
Two-Level Automated Approach for Defending
Against Obfuscated Zero-Day Attacks

Ratinder Kaur(B) and Maninder Singh

Computer Science and Engineering Department, Thapar University,
Patiala 147004, India

{ratinder.kaur,msingh}@thapar.edu

Abstract. A zero-day attack is one that exploits a vulnerability for
which no patch is readily available and the developer or vendor may or
may not be aware. They are very expensive and powerful attack tools to
defend against. Since the vulnerability is not known in advance, there is
no reliable way to guard against zero-day attacks before they happen.
Attackers take advantage of the unknown nature of zero-day exploits and
use them in conjunction with highly sophisticated and targeted attacks
to achieve stealthiness with respect to standard intrusion detection tech-
niques. This paper presents a novel combination of anomaly, behavior
and signature based techniques for detecting such zero-day attacks. The
proposed approach detects obfuscated zero-day attacks with two-level
evaluation, generates a new signature automatically and updates other
sensors by using push technology via global hotfix feature.

Keywords: Zero-day attacks · Unknown attacks · Obfuscation · Signa-
ture generation · Push technology

1 Introduction

Today the Internet has become a pervasive threat vector for various types of
organizations. As new technologies are developed and adopted to meet chang-
ing business requirements, sneaky sources lie in wait to exploit vulnerabilities
exposed. In recent years, zero-day attacks have been dominating the headlines for
political and monetary gains. They are being used as essential success vectors
in various sophisticated and targeted attacks like Aurora, Advanced Persistent
Threat (APT), Stuxnet, Duqu and Flame. Also, the number of such attacks
reported each year increases immensely. According to Symantec’s Internet Secu-
rity Threat Report of 2013 [2] there is 42 % increase in targeted attacks in 2012,
31 % of all targeted attacks aimed at businesses and 14 zero-day vulnerabilities
were discovered. Another security threat report by Sophos [20] reported that
large tech companies like Apple, Facebook, Microsoft, Twitter and others were
targeted with same zero-day Java vulnerability that attacks multiple customers.
All such facts and figures look terrible and threatening.

A zero-day attack occur during the vulnerability window that exists in the
time between when vulnerability is first exploited and when software developers
c© Springer International Publishing Switzerland 2015
J. Lopez et al. (Eds.): CRiSIS 2014, LNCS 8924, pp. 164–179, 2015.
DOI: 10.1007/978-3-319-17127-2 11

Two-Level Automated Approach 165

start to develop a counter to that threat. It is difficult to measure the length
of the vulnerability window, as attackers do not announce when the vulnera-
bility was first discovered. Even developers may not want to distribute data
for commercial or security reasons or they may not know if the vulnerability is
being exploited when they fix it. So the vulnerability may not be recorded as a
zero-day attack. The vulnerability window however, can be of several years long.
According to an empirical study [1,12], a typical zero-day attack may last for
312 days on average and, after vulnerabilities are disclosed publicly, the volume
of attacks exploiting them increases by up to 5 orders of magnitude.

In this paper a two-level automated approach for detecting zero-day attacks
is proposed. This paper is an extension of our previous work with more detailed
and optimized methodology [21]. It detects obfuscated zero-day attacks with two-
level evaluation. At first level the system detects unknown by using Honeynet
as an anomaly detector and at second level the system confirms malicious by
analyzing behavior of unknown attack and at last generates new signatures auto-
matically to update other IDS/IPS sensors via global hotfix. The contribution
of this paper over our previous approach is three folds: (1) We have optimized
our previous algorithms to efficiently extract zero-day attack candidate and to
update other IDS/IPS sensors automatically. (2) We have observed an increase of
10 % in detection rate and 1 % decrease in false alarm rate. (3) We have evaluated
our system with large datasets of real attacks from various malware repositories.

The remainder of the paper is organized as follows. In Sect. 2, related work is
summarized. In Sect. 3, detailed working of the proposed technique is presented.
Finally in Sect. 4, experimental evaluation is described with results and paper is
concluded.

2 Related Work

To defend against zero-day attacks, the research community has proposed vari-
ous techniques. These techniques are classified into: statistical-based, signature-
based, behavior-based and other techniques [22].

2.1 Statistical-Based

– Supervised Learning [14] is a novel method of employing several data mining
techniques to detect and classify zero-day malware based on the frequency of
Windows API calls. A machine learning framework is developed using eight
different classifiers, namely Nave Bayes (NB) Algorithm, k-Nearest Neighbor
(kNN) Algorithm, Sequential Minimal Optimization (SMO) Algorithm with 4
different kernels (SMO-Normalized PolyKernel, SMO-PolyKernel, SMO-Puk,
and SMO-Radial Basis Function (RBF)), Backpropagation Neural Networks
Algorithm, and J48 decision tree. This system proves to be better than simi-
lar signature-free techniques that detect polymorphic malware and unknown
malware based on analysis of Windows APIs.

166 R. Kaur and M. Singh

– Contextual Anomaly Detection [15,18] is a contextual misuse and anomaly
detection prototype to detect zero-day attacks. The contextual misuse detec-
tion utilizes similarity with attack context profiles, and the anomaly detection
technique identifies new types of attacks using the One Class Nearest Neighbor
(1-NN) algorithm.

– Combined Supervised and Unsupervised Learning [17] technique is presented
for zero-day malware detection. It employs machine learning based framework
to detect malware using layer 3 and layer 4 network traffic features. It utilizes
supervised classification to detect known malware and unsupervised learning
to detect new malware and known variants. A tree-based feature transforma-
tion is also introduced to overcome data imperfection issues and to detect the
malware classes effectively.

2.2 Signature-Based

– SweetBait [6] is a distributed system that is a combination of network intrusion
detection and prevention techniques. It employs different types of honeypot
sensors, both high-interaction and low-interaction to recognize and capture
suspicious traffic. SweetBait automatically generates signatures for random
IP address space scanning worms without any prior knowledge. And for the
non-scanning worms, Argos is used to do the job. A novel aspect of this sig-
nature generation approach is that a forensics shellcode is inserted, replacing
malevolent shellcode, to gather useful information about the attack process.

– LISABETH [23] automatically generate signatures for polymorphic worms,
Lisabeth uses invariant byte analysis of traffic content, as originally proposed
in Polygraph [5] and refined by Hamsa [11]. Lisabeth leverages on the hypoth-
esis that every worm has its invariant set and that an attacker must insert
in all worm samples all the invariants bytes. Lisbeth and Hamsa systems
are equally sensitive to the suspicious flows pool size but Lisabeth is lesser
sensible to innocuous flow pool size than Hamsa. Lisabeth has shown sig-
nificant improvement over Polygraph and Hamsa in terms of efficiency and
noise-tolerance.

– In Honeycyber [3] a “Double-honeynet” is proposed as a new detection method
to identify zero-day worms and to isolate the attack traffic from innocuous
traffic. It uses unlimited Honeynet outbound connections to capture different
payloads in every infection of the same worm. It uses Principal Component
Analysis (PCA) to determine the most significant substrings that are shared
between polymorphic worm instances to use them as signatures [4].

– ZASMIN [19] a Zero-day Attack Signature Management Infrastructure is an
early detection system for novel network attack detection. This system pro-
vides early detection function and validation of attack at the moment the
attacks start to spread on the network. To detect unknown network attacks,
the system adopted new technologies. To filter malicious traffic it uses disper-
sion of destination IP address, TCP connection trial count, TCP connection
success count and stealth scan trial count. Attack validation is done by call
function and instruction spectrum analysis. And it generates signatures using
content analysis.

Two-Level Automated Approach 167

– LESG [7] is a network-based automatic worm signature generator that gener-
ates length-based signatures for zero day polymorphic worms, which exploits
buffer overflow vulnerabilities. The system generates vulnerability-driven sig-
natures at network level without any host level analysis of worm execution or
vulnerable programs.

2.3 Behavior-Based

– Network-Level Emulation [8,13] is a heuristic detection method to scan net-
work traffic streams for the presence of previously unknown polymorphic shell-
code. Their approach relies on a NIDS-embedded CPU emulator that executes
every potential instruction sequence in the inspected traffic, aiming to identify
the execution behavior of polymorphic shellcode. The proposed approach is
robust to obfuscation techniques like self-modifications and non-self-contained
polymorphic shellcodes.

– SGNET [9] is a distributed framework to collect rich information and down-
load malware for zero-day attacks. It automatically generates approximations
of the protocol behavior in form of Finite State Machines (FSMs). Whenever
the network interaction falls outside the FSM knowledge (newly observed
activity), SGNET takes advantage of a real host to continue the network
interaction with the attacker. In that case, the honeypot acts as a proxy for
the real host. This allows building samples of network conversation for the
new activity that are then used to refine the current FSM knowledge.

2.4 Other Hybrid Techniques

– Hybrid Detection for Zero-day Polymorphic Shellcodes (HDPS) [10] is a hybrid
detection approach. It uses an elaborate approach to detect NOP Sleds to be
robust against polymorphism, metamorphism and other obfuscations. It em-
ploys a heuristic method to detect return address, and achieves high efficiency
by incorporating Markov Model to detect executable codes. This method filters
normal packets with accuracy and low overload. But this approach cannot block
shellcodes in network packets and it is hard to obtain transition matrixes of
Markov Model.

– Honeyfarm [16] is a hybrid scheme that combines anomaly and signature
detection with honeypots. This system takes advantage of existing detection
approaches to develop an effective defense against Internet worms. The sys-
tem works on three levels. At first level signature based detection is used to
filter known worm attacks. At second level an anomaly detector is set up to
detect any deviation from the normal behavior. In the last level honeypots
are deployed to detect zero day attacks. Low interaction honeypots are used
to track attacker activities while high interaction honeypots help in analyz-
ing new attacks and vulnerabilities. The controller is responsible to redirect
suspicious traffic to respective honeypots which are deployed in honeyfarm.

168 R. Kaur and M. Singh

2.5 Limitations of Existing Techniques

The following limitations of recent studies have been the prime motivation for
our research.

– Statistical-based detection techniques cannot be used for instant detection
and protection in real time. They are dependent on static attack profiles and
requires manual adjustment of detection parameters.

– Signature-based techniques are widely used but, need improvement in gen-
erating good quality signatures. They suffer from one or more limitations of
high false positives, false negatives, reduced sensitivity and specificity.

– Behavior-based techniques may detect a wide range of novel attacks but
they are prone to evasion, computationally expensive and may not effectively
capture the context in which the new attacks interact with the real victim
machine.

– Other hybrid techniques combine heuristics and different intrusion detection
techniques like signature-based, anomaly-based, etc. to detect zero-day attacks
but they also suffer from high false positives, false negatives.

3 Proposed Technique

3.1 Architecture

An efficient and novel technique integrating the three main detection techniques
(Anomaly, Behavior and Signature based) is proposed to minimize the impact
of above identified challenges during zero-day attack detection. It does two-level
evaluation to detect and confirm zero-day attack. Figure 1 shows the basic archi-
tecture of our proposed approach. It comprises of different components: Router,
Port Mirroring Switch, Honeynet, Intrusion Detection and Prevention (IDS/IPS)
Sensors, Zero-day Attack Detection (ZAD) System and Global IDS/IPS Hot-
fix Server. The router connects the entire setup to the Internet. Port mirroring
switch passes network traffic simultaneously to both Honeynet and IDS/IPS sen-
sors. Firstly, the network traffic is captured and filtered for known attacks. If
the filtered traffic is found suspicious of containing some unknown attack it is
evaluated for zero-day attack in the ZAD system and a new signature is gen-
erated and updated. Otherwise, if the traffic trace is found benign, whitelist in
IDS/IPS sensors is updated.

Honeypots have been found to be effective against zero day threats therefore,
Honeynet is used to identify the mechanism of a new attack and to collect evi-
dence for attacker’s activity. When a known attack hits Honeynet it is blocked
and logged. When a new attack is encountered the network traffic associated with
that attack is logged and is redirected to the high-interaction honeypots. The
honeypots interact with the attacker and the entire communication is logged.
The network logs and honeypot system interaction logs collectively addressed
as “Honeynet Trace” or “Unknown Attack Trace” are kept for further analysis.
At the same time the IDS/IPS sensor filters known attacks for the same traf-
fic and stores rest of the filtered traffic in an online repository. Then the data

Two-Level Automated Approach 169

Fig. 1. Basic architecture of proposed approach

collected from both Honeynet and IDS/IPS sensor is compared and analyzed
in ZAD. The ZAD system examines if similar unknown attack traces are found
in IDS/IPS sensor’s filtered traffic or not. If similar attack traces are found, then
that is a candidate for zero-day attack undetected by an IDS/IPS sensor. Up to
this level, this is assured that there is some malicious traffic which was missed by
sensors. This could only happen when the IDS/IPS sensor does not have match-
ing signature for the unknown malicious traffic in its database. After finding the
candidate for zero-day attack it is necessary to do further analysis to confirm its
malicious intent and to generate a new signature for it.

3.2 Evaluating Zero-Day Attack

The candidate for zero-day attack may result in false positive so it’s essential to
evaluate it. The evaluation process is used to confirm the malicious intentions of
the candidate by analyzing system anomalies in which it is executed. This evalu-
ation is done by ZAD-Analyzer in the ZAD system. Figure 2 depicts the internal
process flow of ZAD-Analyzer. More details on each component is discussed in
the following sections.

Compare and Extract Unit (CEU): CEU takes input from both Honeynet
and IDS/IPS sensors to compare and extract the zero-day attack candidate.
For comparison, it uses Rabin-Karp algorithm for string matching [24]. Rabin-
Karp algorithm is an easy solution for string matching with linear complexity.

170 R. Kaur and M. Singh

Fig. 2. ZAD-analyzer internal process flow [26]

Consider a new attack pattern captured by Honeynet, Honeynet-Trace (HT) of
length m and filtered traffic stored by sensors, Filtered-Traffic (FT) of length n,
where m << n. The general principle is that for every m byte of FT, the new
hash value is calculated and this hash value is compared with the hash value of
HT. For efficient string matching, the new hash value is computed by using the
old hash value, the current byte of FT, and the byte of FT seen m byte before.
The XOR operation ⊕ is a suitable function for this purpose. The hash value is
calculated as:

hash ← hash ⊕ FT [curpos] ⊕ FT [curpos − m]

where curpos is the current position within the FT, and m is the length of HT
to be searched. Using packet bytes directly leads to false positives. Therefore,
the current byte is used as an index into a table containing randomly generated
32-bit values. The XOR is then calculated using the derived 32-bit values. Just
XORing the 32-bit values is not sufficient to reduce false positives. Thus, along
with XOR, Shift operation is also applied to 32-bit values and old hash values.
To find all occurrences of HT in FT an Algorithm 1 is implemented.

Emulator: Figure 3 depicts the working of an emulator. The zero-day attack
candidate (attack trace) is input to an emulator for per byte execution. The
emulator is the right choice for analyzing decrypted and obfuscated code. Any
type of obfuscated code is allowed to execute in its original form. The idea here
is to let the code decrypt itself in the memory and do harm to the emulated
system. After execution, the interesting part is to log all the changes made to
the file system and registry.

The emulator executes attack trace by successively reading its instructions
and performing equivalent operations in the emulated environment. After execu-
tion of the attack trace the system anomalies are analyzed. The system anomalies
help to determine a system’s status (whether or not malicious code is present)
by comparing the system status information to a standard. For this, the abstract

Two-Level Automated Approach 171

Algorithm 1. Compare and Extract Algorithm
1: procedure main()
2: Initialize DB drivers
3: Start secure communication with database
4: for iterate over FT do
5: Fetch String FT [1..n] = get...string
6: for iterate over HT do
7: Fetch String HT [1..m] = get...honeynet string
8: invoke RabinKarp(FT [1..n], HT [1..m])
9: end for

10: end for
11: end procedure
12: procedure RabinKarp(stringFT [1..n], stringHT [1..m])
13: for i from 1 to n − m + 1 do
14: if hFT = hHT then
15: if FT [i..i + m − 1] = HT then
16: return New attack pattern is found in the filtered traffic at: i
17: end if
18: end if
19: hFT := hash(hFT [i + 1..i + m])
20: end for
21: return No similar attack traces are found.
22: end procedure

Fig. 3. Working of emulator

method of analyzing system anomalies is used that is validating checksums of
critical files. The most critical files include the registry files (in Window’s) and
the file system (in both Window’s and Unix). The file system is a vital stor-
age component and any anomalous executions intended to damage it will likely
be detected by monitoring the changes that attempt to alter or damage the file
system. Our proposed approach may not be able to detect attacks that alters
only runtime memory, while the majority of attacks which do result in changes to
the file system will leave a proof of an malicious event. Thus, our analysis is based
on the fact that it is not possible to compromise a system without altering a
system file. A malicious code can only do one of three things: add, remove or
modify files. It can remove system logs. It can add tools such sniffers or viruses
for later use. And most important it can change the system in numerous ways like
new accounts, modified passwords, tweaked registries, trojaned files etc. During

172 R. Kaur and M. Singh

execution of attack trace, the analysis component analyzes file system access
in a stealthy manner and redirects all the modifications transparently to a log
manager. The basic idea behind this is to keep the original base system image
clean so that no reboot is required after every malicious code execution. The log
manager generates a log file containing information about the file system changes
during the execution of attack trace. This log file is then given to validator for
further verification.

Fig. 4. Validator

Validator: In Fig. 4 the validator compares a log file to a MD5-baseline and
results in list of modified files. The validator maintains a MD5-checksum data-
base of the original base system files. After execution of an attack trace the
file system gets corrupted and a log file containing file system changes is gener-
ated which is then sent to the validator. A critical component known as verifier,
accurately recalculates MD5-checksum on logged files and compares them with
the MD5-baseline. The MD5 algorithm takes an input of arbitrary length and
produces a fixed-length fingerprint, hash, or checksum. As it is computationally
infeasible to produce same fingerprint therefore, the MD5-checksum provides a
mechanism to verify data integrity. So, when the data within a file is changed,
its hash will also change. Such changes to the file system can be categorized into
four cases as in Table 1. After comparing with the baseline a “List of Modified
Files” is created for the analyzer.

Table 1. Enumeration of possible cases

File exists in: Interpreted action

Log file MD5-database

X Created

X Deleted

X X’ Altered/Updated

X X Read/Accessed

Two-Level Automated Approach 173

Analyzer: The analyzer receives a “List of Modified Files” from the Validator.
It then crosschecks the “List of Modified Files” with the “List of Critical Files”
maintained. Critical files for e.g. in Windows can be registry files, startup files,
system configuration files, system libraries, system binaries, password files, etc.
In case of Linux, critical files are in directories like: /bin, /boot, /etc, /root, /sbin,
/tmp, /usr/bin, /usr/etc, /usr/sbin, /var/log, /var/run, /var/spool, /var/tmp.
If the critical files are modified, it proves that the candidate is a real zero-
day attack. Thus, the system does two-level evaluation for detecting a zero-day
attack. First-level (Detects UnKnown) where Honeynet flags a new suspicious
event and IDS/IPS sensors ignores it. Second-level (Confirms Malicious) where
MD5 baseline is used to confirm its malicious intentions. This two-level (Detects
Unknown Malicious) evaluation decreases the false positives to nearly zero. After
confirming a zero-day attack, ZAD-Analyzer commands the Signature Generator
to generate a signature for the new attack. On the other hand, if no critical file
is changed then the candidate is false positive and the Whitelist is updated.

3.3 Signature Generation (SG) and Hotfix Update

After evaluation zero-day attack packets are fed to the next module for sig-
nature generation. This module generates a common token-subsequence signa-
ture for a set of attack packets by applying the Longest Common Subsequence
(LCSeq) algorithm. The algorithm compares two zero-day attack packets to get
the longest common subsequence between them. Let two sequences be defined
as follows: X = (x1, x2...xm) and Y = (y1, y2...yn). Let LCSeq(Xi, Yj) repre-
sent the set of longest common subsequence of prefixes Xi and Yj . This set of
sequences is given by the following.

LCSeq(Xi, Yj) =

⎧
⎨

⎩

Φ if i = 0 or j = 0
LCSeq(Xi−1, Yj−1) + 1 if xi = yj

longest(LCSeq(Xi, Yj−1), LCSeq(Xi−1, Yj)) if xi �= yj

After the new attack signatures are generated by ZAD, they are sent to
a server responsible for global IDS/IPS hotfix update. This hotfix signature
update approach is quick and proactive which is necessary for containing zero-
day attacks at the right time. Moreover, the hotfix can be applied to other sensors
without stopping or restarting their service. The Global Hotfix Server uses push
technology to initiate the transaction. The client sensors have to subscribe to
the hotfix server for receiving updates. The hotfix server provides live-update
whenever a new signature is generated. It collects the new signature in a file and
sends out to the client sensors. The signature file is sent over HTTPS to client
sensors. When a client sensor receives signature file, it calculates MD5 checksum.
The result of the checksum is sent to the hotfix server. If the checksum doesn’t
match, the client discards the download and the server in response sends the same
signature file again. In case, the update fails due to any network or installation
error, the hotfix server retries to update client sensor for a given number of
retries and exceeding the limit assumes that client is down and disables it. The

174 R. Kaur and M. Singh

Algorithm 2. Hotfix Update Algorithm
1: procedure server()
2: set MAX RETRY COUNT = 5
3: Initialize DB drivers
4: Start secure communication with database
5: for iterate over PUSH table do
6: set String update = get...update to be pushed
7: set current update date = get...current update date
8: for iterate over CLIENTS table do
9: set String clientInfo = get...string using IP and credentials

10: set String last update date = get...the last update date
11: if last update date < current update date then
12: Push update to clientInfo
13: invoke client
14: if SUCCESS then
15: update CLIENTS table.
16: Set last update date = current update date
17: else
18: Raise Alert “Update Failed”.
19: Resend update
20: set RETRY COUNT = RETRY COUNT + 1
21: if RETRY COUNT > MAX RETRY COUNT then
22: Disable Client node.
23: end if
24: end if
25: end if
26: end for
27: end for
28: end procedure
29: procedure client()
30: Receive update from server
31: String new md5sum = generate md5sum of update
32: if new md5sum = original md5sum then
33: update signature database and send SUCCESS to server
34: else
35: discard update and send DECLINE to server
36: end if
37: end procedure

complete process is automatic that doesn’t require and manual intervention. The
best part of global update is that all the sensors remain updated and are in sync
always. Algorithm 2 is optimized and depicts this scenario where new signatures
are pushed to the various sensors. The Hotfix Update algorithm is optimized to
decrease the delay between signature generation and update as a short update
period leads to fast reaction time against new attacks. On evaluation it was
observed that the optimized algorithm took less time to update IDS/IPS sensors
as compared to our previous approach.

Two-Level Automated Approach 175

4 Experimental Results

All experiments run on an isolated network in the research lab. Honeynet com-
prises of Honeywall Roo-1.4 and high-interaction honeypots with the Linux
Sebek client installed on them. For IDS/IPS sensors SNORT is used. We have
also developed a prototype for ZAD System with Signature Generator for our
experiment. It is implemented in Java using Eclipse as an IDE and Mysql as a
database. Four standard metrics were used to evaluate the performance of our
technique: True Positive Rate (TPR), False Positive Rate (FPR), Total Accu-
racy (ACC) and Receiver Operating Characteristic (ROC) curve. TPR is the
percentage of correctly identified malicious code shown in Eq. 1. FPR is the
percentage of wrongly identified benign code (Eq. 1). ACC is the percentage of
absolutely correctly identified code, either positive or negative, divided by the
entire number of instances as shown in Eq. 2. In ROC curve the TPR rate is plot-
ted in function of the FPR for different points. The ROC curve shows a trade-off
between true positive and false positive. In the equations below, True Negative
(TN) is the number of correctly identified benign code and False Negative (FN)
is the number of wrongly identified malicious code.

TPR =
|TP |

|TP | + |FN | ; FPR =
|FP |

|FP | + |TN | (1)

ACC =
|TP | + |TN |

|TP | + |FP | + |TN | + |FN | (2)

The dataset comprises of 54,502 samples in total consisting of 40,112 mal-
ware samples (both obfuscated &non-obfuscated) and 14,390 benign samples.
The dataset with obfuscated and unknown malware have been collected from
various sources like Honeynet project, VX heavens [25] and other online malware
repositories. The benign samples include: application software, system software,
and many other user applications. The distribution of malware samples is rep-
resented in Table 2.

Table 2. Distribution of malware samples

Malware type No. of samples Not-obfuscated Obfuscated

Virus 13,509 3,053 10,456

Worm 10,150 2,741 7,409

Rootkit 257 130 127

Backdoor 4,688 1,876 2,812

Exploit 1,206 262 944

Trojan 10,302 2,782 7,520

176 R. Kaur and M. Singh

To compute the accuracy of the proposed approach both benign and malware
samples were redirected towards Honeynet and IDS/IPS sensors simultaneously.
Table 3 represents the recorded values of TPR, FPR, ACC and ROC for obfus-
cated and non-obfuscated zero-day malware.

Table 3. System detection accuracy

Malware type Not-obfuscated Obfuscated

TPR FPR ACC ROC TPR FPR ACC ROC

Virus 0.993 0.021 0.992 0.982 0.987 0.022 0.99 0.98

Worm 0.996 0.018 0.986 0.991 0.976 0.0301 0.972 0.969

Rootkit 0.983 0.0233 0.971 0.981 0.967 0.032 0.961 0.957

Backdoor 0.972 0.0281 0.975 0.975 0971 0.031 0.972 0.970

Exploit 0.984 0.025 0.973 0.985 0.968 0.0323 0.972 0.972

Trojan 0.965 0.031 0.955 0.958 0.891 0.0331 0.903 0.893

Experiments were also conducted to measure the performance of each ZAD
component. For each ZAD component, their average execution time was recorded
under various attacks. The evaluation was performed on a system with a proces-
sor core i7, and 8GB of RAM. All components executed quickly to perform
desired analysis. Figure 5 shows the experimental results. From the Fig. 5, it is
clear that CEU took more time as it has to compare attack trace with entire
online repository where filtered traffic is stored. The emulator takes slightly less
time than the CEU to execute an attack trace, track file system accesses and
send reports to the validator. On the other hand, the validator and analyzer took
approx. similar time for comparison with a set baseline of md5-checksum and
critical files respectively. However, the signature generation component requires
more time to generate new signatures than to push hotfix updates to IDS/IPS
sensors.

In another experiment, to check and verify hotfix updates, various unknown
obfuscated attacks were launched and signature updates were observed. The
experiment was conducted for 7 days and hotfix updates were recorded along the
days. Figure 6 shows the actual updates, successful updates and failed updates for
a week. Day 1, the experiment was started and total 10 updates were processed
from which 8 were successful and 2 were declined by the client IDS/IPS sensors.
The clients can decline the update if the update file is corrupted and the server
couldn’t resend the same update again. Day 2, there were 5 updates with no
refused cases. On an average, minimum 2 updates were rejected a day and in
worst case we recorded 3 rejections. From the results it is proved that new sig-
natures were generated and updated efficiently with minimum misses to contain
the zero-day attack in future.

Two-Level Automated Approach 177

Fig. 5. Performance evaluation of ZAD components

Fig. 6. Hotfix updates in a week

5 Conclusions

In this paper a two-level automated approach is proposed for detecting obfus-
cated zero-day attacks. This paper extends our previous work with more detailed
and optimized methodology. It addresses the research problems with existing
approaches and tries to provide a solution to the whole problem. The pro-
posed approach provides an online detection mechanism against obfuscated zero-
day attacks with automatic evaluation at two levels and automatically generating
signatures with optimized global hotfix update. Experiments were conducted on
real obfuscated zero-day malware, collected from various online malware repos-
itories. The results were very promising achieving the best detection rate of
nearly 99 % with 0.021 false positive rate and in the worst case, detection rate
was 89 % with 0.033 false positive rate. Other results also showed that new sig-
natures were generated and updated efficiently with least declines to contain
the zero-day attack. The future work includes: (1) defining a system baseline
to gather more information from other file system objects and attributes rather

178 R. Kaur and M. Singh

than from just one attribute i.e. md5-checksum. This detailed information can
further help to categorize and provide more insight about the behavior of a zero-
day malware. (2) To construct reliable signatures for obfuscated and polymorphic
attacks. (3) To consider issues regarding anti-emulation techniques.

References

1. Bilge, L., Dumitras, T.: Before we knew it: an empirical study of zero-day attacks
in the real world. In: Proceedings of ACM Conference on Computer and Commu-
nications Security, pp. 833–844. ACM Press, New York (2012)

2. Symantec’s Internet Threat Report of 2013. https://scm.symantec.com/resources/
istr18 en.pdf

3. Mohammed, M.M.Z.E., Chan, H.A., Ventura, N.: Honeycyber: automated signa-
ture generation for zero-day polymorphic worms. In: Proceedings of the IEEE
Military Communications Conference (MILCOM 2008), pp. 1–6. IEEE Computer
Society, Washington (2008)

4. Mohammed, M.M.Z.E., Chan, H.A., Ventura, N., Hashim, M., Amin, I., Bashier,
E.: Detection of zero-day polymorphic worms using principal component analy-
sis. In: Proceedings of the 6th IEEE International Conference on Networking and
Services, pp. 277–281. IEEE Computer Society, Washington (2010)

5. Newsome, J., Karp, B., Song, D.: Polygraph: automatically generating signatures
for polymorphic worms. In: Proceedings of the IEEE Symposium on Security and
Privacy, pp. 226–241. IEEE Press, New York (2005)

6. Portokalidis, G., Bos, H.: SweetBait: zero-hour worm detection and containment
using low-and high-interaction honeypots. J. Comput. Telecommun. Netw. 51(5),
1256–1274 (2007)

7. Wang, L., Li, Z., Chen, Y., Fu, Z., Li, X.: Thwarting zero-day polymorphic worms
with network-level length-based signature generation. J. IEEE/ACM Trans. Netw.
18(1), 53–66 (2010)

8. Polychronakis, M., Anagnostakis, K.G., Markatos, E.P.: Network-level polymor-
phic shellcode detection using emulation. J. Comput. Virol. 2(4), 257–274 (2006)

9. Leita, C., Dacier, M.: SGNET: A Distributed Infrastructure to Handle Zero-day
Exploits. Research report, EURECOM institute (2007)

10. Ting, C., Xiaosong, Z., Zhi, L.: A hybrid detection approach for zero-day poly-
morphic shellcodes. In: International Conference on E-Business and Information
System Security, pp. 1–5. IEEE, Wuhan (2009)

11. Li, Z., Sanghi, M., Chen, Y., Kao M.Y., Chavez, B.: Hamsa: fast signature gener-
ation for zero-day polymorphic worms with provable attack resilience. In: Sympo-
sium on Security and Privacy, pp. 15–47. IEEE, Oakland (2006)

12. A 0-Day Attack Lasts On Average 10 Months. http://hackmageddon.com/2012/
10/19/a-0-day-attack-lasts-on-average-10-months/

13. Polychronakis, M., Anagnostakis, K.G., Markatos, E.P.: Emulation-based detection
of non-self-contained polymorphic shellcode. In: Kruegel, C., Lippmann, R., Clark,
A. (eds.) RAID 2007. LNCS, vol. 4637, pp. 87–106. Springer, Heidelberg (2007)

14. Alazab, M., Venkatraman, S., Watters, P., Alazab, M.: Zero-day malware detection
based on supervised learning algorithms of api call signatures. In: Proceedings of
the 9th IEEE Australasian Data Mining Conference (AusDM 2011), Australia, pp.
171–182 (2011)

https://scm.symantec.com/resources/istr18_en.pdf
https://scm.symantec.com/resources/istr18_en.pdf
http://hackmageddon.com/2012/10/19/a-0-day-attack-lasts-on-average-10-months/
http://hackmageddon.com/2012/10/19/a-0-day-attack-lasts-on-average-10-months/

Two-Level Automated Approach 179

15. Aleroud, A., Karabtis G.: A contextual anomaly detection approach to discover
zero-day attacks. In: IEEE International Conference on Cyber Security (CYBER-
SECURITY 2012), pp. 40–15, Washington (2012)

16. Jain, P., Sardana, A., Defending against internet worms using honeyfarm. In:
CUBE International Information Technology Conference (CUBE 2012), Pune,
India, pp. 795–800. ACM Press, New York (2012)

17. Comar, P.M., Liu, L., Saha, S., Tan, P.N., Nucci A.: Combining supervised and
unsupervised learning for zero-day malware detection. In: Proceedings of INFO-
COM, pp. 2022–2030. IEEE Press, Turin (2013)

18. Aleroud, A., Karabatis G.: Toward zero-day attack identification using linear data
transformation techniques. In: Proceedings of the 7th IEEE International Confer-
ence on Software Security and Reliability (SERE 2013), pp. 159–168. IEEE Press,
MD (2013)

19. Kim, I., et al.: A case study of unknown attack detection against zero-day worm in
the honeynet environment. In: Proceedings of the 11th IEEE International Con-
ference on Advanced Communication Technology (ICACT 2009), pp. 1715–1720.
IEEE Press, Ireland (2009)

20. Sophos Security Threat Report of 2014. http://www.sophos.com/en-us/media
library/PDFs/other/sophos-security-threat-report-2014.pdf

21. Kaur, R., Singh, M.: Automatic evaluation and signature generation technique for
thwarting zero-day attacks. In: Mart́ınez Pérez, G., Thampi, S.M., Ko, R., Shu, L.
(eds.) SNDS 2014. CCIS, vol. 420, pp. 298–309. Springer, Heidelberg (2014)

22. Kaur, R., Singh, M.: A survey on zero-day polymorphic worm detection techniques.
J. IEEE Commun. Surv. Tutorials 99, 1–30 (2014)

23. Cavallaro, L., Lanzi, A., Mayer, L., Monga, M.: Lisabeth: automated content-based
signature generator for zero-day polymorphic worms. In: Proceedings of the 4th
ACM International Workshop on Software Engineering for Secure Systems, pp.
41–48. ACM Press, Germany (2008)

24. Karp, R.M., Rabin, M.O.: Efficient randomized pattern-matching algorithms. J
IBM J. Res. Dev. 31(2), 249–260 (1987)

25. VX Heavens, VX Heavens Site. http://vxheaven.org/

http://www.sophos.com/en-us/medialibrary/PDFs/other/sophos-security-threat-report-2014.pdf
http://www.sophos.com/en-us/medialibrary/PDFs/other/sophos-security-threat-report-2014.pdf
http://vxheaven.org/

	Two-Level Automated Approach for Defending Against Obfuscated Zero-Day Attacks
	1 Introduction
	2 Related Work
	2.1 Statistical-Based
	2.2 Signature-Based
	2.3 Behavior-Based
	2.4 Other Hybrid Techniques
	2.5 Limitations of Existing Techniques

	3 Proposed Technique
	3.1 Architecture
	3.2 Evaluating Zero-Day Attack
	3.3 Signature Generation (SG) and Hotfix Update

	4 Experimental Results
	5 Conclusions
	References

