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Abstract. Synthesis is the automated construction of a system from its
specification. The system has to satisfy its specification in all possible envi-
ronments. The environment often consists of agents that have objectives of
their own. Thus, it makes sense to soften the universal quantification on the
behavior of the environmentand take theobjectives of its underlyingagents
into an account. Fisman et al. introduced rational synthesis: the problem of
synthesis in the context of rational agents. The input to the problem con-
sists of temporal-logic formulas specifying the objectives of the system and
the agents that constitute the environment, and a solution concept (e.g.,
Nash equilibrium). The output is a profile of strategies, for the system and
the agents, such that the objective of the system is satisfied in the computa-
tion that is the outcome of the strategies, and the profile is stable according
to the solution concept; that is, the agents that constitute the environment
have no incentive to deviate from the strategies suggested to them.

In this paper we continue to study rational synthesis. First, we sug-
gest an alternative definition to rational synthesis, in which the agents
are rational but not cooperative. In the non-cooperative setting, one
cannot assume that the agents that constitute the environment take into
account the strategies suggested to them. Accordingly, the output is a
strategy for the system only, and the objective of the system has to be
satisfied in all the compositions that are the outcome of a stable profile
in which the system follows this strategy. We show that rational synthe-
sis in this setting is 2ExpTime-complete, thus it is not more complex
than traditional synthesis or cooperative rational synthesis. Second, we
study a richer specification formalism, where the objectives of the sys-
tem and the agents are not Boolean but quantitative. In this setting, the
goal of the system and the agents is to maximize their outcome. The
quantitative setting significantly extends the scope of rational synthesis,
making the game-theoretic approach much more relevant.
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1 Introduction

Synthesis is the automated construction of a system from its specification. The
basic idea is simple and appealing: instead of developing a system and verifying
that it adheres to its specification, we would like to have an automated procedure
that, given a specification, constructs a system that is correct by construction.
The first formulation of synthesis goes back to Church [Chu63]; the modern
approach to synthesis was initiated by Pnueli and Rosner, who introduced LTL
(linear temporal logic) synthesis [PR89]. The LTL synthesis problem receives as
input a specification in LTL and outputs a reactive system modeled by a finite-
state transducer satisfying the given specification — if such exists. It is important
to distinguish between input signals, assigned by the environment, and output
signals, assigned by the system. A system should be able to cope with all values
of the input signals, while setting the output signals to desired values [PR89].
Therefore, the quantification structure on input and output signals is different.
Input signals are universally quantified while output signals are existentially
quantified.

Modern systems often interact with other systems. For example, the clients
interacting with a server are by themselves distinct entities (which we call agents)
and are many times implemented by systems. In the traditional approach to syn-
thesis, the way in which the environment is composed of its underlying agents is
abstracted. In particular, the agents can be seen as if their only objective is to
conspire to fail the system. Hence the term “hostile environment” that is tradi-
tionally used in the context of synthesis. In real life, however, many times agents
have goals of their own, other than to fail the system. The approach taken in the
field of algorithmic game theory [NRTV07] is to assume that agents interacting
with a computational system are rational, i.e., agents act to achieve their own
goals. Assuming agents rationality is a restriction on the agents behavior and
is therefore equivalent to softening the universal quantification on the environ-
ment.1 Thus, the following question arises: can system synthesizers capitalize on
the rationality and goals of agents interacting with the system?

In [FKL10], Fisman et al. positively answered this question by introducing
and studying rational synthesis. The input to the rational-synthesis problem con-
sists of LTL formulas specifying the objectives of the system and the agents that
constitute the environment, and a solution concept, e.g., dominant strategies,
Nash Equilibria, and the like. The atomic propositions over which the objectives
are defined are partitioned among the system and the agents, so that each of
them controls a subset of the propositions. The desired output is a strategy pro-
file such that the objective of the system is satisfied in the computation that is
the outcome of the profile, and the agents that constitute the environment have
no incentive to deviate from the strategies suggested to them (formally, the pro-
file is an equilibrium with respect to the solution concept). Fisman et al. showed
1 Early work on synthesis has realized that the universal quantification on the behav-

iors of the environment is often too restrictive. The way to address this point, how-
ever, has been by adding assumptions on the environment, which can be part of the
specification (cf., [CHJ08]).
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that there are specifications that cannot be realized in a hostile environment but
are realizable in a rational environment. Moreover, the rational-synthesis prob-
lem for LTL and common solution concepts used in game theory can be solved
in 2ExpTime thus its complexity coincides with that of usual synthesis.

In this paper we continue the study of rational synthesis. We present the
following three contributions. First, we suggest an alternative definition to ratio-
nal synthesis, in which the agents are rational but not cooperative. Second, we
study a richer specification formalism, where the objectives of the system and the
agents are not Boolean but quantitative. Third, we show that all these variants
of the rational synthesis problems can be reduced to model checking in fragments
of Strategy Logic [CHP07]. Before we describe our contributions in more detail,
let us highlight a different way to consider rational synthesis and our contribu-
tion here. Mechanism design is a field in game theory and economics studying
the design of games whose outcome (assuming agents rationality) achieves some
goal [NR01,NRTV07]. The outcome of traditional games depends on the final
position of the game. In contrast, the systems we reason about maintain an on-
going interaction with their environment, and we reason about their behavior
by referring not to their final state (in fact, we consider non-terminating sys-
tems, with no final state) but rather to the language of computations that they
generate. Rational synthesis can be viewed as a variant of mechanism design in
which the game is induced by the objective of the system, and the objectives
of both the system and the agents refer to their on-going interaction and are
specified by temporal-logic formulas. Our contributions here correspond to the
classic setting assumed in mechanism design: the agents need not be cooperative,
and the outcome is not Boolean.

We argue that the definition of rational synthesis in [FKL10] is cooperative, in
the sense that the agents that constitute the environment are assumed to follow
the strategy profile suggested to them (as long as it is in an equilibrium). Here,
we consider also a non-cooperative setting, in which the agents that constitute
the environment may follow any strategy profile that is in an equilibrium, and
not necessarily the one suggested to them by the synthesis algorithm. In many
scenarios, the cooperative setting is indeed too optimistic, as the system cannot
assume that the environment, even if it is rational, would follow a suggested
strategy, rather than a strategy that is as good for it. Moreover, sometimes
there is no way to communicate with the environment and suggest a strategy
for it. From a technical point of view, we show that the non-cooperative setting
requires reasoning about all possible equilibria, yet, despite this more sophisti-
cated reasoning, it stays 2ExpTime-complete. We achieve the upper bound
by reducing rational synthesis to the model-checking problem for Strategy Logic
(Sl, for short). Sl is a specification formalism that allows to explicitly quan-
tify over strategies in games as first-order objects [CHP07]. While the model-
checking problem for strategy logic is in general non-elementary, we show that
it is possible to express rational synthesis in the restricted Nested-Goal frag-
ment of Sl, introduced in [MMPV14], which leads to the desired complexity.
It is important to observe the following difference between the cooperative and
the non-cooperative settings. In the cooperative one, we synthesize strategies for
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all agents, with the assumption that the agent that corresponds to the system
always follows his suggested strategy and the agents that constitute the environ-
ment decide in a rational manner whether to follow their strategies. On the other
hand, in the non-cooperative setting, we synthesize a strategy only for the agent
that corresponds to the system, and we assume that the agents that constitute
the environment are rational, thus the suggested strategy has to win against all
rational behaviors of the environment.

Our second contribution addresses a weakness of the classical synthesis prob-
lem, a weakness that is more apparent in the rational setting. In classical syn-
thesis, the specification is Boolean and describes the expected behavior of the
system. In many applications, systems can satisfy their specifications at differ-
ent levels of quality. Thus, synthesis with respect to Boolean specifications does
not address designers needs. This latter problem is a real obstacle, as designers
would be willing to give up manual design only after being convinced that the
automatic procedure that replaces it generates systems of comparable quality. In
the last years we see a lot of effort on developing formalisms that would enable
the specification of such quality measures [BCHJ09,ABK13].

Classical applications of game theory consider games with quantitative pay-
offs. In the Boolean setting, we assumed that the payoff of an agent is, say, 1,
if its objective is satisfied, and is 0 otherwise. In particular, this means that
agents whose objectives are not satisfied have no incentive to follow any strat-
egy, even if the profile satisfies the solution concept. In real-life, rational objec-
tives are rarely Boolean. Thus, even beyond our goal of synthesizing systems of
high quality, the extension of the synthesis problem to the rational setting calls
also for an extension to a quantitative setting. Unfortunately, the full quantita-
tive setting is undecidable already in the context of model checking [Hen10]. In
[FKL10], Fisman et al. extended cooperative rational synthesis to objectives in
the multi-valued logic LLTL where specifications take truth values from a finite
lattice.

We introduce here a new quantitative specification formalism, termed Objec-
tive LTL, (OLTL, for short). We first define the logic, and then study its ratio-
nal synthesis. Essentially, an OLTL specification is a pair θ = 〈Ψ, f〉, where
Ψ = 〈ψ1, ψ2, . . . , ψm〉 is a tuple of LTL formulas and f : {0, 1}m → Z is a reward
function, mapping Boolean vectors of length m to an integer. A computation η
then maps θ to a reward in the expected way, according to the subset of formulas
that are satisfied in η. In the rational synthesis problem for OLTL the input
consists of OLTL specifications for the system and the other agents, and the
goal of the system is to maximize its reward with respect to environments that
are in an equilibrium. Again, we distinguish between a cooperative and a non-
cooperative setting. Note that the notion of an equilibrium in the quantitative
setting is much more interesting, as it means that all agents in the environment
cannot expect to increase their payoffs. We show that the quantitative setting is
not more complex than the non-quantitative one, thus quantitative rational syn-
thesis is complete for 2ExpTime in both the cooperative and non-cooperative
settings.
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2 Preliminaries

2.1 Games

A concurrent game structure (CGS, for short) [AHK02] is a tuple G � 〈Φ,
Ω, (Ai)i∈Ω, S, λ, τ, s0〉, where Φ and Ω = {α0, . . . , αk} are finite sets of atomic
propositions and agents, Ai are disjoint sets of actions, one for each agent αi,
S is a set of states, s0 ∈ S is a designated initial state, and λ : S → 2Φ is a
labeling function that maps each state to the set of atomic propositions true in
that state. By A �

⋃
i∈Ω Ai we denote the union of all possible action for all

the agents. Let D � A0 × . . . × Ak be the set of decisions, i.e., (k + 1)-tuples of
actions representing the choices of an action for each agent. Then, τ : S×D → S
is a deterministic transition function mapping a pair of a state and a decision
to a state.

A path in a CGS G is an infinite sequence of states η = η0 · η1 · . . . ∈ Sω that
agrees with the transition function, i.e., such that, for all i ∈ N, there exists a
decision d ∈ D such that ηi+1 = τ(ηi, d). A track in a CGS G is a prefix ρ of
a path η, also denoted by η≤n, for a suitable n ∈ N. A track ρ is non-trivial if
|ρ| > 0, i.e., ρ �= ε.

We use Pth ⊆ Sω and Trk ⊆ S+ to denote the set of all paths and non-trivial
tracks, respectively. Also, for a given s ∈ S, we use Pths and Trks to denote the
subsets of paths and tracks starting from s ∈ S. Intuitively, the game starts in
the state s0 and, at each step, each agent selects an action in its set. The game
then deterministically proceeds to the next state according to the corresponding
decision. Thus, the outcome of a CGS is a path, regulated by individual actions
of the agents.

A strategy for Agent αi is a tool used to decide which decision to take at
each phase of the game. Formally, it is a function πi : Trk → Ai that maps
each non-trivial track to a possible action of Agent αi. By Πi we denote the set
of all possible strategies for agent αi. A strategy profile is a (k + 1)-tuple P =
〈π0, . . . , πk〉 ∈ Π0 × . . .×Πk that assigns a strategy to each agent. We denote by
P � Π0 × . . . × Πk the set of all possible strategy profiles. For a strategy profile
P and a state s, we use η = play(P, s) to denote the path that is the outcome
of a game that starts in s and agrees with P, i.e., for all i ∈ N, it holds that
ηi+1 = τ(ηi, di), where di = (π0(η≤i), . . . , πk(η≤i)). By play(P) = play(P, s0) we
denote the unique path starting from s0 obtained from P.

We model reactive systems by deterministic transducers. A transducer is a
tuple T = 〈I,O,S, s0, δ, L〉, where I is a set of input signals assigned by the
environment, O is a set of output signals, assigned by the system, S is a set
of states, s0 is an initial state, δ : S × 2I → S is a transition function, and
L : S → 2O is a labeling function. When the system is in state s ∈ S and it reads
an input assignment σ ∈ 2I, it changes its state to s′ = δ(s, σ) where it outputs
the assignment L(s′). Given a sequence � = σ1, σ2, σ3, . . . ∈ (2I)ω of inputs, the
execution of T on � is the sequence of states s0, s1, s2, . . . such that for all j ≥ 0,
we have sj+1 = δ(sj , σj). The computation η ∈ (2I × 2O)ω of S on � is then
〈L(s0), σ1〉, 〈L(s1), σ2〉, 〈L(s2), σ3〉, . . ..
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2.2 Strategy Logic

Strategy Logic [CHP07,MMV10,MMPV12] (Sl, for short) is a logic that allows
to quantify over strategies in games as explicit first-order objects. Intuitively,
such quantification, together with a syntactic operator called binding, allows
us to restrict attention to restricted classes of strategy profiles, determining a
subset of paths, in which a temporal specification is desired to be satisfied. Since
nesting of quantifications and bindings is possible, such temporal specifications
can be recursively formulated by an Sl subsentence. From a syntactic point of
view, Sl is an extension of LTL with strategy variables Var0, . . . ,Vark for the
agents, existential (〈〈xi〉〉) and universal ([[xi]]) strategy quantifiers, and a binding
operator of the form (αi, xi) that couples an agent αi with one of its variables
xi ∈ Vari.

We first introduce some technical notation. For a tuple t = s(t0, . . . , tk), by
t[i ← d] we denote the tuple obtained from t by replacing the i-th component
with d. We use �x as an abbreviation for the tuple (x0, . . . , xk) ∈ Var0×. . .×Vark.
By 〈〈�x〉〉 = 〈〈x0〉〉 . . . 〈〈xk〉〉, [[�x]] = [[x0]] . . . [[xk]], and �(�x) = (α0, x0) . . . (αk, xk) we
denote the existential and universal quantification, and the binding of all the
agents to the strategy profile variable �x, respectively. Finally, by �(�x−i, yi) =
(α0, x0) . . . (αi, yi) . . . (αk, xk) we denote the changing of binding for Agent αi

from the strategy variable xi to the strategy variable yi in the global binding
�(�x).

Here we define and use a slight variant of the Nested-Goal fragment of Sl,
namely Sl[ng], introduced in [MMPV14]. Formulas in Sl[ng] are defined with
respect to a set Φ of atomic proposition, a set Ω of agents, and sets Vari of
strategy variables for Agent αi ∈ Ω. The set of Sl[ng] formulas is defined by the
following grammar:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | X ϕ | ϕ U ϕ | ϕ R ϕ | 〈〈xi〉〉ϕ | [[xi]]ϕ | �(�x)ϕ,

where, p ∈ Φ is an atomic proposition, xi ∈ Vari is a variable, and �x ∈ Var0 ×
. . . × Vark is a tuple of variables, one for each agent.

The LTL part has the classical meaning. The formula 〈〈xi〉〉ϕ states that
there exists a strategy for Agent αi such that the formula ϕ holds. The formula
[[xi]]ϕ states that, for all possible strategies for Agent αi, the formula ϕ holds.
Finally, the formula �(�x)ϕ states that the formula ϕ holds under the assumption
that the agents in Ω adhere to the strategy evaluation of the variable xi coupled
in �(�x).

As an example, 〈〈x0〉〉[[x1]]�(�x)(pU q)∨ [[y0]]〈〈y1〉〉�(�y)(G F p∧G ¬q) is an Sl[ng]

formula stating that either the system α0 has a strategy x0 to enforce pU q or,
for all possible behaviors y0, the environment has a strategy y1 to enforce both
G F p and G ¬q.

We denote by free(ϕ) the set of strategy variables occurring in ϕ but not in
a scope of a quantifier. A formula ϕ is closed if free(ϕ) = ∅.

Similarly to the case of first order logic, an important concept that char-
acterizes the syntax of Sl is the one of alternation depth of quantifiers, i.e.,
the maximum number of quantifier switches 〈〈xi〉〉[[xj ]], [[xi]]〈〈xj〉〉, in the formula.
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A precise formalization of the concepts of alternation depth can be found in
[MMV10,MMPV12].

Now, in order to define the semantics of Sl, we use the auxiliary concept of
assignment. Let Var =

⋃k
i=0 Vari be a set of variables for the agents in Ω, an

assignment is a function χ : Var ∪ Ω → Π mapping variables and agents to a
relevant strategy, i.e., for all αi ∈ Ω and xi ∈ Vari, we have that χ(αi), χ(xi) ∈
Πi. Let Asg � ΠVar∪Ω denote the set of all assignments. For an assignment χ
and elements l ∈ Var ∪ Ω, we use χ[l �→ π] ∈ Asg to denote the new assignment
that returns π on l and the value of χ on the other ones, i.e., χ[l �→π](l)�π and
χ[l �→ π](l′) � χ(l′), for all l′ ∈ (Var ∪ Ω)\{l}. By play(χ, s) we denote the path
play(P, s), for the strategy profile P that is compatible with χ.

We now describe when a given game G and a given assignment χ satisfy an
Sl formula ϕ, where dom(χ)2 = free(ϕ) ∪ Ω. We use G, χ, s |= ϕ to indicate that
the path play(χ, s) satisfies ϕ over the CGS G. For ϕ in LTL, the semantics is
as usual [MP92]. For the other operators, the semantics is as follows.

1. G, χ, s |= 〈〈xi〉〉ϕ if there exists a strategy πi for αi such that G, χ[xi �→ πi],
s |= ϕ;

2. G, χ, s |= [[xi]]ϕ if, for all strategies πi for αi, it holds that G, χ[xi �→ πi], s |= ϕ;
3. G, χ, s |= �(�x)ϕ if it holds that G, χ[α0 �→ x0] . . . [αk �→ xk], s |= ϕ.

Finally, we say that G satisfies ϕ, and write G |= ϕ, if there exists an assign-
ment χ such that G, χ, s0 |= ϕ.

Intuitively, at Items 1 and 2, we evaluate the existential and universal quan-
tifiers over a variable xi by associating with it a suitable strategy. At Item 3 we
commit the agents to use the strategy contained in the tuple variable �x.

Theorem 1. [MMPV14] The model-checking problem for Sl[ng] is (d + 1)
ExpTime with d being the alternation depth of the specification.

2.3 Rational Synthesis

We define two variants of rational synthesis. The first, cooperative rational syn-
thesis, was introduced in [FKL10]. The second, non-cooperative rational synthesis,
is new.

We work with the following model: the world consists of a system and an
environment composed of k agents: α1, . . . , αk. For uniformity, we refer to the
system as Agent α0. We assume that Agent αi controls a set Xi of propositions,
and the different sets are pairwise disjoint. At each point in time, each agent
sets his propositions to certain values. Let X =

⋃
0≤i≤k Xi, and X−i = X \ Xi.

Each agent αi (including the system) has an objective ϕi, specified as an LTL
formula over X.

This setting induces the CGSG = 〈Φ,Ω, (Ai)i∈Ω, S, λ, τ, s0〉 defined as fol-
lows. The set of agents Ω = {α0, α1, . . . , αk} consists of the system and the
agents that constitute the environment. The actions of Agent αi are the pos-
sible assignments to its variables. Thus, Ai = 2Xi . We use A and A−i to
2 By dom(f) we denote the domain of the function f.
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denote the sets 2X and 2X−i , respectively. The nodes of the game record the
current assignment to the variables. Hence, S = A, and for all s ∈ S and
〈σ0, . . . , σk〉 ∈ A0 × A1 × · · · × Ak, we have δ(s, σ0, . . . , σk) = 〈σ0, · · · , σk〉.

A strategy for the system is a function π0 : Trk → A0. In the standard synthe-
sis problem, we say that π0 realizes ϕ0 if, no matter which strategies the agents
composing the environment follow, all the paths in which the system follows π0

satisfy ϕ0. In rational synthesis, on instead, we assume that the agents that con-
stitute the environment are rational, which soften the universal quantification
on the behavior of the environment.

Recall that the rational-synthesis problem gets a solution concept as a para-
meter. As discussed in Sect. 1, the fact that a strategy profile is a solution with
respect to the concept guarantees that it is not worthwhile for the agents consti-
tuting the environment to deviate from the strategies assigned to them. Several
solution concepts are studied and motivated in game theory. Here, we focus on
the concepts of dominant strategy and Nash equilibrium, defined below.

The common setting in game theory is that the objective for each agent is
to maximize his payoff – a real number that is a function of the outcome of the
game. We use payoffi : Pth → R to denote the payoff function of Agent αi. That
is, payoffi assigns to each possible path η a real number payoffi(η) expressing
the payoff of αi on η. For a strategy profile P, we use payoffi(P) to abbreviate
payoffi(play(P, s0)). In the case of an LTL goal ψi, we define payoffi(η) = 1 if
η |= ψi and payoffi(η) = 0, otherwise.

The simplest and most appealing solution concept is dominant-strategies
solution [OR94]. A dominant strategy is a strategy that an agent can never lose
by adhering to, regardless of the strategies of the other agents. Therefore, if there
is a profile of strategies P = 〈π0, . . . , πk〉 in which all strategies πi are dominant,
then no agent has an incentive to deviate from the strategy assigned to him in
P. Formally, P is a dominant strategy profile if for every 1 ≤ i ≤ k and for every
(other) profile P′, we have that payoffi(P′) ≤ payoffi(P′[i ← πi]).

As an example, consider the game in Fig. 1(a), played by three agents, Alice,
Bob, and Charlie, whose actions are {a1, a2}, {b1, b2}, and {c1, c2}, respectively.
The arrows are labeled with the possible action of the agents. Each agent wants
to visit a state marked with his initial letter, infinitely often. In this game, the
strategy for Bob of always choosing b2 on his node 2 is dominant, while all the
possible strategies for Charlie are dominant. On the other hand, Alice has no
dominant strategies, since her goal essentially depends on the strategies adopted
by the other agents. In several games, it can happen that agents have not any
dominant strategy. For this reason, one would consider also other kind of solution
concepts.

Another well known solution concept is Nash equilibrium [OR94]. A strategy
profile is a Nash equilibrium if no agent has an incentive to deviate from his
strategy in P provided that the other agents adhere to the strategies assigned
to them in P. Formally, P is a Nash equilibrium profile if for every 1 ≤ i ≤ k
and for every (other) strategy π′

i for agent αi, we have that payoffi(P[i ← π′
i]) ≤

payoffi(P). An important advantage of Nash equilibrium is that it is more likely
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0

1 2

a, c c a, b

a1 a2

c1 c2 b1 b2

(a) The game

0

1 2

a, c c a, b

a1 a2

c1 c2 b1 b2

(b) Nash equilibrium

Fig. 1. A game.

to exist than an equilibrium of dominant strategies [OR94]3. A weakness of Nash
equilibrium is that it is not nearly as stable as a dominant-strategy solution: if
one of the other agents deviates from his assigned strategy, nothing is guaranteed.

For the case of repeated-turn games like infinite games, a suitable refinement
of Nash Equilibria is the Subgame perfect Nash-equilibrium [Sel75] (SPE, for
short). A strategy profile P = 〈π0, . . . , πk〉 is an SPE if for every possible history
of the game, no agent αi has an incentive to deviate from her strategy πi, assum-
ing that the other agents follow their strategies in P. Intuitively, an SPE requires
the existence of a Nash Equilibrium for each subgame starting from a randomly
generated finite path of the original one. In [FKL10], the authors have studied
cooperative rational synthesis also for the solution concept of SPE. To do this,
the synthesis algorithm in [FKL10] was extended to consider all possible histories
of the game. In Sl such a path property can be expressed combining strategy
quantifiers with temporal operators. Indeed, the formula ϕ = [[�x]]�(�x)G ψ(�y),
with free(ϕ) = �y, states that, for all possible profile strategies the agents can fol-
low, the game always reaches a position in which the formula ψ(�y) holds. Thus,
for all possible paths that can be generated by agents, the property holds. By
replacing ψ(�y) with the above formula, we then obtain a formula that represents
SPEs. Hence, the cooperative and non-cooperative synthesis problems can be
asserted in Sl also for SPE, and our results hold also for this solution concept.

In rational synthesis, we control the strategy of the system and assume that
the agents that constitute the environment are rational. Consider a strategy
profile P = 〈π0, . . . , πk〉 and a solution concept γ (that is, γ is either “dominant
strategies” or “Nash equilibrium”). We say that P is correct if play(P) satisfies ϕ0.
We say that P is in a π0-fixed γ-equilibrium if the agents composing the environ-
ment have no incentive to deviate from their strategies according to the solution
concept γ, assuming that the system continues to follow π0. Thus, P is a π0-fixed
dominant-strategy equilibrium if for every 1 ≤ i ≤ k and for every (other) profile
P′ in which Agent 0 follows π0, we have that payoffi(P′) ≤ payoffi(P′[i ← πi]).
Note that for the case of Nash equilibrium, adding the requirement that P is
π0-fixed does not change the definition of an equilibrium.

3 In particular, all k-agent turn-based games with ω-regular objectives have Nash
equilibrium [CMJ04].
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In the context of objectives in LTL, we assume the following simple payoffs.
If the objective ϕi of Agent αi holds, then his payoff is 1, and if ϕi does not hold,
then the payoff of Agent i is 0. Accordingly, P = 〈π0, . . . , πk〉 is in a dominant-
strategy equilibrium if for every 1 ≤ i ≤ k and profile P′ = 〈π0

′, . . . , πk
′〉 with

π′
0 = π0, if play(P′) |= ϕi, then play(P′[i ← πi]) |= ϕi. Also, P is in a Nash-

equilibrium if for every 1 ≤ i ≤ k and strategy π′
i, if play(P[i ← π′

i]) |= ϕi, then
play(P) |= ϕi.

Definition 1 (Rational synthesis). The input to the rational-strategy problem
is a set X of atomic propositions, partitioned into X0, . . . ,Xk,LTL formulas
ϕ0, . . . , ϕk, describing the objectives of the system and the agents composing the
environment, and a solution concept γ. We distinguish between two variants of
the problem:

1. In Cooperative rational synthesis [FKL10], the desired output is a strategy
profile P such that play(P) satisfies ϕ0 and P is a π0-fixed γ-equilibrium.

2. In Non-cooperative rational synthesis, the desired output is a strategy π0 for
the system such that for every strategy profile P that includes π0 and is a
π0-fixed γ-equilibrium, we have that play(P) satisfies ϕ0.

Thus, in the cooperative variant of [FKL10], we assume that once we sug-
gest to the agents in the environment strategies that are in a γ-equilibrium,
they will adhere to the suggested strategies. In the non-cooperative variant
we introduce here, the agents may follow any strategy profile that is in a γ-
equilibrium, and thus we require the outcome of all these profiles to satisfy
ϕ0. It is shown in [FKL10] that the cooperative rational synthesis problem is
2ExpTime-complete.

Note that the input to the rational synthesis problem may not have a solution,
so when we solve the rational-synthesis problem, we first solve the rational-
realizability problem, which asks if a solution exists. As with classical synthesis,
the fact that Sl model-checking algorithms can be easily modified to return
a regular witness for the involved strategies in case an existentially quantified
strategy exists, makes the realizability and synthesis problems strongly related.

Example 1. Consider a file-sharing network with the system and an environment
consisting of two agents. The system controls the signal d1 and d2 (Agent α1 and
α2 can download, respectively) and it makes sure that an agent can download
only when the other agent uploads. The system’s objective is that both agents
will upload infinitely often. Agent α1 controls the signal u1 (Agent α1 uploads),
and similarly for Agent α2 and u2. The goal of both agents is to download
infinitely often.

Formally, the set of atomic propositions is X = {d1, d2, u1, u2}, partitioned
into X0 = {d1, d2},X1 = {u1}, and X2 = {u2}. The objectives of the system and
the environment are as follows.

– ϕ0 = G (¬u1 → ¬d2) ∧ G (¬u2 → ¬d1) ∧ G F u1 ∧ G F u2,
– ϕ1 = G F d1,
– ϕ2 = G F d2.
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First, note that in standard synthesis, ϕ0 is not realizable, as a hostile envi-
ronment needs not upload. In the cooperative setting, the system can suggest to
both agents the following tit for tat strategy: upload at the first time step,
and from that point onward upload iff the other agent uploads. The system itself
follows a strategy π0 according to which it enables downloads whenever possible
(that is, d2 is valid whenever Agent α1 uploads, and d1 is valid whenever Agent
α2 uploads). It is not hard to see that the above three strategies are all domi-
nant. Indeed, all the three objectives are satisfied. Thus, the triple of strategies
is a solution for the cooperative setting, for both solution concepts.

What about the non-cooperative setting? Consider the above strategy π0 of
the system, and consider strategies for the agents that never upload. The tuple
of the three strategies is in a π0-fixed Nash equilibrium.

This ensures strategies for the environment to be dominant. Indeed, if Agent
α2 changes her strategy, ϕ1 is still satisfied and vice-versa. Indeed, as long as
Agent α2 sticks to his strategy, Agent α1 has no incentive to change his strategy,
and similarly for Agent α2. Thus, π0 is not a solution to the non-cooperative
rational synthesis problem for the solution concept of Nash equilibrium. On
the other hand, we claim that π0 is a solution to the non-cooperative rational
synthesis problem for the solution concept of dominant strategies. For showing
this, we argue that if π1 and π2 are dominant strategies for α1 and α2, then
ϕ0 is satisfied in the path that is the outcome of the profile P = 〈π0, π1, π2〉.
To see this, consider such a path η = play(π0, π1, π2). We necessarily have that
η |= ϕ1 ∧ ϕ2. Indeed, otherwise π1 and π2 would not be dominant, as we know
that with the strategies described above, α1 and α2 can satisfy their objectives.
Now, since η |= ϕ1 ∧ ϕ2, we know that u2 and u1 hold infinitely often in η. Also,
it is not hard to see that the formulas G (¬u1 → ¬d2) and G (¬u2 → ¬d1) are
always satisfied in the context of π0, no matter how the other agents behave.
It follows that η |= ϕ0, thus π0 is a solution of the non-cooperative rational
synthesis problem for dominant strategies.

3 Qualitative Rational Synthesis

In this section we study cooperative and non-cooperative rational synthesis and
show that they can be reduced to the model-checking problem for Sl[ng]. The
cooperative and non-cooperative rational synthesis problems for several solution
concepts can be stated in Sl[ng].

We first show how to state that a given strategy profile �y = (y0, . . . , yk) is
in a y0-fixed γ-equilibrium. For αi ∈ Ω, let ϕi be the objective of Agent αi. For
a solution concept γ and a strategy profile �y = (y0, . . . , yk), the formula ϕγ(�y),
expressing that the profile �y is a y0-fixed γ-equilibrium, is defined as follows.

– For the solution concept of dominant strategies, we define:
ϕγ(�y) := [[�z]]

∧k
i=1 (�(�z)ϕi → �(�z−i, yi)ϕi).

– For the solution concept of Nash equilibrium, we define:
ϕγ(�y) := [[�z]]

∧k
i=1 (�(�y−i, zi)ϕi → �(�y)ϕi).

– For the solution concept of Subgame Perfect Equilibrium, we define:
ϕγ(�y) := [[�x]]�(�x−0, y0)F

∧k
i=1 [[zi]]�(�y−i, zi)ϕi → �(�y)ϕi.
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We can now state the existence of a solution to the cooperative and non-
cooperative rational-synthesis problem, respectively, with input ϕ0, . . . , ϕk by
the closed formulas:
1. ϕγ

cRS := 〈〈y0〉〉〈〈y1〉〉 . . . 〈〈yk〉〉(ϕγ(�y) ∧ ϕ0);
2. ϕγ

noncRS := 〈〈y0〉〉[[y1]] . . . [[yk]](ϕγ(�y) → ϕ0).

Indeed, the formula 1 specifies the existence of a strategy profile P = 〈π0, . . . , πk〉
that is π0-fixed γ-equilibrium and such that the outcome satisfies ϕ0. On the other
hand, the formula 2 specifies the existence of a strategy π0 for the system such that
the outcome of all profiles that are in a π0-fixed γ-equilibrium satisfy ϕ0.

As shown above, all the solution concepts we are taking into account can be
specified in Sl[ng] with formulas whose length is polynomial in the number of
the agents and in which the alternation depth of the quantification is 1. Hence
we can apply the known complexity results for Sl[ng]:

Theorem 2 (Cooperative and non-cooperative rational-synthesis com-
plexity). The cooperative and non-cooperative rational-synthesis problems in the
qualitative setting are 2ExpTime-complete.

Proof. Consider an input ϕ0, . . . , ϕk, X, and γ to the cooperative or non-
cooperative rational-synthesis problem. As explained in Sect. 2.3, the input
induces a game G with nodes in 2X . As detailed above, there is a solution to
the cooperative (resp., non-cooperative) problem iff the Sl[ng] formula ϕγ

cRS

(resp., ϕγ
noncRS) is satisfied in G. The upper bound then follows from the fact

that the model checking problem for Sl[ng] formulas of alternation depth 1 is in
2ExpTime-complete in the size of the formula (Cf., Theorem 1). Moreover, the
model-checking algorithm can return finite-state transducers that model strate-
gies that are existentially quantified.

For the lower bound, it is easy to see that the classical LTL synthesis prob-
lem is a special case of the cooperative and non-cooperative rational synthesis
problem. Indeed, ϕ(I,O) is realizable against a hostile environment iff the solu-
tion to the non-cooperative rational synthesis problem for a system that has an
objective ϕ and controls I and an environment that consists of a single agent
that controls O and has an objective True, is positive.

4 Quantitative Rational Synthesis

As discussed in Sect. 1, a weakness of classical synthesis algorithms is the fact
that specifications are Boolean and miss a reference to the quality of the satis-
faction. Applications of game theory consider games with quantitative payoffs.
Thus, even more than the classical setting, the rational setting calls for an exten-
sion of the synthesis problem to a quantitative setting. In this section we intro-
duce Objective LTL, a quantitative extension of LTL, and study an extension of
the rational-synthesis problem for specifications in Objective LTL. As opposed
to other multi-valued specification formalisms used in the context of synthesis
of high-quality systems [BCHJ09,ABK13], Objective LTL uses the syntax and
semantics of LTL and only augments the specification with a reward function
that enables a succinct and convenient prioritization of sub-specifications.
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4.1 The Quantitative Setting

Objective LTL (OLTL, for short) is an extension of LTL in which specifications
consist of sets of LTL formulas weighted by functions. Formally, an OLTL
specification over a set X of atomic propositions is a pair θ = 〈Ψ, f〉, where
Ψ = 〈ψ1, ψ2, . . . , ψm〉 is a tuple of LTL formulas over X and f : {0, 1}m →
Z is a reward function, mapping Boolean vectors of length m to integers. We
assume that f is given by a polynomial. We use |Ψ | to denote

∑m
i=1 |ψi|. For a

computation η ∈ (2X)ω, the signature of Ψ in η, denoted sig(Ψ, η), is a vector
in {0, 1}m indicating which formulas in Ψ are satisfied in η. Thus, sig(Ψ, η) =
〈v1, v2, . . . , vm〉 is such that for all 1 ≤ i ≤ m, we have that vi = 1 if η |= ψi and
vi = 0 if η �|= ψi. The value of θ in η, denoted val(θ, η) is then f(sig(Ψ, η)). Thus,
the interpretation of an OLTL specification is quantitative. Intuitively, val(θ, η)
indicates the level of satisfaction of the LTL formulas in Ψ in η, as determined
by the priorities induced by f. We note that the input of weighted LTL formulas
studied in [CY98] is a special case of Objective LTL.

Example 2. Consider a system with m buffers, of capacities c1, . . . , cm. Let fulli,
for 1 ≤ i ≤ m, indicate that buffer i is full. The OLTL specification θ = 〈Ψ, f〉,
with Ψ = 〈F full1,F full2, . . . ,F fullm〉 and f(v) = c1 · v1 + · · · + cm · vm enables us
to give different satisfaction values to the objective of filling a buffer. Note that
val(〈Ψ, f〉, η) in a computation η is the sum of capacities of all filled buffers.

In the quantitative setting, the objective of Agent αi is given by means of an
OLTL specification θi = 〈Ψi, fi〉, specifications describe the payoffs to the agents,
and the objective of each agent (including the system) is to maximize his payoff.
For a strategy profile P, the payoff for Agent αi in P is simply val(θi, play(P)).

In the quantitative setting, rational synthesis is an optimization problem.
Here, in order to easily solve it, we provide a decision version by making use of
a threshold. It is clear that the optimization version can be solved by searching
for the best threshold in the decision one.

Definition 2 (Quantitative rational synthesis). The input to the quantita-
tive rational-strategy problem is a set X of atomic propositions, partitioned into
X0, . . . ,Xk,OLTL specifications θ0, θ1, . . . , θk, with θi = 〈Ψi, fi〉, and a solution
concept γ. We distinguish between two variants of the problem:

1. In cooperative quantitative rational synthesis, the desired output for a given
threshold t ∈ N is a strategy profile P such that payoff0(P) ≥ t and P is in a
π0-fixed γ-equilibrium.

2. In non-cooperative quantitative rational synthesis, the desired output for a
given threshold t ∈ N is a strategy π0 for the system such that, for each
strategy profile P including π0 and being in a π0-fixed γ-equilibrium, we have
that payoff0(P) ≥ t.

Now, we introduce some auxiliary formula that helps us to formulate also
the quantitative rational-synthesis problem in Sl[ng].
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For a tuple Ψ = 〈ψ1, . . . , ψm〉 of LTL formulas and a signature
v = {v1, . . . , vm} ∈ {0, 1}m, let mask(Ψ, v) be an LTL formula that character-
izes computations η for which sig(Ψ, η) = v. Thus, mask(Ψ, v) = (

∧
i:vi=0 ¬ψi) ∧

(
∧

i:vi=1 ψi).
We adjust the Sl formulas Φγ(�y) described in Sect. 3 to the quantitative

setting. Recall that Φγ(�y) holds iff the strategy profile assigned to �y is in a
π0-fixed γ-equilibrium. There, the formula is a conjunction over all agents in
{α1, . . . , αk}, stating that Agent αi does not have an incentive to change his
strategy. In our quantitative setting, this means that the payoff of Agent αi in
an alternative profile is not bigger than his payoff in �y. For two strategy profiles,
assigned to �y and �y′, an Sl formula that states that Agent αi has no incentive
that the profile would change from �y to �y′ can state that the signature of Ψ in
play(�y′) results in a payoff to Agent αi that is smaller than his current payoff.
Formally, we have that:

Φeq
i (�y, �y′) =

∨

v∈{1,...,mi}:fi(v)≤payoffi(�y)
�(�y′)mask(Ψi, v).

We can now adjust Φγ(�y) for all the cases of solution concepts we are taking
into account.

– For the solution concept of dominant strategies, we define:
Φγ(�y) :=

∧
i∈{1,...,n} [[�z]]Φeq

i (�y, (�z[α0 ← y0]);
– For the solution concept of Nash equilibrium, we define:

Φγ(�y) :=
∧

i∈{1,...,n} [[�z]]Φeq
i (�y, (�y[αi ← zi]);

– For the solution concept of Subgame Perfect Equilibrium, we define:
ϕγ(�y) := [[�x]]�(�x[α0 ← y0])F

∧
i∈{1,...,n} [[�z]]Φeq

i (�y, (�z[α0 ← y0])).

Once we adjust Φγ(�y) to the quantitative setting, we can use the same Sl
formula used in the non-quantitative setting to state the existence of a solution
to the rational synthesis problem. We have the following:

– Φγ
RS := 〈〈y0〉〉〈〈y1〉〉 . . . 〈〈yk〉〉(Φγ(�y) ∧ ϕ0);

– Φγ
nonRS := 〈〈y0〉〉[[y1]] . . . [[yk]](Φγ(�y) → ϕ0).

Theorem 3. The cooperative and non-cooperative quantitative rational-synthesis
problems are 2ExpTime-complete.

Proof. We can reduce the problems to the model-checking problem of the Sl
formulas Φγ

RS and Φγ
nonRS , respectively. We should, however, take care when

analyzing the complexity of the procedure, as the formulas Φeq
i (�y, �y′), which

participate in Φγ
RS and Φγ

nonRS involve a disjunction over vectors in {0, 1}mi ,
resulting in Φγ

nonRS of an exponential length.
While the above prevents us from using the doubly exponential known bound

on Sl model checking for formulas of alternation depth 1 as is, it is not difficult to
observe that the run time of the model-checking algorithm in [MMPV14], when
applied to Φγ

nonRS , is only doubly exponential. The reason is the fact that the
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inner exponent paid in the algorithm for Sl model checking is due to the blow-up
in the translation of the formula to a nondeterministic Büchi automaton over
words (NBW, for short). In this translation, the exponentially many disjuncts
are dominated by the exponential translation of the innermost LTL to NBW.
Thus, the running time of the algorithm is doubly exponential, and it can return
the witnessing strategies.

Hardness in 2ExpTime follows easily from hardness in the non-quantitative
setting.

5 Discussion

The understanding that synthesis corresponds to a game in which the objec-
tive of each player is to satisfy his specification calls for a mutual adoption of
ideas between formal methods and game theory. In rational synthesis, introduced
in [FKL10], synthesis is defined in a way that takes into an account the rationality
of the agents that constitute the environment and involves and assumption that
an agent cooperates with a strategy in which his objective is satisfied. Here, we
extend the idea and consider also non-cooperative rational synthesis, in which
agents need not cooperate with suggested strategies and may prefer different
strategies that are at least as beneficial for them.

Many variants of the classical synthesis problem has been studied. It is inter-
esting to examine the combination of the rational setting with the different vari-
ants. To start, the cooperative and non-cooperative settings can be combined
into a framework in which one team of agents is competing with another team
of agents, where each team is internally cooperative, but the two teams are non-
cooperative. Furthermore, we plan to study rational synthesis with incomplete
information. In particular, we plan to study rational synthesis with incomplete
information [KV99], where agents can view only a subset of the signals that
other agents output, and rational stochastic synthesis [CMJ04], which models
the unpredictability of nature and involves stochastic agents that assign values
to their output signals by means of a distribution function. Beyond a formulation
of the richer settings, one needs a corresponding extension of strategy logic and
its decision problems.

As discussed in Sect. 1, classical applications of game theory consider games
with quantitative payoffs. We added a quantitative layer to LTL by introducing
Objective-LTL and studying its rational synthesis. In recent years, researchers
have developed more refined quantitative temporal logics, which enable a formal
reasoning about the quality of systems. In particular, we plan to study rational
synthesis for the multi-valued logics LTL[F] [ABK13], which enables a prior-
itization of different satisfaction possibilities, and LTL[D] [ABK14], in which
discounting is used in order to reduce the satisfaction value of specifications
whose eventualities are delayed. The rational synthesis problem for these logics
induce a game with much richer, possibly infinitely many, profiles, making the
search for a stable solution much more challenging.
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