
Key Extraction Attack Using Statistical
Analysis of Memory Dump Data

Yuto Nakano(B), Anirban Basu, Shinsaku Kiyomoto, and Yutaka Miyake

KDDI R&D Laboratories Inc., 2-1-15 Ohara, Fujimino, Saitama 356-8502, Japan
{yuto,basu,kiyomoto,miyake}@kddilabs.jp

Abstract. During the execution of a program the keys for encryption
algorithms are in the random access memory (RAM) of the machine.
Technically, it is easy to extract the keys from a dumped image of the
memory. However, not many examples of such key extractions exist,
especially during program execution. In this paper, we present a key
extraction technique and confirm its effectiveness by implementing the
Process Peeping Tool (PPT) – an analysis tool – that can dump the
memory during the execution of a target program and help the attacker
deduce the encryption keys through statistical analysis of the memory
contents. Utilising this tool, we evaluate the security of two sample pro-
grams, which are built on top of the well-known OpenSSL library. Our
experiments show that we can extract both the private key of the RSA
asymmetric cipher as well as the secret key of the AES block cipher.

Keywords: Memory dump · Key extraction · OpenSSL · RSA · AES

1 Introduction

The growth of various services on the Internet has given rise to a dramatic
increase in the information that is exchanged over Internet protocols. Sensitive
information in private e-mails, confidential documents, e-commerce and other
financial transactions need to be guarded against eavesdropping. In order to pro-
tect the communication between two network hosts, the Secure Sockets Layer [4]
and Transport Layer Security [3] (SSL/TLS) are commonly used. OpenSSL1

is the one of most commonly used open source libraries for the SSL and TLS
protocols. The core library offers implementations for various cryptographic algo-
rithms and other utility functions. Recently, a critical bug, referred to as CVE-
2014-0160, has been found in OpenSSL TLS Heartbeat extension [10], which
makes for the attacker to recover cryptographic keys by reading 64 kilobytes of
memory at a time [1,2].

Any unauthorised access to cryptographic keys constitutes a security breach.
Tamper-proof devices and obfuscation cannot be used during program execution.
It is well-known that the cryptographic keys are present in the random access
1 See: https://www.openssl.org/.

c© Springer International Publishing Switzerland 2015
J. Lopez et al. (Eds.): CRiSIS 2014, LNCS 8924, pp. 239–246, 2015.
DOI: 10.1007/978-3-319-17127-2 17

https://www.openssl.org/


240 Y. Nakano et al.

memory (RAM) during the execution of a program; a knowledge that an adver-
sary can use to extract the keys from the RAM [7–9]. Protecting the keys or any
other valuable information from unauthorised access during program execution
is an important area of on-going research. Oblivious RAM schemes and related
works [5,6] can protect the RAM access patterns of programs from unautho-
rised access. However, these schemes require trustworthy and secure CPUs for
the protection, and cannot prevent attacks where the attacker can access the
CPU and extract information such as operations, access to memory addresses of
operations and values stored in those addresses.

In this paper, we present a new attack method that can extract a private key
for RSA and a secret key for AES from dumped memory image. We have imple-
mented a tool called the Process Peeping Tool (PPT) to demonstrate the attacks.
PPT enables us to analyse the structure and behaviour of the target program
by observing its memory use. It can also statistically analyse the data that is
acquired from the RAM, thus enabling the attacker to determine cryptographic
keys. We use PPT to extract cryptographic keys (both for RSA and for AES)
from sample programs, which use the OpenSSL library. In the key recovery attack
against RSA, we iterate through cycles of encryption and decryption. Assum-
ing that the private key remains fixed during the execution of the program the
key can be extracted by observing the memory accesses of the decryption func-
tion. In case of AES, we encrypt a random number with one fixed secret key.
We demonstrate that the secret key can be extracted by observing the memory
access patterns of the encryption process. The address of any shared libraries
has to be public for the PPT to be able to analyse the program. Using a sta-
tic library and deleting symbol information makes it harder for the attacker
to obtain the keys. However, the keys can still be extracted once the attacker
determines the functions that need to be observed. Although, adding dummy
data and/or dummy operations also make the attack harder, these can be dis-
tinguished from the actual data since the dummy data and accesses do not affect
the output of the program.

2 Aquiring Data from Memory

In this section, we introduce two methods which can extract data from memory.

2.1 Memory Dump

Memory dump is usually used for debugging programs especially to detect buffer
overflows. It also can be used to attack programs. During the execution of the
program, its data is temporally stored in RAM and any process with the same
privilege as the user executing the program or a root privilege can access that
region. If the program is an encryption/decryption program, the decryption key
must be stored in RAM and it is possible for the adversary to dump the contents
in the RAM and search for the key. On Linux systems, dd or ptrace() can be
used to dump memory. We can also access the memory of a running process



Key Extraction Attack Using Statistical Analysis of Memory Dump Data 241

that runs with different privileges than the user, assuming root is not involved,
by using Linux capabilities. By giving the user a capability for the particular
program, the user will be able to execute it without the normally required priv-
ilege. However, setting capabilities to a program/process requires, initially, root
privileges or an appropriate capability.

On operating systems which use virtual memory, part of or entire memory
contents of a program are sometimes moved from main memory to secondary
storage (i.e., the hard disk drive). If the adversary can access the region of a disk
where the pages are stored, it is easy to read the content of memory. Another
possibility that the memory content can be stored on the disk is core dump.
When a process is unexpectedly stopped, the memory image of that process is
saved as a core file in order for debugging. The adversary can access the core file
and try to analyse the memory image.

2.2 ptrace System Call

The ptrace() system call enables one process (the “tracer”) to observe, control
the execution of another process (the “tracee”), examine and change the tracee’s
memory and registers. It is primarily used to implement breakpoint debugging
and system call tracing. Other than ptrace() system call, there are several other
system calls that may help the adversary to monitor the process and its access
to memory, such as ltrace() for monitoring dynamic libraries and strace()
for system calls.

There is a mode called PTRACE SINGLESTEP in ptrace, which can load a pro-
gram or can be attached to an existing program. The PTRACE SINGLESTEP mode
allows the attacker to execute the program step-by-step. We can also acquire
the values stored in the CPU registers in each step such as program addresses,
register values of operand and values in RAM pointed to by the registers by
using a PTRACE PEEKDATA mode.

3 Attack Scenarios and Key Extraction Attack

The private key of RSA and the secret key of AES are assumed to be of fixed
values, or at least fixed during the execution of the program. Such a key can be
hidden inside the program with some protection. However, when the program is
initiated, the key must be loaded in the RAM in plaintext. If the attacker can
dump the memory when the key is loaded in the RAM, it is possible to extract
the secret key from the dumped image. We assume that the adversary has the
access to the target program and memory dump data.

Attack Scenario 1. A service provider provides various services such as hosting,
web application and file sharing. The clients connect to the server through secure
channels established with SSL/TLS or any equivalent protocols. When the clients
connect to the server, the secret keys have to be stored in the RAM. While the
connection is active, the malicious operator can attach his attacking process on



242 Y. Nakano et al.

the server-side to the target and dump the related area in the memory without
being detected by the clients; and thereby extract the secret key. Even when
there is no malicious operator, the server may be compromised by malware,
which acquires the root privilege and mounts similar attacks on the processes
handling secure connections.

Attack Scenario 2. Several users share the same physical server (i.e., public
cloud) on which they operate their own separate virtual machines (VMs). How-
ever, once the attacker can login as the administrative user, it is possible to
attach the attacking process to the victims’ VM processes and extract keys from
memory dumps.

Attack Scenario 3. Last but not the least is the user-as-the-attacker scenario,
where the aim of the user is to extract the secret keys or other valuable informa-
tion from the target program by attaching the attacking process to the target
process.

3.1 Attack Against RSA

The exponentiation of RSA decryption involves variable length arithmetic, it is
expected that decryption process uses shift operations. The Chinese Remainder
Theorem (CRT), which involves division operations, is often used for exponen-
tiation operations of encryption and decryption. Therefore, shift and division
operations deal the private key and we can recover the key by dumping and
analysing memory region used by these operations.

Assume that both the public and private keys are fixed while the plaintext
and the ciphertext keep changing. Every time the encryption or decryption func-
tions are executed, the program’s accesses to the key which is the fixed value,
while its accesses to the plaintext or the ciphertext which are keep changing.
Therefore, as the number of executions increase, the accesses to keys can be dis-
tinguished from other accesses by counting the number of accesses to each value.
The procedure can be summarised as: (a) iterate encryption and decryption of
random numbers with the fixed key, (b) dump values which are accessed by shift
and division operations, and (c) output key candidate values which are accessed
considerably more than other values. If the multiplication of two recovered values
matches the modulo N , the key can be correctly recovered.

3.2 Attack Against AES

AES consists of four functions, and one of them is called AddRoundKey. The
AddRoundKey takes two inputs – the round key and the internal state. Hence,
we can recover the round keys and the secret key, by dumping and analysing
memory region accessed by the AddRoundKey function. As one of the inputs
of AddRoundKey is the fixed key while the other is the variable internal state,
the key can be distinguished from the internal state by counting the number of
accesses during the iteration of encryption. The procedure can be summarised as:



Key Extraction Attack Using Statistical Analysis of Memory Dump Data 243

(a) iterate the encryption of random numbers with the fixed key (b) dump values
which are accessed by AddRoundKey operations, and (c) output key candidate
values which are accessed considerably more than other values.

We can also use Maartmann-Moe et al.’s idea [8], which uses the character of
the key expansion, to confirm if the key is correctly recovered. As the round keys
are derived from the secret key, we can apply the key expansion to the recovered
candidate values and see if derived values appear on RAM.

4 Process Peeping Tool (PPT)

The core component of the PPT is the ptrace() system call, which enables
one process (the “tracer”) to observe, control the execution of another process
(the “tracee”), examine and change the tracee’s memory and registers. PPT can
analyse the structure of the target program, including which shared libraries it
uses and which functions are used in each library. It can also analyse memory
addresses that the target process accesses and values that the target process uses.
These addresses and values are recorded and statistically analysed. Dumped data
can be used efficiently for the key extraction attack as, unlike existing memory
dump tools, we can specify libraries and functions of interest.

One can attach the PPT process to the target program by specifying the
target’s process ID (PID). Once successfully attached to the target PID, the
evaluator can browse inside the target as if the target and the analysing tool
were respectively a file system directory structure and the shell. In the next
step, the child process is executed with PTRACE TRACEME. When the child process
executes a function, the parent process receives SIGTRAP and pauses the child
process. The parent process replaces, keeping a copy of the original values, the
function’s addresses with breakpoints in Procedure Linkage Table (PLT). Then
the original operation is restored to execute a single step of the child process
with PTRACE SINGLESTEP, and the parent process obtains information on which
libraries the child process accessed. After the single step, the parent process
again takes over the control and continues the operation until it encounters the
next breakpoint. The evaluator, therefore, can find out which libraries are used
and which functions inside these libraries are called.

The evaluator can control how each function can be executed by setting its
status. The available statuses are: watch – execute the function step-by-step
recording its data; watchdeeply – in addition to watch, this status enables
recording the behaviour of other functions called inside the target function;
through – execute the function step-by-step without recording data; and skip –
execute the function as usual.

When the function is under surveillance with “watch” status, the function is
executed with a PTRACE SINGLESTEP. When the single step of the child process is
executed, the addresses and the values from the child task can be read by PTRACE
PEEKDATA. The addresses and values are recorded by PPT and used for static
analysis. Any function with a “watch” status is skipped if that function is called by
one with a “skip” status. In order for the “watch” status to work with a function,
it should be ensured that its caller function has a status set to “through”.



244 Y. Nakano et al.

Fig. 1. Values referred from RAM when we iterate RSA encryption and decryption ten
times

5 Key Extraction from Memory Dump

In this section we demonstrate how the Process Peeping Tool can help extract the
private key and the secret key of RSA and AES respectively from two separate
target sample programs. The attack procedure is summarised as follows:

1. analyse the structure of the target program including libraries and functions,
2. specify which library or function to monitor,
3. execute the target program while specified libraries and functions are executed

step-by-step,
4. record addresses and values,
5. recover the key by statically analysing data acquired in step 4.

The experimental environment is following; CPU: Intel Core i7 4930 K, RAM:
24 GB, OS: Ubuntu 13.10 64-bit, Library: OpenSSL 0.9.8.

In case of RSA, PPT retrieves the private key and a lot of random numbers
from RAM. We perform statistical analysis to distinguish the key from the ran-
dom numbers. On the other hand, the key extraction of AES is simple and we
do not need any additional analysis to separate the secret key from other values.
Maartmann-Moe et al.’s attack [8] uses the facts that round keys are derived
from the initial key and the round keys are stored on RAM right after the initial
key. Therefore, their attack cannot be applied when the initial key and round
keys are stored on the separate locations on RAM. On the other hand, our attack
can recover the key even when the initial key and round keys are stored on the
separate locations as we observe the values, which are accessed by the encryption
functions.



Key Extraction Attack Using Statistical Analysis of Memory Dump Data 245

Table 1. The watch list of functions for RSA decryption and AES encryption

Library Function Status

RSA

rsao0s so RSA private decrypt through

libcrypto.so.0.9.8 BN div watch

libcrypto.so.0.9.8 BN lshift watch

libcrypto.so.0.9.8 BN rshift watch

AES

aesopenssl AES encrypt watchdeeply

5.1 RSA

We implemented a simple RSA encryption and decryption program using the
OpenSSL library, which repeatedly encrypts random numbers and decrypts the
generated ciphertexts. Both keys remain unchanged during the experiment.
Table 1 summarises the list of the methods to be observed.

We initiate the sample program and start the encryption and decryption
operations. Then, we initiate PPT and attach its process to the sample program.
PPT can show the structure of the program, when it is successfully attached to
the target. By executing the program while watching the specified functions in
Table 1, we record the values and their frequencies in which they are referred to
in the RAM. Figure 1 shows relations between the values and their frequencies.
The x-axis shows the values and the y-axis shows the number of referred times.
As it is unlikely that the private key is a sparse value, we can eliminate the
sparse candidates, for instance 0x0000000000000001. These sparse values are
mostly used for controlling the operations such as counters.

For the remaining candidates, we use number of referred times as a clue. In
this example, we iterate encryption and decryption 10 times. Thus, the private
key has to be used at least 10 times. Even when we do not know how many times
encryption and decryption is iterated, the secret key can still be distinguished
from other random numbers after sufficient number of iterations.

5.2 AES

We also implemented a simple AES encryption program, named aesopenssl,
using the OpenSSL library. This sample program continuously encrypts random
numbers with a fixed secret key. Table 1 shows the function to be observed.

We execute the program while observing the aesopenssl function, and apply
the method similar to what we did for RSA to eliminate the non-key values.
The secret key we used for the sample program is “THISISSECRETKEY!”,
which is 0x54, 0x48, 0x49, 0x53, 0x49, 0x53, 0x53, 0x45, 0x43, 0x52,
0x45, 0x54, 0x4b, 0x45, 0x59, 0x21 in ASCII. PPT recovered all these val-
ues, and it also recovered 0x0000000a, which is the number of rounds in AES-128,
followed by the round key.



246 Y. Nakano et al.

6 Conclusion

In this paper, we introduced a statistical key extraction attack on cryptographic
keys using memory dump data, and confirmed the effectiveness of the attack
by utilising our Process Peeping Tool. The tool can be attached to the tar-
get process and can trace the target’s memory usage. We used RSA and AES
as example cryptosystems in the target programs, which utilised the OpenSSL
library implementations. Thus, it is possible to apply the same approach to other
applications using OpenSSL library or similar cryptographic libraries. Although
we only applied PPT to RSA and AES implemented in the OpenSSL library,
it is possible to apply the same extraction mechanism to other, including non-
cryptographic, algorithms or libraries. Although we execute the PPT with the
root privilege, we can still apply our method obtaining memory dump data with-
out the root privilege.

References

1. arstechnica.: Critical crypto bug in OpenSSL opens two-thirds of the web to eaves-
dropping (2014). http://goo.gl/JUm3dq

2. Codenomicon Ltd.: The heartbleed bug (2014). http://heartbleed.com
3. Dierks, T., Rescorla, E.: The transport layer security (TLS) protocol version 1.2.

RFC 5246 (2008)
4. Freier, A., Karlton, P., Kocher, P.: The secure sockets layer (SSL) protocol version

3.0. RFC 6101 (2011)
5. Goldreich, O.: Towards a theory of software protection and simulation by oblivious

RAMs. In: Aho, A.V. (ed.) STOC, pp. 182–194. ACM (1987)
6. Goldreich, O., Ostrovsky, R.: Software protection and simulation on oblivious

RAMs. J. ACM 43(3), 431–473 (1996)
7. Halderman, J.A., Schoen, S.D., Heninger, N., Clarkson, W., Paul, W., Calandrino,

J.A., Feldman, A.J., Appelbaum, J., Felten, E.W.: Lest we remember: cold-boot
attacks on encryption keys. Commun. ACM 52(5), 91–98 (2009)

8. Maartmann-Moe, C., Thorkildsen, S.E., Årnes, A.: The persistence of memory:
forensic identification and extraction of cryptographic keys. Digit. Investig. 6,
S132–S140 (2009)

9. Müller, T., Spreitzenbarth, M.: FROST - forensic recovery of scrambled telephones.
In: Jacobson, M., Locasto, M., Mohassel, P., Safavi-Naini, R. (eds.) ACNS 2013.
LNCS, vol. 7954, pp. 373–388. Springer, Heidelberg (2013)

10. Seggelmann, R., Tuexen, M., Williams, M.: Transport layer security (TLS) and
datagram transport layer security (DTLS) heartbeat extension. RFC6520 (2012)

http://goo.gl/JUm3dq
http://heartbleed.com

	Key Extraction Attack Using Statistical Analysis of Memory Dump Data
	1 Introduction
	2 Aquiring Data from Memory
	2.1 Memory Dump
	2.2 ptrace System Call

	3 Attack Scenarios and Key Extraction Attack
	3.1 Attack Against RSA
	3.2 Attack Against AES

	4 Process Peeping Tool (PPT)
	5 Key Extraction from Memory Dump
	5.1 RSA
	5.2 AES

	6 Conclusion
	References


