertices of M2 may have neighbors in P2 \ S. Thus we have that at
least m2 − 4p0 − 3p1 vertices of M2 have both neighbors in S ∩ P2. We further
let T be the set of vertices in D2 having both neighbors in S. Then we have

|T | ≥ m2 − 4p0 − 3p1.

Now we construct a function f , which labels vertices in T with value −1, and
labels other vertices with +1. Note that the set T can be constructed in linear
time. Then we claim that the function f is a signed dominating function for G.
Let N [T] be the union of vertices of N [v] for all vertices v in T . We only need to
consider the vertices in N [T] to verify whether w(f(N [v])) ≥ 1 for any v ∈ N [T].
First, we consider the vertex v ∈ T . Since v is of degree 2 and connects to vertices
in S which were labeled with value +1, we then have w(f(N [v])) = 1. Then we
consider a vertex u in N [T] \ T . Since u belongs to the set S, u is a degree 4
vertex and is adjacent to at most two neighbors in D2. This implies that there
are at most two vertices labeled with −1 in N [u]. Thus we have w(f(V)) ≥ 1.
Hence, function f is a signed dominating function for G.

Hence, we can show that the signed dominating function f is a 13-approxima-
tion of the optimal signed dominating function.

w(f(V)) = (n − |T |) − |T |
≤ p0 + p1 + p2 + m2 + m3 + m4 − 2|T |
≤ 9p0 + 7p1 + p2 − m2 + m3 + m4

= 9p0 + 13p1/2 + 5m3/2 + 3m4

≤ 13γs.

��

4.3 17-approximation for Graphs with Maximum Degree Five

Using the same strategy as in Theorem 4, we can obtain the following theorem,
whose proof is omitted due to lack of space.

Theorem 5. There is a linear-time 17-approximation algorithm for the SD
problem on graphs of maximum degree five.

Algorithms and Hardness for Signed Domination 459

5 NP-completeness for Subcubic Planar Bipartite Graphs

Recently, it has been shown that the SD problem for subcubic grid graphs is
NP-complete [7]. In this section, we present an alternative and more direct NP-
completeness proof for the SD problem on subcubic planar bipartite graphs in
the following theorem, whose proof is omitted due to lack of space.

Theorem 6. The SD problem on subcubic planar bipartite graphs is NP-complete.

6 FPT-algorithm for Subcubic Graphs

Since the SD problem for subcubic graphs is NP-complete, in this section we
consider FPT-algorithm for subcubic graphs. Damoschke [2] showed that the SD
problem has a näıve FPT-algorithm run in O(4k × 22k) = O(16k) for subcubic
graphs.

In the following lemma, we present a kernel of size 3k for the SD problem for
subcubic graphs, where the parameter k is the weight of the signed dominating
function.

Lemma 3. There is a kernel of size 3k for the SD problem on subcubic graphs,
where k is the weight of the signed dominating function.

Proof. Let G = (V,E) be a subcubic graph. For any signed dominating function
of G with weight k, we claim that |V | ≤ 3k. For each vertex v labeled with −1,
it is clear that v has distance at least three to any other vertex labeled with −1.
In other words, we obtain a 3-element subset of V contains v with label −1 and
its two neighbors, which must be labeled with +1. Moreover, for any pair of such
subsets, their intersection is empty. Hence, we can obtain a kernel of size 3k as
an upper bound for the SD problem on subcubic graphs. ��
First we consider a brute-force algorithm by assigning each vertex +1 and −1.
Hence we have an O∗(2n)-time algorithm. By Lemma 3, we have a kernel of
size 3k. Thus the brute-force algorithm can be preformed in O∗(23k) = O∗(8k)
time. In the following, we present an improved O∗(5.1957k)-time FPT-algorithm
which solves the SD problem on subcubic graphs.

In the following theorem, we first state the detailed steps of our algorithm
and its correctness proof. Then we analyze its time complexity.

Theorem 7. The SD problem of subcubic graphs G can be solved in O∗(5.1957k)
time, where k is the signed dominating function number of G.

Proof (Sketch). Due to Lemma 3, we only need to consider the given subcubic
graph G with kernel size of 3k vertices. Furthermore, since disconnected compo-
nents of a graph can be handled separately, we assume that the given graph G
is connected in the following context.

The details of our algorithm are as follows. In our algorithm, we grow a
potential optimal signed dominating set D incrementally, where the signed dom-
inating set D is a set of vertices in V labeled with values +1 or −1. The label

460 J.-Y. Lin and S.-H. Poon

of a vertex is the value of vertex assigned by a specific signed dominating func-
tion. A vertex is called labeled is if it has been assigned a value; otherwise, it is
called unlabeled. The weight of the closed neighborhood N [v] of a labeled vertex
v is called valid (resp. invalid) if all vertices in N [v] are labeled, and the sum
of weights of vertices in N [v] is positive (resp. non-positive). In the process, we
maintain a list L of unlabeled vertices which are the neighboring vertices of the
currently labeled vertices in D. Initially, L is set to contain one degree-3 vertex of
the input graph G, and D = ∅. During each iteration of our algorithm, we select
an arbitrary unlabeled vertex y from list L as the focus vertex, and we assume
that x is a labeled vertex adjacent to y in D∩N [y]. We set Δ = (N [x]∪N [y])\D.
Then our algorithm makes execution branches on all different ways of assigning
values to vertices in Δ of new labeled vertices in (N [x]∪N [y])\D, by performing
detailed case analysis from Case 1.1 to Case 4.2, which is provided in the fol-
lowing context. We remark that for technical reasons, in the analysis of Subcases
1.6, 2.4, 3.3 and 4.2, we need to set Δ = (N [x]∪N [N [y]])\D instead. In the case
analysis, our algorithm makes subsequent recursions only on those feasible ways
of value assignment in the corresponding subcases. For each of such subsequent
recursions, the vertices of Δ, which have been labeled, are added into D, result-
ing in a larger labeled dominating set D + Δ. Then for each vertex v in D + Δ,
if all vertices in N [v] are labeled, we then check whether the weight of N [v] is
valid. If we reach any weight of closed neighborhood of a vertex is invalid, then
the current execution branch is aborted; otherwise, we proceed to update D and
L for next round of execution. We update D by setting D = D+Δ, and then we
update list L accordingly by visiting the neighboring vertices of the neighbors
of vertices in Δ. More precisely, the vertices in Δ are removed from L, and the
unlabeled vertices in the neighborhoods of vertices in Δ are added into L. It is
clear that such an update takes only O(1) time. Then we proceed to the next
execution round with the updated D and L as parameters. We repeat such a
selection step until all vertices in G are labeled, that is, L becomes empty. Thus
we obtain a candidate signed dominating set D.

In the selection process, we enumerate and store all possible candidates of D
according to the above recursive procedure. When all branches of the selection
process finished, we obtain a set of candidate signed dominating sets D for
the input graph G. We choose the one with minimum weight among all these
candidates. This completes our algorithm.

Case Analysis for Selection Step. In each selection step as mentioned in the
overview of our algorithm, we are going to label the vertices in set Δ with
values +1 or −1, where Δ = (N [x] ∪ N [y]) \ D or Δ = (N [x] ∪ N [N [y]]) \ D, by
performing careful case analysis for all following subcases from Case 1.1 to Case
4.2. In the step, we plan to add the newly labeled vertices in Δ into D such that
the resulting larger signed dominating set D = D ∪ Δ, in which the weight of
each vertex v in D is valid if all vertices in N [v] are labeled.

In the initial selection step of our algorithm, the set Δ and list L are empty.
We choose a vertex with degree three as y, and the vertex x as defined previously
does not exist for current situation. See Fig. 2. For such a case, since at most

Algorithms and Hardness for Signed Domination 461

one of the four vertices in N [y] can be labeled with −1, we have five choices
to label the four vertices. Note that this kind of selection step only executes
once in our whole algorithm, and after this initial selection step, the current
signed domination set D has already contained the four elements in N [x], that
is, |D| = 4.

Fig. 2. This figure
shows the vertex y
and its neighbors.

In the subsequent selection steps of our algorithm, we
consider the following subcases from Case 1.1 to Case 4.2 for
different feasible ways of value assignment for the unlabeled
vertices in Δ. Then we proceed to call subsequent recursions
according to these different feasible ways of value assignment
for Δ. First of all, if the degree of y in G is one, then both
x and y must be labeled with +1. Thus we have one feasible
way to label vertex y.

Therefore, we assume that in the following case analysis,
the degrees of both vertices x and y are at least two. Moreover, during the
execution of a branch in our algorithm, we need to run recursively until |D| = |V |,
that is, a candidate signed dominating set D is found. We consider four cases
according to different degrees of x and y. These four cases consist of 15 subcases
in total, ranging from Case 1.1 to Case 4.2.

For Case 1 and its six subcases, we give the details in the following. Due to
lack of space, the analysis for Cases 2 to 4 is omitted.

Case 1. The degrees of both x and y are three. Due to the initial selection step, we
know that there is another neighbor x1 of x lying in D. Let x2 be the third neighbor
of x, and y1 and y2 be the other two neighbors of y. For this case, since y1 and y2
are symmetric, we need to consider six subcases depending on the content of Δ,
the set of unlabeled vertices in the neighborhood of x and y. See Figs. 3(a) to (f).
We will analyze these six subcases one by one in the following.

Fig. 3. This figure shows the six subcases of Case 1, where the labeled vertices in D
are drawn as black disks, and the unlabeled vertices in Δ as circles. (a) Subcase 1.1:
Δ = {y, x2, y1, y2}. (b) Subcase 1.2: Δ = {y, x2, y2}. (c) Subcase 1.3: Δ = {y, y1, y2}.
(d) Subcase 1.4: Δ = {y, x2}. (e) Subcase 1.5: Δ = {y, y2}. (f) Subcase 1.6: Δ = {y}.

Subcase 1.1. Δ = {y, x2, y1, y2}. That is, {x, x1} ⊂ D. See Fig. 3(a).
In order to reduce the number of subcases we need to consider under a specific

case, we only need to consider the worst-case scenarios in each of the subcases.
For such a purpose, we make the following two assumptions.

462 J.-Y. Lin and S.-H. Poon

(i) When two vertices are connected by an edge, the number of feasible ways
of labeling these two vertices will possibly decrease. Thus the worst-case
scenario of Subcase 1.1 is the subgraph as shown in Fig. 3(a) in the way that
there is no edge connecting any pair of vertices in (N [x] ∪ N [y]) \ {x, y}.

(ii) We observe that a vertex labeled with −1 only have vertices labeled with
+1 as its neighbors, and a vertex labeled with +1 can have vertices labeled
with +1 or −1 as its neighbors. Thus for a specific subcase, the worst-case
scenario for the number of feasible ways to label the vertices in Δ is when
the labeled vertices for the specific subcase (for instance, vertices x and y in
Subcase 1.1) are all assigned value +1.

We remark that these two assumptions are usually made for subsequent subcases
we considered in this proof. This dramatically shorten the length of the proof
required for each subcase.

For Subcase 1.1, according to assumption (i), we suppose that there is no
edge connecting any pair of vertices in (N [x] ∪ N [y]) \ {x, y}, and according to
assumption (ii), we suppose that x and x1 are labeled with +1. Consider the
labeling of vertex y. There are two ways to label y, say with value −1 or +1.
First, if y is labeled with value −1, then vertices x2, y1 and y2 have only one
feasible way of labeling, say all of them being labeled with value +1. Second, if
y is labeled with value +1, then x2 can be assigned value +1 or −1, and at most
one of y1 and y2 can be assigned value −1. Thus there can be at most six feasible
ways to label vertices x2, y1 and y2. In all, there are at most seven feasible ways
in total to label the four vertices in Δ for this subcase.

Subcase 1.2. Δ = {y, x2, y2}. That is, {x, x1, y1} ⊂ D. See Fig. 3(b). According to
assumption (i), we suppose that there is no edge connecting any pair of vertices
in (N [x]∪N [y])\{x, y}, and according to assumption (ii), we suppose that x, x1

and y1 are labeled with +1. Consider the labeling of vertex y. There are two
ways to label y, say with value −1 or +1. First, if y is labeled with value −1,
then vertices x2 and y2 have only one feasible way of labeling, say both of them
being labeled with value +1. Second, if y is labeled with value +1, then x2 and
y2 can be assigned value +1 or −1, independently. Thus there can be at most
four feasible ways to label vertices x2 and y2. In all, there are at most five feasible
ways in total to label the three vertices in Δ for this subcase.

Subcase 1.3. Δ = {y, y1, y2}. That is, {x, x1, x2} ⊂ D. See Fig. 3(c). According to
assumption (i), we suppose that there is no edge connecting any pair of vertices
in (N [x]∪N [y])\{x, y}, and according to assumption (ii), we suppose that x, x1

and x2 are labeled with +1. Since at most one of y, y1 and y2 can be assigned
−1, there are at most four feasible ways in total to label the three vertices y, y1
and y2 in Δ for this subcase.

Subcase 1.4. Δ = {y, x2}. That is, {x, x1, y1, y2} ⊂ D. See Fig. 3(d). According to
assumption (i), we suppose that there is no edge connecting any pair of vertices in
(N [x]∪N [y])\{x, y}, and according to assumption (ii), we suppose that x, x1, y1
and y2 are labeled with +1. Since at most one of x2 and y can be assigned −1,
there are at most three feasible ways in total to label the two vertices y and x2

in Δ for this subcase.

Algorithms and Hardness for Signed Domination 463

Subcase 1.5. Δ = {y, y2}. That is, {x, x1, x2, y1} ⊂ D. See Fig. 3(e). According to
assumption (i), we suppose that there is no edge connecting any pair of vertices in
(N [x]∪N [y])\{x, y}, and according to assumption (ii), we suppose that x, x1, x2

and y1 are labeled with +1. Since at most one of y and y2 can be assigned −1,
there are at most three feasible ways in total to label the two vertices y and y2
in Δ for this subcase.

Subcase 1.6. Δ = {y}. That is, {x, x1, x2, y1, y2} ⊂ D. See Fig. 3(f). There are
two ways to label the only unlabeled vertex y, say with value −1 or +1. Thus,
in order to achieve a better running time, we consider a larger subgraph. See
Fig. 4. We further consider the vertices in neighborhoods of y1 and y2. Since
y1, y2 ∈ D, and after the initial selection step, the subgraph induced by D is
always connected and |D| ≥ 4, there is another labeled neighbor z1 ∈ D of y1,
and there is another labeled neighbor z2 ∈ D of y2. There may or may not be
third neighbor of y1, say z3 if any. There may or may not be third neighbor of
y2, say z4 if any. According to assumption (i), we suppose that there is no edge
connecting any pair of vertices in (N [x] ∪ N [N [y]]) \ {x, y} for this subcase. Let
Z be the set containing these new neighbors, z1, z2, z3 (if any) and z4 (if any),
of y1 and y2. Note that |Z| ≤ 4. Now we add the unlabeled vertices in Z into Δ,
which originally only contains vertex y. As z1, z2 ∈ D, we have that |Z ∩Δ| ≤ 2.
We consider three situations depending on the value of |Z ∩ Δ| which is either
0, 1, or 2. See Figs. 4(a) to (c), respectively.

Fig. 4. This figure shows the three situations of Subcase 1.6. (a) Situation 1.6a: |Z ∩
Δ| = 0. Then Δ = {y}. (b) Situation 1.6b: |Z ∩ Δ| = 1. W.l.o.g., Δ = {y, z3}.
(c) Situation 1.6c: |Z ∩ Δ| = 2. Then Δ = {y, z3, z4}.

Situation 1.6a. |Z ∩ Δ| = 0. That is, all vertices in Z are labeled. See Fig. 4(a).
Note that we don’t use assumption (ii) for this situation. It is clear that if all of
the vertices x, x1, x2, y1, y2 and vertices in Z are labeled with +1, then we can
label y with −1. Otherwise, vertex y must be labeled with +1. Hence, there are
only one feasible way to label the only vertex y in Δ for this situation.

Situation 1.6b. |Z∩Δ| = 1. Let z3 be the only vertex in Z∩Δ. Then Δ = {y, z3}.
Since y1 and y2 are symmetric, without loss of generality, let z3 be the third
neighbor of y1. See Fig. 4(b). According to assumption (ii), we suppose that
x, x1, x2, y1, y2 and the vertices in Z ∩ D are labeled with +1. Since at most one
of y and z3 can be assigned −1, there are at most three feasible ways in total to
label the two vertices y and z3 in Δ for this situation.

Situation 1.6c. |Z ∩Δ| = 2. Then one vertex in Z ∩Δ must be the third neighbor
of y1, say z3, and the other vertex in Z ∩ Δ must be the third neighbor of

464 J.-Y. Lin and S.-H. Poon

y2, say z4. Thus Δ = {y, z3, z4}. See Fig. 4(c). According to assumption (ii),
we suppose that x, x1, x2, y1, y2 and the vertices in Z ∩ D are labeled with +1.
Consider the labeling of vertex y. There are two ways to label y, say with value −1
or +1. First, if y is labeled with value −1, then vertices z3 and z4 have only one
feasible way of labeling, say both of them being labeled with value +1. Second,
if y is labeled with value +1, then z and y2 can be assigned value +1 or −1,
independently. Thus there can be at most four feasible ways to label vertices
z3 and z4. In all, there are at most five feasible ways in total to label the three
vertices in Δ for this subcase.

This completes the case analysis of Case 1.
In the above detailed analysis for Case 1, the Subcases 1.4, 1.5, 1.6b take

the worst-case running time. Even in the omitted analyses of Cases 2 to 4, the
subcases with the worst-case running time also have the same time complexity
as the aforementioned worst subcases in Case 1. Let T (n) be the worst-case
running time of the whole algorithm. Then we have the following recurrence
relation:

T (n) ≤ 3T (n − 2) + O(1).

By solving this recurrence relation, we thus obtain that:

T (n) = O∗(1.7320n) = O∗(1.73203k) = O∗(5.1957k)

as n = 3k for subcubic graphs by Lemma 3. ��

References

1. Alimonti, P., Kann, V.: Hardness of approximating problems on cubic graphs. In:
Bongiovanni, G., Bovet, D.P., Di Battista, G. (eds.) CIAC 1997. LNCS, vol. 1203,
pp. 288–298. Springer, Heidelberg (1997)

2. Damaschke, P.: Minus signed dominating function in small-degree graphs. Discrete
Appl. Math. 108, 53–64 (2001)

3. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, Heidelberg
(1999)

4. Faria, L., Hon, W.-K., Kloks, T., Liu, H.-H., Wang, T.-M., Wang, Y.-L.: On com-
plexities of minus domination. In: Widmayer, P., Xu, Y., Zhu, B. (eds.) COCOA
2013. LNCS, vol. 8287, pp. 178–189. Springer, Heidelberg (2013)

5. Hattingh, J.H., Henning, M.A., Slater, P.J.: The algorithmic complexity of signed
dominating function in graphs. Australas. J. Comb. 12, 101–112 (1995)

6. Lee, C.-M.: Labelled signed dominating function and its variants, Ph.D. thesis,
National Chung Cheng University, Taiwan (2006)

7. Zheng, Y., Wang, J., Feng, Q.: Kernelization and Lower Bounds of the Signed
Domination Problem. In: Fellows, M., Tan, X., Zhu, B. (eds.) FAW-AAIM 2013.
LNCS, vol. 7924, pp. 261–271. Springer, Heidelberg (2013)

Author Index

Afshani, Peyman 189
Ambainis, Andris 122

Balaji, Nikhil 297
Balodis, Kaspars 50
Bendkowski, Maciej 62
Bishnu, Arijit 347
Bonato, Anthony 150
Bulteau, Laurent 200, 224

Cenzer, Douglas 23
Chen, Xujin 248
Cuong, Nguyen Viet 375

Das, Ankush 359
Datta, Samir 297
Desai, Sameer 347
Ding, Ning 75
Dinh, Vu 375
Dvořák, Pavel 441

Eremondi, Joey 388

Facchini, Stefano 324
Fafianie, Stefan 224
Farzan, Arash 335
Fernau, Henning 415
Fortnow, Lance 10
Freivalds, Rūsiņš 50
Froese, Vincent 200, 224

Ganian, Robert 428
Ghosh, Arijit 347
Goswami, Mayank 347
Grygiel, Katarzyna 62

Hartung, Sepp 260
Hayashi, Yu-ichi 110
He, Dayu 137, 164
He, Xin 137, 164
Ho, Lam Si Tung 375
Horiyama, Takashi 236
Hu, Xiaodong 248

Ibarra, Oscar H. 388
Iraids, Jānis 50
Ito, Takehiro 212

Knop, Dušan 441
Kratochvil, Jan 284

Krishna, Shankara Narayanan 359
Kronegger, Martin 428
Kulkarni, Raghav 99

Lefebvre, Nans 177
Lin, Jin-Yong 453
López-Ortiz, Alejandro 335, 415
Losert, Nadine 38
Lozier, Marc 150

Manasa, Lakshmi 359
McQuillan, Ian 388
Mitsche, Dieter 150
Mizuki, Takaaki 110

Nguyen, Binh T. 375
Nguyen, Duy 375
Nicholson, Patrick K. 335
Niedermeier, Rolf 224
Nishida, Takuya 110

Ogihara, Mitsunori 87
Ono, Hirotaka 212
Otachi, Yota 212

Patel, Dhiren 400
Patel, Kevin 400
Patel, Reema 400
Paul, Subhabrata 347
Perdrix, Simon 324
Pérez-Giménez, Xavier 150
Pfandler, Andreas 428
Poon, Sheung-Hung 453
Popa, Alexandru 428
Porter, Christopher P. 23
Prałat, Paweł 150

Qiao, Youming 99

Romero, Jazmín 415

Salinger, Alejandro 335
Santha, Miklos 18
Shirakawa, Toshihiro 236
Shlapentokh, Alexandra 3
Son, Wanbin 189
Sone, Hideaki 110
Sun, Xiaoming 99

Talmon, Nimrod 200, 224, 260
Talon, Alexandre 284
Tan, Huan 272
Trivedi, Ashutosh 359

Uchizawa, Kei 87
Uehara, Ryuhei 236

Vihrovs, Jevgēnijs 122

Wang, Changjun 248
Wei, Zhaohui 311
Wojtczak, Dominik 359

Xiao, Mingyu 272
Xu, Dawei 236

Zaionc, Marek 62
Zhang, Shengyu 311

466 Author Index

	Preface
	Organization
	Contents
	Invited Papers
	Hilbert's Tenth Problem for Subrings of Q and Number Fields (Extended Abstract)
	1 Some History
	2 Big Rings
	2.1 The Other End of the Spectrum

	3 Number Fields
	4 Big Rings Inside Number Fields
	References

	Nondeterministic Separations
	1 Results
	2 Proof of Theorem??
	3 Proof of Theorem??
	4 New Proof of Nondeterministic Time Hierarchy
	5 Proof of Theorem??
	References

	Quantum and Randomized Query Complexities (Extended Abstract)

	Recursion Theory and Mathematical Logic
	Algorithmically Random Functions and Effective Capacities
	1 Introduction
	2 Background
	3 Symmetric Bernoulli Measures on F(2)
	4 From Functions to Capacities
	5 Random Online Functions
	6 Random Online Partial Functions
	References

	Where Join Preservation Fails in the Bounded Turing Degrees of C.E. Sets
	1 Introduction
	2 Preliminaries
	3 Join Preservation
	4 Meet Preservation
	5 Open Problems
	References

	Structured Frequency Algorithms
	1 Introduction
	2 Definitions
	3 Projective Plane Frequency Computation
	4 Graph Frequency Computation
	5 Conclusions and Open Problems
	References

	Asymptotic Properties of Combinatory Logic
	1 Introduction
	2 Combinators
	3 Densities of Sets of Combinators
	4 Generating Functions
	5 Weakly Normalizing Combinators
	6 Combinatorial Results
	References

	Computational Complexity and Boolean Functions
	Some New Consequences of the Hypothesis That P Has Fixed Polynomial-Size Circuits
	1 Introduction
	2 Preliminaries
	3 Some Basic Consequences of ¶SIZE(nc)
	3.1 E and SIZE(2o(n))
	3.2 BPP and SIZE(nc+)

	4 ¶SIZE(nc) vs Pseudorandom Generators
	4.1 On General Pseudorandom Generators Fooling Small Circuits
	4.2 Unfoolable Circuit Families Against All Pseudorandom Generators
	4.3 Unfoolable BPP Machines Against All Pseudorandom Generators

	5 Two-Round Public-Coin Zero-Knowledge Proofs
	5.1 The Protocol
	5.2 Obtaining Witness Extraction from Program Obfuscation

	References

	Computational Complexity Studies of Synchronous Boolean Finite Dynamical Systems
	1 Introduction
	2 Preliminaries
	2.1 Definitions
	2.2 PSPACE-Completeness

	3 Algorithms for Convergence and PathIntersection
	4 Algorithm for CycleLength
	5 Conclusion
	References

	On the Power of Parity Queries in Boolean Decision Trees
	1 Introduction
	2 Preliminaries
	3 Every PDT Has an Influential Variable
	4 Every Linear Decision Tree Has an Influential Variable
	References

	Card-Based Protocols for Any Boolean Function
	1 Introduction
	1.1 Preliminary Notations
	1.2 AND Protocol
	1.3 Copy Protocol
	1.4 Our Results

	2 Building Blocks
	2.1 Improved AND Protocol
	2.2 Improved Half-Adder Protocol

	3 Computation of Any Multivariable Function
	3.1 Concepts and Sub-Protocol
	3.2 Complete Description of Protocol

	4 Case of Symmetric Functions
	5 Conclusion
	References

	Size of Sets with Small Sensitivity: A Generalization of Simon's Lemma
	1 Introduction
	2 Preliminaries
	3 Simon's Lemma
	4 Smallest Irreducible Subgraphs
	4.1 Instances Achieving the Minimum
	4.2 Optimality
	4.3 Application for Boolean Functions
	4.4 Generalization of Simon's Lemma

	5 Conclusion
	References

	Graph Theory
	Star Shaped Orthogonal Drawing
	1 Introduction
	2 Preliminaries
	3 A Special Rectangular Dual
	4 Star-Shaped Orthogonal Convex Drawing
	4.1 Node Split Operation
	4.2 The Edge Pattern Around a Node
	4.3 Algorithm

	5 Conclusion
	References

	The Domination Number of On-line Social Networks and Random Geometric Graphs
	1 Introduction
	2 Proof of Theorem??
	3 Domination in Facebook 100 Graphs
	4 Proof of Theorem??
	5 Conclusions and Open Problems
	References

	A Linear Time Algorithm for Determining Almost Bipartite Graphs
	1 Introduction
	2 Preliminaries
	3 Main Theorem
	4 Algorithm
	4.1 Processing ONT Edges
	4.2 Processing ENT Edges

	References

	The First-Order Contiguity of Sparse Random Graphs with Prescribed Degrees
	1 Introduction
	2 Preliminaries
	2.1 Graph Theory
	2.2 Logic
	2.3 Galton-Watson Branching Processes and Local Weak Convergence

	3 Convergence of Graphs with Prescribed Degrees
	4 Main Results
	4.1 Asymptotic Degree Sequences and 0-1 Laws
	4.2 First-Order Contiguity of G(n, D) Graphs
	4.3 Contiguity with Erdős-Rényi Random Graphs
	4.4 A Taxonomy of the Limit Theories

	5 Conclusion
	References

	Streaming Algorithms for Smallest Intersecting Ball of Disjoint Balls
	1 Introduction
	2 Preliminaries
	3 (2+2+*)-Approximation Algorithm in Any Dimensions d
	3.1 Improved Approximation Algorithm

	4 3-Approximation Algorithm in Fixed Dimensions d
	5 =.26em plus.1em minus .1em(1+)-Approximation Algorithm in Fixed Dimensions d
	6 Conclusion
	References

	Multi-player Diffusion Games on Graph Classes
	1 Introduction
	1.1 Related Work
	1.2 Our Results
	1.3 Preliminaries

	2 Paths and Cycles
	3 Grid Graphs
	4 General Graphs
	5 Conclusion
	References

	Reconfiguration of Cliques in a Graph
	1 Introduction
	1.1 Our Problems and Three Rules
	1.2 Known and Related Results
	1.3 Our Contribution

	2 Preliminaries
	2.1 Definitions for Clique Reconfiguration
	2.2 Definitions for Shortest Clique Reconfiguration

	3 Rule Equivalence and Complexity
	3.1 Equivalence of TS and TAR Rules
	3.2 Equivalence of TJ and TAR Rules
	3.3 Results Obtained from Independent Set Reconfiguration

	4 Polynomial-Time Algorithms
	4.1 Graphs of Bounded Clique Size
	4.2 Graphs with Polynomially Many Maximal Cliques

	5 Linear-Time Algorithm for Chordal Graphs
	5.1 Definitions of Chordal Graphs and Interval Graphs
	5.2 Linear-Time Reduction from Chordal Graphs to Interval Graphs
	5.3 Linear-Time Algorithm for Interval Graphs

	6 Conclusion
	References

	The Complexity of Finding Effectors
	1 Introduction
	2 Preliminaries and Model Discussion
	3 Computing the Cost Function
	4 Finding Effectors
	4.1 General Model
	4.2 Special Case: Unlimited Budget
	4.3 Special Case: Influence Maximization

	5 Conclusion
	References

	Common Developments of Three Incongruent Boxes of Area 30
	1 Introduction
	2 Preliminaries
	2.1 Problem Definitions
	2.2 Enumeration by Zero-Suppressed Binary Decision Diagrams

	3 Algorithms for the First Two Boxes of Size 117 and 133
	3.1 Algorithm Based on ZDDs
	3.2 Algorithm Based on Exhaustive Search

	4 Algorithm for the Third Box
	5 Concluding Remarks
	References

	Finding Connected Dense k-Subgraphs
	1 Introduction
	2 Preliminaries
	3 Algorithms
	3.1 O(n2/k2)-Approximation
	3.2 O(n2/5)-Approximation

	4 Conclusion
	References

	The Complexity of Degree Anonymization by Graph Contractions
	1 Introduction
	2 Preliminaries
	2.1 Parameterized Complexity
	2.2 Graph Theory and Contractions
	2.3 Main Problem
	2.4 Overview

	3 NP-hardness
	4 Non-structural Parameters
	5 Structural Parameters
	6 Conclusion
	References

	An Improved Exact Algorithm for Maximum Induced Matching
	1 Introduction
	2 Preliminaries
	2.1 Relations to MAXIMUM INDEPENDENT SET
	2.2 Branch-and-Search Algorithms

	3 The Main Idea to Design Algorithms
	4 Structural Properties
	5 The Algorithm and Its Analysis
	References

	Completion of the Mixed Unit Interval Graphs Hierarchy
	1 Introduction
	2 Preliminaries
	2.1 First Definitions and Notations
	2.2 Previous Results

	3 Our Results
	3.1 Completion of the Unit Interval Graphs Hierarchy
	3.2 Characterization of the New Class

	References

	Bounded Treewidth and Space-Efficient Linear Algebra
	1 Introduction
	1.1 Our Results and Techniques
	1.2 Organization of the Paper

	2 Preliminaries
	2.1 Background on Graph Theory
	2.2 Background on MSO-Logic

	3 Determinant Computation
	3.1 Spanning Trees and Directed Euler Tours

	4 Hardness Results
	5 Open Problems
	References

	Quantum Computing
	Quantum Game Players Can Have Advantage Without Discord
	1 Introduction
	2 Preliminaries
	3 Quantum Game Without Discord
	3.1 Case 1: M Is Full-Rank
	3.2 Case 2: M Is Not Full Rank
	3.3 Optimization

	References

	Quantum Circuits for the Unitary Permutation Problem
	1 Introduction
	2 Bounds for the Standard Model
	3 Bounds for the Quantum Switch Circuit Model
	References

	Parallelism and Statistics
	Algorithms in the Ultra-Wide Word Model
	1 Introduction
	2 The Ultra-Wide Word-RAM Model
	3 Simulation of FS-RAM
	4 Dynamic Programming
	5 String Searching
	6 Conclusions
	References

	Uniformity of Point Samples in Metric Spaces Using Gap Ratio
	1 Introduction
	2 Continuous Metric Spaces
	2.1 Lower Bounds
	2.2 Hardness
	2.3 Approximation Algorithms

	3 Discrete Metric Space
	3.1 Graph
	3.2 Euclidean Space

	4 A General Approximation Hardness Result
	References

	On Pure Nash Equilibria in Stochastic Games
	1 Introduction
	2 Simple Stochastic Multi-player Games
	3 Improved Undecidability Result
	3.1 Pure-Strategy Equilibria
	3.2 Finite-State Equilibria

	4 Conclusion
	References

	Learning, Automata and Probabilistic Models
	Learning from Non-iid Data: Fast Rates for the One-vs-All Multiclass Plug-in Classifiers
	1 Introduction
	2 Preliminaries
	2.1 Settings
	2.2 Margin Assumption for Multiclass Setting

	3 The One-vs-All Multiclass Plug-In Classifier
	4 Fast Learning for Exponentially Strongly Mixing Data
	5 Fast Learning from a Drifting Concept
	6 Remarks
	7 Technical Proofs
	7.1 Proof of Lemma2
	7.2 Proof of Lemma3
	7.3 Proof of Lemma5

	References

	Deletion Operations on Deterministic Families of Automata
	1 Introduction
	2 Preliminaries
	3 Closure and Non-closure for Erasing Operations
	3.1 Right Quotient for DCM
	3.2 Right and Left Quotients of Regular Sets
	3.3 Suffix, Infix and Left Quotient for DCM(1,1)
	3.4 Non-closure of Suffix, Infix and Outfix with Multiple Counters or Reversals
	3.5 Closure for Bounded Languages

	References

	ExplicitPRISMSymm: Symmetry Reduction Technique for Explicit Models in PRISM
	1 Introduction
	2 Related Work
	3 Symmetry in Probabilistic Model Checking
	3.1 Automorphisms
	3.2 Quotient Probabilistic Models

	4 Extending Explicit PRISM with Symmetry Reduction
	4.1 PRISM's Existing Explicit Technique Vs. Symbolic Technique
	4.2 On-the-Fly Quotient Model Construction
	4.3 Representative Computation

	5 Experimental Results
	6 Conclusion
	References

	Parameterised Complexity
	Kernelization Algorithms for Packing Problems Allowing Overlaps
	1 Introduction
	2 Terminology
	3 Hardness of Packing Problems Allowing Overlaps
	4 Packing Problems with Bounded Membership
	4.1 Packing Sets with t-Membership
	4.2 Packing Graphs with t-Membership

	5 Packing Problems with Bounded Overlap
	5.1 Packing Sets with t-Overlap
	5.2 Packing Graphs with t-Overlap

	6 Conclusions
	References

	Parameterized Complexity of Asynchronous Border Minimization
	1 Introduction
	2 Preliminaries
	2.1 Parameterized Complexity

	3 Hardness
	4 Fpt-Algorithms
	4.1 Fpt-Algorithm for P-BMPec,
	4.2 Fpt-Algorithm for BMPec,,r
	4.3 Fpt-Algorithm for P-BMPec,o
	4.4 Fpt-Algorithm for BMPec,o

	5 Conclusion
	References

	Parametrized Complexity of Length-Bounded Cuts and Multi-cuts
	1 Introduction
	2 Preliminaries
	3 Minimal Length Bounded Multi-cuts
	4 Restricted Bounded Multi-cut
	4.1 Node Lemmas
	4.2 Proofs of Theorems

	5 Hardness of the L-bounded Cut
	5.1 Basic Gadget
	5.2 Butte Path
	5.3 Reduction

	6 Conclusions
	References

	Algorithms and Hardness for Signed Domination
	1 Introduction
	2 W[2]-hardness for SD Problem
	3 APX-hardness for Graphs of Maximum Degree Six
	4 Approximation Algorithm for Small Degree Graphs
	4.1 3-approximation for Subcubic Graphs
	4.2 13-approximation Graphs with Maximum Degree Four
	4.3 17-approximation for Graphs with Maximum Degree Five

	5 NP-completeness for Subcubic Planar Bipartite Graphs
	6 FPT-algorithm for Subcubic Graphs
	References

	Author Index

