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Holly Whiteside has been an extraordinary 
RD Symposium Coordinator for 16 years, 
from RD2000 through the RD2014 meeting. 
For most of these symposia, she managed all 
aspects of the meetings, their selection sites, 
the design and maintenance of the meeting 
website, all interactions with participants 
and Travel Awardees, as well as assisting the 
preparation and submission of the confer-
ence grant from the NEI and the proceedings 
volume. For many, Holly has been the face 
of the meetings, and she showed remarkable 
dedication to the meetings and their partici-
pants, often giving much of her personal time 
to be sure the symposia were successful. In 
so doing, she helped mostly during the period 
of doubling the size of the biennial meeting. 
Holly has decided to step down from her 
involvement with the RD Symposia to devote 
her time to other aspects of her research and 
administrative tasks and her personal inter-
ests. We will miss her and are honored to 
dedicate this proceedings volume to her.

Holly Jo Whiteside
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Preface

The International Symposia on Retinal Degeneration have been held in conjunc-
tion with the biennial meeting of the International Society of Eye Research (ISER) 
since 1984. These RD Symposia have allowed basic and clinician scientists from 
around the world to convene and present their new research findings. They have 
been organized to allow substantial time for discussions and one-on-one interac-
tions in a relaxed atmosphere, where international friendships and collaborations 
can be fostered.

The XVI International Symposium on Retinal Degeneration (also known as 
RD2014) was held from July 13–18, 2014 at the Asilomar Conference Center in 
the beautiful city of Pacific Grove, California, USA. The meeting brought together 
272 basic and clinician scientists, retinal specialists in ophthalmology, and trainees 
in the field from all parts of the world. In the course of the meeting, 43 platform 
and 159 poster presentations were given, and a majority of these are presented in 
this proceedings volume. New discoveries and state of the art findings from most 
research areas in the field of retinal degenerations were presented. This was the 
largest of all of the RD Symposia, with the greatest number of attendees and pre-
sentations.

The RD2014 meeting was highlighted by three special keynote lectures. The 
first was given by John Flannery, PhD, of the University of California, Berkeley, 
Berkeley, CA. Dr. Flannery discussed “Engineering AAV vectors to target specific 
functional subclasses of retinal neurons and glia.” Dr. Flannery’s talk was the first 
named keynote lecture of the RD Symposia in 32 years, the Edward H. Gollob 
Lecture, named for the President of the Foundation Fighting Blindness. The second 
keynote lecture was given by Sally Temple, PhD, Director of the Neural Stem Cell 
Institute, Regenerative Research Foundation, Rensselaer, NY. Dr. Temple discussed 
“Endogenous RPE stem cells, their surprising plasticity and implications for thera-
peutic applications.” The third keynote lecture was given by Samuel G. Jacob-
son, MD, PhD, of the University of Pennsylvania, Philadelphia, PA. Dr. Jacobson 
discussed “A treatment trial for an inherited retinal degeneration: what have we 
learned?”
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The scientific meeting ended with a “Welcome to RD2016” by Prof. Nagahisa 
Yoshimura of Kyoto, Japan, along with the organizers primarily responsible for the 
meeting, Drs. John Ash and Robert E. Anderson.

We thank the outstanding management and staff of the beautiful Asilomar Con-
ference Center for their assistance in making this an exceptionally smooth-running 
conference and a truly memorable experience for all of the attendees. These includ-
ed, in particular, Suzan Carabarin, Vivian Garcia, Sammy Ramos and Carlene 
Miller. We also thank Kelly Gilford and Jason McIntosh for providing audio/
visual equipment and services that resulted in a flawless flow of platform presenta-
tions. We thank Steve Henry of Associated Hosts, Inc. for planning and implement-
ing transportation of most of the attendees to and from the Asilomar meeting venue, 
the memorable whale watching excursion, as well as for providing the dynamic 
“Beach Boys Band” for the end-of-meeting Gala for a truly California experience. 
Lastly, we thank Franz Badura of Pro Retina Germany for serenading the attend-
ees at the Gala with his beautiful trumpet solos.

The Symposium received international financial support from a number of orga-
nizations. We are particularly pleased to thank The Foundation Fighting Blindness, 
Columbia, Maryland, for its continuing support of this and all previous biennial 
Symposia, without which we could not have held these important meetings. In ad-
dition, for the seventh time, the National Eye Institute of the National Institutes of 
Health contributed in a major way to the meeting. In the past, funds from these two 
organizations allowed us to provide 25–35 Travel Awards to young investigators 
and trainees working in the field of retinal degenerations. However, the response 
to the Travel Awards program was extraordinary, with 110 applicants, many more 
than in the past. For this reason, we sought additional support for the Travel Awards 
program. We are extremely appreciative for the contributions from Pro Retina Ger-
many, the Fritz Tobler Foundation Switzerland and from Ed and Sandy Gollob. In 
total, we were able to fund 49 Travel Awards, the largest number ever an RD Sym-
posia held in North America. We are grateful to the BrightFocus Foundation, which 
supported the important poster sessions. Many of the contributing foundations sent 
members of their organizations to attend the meeting. Their participation and com-
ments in the scientific sessions were instructive to many, offering new perspectives 
to some of the problems being discussed. The Travel Awardees were selected on the 
basis of 9 independent scores of their submitted abstracts, 6 from each of the orga-
nizers and 3 from the other members of the Travel Awards Committee for RD2014, 
Drs. Jacque Duncan, Machelle Pardue and XianJie Yang.

We also acknowledge the diligent and outstanding efforts of Ms. Holly White-
side, who along with Dr. John Ash, carried out most of the administrative aspects 
of the RD2014 Symposium, and designed and maintained the meeting website. 
Holly is the Administrative Manager of Dr. Anderson’s laboratory at the University 
of Oklahoma Health Sciences Center. For this Symposium, Ms. Melody Marcum, 
Director of Development of the Dean McGee Eye Institute, worked closely and ex-
tensively in selecting and negotiating the meeting venue, and in planning the meals, 
entertainment and various events. Melody and Holly were crucial to the success 
of the RD2014 symposium. Also, Dr. Michael Matthes in Dr. LaVail’s laboratory 
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played a major role in all aspects in the production of this volume, along with the 
assistance of Ms. Cathy Lau-Villacorta, also in Dr. LaVail’s laboratory.

Finally, we honor the monumental efforts of Holly Whiteside. Holly has been 
the RD Symposium Coordinator since 2000, and during that time she has been the 
“face” of the RD Symposia. She has been responsible for virtually all of the admin-
istrative aspects of the RD Symposia for 16 years, and most repeat attendees feel a 
close relationship with Holly. She is now stepping back from the efforts of the RD 
Symposia to pursue personal and professional avenues. We have valued Holly’s ef-
forts enormously over these years, and we are proud to dedicate this volume to her.

Catherine Bowes Rickman 
Matthew M. LaVail
Robert E. Anderson

Christian Grimm
Joe G. Hollyfield

John D. Ash
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Travel Awards

We gratefully acknowledge National Eye Institute, NIH, USA; the Foundation 
Fighting Blindness, USA; Pro Retina Germany; the Fritz Tobler Foundation, Swit-
zerland; and Ed and Sandy Gollob for their generous support of 49 Travel Awards 
to allow young investigators and trainees to attend this meeting. Eligibility was re-
stricted to graduate students, postdoctoral fellows, instructors and assistant profes-
sors actively involved in retinal degeneration research. These awards were based on 
the quality of the abstract submitted by each application. Catherine Bowes Rickman 
chaired the Travel Awards Committee of 9 senior retinal degeneration investigators, 
the 6 organizers and Drs. Jacque Duncan, Machelle Pardue and Xian-Jie Yang. The 
travel awardees are listed below.

Carolina Abrahan
University of Florida, Gainesville, USA

Martin-Paul Agbaga
University of Oklahoma HSC, Oklahoma City, USA

Monica Aguila
University College of London, London, United Kingdom

Marcel Alavi
University of California, San Francisco, San Francisco, USA

Seifollah Azadi
University of Oklahoma HSC, Oklahoma City, USA

Emran Bashar
University of British Columbia, Vancouver, Canada

Lea Bennett
Retina Foundation of the Southwest, Dallas, USA

Manas Biswal
University of Florida, College of Medicine, Gainesville, USA

Shannon Boye
University of Florida, Gainesville, USA
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Melissa Calton
Stanford University School of Medicine, San Francisco, USA

Livia Carvalho
Schepens Eye Research Institute/MEEI, Boston, USA

Wei-Chieh Chiang
University of California, San Diego, LaJolla, USA

Rob Collin
Radboud University Medical Centre, Nijmegen, Netherlands

Janise Deming
University of Southern California, Los Angeles, USA

Louise Downs
University of Pennsylvania, Philadelphia, USA

Lindsey Ebke
Cleveland Clinic Cole Eye Institute, Cleveland, USA

Michael Elliott
University of Oklahoma HSC, Oklahoma City, USA

Michael Gale
Oregon Health and Science University, Portland, USA

Xavier Gerard
Institut Imagine, Paris, France

Rosario Fernandez Godino
MEEI-Harvard Medical School, Boston, USA

Christin Hanke
University of Utah, Salt Lake City, USA

Stefanie Hauck
Helmholtz Zentrum Müchen, Neuherberg, Germany

Roni Hazim
University of California, Los Angeles, Los Angeles, USA

Claire Hippert
UCL Institute of Ophthalmology, London, United Kingdom

John Hulleman
Univ. of Texas Southwestern Medical Center, Dallas, USA

Xiaojie Ji
The Jackson Laboratory, Bar Harbor, USA

Mark Kleinman
University of Kentucky, Lexington, USA
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Elod Kortvely
Universität Tübingen, Tübingen, Germany

Ruanne Lai
University of British Columbia, Vancouver, Canada

Christopher Langlo
Medical College of Wisconsin, Milwaukee, USA

Jennifer Lentz
Louisiana State University HSC, New Orleans, USA

Yao Li
Columbia University, New York City, USA

Hongwei Ma
University of Oklahoma HSC, Oklahoma City, USA

Alexander Marneros
Massachusetts General Hospital, Charlestown, USA

Alex McKeown
University of Alabama at Birmingham, Birmingham, USA

Claudia Müller
Fordham University, New York City, USA

Celia Parinot
Institut de la Vision, Paris, France

David Parfitt
UCL Institute of Ophthalmology, London, United Kingdom

Diana Pauly
Universität Regensburg, Regensburg, Germany

Beryl Royer-Bertrand
University of Lausanne, Lausanne, Switzerland

Matt Rutar
The Australian National University, Canberra, Australia

Marijana Samardzija
University of Zurich, Schlieren, Switzerland

Kimberly Toops
University of Wisconsin—Madison, Madison, USA

Christopher Tracy
University of Missouri, School of Medicine, Columbia, USA

Mallika Valapala
Johns Hopkins University School of Medicine, Baltimore, USA
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Lei Wang
Johns Hopkins University, Baltimore, USA

Qingjie Wang
Regenerative Research Foundation, Rensselaer, USA

Wenjun Xiong
Harvard Medical School, Boston, USA

Lei Xu
University of Florida, Gainesville, USA
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Chapter 1
Apolipoprotein E Isoforms and AMD

Kimberly A Toops, Li Xuan Tan and Aparna Lakkaraju

Abstract The cholesterol transporting protein apolipoprotein E (ApoE) occurs in 
three allelic variants in humans unlike in other species. The resulting protein iso-
forms E2, E3 and E4 exhibit differences in lipid binding, integrating into lipoprotein 
particles and affinity for lipoprotein receptors. ApoE isoforms confer genetic risk 
for several diseases of aging including atherosclerosis, Alzheimer’s disease, and 
age-related macular degeneration (AMD). A single E4 allele increases the risk of 
developing Alzheimer’s disease, whereas the E2 allele is protective. Intriguingly, 
the E4 allele is protective in AMD. Current thinking about different functions of 
ApoE isoforms comes largely from studies on Alzheimer’s disease. These data 
cannot be directly extrapolated to AMD since the primary cells affected in these 
diseases (neurons vs. retinal pigment epithelium) are so different. Here, we pro-
pose that ApoE serves a fundamentally different purpose in regulating cholesterol 
homeostasis in the retinal pigment epithelium and this could explain why allelic risk 
factors are flipped for AMD compared to Alzheimer’s disease.

Keywords Apolipoprotein E · ApoE isoforms · Age-related macular degeneration ·  
Retinal pigment epithelium · Cholesterol
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1.1  Introduction

Age-related macular degeneration (AMD), like other multifactorial diseases of ag-
ing, has no simple genetic underpinning. A complex mixture of environmental fac-
tors, lifestyle choices, and genes influence whether AMD will develop, how rapidly 
it will advance, and how severe the resulting visual dysfunction will be (Fritsche 
et al. 2014). Vision loss in AMD results from death of the photoreceptors, par-
ticularly in the macula. Photoreceptor loss reflects the terminal step in a cascading 
pathology whose genesis is in the posterior-most portion of the retina: the RPE, 
Bruch’s membrane (BM) and choroid complex.

The tissue that is the initial site of damage in AMD, the RPE, forms the outer 
blood-retinal barrier and is responsible for the health and maintenance of the pho-
toreceptors and the choriocapillaris (Toops et al. 2014). One of the many functions 
of the RPE is to act as the central organizing hub for cholesterol homeostasis for 
the outer retina (Fliesler and Bretillon 2010; Pikuleva and Curcio 2014). Several 
independent lines of evidence indicate that cholesterol homeostasis in the RPE and 
adjacent Bruch’s membrane is dysregulated in AMD: one, cholesterol-rich lesions 
with material at least partly derived from the RPE are found in both sub-retinal and 
sub-RPE deposits (Bowes Rickman et al. 2013; Pikuleva and Curcio 2014). Two, 
several critical members of the cholesterol homeostasis pathway including hepatic 
lipase (LIPC), cholesteryl ester transfer protein (CETP), ATP-binding cassette sub-
family A member 1 (ABCA1), and apolipoprotein E (ApoE) have been implicated 
in modulating AMD susceptibility (Katta et al. 2009; Liu et al. 2012; Fritsche et al. 
2014). Of these, how ApoE gene variants alter AMD risk is especially intriguing 
because of the opposite allele-risk associations between AMD and Alzheimer’s dis-
ease (AD) (Thakkinstian et al. 2006; McKay et al. 2011; Sivak 2013).

1.2  ApoE Isoforms Structure and Function

The human ApoE gene occurs in three allelic variants E2, E3 and E4 that vary by 
just two nucleotides resulting in three protein isoforms with amino acid variations 
at positions 112 and 158. These single amino acid changes profoundly effect protein 
function because they modify salt bridges within different helices of ApoE leading to 
altered receptor binding and lipid binding (Mahley and Rall 2000; Huang 2010). Key 
differences between the three ApoE isoforms are summarized in Table 1.1. The E2 
isoform binds poorly to the low-density lipoprotein receptor (LDL-R) compared to E3 
or E4 (< 2 %). E4 associates preferentially with very low-density lipoproteins (VLDL) 
whereas E2 and E3 associate with high-density lipoproteins (HDL) (Mahley and Rall 
2000; Huang 2010). Humans are the only known species that express multiple ApoE 
isoforms. ApoE expressed by non-human primates and mice is structurally homolo-
gous to human ApoE4 with Arg at positions 112 and 158; however, these sequences 
have Thr at position 61 instead of Arg. This single amino acid switch prevents the for-
mation of an N- and C- terminal domain interaction and results in non-human ApoE 
functioning more like human ApoE3 (Mahley and Rall 2000; Raffai et al. 2001).
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1.3  Evidence for ApoE in Human Diseases

1.3.1  Hyperlipidemia

ApoE was first implicated in regulating the balance of serum cholesterol and tri-
glyceride levels (Huang 2010). In this context, ApoE, a component of lipoproteins 
(primarily chylomicrons, VLDL, and a subset of HDL particles), facilitates entry 
into cells by acting as a ligand for the low-density lipoprotein receptor (LDL-R), 
LDL-R like protein (LRP), heparan sulfate proteoglycans, and additional non-ca-
nonical receptors (Mahley and Rall 2000; Carlo et al. 2013). E4 is highly enriched 
in VLDL particles due to its altered lipid-binding region that shows a preference 
for binding triglyceride-enriched particles. E2 and E3 are more common in HDL 
particles due to a preference in their lipid-binding regions for phospholipids (Huang 
2010). Both E2 and E4 alleles are associated with the development of hyperlipid-
emia and downstream atherosclerotic lesions, but for different reasons (Mahley and 
Rall 2000; Huang 2010). Because E2 is a much poorer ligand than E4 for LDL-R, 
effective uptake of HDL particles is prevented, leading to hyperlipidemia type III 
in E2 homozygotes. The preferential binding of E4 to VLDL particles leads to a 
feedback loop of decreased cellular uptake of LDL particles, which can result in 
hyperlipidemia.

1.3.2  Alzheimer’s Disease

In contrast to the above scenario, in individuals with either one or two copies of E4 
the risk of developing AD increases by 4- or 12-fold respectively compared to E3 
homozygotes (Huang 2010). ApoE4 is the best-characterized risk factor for early-
onset familial AD and an estimated 65–80 % of AD patients have at least one E4 al-
lele (Carter 2007). Conversely, ApoE2 has been proposed to be mildly protective for 
AD, although this remains a weak association without a clear mechanism (Maezawa 
et al. 2004). ApoE4 is thought to contribute to AD mainly by altering how neurons 

Table  1.1   General properties of the three different human ApoE isoforms are summarized.  
aPopulation frequency is reported for having at least one allele of a given isoform; total estimated 
frequencies of the six possible ApoE phenotypes are 55 % E3/E3, 25 % E3/E4, 15 % E3/E2, with 
E4/E4, E2/2, and E4/E2 being rare phenotypes with 1–2 % occurrence (Mahley and Rall 2000).  
bSingle polymorphisms lead to alternate amino acids at positions 112 and 158 in the human ApoE 
isoforms protein primary sequence. c ApoE2 has been reported to have less than 2 % of the binding 
capability to LDL-R compared to E3 or E4 (Mahley and Rall 2000)
Properties of human ApoE isoforms
Isoform Population 

frequency (%)a
Sequenceb 
112 158

LDL-R affinity Lipoprotein 
binding

ApoE2 7 Cys Cys Very lowc HDL
ApoE3 78 Cys Arg High HDL
ApoE4 15 Arg Arg High VLDL, HDL
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process the amyloid precursor protein (APP) through a cholesterol-mediated path-
way. This pathway results in the accumulation of intra- and extra- neuronal toxic 
amyloid beta (Aβ) fragments, which eventually kill hippocampal neurons (Carter 
2007; de Chaves and Narayanaswami 2008; Huang 2010; Leduc et al. 2010). The 
mechanism for this is complex and depends on interactions between ApoE, ApoE 
cell surface receptors, cholesterol, APP and Aβ, within neurons and in the surround-
ing astrocytes and extracellular space. E4 appears to stabilize toxic Aβ oligomers, 
which renders them resistant to lysosomal degradation (Cerf et al. 2011). E4 con-
tributes to AD via other mechanisms that are independent of Aβ: one, E4 is a poor 
supplier of cholesterol for membrane repair in damaged neurons (Rapp et al. 2006; 
de Chaves and Narayanaswami 2008; Leduc et al. 2010); and two, E4 acts as a pro-
inflammatory molecule to exacerbate neuronal damage (Guo et al. 2004).

1.3.3  Age-Related Macular Degeneration

Epidemiological studies suggest that ApoE2 confers risk in AMD, whereas ApoE4 
appears to be protective, although the association of E4 with protection is stronger 
than E2 with risk (McKay et al. 2011). ApoE and its cargo, cholesterol, are abundant 
components of drusen, the protein- and lipid-rich lesions in the Bruch’s membrane 
characteristic of AMD (Anderson et al. 2001; Curcio et al. 2011; Bowes Rickman 
et al. 2013; Pikuleva and Curcio 2014). ApoE in drusen could originate from either 
the retina or the choroidal circulation (or both, since these sources are not mutu-
ally exclusive). However, mounting evidence indicates that the material that forms 
drusen, including ApoE, is secreted from the RPE (even if it is initially transported 
into the retina from the circulation, as may be the case for certain lipids) (Pikuleva 
and Curcio 2014). Thus, the retina is an active cholesterol producing and processing 
tissue and cholesterol efflux mechanisms are critical for maintaining retinal choles-
terol homeostasis (Fliesler and Bretillon 2010; Pikuleva and Curcio 2014).

1.4  Cellular Identity and Differential ApoE Function 
Contributing to Risk

How ApoE4 can be detrimental to neuronal health has been studied extensively 
in AD. Little is currently known regarding isoform-specific functions of ApoE in 
the RPE and how these could contribute to AMD. Local sources of ApoE within 
the retina are the RPE and the Muller glia, indicating that ApoE is a major cho-
lesterol transport in the retina (Anderson et al. 2001; Li et al. 2006; Johnson et al. 
2011). RPE cells express the uptake receptors for ApoE (LDL-R and LRP) as well 
as the machinery for cholesterol efflux (ABCA1 and ABCG1) (Ebrahimi and Handa 
2011; Pikuleva and Curcio 2014). Since cholesterol (free, esterified, and oxidized) 
is a core component of drusen (Curcio et al. 2005), dysregulation of cholesterol 
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homeostasis seems to be a key player in AMD pathology (Curcio et al. 2011; Ebra-
himi and Handa 2011; Pikuleva and Curcio 2014). And it is in this characteristic that 
hippocampal neurons and RPE cells most likely diverge.

First, whereas RPE have the capacity to synthesize and take up ApoE-contain-
ing lipoproteins, neurons are largely at the mercy of the astrocytes for ApoE pro-
duction and lipid transport (Leduc et al. 2010). This is a critical distinction since 
very little cholesterol enters the CNS from the circulation and neurons rely on 
local synthesis and transport of cholesterol to generate and maintain their long 
membrane-rich axons. As a reflection of this, neuronal plasma membrane has high 
levels of lipoprotein receptors particularly LRP, which has a strong preference for 
ApoE2 and E3 (Rapp et al. 2006). On the other hand, although RPE cells express 
ApoE receptors, they seem to be spatially discreet (i.e., apical vs. basolateral distri-
butions) and with a different abundance (Tserentsoodol et al. 2006a; Tserentsoodol 
et al. 2006b; Zheng et al. 2012). A comprehensive analysis of this expression re-
mains to be done.

The RPE therefore acts as a hub for ingress and egress of ApoE-cholesterol, 
while neurons are largely a terminal acceptor. This implies that as far as ApoE is 
concerned, RPE may be more similar to astrocytes then neurons. Astrocytes are also 
active producers of ApoE-cholesterol particles and like the RPE, express ABCA1 
and ABCG1, which participate in efflux of ApoE rich pseudo-HDL particles (Wu 
et al. 2010; Johnson et al. 2011; Ito et al. 2014). Astrocytes express LDL-R and LRP 
but appear to preferentially bind and uptake ApoE4 and E3 containing lipoproteins 
(Rapp et al. 2006). Astrocytes exposed to ApoE2-, E3- or E4-loaded cholesterol 
exhibited ApoE isoform-dependent uptake (E4 = E3 > E2) that was exactly opposite 
to that seen in neurons (E2 = E3 > E4). Further, astrocytes internalized their choles-
terol efficiently, whereas in neurons, the cholesterol was retained on the plasma 
membrane.

1.5  Implications

If the RPE is functionally similar to astrocytes with regard to cholesterol handling, 
rather than neurons, then the reversed risk alleles for AD and AMD may not be such 
a puzzle after all. The RPE and astrocytes can preferentially efflux ApoE containing 
pseudo-HDL particles for efficient intercellular cholesterol transport. In the brain, 
this becomes problematic for neurons in ApoE4 expressors because poor cholester-
ol efflux both increases Aβ generation and decreases its degradation. In the retina, a 
different balance is struck because the RPE is capable of both efflux and re-uptake. 
This will be more efficient for E4 than E2 due to the presence of LDL-R in RPE, 
which avidly binds E3 and E4 but has almost no affinity for E2. Experiments aimed 
at testing how efficiently different ApoE isoforms traffic cholesterol in and out of 
the RPE will help establish a cellular, mechanistic basis for puzzling epidemiologi-
cal data.
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Chapter 2
Role of Chemokines in Shaping Macrophage 
Activity in AMD

Matt Rutar and Jan M Provis

Abstract Age-related macular degeneration (AMD) is a multifactorial disorder 
that affects millions of individuals worldwide. While the advent of anti-VEGF 
therapy has allowed for effective treatment of neovascular ‘wet’ AMD, no treat-
ments are available to mitigate the more prevalent ‘dry’ forms of the disease. A role 
for inflammatory processes in the progression of AMD has emerged over a period 
of many years, particularly the characterisation of leukocyte infiltrates in AMD-
affected eyes, as well as in animal models. This review focuses on the burgeoning 
understanding of chemokines in the retina, and their potential role in shaping the 
recruitment and activation of macrophages in AMD. Understanding the mecha-
nisms which promote macrophage activity in the degenerating retina may be key 
to controlling the potentially devastating consequences of inflammation in diseases 
such as AMD.

Keywords Retinal degenerations · Age-related macular degeneration (AMD) · 
Inflammation · Macrophages · Microglia · Chemokines

2.1  Introduction

Age-related macular degeneration (AMD) affects millions of individuals world-
wide, and is the leading cause of blindness in the industrialised world (Ambati 
et al. 2003a). AMD is a multifactorial disorder, involving complex interaction 
between environmental and genetic factors. Evidence for a role of inflammation 
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in  progression AMD has been accruing over a period of many years, particu-
larly through the observations of leukocyte infiltrates within AMD-affected eyes 
(Penfold et al. 2001; Forrester 2003).

2.2  Macrophage Recruitment in AMD

The involvement of inflammatory processes in the histopathology of AMD was first 
noted almost 100 years ago (Hegner 1916), and several histological studies since 
have established the presence of aggregations of choroidal leukocyte infiltrates in 
association with disciform macular lesions (Hegner 1916; Paul 1927; Green and 
Key 1977).

Those early observations were confirmed and extended in a number of electron 
microscopical investigations which demonstrated the involvement of a number of 
inflammatory cells—including macrophages, lymphocytes, and mast cells—in RPE 
atrophy, and breakdown of Bruch’s membrane (Penfold et al. 1984, 1985). Macro-
phages and other leukocytes have also been described in excised neovascular mem-
branes (Lopez et al. 1991; Gehrs et al. 1992; Seregard et al. 1994). Ultrastructural 
studies also identified a close relationship between macrophages and the formation 
of choroidal neovascular membranes in wet AMD (Penfold et al. 1987). Multinucle-
ated giant cells—which may form through union of multiple macrophages or mi-
croglia (Dickson 1986)—have also been found to correlate spatially with regions 
of breakdown in Bruch’s membrane and with CNV (choroidal neovascularisation) 
(Penfold et al. 1985). Chronic involvement of macrophages and giant cells has also 
been shown in atrophic AMD lesions, and on the expanding edges (Penfold et al. 
1987; Cherepanoff et al. 2009). Other investigations have shown changes in paren-
chymal microglia in association with early AMD, including increased MHC-II ex-
pression and morphological changes suggestive of activation (Penfold et al. 1997). 
In advanced AMD, activated amoeboid microglia infiltrate the ONL and subretinal 
space in the degenerating outer retina, where they are associated with neovascular 
structures (Combadiere et al. 2007), and appear to have a role in the phagocytosis of 
photoreceptor debris (Gupta et al. 2003; Combadiere et al. 2007).

2.3  Role of Chemokines

First discovered in 1987 (Walz et al. 1987; Yoshimura et al. 1987), chemokines are 
a large, growing family comprising more than 50 molecules interacting with at least 
20 chemokine receptors, that play an important role in the chemotactic guidance of 
leukocyte migration and activation (Moser and Loetscher 2001; Bajetto et al. 2002). 
Chemokines are small molecules grouped according to the relative position of their 
first N-terminal cysteine residues, comprising C (γ chemokines), CC (β chemo-
kines), CXC (α chemokines), and CX3C (δ chemokines) families (Loetscher et al. 
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2000; Murphy et al. 2000; Zlotnik and Yoshie 2000; Bajetto et al. 2002). These may 
be expressed by endothelial cells, resident macrophages (including microglia), as 
well as infiltrating leukocytes (Crane and Liversidge 2008). Chemokines exert their 
biological activity through binding cell surface chemokine receptors, which are part 
of the superfamily of seven transmembrane domain receptors that signal through 
coupled heterotrimeric G-proteins, consisting of C, CC, CXC, CX3C receptor sub-
classes (Bajetto et al. 2002). Many of these receptors show a degree of redundancy, 
as multiple chemokines may bind several receptors; although interactions are main-
ly restricted to within particular subclasses (Bajetto et al. 2002). Chemokine expres-
sion typically generates chemical ligand gradients, which serve as directional cues 
for guidance of leukocytes bearing the appropriate chemokine receptors to sites of 
injury, and are also thought to aid in extravasation of leukocytes (Luster 1998).

The expression of chemokines in the guidance and activation of macrophages 
has garnered considerable interest in AMD. Retinas from human donors show in-
creased expression of both α (Cxcl1, Cxcl1) and β (Ccl2) chemokine genes in ‘wet’ 
and ‘dry’ AMD (Newman et al. 2012), while elevated levels of Ccl2 protein—a 
potent chemoattractant for monocytes (Matsushima et al. 1989; Yoshimura et al. 
1989)—have been detected in aqueous humour samples taken from patients in ad-
vanced stages of AMD (Jonas et al. 2010; Kramer et al. 2011). Additionally, eleva-
tion in Ccl2 is evident within atrophic ‘dry’ AMD lesions and is accompanied by 
influxes of monocytes expressing Ccr2 (Sennlaub et al. 2013), which is the receptor 
for Ccl2 signalling (Yoshimura and Leonard 1990).

A direct for role of chemokines has been elucidated with animal models of AMD 
(Patel and Chan 2008). Investigations using laser-induced CNV in mice have fo-
cused on the role of β chemokine signalling in neovascular AMD. Ablation of Ccl2 
using target gene knockout has been shown to inhibit the infiltration of macro-
phages and results in reduced lesion size following laser-induced CNV compared to 
controls (Luhmann et al. 2009). Moreover, a mouse knockout of the receptor Ccr2 
exhibits decreased macrophage recruitment and vastly reduced neovascularisation 
following experimental laser-induced CNV (Tsutsumi et al. 2003). In models of 
atrophic ‘dry’ AMD which utilise bright light as a damaging stimulus (Marc et al. 
2008; Rutar et al. 2010), the suppression of Ccl2 using either ablation or siRNA-
mediated knockdown reduces macrophage recruitment and the extent of cell death 
(Rutar et al. 2012; Sennlaub et al. 2013). Conversely, other studies suggest that a 
degree of β chemokine signalling may be necessary for the maintenance retinal 
homeostasis, and prevention of AMD. An investigation in aged, dual Ccl2/Ccr2 
knockout mice showed retinal features similar to AMD including formation of lipo-
fuscin, drusen, photoreceptor degeneration, and neovascularisation (Ambati et al. 
2003b), although the AMD-like phenotype in this model has been questioned (Luh-
mann et al. 2009). Ccl2/Ccr2 knockout results in the accumulation of hypertrophied 
subretinal macrophages, possibly because of impaired monocyte trafficking (Luh-
mann et al. 2009).

The only δ chemokine receptor characterised, Cx3cr1, has also been implicated 
in maintenance of homeostasis and genesis of AMD-like pathology. Cx3cr1 is a 
chemokine receptor found on microglia, macrophages, astrocytes, and T-cells (Patel 
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and Chan 2008), whose ligand chemokine Cx3cl1 is constitutively expressed on 
many cell types in the retina, and together are thought to mediate the trafficking of 
microglia and macrophages in the clearance of extracellular deposits (Fong et al. 
1998; Silverman et al. 2003). Targeted knockout of Cx3cr1 in light-stressed mice 
induces progressive degeneration of photoreceptors in correlation with an accumu-
lation of engorged subretinal microglia/macrophages and other AMD-like features 
(Combadiere et al. 2007). Moreover, ablation of Cx3cr1 is associated with an in-
crease in lesion size following experimental neovascularisation (Combadiere et al. 
2007).

2.4  Summary

Over a period of many years, the role of inflammation in AMD has gradually 
emerged as an important factor underpinning its pathogenesis. This is exemplified 
by traditional histological examinations and electron microscopy identifying mac-
rophage/microglial infiltration in AMD-effected eyes, and more recently through 
investigations utilising animal models. The expression of chemokine-related genes 
is prodigious in all forms of AMD pathology, and animal models of both and ‘dry’ 
and ‘wet’ AMD indicate that chemokine expression modulates both the recruitment 
and activation of macrophages, as well as the extent of retinal degeneration. Reduc-
ing inflammation by altering macrophage activity in retina may prove an important 
therapeutic tool in ameliorating degeneration in AMD.
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Chapter 3
Biology of p62/sequestosome-1 in Age-Related 
Macular Degeneration (AMD)

Lei Wang, Katayoon B Ebrahimi, Michelle Chyn, Marisol Cano and James T 
Handa

Abstract p62/sequestosome-1 is a multidimensional protein that interacts with 
many signaling factors, and regulates a variety of cellular functions including 
inflammation, apoptosis, and autophagy. Our previous work has revealed in the 
retinal pigment epithelium (RPE) that p62 promotes autophagy and simultaneously 
enhances an Nrf2-mediated antioxidant response to protect against acute oxidative 
stress. Several recent studies demonstrated that p62 contributes to NFkB mediated 
inflammation and inflammasome activation under certain circumstances, raising 
the question of whether p62 protects against or contributes to tissue injury. Herein, 
we will review the general characteristics of p62, focusing on its pro- and anti-cell 
survival roles within different physiological/pathological contexts, and discuss the 
potential of p62 as a therapeutic target for AMD.

Keywords AMD · RPE · p62 · sqstm1 · Autophagy · Nrf2 · Neurodegeneration · 
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3.1 Introduction

AMD is the most common cause of blindness among the elderly in western coun-
tries (Kaarniranta et al. 2011), and is characterized by dysfunction of the retinal 
pigment epithelium (RPE). The RPE is under constant oxidative challenge due to 
phagocytosis and exposure to UV light. Removal of oxidized/misfolded proteins 
relies on the proteasome and autophagy. We showed that acute stress inhibits the 
proteasome, but up-regulates anti-oxidant and autophagy related genes, including 
p62 (Cano et al. 2014). We also confirmed p62’s protective role in the RPE, via 
both autophagic clearance and activation of Nrf2 antioxidant signaling (Wang et al. 
2014). As AMD shares pathological and mechanistic features with other adult-onset 
neurodegenerative diseases (Glass et al. 2010; Kaarniranta et al. 2011), our studies 
on p62’s role in AMD could contribute to the understanding of these diseases.

3.2 Structure and Functions of p62

p62 was initially discovered as an interacting partner of atypical protein kinase 
C (aPKC) (Puls et al. 1997; Sanchez et al. 1998) via its N-terminal Phox/Bem 
1p (PB1) domain, and mediating the activation of NFkB signaling. The follow-
ing ZZ zinc-finger domain binds receptor interacting protein (RIP), also linking 
p62 to NFkB signaling. The TRAF6 binding (TB) domain binds TRAF6, which is 
relevant in osteoclastogenesis, as well as Ras-induced tumorigenesis (Nakamura 
et al. 2010). Downstream of TB domain, the LC3-interacting region (LIR) interacts 
with autophagosome protein Atg8/LC3, and the Keap1-interacting region (KIR) is 
involved with Nrf2 regulation. At the C-terminus, the ubiquitin-associated (UBA) 
domain regulates p62’s interaction with polyubiquitinated proteins targeted for au-
tophagic degradation (Matsumoto et al. 2011). As Table 3.1 shows, p62 is rich in 
protein-interacting sequences. Its N-terminal region mainly regulates inflammatory 
responses, and the C-terminal domains mostly contribute to stress reduction. (See 
Fig. 3.1)

Multiple p62 isoforms have been identified in different species. The rat express-
es three p62 protein isoforms (Gong 1999; Croci et al. 2003). The ratio of rat p62 

Fig. 3.1   p62 can be either 
protective or damaging. 
Its role is determined by 
its interacting partners, in 
different pathological context 
and tissue types
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isoform1/isoform2 is tissue specific, and is dynamically regulated in response to 
stimulation. Humans express two p62 isoforms, of which isoform2 is 84 amino 
acids shorter at the N-terminus, equivalent to the loss of PB1 domain. Our studies 
demonstrated that all p62 mRNA species are expressed in cultured human RPE 
cells, but isoform2 is barely translated (Wang et al. 2014), thus its functional role 
requires further investigation in AMD patients.

3.3 p62 Protects by Enhancing Autophagic Clearance and 
Activating Nrf2 Signaling

Aggregates of misfolded/damaged proteins are transported to the autophagy ma-
chinery for degradation (Matsumoto et al. 2011). p62 functions as a cargo receptor, 
binding to polyubiquitinated proteins and guiding them to the autophagosome. Our 
studies confirmed in RPE cells, that p62 silencing caused cargo loading failure and 
inefficient autophagy, as demonstrated by a reduced LC3 conversion ratio. Overex-
pression of p62 gave the opposite results. Interestingly, p62’s influence on selective 
autophagy was observed only when cells were under oxidative stress. We speculate 
that under basal conditions, RPE cells rely on other protective mechanisms such 
as the proteasome, and that p62 mediated autophagy is recruited to deal with over-
whelming stress.

Along with the p62 mediated autophagic clearance, the antioxidant transcrip-
tion factor Nrf2 is activated to help maintaining redox homeostasis. Keap1, known 
to sequester Nrf2 in the cytosol and inhibit its activity, is bound by p62, thus 
releasing Nrf2 to activate the antioxidant genes (Komatsu et al. 2010). Our stud-
ies confirmed in RPE that p62 enhanced Nrf2 activity, and Nrf2 upregulated p62 
expression at transcriptional level, thus forming a positive feedback loop. These 
findings indicate that in response to an acute stress, p62 provides dual cytoprotec-
tion to RPE, via autophagic clearance of insoluble proteins and activation of Nrf2 
signaling.

Table 3.1   Studies on p62 functional domains and covalent modifications
References Studies on individual domain or mutation
(Puls et al. 1997) p62 interacts with aPKC via the N-terminal PB1 domain
(Bjorkoy et al. 2005) LC3 interacts with p62
(Jain et al. 2010) KIR (keap1 interacting region) is mapped
(Linares et al. 2011) Phosphorylation at T269, S272 influences mitosis and cell 

proliferation
(Matsumoto et al. 2011) Phosphorylation at S403 determines its affinity for ubiquitinated 

cargo
(Ichimura et al. 2013) Phosphorylation at S351 in an mTORC-1 dependent manner deter-

mines its affinity to Keap1
(Shi et al. 2013) p62 cleavage at TB disrupts autophagy and impairs NFkB signaling
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3.4 p62, A Double Edged Sword

With aging, the p62 promoter undergoes oxidative damage (Du et al. 2009b; Du 
et al. 2009a), consistent with our observation of reduced p62 mRNA expression 
in elderly mouse RPE (unpublished data). We would predict a decline of p62 in 
the AMD mouse model (Cano et al. 2010) and AMD patients, but p62 accumu-
lation was observed instead (unpublished data). Similar observations were made 
in neurodegenerative patients (see Table 3.2). This contradiction could result from 
post-transcriptional up-regulation of p62 to rescue damaged cells, but it is question-
able whether p62 can still promote clearance of protein aggregates when the whole 
autophagy machinery undergoes irreversible failure. It was reported that in autoph-
agy-deficient livers, p62 ablation actually reduced toxicity and prevented cell death 
(Komatsu et al. 2007).

In vitro studies revealed p62’s role in NFkB signaling and inflammasome activa-
tion (Takeda-Watanabe et al. 2012; Park et al. 2013). p62 could be a double edged 
sword - it fights against stress, yet it can promote inflammation, exacerbating cel-
lular crisis. (see Fig. 3.1) Since autophagy failure and a weakened Nrf2 response 
in the RPE is a component of AMD, the accumulated p62 in disease area possibly 
exerts a harmful effect by aggravating chronic inflammation, a common feature of 
neurodegenerative diseases.

Table 3.2   p62 dysregulation is associated with a number of diseases
References Studies on p62 function Disease
(Rea et al. 2006) K378X mutation in p62 is 

associated with increased 
NFkB signaling and osteoclast 
formation

Paget’s disease of bone

(Ramesh Babu et al. 2008) p62 KO leads to accumulation 
of hyperphosphorylated tau

Alzheimer’s disease

(Daroszewska et al. 2011) p62 mutation (P394L) is asso-
ciated with bone lesions

Paget’s disease of bone

(Braak et al. 2011) p62 immunostaining in the 
neurosecretory cells of the 
paraventricular nucleus

Parkinson’s disease

(Salminen et al. 2012) Lack of p62 provokes the tau 
pathology; reduced p62 levels 
were observed in the frontal 
cortex of AD patients

Alzheimer’s disease

(Hirano et al. 2013) p62 mutations (Ala53Thr, 
Pro439Leu) are associated 
with ALS

Amyotrophic lateral sclerosis

(Rue et al. 2013) p62 accumulation occurs in 
neuronal nuclei, colocalizing 
with huntingtin inclusions

Huntington’s disease
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3.5 Future Experimental Approaches

To evaluate p62’s potential as a therapeutic target for AMD, we must elucidate its 
role under chronic stress (Cano et al. 2010; Wang and Neufeld 2010), to determine:

1) if p62 undergoes posttranscriptional alteration, such as mRNA splicing;
2) if p62 activity is regulated by novel covalent modifications;
3) if p62 has unidentified interacting protein partners under pathological conditions.

A thorough understanding of p62’s regulatory mechanism could lead to new thera-
peutic methods for AMD.
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Abstract Age-related macular degeneration (AMD) is a sight-threatening disorder 
of the central retina. Being the leading cause of visual impairment in senior citizens, 
it represents a major public health issue in developed countries. Genetic studies 
of AMD identified two major susceptibility loci on chromosomes 1 and 10. The 
high-risk allele of the 10q26 locus encompasses three genes, PLEKHA1, ARMS2, 
and HTRA1 with high linkage disequilibrium and the individual contribution of 
the encoded proteins to disease etiology remains controversial. While PLEKHA1 
and HTRA1 are highly conserved proteins, ARMS2 is only present in primates and 
can be detected by using RT-PCR. On the other hand, there is no unequivocal evi-
dence for the existence of the encoded protein. However, it has been reported that 
risk haplotypes only affect the expression of ARMS2 (but not of HTRA1), making 
ARMS2 the best candidate for being the genuine AMD gene within this locus. Yet, 
homozygous carriers of a common haplotype carry a premature stop codon in the 
ARMS2 gene (R38X) and therefore lack ARMS2, but this variant is not associated 
with AMD. In this work we aimed at characterizing the diversity of transcripts orig-
inating from this locus, in order to find new hints on how to resolve this perplexing 
paradox. We found chimeric transcripts originating from the PLEKHA1 gene but 
ending in ARMS2. This finding may give a new explanation as to how variants in 
this locus contribute to AMD.
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4.1  Introduction

Age-related macular degeneration (AMD) is a common blinding disease of the el-
derly with an exceedingly intricate etiology. An interplay of non-modifiable (i.e. 
multiple genetic variants) and modifiable (i.e. environmental) factors contribute to 
disease risk (Seddon and Chen 2004).

The involvement of the complement system had been already proposed in 2001 
(Hageman et al. 2001), and four years later genome-wide linkage scans indeed 
identified complement factor H (CFH) as the first major susceptibility gene for 
AMD (Edwards et al. 2005; Haines et al. 2005; Klein et al. 2005). The second 
major susceptibility locus was identified shortly after the publication of the above 
results (Jakobsdottir et al. 2005). This locus on chromosome 10q26 exhibits an even 
stronger association signal overlying three genes: Pleckstrin Homology Domain 
Containing, Family A Member 1 (PLEKHA1), Age-Related Maculopathy Suscep-
tibility 2 (ARMS2), and HtrA serine peptidase 1 (HTRA1). Because of the close 
vicinity of these genes, association studies lack the required discriminative power to 
determine the causative gene/variant. PLEKHA1 is apparently outside the linkage 
disequilibrium block exhibiting the peak association. In contrast, there are numer-
ous papers suggesting a role for ARMS2 (Rivera et al. 2005; Fritsche et al. 2008) or 
for HTRA1 (Dewan et al. 2006; Yang et al. 2006) in AMD. Furthermore, Yang et al. 
suggests a two-hit model, claiming that both genes are simultaneously affected by 
the risk haplotype (Yang et al. 2010).

It has been reported in numerous Mendelian diseases that protein products of 
causal genes tend to physically interact (Brunner and van Driel 2004; Franke et al. 
2006). Similarly, growing evidence suggests that products of genes in complex 
trait-associated loci establish functional protein-protein bindings. The dominance 
of components belonging to the alternative complement pathway among the pro-
teins implicated in AMD strongly supports this concept. Taking this idea one step 
further, the sought-after gene within the PLEKHA1/ARMS2/HTRA1 locus should 
code for a protein that is linked to one of the few disease pathways implicated in 
AMD (Kortvely and Ueffing 2012). From this vantage point, HTRA1 seems to be 
the most attracting candidate, because it is involved in the remodeling of the extra-
cellular matrix and participates in TGF beta signaling hinting toward involvement 
in choroidal neovascularization, a hallmark of the wet form of AMD (Clausen et al. 
2011).

In this work we set out to characterize the transcripts generated from the 10q26 
locus in order to disentangle the individual effects of these genes on AMD risk. 
Understanding the regulation of gene expression within this chromosomal region 
may offer a new explanatory framework to resolve the debate about the AMD gene 
conferring the highest risk.
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4.2  Materials and Methods

4.2.1  Phylogenetic Analysis

To identify the potential homologs/paralogs for the ARMS2 gene and the corre-
sponding putative protein, BLAST searches were performed on the public data-
bases at NIH. Alignments of deduced protein sequences were carried out with the 
multiple alignment software Geneious (version 7.1). The evolutionary dendrogram 
(unrooted tree) was calculated by using the Neighbor-Joining method.

4.2.2  RT-PCR

Total RNA was extracted from human term placenta. The RT reaction was per-
formed using 2 ∝g RNA with an oligo(dT) primer using the Omniscript RT kit 
(Qiagen, GmbH, Hilden, Germany) according to the manufacturer’s manual. The 
following primers were used to detect chimeric transcripts: 5’-ATAACCTAAGTC-
GCCATGGTG-3’ (PLEKHA1 forward), 5’-CAGTTGAGGCAGCTGGAGGG-3’ 
(ARMS2, reverse). Amplified products were cloned and sequenced.

4.3  Results and Discussion

4.3.1  Phylogeny of ARMS2

While the other two genes (PLEKHA1 and HTRA1) of the 10q26 locus are con-
served throughout the vertebrates and beyond, ARMS2 is only found in higher pri-
mates (more precisely in simians, Fig. 4.1). Strikingly, the evolutionary appearance 
of ARMS2 parallels the anatomical specialization of the macula. Most importantly, 
this specialization represents a tradeoff between performance and vulnerability. The 
restricted blood supply and the concomitant metabolic stress may even play a role in 
macular differentiation (Provis et al. 2005; Yu et al. 2010). Like humans, macaque 
monkeys possess a macula and develop age-related macular pathologies and share 
risk variants with humans (Francis et al. 2008).

Although the vast majority of genes present in any species descend from a gene 
present in an ancestor, some genes originate from ancestrally non-genic sequences 
(Carvunis et al. 2012). In fact, de novo gene birth from a pool of pre-existing open 
reading frames may be more prevalent than sporadic gene duplication. Accordingly, 
ARMS2 may be evolved from a placeholder sequence separating PLEKHA1 and 



E. Kortvely and M. Ueffing26

HTRA1. Primate-specific transcriptional units were found (1) to have transcript 
lengths comparable with the average length of human cDNAs, and few exons, (2) 
preferentially expressed in the reproductive system, and (3) to be frequently inter-
calated in the introns of known protein-coding genes (Tay et al. 2009). To what 
extent does ARMS2 fit this profile? ARMS2 is indeed composed of only two ex-
ons, though the length of the transcript is below the average. Studies suggest that 

Exon 1 Exon 2

a

b

Fig. 4.1   a Multiple alignment of predicted ARMS2 amino acid sequences. The putative transcrip-
tion initiation site in human is marked with a broken arrow. Identical residues are indicated by red 
letters on yellow background and similar residues are indicated by green background. A vertical 
line shows the boundary between the regions encoded by exon 1 and 2. Note that the deduced tar-
sier sequence (a species not belonging to the simian infraorder) only exhibits a weak similarity to 
the consensus, thus it is unlikely to exist at protein level. b Evolutionary dendrograms of ARMS2 
orthologs generated using the Geneious program. Shorter branches indicate larger similarities Tar-
sier seems to be diverged before the appearance of the functional ARMS2 gene
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ARMS2 is primarily expressed in the placenta, being a part of the female repro-
ductive system. Furthermore, we found chimeric transcripts containing exons from 
both PLEKHA1 and ARMS2 (see below).

4.3.2  Transcript Diversity Originating from the 10q26 Locus

Since it can be easily amplified by RT-PCR, it is generally accepted that ARMS2 
exists at RNA level. Beside moderate expression in the placenta, weak expression 
was detected in the retina (Rivera et al. 2005). Similarly, the transcript was detected 
in various cell lines (Kanda et al. 2007) and its characteristics fulfill the definition 
of being a messenger RNA: It possesses a well-defined transcription start site (Frit-
sche et al. 2008), 5ʹ- and 3ʹ-untranslated regions, two exons separated by a GT-AG 
intron, and finally a canonical polyadenylation signal and a poly (A) tail. Neverthe-
less, the detection of the native transcript by Northern analysis still has to be done.

Notably, it has been hypothesized that the defective processing of ARMS2 
pre-mRNA due to the removal of the polyadenylation signal by an insertion/dele-
tion in carriers of the risk haplotype is the underlying cause for AMD (Fritsche 
et al. 2008). Adding to the confusion is the fact that yet another haplotype (R38X) 
also leads to the failure of ARMS2 synthesis (Fig. 4.2), but this variant is neutral 
in AMD, thereby contradicting the degradation hypothesis (Allikmets and Dean 
2008). Furthermore, in-depth reporter gene assays and the analysis of a large series 
of human post-mortem retina/RPE samples revealed that the risk haplotype affects 
ARMS2 but not HTRA1 mRNA expression (Friedrich et al. 2011). Because the 
lack of ARMS2 does not necessarily leads to AMD and the expression of HTRA1 
is not changed in risk vs. non-risk haplotypes, the authors conclude that currently 
unknown mechanisms mediate the pathogenic effects of the risk-associated vari-
ants at the 10q26 AMD locus. It has been also speculated that ARMS2 exists as a 
non-coding mRNA only. However, antibodies against different epitopes of ARMS2 

PLEKHA1

5 6 7 8 9 10

5 6 7 8 9 10

5 6 7

11 12 1 2 1 2 3

ARMS2 HTRA1

5 6 7 8 9 10 11 12 1 2 1 2 3

2

2

STOP

STOP

STOPSTOP

indel

22.3 kb 4.1 kb
a

b

c

d

Fig.  4.2   Schematic representation of PLEKHA1/ARMS2 transcript chimerism. Transcription 
start and stop signals are marked with broken arrows and stop signs, respectively. a Genomic 
organization of the 10q26 locus. Only distal exons of PLEKHA1 and proximal exons of HTRA1 
are shown. b Canonical transcripts of the three genes. c and d Different spliced isoforms. Note 
that the indel variant most probably influences the expression of these mRNAs, while the R38X 
mutation in the first exon of ARMS2 does not
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gave rise to identical staining pattern in the choroid layer of human eyes (Kortvely 
et al. 2010) and Western analyses using the same monoclonals also reveal a single 
band of the expected size in placental lysates (our unpublished data), supporting the 
presence of ARMS2 proteins.

Here we propose that the phylogeny of ARMS2 may hold the key to resolve this 
controversy. Alternative transcript variants have already been described for ARMS2 
(Wang et al. 2012). We also examined the exon-intron structure of the transcripts 
for the entire 10q26 region aimed at finding novel alternative variants also affected 
by the presence of the risk haplotype. This approach has led to the identification of 
PLEKHA1/ARMS2 chimeric transcripts (Fig. 4.2). With respect to chimeric pro-
teins, the ENCODE project discovered that gene boundaries extend well beyond the 
annotated termini in 65 % of cases, often encompassing parts of neighboring genes 
and at least 4–5 % of the tandem genes in the human genome can be transcribed into 
a single RNA sequence (Gingeras 2009). Such chimeric mRNAs can augment the 
number of gene products (Akiva et al. 2006; Parra et al. 2006).

PLEKHA1 and ARMS2 are two adjacent genes in the same orientation that are 
usually transcribed independently, but occasionally transcribed into a single RNA 
sequence whose splicing product encodes a protein including coding exons from 
the two genes. Consequently, the risk variants of the 10q26 locus may also affect 
the expression of these fusion transcripts, even if the majority of the corresponding 
gene is outside the linkage block. Since these chimeric RNAs are significantly more 
tissue-specific than non-chimeric transcripts (Frenkel-Morgenstern et al. 2012), 
they can exert their biological function restricted, for example, to the eye.

It is of note that we could not detect transcripts containing exons from both 
ARMS2 and HTRA1, although the intergenic segment is significantly shorter than 
the one between PLEKHA1 and ARMS2.

In conclusion, the risk variant of the 10q26 locus may influence the expression of 
these chimeric transcripts and this can exert a pathogenic effect in the eye. Further 
experiments are warranted to determine the relevance of the corresponding putative 
chimeric proteins in AMD pathology.
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Abstract An appropriate animal model is essential to screening drugs or designing 
a treatment strategy for geographic atrophy. Since oxidative stress contributes to the 
pathological changes of the retinal pigment epithelium (RPE), we are reporting a 
new mouse AMD model of retinal degeneration by inducing mitochondrial oxida-
tive stress in RPE. Sod2 the gene for manganese superoxide dismutase (MnSOD) 
was deleted in RPE layer using conditional knockout strategy. Fundus microscopy, 
SD-OCT and electroretinography were used to monitor retinal structure and func-
tion in living animals and microscopy was used to assess pathology post mortem. 
Tissue specific deletion of Sod2 caused elevated signs of oxidative stress, RPE dys-
function and showed some key features of AMD. Due to induction of oxidative 
stress, the conditional knockout mice show progressive reduction in ERG responses 
and thinning of outer nuclear layer (ONL) compared to non-induced littermates.

Keywords Retinal degeneration · Oxidative stress · Geographic atrophy · Retinal 
pigment epithelium · Superoxide dismutase · Age related macular degeneration · 
Knockout mice
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5.1  Introduction

Age related macular degeneration (AMD) is one of the major causes of vision loss 
among the elderly population in industrialized nations (de Jong 2006). Degenera-
tion of the neural retina and of the retinal pigment epithelium (RPE) is associated 
with the advanced dry form of AMD, while vascular leakage and scarring charac-
terize the neovascular form of the disease. Mitochondrial oxidative stress and RPE 
dysfunction may contribute the disease phenotype (Khandhadia and Lotery 2010) 
(Jarrett and Boulton 2012). The RPE is considered as one of the critical sites for oxi-
dative injury to cause retinal degeneration in AMD (Cai et al. 2000; Hageman et al. 
2001; Liang and Godley 2003). Geographic atrophy is the term used to describe 
the degeneration of the RPE and overlying photoreceptors in the advanced form of 
dry AMD (Holz et al. 2014). Anti-oxidant enzymes including manganese superox-
ide dismutase (MnSOD, coded for by the mouse Sod2 gene) and catalase play an 
important role in regulating oxidative stress by reducing the levels of superoxide 
and hydrogen peroxide, respectively. Developing a mouse model of oxidative stress 
leading to geographic atrophy will enhance to understand the mechanisms of retinal 
degeneration and help to develop therapeutic strategy to prevent AMD. Previously, 
ribozyme mediated knockdown of MnSOD ( Sod2) mice model was developed to 
study retinal degeneration (Justilien et al. 2007), but was subject to variability as-
sociated with subretinal injections. Using a cre/lox system, we developed a mouse 
model of RPE specific mitochondrial oxidative stress by deleting Sod2 in RPE. 
This deletion results progressive retinal degeneration due to induction of oxidative 
stress in RPE.

5.2  Materials and Methods

5.2.1  Experimental Animals

All animal handling procedures and protocols were followed the guidelines of 
ARVO statement and approved by the IACUC of University of Florida. In order to 
generate transgenic mice, two different mice strains were used. One was inducible 
RPE-specific cre mice carrying RPE-specific VMD2 promoter to drive tetracycline-
inducible transactivator gene (rtTA), which, in turn, controlled the expression of cre 
(Le et al. 2008). These mice were crossed with Sod2flox/flox mice in which exon 3 of 
Sod2 gene is flanked by loxP sites (Strassburger et al. 2005c). In order to maintain 
pure lines, both the strains were back-crossed to C57Bl/6J mice up to 10 genera-
tions. Mutations in rd1 and rd8 were regularly monitored, to maintain good breed-
ing lines. To obtain mice homozygous for the floxed Sod2 gene and hemizygous the 
cre transgene ( Sod2 flox/flox-VMD2-cre), males heterozygous for VMD2-cre and for 
Sod2flox were bred with Sod2 flox/flox females. Rodent chow containing doxycycline 
(dox) at 200 mg/kg was fed to nursing dams from P1 (postnatal day 1) to P14 to 
induce cre expression.
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5.2.2  Genotyping and PCR Analysis

To determine the genotype of mice, tail samples were processed to obtain ge-
nomic DNA using Sigma REDExtract-N-Amp™ Tissue PCR Kit. PCR anal-
ysis using genomic DNA was used to differentiate VMD2-cre mice from 
non-transgenic mice. To determine the Sod2 genotype, the following prim-
ers were used: forward 5ʹ-CTTGTGACATCTGGCTGACG-3ʹ and reverse 
5ʹ-CCCAGATCTGCAATTTCCAA-3ʹ. Genetic deletion of exon 3 of SOD2 gene 
in Sod2 flox/flox-VMD2-cre mice (with or without doxycline food) was verified using 
genomic DNA isolated from RPE/choroid. The primers to verify Sod2 deletions 
were designed from the available sequences located in intron 2 and intron 3 of the 
Sod2 gene.

5.2.3  RPE Flat Mount and Staining For Oxidative Stress Marker

In order to process RPE for flat mount, the eyes were enucleated and fixed in 
4 % paraformaldehyde for 15–30 min on ice. Cornea, lens, retina and extraocular 
tissue were removed, and only the RPE was collected in PBS by careful dissec-
tion. A rabbit polyclonal zona occludens (ZO-1) antibody (Invitrogen, 1:200) was 
used to analyze morphologic changes in both control and dox-induced mice. Us-
ing RPE flat mount, immunohistochemistry for MnSOD (Millipore, 1:300) was 
performed to detect changes in Sod2 level in both no-dox control and dox-fed 
experimental mice. RPE flat mounts were stained with antibody to 8-hydroxy-
deoxyguanosine (8-OHdG, Abcam, 1:200 dilution), an oxidative stress marker to 
study induction of oxidative stress in experimental mice.

5.2.4  Monitoring Structural and Functional Changes

In order to measure functional and structural changes in dox-induced experi-
mental mice in comparison with control, electronretinography (ERG), fundus 
imaging and spectral-domain optical coherence tomography (SD-OCT) were 
used. Using an LKC visual electrodiagnostic system, ERG was recorded on dark 
adapted mice following dilation with 2.5 % phenylephrine. Scotopic ERGs were 
recorded with 10-ms flashes of white light at following intensity of light 0 db 
(2.68cds/m2), 10dB (0.18cds/m2) and − 20 dB (0.02cds/m2). Structural abnormal-
ities in retina of living mice were analyzed by Micron III fundus imaging system. 
In order to measure subretinal morphology and changes in outer nuclear thick-
ness (ONL), an ultra-high resolution instrument (Bioptigen) was used. Linear 
B-scans (around 300) were obtained from an anesthetized mouse and 30 images 
were averaged to get better resolution. To determine the changes in ONL thick-
ness, measurements were done at four different points around the optic nerve 
maintaining same distance.



34 M. R. Biswal et al.

5.3  Results

5.3.1  Generation of Sod2 Knockout Transgenic Mice

In Sod2flox/floxVMD2-cre mice cre was induced by feeding doxycylcine chow 
to the nursing dam and led to deletion of exon 3 of Sod2 as evident in PCR 
analysis of genomic DNA isolated from 5 week old mice (Fig. 5.1a). Dox fed 
Sod2flox/flox/VMD2-cre mouse produced only a 400 bp product characteristic of the 
deleted allele, whereas the no-dox control produced 1100 bp band signifying no 

Fig. 5.1   RPE Specific sod2 deletion in Sod2flox/floxVMD2-cre mice. a Image of PCR analysis using 
genomic DNA from RPE/choroid from 5 week old Sod2flox/floxVMD2-cre mice on doxycline (dox) 
chow (P0-P14) deleted allele (400 bp) and the full length Sod2 product is 1100 bp c Representative 
image of Sod2 immuno-staining of an RPE flat-mount from 2 month old no dox mouse; D: Sod2 
staining of a flat mount from a dox fed mouse
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deletion. Quantification of the signal strength of amplified bands in both groups in-
dicated more than 90 % deletion of exon-3 in dox-induced mice occurred compared 
to the no-dox group (Fig. 5.1b). Extensive immunostaining of MnSOD on RPE 
flatmount was seen in Sod2flox/flox/VMD2-cre mouse without dox food (Fig. 5.1c), 
whereas the immunostaining was significantly reduced in the dox-fed group 
(Fig. 5.1d).

5.3.2  Functional and Structural Abnormality

Deletion of Sod2 in RPE caused elevated level of oxidative damage to the DNA. 
Flat mounts of 6-week old Sod2flox/flox/VMD2-cre (no dox) mouse showed minimal 
immunostaining for 8-OHdG (Fig. 5.2a), while dox fed mice of that genotype re-
vealed strong immunostaining, signifying the extent of oxidative injury in the RPE 
(Fig. 5.2b) due to deletion of Sod2. Increase in autofluorescence in aging retina is 
one of the characteristics of AMD (Lois N 2002). The frozen sections of four month 
old dox fed Sod2 flox/flox/VMD2-cre showed the increased level of fluorescence in 
choroid and RPE compared to control no dox group (data not shown). Fundus imag-
ing of the experimental mice showed retinal atrophy that was apparent after 6 and 9 
months (Fig. 5.2c and d). ERG responses (both a- and b-wave) from the dox treated 
group progressively declined, and differed significantly from the control (no-dox) 

Fig. 5.2   Functional and structural abnormalities due to sod2 deletion. a, b Representative images 
of RPE flat mount stained for ZO-1 ( green) and 8-OHdG ( red). c, d Representative fundus images 
from a dox induced transgenic mice shows extensive degenerated retina in 9 month old mice, d 
compared to a one month old, c Average a-wave amplitude, e and b-wave, f at 2.7 cds/m2 (ERG 
responses are significantly reduced in 9 month old dox fed transgenic mice compared to no dox 
treated transgenic group and wild type C57BL/6J mice). OCT measurement shows the significant 
reduction, g in the thickness of outer nuclear layer in the dox treated group compared to no dox 
group
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group by the age of 6 months. By 9 months, a major loss of a-wave and b-wave was 
observed (Fig. 5.2e, f ) revealing functional abnormalities in Sod2 deleted mice. SD-
OCT on those mice showed the thinning of ONL that was clearly significant by the 
age of 9 months (Fig. 5.2g).

5.4  Discussion

Reactive oxygen species generated in mitochondria are thought to contribute to the 
development of AMD (Jarrett and Boulton 2012), and oxidative stress stimulates 
inflammatory pathways that may become uncontrolled in this disease (Kauppinen 
et al. 2012; Suzuki et al. 2012). Oxidized lipids and proteins are deposited in the 
form of lipofuscin in the RPE and eventually as drusen beneath the RPE (Delori 
et al. 2000; Handa 2012). Several groups have generated mouse models lacking 
protective enzymes, such as Sod1 (Imamura et al. 2006)), or regulators of antioxi-
dant pathways, such as Nrf2 (Zhao et al. 2011). Developing a mouse model to test 
the role of mitochondrial oxidative stress in the RPE required cre/lox technology. 
Genetic deletion of exon 3 of Sod2 led to significant reduction of MnSOD in the 
RPE. We observed increased oxidative stress in RPE as evident from 8-OHdG stain-
ing. Progressive reduction of the ERG a-wave and b-wave in Sod2 deleted mice 
reflected retinal degeneration that was documented the thinning of outer nuclear 
layer as measured by SD-OCT.

In summary, inducible genetic defect only in RPE to promote oxidative stress 
allows this model to recapitulate RPE and retinal degeneration similar to that oc-
curring in geographic atrophy. This model can be used to study drug-based or gene-
based treatment approaches that may attenuate oxidative stress directly or the in-
flammatory processes arising from reactive oxygen species.
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Chapter 6
Therapeutic Approaches to Histone 
Reprogramming in Retinal Degeneration

Andre K. Berner and Mark E. Kleinman

Abstract Recent data have revealed epigenetic derangements and subsequent 
chromatin remodeling as a potent biologic switch for chronic inflammation and 
cell survival which are important therapeutic targets in the pathogenesis of several 
retinal degenerations. Histone deacetylases (HDACs) are a major component of this 
system and serve as a unique control of the chromatin remodeling process. With a 
multitude of targeted HDAC inhibitors now available, their use in both basic sci-
ence and clinical studies has widened substantially. In the field of ocular biology, 
there are data to suggest that HDAC inhibition may suppress neovascularization 
and may be a possible treatment for retinitis pigmentosa and dry age-related macu-
lar degeneration (AMD). However, the effects of these inhibitors on cell survival 
and chemokine expression in the chorioretinal tissues remain very unclear. Here, 
we review the multifaceted biology of HDAC activity and pharmacologic inhibition 
while offering further insight into the importance of this epigenetic pathway in reti-
nal degenerations. Our laboratory investigations aim to open translational avenues 
to advance dry AMD therapeutics while exploring the role of acetylation on inflam-
matory gene expression in the aging and degenerating retina.

Keywords Retinal degeneration · Acetylome · Lysine deacetylases · Histone 
deacetylases · Valproic acid · Apoptosis · Inflammation · Aging Electronic 
supplementary material  
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6.1  Post-translational Acetylation Controls Gene 
Expression and Protein Activity

Acetylation is a reversible post-translational modification that was first discovered 
in histones and occurs in a wide range of organisms. Histone proteins (H2A, H2B, 
H3 and H4) are integrated with 147 base-pairs of DNA in a complex called the 
nucleosome (Luger et al. 1997). Lysine acetylation and deacetylation of histones 
are carried out by two groups of enzymes: acetyl group addition by HATs (or lysine 
acetyltransferases KATs) and acetyl group removal by HDACs (or KDACs), re-
spectively. A generalized epigenetic principle is that histone acetylation results in an 
open structure of the DNA enabling gene transcription whereas histone deacetylase 
activity tightens the nucleosome and compacts the chromatin making those sites 
inaccessible for transcription (de Ruijter et al. 2003). While this model has not ap-
plied to all systems, it is clear from current studies that there is a delicate balance of 
(de)acetyltransferase activity which may be dysregulated in aging diseases. Lysine 
acetylation is not limited to histones but are also present in innumerous other pro-
tein substrates giving acetylation a wider significance in developmental and disease 
states (Peserico and Simone 2011). Nuclear receptors (estrogen receptor, p300), 
proliferating factors (E2F/RB), hypoxia induced factors (HIF-1α), transcription fac-
tors (NFκB, p53, STAT3 and c-MYC) and other cellular proteins (αTubulin, Ku70 
and Hsp90) are all known non-histone targets of HATs and HDACs (Glozak et al. 
2005).

Histone deacetylases are a family of 18 known members, classified in four 
groups based on their homology to yeast proteins (Dokmanovic et al. 2007). Class 
I consists of HDAC1, 2, 3 and 8. HDAC1 and HDAC2 are ubiquitously expressed, 
strongly localized to nuclei and predominantly associated in megadalton complexes 
(Bantscheff et al. 2011; Di Marcotullio et al. 2011). Members of the Class II-fam-
ily of HDACs are separated into Class IIa (HDAC4, 5, 7 and 9) which localize 
to both nuclear and cytosolic compartments and IIb (HDAC6 and 10) which are 
predominantly cytosolic. Class I/II HDACs are zinc dependent. Class III HDACs, 
also known as sirtuins (SIRTs), are evolutionarily unrelated to the other HDAC 
classes. SIRTs require NAD + as a co-factor making them highly sensitive to oxida-
tive stress (Balaiya et al. 2012) and a hotly pursued potential therapeutic target for 
age-related and metabolic diseases (Imai and Guarente 2014). There is only one 
Class IV HDAC (HDAC11) which is also zinc dependent, localized to the nucleus 
and is heavily conserved in all living eukaryotes other than fungi (Gao et al. 2002).

6.2  Context and Tissue Dependent Effects of Histone 
Deacetylases

Expression levels of HATs and HDACs as well as targeted acetylation sites and 
proteins can dramatically change between tissues and within varying develop-
mental, normal adult, and diseased states. There are several models of neuronal 
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cell death in which HDAC inhibition (HDACi) exhibits a protective benefit 
whereas targeting identical pathways in cancer cells is pro-apoptotic. With the 
highly specialized and multicellular architecture of the eye, the dominant ef-
fects of HDAC inactivity remain very unclear and certainly become extremely 
difficult to interpret when comparing acute laboratory animal and cell culture 
models to chronic aging diseases. Still, we are gathering essential data that will 
allow us to develop a fundamental understanding of this critical and deeply 
conserved regulatory biologic system. Class I HDAC expression is considered 
ubiquitous though we have observed significant differences in immuno-local-
ization patterns in the mouse retina with HDAC1/2. Class II HDACs are known 
to display highly specific tissue-dependent expression patters leading to vari-
able sub-cellular localization and certainly tissue-specific biological effects of 
enzyme inactivity and subsequent imbalances in the acetylome. Many diseases 
have been associated with altered global acetylation patterns including cancer, 
cardiovascular disease and inflammatory diseases. Hyper-acetylation via HDA-
Ci is known to be cytoprotective in models of neuronal ischemic injury (Kim 
and Chuang 2014; Murphy et al. 2014), Huntington’s disease (Ferrante et al. 
2003), and stroke (Liu et al. 2012). Yet, HDACi is nearly uniformly cytotoxic 
in cancer models (McConkey et al. 2012). HDACi also has opposing effects on 
critical immune system mediators. Toll-like receptors (TLRs) are potent cell-
signaling gateways to innate immune pathways and downstream inflammatory 
responses. Treatment of cultured human macrophages with HDACi leads to cas-
pase-dependent apoptosis and release of pro-inflammatory cytokines; however, 
this effect is reversed by pre-treatment with TLR agonists including LPS and 
poly I:C (Tsolmongyn et al. 2013). Data revealing the protean biology of the 
acetylome must be seriously addressed and rigorously studied in the laboratory 
prior to pharmacologically approaching HDAC/HAT manipulation for the treat-
ment of human diseases.

A potent and well-characterized Class I/II HDACi is suberoylanilide hy-
droxamic acid (SAHA also known as vorinostat) which is currently in advanced 
phase clinical phase trials for multiple myeloma and several solid tumors. Simi-
lar to previous HDACi results, the pharmacologic effects of SAHA are highly 
dependent on cell-type and state coupled with a limited therapeutic window. 
While low concentrations of SAHA may be significantly cytoprotective, higher 
concentrations are pro-apoptotic in many immune cell types (Li et al. 2008). 
Nearly identical data exists for valproic acid (VPA), another small molecule 
Class I/II HDACi which is most widely used for seizure prophylaxis. VPA has 
been shown to reduce brain damage in an animal model of transient cerebral 
ischemia (Ren et al. 2004), provide acute neuro-protection in ischemic retinal 
injury (Alsarraf et al. 2014), and stimulate axonal regrowth after optic nerve 
crush (Biermann et al. 2010). These data have rapidly opened translational av-
enues of pharmacologic induced chromatin remodeling as a novel target for the 
epigenetic regulation of critical cell death and survival pathways in aging and 
neurodegenerative diseases.
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6.3  Differential Effects of Histone Deacetylase  
in the Retina and Retinal Pigment Epithelium

Investigations of the rd1 mouse demonstrated significant protection form loss 
of photoreceptors after broad inhibition of Class I/II HDACs with trichostatin 
A (TSA) (Sancho-Pelluz et al. 2010). A single report was then published sug-
gesting the therapeutic efficacy of VPA in the treatment of retinitis pigmentosa 
(Clemson et al. 2011). Similar benefits were reported for VPA in rd1 mice (Mit-
ton et al. 2012); however, the same treatment had the contrary effect in rd10 
mice (Guzman et al. 2014). Additional studies were performed even though the 
original data had been hotly contested with multiple letters in the literature with 
severe limitations to the study design and reports of inefficacy and even loss of 
vision associated with the use of VPA for retinal degeneration (van Schooneveld 
et al. 2011; Sisk 2012). Recently, a long-term follow-up study confirmed visual 
decline and adverse side-effects associated with VPA therapy in patients with 
retinitis pigmentosa (Bhalla et al. 2013).

Four independent groups have presented varying data regarding VPA and retinal 
degeneration. Reports included positive (Iraha et al. 2014), variable (Guzman et al. 
2014; Lai et al. 2014) or outright negative findings (Berner et al. 2014; Kumar 
et al. 2014). In a transgenic Xenopus model expressing various human rhodopsin 
mutations, only retinal degeneration secondary to the P23H mutation was favor-
ably treated with VPA (Lai et al. 2014). Despite VPA’s described neuro-protective 
and anti-inflammatory properties, in just these few studies, significant retinotoxic-
ity was encountered in numerous animal and cell-culture models. We have demon-
strated that VPA up-regulates caspase-3 activation and cell death in primary human 
RPE isolates, a finding which has been confirmed in other studies (Suuronen et al. 
2007; Kumar et al. 2014). VPA treatment exhibits a significant pro-inflammatory 
response in vitro and in vivo with an array of cytokines, cytokine receptors, mediat-
ing enzymes and transcription factors (Kleinman et al. 2013; Kleinman et al. 2014). 
This pro-inflammatory signature is in accordance to the known immune response 
in AMD (Suuronen et al. 2007; Shakespear et al. 2011; Miao et al. 2012; Whitcup 
et al. 2013). Further investigations into this powerful epigenetic regulatory system 
will continue to yield important features of HDAC involvement in the pathogenesis 
and treatment of retinal degenerations; however, at this time we urge caution using 
VPA as a treatment option for these diseases given the variable treatment effect 
dependent on tissue-type and cellular target (Fig. 6.1).
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Chapter 7
A Brief Discussion on Lipid Activated Nuclear 
Receptors and their Potential Role in Regulating 
Microglia in Age-Related Macular Degeneration 
(AMD)

Mayur Choudhary and Goldis Malek

Abstract Age-related macular degeneration (AMD) is the leading cause of legal 
blindness and visual impairment in individuals over 60 years of age in the Western 
World. A common morphological denominator in all forms of AMD is the accumu-
lation of microglia within the sub-retinal space, which is believed to be a contrib-
uting factor to AMD progression. However, the signaling pathway and molecular 
players regulating microglial recruitment have not been completely identified. 
Multiple in-vitro and in-vivo studies, to date, have highlighted the contributions of 
nuclear receptor ligands in the treatment of inflammation related disorders such as 
atherosclerosis and Alzheimer’s disease. Given that inflammation and the immune 
response play a vital role in the initiation and progression of AMD, in this brief 
review we will highlight some of these studies with a particular focus on the lipid 
activated “adopted orphan” nuclear receptors, the liver x receptors (LXRs) and the 
peroxisome proliferator-activated receptors (PPARs). The results of these studies 
strongly support the rationale that treatment with LXR and PPAR ligands may ame-
liorate microglial activation in the sub-retinal space and ultimately slow down or 
reverse the progression of AMD.

Keywords Nuclear receptor · Peroxisome proliferator-activated receptor · Liver x 
receptor · Age-related macular degeneration · Sub-retinal microglia · Inflammation · 
Retinal pigment epithelium · Choroidal neovascularization



46 M. Choudhary and G. Malek

7.1  Introduction

Age-related macular degeneration (AMD) is one of the leading causes of progres-
sive blindness in the elderly (Coleman et al. 2008). Clinically, AMD progresses 
from early to intermediate stages of the disease and subsequently to the two major 
advanced forms, namely, geographic atrophy (GA) or “late dry” and neovascular 
or “wet” AMD. The pathogenesis of early AMD involves the accumulation of lip-
id- and protein-rich extracellular deposits called drusen under the retinal pigment 
 epithelial cells (RPE). The progression to the late dry form involves RPE dystro-
phy with a loss of photoreceptors in the central macula and subsequent blindness. 
Wet AMD, which affects approximately 10 % of the AMD patients, is characterized 
by development of abnormal choroidal neovascularization (CNV) under the retina, 
which leads to scarring in the macular region. Currently there are no treatments 
available for dry AMD, but anti-angiogenic approaches targeting vascular endothe-
lial growth factor (VEGF) are available for wet AMD patients with some success. 
Therefore there is an immediate need to identify new targets and develop alternate 
therapeutic approaches to help people afflicted with this disease.

7.2  Microglial Cells Accumulate Within the Retina  
and Subretinal Space of AMD Patients

Retinal microglia represent a population of macrophages, which constantly survey 
their microenvironment, responding to cellular damage by increasing their phago-
cytic activity (Karlstetter and Langmann 2014). Multiple reports have corroborated 
the role of inflammation and microglial cells in the pathogenesis of the early and 
late forms of AMD (Patel and Chan 2008). The sub-retinal space, the interface be-
tween the RPE and the outer segments of photoreceptors, in particular, is a region of 
great interest in studies of inflammation in AMD. Under normal conditions, retinal 
microglia are excluded from the outer retina, due to the presence of immunosup-
pressive factors secreted by the RPE (Zamiri et al. 2007). As such, RPE cells play an 
important role in immunomodulation of the outer retina, regulating RPE-microglial 
interactions though expression of cytokine receptors, production and secretion of in-
flammatory cytokines and adhesion molecules, and regulation of the tight-junction 
integrity (Holtkamp et al. 2001; Streilein et al. 2002). In advanced age, following 
light-induced photoreceptor injury, and in late AMD, an influx of microglia to outer 
retina has been observed, followed by, their accumulation within the sub-retinal 
space (Ng and Streilein 2001; Gupta et al. 2003). In support of this, evaluation of 
retinal samples from the Cx3cr1-/- mice [chemokine (c-x3-c motif) receptor 1, impor-
tant in microglial migration], has revealed the accumulation of subretinal microglia 
associated with drusen-like deposits, RPE structural alterations, and CNV formation 
(Combadiere et al. 2007; Tuo et al. 2007). It is clear, that a better understanding of 
RPE-microglial cell interactions is imperative in  accurately explaining the inflam-
matory etiology of AMD and ultimately developing new therapeutic targets.
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7.3  Overview of Lipid-Activated Nuclear Receptors

Nuclear receptors are the largest superfamily of transcription factors in the human 
genome. There is increasing evidence of their involvement in metabolic regulation 
of immune cells. This mini-review will focus on the role of the liver x receptors 
(LXRs) and peroxisome proliferator-activated receptors (PPARs) in shaping the 
metabolic and immune functions of microglial cells and macrophages, since these 
receptors have been most extensively studied in diseases, which share common 
pathogenic pathways with AMD, including atherosclerosis, metabolic syndrome 
and Alzheimer’s disease.

LXRs are critical regulators of cholesterol homeostasis, glucose homeostasis, 
detoxification of bile acids, immunity, and neurological functions (Apfel et al. 
1994). Their activating ligands include endogenous oxidized and hydroxylated 
cholesterol derivatives (22(R)- hydroxycholesterol and 24(S)-hydroxycholesterol) 
and synthetic agonists (GW3965 and TO901317) (Lehmann et al. 1997; Viennois 
et al. 2011). Although the two isoforms, LXRα (NR1H3) and LXRβ (NR1H2) show 
significant similarities in their DNA binding domain and ligand binding domains, 
their tissue expression patterns are different (Jakobsson et al. 2012). LXRα is pre-
dominantly expressed in metabolically active tissues, while LXRβ is ubiquitously 
expressed (Laffitte et al. 2001).

PPARs were originally discovered as receptors that induce the proliferation of 
peroxisomes in Xenopus (Dreyer et al. 1992). Three isoforms have been identi-
fied (Berger and Moller 2002). PPARα (NR1C1) regulates fatty acid oxidation 
and is highly expressed in tissues which perform substantial mitochondrial and 
peroxisomal β-oxidation such as brown adipose tissue, liver, kidney and heart 
(Kliewer et al. 1994). PPARβ/δ (NR1C2) has a ubiquitous expression pattern and 
plays a more general role in the activation of oxidative metabolism (Escher et al. 
2001). PPARγ (NR1C3) plays a major role in the activation of adipocyte differ-
entiation and is expressed in adipose tissue (Tontonoz et al. 1994). A broad range 
of endogenous molecules can act as agonists for the PPARs. These include a va-
riety of unsaturated fatty acids, branched chain fatty acids, oxidized fatty acids 
eicosanoids, phospholipids and serotonin metabolites (Schupp and Lazar 2010). A 
number of synthetic ligands have also been identified for the different isoforms of 
PPARs (Grygiel-Gorniak 2014). PPARα ligands include fenofibrate, clofibrate and 
gemfibrozil; PPARβ/δ ligands include GW0742, GW501516 and GW9578; PPARγ 
ligands include rosiglitazone, pioglitazone, troglitazone, ciglitazone, farglitazar, 
S26948 and INT131.

7.4  LXRs and PPARs Regulate Inflammation

In addition to their role in reverse cholesterol transport, LXRs are important  regulators 
of inflammatory gene expression and innate immunity. Regulation of inflammation 
by LXRs can be highlighted by reviewing previous studies demonstrating that LXR 
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activation downregulates the expression of pro-inflammatory molecules, such as 
inducible nitric oxide synthase (iNOS), IL-6, IL-1β, cyclooxygenase-2 (COX-2), 
monocyte chemoattractant protein-1 (MCP-1), prostaglandin E2, and matrix metal-
loproteinase-9 (MMP-9) in cultured macrophages, and primary isolated microglia 
and astrocytes in response to lipopolysaccharide (LPS) stimulation or bacterial infec-
tion (Castrillo and Tontonoz 2004; Rigamonti et al. 2008). LXR agonists can also 
attenuate inflammation through suppression of NF-κB DNA-binding activity, by 
blocking the degradation of IκB-α in LPS-stimulated microglia (Zhang-Gandhi and 
Drew 2007). Similarly, GW3965 attenuates LPS-induced inflammation in primary 
rat Kupffer cells through repression of tumor necrosis factor-alpha (TNF-α) and pros-
taglandin E2 (Wang et al. 2009). Another LXR agonist, T0901317, has been shown 
to downregulate interferon-γ (IFN-γ), TNF-α and IL-2 secretion by Th1 lymphocytes 
(Liu et al. 2012). Finally, LXR agonists have been shown to attenuate inflammatory 
responses in vivo, in experimental autoimmune encephalomyelitis, and irritant and 
allergic contact dermatitis models (Hindinger et al. 2006; Cui et al. 2011).

PPARs, also important in maintaining lipid homeostasis through regulation of 
fatty acid metabolism, have been shown to be molecular mediators of inflamma-
tory pathways. For example, PPARβ/δ-dependent repression of NF-κB/AP1 tran-
scription represents a major mechanism of attenuating inflammation by PPARβ/δ 
agonists (Schnegg and Robbins 2011). PPARγ activation leads to protection against 
atherosclerosis through reduced expression of inflammatory markers such as 
TNF-α and MMP-9 in both macrophages and artery wall tissue samples (Chawla 
et al. 2001a). While, loss of PPARγ bone marrow expression was associated with 
a significant increase in atherosclerotic lesion development. It is important to note, 
that an alternative explanation of the anti-inflammatory and atheroprotective effects 
of PPARγ has been proposed and this involves its ability of PPAR to crosstalk and 
induce LXRα expression. This in turn can lead to induction of cholesterol efflux as 
well as attenuation of expression of pro-inflammatory molecules in macrophages 
(Chawla et al. 2001b). The ability of LXRs and PPARs to repress expression of 
pro-inflammatory cytokines provides us with a likely therapeutic target to attenuate 
inflammation and their harmful downstream effects.

7.5  Rationale for Studying the Therapeutic Potential  
of Nuclear Receptors in AMD

Morphological examinations of retinas from AMD patients have revealed the 
 accumulation and retention of activated microglia within the outer nuclear layer 
as well as the sub-retinal space (Gupta et al. 2003). The presence of these immune 
cells in the outer retina may contribute to the initiation of AMD pathology. The 
convergence of these morphological studies of AMD tissue, and investigations of 
nuclear receptor regulation of inflammation in other diseases that share common 
pathogenic pathways with AMD, advocate the notion that reversal of age-related 
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accumulation and influx of activated microglia modulated by nuclear receptors is 
a viable path to pursue to ameliorate the progression of AMD. Cellular targets for 
prevention and/or reversal of microglial influx may include the RPE, since RPE 
cells are critical in maintaining the immunosuppressive state and are contributors to 
local cytokine production and secretion. While the microglial cells, which in their 
activated state have been shown to be associated with drusenoid deposits as well as 
CNV lesions, would be potential targets for reversal of immune cell influx, serving 
as a therapeutic avenue for the treatment of both forms of late AMD. Most recently 
direct evidence for the use of LXR agonists in late AMD comes from studies, which 
have demonstrated that treatment with LXR agonists in an eye drop formulation is 
effective in reducing the severity of CNV lesions in an experimental model of wet 
AMD (Sene et al. 2013). Though throughout this review we have focused on the 
potential benefit of targeting nuclear receptors in decreasing inflammation, it is not 
trivial to note that, additionally, these ligands may also slow down AMD progres-
sion by regulating cholesterol and lipid homeostasis.

7.6  Conclusions

In the healthy retina, microglia are excluded from the sub-retinal space. However, 
changes in the sub-retinal microenvironment and RPE due to aging results in inva-
sion of the sub-retinal space by these immune cells, where they can tip the bal-
ance to a “pathological state” and contribute to the progression of AMD. Given 
the potential that activation of LXRs and PPARs can lead to a downregulation of 
pro-inflammatory signals, targeting these nuclear receptors appear to provide an 
important therapeutic opportunity to tip the balance back again to a homeostatic 
state and hopefully either delay the onset of AMD or slow down its progression.
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Chapter 8
Extracellular Matrix Alterations and Deposit 
Formation in AMD

Rosario Fernandez-Godino, Eric A. Pierce and Donita L. Garland

Abstract Age related macular degeneration (AMD) is the primary cause of vision 
loss in the western world (Friedman et al., Arch Ophthalmol 122:564–572, 2004). 
The first clinical indication of AMD is the presence of drusen. However, with 
age and prior to the formation of drusen, extracellular basal deposits accumulate 
between the retinal pigment epithelium (RPE) and Bruch’s membrane (BrM). Many 
studies on the molecular composition of the basal deposits and drusen have dem-
onstrated the presence of extracellular matrix (ECM) proteins, complement com-
ponents and cellular debris. The evidence reviewed here suggests that alteration 
in RPE cell function might be the primary cause for the accumulation of ECM 
and cellular debri found in basal deposits. Further studies are obviously needed in 
order to unravel the specific pathways that lead to abnormal formation of ECM and 
complement activation.

Keywords AMD · Extracellular matrix · basal deposits · RPE · Drusen · 
Complement system · Inflammation · MMP

8.1  Introduction

Macular degenerations (MDs) are disorders that include both inherited forms and 
the more prevalent age-related forms. AMD is the most common form of MD and 
is the primary cause of vision loss in the western world (Friedman et al. 2004). 
 Although it is a prevalent disease, the initiation and pathogenesis are not well un-
derstood. The success of the treatments for AMD is limited (Lotery and Trump 
2007; Miller 2013).

MDs are considered disorders of the RPE/BrM/choroid complex (Hageman and 
Mullins 1999). BrM is a specialized ECM located between the RPE and choroid. 
RPE cells secrete the proteins of BrM and have a role in the regulation of their 
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 turnover (Campochiaro et al. 1986; Chen et al. 2003; Aisenbrey et al. 2006). Struc-
ture and functions of BrM have recently been reviewed (Curcio and Johnson 2013). 
Briefly, BrM consists of five layers: RPE basal lamina/inner collagenous layer/elas-
tin layer/outer collagenous layer/basal lamina of choriocapillaris. The major matrix 
structural proteins of BrM include collagens I-VI, elastin, perlecan (heparin sulfate 
proteoglycan), laminin and nidogen. Also present in BrM are matricellular proteins 
and associated proteins. Matricellular proteins contribute to cell-matrix interactions 
and RPE cell responses and include thrombospondin 1, fibulins, TGF-beta (Born-
stein and Sage 2002). Growth factors comprise one class of associated proteins. In 
addition to the structural role of BrM, it has a critical role in signaling and provides 
barrier and filtering functions.

8.2  Extracellular Matrix, More than a Mere  
Structural Scaffold

ECMs are highly organized structures of proteins that cells secrete in order to cre-
ate and maintain proper tissue architecture. The ECM structures are determined 
largely by composition, hence any alteration in composition will likely affect func-
tion (Davis et al. 2000; Paszek and Weaver 2004; Hynes 2009). ECMs are not static 
structures; studies in cancer, fibrosis and myocardial diseases demonstrated that 
ECM undergoes continuous dynamic remodeling (Cox and Erler 2011; Iijima et al. 
2011; Rienks et al. 2014). Remodeling is regulated by a group of zinc-dependent en-
dopeptidases called matrix metalloproteinases (MMPs) and their inhibitors, tissue-
inhibitor of metalloproteinases (TIMPs) (Matrisian 1992). MMPs are capable of 
degrading all of the structural elements of the ECM, but also can process cytokines, 
growth factors, chemokines, and receptors on the cell membranes (Chang and Werb 
2001; Van Lint and Libert 2007). MMPs have been shown to regulate not only the 
ECM turnover but signaling pathways as well (Hu and Ivashkiv 2006; Dufour et al. 
2008; Glasheen et al. 2009). In BrM, signalling to the RPE cells occurs through 
interactions of integrins with laminin in BrM (Campochiaro et al. 1986; Chen et al. 
2003; Aisenbrey et al. 2006).

MMP activity is tightly regulated by specific inhibitors, TIMPs (Nagase and 
Woessner 1999; Bergers and Coussens 2000). Impairment of the endogenous activ-
ity of the MMP/TIMP complexes causes pathologies such as tumor progression, 
rheumatoid arthritis, heart diseases, blood vessel diseases and atherosclerosis (Li-
otta et al. 1991; Gomis-Ruth et al. 1997; Chang and Werb 2001). Ocular diseases to 
which impaired MMP/TIMP balance contributes include retinal dystrophy, retinitis 
pigmentosa, AMD, inherited MD and diabetic retinopathy (Jones et al. 1994; Fariss 
et al. 1998; Nita et al. 2014). In AMD, TIMP3 accumulates in BrM (Kamei and 
Hollyfield 1999).
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8.3  Macular Degenerations: Alterations in Bruch’s 
Membrane and Deposit Formation

With age and before the presence of clinical evidence of macular disease, histo-
pathological studies show BrM becomes thickened and extracellular basal deposits 
develop between the RPE and BrM (Kliffen et al. 1995; Kliffen et al. 1997; Reale 
et al. 2009). Basal deposits, accumulations of extracellular material in BrM and 
between BrM and the RPE are called basal linear (BLinD) or basal laminar deposits 
(BLamD), respectively (Sarks 2007; Curcio and Millican 1999; Sarks et al. 1976). 
BLamD, composed of granular material with wide-spaced collagen are located be-
tween the plasma membrane and the basal lamina of the RPE (Green and Enger 
1993). BLamD are also a common feature in mouse models used to study AMD 
(Malek et al. 2003; Espinosa-Heidmann et al. 2006; Fu et al. 2007; Fujihara et al. 
2009). BLinD, characterized by coated and non-coated vesicles composed of mem-
branous material are located in the inner collagenous layer of BrM (Loeffler and 
Lee 1998; Curcio and Millican 1999). BLamD and BLinD as well as drusen all con-
tain varying amounts of ECM proteins, complement components or complement 
regulators and inflammatory proteins (Hageman and Mullins 1999; Crabb et al. 
2002; Chong et al. 2005; Sivaprasad et al. 2005; Lommatzsch et al. 2008; Wang 
et al. 2010). Proteomic analysis of BLamD in a mouse model of an inherited MD 
confirmed the presence of ECM/BrM components (Garland et al. 2014). The mech-
anisms of how any of these deposits form are essentially unknown. The presence of 
ECM proteins in all types of sub-RPE basal deposits provides strong evidence for 
a role of dysregulation of ECM in MD. The presence of complement and inflam-
matory proteins in drusen led to the conclusion that the complement system plays a 
direct role in drusen biogenesis (Mullins et al. 2000; Hageman et al. 2001; Anderson 
et al. 2002). In fact, in a mouse model the formation of BLamD was inhibited in the 
absence of an active complement system (Garland et al. 2014).

8.4  RPE Dysfunction and Aberrant ECM

What needs to be revealed is whether RPE dysfunction leads to ECM alterations and 
basal deposit formation or whether changes in ECM/BrM lead to RPE dysfunction and 
formation of aberrant ECM, and how inflammation and complement become involved.

Any process that disrupts signaling pathways between BrM and RPE could in-
duce altered RPE function, including expression and secretion of ECM, and altered 
expression and secretion of MMPs and TIMPs (Leu et al. 2002; Kortvely et al. 
2010; Hussain et al. 2011). Altered secretion of MMPs and TIMPs would likely 
lead to altered ECM turnover and ultimately to altered ECM composition. While the 
presence of basal deposits will almost certainly disrupt signaling pathways between 
BrM and RPE they could also be the consequence of disrupted signaling (Leu et al. 
2002; Kortvely et al. 2010; Hussain et al. 2011).
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The process of degradation of the ECM by MMPs generates matrikines, some of 
which can provoke an inflammatory response (Davis et al. 2000; Egeblad and Werb 
2002; Sorokin 2010; Iijima et al. 2011). This is supported by the observation that 
matrikines derived from collagen I, collagen IV, fibronectin, laminins, elastin, nido-
gen, and thrombospondin-1 and − 2 that exhibit chemotactic activity for inflamma-
tory cells have been found in the sub-RPE deposits (Adair-Kirk and Senior 2008). 
There is evidence that MMPs can degrade these proteins and may be involved in 
generating the matrikines (Guo et al. 1999; Zhuge and Xu 2001; Marin-Castano 
2005). However, evidence has been presented for increased and decreased MMP 
activity (Guo et al. 1999; Hussain et al. 2011). Alternatively, an altered composition 
of the ECM could alter its structure exposing neo-epitopes that could engage the 
complement system or the accumulation of ECM proteolytic fragments and other 
debris along the interface of the RPE and BrM might lead to complement activation.

While changes in BrM are the earliest age-related changes observed, the role 
of the RPE in expression and secretion of the ECM components of BrM and in the 
regulation of its turnover suggest that altered RPE cell function might be the pri-
mary cause for the accumulation of ECM and cellular debri found in basal deposits. 
The altered RPE cell function could be caused by any of the proposed processes 
such as oxidative stress or mutations that are thought to lead to macular degenera-
tion (Marin-Castano 2005).

Further studies are needed in order to unravel the specific pathways that lead to 
abnormal formation of ECM and complement activation and the formation of dru-
sen. Understanding these mechanisms should be extremely helpful in identifying 
targets for new AMD therapies.
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Chapter 9
The NLRP3 Inflammasome and its Role in Age-
Related Macular Degeneration

Cristhian J. Ildefonso, Manas R. Biswal, Chulbul M. Ahmed and 
Alfred S. Lewin

Abstract Age related macular degeneration (AMD) is the most common cause of 
blindness among people of 65 years and older in developed countries (Klein and 
Klein, Invest Ophthalmol Vis Sci 54:7395–7401, 2013). Recent advances in dry 
AMD research points towards an important role of the inflammatory response in 
the development of the disease. The presence of inflammatory cells, antibodies, 
complement factors and pro-inflammatory cytokines in AMD retinas and drusen 
indicates that the immune system could be an important driving force in dry AMD. 
The NLRP3 inflammasome has been proposed as an integrator of process associated 
with AMD and the induction of inflammation. Herein we summarize the most recent 
studies that attempt to understand the role of the NLRP3 inflammasome in AMD.

Keywords Blindness · Complement system proteins · Cytokines · Immune 
system · Immunity · Inflammasomes · Inflammation · Macular degeneration

9.1  Introduction

Using genome wide association studies, variations in the complement factor H 
(CFH) have been associated with AMD (Narayanan et al. 2007; Shastry 2007). 
Complement proteins are also found in drusen (Mullins et al. 2000). These studies 
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provided a potential link between inflammatory processes and the development of 
AMD. Over the years the hypothesis that sterile inflammation plays a key role in the 
development of AMD has taken center stage (Camelo 2014). As a result, research-
ers have focused on the NLRP3 inflammasome signaling pathway.

When activated, the NLRP3 inflammasome forms a large cytoplasmic com-
plex (Stutz et al. 2009). The Nod-like receptor family, pyrin domain containing 
3 (NLRP3) is an intracellular receptor that responds to wide range of pathogen 
associated molecular patterns (PAMPS) and danger associated molecules (DAMPS) 
such as extracellular ATP (Cassel et al. 2009). It has a ligand binding leucine-rich 
repeat domain (LRR), a nucleotide binding and oligomerization domain (NATCH), 
and a pyrin domain (PYD). Upon engagement by a ligand, the NLRP3 receptor asso-
ciates with the adaptor protein apoptosis-associated speck-like protein containing a 
CARD (ASC) through a PYD-PYD interaction. The recruited ASC, in turn, recruits 
the pro-caspase-1 via its caspase activation and recruitment domain (CARD) (Srini-
vasula et al. 2002). This CARD-CARD interaction activates caspase-1, which can 
then process the pro-forms of the interleukins 1 beta (IL-1β) and 18 (IL-18). These 
proteolytically activated cytokines are then secreted to initiate a pro-inflammatory 
response.

The expression of NLRP3 and the transcription of both IL-1β and IL-18 are 
regulated by  transcription factor NF-kB. Signaling pathways such as those initiated 
by the Toll-like Receptor 4 (TLR-4) can activate NF-κB and induce the expression 
of NLRP3 and its signaling components (Bauernfeind et al. 2009). A secondary 
signal sensed by the NLRP3 receptor is responsible for the assembly of the inflam-
masome multi-protein complex.

9.2  Activation of the NLRP3 Inflammasome in AMD

The NLRP3 inflammasome has been found to be present in samples from AMD 
patients (Kaneko et al. 2011). Several compounds associated with AMD have been 
shown to activate the inflammasome. The reactive aldehyde 4-hydroxynonenal (4-
HNE) was demonstrated to activate the inflammasome in vitro (Kauppinen et al. 
2012). The addition of 4-HNE to ARPE-19 cells (a human RPE like cell line) 
caused the secretion of IL-1β, thus suggesting a potential link between oxidative 
stress and activation of the inflammasome. Proteins modified by carboxyethylpyr-
role (CEP), an oxidation production of docosahexanoic acid, have been discovered 
within drusen from patients with AMD (Crabb et al. 2002). The CEP adducts have 
been shown to induce the activation of the inflammasome (Doyle et al. 2012) and 
activate macrophages (Cruz-Guilloty et al. 2014) when delivered in vivo. Another 
molecule associated with AMD that was demonstrated to induce the activation of 
the inflammasome is the pyridinium bisretinoid A2E (Anderson et al. 2013). A2E 
is a byproduct of the condensation of all trans-retinal that accumulates within the 
RPE cells with aging. The internalization of A2E can induce the secretion of IL-1β 
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in ARPE-19 cells. Anderson et al. also demonstrated that in ABCA4 knock-out mice 
there are increased levels of IL-1β that correlate with increase in A2E accumulation. 

Amyloid beta (Aβ) protein is seen in drusen (Johnson et al. 2002). One of the 
effects of Aβ in the RPE is the induction of senescence. Further more, Aβ induces 
the secretion of matrix metalloproteinase 9 and the destabilization of the tight junc-
tions between the RPE cells (Cao et al. 2013), suggesting that Aβ can induce the 
breakdown of the retina-blood-barrier known to occur in AMD. In another report, 
Liu and co-workers demonstrated that intravitreal injection of Aβ in rats resulted in 
the induction of IL-1β, IL-18, and MIP-3α (CCL20) (Liu et al. 2013). This group 
also reported an increase in all the components of the NLRP3 inflammasome not 
only in the RPE/choroid layer but also within the neural retina. Their results suggest 
that cells other than microglia can be a source of inflammasome activation.

One mechanism proposed to activate the inflammasome in AMD is the destabili-
zation of the lysosomes. Destabilization of lysosomes in ARPE-19 cells resulted in 
activation of caspase-1 and release of IL-1β (Tseng et al. 2013). Cell death induced 
by the lysosomal destabilization was abrogated by the inhibition of caspase-1, the 
key enzyme in the process of pyroptosis (Fernandes-Alnemri et al. 2007; Miao 
et al. 2011). Similarly, defects in autophagy in the RPE may stimulate inflammation 
(Kaarniranta et al. 2013) by activating the inflammasome.

Inflammasome activation can be stimulated in RPE cells when co-cultured with 
activated microglia (Ma et al. 2009). When transplanted sub-retinally, activated 
microglia promotes neovascularization and RPE disorganization. These results sug-
gest that migration of microglia into the subretinal space contributes to AMD by 
provoking inflammation and dysplasia of the RPE.

9.3  Cytokines Induced by the NLRP3 Inflammasome 
and Their Role in AMD

The cytokine IL-1β is a potent pro-inflammatory cytokine. As one of the cytokines 
processed by the NLRP3 inflammasome, the role of IL-1β on AMD has become of 
great importance to AMD research. A potential role for IL-1β in AMD was high-
lighted by Marneros et al. who showed that VEGF-A, a molecule associated with 
the development of neovascular AMD, can induce the secretion of IL-1β (Marne-
ros 2013). The knock-down of either NLRP3 or IL-1R decreased the neovascular 
lesions characteristically observed in mice that over-express VEGF-A. Of note, 
when IL-18 was knocked down in this model, a modest increase in the neovascular 
lesions was observed.

Once activated by caspase-1, IL-18 is secreted from the cell. Extracellular IL-18 
can bind to either its cognate receptor IL-18R or to the IL-18 binding protein (IL-
18BP). Upon binding to IL-18R, a signaling pathway involving the activation of the 
protein MyD88 leads to the expression of other cytokines such as VEGF, IL-6 and 
TNF-α (Dinarello et al. 2013).
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The function of IL-18 in the development of AMD remains unclear. In 2012 
Doyle et al. reported that deletion of the NRLP3 followed by laser injury of the 
retina leads to an increase in neovascularization when compared with eyes that ex-
pressed this receptor (Doyle et al. 2012). This group also reported that drusen iso-
lated from AMD eyes increase IL-1β secretion from peripheral blood mononuclear 
cells obtained from healthy human donors. In a follow up study, they demonstrated 
that pro-IL-18 induces the swelling of RPE cells leading to cell death (Doyle et al. 
2014). Injecting the active form of the IL-18 into the mouse retina did not cause 
damage to the tissue, however. In agreement with their original findings, they found 
that injection of IL-18 either alone or in combination with anti-VEGF therapy re-
duced neovascularization in the laser-induced CNV mouse model. Their results 
point towards a protective role of IL-18 in wet AMD.

Conflicting data regarding the protective role of IL-18 on AMD has emerged 
from different labs. Researchers reported in 2011 that there is a decreased expres-
sion of the enzyme DICER in donated eyes from patients with AMD. In the same 
article, Kaneko and colleagues demonstrated that decrease of this enzyme is suf-
ficient to induce RPE damage due to the accumulation of the Alu RNA (Kaneko 
et al. 2011). In follow up studies, this group demonstrated that the Alu induced RPE 
toxicity was dependent on the expression of the NLRP3 inflammasome components 
such as caspase-1 and PYCARD (Tarallo et al. 2012). To test the IL-18 protective 
role hypothesis, this group injected IL-18 in mice lacking caspases-1 and found that 
it induced an RPE damage similar to the accumulation of Alu RNA.

9.4  Targeting the NLRP3 Signaling Pathway

The purinergic receptor P2X7 was shown to modulate the activity of the NLRP3 
inflammasome in Alu-induced AMD model (Kerur et al. 2013). Mice lacking the 
expression of P2X7 or NF-κB were protected from the RPE damaged induced by 
the Alu RNA. Another proposed target for the treatment of AMD is the signaling 
molecule MyD88. The inhibition of MyD88 with an inhibitor peptide protected 
mice from the degeneration induced by Alu RNA (Tarallo et al. 2012). One poten-
tial advantage of targeting MyD88 is that it is important for both the induction of 
NLRP3 expression and as a signaling component of the IL-18 receptor.

Although conflicting evidence regarding the function of IL-18 in AMD remains 
to be resolved, this cytokine presents another potential target for therapy. It is likely 
that increased expression of IL-18 exacerbates the inflammatory response in early 
AMD and in geographic atrophy. While Campbell et al. (Campbell et al. 2014; 
Doyle et al. 2014) have suggested injecting purified IL-18 as a treatment for wet 
AMD, this protein is a potent inflammatory cytokine with significant potential side 
effects relative to current inhibitors of VEGF signaling.

The extracellular-signal-regulated kinase 1/2 (ERK1/2) has been implicated in 
AMD. Inhibition of ERK by the specific inhibitor PD98059 protected the RPE of 
mice treated with Alu RNA (Dridi et al. 2012). No protection was observed when 
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mice receive inhibitors of either p38 or JNK. Interestingly, the route of administra-
tion utilized in this study was systemic which protected their retinas without adverse 
side-effects. Their results suggest that ERK 1/2 could be a potential target in AMD.

The rate limiting step of the inflammasome signaling is the activation of cas-
pase-1, which makes it a therapeutic target for the treatment of AMD. Mice lacking 
caspase-1 are viable and develop normally (Kuida et al. 1995). Furthermore, several 
CARD only proteins (COPS) have been identified as negative regulators of the 
inflammasome signaling suggesting that it is plausible to inhibit its activity under 
certain situations (Le and Harton 2013). The induction of some of these COPS, or 
their exogenous over expression within the retina via gene therapy is an alternative 
that deserves further investigation.

9.5  Conclusion

Even though patients affected by AMD do not usually succumb to complete blind-
ness, their visual impairment significantly affects their quality of life. Current treat-
ment for wet AMD is based on the monthly injection of biological agents like ra-
nibizumab that block VEGF signaling thus halting the growth of new blood vessels. 
Unfortunately there is no treatment available for dry AMD. Being a multifactorial 
disease there are different animal models of the disease that recapitulate certain 
aspects of the disease (Fletcher et al. 2014). The consensus among experts in the 
field points towards an active role of NLRP3 signaling in both dry and wet AMD 
(Campbell and Doyle 2013). By studying different animal and cellular models of 
AMD and human specimens from donor patients it has been possible to identify 
several important molecules associated with the NLRP3 inflammasome signaling 
pathway that could be targeted as a therapy. With the development of novel animal 
models of AMD, especially those with a defined macular region, developing an ef-
fective treatment for geographic atrophy becomes more likely.
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Chapter 10
Oxidative Stress and the Nrf2 Anti-Oxidant 
Transcription Factor in Age-Related Macular 
Degeneration

Mandy L. Lambros and Scott M. Plafker

Abstract Age-related macular degeneration (AMD) is the leading cause of acquired 
and irreversible blindness among elderly Americans. Most AMD patients have the 
dry form of the disease (dAMD) for which reliable therapies are lacking. A major 
obstacle to the development of effective treatments is a deficit in our understand-
ing of what triggers dAMD onset. This is particularly the case with respect to the 
events that cause retinal pigment epithelial (RPE) cells to transition from a state of 
health and homeostasis to one of dysfunction and atrophy. These cells provide criti-
cal support to the photoreceptors and their atrophy often precipitates photoreceptor 
death in dAMD. Chronic oxidative stress is a primary driver of age-dependent, RPE 
atrophy. Sources of this stress have been identified (e.g., cigarette smoke, photo-
oxidized bisretinoids), but we still do not understand how these stressors damage 
RPE constituents or what age-dependent changes undermine the cytoprotective sys-
tems in the RPE. This review focuses on Nrf2, the master antioxidant transcription 
factor, and its role in the RPE during aging and dAMD onset.

Keywords Age-related macular degeneration · Oxidative stress · Nrf2 · Retinal 
pigment epithelium · Mitochondria

10.1  Introduction

By 2050, the number of US adults over the age of 50 with age-related macular 
degeneration (AMD) is estimated to be 5 million (http://www.nei.nih.gov/eyedata/
amd.asp). Of the two forms of the disease, wet and dry, ~ 85 % of cases are dry yet 
no reliable treatments currently exist. Characteristics of dry AMD (dAMD) include: 
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(1) photoreceptor degeneration in the macula, a cone-enriched region near the cen-
ter of the retina, (2) extracellular drusen deposits containing oxidized lipids and 
proteins, (3) a thickening of Bruch’s membrane, (4) hypo- and hyperpigmentation, 
and (5) geographic atrophy of the retinal pigment epithelium (RPE) (reviewed in 
(Ambati and Fowler 2012)). The RPE is a critical layer of cells posterior to the 
neuro-retina that provides trophic support to the photoreceptors and is essential 
for sustaining photoreceptor function and viability. It is therefore not surprising 
that RPE dysfunction and atrophy are common pathological hallmarks of dAMD 
(Ambati and Fowler 2012). Recent efforts have established mouse models of RPE 
debilitation that are age-dependent and mimic the cardinal features of AMD with 
the goal of identifying therapeutic targets that can block disease onset (e.g., (Zhao 
et al. 2011a; Seo et al. 2012)).

Multiple lines of evidence link chronic oxidative stress in the RPE to the etiol-
ogy of AMD. The RPE is subjected to such stresses due to its elevated metabolic 
rhythm, exposure to photo-oxidative stress and high oxygen tension, and from the 
daily phagocytic ingestion of shed photoreceptor outer segments, which are en-
riched in light damaged, polyunsaturated fatty acids. Clinical studies of mitochon-
drial DNA (mtDNA) damage have been very informative within this context as 
mtDNA provides a “history” of oxidative stress exposure. This “ history” derives 
from the mitochondrial genome being more susceptible to age-associated damage 
than its nuclear counterpart (Karunadharma et al. 2010) and because mtDNA dam-
age tends to be cumulative due to a less efficient DNA repair capacity (Lin et al. 
2011). In AMD patient eyes, mtDNA lesions increase significantly in all regions of 
the mitochondrial genome compared to age-matched control eyes, where the dam-
age is largely confined to the common deletion region (Karunadharma et al. 2010). 
Additionally, studies have shown that mtDNA damage positively correlates with 
AMD severity and is enriched in the macula relative to the peripheral retina (Lin 
et al. 2011). 

A model to account for this disease-linked increase in mtDNA damage centers on 
the notion that leading up to AMD initiation, the capacities of the RPE autophagy 
and lysosomal degradation systems decrease. As shed outer segments are continual-
ly phagocytosed but not efficiently degraded, A2E and related bisretinoid pigments 
accumulate, undergo photo-oxidization, aggregate, and become a chronic source of 
oxidative stress by reacting with and depleting pools of reduced glutathione (Yoon 
et al. 2011). The buildup of bisretinoid photoproducts, peroxidized lipids, and ag-
gregated proteins leads to unchecked free radical production. These excess free rad-
icals, and the aldehydes and ketones they produce, further damage proteins, lipids, 
DNA, and organelles, especially mitochondria. The damaged mitochondria accu-
mulate due to decreased autophagy (i.e., mitophagy), and in turn produce additional 
reactive oxygen species (ROS), adding further “fuel to the fire.” Thus, the accu-
mulation of ROS-generating, crippled mitochondria leads to wholesale damage of 
mitochondrial components including the mtDNA. Oxidatively-damaged mtDNA 
further propagate this cycle by limiting the capacity of the RPE to produce the 
necessary electron transport chain components needed for oxidative phosphoryla-
tion. Proteomic studies consistent with this model have identified altered expression  
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levels of mitochondrial proteins in RPE cells isolated from AMD patients (Nor-
dgaard et al. 2008). In addition, RPE mitochondrial morphology and structure in 
AMD patients is more extensively disrupted compared to age-matched, non-AMD 
controls (Feher et al. 2006). Together, these and additional studies implicate ROS-
mediated mtDNA damage, mitochondrial protein dysfunction, and loss of structure 
as key contributors to RPE atrophy.

10.2  Nrf2, the Antioxidant Defense System

The nuclear factor E2-related factor 2 (Nrf2) pathway is a primary system employed 
by the RPE to neutralize oxidative stress and maintain cellular homeostasis. Nrf2 
is the master antioxidant transcription factor; it induces the expression of genes 
encoding ROS-neutralizing enzymes, detoxifying enzymes, molecular chaperones, 
proteasome subunits, and enzymes essential for intermediary metabolism (Hayes 
and Dinkova-Kostova 2014). During homeostasis, Nrf2 is constitutively targeted 
for degradation by the multi-subunit, E3 ubiquitin ligase CUL3KEAP1 (Kobayashi 
et al. 2004). Keap1 is the redox-sensitive substrate adaptor that recruits Nrf2 to 
CUL3KEAP1 for polyubiquitylation and subsequent delivery to the 26S proteasome 
for degradation. Oxidative stress dissociates CUL3KEAP1 and stabilizes Nrf2. The 
transcription factor then rapidly translocates to the nucleus, heterodimerizes with 
Maf proteins, and binds to the antioxidant response elements (AREs) in the promot-
ers of its cognate target genes (Itoh et al. 1997).

10.3  Nrf2 Knockout Studies in Mice

Nrf2 knockout mice are relatively healthy in the absence of stress, but upon oxida-
tive challenge, be it pharmacological, environmental, or age-induced, they manifest 
various phenotypes (e.g., (Cano et al. 2010; Zhao et al. 2011b)). Recently, Nrf2-
deficient mice were characterized as a model for retinopathy (Zhao et al. 2011b). 
These mice exhibit multiple, age-dependent pathologies characteristic of human 
AMD including progressive RPE and Bruch’s membrane degeneration, drusen de-
posits and lipofuscin accumulation, and decreased electroretinography responses. 
Together, these findings underscore that Nrf2 deficiency may contribute to AMD 
pathogenesis. Additional studies demonstrated that aged, wild type mice express 
elevated basal levels of Nrf2 but that this does not correlate with an increase in 
protection against acute oxidative challenge (Sachdeva et al. 2014). Furthermore, 
when ROS measurements in young and old mice were compared before acute oxi-
dative challenge, both cohorts had similar levels of superoxide anion and the lipid 
peroxidation product, maldionaldehyde. However, following acute challenge with 
the RPE-specific oxidant, sodium iodate, the RPE of the aged animals showed 
increased staining for both stress markers, whereas the RPE cells of the younger 
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mice did not. RPE-specific knockout of KEAP1 in the 15-month-old mouse only 
 partially rescued the phenotype, revealing that increased Nrf2 stability is not suf-
ficient for a full reversal. These data indicate that aging decreases the efficacy of 
the cytoprotective Nrf2 machinery, and in doing so, increases the susceptibility of 
the RPE to oxidative damage. The authors proposed that post-translational modi-
fications in aged RPE might alter Nrf2 activity and that other transcription factors 
compensate to maintain basal levels of antioxidant gene expression. An additional 
explanation is that, despite sufficient levels of stabilized Nrf2, the transcription fac-
tor fails to productively associate with the promoters of its target genes due to age-
dependent, epigenetic modifications to the AREs. This remains to be tested, but 
it is noteworthy that the promoters of several Nrf2 target genes (HO-1, NQO1, 
GST, GCLC) are enriched in CpG islands, which are targets of epigenetic silencing 
by methylation (reviewed in (Newell-Price et al. 2000)). For example, the murine 
NQO1 promoter has 18 CpG islands and the HO-1 promoter has 300 whereas the 
human NQO1 promoter has 177 CpG islands and the GCLC promoter has 489. This 
analysis (Stothard 2000) combined with RT-PCR to monitor the induction of a panel 
of Nrf2 target genes in oxidatively-challenged, aged mice should prove useful for 
identifying candidates to pursue for deeper epigenetic evaluation.

10.4  Nrf2 and the Mitochondria

Mitochondrial dynamics maintain the morphology, integrity, and function of mi-
tochondria in part by constituting a first line of defense against oxidative insult. 
These dynamics involve mitochondria physically associating with (fusion) or dis-
sociating from (fission) the interconnected mitochondrial network. Fusion involves 
individual, damaged mitochondria melding with the mitochondrial network to mix 
and exchange contents thereby rescuing, via complementation, the damaged unit. 
In contrast, fission pinches off individual, irreparably damaged mitochondria from 
the larger network and liberates them for mitophagy (reviewed in (Youle and van 
der Bliek 2012)).

Interestingly, a population of Nrf2 has been identified at the mitochondrial out-
er membrane in a ternary complex with the atypical phosphatase PGAM5 and a 
dimer of KEAP1 (Lo and Hannink 2008). The function of this Nrf2 population 
is unknown. In recent studies, we identified a mitochondrial trafficking defect in 
cultured RPE cells following Nrf2 depletion by siRNA. These findings led us to 
the hypothesis that the mitochondrial population of Nrf2 mediates mitochondrial 
dynamics. We tested this in an RPE explant model using video microscopy of live 
RPE flatmounts from Nrf2-/- and Nrf2+/+ mice expressing mito-targeted GFP. These 
experiments revealed two populations of mitochondria in the RPE, a static cluster of 
similarly-sized, ovoid mitochondria on the basal side of the RPE nuclei (Fig. 10.1, 
panel A), and a dynamic group of mitochondria scattered across the apical side of 
the RPE that vary in shape and actively interact with one another (Fig. 10.1, panel 
B). We hypothesize that the transient “kiss-and-run” events taking place among 
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the apically-positioned mitochondria represent fusion and fission however, experi-
ments demonstrating the transfer of a fluorescent label between mitochondria will 
be needed to definitively draw this conclusion. Interestingly, time-lapse imaging of 
live flatmounts demonstrated that Nrf2 ablation reduced the frequency of “kiss and 
run” events (Fig. 10.2). These data indicate that Nrf2 may have a cytoprotective 
function(s) distinct from its transcriptional role. Further studies are being pursued 
to elucidate this novel function.

10.5  Concluding Remarks

Clinical and experimental evidence continues to mount in support of chronic oxi-
dative stress as a central driving force in dAMD initiation. It is our contention that 
understanding the endogenous cellular machinery and pathways that counter oxida-

Fig. 10.2.   Genetic ablation of Nrf2 reduces the frequency of mitochondrial “kiss and run” 
events. Graph of fusion and fission events from live RPE flatmounts (Nrf2+/+ (wt) v. Nrf2-/- 
(knockout)) expressing a mitoGFP transgene. Movies were recorded for 10 min and each dia-
mond represents a single RPE cell. Mice were 33–43 weeks of age. Errors bars represent standard 
deviation

 

Fig. 10.1   RPE flatmounts contain two populations of mitochondria. We observed a basal pop-
ulation of mitochondria that were clustered in a perinuclear locale ( panel A) and a second, more 
abundant population on the apical side that exhibited dynamic fusion and fission activity ( panel 
B). Shown are two focal planes of the same RPE cells and Hoechst staining to demarcate the nuclei 
( panel C). Basal mitochondria denoted with white arrows ( panel A). Scale bar: 10 µm
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tive stress in the RPE (i.e., the Nrf2 system, mitochondria, and the autophagy and 
ubiquitin degradation systems) and how age impacts each of these systems and their 
interactions with one another, will provide a gateway to the design of much needed 
therapeutics for staving off dAMD onset.

References

Ambati J, Fowler BJ (2012) Mechanisms of age-related macular degeneration. Neuron 75:26–39
Cano M, Thimmalappula R, Fujihara M et al (2010) Cigarette smoking, oxidative stress, the anti-

oxidant response through Nrf2 signaling, and Age-related Macular Degeneration. Vision Res 
50:652–664

Feher J, Kovacs I, Artico M et al (2006) Mitochondrial alterations of retinal pigment epithelium in 
age-related macular degeneration. Neurobiol Aging 27:983–993

Hayes JD, Dinkova-Kostova AT (2014) The Nrf2 regulatory network provides an interface be-
tween redox and intermediary metabolism. Trends Biochem Sci 39:199–218

Itoh K, Chiba T, Takahashi S et al (1997) An Nrf2/small Maf heterodimer mediates the induction 
of phase II detoxifying enzyme genes through antioxidant response elements. Biochem Bio-
phys Res Commun 236:313–322

Karunadharma PP, Nordgaard CL, Olsen TW et al (2010) Mitochondrial DNA damage as a poten-
tial mechanism for age-related macular degeneration. Invest Ophthalmol Vis Sci 51:5470–5479

Kobayashi A, Kang MI, Okawa H et al (2004) Oxidative stress sensor Keap1 functions as an 
adaptor for Cul3-based E3 ligase to regulate proteasomal degradation of Nrf2. Mol Cell Biol 
24:7130–7139

Lin H, Xu H, Liang FQ et al (2011) Mitochondrial DNA damage and repair in RPE associated with 
aging and age-related macular degeneration. Invest Ophthalmol Vis Sci 52:3521–3529

Lo SC, Hannink M (2008) PGAM5 tethers a ternary complex containing Keap1 and Nrf2 to mito-
chondria. Exp Cell Res 314:1789–1803

Newell-Price J, Clark AJ, King P (2000) DNA methylation and silencing of gene expression. 
Trends Endocrinol Metab: TEM 11:142–148

Nordgaard CL, Karunadharma PP, Feng X et al (2008) Mitochondrial proteomics of the retinal pig-
ment epithelium at progressive stages of age-related macular degeneration. Invest Ophthalmol 
Vis Sci 49:2848–2855

Sachdeva MM, Cano M, Handa JT (2014) Nrf2 signaling is impaired in the aging RPE given an 
oxidative insult. Exp Eye Res 119:111–114

Seo SJ, Krebs MP, Mao H et al (2012) Pathological consequences of long-term mitochondrial 
oxidative stress in the mouse retinal pigment epithelium. Exp Eye Res 101:60–71

Stothard P (2000) The sequence manipulation suite: JavaScript programs for analyzing and for-
matting protein and DNA sequences. Biotechniques 28:1102:1104

Yoon KD, Yamamoto K, Zhou J et al (2011) Photo-products of retinal pigment epithelial bisreti-
noids react with cellular thiols. Mol Vis 17:1839–1849

Youle RJ, van der Bliek AM (2012) Mitochondrial fission, fusion, and stress. Science 337:1062–
1065

Zhao C, Yasumura D, Li X et al (2011a) mTOR-mediated dedifferentiation of the retinal pigment 
epithelium initiates photoreceptor degeneration in mice. J Clin Invest 121:369–383

Zhao Z, Chen Y, Wang J et al (2011b) Age-related retinopathy in NRF2-deficient mice. PLoS ONE 
6:e19456



73© Springer International Publishing Switzerland 2016
C. Bowes Rickman et al. (eds.), Retinal Degenerative Diseases, Advances in 
Experimental Medicine and Biology 854, DOI 10.1007/978-3-319-17121-0_11

W. T. Wong () · W. Ma
Unit on Neuron-Glia Interactions in Retinal Diseases, National Eye Institute,  
National Institutes of Health, 6 Center Drive, 6/125, Bethesda, MD 20892, USA
e-mail: wongw@nei.nih.gov

Chapter 11
Aging Changes in Retinal Microglia and their 
Relevance to Age-related Retinal Disease

Wenxin Ma and Wai T. Wong

Abstract Age-related retinal diseases, such as age-related macular degeneration 
(AMD) and glaucoma, contain features of chronic retinal inflammation that may 
promote disease progression. However, the relationship between aging and neuroin-
flammation is unclear. Microglia are long-lived, resident immune cells of the retina, 
and mediate local neuroinflammatory reactions. We hypothesize that aging changes 
in microglia may be causally linked to neuroinflammatory changes underlying 
age-dependent retinal diseases. Here, we review the evidence for (1) how the reti-
nal microglial phenotype changes with aging, (2) the factors that drive microglial 
aging in the retina, and (3) aging-related changes in microglial gene expression. We 
examine how these aspects of microglial aging changes may relate to pathogenic 
mechanisms of immune dysregulation driving the progression of age-related retinal 
disease. These relationships can highlight microglial aging as a novel target for the 
prevention and treatment of retinal disease.

Keywords Microglia · Aging · Complement · Retinal pigment epithelium · 
Senescence

11.1 Introduction

Common retinal diseases, such as AMD and glaucoma, contribute significantly to 
vision loss in the US and worldwide (Congdon et al. 2003, 2004). They however 
have an intriguing age-dependence in their prevalence which increases markedly 
with aging (Friedman et al. 2004a, 2004b). The causes for their association with 
aging are not well-understood, but because these diseases are characterized by an 
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early emergence of retinal neuroinflammation (Wax and Tezel 2009; Buschini et al. 
2011), it has been hypothesized that an age-related dysregulation of immune re-
sponse in the retina can contribute to disease pathogenesis (Xu et al. 2009; Wong 
2013). As microglia are the primary resident immune cell in the retina, and are long-
lived cells that persist across long periods of chronological time (Albini et al. 2005; 
Ajami et al. 2007), senescent changes occurring within aging microglia may be one 
cause of immune response “failure”, conferring upon the retina an age-dependent 
vulnerability to disease. Here we review the evidence that retinal microglia in fact 
demonstrate aging-dependent physiological and molecular changes, and speculate 
on the drivers and consequences of microglia aging in the retina.

11.2 Aging Phenotypes of Retinal Microglia

Microglia in the young healthy retina demonstrate an orderly laminar distribution in 
which individual cells are evenly spread out in a regularly tiled distribution in the 
inner and outer plexiform layers but are intriguingly excluded from the outer retina 
(Santos et al. 2008). Each microglial cell possesses ramified, branching processes 
that exhibit rapid, constitutive motility that enables the cell to effectively survey the 
extracellular milieu in its vicinity (Lee et al. 2008). While microglial somata are 
evenly spaced and relatively stationary in the uninjured state, microglia following 
focal injury promptly polarize their processes and migrate in the direction of injury 
to cluster around the injury site. In our studies, we found that these phenotypic fea-
tures of retinal microglia are not static but change progressively with aging. Com-
pared to the young (3–4 month old) mouse retina, the aged (18–24 month old) retina 
contains a slightly but significantly greater density of microglia; each of these aged 
microglia have a significantly smaller ramified dendritic arbor on average, with 
fewer branches and shorter total process lengths (Damani et al. 2011). In addition, 
the constitutive movements of aged microglial processes were significantly slower 
than those in their younger counterparts. Similar observations were also found for 
microglia in the cortex (Hefendehl et al. 2014) and hippocampus (Mouton et al. 
2002) of the brain, indicating that CNS microglia may decline in their ability to 
perform everyday functions of immune surveillance and synapse maintenance with 
aging, which may translate to an increasing vulnerability to neurodegenerative dis-
ease (Streit and Xue 2009).

In addition to microglial phenotypes in the steady state, we found that the na-
ture and extent of microglial responses to injury become altered with aging. While 
young retinal microglia responded dynamically to exogenous applications of ATP, 
an injury-related signal, by increasing motility and the degree of branching in their 
processes, aged microglia demonstrated a converse response by decreasing both 
process motility and ramification (Damani et al. 2011). In a laser model of focal ret-
inal injury, we found that aged microglia failed to upregulate their process motility 
in the immediate aftermath of focal injury (minutes to hours) in a manner observed 
in young microglia. Aged retinal microglia also migrated to the injury site more 
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slowly compared with young microglia. In the longer term, while young microglia 
demonstrated dispersal from the injury site 16 days after laser injury, aged microg-
lia remained clustered at the laser burn with a reduced rate of dispersal. These data 
indicated while microglial injury responses in the young retina have a prompt and 
rapid initiation upon the onset of injury, followed by an expeditious downregula-
tion upon injury resolution, those in the aged retina are slower to initiate but are 
also slower to reverse and return to the resting state. These dysregulated responses 
may thus contribute defects in efficient homeostasis and help contribute to a more 
chronically active neuroinflammatory state in the retina.

The exclusion of microglia from the young healthy outer retina is a unique fea-
ture that indicates the outer retina as a special zone of immune regulation where the 
spatial segregation of microglia from outer retinal cell types is required. However, 
with aging, this zone of exclusion is increasingly transgressed by microglia that 
translocate into the outer retina to accumulate in the subretinal space (Xu et al. 
2008; Chinnery et al. 2012). In the young retina, physical contact and interaction 
between microglia and RPE cells are highly infrequent, but in the aged retina, these 
RPE-microglia contacts increase monotonically in prevalence as a function of ag-
ing. Microglia accumulating in the subretinal space demonstrate morphological and 
molecular markers of increased activation (Xu et al. 2008; Ma et al. 2013b), indicat-
ing their ability to contribute to an increased pro-inflammatory local environment. 
These changes were similarly observed in aged and AMD human retinas (Ma et al. 
2013a). While the factors that drive this translocation are unclear, these increasing 
age-dependent RPE-microglia interactions result in changes in RPE cells that in-
duce further immune dysregulation at this outer retinal interface and promote patho-
logical changes similar to those observed in AMD (Ma et al. 2009, 2012). From 
observations in vitro and in vivo systems, we found that activated retinal microglia 
induced in RPE cells (1) changes in RPE structure and distribution, (2) increased 
expression and secretion of pro-inflammatory, chemotactic, and pro-angiogenic 
molecules, and (3) an increased ability to promote choroidal neovascularization in 
vivo. As such, we speculate that the migration of retinal microglia into the subretinal 
space induces significant changes in RPE cells that perpetuate further microglial 
accumulation, increase inflammation in the outer retina, and fosters an environment 
conducive for the formation of neovascular changes in wet AMD.

11.3  Potential Factors Driving the Aging Microglial 
Phenotype in the Retina

How do aging-related phenotypes arise in retinal microglia? Elucidation of the driv-
ers of microglial aging can not only enable an understanding of microglial physiol-
ogy but also present therapeutic opportunities for modulating of these phenotypes to 
inhibit or reverse vulnerabilities to aging-related retinal disease. Factors influencing 
microglial phenotypes may arise from the environment of the aging retina or other-
wise from intrinsic age-related changes within microglial cells themselves. Genetic 
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expression profiling of the entire retina have shown that retinal aging involves gene 
sets involved in the regulation of local inflammatory responses, particularly those 
involved with the innate immune system (Chen et al. 2010), suggesting that modu-
latory influences onto microglia, possibly from neighboring retinal cells such as 
Müller cells (Wang et al. 2011, 2014; Wang and Wong 2014), may change with ag-
ing. On the other hand, microglia themselves demonstrate intrinsic age-dependent 
changes such as the accumulation of lipofuscin, which are likely built up as a func-
tion of continuing phagocytosis of byproducts of the visual cycle. We discovered 
that the accumulation of A2E, a primary bisretinoid of lipofuscin, has the effect 
of increasing microglial activation, suppressing microglial chemotactic responses, 
and altering complement gene expression to favor complement activation. As such, 
lipofuscin buildup in aging microglia may constitute one potential driver of patho-
genic aging microglial phenotypes.

We found by microarray analysis of microglia isolated ex vivo from the mouse 
retina that patterns of gene expression in microglia demonstrate progressive change 
with aging (Ma et al. 2013b). In particular, molecular pathways involving immune 
function and regulation, angiogenesis, and neurotrophin signaling demonstrated 
age-related changes. Interestingly, expression levels of complement genes C3 and 
CFB, which have been associated with AMD, also increased with aging, indicating 
that microglia, which can contribute to local complement regulation (Rutar et al. 
2011), may falter in their ability to limit complement activation with aging. Indeed, 
we also found immunohistochemical and mRNA evidence of increased C3 and CFB 
expression, as well as complement activation in the aging retina (Ma et al. 2013b). 
Therefore, intrinsic changes in complement gene expression, combined with outer 
retinal accumulation, may constitute a mechanism by which aging microglia alter 
the immune environment in ways pathologically relevant to AMD.

11.4 Conclusions and Perspectives

Microglia in the young healthy animal have a highly ordered, regular and laminar 
distribution in the retina, in which they conduct constitutive activities of synapse 
maintenance and immune surveillance via highly dynamic processes. They also 
express multiple inflammatory proteins, including complement and complement 
regulatory proteins, indicative of their role in the immune regulation of the retinal 
environment. With retinal aging, these phenotypes demonstrate age-related changes 
that result in a disordered microglial distribution in the retina, deficient constitutive 
microglial function, and abnormal microglial injury responses. These alterations, 
combined with molecular and gene expression aging changes within microglia, in-
dicate that aged microglia may be less capable of maintaining homeostasis in the 
immune environment, particularly of the outer retina. Further study into the factors 
in the aging retinal environment influential on microglial phenotype and into the 
key molecular regulators of microglial function will be helpful in understanding 
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how microglial aging can be modulated or reversed. The ability to successfully 
modulate microglial aging phenotype has the promise of “rejuvenating” the im-
mune environment of the retina in ways that may be protective against the progres-
sion of age-related retinal diseases.
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Chapter 12
VEGF-A and the NLRP3 Inflammasome  
in Age-Related Macular Degeneration

Alexander G. Marneros

Abstract The pathomechanisms that lead to age-related macular degeneration 
(AMD) are only partially understood. The NLRP3 inflammasome has been shown 
to be activated in the retinal pigment epithelium (RPE) in eyes with AMD. How-
ever, it is not known whether inflammasome activation is a cause or consequence of 
pathologic changes in AMD. A roadblock to defining the role of inflammasome acti-
vation and pathways that regulate it for AMD has been the lack of a mouse model 
that forms AMD-like pathologies in an age-dependent manner in which the role 
of the inflammasome can be investigated using genetic studies. We have recently 
identified such a mouse model, in which increased VEGF-A levels result in early 
degenerative changes of the RPE, followed by cardinal features of both nonexuda-
tive and neovascular AMD. Importantly, higher VEGF-A levels lead to increased 
oxidative damage and a sub-retinal inflammatory infiltrate that are associated with 
NLRP3 inflammasome activation in the RPE. Targeting the NLRP3 inflammasome 
inhibited AMD-like pathologies in these mice. These findings suggest that inhib-
iting the NLRP3 inflammasome or pathways that regulate it may provide novel 
therapeutic approaches for the treatment of both forms of AMD.

Keywords VEGF-A · NLRP3 inflammasome · Age-related macular degeneration, 
AMD · Macrophages · Oxidative stress

12.1 Introduction

AMD is the most common cause of irreversible blindness in the elderly, and the num-
ber of affected individuals is anticipated to increase significantly in the near future 
(van Leeuwen et al. 2003; Friedman et al. 2004). AMD has been classified clinically 
as either the neovascular (“wet”) form, with excessive choroidal neovascularization 
(CNV) that impairs vision, or as the nonexudative (“dry”) form that is character-
ized by atrophic degeneration of the RPE and subsequent retinal degeneration. 
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Importantly, nonexudative AMD may co-occur with neovascular AMD, suggesting 
a common pathomechanism (Sunness et al. 1999). In addition, genetic association 
studies in AMD patients have also suggested a common pathomechanism for both 
forms of AMD, and have found an association of gene loci for complement pathway 
components as well as the VEGF-A gene locus with both forms of AMD (Yu et al. 
2011). Identifying a shared pathomechanism for both neovascular and nonexudative 
AMD would provide the unique opportunity to develop a comprehensive treatment 
approach for all forms of AMD, or even develop therapeutic strategies to prevent 
AMD from progressing at its early stages. A significant roadblock to the develop-
ment of novel therapies and potentially comprehensive therapeutic approaches that 
target both forms of AMD has been the lack of a mouse model that manifests car-
dinal features of both forms of AMD in an age-dependent manner with complete 
penetrance and without external artificial experimental manipulation (such as laser 
injury), in which novel therapies could be tested.

Several specific pathways and cellular changes have been hypothesized to be 
important for human AMD pathogenesis, but the limitations in the experimental 
animal models used so far have limited the evidence for the in vivo significance 
of such pathways. Particularly increased reactive oxygen species (ROS) and more 
recently activation of the NLRP3 inflammasome have been suggested to contribute 
to AMD pathogenesis, in addition to increased expression of proangiogenic factors 
(e.g. VEGF-A) in neovascular AMD (Tarallo et al. 2012; Tseng et al. 2013).

We speculated that increased VEGF-A levels in the eye would lead to both 
nonexudative and neovascular AMD-like pathologies, as (1) major risk factors for 
AMD development (such as smoking) lead to oxidative damage or hypoxia in the 
RPE, which are both main inducers of VEGF-A expression in the RPE (Klettner 
and Roider 2009), and (2) because the VEGF-A gene locus has been linked to both 
forms of AMD in patients (Yu et al. 2011). Furthermore, VEGF-A has been shown 
to induce breakdown of the RPE barrier in vitro in a VEGFR2-dependent manner, 
and this RPE barrier breakdown is a requirement for the infiltration of choroidal 
neovessels into the sub-retinal space in neovascular AMD (Ablonczy and Crosson 
2007; Ablonczy et al. 2011). We hypothesized that VEGF-A-induced RPE abnor-
malities may contribute not only to CNV through RPE barrier breakdown, but also 
promote photoreceptor degeneration through impaired interactions of the RPE with 
the photoreceptor outer segments, leading to nonexudative AMD-like pathologies. 
In order to test the consequences of increased VEGF-A in the eye, we have analyzed 
eyes in a mouse strain in which insertion of a lacZ sequence into the 3′UTR of the 
VEGF-A gene results in increased VEGF-A levels in the RPE, retina and serum 
(VEGF-Ahyper mice) (Miquerol et al. 1999; Marneros 2013).
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12.2  Increased VEGF-A Is Sufficient to Cause Choroidal 
Neovascularization in a Novel Mouse Model of AMD

While increased VEGF-A has been implicated in neovascular AMD, it is not known 
whether an increase of VEGF-A alone is sufficient to cause CNV. We could indeed 
show that all VEGF-Ahyper mice developed CNV with complete penetrance, dem-
onstrating that an increase in VEGF-A alone is not only associated with CNV, but 
moreover sufficient to induce CNV (Fig. 12.1a) (Marneros 2013; Ablonczy et al. 
2014). Increased VEGF-A expression in the RPE resulted early on in a progressive 
age-dependent RPE barrier breakdown in VEGF-Ahyper mice (Fig. 12.1b), with cyto-
plasmic translocation of membrane-localized junctional proteins, such as ZO-1 and 
β-catenin (Marneros 2013). At sites of RPE barrier breakdown sub-retinal infiltra-
tion of activated macrophages was observed that was accompanied by a subsequent 
activation of adjacent retinal glia cells that highly express the proangiogenic factors 
IL-1β and VEGF-A (Marneros 2013). Multifocal CNV lesions formed subsequently 
at sites of RPE barrier breakdown and retinal glia cell activation. These findings 
suggest that infiltrating macrophages are essential for the activation of retinal glia 
cells and that these proangiogenic glia cells together with activated macrophages in-
duce CNV. In support of this hypothesis, we could show that in laser-induced acute 
CNV, ablation of macrophages inhibited glia cell activation and subsequent CNV 
(Marneros 2013). Similarly as in the spontaneously forming CNV lesions in VEGF-
Ahyper mice, activated glia cells in neovascular lesions induced by laser injury also 
expressed VEGF-A or IL-1β.

Fig. 12.1   AMD-like pathologies in VEGF-Ahyper mice. a Choroidal neovessels ( red, CD31) origi-
nate from the underlying choroidal vasculature ( green, FITC-tomato lectin) and displace the RPE 
( white, phalloidin) in mice with increased VEGF-A levels. b Phalloidin staining ( green) shows 
areas of RPE barrier breakdown and CNV lesions in choroidal flatmounts of eyes from VEGF-
Ahyper mice. Nuclear β-galactosidase staining shows expression of VEGF-A in RPE cells ( red). c 
Lipid-like deposits (round autofluorescent structures, here in yellow) in the sub-RPE space in mice 
with increased VEGF-A levels. Phalloidin staining ( white) shows RPE cells
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Importantly, the observed neovascular lesions in VEGF-Ahyper mice strongly re-
semble human neovascular AMD with the formation of neovascular membranes 
(Marneros 2013). Thus, these mice allow us to investigate mechanisms that regulate 
not only the growth of CNV lesions, but also their spontaneous induction in an age-
dependent manner without experimental injury (in contrast to the laser-injury model 
of CNV, which allows only to assess how factors influence growth of CNV lesions 
in response to acute injury and not their induction).

12.3  Targeting the NLRP3 Inflammasome Inhibits 
VEGF-A-induced Choroidal Neovascularization

Importantly, the NLRP3 inflammasome has recently been reported to be activated 
in human AMD (Tarallo et al. 2012; Tseng et al. 2013), but it is not known whether 
its activation contributes to AMD pathologies, and whether it acts to inhibit or pro-
mote AMD, as these questions could not be tested so far in a valid genetic mouse 
model of AMD where these pathologies form in an age-dependent manner.

Higher VEGF-A levels in VEGF-Ahyper mice were associated with increased oxi-
dative damage to the RPE, accumulation of lipid-rich sub-RPE deposits, and sub-
retinal accumulation of complement factors, including C1q (Marneros 2013). Both 
C1q and oxidative damage are known inducers of the NLRP3 inflammasome, and 
we could show that VEGF-A-induced AMD-like pathologies correlated with C1q 
accumulation and activation of the NLRP3 inflammasome in the RPE of VEGF-
Ahyper mice, consistent with studies that suggest a pathogenic role of NLRP3 in-
flammasome activation in AMD (Doyle et al. 2012; Tarallo et al. 2012; Tseng et al. 
2013). Importantly, genetic inactivation of NLRP3 or the inflammasome effector 
cytokine IL-1β in this AMD mouse model strongly reduces but does not prevent 
VEGF-A-induced CNV, demonstrating a direct role of the NLRP3 inflammasome 
in promoting CNV in these mice (Marneros 2013). These findings establish a novel 
link between increased VEGF-A and NLRP3 inflammasome activation for the for-
mation of CNV.

12.4  Increased VEGF-A Results in RPE and Photoreceptor 
Degeneration and a Disruption of the Visual Cycle

Already prior to CNV formation RPE abnormalities are noticed that increase with 
progressive age and that result in RPE atrophy and sub-RPE deposits (Fig. 12.1c). 
These VEGF-A-induced RPE pathologies lead to progressive age-dependent focal 
RPE cell death and photoreceptor loss, resembling aspects of nonexudative human 
AMD (Marneros 2013).
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We have performed a detailed analysis of RPE and retinal functions in VEGF-
Ahyper mice and could show that these mice indeed manifest both morphological 
and functional abnormalities resembling important aspects of nonexudative AMD 
(Ablonczy et al. 2014). Similarly as in nonexudative AMD, we could show progres-
sive dysfunction of the RPE and photoreceptors to occur due to a disruption of reti-
noid transport processes between the RPE and photoreceptors that worsened with 
progressive age (Ablonczy et al. 2014). The observed VEGF-A-induced RPE barri-
er breakdown in VEGF-Ahyper mice impaired the interdigitation between apical villi 
of the RPE with photoreceptor outer segments, which was associated with a disrup-
tion of the visual cycle and reduced 11-cis and all-trans retinal levels in retinas of 
these mice (Ablonczy et al. 2014). These retinoid transport abnormalities were as-
sociated with progressive RPE and photoreceptor degeneration and age-dependent 
accumulation of sub-RPE deposits (Ablonczy et al. 2014). These morphological 
changes correlated also with reduced retinal rhodopsin levels and abnormal ERGs 
(Ablonczy et al. 2014). Notably, morphological degenerative changes of the RPE 
already occurred prior to CNV formation and at sites in the posterior eye that had 
no CNV lesions, as observed in human AMD (Marneros 2013). These data provide 
support for the hypothesis that VEGF-Ahyper mice serve as a valuable tool to study 
mechanisms that result in the manifestation of both nonexudative and neovascular 
AMD-like pathologies.

12.5 Summary

VEGF-Ahyper mice serve as an important novel genetic mouse model for AMD, and 
show that what has been considered as a multifactorial pathogenesis in humans can 
be triggered by increased VEGF-A-signaling in mice. The observations in these 
mice suggest that in human AMD multiple risk factors converge to cause mainly 
RPE hypoxia and oxidative damage, which are main inducers of VEGF-A expres-
sion in the RPE. These findings are consistent with recent genetic association data 
that have provided evidence for linkage of both forms of advanced AMD with the 
VEGF-A gene locus (Fritsche et al. 2013;Yu et al. 2011). While increased VEGF-
A has been associated with CNV and RPE barrier breakdown, these mice reveal a 
previously not fully appreciated role of increased VEGF-A in impairing RPE and 
photoreceptor function during aging. However, it is important to emphasize that 
these findings do not necessarily imply that both forms of AMD are caused in hu-
mans by increased VEGF-A, but they suggest that these mice serve as a valuable 
experimental tool to elucidate mechanisms that result in the manifestation of AMD-
like pathologies and that may also play a role in human AMD.

Notably, anti-VEGF-A therapies are currently the main therapeutic approach for 
neovascular AMD. Recent observations suggest that chronic anti-VEGF-A thera-
pies may promote RPE and photoreceptor degeneration as adverse effects of this 
treatment approach (Rofagha et al. 2013). These findings are not necessarily sur-
prising, as anti-VEGF-A therapies are likely to deplete even baseline extracellular 
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VEGF-A levels, which are required for choriocapillaris maintenance, and an in-
tact choriocapillaris in turn is essential to maintain proper RPE function (Marneros 
et al. 2005; Saint-Geniez et al. 2009). In addition, VEGF-A has been suggested to 
function as a photoreceptor survival factor, and its complete depletion may impair 
long-term photoreceptor function (Saint-Geniez et al. 2008). However, the poten-
tial adverse effects of chronic anti-VEGF-A therapies on RPE and photoreceptor 
function do not contradict the observation of RPE and photoreceptor abnormalities 
in mice with increased VEGF-A levels (VEGF-Ahyper mice). In these VEGF-Ahyper 
mice age-dependent RPE and photoreceptor abnormalities are most likely a direct 
consequence of increased VEGF-A-mediated signaling in the RPE, which results 
in RPE barrier breakdown, subsequent CNV and photoreceptor degeneration due 
to disruption of the visual cycle. Thus, we hypothesize that inhibition of increased 
VEGF-A-signaling specifically in the RPE is likely going to prevent AMD patholo-
gies without impairing choriocapillaris function, in contrast to depleting all extra-
cellular VEGF-A at the RPE/choroid interface through neutralizing anti-VEGF-A 
antibodies. We speculate that reducing factors that promote increased VEGF-A ex-
pression specifically in the RPE, such as hypoxia or oxidative damage, may thus 
prevent pathologic RPE barrier breakdown and subsequent AMD-like pathologies 
without adverse effects on the choriocapillaris or photoreceptors, which are being 
observed with anti-VEGF-A therapies targeting extracellular VEGF-A. This hy-
pothesis is also consistent with observations that show a beneficial effect of diets 
rich in antioxidants in slowing progression of AMD (Chew et al. 2013).
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Chapter 13
Interrelation Between Oxidative Stress 
and Complement Activation in Models of 
Age-Related Macular Degeneration

Luciana M. Pujol-Lereis, Nicole Schäfer, Laura B. Kuhn, Bärbel Rohrer 
and Diana Pauly

Abstract Millions of individuals older than 50-years suffer from age-related 
macular degeneration (AMD). Associated with this multifactorial disease are poly-
morphisms of complement factor genes and a main environmental risk factor—
oxidative stress. Until now the linkage between these risk factors for AMD has not 
been fully understood. Recent studies, integrating results on oxidative stress, com-
plement activation, epidemiology and ocular pathology suggested the following 
sequence in AMD-etiology: initially, chronic oxidative stress results in modifica-
tion of proteins and lipids in the posterior of the eye; these tissue alterations trig-
ger chronic inflammation, involving the complement system; and finally, invasive 
immune cells facilitate pathology in the retina. Here, we summarize the results for 
animal studies which aim to elucidate this molecular interplay of oxidative events 
and tissue-specific complement activation in the eye.

Luciana M. Pujol-Lereis and Nicole Schäfer both have contributed equally to the study.
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13.1  Introduction

13.1.1  Complement System in the Eye

The complement system (CS) is a part of the immune system, which provides a 
host defense against foreign organisms and modified self-tissue. The local CS in 
the healthy eye is continuously activated at a low level, but it is kept under control 
by intraocular CS regulatory proteins (Sohn et al. 2000). The soluble CS proteins 
are mainly produced in the liver, and some of them also in the choroid and retinal 
pigment epithelium (RPE) (Anderson et al. 2010; Bora et al. 1993). Additionally, 
it is well described that stressed and injured cells locally secrete CS proteins (Pratt 
et al. 2002). The neuroretina and the apical border of the RPE are shielded from the 
systemic CS by the blood retina barrier; however, under pathological conditions 
that lead to the disruption of the barrier, systemically-derived CS components might 
contribute to pathology. Components of all three different CS activation pathways 
[classical (CP), lectin (LP) and alternative (AP)] have been found in the eye (Sohn 
et al. 2000). These pathways are typically initiated by immune complexes (CP), 
pathogen or non-self surfaces (LP) or spontaneous hydrolysis (AP) and result in 
the formation of a membrane-bound C3-convertase which cleaves C3 into its active 
forms C3b and C3a. C3b interacts with other CS proteins and forms the C5-conver-
tase which is required for initiation of the terminal part of the cascade that forms 
the membrane attack complex (MAC). At sublytic concentrations, the MAC can 
either lyse the target cell or change cellular behavior. Additionally, anaphylatoxins 
(C3a, C5a) act as pro-inflammatory stimuli, and opsonins (iC3b, C3d, C3dg) flag 
altered membranes. Hence, through the production of multiple biological effector 
molecules, the CS can have a wide-ranging effect.

13.1.2  Oxidative Stress in the Human Retina

Oxidative stress occurs as a consequence of an imbalance between the detoxification 
and production of reactive oxygen species. Photoreceptor outer segments (POS) are 
very sensitive to oxidative stress as they contain high concentrations of polyunsatu-
rated fatty acids (PUFA) in their membrane phospholipids (Ebrahem et al. 2006). 
In RPE cells, lipofuscin granules accumulate as a consequence of the ingestion of 
POS, and are rich in the fluorescent pigment (A2E), which generates reactive oxy-
gen species and expands the oxidative damage (Schütt et al. 2000). Malondialde-
hyde (MDA) and 4-hydroxynonenal (HNE) -modified proteins, as well as advanced 
glycosylation end-products (AGE) were found in lipofuscin granules located in the 
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RPE of human eyes (Schutt et al. 2003). Oxidized PUFA, ω-(2-carboxyethyl)pyr-
role (CEP) adducts, 4-hydroxyhexenal (HHE), MDA and AGE also increase with 
age in human Bruch’s membrane as a consequence of oxidative damage (Beattie 
et al. 2010; Weismann et al. 2011).

Studies indicate that even mild forms of lipid peroxidation can cause changes 
in gene expression and alter tissue homeostasis (Weismann et al. 2011; Wang et al. 
2009; Woodell et al. 2013). The immune system, including components of the CS 
pathway, senses and reacts to oxidative modifications, which can trigger an immune 
response in the affected tissues.

13.2  Interplay of the CS and Oxidative Stress in AMD 
Animal Models

13.2.1  Cigarette Smoke

Cigarette smoke is the only proven, modifiable risk factor for AMD (Khan et al. 
2006). It contributes to oxidative load by generating free radicals and depleting 
the antioxidant defense system. Interestingly, it has been reported that cigarette 
smoke can directly activate C3 (Kew et al. 1985). Constant smoke exposure has 
been shown to lead to oxidative damage and CS deposition at the level of the RPE 
in mice (Wang et al. 2009). This resulted in dry AMD-like pathology, including 
thickening of Bruch’s membrane and mitochondrial damage in mice, and ocular 
pathology was found to require AP activation since mice lacking complement factor 
B did not develop these alterations (Woodell et al. 2013). It will be of great interest 
to determine the link between different oxidant factors and CS activation in this and 
other models.

13.2.2  Light-Damage

Constant white light can generate free radicals and increase expression of oxidative-
stress-related enzymes, as well as HNE-modifications of proteins in the retina of 
mice (Hadziahmetovic et al. 2012a; Rutar et al. 2012). In parallel, an up-regulated 
expression of complement factors C1q, C3 and others was observed in the eye with-
out the corresponding increase in CS inhibitors such as CD59 or complement factor 
H (CFH) (Rohrer et al. 2007; Rutar et al. 2011; Hadziahmetovic et al. 2012a; Song 
et al. 2012). In addition, infiltrating microglia cells expressing C3 enhance the local 
inflammation (Rutar et al. 2012). The AP is required in this oxidative stress model 
because constant-light-exposed complement factor D-deficient mice showed more 
healthy photoreceptors compared to wild-type or C1q-deficient mice (Rohrer et al. 
2007). Finally, long-wavelength light can reduce oxidative damage as mitochon-
drial respiration is improved. Lipid-peroxidation as well as the expression of CP-
related genes are lower in 670 nm pretreated animals (Rutar et al. 2012).
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13.2.3  CEP-Immunization

Antibodies are generated randomly or in response to foreign substances. Recent 
studies have suggested that antibodies against self-antigens might play a role in 
AMD pathogenesis (Joseph et al. 2013). To test whether oxidation-specific epitopes 
might trigger an inflammatory response involving the CS, Hollyfield and colleagues 
immunized mice with CEP-modified mouse serum albumin (Hollyfield et al. 2008). 
CEP-immunized mice had elevated circulating anti-CEP antibody levels, accumu-
lated C3d in Bruch’s membrane, and CS protein expressing macrophages infiltrated 
into the interphotoreceptor matrix (Cruz-Guilloty et al. 2013). These results sug-
gested that the CS may be fundamentally involved in the generation of pathologic 
changes related to oxidation-specific neoepitopes.

13.2.4  Sodium Iodate-Treatment

Sodium iodate is a retinotoxin, which generates reactive oxygen species and selec-
tively damages RPE as well as photoreceptors. Sodium iodate-treatment induces a 
fast retinal degeneration with an increased expression of the oxidative stress-related 
gene heme oxygenase-1 and CS component C3 in mice. While this effect can be 
ameliorated by the cell-permeant iron chelator deferiprone (Hadziahmetovic et al. 
2012b), the involvement of the complement system has not yet been tested on pro-
tein level.

13.2.5  Knock-Out Mice

13.2.5.1  Cfh−/−

CFH is the major negative CS regulator of the AP. The absence of CFH leads to 
uncontrolled activation of the AP, severe systemic depletion of C3 and AMD-like 
changes (Pickering et al. 2002; Coffey et al. 2007). Nevertheless, increased C3 and 
C3b deposition was demonstrated within the neuroretina (Coffey et al. 2007). Ad-
ditional changes included increased expression of CS inhibitory factor, decay-accel-
erating factor (DAF) in Müller cells and a concomitant decrease in retinal CD59a 
(Faber et al. 2012; Williams et al. 2013). The relation between oxidative stress and 
CS proteins in Cfh−/− mice could be demonstrated by treating aged Cfh−/− mice with 
670 nm light, which increased mitochondrial function and reduced inflammation in 
the retina (Begum et al. 2013).



13 Interrelation Between Oxidative Stress and Complement … 91

13.2.5.2  Abca4−/−

The ATP-binding cassette sub-family A, member 4 (ABCA4), functions as a flip-
pase in photoreceptor disk membranes. Radu et al. (2011) showed a correlation 
between deposited A2E-lipofuscin in Abca4−/− mice, oxidative stress, and CS acti-
vation. Anti-oxidative stress proteins (SOD1 and CAT1) and oxidative stress mark-
ers (MDA and HNE) were increased in the RPE of aged Abca4−/− mice compared to 
controls. Furthermore, deposition of C3 and its degradation products were elevated 
in RPE cells of aged Abca4−/− mice. CS inhibitory proteins DAF, CD55, CD59, 
CD46, CRRY and CFH were all down-regulated in these mice when compared to 
the age-matched wild-type mice (Radu et al. 2011).

13.2.5.3  Ceruloplasmin/Hephaestin−/−

Iron is a potent generator of oxidative stress. It is exported from cells by trans-
membrane ferroxidases such as ceruloplasmin and its homologue hephaestin. Mice 
deficient in these two enzymes showed age-dependent retinal iron accumulation 
associated with oxidative stress and pathological characteristics of AMD. In mice 
older than 9 months, activation products of C3 could be detected at the sub-RPE 
level and at Bruch’s membrane (Hadziahmetovic et al. 2008).

13.2.5.4  Sod−/−

The superoxide dismutase (SOD) family is the main antioxidant system in the ret-
ina. Depending on which of the three isoforms is deleted, this generates a model 
for oxidative stress either in the cytosol (SOD1), the mitochondria (SOD2), or 
the extracellular space (SOD3). The activity and amount of SOD1 is the highest 
among the three forms in the retina. The systemic Sod1−/− knockout mice exhibited 
oxidative damage and features of AMD, with elevated staining in RPE for drusen-
markers C5, CD46 and vitronectin (Imamura et al. 2006). In humans, Sod2 gene 
polymorphisms have been found to be associated with AMD. Mice carrying an 
RPE-specific Sod2 knockdown exhibit features of dry AMD including oxidative 
stress in the RPE and C5 and CD46 deposits in the retina (Seo et al. 2012; Mao et al. 
2014). There are no results describing the effect of Sod3-deficiency on RPE; but a 
conditional knockdown in smooth muscle cells suggests that it plays an important 
role in vascular remodeling and inflammation (Birari et al. 2012).

13.2.5.5  Nrf2−/−

Nuclear factor erythroid 2-related factor 2 (Nrf2) is a transcription factor which is 
important for antioxidant responses. Nrf2−/− mice showed an AMD-like pathology. 
Relevant to this review, immunostaining showed an age-dependent increase in C3d 
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and vitronectin deposition in the subretinal space. The authors suggest that impaired 
lysosomal function and autophagic activity may release extracellular waste which is 
recognized by the immune system (Zhao et al. 2011).

13.3  Conclusion

The main conclusions that can be drawn from this mini-review are as follows: 
(1) oxidative stress, whether induced by chemical exposure, poor diet or genetic 
alteration results in the generation of neoepitopes; (2) oxidative stress alters gene 
and protein expression of CS components, which may contribute to the observed 
increase in CS activation in these stressed tissues; (3) these changes in RPE may 
result in impairment of photoreceptor cell integrity and functionality, which leads 
to AMD.
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Chapter 14
Gene-Diet Interactions in Age-Related Macular 
Degeneration

Sheldon Rowan and Allen Taylor

Abstract Age-related macular degeneration (AMD) is a prevalent blinding disease, 
accounting for roughly 50 % of blindness in developed nations. Very significant 
advances have been made in terms of discovering genetic susceptibilities to AMD 
as well as dietary risk factors. To date, nutritional supplementation is the only avail-
able treatment option for the dry form of the disease known to slow progression of 
AMD. Despite an excellent understanding of genes and nutrition in AMD, there is 
remarkably little known about gene-diet interactions that may identify efficacious 
approaches to treat individuals. This review will summarize our current understand-
ing of gene-diet interactions in AMD with a focus on animal models and human 
epidemiological studies.

Keywords Age-related macular degeneration · Gene-diet interaction · Knockout 
mice · Nutrition · Genetic susceptibility · CFH · ARMS2 · Glycemic index · High 
fat diet · Retinal pigmented epithelium

14.1  Introduction: Genetic and Dietary Factors in AMD

AMD was first human disease wherein gene-wide association studies were able 
to identify gene variants that account for a significant risk of disease. The two 
most common associations are for the Y402H variant of Complement factor H 
( CFH, rs1061170)) and the Age-related maculopathy susceptibility 2 ( ARMS2, 
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rs10490924) gene. The population-attributable risk for late AMD is 53 or 43 % 
for CFH and ARMS2 risk alleles respectively, with a lesser increased risk for de-
veloping early AMD (Klein et al. 2013). When accounting for a larger number of 
genes, and within an elderly population, individuals in the highest decile of AMD 
risk based on genotype have an almost 80 % chance of developing AMD compared 
to a less than 5 % chance for individuals in the lowest decile of risk (Chen et al. 
2010). There was also some association between the forms of the disease related 
to genetic risk factors. CFH risk variants were more common in individuals who 
developed geographic atrophy relative to those with large drusen or neovascular-
ization (Chen et al. 2010), whereas ARMS2 risk alleles were more closely associ-
ated with neovascularization (Chen et al. 2010; Sobrin et al. 2011). These kinds 
of associations point to different mechanism by which genetic risk can influence 
disease pathophysiology.

Diet also impacts significantly on the incidence and treatment of AMD. It has 
long been known that individuals consuming the lowest amount of several nutri-
ents are at increased risk for AMD relative to individuals consuming the highest 
amounts. This relationship holds true to ω-3 fatty acids, particularly DHA, lutein 
and zeaxanthin carotenoids, and to various extents for zinc intake (Weikel et al. 
2012a). It should be noted that different populations, different classifications sys-
tems, and different study designs dramatically impinge on these findings. Dietary 
patterns also impact on risk of AMD. Individuals consuming higher glycemic in-
dex (GI) diets, that is diets that deliver glucose to the blood more rapidly, are at 
increased risk for AMD (Weikel et al. 2012a). Conversely, individuals consuming 
lower GI diets are protected from developing AMD, particularly early forms of the 
disease. Other dietary patterns, like a Western dietary pattern, which typically con-
tains more red meats, high-fat dairy products, processed meats and refined grains, 
are associated with dramatically elevated risk for AMD relative to diets that provide 
more fruits, vegetables, legumes, seafood, and whole grains (Chiu et al. 2014).

14.2  Human Studies

14.2.1  Human Studies of Gene-Diet Interactions

Studies using pharmacogenetics and nutrigenetics provide improved capacity to 
predict individual responses to pharmacological or nutritional interventions. AMD 
management should benefit from such approaches because the genetic contribu-
tions are well defined (discussed above), and there are few drugs or nutritional 
interventions available. Because it has been shown to delay progression of AMD to 
advanced stages, the AREDS2 formulation of vitamin C, vitamin E, zinc, copper, 
ω-3 fatty acids, lutein, and zeaxanthin is now the standard of care (AREDS2 Re-
search Group 2013). For the wet form of AMD, a variety of VEGF inhibitors are be-
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ing used, and strong clinical evidence is present for additional benefit of combined 
VEGF/PDGF inhibition (Ratner 2014).

The first examination of gene-diet interactions in AMD centered on whether 
there were genotype-specific benefits for antioxidant and/or zinc supplementation 
on AMD progression, evaluating the two common CFH (Y402H, rs1061170) and 
ARMS2 (A69S, rs10490924) variants. Klein et al. found a protective gene-diet in-
teraction between the low risk CFH allele and supplementation with antioxidants 
and zinc within the AREDS study, with subgroup analysis revealing the interaction 
to be via the zinc component (Klein et al. 2008). No statistically significant interac-
tions were observed for individuals with the high risk CFH alleles or any ARMS2 
alleles in this study. Analyzing the Blue Mountains Eye Study population, Wang et 
al., found a protective gene-diet interaction between the high-risk CFH Y402H al-
lele and frequent fish consumption (Wang et al. 2009). This interaction only existed 
for late AMD and not early AMD and was not highly significant ( p = 0.04). Never-
theless, the results of these studies suggested that individuals with early AMD may 
want to consider their CFH Y402H status when considering treatment and dietary 
options.

The Klein study was independently followed-up with consideration of all the 
CFH and ARMS2 allele combination within the same study population. Awh et al. 
corroborated the protective interaction between zinc supplementation for individu-
als without the CFH risk allele, and suggested a negative interaction between zinc 
supplementation for individuals with CFH risk alleles (Awh et al. 2013). They fur-
ther suggested different AREDS-based treatment options for individuals with dif-
ferent genotypes of CFH and ARMS2. In contrast, Chew et al., also evaluating CFH 
and ARMS2 allele combinations in AREDS patients, found no significant gene-diet 
interactions for AMD progression (Chew et al. 2014). Although different statistical 
methods and subgroup analyses were used for these studies, the lack of concordance 
is troubling, and suggests that at the current sample size of AREDS, a consensus 
conclusion may not be reachable.

Two different studies evaluated food frequency questionnaire (FFQ) data in the 
context of genetic factors. Ho et al. analyzed the population based Rotterdam Study 
to evaluate the role for several nutrients in AMD development and found that in-
dividuals with risk alleles of CFH and ARMS had protective interactions with zinc 
or EPA + DHA (Ho et al. 2011). Individuals with CFH risk alleles benefitted from 
dietary carotenoids, but no interactions were observe for vitamins A, C, or E in any 
genotypes. Reynolds et al., evaluating AREDS FFQ data, reported that DHA alone 
showed a strong protective gene-diet interaction with the high risk allele of ARMS2 
and a weaker gene-diet interaction with the low risk allele of CFH for AMD pro-
gression to geographic atrophy (Reynolds et al. 2013).
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14.2.2  Conclusions from Human Data

The number of studies that have methodically evaluated gene-diet interactions in 
AMD is small, and the conclusions have not been consistent. Discrepancies oc-
cur because of different populations, different outcomes, different study designs, 
and different statistical methodologies. The strongest statistical interaction has been 
found between ARMS2 high risk alleles and consumption of DHA or DHA + EPA, 
which appears to protect against early forms of AMD, as well as progression to 
geographic atrophy. CFH non-risk alleles also tend to show protective interactions 
for late AMD with zinc and DHA.

Current medical practice is not to routinely genotype individuals, as the standard 
of care, AREDS2, appears to be effective across the major genotypes. However, 
other groups disagree with this conclusion, and are offering patients customized 
AREDS-based treatments based on their genotype (Awh et al. 2013). As new treat-
ments are being developed to treat various forms of AMD, it will be prudent to 
consider gene-diet interactions in order to obtain the best possible treatment for 
each patient.

14.3  Mouse AMD Models

14.3.1  Mouse AMD Models to Explore Gene-Diet 
Interactions

The mouse has proven to be a difficult model organism to model human AMD. For 
a variety of reasons, including a very different lifespan and mode of aging, a differ-
ent eye structure that lacks a macula, and different dietary needs, no single mouse 
model has recapitulated all of the key features of human AMD (Pennesi et al. 2012). 
Nevertheless, the mouse is a powerful experimental system for diet and aging stud-
ies, particularly with regard to early signs of disease within the RPE. Since most 
animal models involve genetic and dietary manipulations, the mouse should be a 
rich system to uncover gene-diet interactions.

14.3.2  Gene-Diet Interactions with Dietary Glycemic Index

Based on the human genetic association data, we and others have evaluated the 
Cfh-null mouse as a potential mouse model for AMD. Normally aged Cfh-null mice 
do not appear to develop AMD-like features when fed a regular diet, and we sought 
to explore whether there might be a specific gene-diet interaction between Cfh-null 
mice and dietary GI. Previously, we showed that wildtype mice aged on high GI 
diets showed increased numbers of age-related AMD-like features, including basal 



9914 Gene-Diet Interactions in Age-Related Macular Degeneration

laminar deposits and loss of basal infoldings (Weikel et al. 2012b). When mice 
were aged to 10-months on high and low GI diets, we did not find any changes in 
wildtype mice on either diet. Cfh-null mice, however, showed AMD-like features 
when fed a low GI diet, but not a high GI diet (Rowan et al. 2014). These features 
included loss of basal infoldings, increased numbers of basal laminar deposits, in-
creased vacuolation, and increased numbers of lipofuscin granules. It remains un-
clear why the gene-diet interaction was observed with the low GI diet, and not the 
high GI index diet, as we predicted.

14.3.3  Gene-Diet Interactions with Lipids

One particular diet that appears to promote AMD-like features in mice is a high fat 
and high cholesterol (HFC) diet. Mice with human ApoE alleles knocked-in devel-
oped AMD-like features, only when fed HFC diets (Malek et al. 2005). The pheno-
types were particularly marked in ApoE4 knock-in mice, some of which went on to 
develop choroidal neovascularization. These phenotypes were much more severe 
than any aging study in wildtype mice using HFC diets, and were also more severe 
than studies where mice transgenically expressing a mutant ApoE3 allele developed 
only minor AMD-like features on a high fat diet (Kliffen et al. 2000).

Long-term consumption of high fat diets has been linked to accumulation of 
basal laminar deposits and lipid deposits in the RPE and Bruch’s membrane. The 
mouse, however, is not an ideal organism to model lipid transport and accumula-
tion, in part because mice express a predominantly truncated form of ApoB, ApoB-
48, which is easily cleared by non-LDL-dependent mechanisms. Young mice ex-
pressing the human version of ApoB-100 showed accelerated RPE accumulation of 
basal laminar deposits, when coupled with blue light exposure and a high fat diet 
(Espinosa-Heidmann et al. 2004). Aged ApoB-100 transgenic mice fed a high fat 
diet went on to develop more severe AMD-like phenotypes, including basal linear 
deposits within Bruch’s membrane, a specific gene-diet interaction (Fujihara et al. 
2009). ApoB-100 transgenic mice also interact with a high cholesterol diet, where 
they show a thickened Bruch’s membrane, accumulation of electroluscent material 
within the Bruch’s membrane, and some deposits between the RPE and Bruch’s 
membrane (Sallo et al. 2009).

It is worth noting that whereas gene-diet interactions in human studies of AMD 
primarily uncover protective interactions, in mouse studies, they are more likely to 
uncover synthetic interactions that reveal phenotypes not observed by gene or diet 
change alone. One mouse model that uncovered a protective effect is the gene-diet 
interaction between dietary ω-3 fatty acids, AMD, and increased inflammation. 
The Ccl2/Cx3cr1 double knockout mouse develops retinal lesions that resemble 
those found in human AMD, as well as some associated RPE and changes (Tuo 
et al. 2009). Such mice fed diets with high levels of EPA, DHA, along with doc-
osapentaenoic acid developed fewer retinal lesions, and had less dystrophic RPE, 
relative to mice fed diets with low levels of ω-3 fatty acids (Tuo et al. 2009). 
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These changes correlated with reduced levels of lipofuscin and inflammatory cy-
tokines in mice fed a high ω-3 fatty acid diet. This work was followed by com-
paring double knockout mice treated with the AREDS2 formulation compared to 
control diet alone, once retinal lesions had developed. AREDS2 supplementation 
led to increased lesion regression, with improved retinal gene expression patterns 
(Ramkumar et al., 2013).

14.3.4  Conclusions from Animal Models and Perspective

The mouse remains a useful experimental system to study the role of genes and 
diet in AMD. Because of an emphasis on modeling the disease state, and not mod-
eling nutritional treatments, most dietary studies have not been highly relevant to 
human translational findings. Furthermore, most mouse models rely on genetic 
constructs that would never exist in a human. Future models need to take into 
account meaningful human gene variants (e.g. CFH Y402H) and dietary factors 
known to account for disease risk in humans (e.g. Western dietary patterns). A 
promising intersection of these may be possible using rhesus macaques, which 
show some common susceptibility genes for AMD, including ARMS2 (Francis 
et al. 2008), and have been reared and aged on diets lacking macular pigments 
and ω-3 fatty acids.
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Chapter 15
Challenges in the Development of Therapy  
for Dry Age-Related Macular Degeneration

Cynthia X. Wei, Aixu Sun, Ying Yu, Qianyong Liu, Yue-Qing Tan,  
Isamu Tachibana, Hong Zeng and Ji-Ye Wei

Abstract Dry age-related macular degeneration (AMD), a multifactorial progres-
sive degenerative disease of the retinal photoreceptors, pigmented epithelium and 
Bruch’s membrane/choroid in central retina, causes visual impairment in millions 
of elderly people worldwide. The only available therapy for this disease is the over-
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the-counter (OTC) multi-vitamins plus macular xanthophyll (lutein/zeaxanthin) 
which attempts to block the damages of oxidative stress and ionizing blue light. 
Therefore development of dry AMD prescribed treatment is a pressing unmet medi-
cal need. However, this effort is currently hindered by many challenges, including 
an incomplete understanding of the mechanism of pathogenesis that leads to uncer-
tain targets, confounded by not yet validated preclinical models and the difficulty to 
deliver the drugs to the posterior segment of the eye. Additionally, with slow disease 
progression and a less than ideal endpoint measurement method, clinical trials are 
necessarily large, lengthy and expensive. Increased commitment to research and 
development is an essential foundation for dealing with these problems. Innova-
tions in clinical trials with novel endpoints, nontraditional study designs and the use 
of surrogate diseases might shorten the study time, reduce the patient sample size 
and consequently lower the budget for the development of the new therapies for the 
dry AMD.

Keywords Dry AMD · Geographic atrophy · Drusen · Retinal pigment epithelium · 
Bruch’s membrane · Photoreceptor · Complement · Antioxidants · Anti-VEGF    DARPin · 
OZURDEX

15.1  Introduction

AMD is one of the leading causes of irreversible blindness in the elderly worldwide, 
which is hypothesized to be a progressive disease, with the dry and wet forms likely 
representing different points on a spectrum of disease severity. The initial stage of 
AMD is characterized by the appearance of white or yellowish lipid-rich deposits 
in Bruch’s membrane, called drusen formation (Pikuleva and Curcio 2014). Subse-
quently, the loss of rod photoreceptors and retinal pigmented epithelia (RPE) func-
tion occurs in advanced dry AMD patients, resulting in geographic atrophy (GA). 
Wet AMD is occurs in approximately 10–15 % of patients and is characterized by 
choroidal neovascularization extending through Bruch’s membrane/RPE into the 
subretinal space. All current AMD treatments are anti-VEGF and/or anti-angiogen-
ic for wet form only, such as bevacizumab, (Avastin), a full-length antibody against 
VEGF approved for the intravenous treatment of advanced carcinomas, pegaptanib 
(Macugen), ranibizumab (Lucentis) and aflibercept (Eylea) that have been devel-
oped specifically for intraocular use. Notably, abicipar pegol, an anti-VEGF DAR-
Pin (Designed Ankyrin Repeat Protein), will enter phase III clinic trials in 2015 for 
intraocular use to treat wet AMD (Souied et al. 2014; Maturi et al. 2014). Although 
the anti-VEGF therapies are clinically proven for managing the late-stage, severe 
AMD patients, interventions in the early-stage of dry AMD can be more effective 
to control this disease and reduce the burden for the patients. Therefore, providing 
novel earlier diagnostic, prophylactic and therapeutic approaches against dry AMD 
are highly compelling medical needs.



10515 Challenges in the Development of Therapy for Dry Age-Related Macular …

15.2  Pathogenic Mechanisms of Dry AMD

Aging is the major risk factor for development of AMD. Other systemic risk fac-
tors, such as smoking, obesity, sunlight exposure and oxidative stress have also 
been found to play very important roles in this disease (Bowes Rickman et al. 
2013). Additionally, variations in AMD-related genes, such as complement factor 
H ( CFH) and HTRA1/ARMS2/PLEKHA1, account for as much as 50 % of the ge-
netic risk of AMD. Genes involved in regulating lipid metabolism, complement 
immunity and oxidative damage are considered to be vital to a healthy macula and 
retina (Zhang et al. 2012). Although numerous research studies have contributed 
to understanding how AMD develops and advances, the complete picture is still to 
be fully elucidated. Uncertainties in the understanding of the pathogenesis of the 
disease pose fundamental challenges to the development of therapy for dry AMD. 
Some of the hypothetical mechanisms and therapeutic targets are presented in  
Table 15.1.

15.3  Pre-clinical Dry AMD Animal Models

The validity of an animal model depends on the degree of its similarity to human 
conditions. In dry AMD studies, rodents, especially mouse models, are widely used 
because of their similarity to human ocular morphology, high degree of availabil-
ity, relatively low cost and amenability to genetic manipulation. However, several 
reports indicated that pre-existing retinal abnormalities or/and retinal degenera-
tive lesions are found in the naïve mice line (Bell et al. 2012). For example, the 
C57BL/6N mouse substrain, which is widely used to produce transgenic and knock-
out mice, exhibited typical AMD-like white-spotted degenerative fundus lesions 

Table 15.1   Proposed mechanisms of pathogenesis and corresponding therapeutic targets for dry 
AMD
Proposed mechanisms Therapeutic targets
Trophic factors deprivation CNTF, PEDF and their trophic factor stimulants
Local immune system and inflammation Anti-complement inhibitors, immune modulators

Anti-inflammatory drugs
Blue light and other oxidative stresses Antioxidants, reactive oxygen species scavengers

Anti-ER stress reagents/chaperone regulators
Vascular insufficiency Vasodilators and erythropoietin
Others Visual cycle modulator (e.g. emixustat HCL)

Anti-cholesterol drugs, anti-apoptotic compound
Mitochondrial agents, multiple kinase inhibitors
Phagocytosis modulators, drusen in situ clearance
Agents, gene therapy, stem cell therapy
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(Mattapallil et al. 2012). All these mice showed rd8 mutation of Crb1 gene regard-
less of the purchasing sources (e.g. Charles River, Harlan, Taconic or DCT). The 
mutation presents in all the US vendor lines of C57BL/6N mice and its embryonic 
stem cells. This confounds ocular induced mutant phenotypes and confuses retinal 
degeneration research. Fortunately, the Jackson labs’ mice strains C57BL/6J and 
C57BL/10J did not show any of these retinal abnormalities. But in the mixed sub-
strain, C57BL/6NJ line, the AMD-like retinal degenerative phenotype and rd8 mu-
tant appeared again. Therefore, usage of mice for AMD and/or retinal degenerative 
disease studies should be prescreened with the fundus examination and images of 
confocal scanning laser ophthalmoscopy (SLO) and spectral-domain optical coher-
ence tomography (SD-OCT) before experiments. Genotyping the mice for the rd8 
mutation is also highly recommended.

15.4  Drug Delivery for Dry AMD

Topical ocular application is the traditional ophthalmic drug delivery method. But 
for AMD therapy, intravitreal injection is the only approach that currently can pass 
over the blood-retinal barrier (BRB) and reach to the retina (Edelhauser et al. 2010). 
The presence of intravitreal clearance mechanisms (posterior transretinal and an-
terior aqueous humor elimination pathways) causes the peak drug concentration 
levels to decline to nontherapeutic levels over time, unless the intraocular injec-
tions are given frequently and repeatedly. However, the repeated injections impose 
a significant treatment burden on the patients as well as health care providers, and 
a cumulative risk of adverse effects from each subsequent injection. The disadvan-
tage caused by the short to medium duration of action of intravitreal drug solutions 
has been partially overcome through product formulation or sustained-release de-
vice development (e.g., free-floating or scleral-fixated, biodegradable intravitreal 
implants or micro- or nanoparticles), such as Allergan’s FDA approved Ozurdex 
(dexamethasone intravitreal biodegradable implant, the proprietary and innovative 
NOVADUR® solid polymer delivery system), which is used for treatment of dia-
betic macular edema, retinal vein occlusion and uveitis.

15.5  Novel Clinical Trial Endpoints  
for Dry AMD Therapy

Dry AMD has extremely slow disease progression with substantial variability 
among patients, which makes it very challenging to find an ideal clinical endpoint 
measurement method. Currently, the clinical trials for dry AMD therapy, i.e. CNTF 
encapsulated implant, anti-complement C5 inhibitor (eculizumab, Alexion/GSK) or 
anti-factor D complement inhibitor (Genentech/Roche), measured growth rate of 
geographic atrophy (GA) areas using SD-OCT imaging and also checked patient’s 
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visual acuities in normal and low-luminance conditions (Yehoshua et al. 2014). 
Recently, by using SD-OCT technology, change in drusen volume was chosen as a 
novel surrogate clinical trial endpoint to study complement inhibition for dry AMD 
(de Amorim Garcia Filho et al. 2014). It could be studied over a shorter period of 
time compared with previous dry AMD studies that used the progression to ad-
vanced AMD or vision loss as efficacy endpoints and required years of follow-up 
(Yehoshua et al. 2014). In the future, clinical trials for dry AMD should consider the 
use of a composite clinical trial endpoint in which efficacy is defined by the treat-
ment’s ability to prevent drusen growth, progression of geographic atrophy (GA), 
visual acuity changes and formation of neovascularization. In addition to these 
modifications, perhaps a surrogate disease approach would be useful. An alterna-
tive approach would be to assess potential drug candidates in other retinal diseases 
that share certain characteristics of dry AMD but that have a more rapid course 
of disease progression, such as Stargardt’s disease, an inherited form of juvenile 
macular degeneration, and most of these patients experience rapid deterioration of 
vision during early life (once a visual acuity of 20/40 is reached, there is often rapid 
progression of additional vision loss until it reaches 20/200, Fishman et al. 1987).

15.6  Current Status of the Dry AMD Therapy

Currently available therapies for dry AMD are only the OTC multi-vitamins plus 
xanthophyll (lutein/zeaxanthin) and zinc. The Age-Related Eye Disease Study 
(AREDS 2001), a large randomized clinical trial that studied the effects of anti-
oxidants (beta-carotene, vitamin C, and vitamin E) and zinc supplements on the 
progression to advanced AMD, showed 25 % reduction of progression to advanced 
AMD after a follow-up period of 6 years. However, the nutrients with beta-carotene 
supplementation have been noted to associate with a higher incidence of lung cancer 
in smokers. Researchers tried substituting lutein and zeaxanthin for beta-carotene 
to reduce the risk of lung cancer. More than 4000 people, ages 50–85 years, who 
were at risk for advanced AMD participated in AREDS2 at 82 clinical sites across 
the USA. The study found that lutein and zeaxanthin together appeared to be a safe 
alternative to beta-carotene (AREDS2 Research Group 2013).

Several drug candidates are in ongoing clinical trials for dry AMD treatment, 
which can be found on ClinicalTrials.gov. Recently, CNTF delivered by encap-
sulated-cell intraocular implants for treatment of geographic atrophy in dry AMD 
has been initially reported with positive results (Zhang et al. 2011). However, sub-
sequent long-term follow-up results on retinitis pigmentosa showed no positive  
effects on patients’ visual function (Birch et al. 2013), which is consistent with the 
animal studies that showed CNTF can keep the retinal photoreceptor morphology 
intact without functional improvement (ERG depression with CNTF overexpres-
sion, Wen et al. 2012). Trials of dry AMD treatments with Alcon’s 5-HT1A agonist, 
tandospirone (Collier et al. 2011), Othera’s anti-oxidative agents, OT-511 (Wong 
et al. 2010) and Alexion’s monoclonal antibody for targeting complement C5a, 
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eculizumab (Yehoshua et al. 2014) either failed to meet their primary endpoints or 
the compounds were withdrawn from further clinical development. The only ongo-
ing dry AMD therapy that showed some promising results is the monthly injections 
of Roche’s lampalizumb (anti-factor D complement inhibitor, humanized mono-
clonal antibody antigen-binding fragment, Fab). The phase II trial data of lampali-
zumb met its primary efficacy endpoint in slowing the progression of geographic 
atrophy lesions in a subgroup of 20.4 % of patients with advanced dry AMD over 
18 months observation (Williams and MAHALO study, 2013). In addition, sev-
eral other complement inhibitors, such as LFG316 (Novartis), an antibody against 
C5, ARC-1905 (Ophthotech), an anti-C5 pegylated aptamer, as well as AL-78898A 
(POT-4, Alcon), a cyclic peptide that binds reversibly to C3 and inhibits three major 
complement pathways, are all in the phase 1/2 clinical trials. The results are still 
inconclusive.

Human retinal stem cells/progenitor cells replacement, gene therapy as well as 
retinal prosthesis are other promising therapeutic strategies for dry AMD patients, 
but all of them are in the early stages of development. For example, most transplant-
ed retinal tissues and cells are too difficult to integrate into the host degenerative 
retinal structures for repairing and restoring vision. Also, human stem cells have 
so far shown little ability to differentiate into retinal phenotypes when transplanted 
into adult retina. Although retinal prosthesis are extremely effective at converting 
the visual image into a series of electrical impulses, the issue of precisely reconnect-
ing them with the human retina will be paramount.

15.7  Conclusion

In summary, although we are currently facing many challenges to find an optimal 
treatment for dry AMD, at least we can focus our attention on resolving the identi-
fied critical issues. Hence, more research and development for dry AMD treatment 
is essential for new drug innovation.
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Chapter 16
Nanoceria: a Potential Therapeutic for Dry 
AMD

Xue Cai and James F. McGinnis

Abstract Age-related macular degeneration (AMD) is the leading cause of blind-
ing diseases. The “dry” form of AMD is the most common form of AMD. In con-
trast to the treatable neovascular (wet) AMD, no effective treatment is available 
for dry AMD. In this review, we summarize the animal models and therapeutic 
strategies for dry AMD. The novel candidates as potential treatment targets and the 
potential effectiveness of nanoceria as a treatment of dry AMD are also discussed.

Keywords Dry AMD · Drusen · RPE · Animal models · Therapeutic strategies · 
Nanoceria

Abbreviation

AMD Age-related macular degeneration
RPE Retinal pigment epithelium
BM Bruch’s membrane
GA Geographic atrophy
CEP Carboxyethylpyrrole
DHA Docosahexaenoic acid
AREDS The age-related eye disease study
CNTF Ciliary neurotrophic factor
Aβ Amyloid-β
ER Endoplasmic reticulum
ROS Reactive oxygen species
Nanoceria Cerium oxide nanoparticles
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16.1  Introduction

Dry AMD (age-related macular degeneration), is the most common form of AMD. 
It develops very slowly with gradual loss of vision. The initial pathological sign 
of dry AMD is the appearance of drusen, which presents as yellowish deposits, in 
the macula between the retinal pigment epithelium (RPE) and the Bruch’s mem-
brane (BM). As the size of drusen increases, the BM thickens, and RPE become 
atrophied. Dry AMD develops into the late (advanced) stage: geographic atrophy 
(GA), and the loss of central vision eventually occurs. About 10–15 % of dry 
AMD may develop into another advanced form of AMD, the neovascular (wet) 
AMD. At present, no completely curative medical treatment is available for dry 
AMD.

16.2  Mechanism of Dry AMD

Many risk factors are associated with the pathology of AMD including age, race, 
diet, genetic variants, oxidative stress, dysregulation of the immune system, the 
complement system and inflammation, RPE damage and dysfunction, lysosomal 
lipofuscin accumulation, and drusen formation, etc. (Ambati and Fowler 2012; 
Cai and McGinnis 2012; Bowes Rickman et al. 2013; Kanagasingam et al. 2014). 
It was demonstrated that oxidative stress-induced inflammation is strongly as-
sociated with dry AMD, and RPE plays a key role in triggering AMD: RPE dys-
function, being the primary cause, results in photoreceptor death as a secondary 
event (Ambati and Fowler 2012; Bowes Rickman et al. 2013). Recently, an in-
nate immune complex, the NLRP3 inflammasome in the RPE cells, was defined 
and linked with the microRNA-processing enzyme DICER1 and oxidative stress 
(Kaneko et al. 2011; Dridi et al. 2012; Tarallo et al. 2012). This axis provides 
a new mechanism for the development of GA and further confirms the central 
role of RPE in the pathogenesis of AMD. Experiments showed that deficiency of 
DICER1 in the RPE of GA patients, or conditional knockout mice, resulted in in-
creases of Alu RNA in RPE cells (Kaneko et al. 2011), and consequently activated 
NLRP3 inflammasome which in turn induced RPE cell death (Tarallo et al. 2012). 
Furthermore, one component of the classical complement pathways, C1Q, which 
was found to be present in drusen, also activated the NLRP3 inflammasome to 
produce IL-18 for protection (Doyle et al. 2012). Many techniques are employed 
for clinical diagnosis of AMD, to image, measure and evaluate drusen develop-
ment, as well as imaging the abnormalities of RPE, BM, and GA. However the 
etiology of AMD is very difficult to determine because of the slow progression of 
the disease, its late onset, environmental contributions, involvement of multiple 
genetic factors and most importantly, the lack of suitable good animal models 
which exactly mimic the phenotype of dry AMD.
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16.3  Animal Models

Currently only aged simian primates develop drusen and share that similarity with 
humans with respect to its formation, composition and cellular location (Pennesi 
et al. 2012; Fletcher et al. 2014). More than 30 non-primate models of AMD are 
available and their origination and phenotypic characteristics have been reviewed 
(Ramkumar et al. 2010; Pennesi et al. 2012; Fletcher et al. 2014). These models are 
either: (1) naturally occurring gene mutations such as arrd2/arrd2, Nr2e3rd7; or (2) 
genetically created with mutations of genes which lead to AMD symptoms, such as 
abcr−/−, elovl4−/−; or genes associate with AMD, such as inflammation cytokines 
( Cx3crl−/−, cfh−/−), oxidative stress associated genes ( Sod1−/−), or metabolic ac-
tivity associated genes ( ApoE−/−, mcd/mcd). Another category of animal models 
was induced by physical injury or chemical oxidants, such as blue light induced 
A2E oxidation (Wielgus et al. 2010), sodium iodate (Enzmann et al. 2006), smok-
ing (Wang and Neufeld 2010), and immunization with CEP (carboxyethylpyrrole, 
an adduct of oxidized docosahexaenoic acid (DHA)) (Hollyfield et al. 2010). One 
distinguished difference between human and mouse retina is that the mouse does 
not have a macular structure. However, a few of these models display some charac-
teristics of dry AMD phenotypes such as “drusen-like” deposits, or a thickened BM 
or elevation of A2E levels. Unfortunately, most of them develop the pathogenesis 
of dry AMD at a very late age (usually beyond 8–9 months of age) which makes 
development of therapeutics more difficult.

16.4  Therapeutic Strategies

Nowadays, therapeutic strategies for the treatment of dry AMD are either: (1) tar-
geting inflammation; suppression of oxidative stress, neuroprotection, or clearance 
of aggregates from the RPE; or (2) cellular therapies using a variety of types of stem 
cells. However, although all of these therapies delayed or slowed progression of dry 
AMD to wet AMD, they showed little or no benefit towards curing dry AMD.

16.4.1  Inhibition of Inflammation

Elements of inflammation cytokines and inflammation associated factors provide 
potential targets for the treatment of dry AMD. Compstatin is a selective comple-
ment C3 inhibitor and was shown to suppress and reverse drusen formation in 
cynomolgus monkeys (Chi et al. 2010), and its derivative (POT-4) is now in phase 
III trial (Evans and Syed 2013). Several other drugs targeting C3, C5 and factor D, 
are currently in clinical trial phase II or phase III for dry AMD (Evans and Syed 
2013).
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16.4.2  Suppression of Oxidative Stress

The age-related eye disease study (AREDS) clinical trial, that included a formula-
tion of high dose of multiple vitamins with beta-carotene and zinc, significantly 
slowed the progression of dry AMD to wet AMD and visual loss but did not stop 
or cure the disease. AREDS2, adding lutein, zeaxanthin and omega-3 fatty acids to 
the formulation to test the effectiveness, was completed in May 2013 (www.nei.nih.
gov/amd/).

16.4.3  Neuroprotection

In a clinical trial phase II study, encapsulated ciliary neurotrophic factor (CNTF) 
implant for the treatment of GA patients was conducted, and results obtained at 12 
months after treatment showed dose-dependent increases in the thickness of the 
outer nuclear layer and stable visual acuity (Zhang et al. 2011). The mechanism of 
CNTF action for neuroprotection was shown to require cytokine receptor gp130 in 
Muller glia in a mouse model of retinitis pigmentosa, rds/P216L (Rhee et al. 2013).

16.4.4  Increased Clearance of Cellular Aggregates

This approach is based on the fact that the deposits of drusen and lipofuscin contain 
the oxidized byproducts of the visual cycle. Preventing the accumulation of these 
byproducts or slowing the visual cycle by visual cycle modulators should inhibit 
the progression of dry AMD. Oral intake of Fenretinide (vitamin A competitor for 
binding to the retinol binding protein) decreased the lesion growth rate in GA pa-
tients (Mata et al. 2013). A phase II trial of Fenretinide is ongoing (Evans and Syed 
2013). Another phase II/III trial to test the efficacy of another drug (ACU-4429) for 
slowing the visual cycle and preventing the accumulation of A2E by modulation of 
RPE65 is ongoing (Evans and Syed 2013). Systemic supplementation of an anti-Aβ 
(amyloid-β) antibody (6F6) to the cfh−/− mice was shown to reduce Aβ and activate 
complement C3 deposition (Catchpole et al. 2013). Two phase II trials using anti-
bodies that binds to Aβ are now ongoing (Evans and Syed 2013).

16.4.5  Cellular Therapies Using Stem Cells

A variety of stem cell types for use as AMD therapeutics have been developed 
in recent years (Evans and Syed 2013; Melville et al. 2013; Heller and Martin 
2014). Most recently a phase I/II clinical trial involving the transplantation of 
human embryonic stem cell-derived RPE stem cells into the subretinal space of 
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patients with dry AMD showed improvement in vision (Schwartz et al. 2012). 
Several other approaches using induced pluripotent stem cell-derived and adult 
RPE stem cell-derived RPE cells are in the earlier development stage (Bharti 
et al. 2014).

16.4.6  Novel Candidates for Potential Therapy

With the extensive investigation of AMD mechanisms, many genes and signaling 
pathways were identified to be related to dry AMD, thus providing new candidate 
targets for AMD treatment.

16.4.6.1  NLRP3 Inflammasome

As stated above, a decrease in DICER1 and increase in Alu RNA resulted in the 
activation of the NLRP3-inflammasome in dry AMD. Therefore up-regulation of 
DICER1 or inhibition of Alu RNA and NLRP3, or targeting their signaling me-
diators/effectors, should slow the progression of the pathology (Dridi et al. 2012; 
Campbell and Doyle 2013).

16.4.6.2  Autophagy and ER Stress Chaperone

One important function of RPE cells is phagocytosis of aged photoreceptor outer 
segment discs (Strauss 2005). Chaperone (Hsp70)-mediated autophagy clear-
ance, one of the three lysosomal pathways, is responsible for the removal of 
protein aggregates in the RPE cells (Ryhanen et al. 2009). In AMD patients, oxi-
dative stress-induced ER (endoplasmic reticulum) stress (protein folding stress, 
caused by accumulation of unfolded/misfolded proteins) regulated autophagy for 
the degradation of damaged proteins (Yao et al. 2014). Up-regulation of autopha-
gy and molecular chaperones, and their associated signaling pathways, should be 
effective for the treatment of dry AMD (Kaarniranta et al. 2012).

16.5  Nanoceria Targeting ROS and Downstream 
Pathology

Drusen and lipofuscin contain damaged DNA, lipids, and proteins, which are the 
oxidized byproducts from visual cycle and other metabolic activities. The preven-
tion of upstream reactive oxygen species (ROS) formation during the visual cycle, 
without disturbance of normal retinal activities, is a critical key for treating of AMD. 
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Nanoceria are cerium oxide nanoparticles which, because of the physicochemical 
characteristics of their surface structure, have the ability to switch between + 3 and 
+ 4 valance states and thereby destroy ROS. They mimic the catalytic activities of 
superoxide dismutase and catalase and convert ROS into harmless products—oxy-
gen and water (Karakoti et al 2008).

Our laboratory is the first to use nanoceria to demonstrate their therapeutic po-
tency in several rodent models of ocular diseases. Published data from our lab dem-
onstrated that the use of nanoceria in vivo is a feasible strategy to prevent light 
induced-retinal damage in the albino rat (Chen et al. 2006), delay photoreceptor 
death and preserve retinal function in tubby mice (Kong et al. 2011; Cai et al. 2012), 
inhibit/regress neovascularization in a wet AMD mouse model, the vldlr−/− mice 
(Zhou et al. 2011; Cai et al. 2014), and protect the structural integrity of RPE cells 
in albino vldlr−/− mice (unpublished data). We have also shown that nanoceria can 
be retained in the retina for up to one year without structural and functional changes 
of the retina (Wong et al. 2013). Although the mechanisms for nanoceria retention 
in the retina are unknown, experiments to address this are currently under way.

Nanoceria have tremendous potential as effective therapeutics for treatment 
of dry AMD because: (1) nanoceria in a single low dose (172 ng) is effective for 
months; (2) their tiny size (3–5 nm) allows passage through cell and nuclear mem-
branes without restriction; (3) they act as direct antioxidants and target oxidative 
stress and its downstream pathways. By continuously scavenging ROS oxidants, 
nanoceria prevent the formation of oxidized and damaged molecules and thereby 
decrease the accumulation of these lipofuscin-drusen precursors and prevent the 
death of RPE and photoreceptors.
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Chapter 17
β-amyloidopathy in the Pathogenesis of Age-
Related Macular Degeneration in Correlation 
with Neurodegenerative Diseases

Victor V. Ermilov and Alla A. Nesterova

Abstract Involvement of new biotechnology and genetic engineering methods 
to the study of the aging organism allowed to select a group of neurodegenera-
tive diseases (NDD) which have a similar mechanism of pathogenesis including 
pathological processes of protein aggregation and its deposition in the structures 
of nerve tissue. The development of eye and brain from one embryonic germ layer, 
community of ethiopathogenetic and morphological manifestations of age-related 
macular degeneration (AMD) and Alzheimer’s disease (AD), a common pathway 
of β-amyloid precursor protein (APP) are associated with the pathological aggrega-
tion of fibrillar β-amyloid (Aβ) protein and the development of β-amyloidopathy 
in structural elements of the eye and the brain. The review demonstrates the key-
note of AMD and AD pathogenesis is β-amyloidopathy that is a manifestation of 
proteinopathy leading to cytotoxicity, neurodegeneration and the development of 
pathological apoptosis activated by the formation of intracellular Aβ. This view 
on the problem predetermines the development of new strategies for the creating 
of ophthalmogeriatric and neuroprotective drugs affecting the pathogenesis and 
including all stages of Aβ formation and pathological aggregation.

Keywords β-amyloidopathy · Senile local amyloidosis · Age-related macular 
degeneration · Neurodegenerative diseases · Alzheimer’s disease · Amyloidogenesis · 
Proteinopathy
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17.1  Introduction

Senile local amyloidosis is closely connected with clinical medicine. The ap-
pearance of amyloid in eye is related with development of gerontoophthalmo-
logical diseases. AMD is a leading cause of severe visual impairment in the el-
derly and its pathogenesis remains poorly understood. Current treatments do not 
satisfy the demands of society and would be improved by better understanding of 
the molecular events causing the retina degeneration. It may be possible to gain 
insight into AMD pathogenesis by exploring similarities to another age-related 
disease of the central nervous system: AD. Recent evidence implicates Aβ in the 
pathogenesis of AMD and AD, involving amyloidogenesis in the development of 
both diseases (Kaarniranta et al. 2011; Sivak 2013). Amyloidogenesis is referred 
to as multifactorial process, however, molecular biological studies conducted 
in the past decades have shown the leading role of APP in the pathogenesis of 
the AMD and AD diseases. A number of neurodegenerative disorders have been 
recently coalesced into a group of proteinopathies because of the similarity of 
molecular mechanisms underlying their pathogenesis (Skovronsky et al. 2006; 
Shelkovnikova et al. 2012). A key step in the development of proteinopathies is 
a structural change that triggers aggregation of proteins which are prone to form 
aggregates due to their physical and chemical properties. Based on the common-
ality of APP processing some authors identify β-amyloidopathy as a key mecha-
nism in the pathogenesis of AMD and AD (Perez et al. 2009; Ohno-Matsui 2011).

17.2  Senile Local Amyloidosis: Associated Degeneration 
in the Retina in AMD

Amyloidosis and aging are fundamental biological problems. This is mainly 
based on age-related metabolic disfunctioning due to the various specific fibrillar 
protein amyloid (Ermilov and Serov 1994; Picken et al. 2012). Amyloidosis com-
prises a group of diseases with a wide variety of clinical manifestations caused 
by systemic or local deposition of fibrillar protein mass (amyloid) in organs and 
tissues. Endocrine and non-endocrine forms should be distinguished among se-
nile local amyloidosis (Ermilov and Serov 1994). Non-endocrine senile local 
amyloidosis includes cerebral amyloidosis and eye amyloidosis (Ermilov 1993; 
Serov 1994).

In recent years the interest to the study of the local senile eye amyloidosis and 
its relationship to NDD has increased (Ohno-Matsui 2011; Ermilov et al. 2013). 
Clinical manifestation of senile local amyloidosis with primary lesion of fundus of 
the eye is AMD (Ermilov and Serov 1994). AMD is one of the most widely spread 
diseases among people over sixty. This disease is a chronic degenerative process 
mainly in the choroid, Bruch’s membrane (BM), retinal pigment epithelium (RPE) 
and retina (Gass 1997; Virgil Alfaro et al. 2006). The results of morphometric 
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studies of retinal pigment epithelial (RPE) cells in the macular region are particu-
larly noteworthy. They have demonstrated a significant decrease in the number of 
RPE cells with age. Besides, the lowest number of RPE cells was found in the eyes 
with AMD and amyloidosis (Ermilov and Serov 1994).

It is known that normal aging retina has a high degree of plasticity that under-
lies the development of compensatory mechanisms of senescence (Zueva 2010; 
Jones et al. 2012). The role of amyloidosis in the mechanism of accelerated aging 
of ocular fundic tissues has not been yet investigated completely and continues 
to be studied using the techniques of molecular biology and genetic engineering.

17.3  Amyloidogenesis in the Neurodegenerative Diseases: 
Age-Related Macular Degeneration and Alzheimer’s 
Disease

Involvement of new biotechnology and genetic engineering methods to the study 
of the aging organism allowed to select a group of NDD which have a similar 
mechanism of pathogenesis including pathological processes of protein aggrega-
tion and deposition of insoluble fibrillar structures in the form of histopathologi-
cal inclusions in nerve tissue. This allowed them to combine the group of diseases 
with the general name proteinopathies (Skovronsky et al. 2006; Shelkovnikova 
et al. 2012). Recent data of molecular analysis pointing to the key role of certain 
proteins in the etiology and pathogenesis of a number NDD including AMD has 
given an impulse to the development of new concepts that allocate separate ver-
sions of proteinopaties such as tauopathy, synucleinopathy, amyloidopathy (Shel-
kovnikova et al. 2012; Ermilov et al. 2013). The results obtained in the study of 
the proteinopaties mechanisms pay attention to the similarity of the principal stag-
es of the protein aggregates formation. Under the influence of oxidative stress, 
chemical modifications, mutations and other genetic factors the soluble precursor 
protein is converted into its pathogenic form prone to aggregation. Pathogenic 
form of protein becomes be organized to oligomers which subsequently generate 
protofibrils. At the final stage of aggregation mature fibrils formed from protofi-
brils generate insoluble protein deposits in the nervous tissues not only extracel-
lularly but also intracellularly (Li et al. 2007). Analyzing the current data of the 
molecular basis of proteinopathy some researchers believe Aβ is a keynote in 
the pathogenesis of a number of NDD (Glabe 2006; Sivak 2013). In this connec-
tion the problem of amyloidosis and amyloidogenesis remains relevant. Today, 
there is a sufficient number of evidence according to which the primary cytotoxic 
agents in amyloidopathy are oligomers of Aβ protein prone to aggregation (Li 
et al. 2007). The neurotoxic effect of Aβ oligomers and protofibrils is associated 
with its damaging effect on the cell membranous structures including cell mem-
brane, Golgi apparatus, mitochondria. This stimulates the overproduction of reac-
tive oxygen that causes damage and death of neurons (Kayed et al. 2003; Glabe 
2006; Ferreira et al. 2007; Zhang 2012).
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Molecular level investigation has showed that under the influence of risk factors 
the transmembrane precursor protein of β-amyloid—APP (amyloid precursor pro-
tein) normally expressed in the cell membrane structures in many tissues is cleaved 
by a sequential activity of β-secretase and γ-secretase. This produces β-amyloid 
polypeptide chain with 40 (Aβ1–40) and 42 (Aβ1–42) amino acid residues. Aβ42 
and Aβ40 tend to form oligomers and protofibrils have toxic effect on neurons. 
Oligomers and protofibrils of Aβ42 and Aβ40, in turn, form mature fibrils that pro-
duce deposits in cytoplasm of the retinal cells and extracellularly including the for-
mation of retinal drusen (Zhang et al. 2012).

Drusen are extracellular deposits that lie between RPE and BM in the fundus 
of eye. The formation of drusen in the structures of blood-retinal barrier is one of 
the first objective clinical and morphological characters observed in AMD (Gass 
1997; Virgil Alfaro et al. 2006). A number of original articles have shown the 
presence positive reactivity in the drusen and in the retina to Аβ by immunos-
taining (Luibl et al. 2006; Perez et al. 2009). Isas et al. (2010) have found both 
soluble and insoluble forms of Аβ in macular drusen of human eye. Biochemical 
and immunohistochemical studies have allowed to identify different proteins and 
lipids in drusen: Аβ, vitronectin, P component, apolipoprotein E, transthyretin, 
C3 and C5b9 complement fractions (Crabb et al. 2002). Most researchers point to 
the fact that Аβ, apolipoprotein E, complement proteins found in drusen are the 
components of senile plaques in AD (Perez et al. 2009; Isas et al. 2010).

Ophthalmic findings are common features of NDD and, in addition to being 
clinically important, have emerged as potentially useful biomarkers of disease 
progression in several conditions. Clinicians and morphologists discuss in details 
different morphological and functional visual system abnormalities in patients 
with AD (Armstrong 2009; Parnell et al. 2012). It is still not quite understand the 
mechanisms of visual impairment in this group of patients, however, we may not 
ignore the fact that the retina, developed from the same source as the brain (neu-
roectoderm) and included more than 20 types of neurons demonstrates synchro-
nous processes occurring in itself and in the brain (Ning et al. 2008; Parnell et al. 
2012). The results of some studies conducted in animal models of AD showed 
immunopositivity to Aβ in the drusen and in the retina correlated to that in senile 
plaques in AD (Isas et al. 2010; Parnell et al. 2012). These findings allow assume 
a key role of Aβ in Alzheimer’s and AMD combining their pathogenesis.

17.4   Development of β-amyloidopathy in AMD

Taking the commonability of APP metabolism in AMD and AD into consideration 
we found it possible to assume the following mechanism of β-amyloidopathy and 
neurodegeneration in AMD.

In normal aging retina has a high degree of plasticity (Zueva 2010; Jones et al. 
2012) that compensates for age-related loss of photoreceptors, ganglion cells and 
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RPE cells undergone to receptor-mediated apoptosis (Zimmermann et al. 2001). 
The interaction between Fas-ligand and Fas-receptor causes the conversion of 
inactive procaspase-8 in its active form which, in turn, activates caspase-3 and 
mitochondrial signaling pathways of apoptosis (Nixon and Yang 2012). APP is 
normally present in many cells including RPE and retinal neurons (Zhang 2012). 
Intracellular APP localizes in Golgi apparatus, endoplasmic reticulum, lysosomes, 
endosomes, nuclear envelope and cell membrane (Zhang 2012). Nonamyloido-
genic pathway involves sequential influence of α-and γ-secretase on APP process-
ing with the formation of s-APPα, P3 and AICD (APP intracellular domain) that 
take part in an adequate cellular metabolism. In the aging organism under risk fac-
tors the activity of the proteasome—lysosomal system, the number of phagolyso-
somes, endosomes, lipofuscin granules decreases in RPE cells and retinal neurons 
(Zhang 2012; Zhang et al. 2012). With age RPE melanin granules demonstrate 
their depletion and the phagolysosomes with toxic A2E (bis-retiniliden—ethanol-
amine) are accumulated (Ostrovskij 2005). These changes cause the development 
of intracellular oxidative stress and cytotoxicity. In such conditions APP path-
way involves activation of β- and γ-secretases (Zhang 2012) which sequentially 
cleave APP to form Aβ40 or Aβ42 polypeptides prone to β-transformation and 
fibrillogenesis. This process leads to the formation of oligomeric, prefibrillar and 
ultimately insoluble fibrillar forms of Aβ deposited intracellularly and extracel-
lularly. Amyloidogenic processing of APP is completed by the formation of Aβ 
deposits in the retina, in the material of drusen, blood-retinal barrier structures: 
Bruch's membrane, choroidal vessels (amyloid angiopathy). Intracellular Aβ 
stimulates autophagy and contributes to the increase of the structural components 
of Golgi apparatus, lysosomes and endosomes (Nixon and Yang 2012; Zhang 
2012). Intracellular Aβ deposits cause swelling and degeneration of retina neu-
rons axons, dysfunction and destruction of synapses. Intracellular cytotoxic effect 
of Aβ is associated with its ability to activate the main protein “dispatcher” of 
apoptosis—p53 which directly initiates the caspase cascade, receptor-dependent 
signaling pathway and mitochondrial signaling pathway of apoptotic cell death. 
Such a mechanism of β-amyloidopathy in AMD, in our view, is justified and con-
siders modern concepts of intracellular protein pathology and mechanisms of cell 
death, based on advances in molecular biology.

Thus, the analysis of recent data obtained in the investigation of molecular and 
cellular processes underlying the development of NDD, suggest that the keynote 
of pathogenesis of AMD and AD is the aggregation of Aβ underlying cytotox-
icity and neurodegeneration of neurons in the brain tissue and retina including 
RPE cells. In our view this allows AMD to be interpreted as a proteinopathy—β-
amyloidopathy. This view on the problem provides the preconditions for the de-
velopment of new strategies and the creation of new generation of neuroprotec-
tive and ophthalmogeriatric pharmaceuticals justified pathogenetically and acting 
directly on all stages of pathological aggregation of key protein—Aβ, its stability 
and metabolism.
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Chapter 18
Different Mutations in ELOVL4 Affect Very 
Long Chain Fatty Acid Biosynthesis to Cause 
Variable Neurological Disorders in Humans

Martin-Paul Agbaga

Abstract All mammalian cell membranes are characterized by amphipathic lipid 
molecules that interact with proteins to confer structural and functional properties on 
the cell. The predominant lipid species are phospholipids, glycolipids, sphingolipids 
and cholesterol. These lipids contain fatty acids with variable hydrocarbon chain 
lengths between C14-C40, either saturated or unsaturated, that are derived from 
diet, synthesized de novo, or elongated from shorter chain fatty acids by fatty acid 
elongase enzymes. One member of the family of elongases, ELOngation of Very 
Long chain fatty acids-4 (ELOVL4), mediates the biosynthesis of both saturated and 
unsaturated very long chain fatty acids (VLC-FA; > C26) in the retina, meibomian 
gland, brain, skin, and testis. Different mutations in ELOVL4 cause tissue-specific 
maculopathy and/or neuro-ichthyotic disorders. The goal of this mini-review is 
to highlight how different mutations in ELOVL4 can cause variable phenotypic 
disorder, and propose a possible mechanism, based on the role of fatty acids in 
membranes, which could explain the different phenotypes.

Keywords Retinal degeneration · Very long chain polyunsaturated fatty acids 
(VLC-PUFA) · Elongation of very long chain fatty acids-4 (ELOVL4) · Autosomal 
dominant Stargardt-like macular dystrophy · Spinocerebellar ataxia (SCA) · 
Erythrokeratodermia (EKV)

18.1  Introduction

Eight separate mutations in human ELOVL4 have been identified (Bernstein et al. 
2001; Edwards et al. 2001; Zhang et al. 2001; Maugeri et al. 2004; Aldahmesh 
et al. 2011; Cadieux-Dion et al. 2014; Mir et al. 2014). The ELOVL4 gene encodes 
a protein that is expressed in retina, testis, skin, meibomian gland, and brain, 
where it mediates tissue-specific biosynthesis of very long chain saturated fatty 
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acids (VLC-SFA, > C26) and/or very long chain polyunsaturated fatty acids (VLC-
PUFA; > C26), collectively referred to as VLC-FA (Agbaga et al. 2008). VLC-FA 
are constituents of complex lipid molecules such as phosphatidylcholine (PC) in 
photoreceptors cells, sphingolipids in testes and sperm, and brain, wax esters in 
tear film (Butovich et al. 2009), and omega-O-acylceramides essential for skin bar-
rier function (Vasireddy et al. 2007). Two important regions of wild-type ELOVL4 
are a catalytic histidine dideoxy binding motif (HVYHH) essential for fatty acid 
condensation and a carboxyl terminal endoplasmic reticulum (ER) retention/
retrieval signal (KXKXX) necessary to direct the protein to the ER, site of fatty acid 
elongation. Seven of the ELOVL4 mutations encode truncated ELOVL4 proteins 
lacking the ER retention motif and hence are misrouted from the ER. The eighth 
mutation encodes full length ELOVL4 with a point mutation located five amino 
acids downstream of the conserved histidine active site (Cadieux-Dion et al. 2014). 
How each of these mutations in ELOVL4 causes the different tissue-specific phe-
notypes is under investigation in our laboratory.

18.2  Distinct Mutations in ELOVL4 Cause Differential 
Tissue-Specific Disorders

In 2001, three independent labs identified three distinct frame-shift mutations 
in the ELOVL4 gene as the cause of autosomal dominant Stargardt-like macular 
dystrophy (STGD3), which is characterized by early onset, progressive degenera-
tion of retinal pigment epithelial and cone photoreceptor cells, leading to vision 
loss (Bernstein et al. 2001; Edwards et al. 2001; Zhang et al. 2001). The mutations, 
a 5 base-pair deletion (790–794_del AACTT) in five large STGD3 pedigrees and 
two concurrent single base-pair deletions (789delT and 794delT) in a large Utah 
pedigree, results in the introduction of premature stop codons (p. Asn264Thrfs*10 
and p.Asn264Leufs*9, respectively) in the ELOVL4 message. In 2004, a fourth mu-
tation (810C > G) encoding a truncated ELOVL4 protein (p.Y270stop) was reported 
in a Dutch family with early onset STGD3 (Maugeri et al. 2004). All four mutations 
occur within exon 6 of ELOVL4 and result in a truncated ELOVL4 lacking the C-
terminal conserved ER retention signal, causing macular degeneration.

In 2011, a Saudi Arabian and two Asian Indian children were reported with reces-
sive homozygous ELOVL4 mutations (689delT and conversion c. 646C > T) which 
results in truncated ELOVL4 proteins (lle230Metfs*22 and Arg216stop, respec-
tively) (Aldahmesh et al. 2011). The affected children had congenital ichthyosis, 
seizures, intellectual disability, spastic quadriplegia, and small testicles, and died 
within the first few years of life. They showed delayed myelination and evidence 
of cortical atrophy as determined by magnetic resonance imaging. Interestingly, 
no significant retinal phenotype was observed in these patients or their heterozy-
gous parents. In 2014, another novel homozygous recessive ELOVL4 mutation  
(c. 78C > G) encoding a Try26stop was reported in four Pakistani family mem-
bers aged 16–24 years (Mir et al. 2014), who displayed neuro-ichthyotic disorders  
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similar to the Saudi and Asian Indian children. Much like the Asian Indian children, 
one of the Pakistani patients had severe intellectual disability, impaired speech and 
hearing, spastic quadriplegia, was constantly bed ridden, and had frequent seizures 
and small testicles. He died at 17 years of age, while the Asian Indian children died 
at 6 months and 2 years of age. The only retinal phenotype reported in these patients 
was tortuous blood vessels, subtle macular changes, and mild degree of myopia 
with subtle peripapillary changes (Aldahmesh et al. 2011; Mir et al. 2014). Of the 
surviving Pakistani family members, intra-familial phenotypic differences were ob-
served, suggesting the severity of the phenotypes was age-dependent or due to the 
degree of activity of expressed mutant ELOVL4, or both.

Again in 2014, mapping and genetic sequencing of a French-Canadian family 
previously thought to have Sjӧgren-Larsson syndrome resulted in identification 
of another ELOVL4 mutation (c.504G > C) that caused an L168F substitution in 
ELOVL4 (Cadieux-Dion et al. 2014). Detailed clinical examination of 19 carriers 
of this mutation revealed an age-dependent onset of autosomal dominant spinocer-
ebellar ataxia (SCA) and erythrokeratodermia (EKV). Each of the affected indi-
viduals had a different age of disease onset, severity of ataxia, brain atrophy, and 
skin lesions. Older patients (51–87 years of age) had more pronounced cerebellar, 
cortical, pons, and peripheral axonal neuropathy, postural tremor, and slow pursuit. 
While younger patients (25–36 years of age) displayed mostly normal phenotypes, 
almost all the older patients were affected and displayed different levels of SCA and 
EKV with no reported significant macular phenotype.

18.3  ELOVL4 Is Essential for Biosynthesis of Saturated 
and Polyunsaturated Very Long Chain Fatty Acids

In 2008, we first identified the biological function of ELOVL4 as a fatty acid 
elongase essential for biosynthesis of both very long chain saturated (VLC-SFA) 
and polyunsaturated (VLC-PUFA) fatty acids (Agbaga et al. 2008), both of which 
are constituents of membrane glycero- and sphingolipids in a select group of tis-
sues. The 5-bp deletion STGD3 mutant ELOVL4 could not synthesize VLC-PUFA 
and acted in a dominant negative manner on VLC-PUFA biosynthesis by the WT 
ELOVL4 in cultured cells (Logan et al. 2013) and in retinas of Elovl4 knock in 
(KI) mice expressing the 5-bp deletion (McMahon et al. 2007a). The KI mice have 
an age-dependent decline in retinal function (McMahon et al. 2007b) but no other 
evident central nervous system phenotype. Deletion of one Elovl4 allele in mice 
led to no retinal phenotype (Raz-Prag et al. 2006), suggesting that the observed 
phenotype in the KI mice was not due to haploinsufficiency. Global knockout or 
KI of the STGD3 mutant caused neonatal lethality due to loss of skin barrier func-
tion, which underscores the importance of these fatty acids in health and disease. 
The molecular mechanism of the dominant retinal degeneration remains unclear; 
it could be due to expression and mis-localization of the mutant ELOVL4 or to an 
age-dependent decrease in VLC-PUFA as a result of the dominant negative effect 
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of the mutant ELOVL4. Although both are possible, here I focus on the role of 
ELOVL4-biosynthesized VLC-FA in maintaining the structure and function of tis-
sues in which ELOVL4 is expressed.

18.4  Functional Role of VLC-SFA and VLC-PUFA in 
ELOVL4 Expressing Tissues

We know that in mammalian tissues, the same ELOVL4 synthesizes two vastly dif-
ferent fatty acid products and that there is tissue specificity in their synthesis. One 
product is a family of C28–34 saturated fatty acids (VLC-SFA) that are found in 
wax esters, glucosylceramides, and other sphingolipids that are essential for skin 
barrier permeability function. These fatty acids are found in meibomian glands 
(McMahon et al. 2014) and brain as well (Brush et al. 2010). In the eye, VLC-SFA 
synthesized from meibomian glands contribute to stability of the lipid layer in tear 
film to control tear evaporation from the cornea and prevent dry eye symptoms 
(McMahon et al. 2014). The role of these fatty acids in the brain is not known and 
is a subject of investigation by our laboratory.

The other fatty acids synthesized by ELOVL4 are a family of C28–38 PUFA 
(VLC-PUFA) that are highly unsaturated and are incorporated into PC in retina 
and sphingolipids in testes and sperm, where they are essential for normal vision 
and male fertility, respectively. In sperm, depletion of VLC-PUFA leads to sterility 
(Zanetti et al. 2007; Zadravec et al. 2011).

We hypothesize that the different mutations in ELOVL4 affect the enzymatic 
activity in one of two ways. A specific mutation may affect the relative biosynthesis 
of either VLC-SFA or VLC-PUFA, so that the mutant ELOVL4 that causes SCA 
may not synthesize VLC-SFA in the brain, but may produce VLC-PUFA in the ret-
ina. Alternatively, since mutant ELOVL4 exerts a dominant negative effect on WT 
ELOVL4, different mutations may influence the types of fatty acids synthesized by 
WT ELOVL4. We propose a series of experiments to test this hypothesis.

18.5  Proposed Experimental Approaches

The VLC-FA produced by ELOVL4 are absolutely essential for human survival 
since homozygous inheritance of any known ELOVL4 mutation leads to death. Un-
derstanding the structural and functional role of these fatty acids in tissues in which 
they are found is important as it will lead to development of potential therapeutic 
agents for treating the various disorders caused by the different mutations. It is also 
now clear that different mutations in ELOVL4 can result in vastly different phe-
notypes. How is this possible? One plausible explanation lies in the types of fatty 
acids synthesized by ELOVL4 and the tissue-specific need for these products. For 
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example, retina has the highest levels of VLC-PUFA of any tissue, followed by the 
testes which make VLC-PUFA that are incorporated into ceramides and sphingo-
lipids. Skin makes only VLC-SFA, which are incorporated into omega-O-acylce-
ramides and provide the skin permeability barrier. Similarly, ELOVL4 expressed 
in the meibomian glands makes VLC-SFA that are essential for ocular cell surface 
integrity and function. Interestingly, although brain has large amounts of C20 and 
C22 PUFA, it does not contain VLC-PUFA, but rather contains VLC-SFA that are 
incorporated into sphingolipids.

Since the wild type ELOVL4 synthesizes both VLC-SFA and VLC-PUFA, I hy-
pothesize that the different mutations in the ELOVL4 may affect the quality and the 
quantity of the fatty acids it synthesizes. This is because the substrates are vastly 
different, one being a C24–26 saturated fatty acid (highly viscous, linear) and the 
other a C24–26 polyunsaturated fatty acid (fluid, spiral folding due to 5–6 cis dou-
ble bonds). Therefore, it is possible that the location of the mutation may alter the 
substrate specificity for either precursor. Alternatively, the mutant ELOVL4 could 
exert a dominant negative effect on the WT ELOVL4, affecting substrate specificity 
and thus the products that are formed. In other words, the locations of the mutations 
could affect the biosynthesis of either VLC-SFA or VLC-PUFA. We know that the 
STGD3 mutant ELOVL4 exerts a dominant negative effect on VLC-PUFA biosyn-
thesis in the retina and in cultured cells (Logan et al. 2013). However, we do not 
know its effect on VLC-SFA biosynthesis. Based on the tissue-specific disorders 
caused by the different ELOVL4 mutations, a number of questions arise that we can 
address experimentally:

1. Can novel mutant ELOVL4 proteins that cause SCA and neuro-ichthyotic disor-
ders make VLC-PUFA?

2. In the brain, what is the effect of STGD3 mutant ELOVL4 on VLC-SFA 
biosynthesis?

3. Do these mutant ELOVL4s affect the enzymatic activity of the WT ELOVL4 
through a dominant negative effect on biosynthesis of either VLC-SFA or 
VLC-PUFA?

These questions can be addressed experimentally to determine if the different 
mutant ELOVL4 enzymes have differential fatty acid condensation and elonga-
tion properties that direct the synthesis of either VLC-SFA or VLC-PUFA. I expect 
that in patients where the mutant ELOVL4 causes CNS and skin disorders, the 
relative biosynthesis of VLC-PUFA in retina and testes may not be affected, al-
though VLC-SFA biosynthesis will be significantly reduced. Alternatively, just as 
the STGD3 mutant ELOVL4 exerts a dominant negative effect on the ability of the 
WT ELOVL4 to synthesize VLC-PUFA, the various mutant ELOVL4s may exert a 
dominant negative effect on the WT ELOVL4 activity, thereby affecting the quality 
and quantity of VLC-FA products in a tissue-specific manner.

Lastly, it is possible that since different proteins cooperate with ELOVL4 to 
synthesize VLC-FA, the various ELOVL4 mutations may affect how these other 
proteins interact with and regulate VLC-FA biosynthesis, thereby affecting the 
quality and quantity of VLC-FA synthesized.
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18.6  Conclusions

Increasing evidence supports the pathophysiological importance of VLC-FA in 
health and disease. The ELOVL4 enzyme is the only fatty acid elongase known 
to mediate biosynthesis of VLC-FA. Hence, mutations in ELOVL4 result in human 
disorders of clinical importance. With the advent of new technology that aids iden-
tification and analysis of ELOVL4 biosynthesized products, we are at the threshold 
of understanding the biological importance of these unique molecules, which have 
been ignored for decades. An understanding of the structural and functional role of 
these fatty acids will pave the way for development of therapeutic agents for treat-
ing human diseases that are caused by mutations in the ELOVL4 gene.
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Chapter 19
Mouse Models of Stargardt 3 Dominant 
Macular Degeneration

Peter Barabas, Aruna Gorusupudi, Paul S Bernstein and David Krizaj

Abstract Stargardt type 3 macular degeneration is dependent on a dominant defect 
in a single gene, ELOVL4 (elongase of very long chain fatty acids 4). The encoded 
enzyme, ELOVL4, is required for the synthesis of very long chain polyunsaturated 
fatty acids (VLC-PUFAs), a rare class of > C24 lipids. In vitro expression studies 
suggest that mutated ELOVL4STGD3 proteins fold improperly, resulting in ER stress 
and formation of cytosolic aggresomes of wild type and mutant ELOVL4. Although 
a number of mouse models have been developed to determine whether photorecep-
tor cell loss in STGD3 results from depletion of VLC-PUFAs, aggresome-dependent 
cell stress or a combination of these two factors, none of these models adequately 
recapitulates the disease phenotype in humans. Thus, the precise molecular mecha-
nism by which ELOVL4 mutation causes photoreceptor degeneration in mice and in 
human patients remains to be characterized. This mini review compares and evalu-
ates current STGD3 mouse models and determines what conclusions can be drawn 
from past work.
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19.1 Introduction

Stargardt 3 is an early onset macular degeneration characterized by a progressive 
loss of central vision (McMahon and Kedzierski 2010; Zhang et al. 2001; Bernstein 
et al. 2001). Similarly to the more prevalent Stargardt 1 disease, the STGD3 pheno-
type has been associated with defects in a single gene (Bernstein et al. 2001; Zhang 
et al. 2001), the elongase of very long chain fatty acids 4 ( ELOVL4). Mutations 
found in STGD3 patients affect the C-terminal end of the ELOVL4 protein that con-
tains a di-lysine motif thought to regulate protein retention within the endoplasmic 
reticulum (ER) (Vasireddy et al. 2010). This is believed to derail proper localization 
of the protein to the ER, where very long chain fatty acid (VLC-FA) synthesis takes 
place and to suppress the biosynthetic capacity of the wild type ELOVL4 enzyme 
by removing it as well from the ER (Agbaga et al. 2008; Guillou et al. 2010; Lo-
gan et al. 2013). Because ELOVL4 expression in adult vertebrate eyes is limited 
to the photoreceptor layer (Zhang et al. 2003; Agbaga et al. 2008), its VLC-PUFA 
products are likely to play specific but yet to be defined, functions in cones and 
rods (Zemski Berry et al. 2014). It has been hypothesized that these lipids provide 
superior fluidity and stabilizing highly curved regions of cell membranes and might 
therefore play a function in phototransduction, outer segment maintenance and/or 
formation and release of synaptic vesicles (SanGiovanni and Chew 2005; Guillou 
et al. 2010; McMahon and Kedzierski 2010; Bennett et al. 2014b).

19.2 Cell Culture Studies

The leading hypotheses of STGD3 pathomechanisms are based on studies of trans-
genic cell cultures where ELOVL4 was expressed alone and/or in combination with 
the STGD3-causing mutant ELOVL4 gene (Karan et al. 2005; Logan et al. 2013). 
These studies showed that the mutant protein aggregates with the wild type version 
and translocates it from the ER to the cytoplasm, possibly forming aggresomes 
(Ambasudhan et al. 2004; Karan et al. 2005; Grayson and Molday 2005). The im-
paired trafficking hypothesis provides a plausible mechanism for the dominant in-
heritance of the disease in STGD3 patients. It also predicts that photoreceptor cells 
expressing mutated ELOVL4 face ER stress and unfolded protein response (Lin 
et al. 2008) in parallel to the lost ELOVL4 function and depletion of VLC-PUFAs. 
Thus, it would be important to determine whether STDG3 is primarily mediated 
by loss of function due to mutated ELOVL4 or, as observed in other degenerative 
diseases of photoreceptor cells (Lin and Lavail 2010), as a result of protein misfold-
ing and ER stress.

While misrouting is sufficient to induce loss of enzyme function (Logan et al. 
2014), recent studies also established that the mutant ELOVL4 protein’s loss of 
function and dominant negative effect is not necessarily driven by insufficient ER 
retention (Logan et al. 2013). In vivo analysis in the transgenic Xenopus model 
showed that the mutant protein is trafficked to the photoreceptor outer segment, 
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but it does not impede the normal compartmentalization of wild type ELOVL4 
(Agbaga et al. 2014). Thus, whether and to what extent information from in vitro 
studies can be applied to understand the human STGD3 disease process remains an 
open question.

19.3 Mouse Models: Knock-IN and Knock-OUT Strains

An overarching aim of STGD3 animal model development has been to unveil the 
causal connection between the genotype and early-onset progressive cone degen-
eration observed in humans. The early studies were stymied by the discovery that 
global homozygous Elovl4 knockout and knock-in of the human mutation into the 
mouse Elovl4 gene are perinatally lethal due to loss of skin acyl-ceramides, required 
to maintain the water barrier function (Vasireddy et al. 2007). Heterozygotes of both 
strains are viable but Elovl4+/− mice show no detectable phenotype (Raz-Prag et al. 
2006; Li et al. 2007), suggesting that Elovl4 haploinsufficiency and decreased func-
tion does not result in degeneration in the mouse. Further questions were raised by 
the observation that knock-in (KI) heterozygote mice, which represent the closest 
genetic approximation to the human condition, do not exhibit early-onset cone de-
generation. Rather, late onset (8–15 months) and conflicting physiological changes 
were reported for KI animals: maximal scotopic ERG b-wave amplitudes were in-
creased (Vasireddy et al. 2006) in one, decreased in a different study (McMahon 
et al. 2007). Consistent with other reports (McMahon et al. 2007; Mandal et al. 
2014), our own analysis shows ~ 50 % decrease of C30-C36 VLC-PUFA levels in 
retinas of KI mice (53.7 ± 8.8 % of control). However, this decrease in VLC-PUFA 
content was not sufficient to induce a behavioral phenotype. As shown in Fig. 19.1, 
the KI strain exhibits no visual acuity defect, as measured by their optomotor track-
ing behavior.

Fig. 19.1   Visual performance 
was measured in Knock-IN 
heterozygous mice and wild 
type strain controls using 
their optomotor reflex to 
establish a spatial frequency 
threshold (OptoMotry, 
Cerebral Mechanics). Each 
symbol represents the visual 
acuity for the test of a single 
mouse at the specified age. 
No significant difference 
between the groups was 
detected
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19.4 Mouse Models: Transgenic and Cell Specific Knock-
out Mice

Other STGD3 mouse models include transgenic mice that express either human 
wild type or mutant ELOVL4 (Karan et al. 2005; Kuny et al. 2010, 2012; Barabas 
et al. 2013) or cell specific knockdowns where mouse Elovl4 was knocked out spe-
cifically from cones (Harkewicz et al. 2012; Barabas et al. 2013) or rods (Harke-
wicz et al. 2012; Barabas et al. 2013; Marchette et al. 2014) or the entire retina 
(Bennett et al. 2014a, 2014b). Unexpectedly, only the transgenic strains show early 
onset photoreceptor degeneration (Karan et al. 2005; Kuny et al. 2010, 2012) with 
onset time and severity depending on transgene expression level. A major discrep-
ancy with regard to the human disease is that degeneration in transgenic animals 
starts with a massive loss of rods only secondarily followed by cone degeneration 
(Kuny et al. 2012; Barabas et al. 2013).

Pan-retinal Elovl4 KOs were characterized by decreased synaptic vesicle size & 
number in rod terminals, formation of ectopic rod-bipolar synapses associated with 
sprouting of bipolar dendrites and a reduction in scotopic ERG causing late (after 
12 months) degeneration of rods (Bennett et al. 2014a, 2014b). Interestingly, the 
phenotype was not associated with changes in the postsynaptic excitatory response 
(Bennett et al. 2014b).

Conditional elimination of ELOVL4 from a single photoreceptor cell class gave 
discrepant results. The first study indicated a reduction in VLC-PUFA content and 
loss of rod and cone function in rod and cone conditional knockout (cKO) animals, 
respectively (Harkewicz et al. 2012). However, the subsequent two studies found 
no effect on rod (Barabas et al. 2013; Marchette et al. 2014) or cone function and 
survival (Barabas et al. 2013). Differences between cre expression and knockdown 
efficiency do not account for these discrepancies as the same cre system with ap-
proximately 60–80 % efficiency (Le et al. 2006; Barabas et al. 2013) was used in 
all of these studies. The latter studies (Barabas et al. 2013; Marchette et al. 2014) 
observed no effect on scotopic or photopic ERGs or visual behavior even when the 
highly efficient iCre-75 was used to cause a massive (98 %) reduction in retinal 
VLC-PUFA content (Barabas et al. 2013). Major distinguishing factors in these 
studies were the use of different controls (C57B/6 mice in the Harkewicz et al. 
study, and congenic controls in the Barabas et al and Marchette et al studies), as well 
as the ages of the mice varied.

The important conclusion from knockdown studies is that deletion of Elovl4 from 
photoreceptor cells does indeed deplete retinal > C30 VLC-PUFA levels (Barabas 
et al. 2013; Bennett et al. 2014a). Selective and highly efficacious elimination of the 
gene (together with near total loss of VLC-PUFAs from the mouse retina) shows a 
late-onset rod phenotype but no single KO or cKO strains has so far replicated the 
early cone loss phenotype seen in STGD3 patients.
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19.5 Open Questions

Taken together, many open questions remain with respect to the pathophysiology 
of STGD3. Among the fundamental unresolved issues are (1) what is the function 
of VLC-PUFAs in photoreceptors? (2) What is the actual cause of the autosomal 
dominance of ELOVL4? And (3) Why does STGD3 affect cones in humans, are 
macular cones more sensitive to loss of VLC-PUFAs? The mild-to-none phenotypes 
of knock-in heterozygotes (McMahon et al. 2007; Vasireddy et al. 2006), knock-out 
heterozygotes (Raz-Prag et al. 2006; Li et al. 2007), and cell-specific homozygote 
knockout mice (Barabas et al. 2013; Marchette et al. 2014) and the late-onset rod-
specific phenotype of total retinal knockdowns (Bennett et al. 2014a, 2014b) suggest 
that significant loss of VLC-PUFA levels is not sufficient to cause early onset cone 
degeneration in the mouse retina. It is possible that residual VLC-PUFAs (~ 2 % of 
control) are sufficient to maintain mouse photoreceptors, especially given that nor-
mal levels of VLC-PUFAs in mice are approximately 10 times higher compared to 
human ( post mortem) retinal tissue (Liu et al. 2013). This may confer resistance 
to mouse photoreceptors in the form of VLC-PUFA “buffering”. Indeed, clinical 
and biochemical studies indicate that the human retina may be more sensitive to 
VLC-PUFA depletion. An inverse association was found between the severity of 
STGD3 and dietary intake of VLC-PUFA precursors (Hubbard et al. 2006) and loss 
of VLC-PUFAs was exacerbated in AMD patient eyes compared to age matched 
controls (Liu et al. 2010). The above data give an impetus to mouse studies, which 
will need to endow the mouse retina with at least some features of the human macula, 
establish the relative importance of loss of VLC-PUFAs and presence of the mutated 
protein and unveil the function of VLC-PUFAs in the healthy retina.
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Chapter 20
Current Progress in Deciphering Importance  
of VLC-PUFA in the Retina

Lea D. Bennett and Robert E. Anderson

Abstract Stargardt-like macular dystrophy-3 (STGD3) is a juvenile-onset disease 
caused by mutations in ELOVL4 (elongation of very long fatty acids-4). This gene 
product catalyzes the elongation of long chain saturated and polyunsaturated fatty 
acids (LC-FAs and LC-PUFAs) into very long chain FAs and PUFAs (VLC-FAs and 
VLC-PUFAs). These mutations cause a frame shift in the ELOVL4 transcript, intro-
ducing a premature stop codon that results in the translation of a truncated protein 
that has lost a C-terminus endoplasmic reticulum (ER) retention/retrieval signal. 
The truncated protein is not targeted to the ER, the site of very long-chain PUFA 
(VLC-PUFA; 28–40 carbons) synthesis. Expression of the ELOVL4 gene is limited 
mainly to the brain, testis, skin, and photoreceptor cells of the retina. While the skin 
and brain contain very long chain saturated fatty acids (VLC-FAs), the other tissues 
expressing ELOVL4 contain VLC-PUFAs, with sperm and the retina having the 
highest levels. This review focuses on the current information available concerning 
the role of VLC-PUFAs in the retina.

Keywords VLC-PUFA · ELOVL4 · STGD3 · Dominant Stargardt’s · Rod and cone 
function · Conditional KO mice · Transgenic mice · Cre · Retina
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20.1  Introduction

Stargardt-like macular dystrophy-3 (STGD3) is an autosomal dominant disease with 
juvenile onset. Patients have retinal pigmented epithelium (RPE) atrophy, macular 
lesions with surrounding yellow flecks, and progressive loss of central vision (Ed-
wards et al. 1999). The gene responsible for STGD3 is ELOVL4 (elongation of very 
long-chain fatty acids-4) (Bernstein et al. 2001; Edwards et al. 2001; Zhang et al. 
2001). Mutations in ELOVL4 truncate the protein so that it loses the endoplasmic 
reticulum retention signal and is mislocalized from the site of synthesis of very long 
chain polyunsaturated fatty acids (VLC-PUFAs).

VLC-PUFAs comprise ~ 13 mol % in the fatty acids in phosphatidylcholine (PC) 
of bovine retina rod outer segments, with ~ 26 % of the PC containing one of these 
fatty acids (Aveldaño and Sprecher 1987). These fatty acids have been shown to 
interact tightly with rhodopsin, suggesting a role for VLC-PUFAs in phototrans-
duction (Aveldano 1988). It has also been suggested that these unusually long fatty 
acids with bulky hydrocarbon tails are anatomically suited to provide structure to 
highly curved membranes such as photoreceptor outer segment disks and sperm 
heads (Aveldano 1992; Agbaga et al. 2008). Recently, VLC-PUFAs were reported 
to be localized to conventional and ribbon synapses in the retina (Bennett et al. 
2014a). Enrichment of VLC-PUFA in the retina is indicative of the need for these 
specialized molecules in this tissue, although their role has not yet been established.

20.2  Comparison of Mouse Models

The role of VLC-PUFAs in membranes is not known. Global deletion of Elovl4 in 
mice is neonatal lethal (Raz-Prag et al. 2006; Vasireddy et al. 2006; Anne McMahon 
et al. 2007; Li et al. 2007) and all other mouse models used to study the role of these 
fatty acids is obscured with either at least one wild type (WT) or one mutant copy 
of Elovl4 (Raz-Prag et al. 2006; Vasireddy et al. 2006; Anne McMahon et al. 2007; 
McMahon et al. 2011; Harkewicz et al. 2012; Barabas et al. 2013).

Removal of Elovl4 expression in rods, cones, or both rods and cones has been 
achieved by breeding mice expressing Cre-recombinase driven by different photo-
receptor specific promoters to Elovl4 flox/flox mice (Harkewicz et al. 2012; Barabas 
et al. 2013; Bennett et al. 2014b; Marchette et al. 2014). Cone-specific human red-
green pigment (HRGP)-Cre- and rod-specific Opsin-cre- or opsin-iCre75-express-
ing mice were used to delete Elovl4 from cones and rods, respectively, whereas 
Elovl4 was deleted from both photoreceptor types using Chx10-cre-expressing mice 
(Harkewicz et al. 2012; Barabas et al. 2013; Bennett et al. 2014b). A summary of the 
results from each study are provided in Table 20.1.

Harkewicz et al. (2012) reported that rod-specific Elovl4 conditional KO 
(R-cKO) mice had retinal degeneration at 10 and 15 months of age, whereas 
Barabas et al. (2013) and Marchette et al. (2014) did not find photoreceptor degen-
eration in R-cKO mice at 7 and 15 months, respectively. Harkewicz et al. (2012) 
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found R-cKO mice had decreased rod b-wave responses, but Barabas et al. (2013) 
and Marchette et al. (2014) did not find rod-mediated deficits in their 6- or 7-month-
old R-cKO mice, respectively. When Elovl4 was deleted from both rods and cones 
(RC-cKO), retinal degeneration occurred and rod ERG responses were decreased in 
12-month-old mice (Bennett et al. 2014b). One possible explanation for the contra-
dictory results could be the mosaic expression of Cre-recombinase, which resulted 
in varying degrees of Elovl4 ablation from rod cells. Rod Opsin-Cre has been previ-
ously reported to have 77 % recombinase efficiency (Le et al. 2006), whereas the 
Chx10-Cre has been shown to have more than 95 % recombinase efficiency (Rowan 
and Cepko 2004). This is obviated when the reduction of retinal VLC-PUFAs are 
considered (Table 20.1). These fatty acids were decreased by 36–97 % of WT values 
in the R-cKO and RC-cKO mice (Harkewicz et al. 2012; Barabas et al. 2013; Ben-
nett et al. 2014b; Marchette et al. 2014).

Table 20.1   Comparison of the effects of mutations in Elovl4 on various retinal parameters
– Age (months) ERG Retinal 

degeneration
Retina VLC-
PUFA levels

RPE

R-cKO 
(Harkewicz 
et al. 2012)

10 and 15 Decreased 
rod b-wave 
and mixed 
response 
b-wave

Yes Decreased 
more than half

Lipofuscin 
and lipid 
drops (TEM)

C-cKO 
(Harkewicz 
et al. 2012)

7 Decreased 
cone flicker 
response

No Mild decrease Lipofuscin 
and lipid 
drops (TEM)

R-cKO 
(Barabas et al. 
2013)

6 Not affected No Lines 1 and 2 
decreased by 
58 and 97 %

Putative 
lipid droplets 
(TEM)

C-cKO 
(Barabas et al. 
2013)

6 Not affected No normal No (TEM)

R-cKO (Mar-
chette et al. 
2014)

7, 9, and 15 Not at 7 
months. Not 
tested later.

No Decrease by 
36 %

Not tested

RC-cKO 
(Bennett et al. 
2014a, 2014b)

1 and 12 Rod a- and 
b-waves, 
STR, and OPs 
decreased (12 
mo). Cones 
not affected

Yes (12 mo) Decrease by 
88 %

No (9 mo; 
A2E and 
derivitives; 
MS/MS)

Human 
(Edwards 
et al. 1999)

Diagnosed in 
teenage years

Variable; 
moderately 
reduced in 
older patients

Yes Unknown Lipofuscin

R-cKO rod-specific conditional KO, C-cKO cone-specific conditional KO, RC-cKO rod and Cone-
specific conditional KO, RPE retinal pigmented epithelium, VLC-PUFA very long chain polyun-
saturated fatty acids, TEM transmission electron microscopy, MS/MS tandem mass spectroscopy, 
ERG electroretinography
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The VLC-PUFA levels in the cone-specific Elovl4 ablated mice (C-cKO) were 
unaffected (Table 20.1), but this could be due to the fact that mice are rod-dom-
inant and that these fatty acids comprise only 12 % of the total fatty acids in the 
retina (Rotstein and Aveldano 1988). Despite the minimal decrease in VLC-PUFAs, 
Harkewicz et al. (2012) found that Elovl4 C-cKO mice had decreased cone flicker 
responses at 7 months of age compared to WT mice. These results are contrary to 
Barabas et al. (2013) and Bennett et al. (2014b), who did not find cone dysfunction 
at 6 and 12 months, respectively.

Differences between the published results could be attributed to the differ-
ent mouse backgrounds and/or the absence of using similar mice as controls. 
Harkewicz et al. (2012) used generic WT mice whereas Barabas et al. (2013), 
Bennett et al. (2014b), and Marchette et al. (2014) used Cre−/−/Elovl4 flox/flox mice as 
controls. Cre expression remained in the photoreceptors of adult R-cKO and C-cKO 
mice, unlike the RC-cKO mice, which did not express Cre in adult photoreceptors. 
Since the Elovl4 f/f mice used in all four studies were from the same founders and 
had intronic LoxP sites, the wild type Elovl4 protein would be expressed in the 
absence of Cre-recombinase. To control for potential consequences of Cre trans-
gene expression, Bennett et al. (2014b) included control mice that expressed Cre 
and were heterozygous for the floxed allele ( Cre + /Elovl4 flox/WT; Het). Given that 
VLC-PUFAs were not reduced in the Het mice and other measured parameters such 
as ERG and histology were not different than WT, consequences of tissue-specific 
Elovl4 ablation were not due to off-target effects of Cre expression.

20.3  Discussion

After reviewing the current literature on the role of VLC-PUFAs in the retina, we can 
certainly agree that these fatty acids are important in photoreceptor function with 
a secondary contribution to photoreceptor longevity. Because VLC-PUFAs were 
localized to the synaptic membranes and the RC-cKO retinas had smaller vesicles 
and fewer vesicles per ribbon than their littermates, these fatty acids are probably 
enriched in the retinal synaptic vesicles (Bennett et al. 2014a). This is supported 
by the single cell recordings on the RC-cKO retinas that showed that receptor 
calcium currents and the post-receptor glutamate currents were not affected by 
reduced VLC-PUFAs (Bennett et al. 2014a). Therefore it is likely that VLC-PUFAs 
are incorporated into the glutamate-containing vesicles of rod terminals, increas-
ing vesicle size with their bulky polyunsaturated hydrocarbon tails (Fig. 20.1a), 
and ultimately affecting biophysical properties of the vesicles at the photoreceptor 
terminals. Vesicles comprised of VLC-PUFA would also be more fluid, allowing 
for ease of fusion with the plasma membrane (Fig. 20.1b and c). The VLC-PUFAs 
could be incorporated into vesicles that contain or interact with synaptic proteins 
that mediate endo/exocytic activity, thereby affecting vesicle recycling pathway 
in the rod terminal. In the same way, reduction of VLC-PUFAs could affect pro-
tein transport, especially if that protein were localized to the synaptic ribbon in 
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photoreceptor terminals, as this may affect vesicle tethering or glutamate release 
mechanisms.

The importance of these fatty acids would be solidified if VLC-PUFAs could 
be reconstituted in the deficient retinas. However, VLC-PUFAs cannot be chemi-
cally synthesized in large enough quantities to allow feeding studies in mice with 
specific Elovl4 deletions. Our current strategy is to express Elovl4 in the RPE under 
the control of the bestropin promoter and use the short loop of fatty acid recycling 
between the retina and the RPE to provide VLC-PUFA to the retinal synapses and 

Fig. 20.1   VLC-PUFA affect vesicle biophysical properties. a An example of VLC-PUFA (34:5n3) 
that has 34 carbons and 5 omega-3 double bonds. b Vesicle phospholipid membrane with VLC-
PUFAs ( green) would be larger and more compliant compared to c A vesicle membrane without 
VLC-PUFA, which would be smaller and more rigid
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outer segments. We are also working on ways to silence the mutant Elovl4 with 
siRNA. A combined therapy of VLC-PUFA supplementation with knock down of 
the mutant transcript would be the ideal therapeutic to address possible effects of 
the mutant protein and the decrease in retinal VLC-PUFAs.
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Chapter 21
Malattia Leventinese/Doyne Honeycomb Retinal 
Dystrophy: Similarities to Age-Related Macular 
Degeneration and Potential Therapies

John D. Hulleman

Abstract Fibulin-3 (F3) is a secreted, disulfide-rich glycoprotein which is 
expressed in a variety of tissues within the body, including the retina. An Arg345Trp 
(R345W) mutation in F3 was identified as the cause of a rare retinal dystrophy, 
Malattia Leventinese/Doyne Honeycomb Retinal Dystrophy (ML/DHRD). ML/
DHRD shares many phenotypic similarities with age-related macular degeneration 
(AMD). The most prominent feature of ML/DHRD is the development of radial 
or honeycomb patterns of drusen which can develop as early as adolescence. Two 
independent mouse models of ML/DHRD show evidence of complement activation 
as well as retinal pigment epithelium (RPE) atrophy, strengthening the phenotypic 
connection with AMD. Because of its similarities with AMD, ML/DHRD is receiv-
ing increasing interest as a potential surrogate disease to study the underpinnings 
of AMD. This mini-review summarizes the current knowledge of F3 and points 
toward potential therapeutic strategies which directly or indirectly target cellular 
dysfunction associated with R345W F3.

Keywords Fibulin-3 · Malattia leventinese/Doyne honeycomb retinal dystrophy ·  
Protein misfolding · Age-related macular degeneration · Retinal degeneration · 
Drusen · Therapeutics

21.1  Introduction

F3 belongs to the fibulin protein family, which is comprised of seven other secreted 
disulfide-rich glycoproteins. Secreted fibulin proteins are integrated into the extra-
cellular matrix (ECM) and are involved in basement membrane formation. While 
the function and expression of each fibulin protein is unique, they are generally 
thought to function in elastogenesis or elastic fiber maintenance. Each fibulin pro-
tein is comprised of a series of tandem calcium-binding epidermal growth factor 
domains followed by a C-terminal fibulin-type domain. Of the eight fibulin proteins, 
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mutations in two, F3 (S1–5, EFEMP1) (Stone et al. 1999), and fibulin-5 (EVEC, 
DANCE) (Stone et al. 2004), have been associated with retinal degeneration and 
AMD, respectively. A mutation in fibulin-6 (hemicentin) has also been suggested 
to affect AMD progression (Thompson et al. 2007), although other studies question 
its influence on disease (Klein et al. 1998; Schultz et al. 2005). Nonetheless, it is 
clear that mutations in fibulin proteins can significantly impact retinal physiology.

Inheritance of ML/DHRD occurs in an autosomal dominant fashion, suggest-
ing that the disease is caused by a toxic gain-of-function mechanism. Consistent 
with this observation, mice expressing R345W F3 develop sub-RPE basal laminar 
membranous deposits that progress with age and gene dosage, and show signs of 
complement activation and RPE atrophy (Fu et al. 2007; Marmorstein et al. 2007), 
whereas knockout mice which do not express F3 have no observable eye-related 
phenotype (McLaughlin et al. 2007). Cell culture studies suggest that the R345W 
mutation causes the F3 protein to misfold, resulting in higher intracellular steady 
state levels and reduced amounts of F3 mutant secretion (Marmorstein et al. 2002; 
Hulleman et al. 2011). Thus, it has been speculated that the higher intracellular 
levels of R345W F3 in the endoplasmic reticulum (ER) activates the unfolded pro-
tein response (UPR) and triggers the ML/DHRD phenotype (Roybal et al. 2005). 
Even though there have been a series of cell culture/biochemical studies focused 
on understanding R345W F3 protein homeostasis, as well as two mouse models 
of ML/DHRD, it is still unknown exactly how the R345W mutation causes retinal 
degeneration. Does R345W F3 exert its detrimental effects from within the cell, 
outside of the cell, or a combination of both of these possibilities? How does the 
R345W mutant lead to an increase in complement activation? What is the origin of 
the basal deposits in ML/DHRD mice? While there are many unanswered questions 
regarding how the R345W mutant causes ML/DHRD, it is clear that developing a 
deeper understanding of the role of F3 in the retina is warranted.

21.2  Comparison between ML/DHRD and AMD

To date, no mutation in F3 has been identified and correlated with the development 
of AMD. The absence of such a finding has tempered enthusiasm for exploring the 
role F3 plays in AMD onset or progression. However, several similarities between 
ML/DHRD and AMD are too striking to ignore. The first histologic dissection of 
ML/DHRD patient eyes found that F3 accumulated between the RPE and the site 
of drusen formation (Marmorstein et al. 2002). AMD patients also demonstrated 
similar F3 immunoreactivity where drusen were found. In non-AMD eyes, however, 
no F3 was detected at the site of drusen. These studies have been corroborated 
(Sohn et al. 2014), and they imply that not only the ML/DHRD-associated R345W 
F3 mutant is involved in drusen formation, but that WT F3 (as would be present 
in AMD patients), also may be a culprit involved in pathogenic drusen formation.

A recent study has also demonstrated that drusen from ML/DHRD and AMD 
patients are compositionally similar. Sohn and colleagues found that drusen from 
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both ML/DHRD and AMD patients were eosinophilic and sudanophilic positive 
(Sohn et al. 2014). Additionally, drusen (or the area surrounding drusen) from AMD 
or ML/DHRD patients contained membrane attack complex, vitronectin, amyloid P 
and tissue inhibitor of matrix metalloproteinase 3 (TIMP3) (Sohn et al. 2014). How-
ever, the same study noted some differences including strong staining of collagen 
type IV in ML/DHRD drusen which was absent in AMD drusen. Nonetheless, the 
abundant similarities suggest that these diseases are phenotypically quite similar.

Much like AMD, the phenotypes associated with ML/DHRD can be variable; 
Michaelides and colleagues observed intrafamilial and interfamilial variability in 
vision loss, natural history, ophthalmoscopic observations, and retinal autofluo-
rescence in ML/DHRD patients (Michaelides et al. 2006). Furthermore, this study 
identified a 62 year-old patient with the R345W F3 mutation who was asymptomatic, 
demonstrating a lack of full penetrance of the disease. Overall, this phenotypic vari-
ability demonstrates that ML/DHRD is likely a modifiable disease that is strongly 
influenced by slight differences in environmental and/or genetic composition.

21.3  Potential Approaches for Treating ML/DHRD

Since it is still unclear how the R345W F3 mutation causes ML/DHRD and the re-
sulting AMD-like phenotypes, it is difficult to identify a priori a concrete therapeutic 
strategy which will address the underlying causes of ML/DHRD. While a strategy 
which directly and selectively targets disease-causing R345W F3 for degradation 
would be ideal, given the observations that F3 knockout mice do not have any 
eye-related phenotypes, strategies which target and affect both WT and R345W F3 
may also be beneficial for disease treatment.

One potential approach to alter ML/DHRD progression would be to identify and 
pharmacologically or genetically manipulate unique binding partners of R345W F3. 
The ultimate goal of such a strategy would be to redirect the fate of mutant F3, pro-
moting its intracellular degradation instead of allowing the protein to be secreted or 
to accumulate intracellularly within the RPE. However, to date, surprisingly few F3 
interacting partners have been identified. Identified F3 interacting proteins include: 
TIMP3 (Klenotic et al. 2004), extracellular matrix protein 1 (ECM-1) (Sercu et al. 
2009), complement factor H (CFH) (Wyatt et al. 2013), ER resident protein 57 
(ERp57) (Jessop et al. 2007), ERdj5 (Oka et al. 2013), calnexin, calreticulin, 78 
kDa glucose-regulated protein (GRP78), and 94 kDa glucose-regulated protein 
(GRP94) (Hulleman and Kelly 2015). This list of known interacting proteins is a 
good starting point for a systematic analysis of potential modifiers of R345W F3 
protein homeostasis. Six of the identified binding partners, calnexin, calreticulin, 
ERp57, ERdj5, GRP78 and GRP94 interact with F3 in the ER where the F3 folding 
and secretion vs. degradation decision is made and are likely to significantly affect 
F3 secretion. Nonetheless, a more comprehensive characterization of the WT and 
R345W F3 interactome is needed.
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As a secreted protein, the synthesis, folding and trafficking of F3 is likely 
regulated by one or more arms of the UPR, the tripartite stress-responsive signaling 
pathway which governs protein quality control in the ER. Indeed, overexpression of 
R345W F3, and to a lesser extent, WT F3, has been shown to cause activation of the 
UPR (specifically, the IRE1 and ATF6 pathways), but it is still unclear if this obser-
vation is due to the overexpression approach used, or if the result is actually physi-
ologically meaningful (Roybal et al. 2005). Nonetheless, it is likely that activation 
of UPR signaling pathways will significantly affect F3 protein homeostasis. Since 
the activation of the UPR is important for upregulating ER-associated degradation 
(ERAD) of misfolded proteins (reviewed in Ruggiano et al. 2014), it is conceivable 
that selective, stress-independent regulation of one or more of the UPR pathways 
could manipulate R345W F3 fate. Consistent with this notion, previous studies have 
indicated that selective activation of the PERK arm of the UPR can modulate the 
amount of secreted R345W F3, partially rescuing its secretion defect (Hulleman 
et al. 2012). However, utilizing alternative, stress-independent approaches to selec-
tively activating the IRE1 and ATF6 arms of the UPR is very intriguing, especially 
since levels of an F3 binding partner, ERp57, are regulated by both the IRE1 and 
ATF6 arms of the UPR (Shoulders et al. 2013).

Another approach to identifying treatments for ML/DHRD is to use unbiased 
phenotypic screening of chemical libraries. Such an approach has been used recent-
ly based on the assumption that altering the levels of secreted R345W F3 may alter 
ML/DHRD disease phenotypes. This study demonstrated, at least from a proof-
of-principle perspective, that selective pharmacological manipulation of R345W 
F3 secretion was possible (Hulleman et al. 2013). Unfortunately, the lead com-
pound which selectively reduced R345W F3 secretion from ARPE-19 cells (with 
no effect on WT F3 secretion) was the tumor-promoting and pleiotropic chemical, 
phorbol 12-myristate 13-acetate (PMA). Another compound, ARP-101, a matrix 
metalloproteinase 2 inhibitor, was found to reduce the secreted levels of both WT 
and R345W F3 from ARPE-19 cells. While not selective for WT vs. R345W F3 
secretion, this compound could nonetheless be potentially used as a therapeutic 
compound in ML/DHRD mice since removal of F3 (WT or R345W) from the eye 
has no apparent adverse effects (McLaughlin et al. 2007). Future studies could be 
directed at dissection of the structure-activity relationships of PMA and ARP-101 to 
yield more pharmacologically attractive and potent compounds that don’t bear the 
adverse effects of the parent compound.

Two recent studies have taken alternative therapeutic approaches which do not 
directly target R345W F3, but instead are directed at (i) pathways downstream of 
R345W F3 expression, or (ii) the consequences of mutant F3 production (i.e., dru-
sen formation). The first approach originated from an in-depth proteomic analysis 
of retinas from R345W F3 mice. The proteomic signature from these mice demon-
strated dysregulation of the complement system (Garland et al. 2014). These data, 
along with evidence from the ML/DHRD mouse model, suggested that reducing 
complement factor C3 could be beneficial in preventing drusen formation asso-
ciated with ML/DHRD. Indeed, genetic knockout of C3 prevented basal laminar 
deposit formation in the R345W F3 mice (Garland et al. 2014). While these studies 
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are extremely promising and exciting, there still is missing information that links 
how R345W F3 causes complement dysfunction and whether such an approach will 
be beneficial in ML/DHRD patients. Given the success of this study, it would be 
interesting to determine whether ML/DHRD patients could benefit from treatment 
with the primate-specific C3 inhibitor, compstatin, or one of its analogs such as 
POT-4 (Ricklin and Lambris 2008).

In the second alternative approach for ML/DHRD, Lenassi and colleagues used 
low level laser-induced photocoagulation to promote drusen reabsorption in 11 ML/
DHRD patients (Lenassi et al. 2013). A similar treatment has been used previously 
to successfully reduce drusen load in randomized controlled trials of AMD patients 
(Parodi et al. 2009). Unfortunately, this treatment had no effect on halting the devel-
opment of choroid neovascularization, geographic atrophy or loss in visual acuity 
in AMD patients. Surprisingly, laser clearance of drusen deposits in ML/DHRD 
patients improved visual acuity in five patients, whereas five other patients demon-
strated no change in vision and one patient experienced a significant deterioration in 
vision (Lenassi et al. 2013). These results are quite promising, although they high-
light the notion that a single treatment for all ML/DHRD patients may be difficult 
to identify due to disease heterogeneity. Continuing these efforts to develop a more 
in-depth understanding of ML/DHRD should provide us with a deeper knowledge 
of ML/DHRD etiology and may identify cellular pathways to target in the pheno-
typically similar, yet etiologically more complex disease, AMD.
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Chapter 22
Hsp90 as a Potential Therapeutic Target in 
Retinal Disease

Mònica Aguilà and Michael E. Cheetham

Abstract The molecular chaperone heat shock protein 90 (Hsp90) is a pivotal cel-
lular regulator involved in the folding, activation and assembly of a wide range 
of proteins. Hsp90 has multiple roles in the retina and the use of different Hsp90 
inhibitors has been shown to prevent retinal degeneration in models of retinitis 
pigmentosa and age-related macular degeneration. Hsp90 is also a potential target 
in uveal melanoma. Mechanistically, Hsp90 inhibition can evoke a dual response 
in the retina; stimulating a stress response with molecular chaperone expression. 
Thereby leading to an improvement in visual function and photoreceptor survival; 
however, prolonged inhibition can also stimulate the degradation of Hsp90 client 
proteins potentially deleteriously affect vision. Here, we review the multiple roles 
of Hsp90 in the retina and the therapeutic potential of Hsp90 as a target.

Keywords Hsp90 · Retinal degeneration · Hsp90 inhibition · Molecular chaperones · 
RP · AMD · Uveal melanoma

22.1  Introduction

Hsp90 is an abundant molecular chaperone involved in many cellular processes. 
It plays a role in the folding, stability, maturation, intracellular transport, mainte-
nance, and degradation of a number of client proteins. These clients include pro-
teins involved in signal transduction, protein trafficking, and innate and adaptive 
immunity. Hsp90 is one of the most conserved heat shock proteins and is an es-
sential component of the protective heat shock response, therefore playing a role in 
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regulating cell physiology under normal and stressed conditions (McClellan et al. 
2007). Hsp90 is expressed in the cytosol and the nucleus and contains an N-terminal 
ATP-binding domain that is essential for most of its cellular functions. Hsp90 has 
been shown to suppress the aggregation of a wide range of client proteins and hence 
acts as a general protective chaperone. Certain Hsp90 inhibitors (e.g. geldanamycin, 
17-AAG or HSP990) bind with a high affinity to the ATP-binding pocket and block 
the chaperone ATPase cycle leading to the degradation of client proteins that can 
no longer be folded (Li and Buchner 2013). In addition, under resting conditions 
Hsp90 binds the stress responsive transcription factor, heat shock factor 1 (HSF-1), 
to silence the transcription factor activity and forms an auto-regulatory feedback 
loop that couples molecular chaperone levels to the need for chaperones to bind 
misfolded proteins (Neueder et al. 2014). Inhibition of Hsp90 leads to the release 
of HSF-1 and the activation of the stress response and an increase in molecular 
chaperones. Therefore, Hsp90 inhibition can either lead to the proteasome-mediated 
degradation of Hsp90 client proteins or upregulation of molecular chaperones, such 
as Hsp70 and Hsp40, which results in an enhanced protective effect against protein 
aggregation and reduced protein toxicity (Labbadia et al. 2011).

The retina is a complex tissue with a high metabolic demand, constantly exposed 
to stress (Athanasiou et al. 2013). To maintain cell homeostasis and prevent dam-
age, the retina contains high levels of heat shock proteins under normal conditions 
(Urbak and Vorum 2010). Hsp90 is widely distributed in all retinal layers, from the 
retinal ganglion cells (RGC) to the inner segment (IS), the tips of the outer segment 
(OS) and retinal pigment epithelium (RPE) cells (Dean and Tytell 2001). Hsp90 
plays an indispensable role in homeostasis of the retina as prolonged Hsp90 inhibi-
tion leads to photoreceptor cell death (Kanamaru et al. 2014).

22.2  Manipulation of Hsp90 as a Potential Therapy for 
Retinal Degeneration

Pharmacological intervention with compounds that target Hsp90 function could po-
tentially be therapeutic against several different forms of retinal degeneration and 
pathology.

22.2.1  Retinitis Pigmentosa (RP)

RP is the most common form of inherited photoreceptor degeneration and mutations 
in the rhodopsin gene are the most common cause of autosomal dominant RP. It has 
been previously shown that the Hsp90 inhibitor 17-N-allylamino-17-demethoxy-
geldanamycin (17-AAG) can protect against rhodopsin aggregation and toxicity 
in a cell model of a class II misfolding mutation in rhodopsin, P23H, which is the 
most common rhodopsin mutation in the USA (Mendes and Cheetham 2008). This 
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protection appears to be dependent on HSF-1, as mouse embryonic fibroblasts from 
HSF-1 knock-out mice were not protected against P23H rhodopsin aggregation by 
17-AAG, suggesting that the protective effect is dependent on induction of the stress 
response (Aguila et al. 2014). Systemic administration of the blood brain barrier 
permeable Hsp90 inhibitor, HSP990, can activate HSF-1 and stimulate molecular 
chaperone expression in vivo in the retina (Aguila et al. 2014). In a P23H rhodopsin 
transgenic rat model with progressive retinal degeneration, a single low dose of 
HSP990 was sufficient to mediate an improvement in visual function and photo-
receptor survival several weeks later. Importantly, this treatment did not affect any 
phototransduction component, but did induce molecular chaperones and reduced 
rhodopsin aggregation, showing the ability of Hsp90 inhibition to stimulate the pro-
teostasis machinery that protects against misfolded proteins (Aguila et al. 2014). 
Other examples of how imbalances in photoreceptor proteostasis can be targeted 
with Hsp90 inhibition are IMPDH misfolding mutations associated with RP10. In 
this instance, claudin 5 RNAi was used to transiently permeabilize the blood reti-
nal barrier and allow 17-AAG to stimulate a protective response in photoreceptors 
expressing R224P mutant IMPDH, with a concomitant reduction in mutant IMPDH 
aggregation and protection of ONL structure (Tam et al. 2010).

Interestingly, in a disease model for a different class of rhodopsin mutation 
(R135L) inhibition of Hsp90 was also protective, but this was independent of HSF-
1. The R135L mutation causes rhodopsin hyperphosphorylation, arrestin binding 
and aberrant rhodopsin endocytosis (Fig. 22.1a), which deleteriously affects ve-
sicular traffic (Chuang et al. 2004). Hsp90 inhibition blocked the recruitment of 
arrestin to R135L mutant rhodopsin and thereby alleviated aberrant endocytosis 
(Aguila et al. 2014). This effect was still maintained in HSF-1 null cells, showing 
that it was independent of HSF-1. Further investigation revealed that, like many 
kinases, rhodopsin kinase (GRK1) is an obligate Hsp90 client protein and the ef-
fect of Hsp90 inhibition on R135L rhodopsin arrestin binding was mediated by an 
upstream reduction in phosphorylation of R135L because of lack of an appropriate 
kinase (Aguila et al. 2014). This mechanism related to the reduction of a specific 
client protein that is mediating an adverse effect of a genetic mutation is distinct 
from the enhanced production of protective factors through the activation of the 
stress response to combat a mutational consequence. Overall, these data suggest that 
Hsp90 has multiple roles in the retina and that the use of Hsp90 inhibitors can be 
potentially protective against different types of RP through different mechanisms.

22.2.2  Age-Related Macular Degeneration (AMD) and RPE 
Biology

AMD is a complex multifactorial disease involving genetic, environmental, meta-
bolic, and functional factors. Functional abnormalities and cell death in the RPE 
cells contribute to the development of AMD, and are associated with increased oxi-
dative stress (Jarrett and Boulton 2012). Hsp90 is expressed in RPE cells and its 
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expression increases significantly during the progression of AMD (Decanini et al. 
2007). It has been suggested that Hsp90 expressed from necrotic RPE cells may 
function as a trigger for inflammatory responses in adjacent healthy RPE (Qin et al. 
2011). Inflammatory responses in RPE cells can be blocked by Hsp90 inhibition 
(Wang et al. 2010). Moreover, the Hsp90 inhibitor geldanamycin inhibits VEGF 
expression induced by hypoxia in RPE cells (Wu et al. 2007), suggesting that Hsp90 
inhibitors may be effective in blocking both inflammation and neovascularization.

22.2.3  Ocular Oncology: Uveal Melanoma

Hsp90 is a major target in oncology as several aspects of tumor cell viability are 
reliant on Hsp90 function. Uveal melanoma (UM) is the most common primary 
intraocular malignancy in adults (Egan et al. 1988) and Hsp90 is emerging as a 

Fig. 22.1   Hsp90 is required for GRK1 and PDE function. a GRK1 requires Hsp90 for maturation. 
R135L rhodopsin mutant is hyperphosphorylated by functional GRK1 leading to arrestin bind-
ing and endocytosis. Hsp90 inhibitors prevent Hsp90 mediated GRK1 folding, leading to GRK1 
degradation and loss of R135L hyperphosphrylation. b PDE needs Hsp90 and its co-chaperone 
AIPL1 for maturation. Hsp90 inhibition blocks the Hsp90-AIPL1 interaction, resulting in PDE 
degradation
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potentially important target in UM. Focal adhesion kinase (FAK) is a cytoplasmic 
tyrosine kinase that plays a central role in several cellular processes including me-
diation of extracellular matrix-integrin signaling, cell migration, invasion and me-
tastasis in several cancers, including UM (Hess et al. 2005). Hsp90 is crucial for the 
stability and functional conformation of FAK, as inhibition of Hsp90 interferes with 
its phosphorylation and stimulates its proteasome-mediated degradation (Faingold 
et al. 2008). Hsp90 inhibition resulted in a reduction of migration and invasion of 
cancer cells through FAK-mediated pathways (Faingold et al. 2008). Furthermore, 
the protein kinase Akt also requires Hsp90 for its activity and stability (Basso et al. 
2002) and high levels of phosphorylated Akt (p-Akt) have been shown to be as-
sociated with a higher risk of metastatic disease in patients with UM (Saraiva et al. 
2005). Treatment of human UM cell lines with 17-AAG resulted in a decrease of 
Akt and activated p-Akt, possibly contributing to cell growth arrest and induction of 
cell death. In addition, 17-AAG and 17-DMAG inhibited cell proliferation in WTB-
Raf UM cell lines by downregulating the WTB-Raf protein. This downregulation led 
to the inactivation of the MEK/ERK module and the decrease in cyclin D1, which 
is necessary for the proliferation of UM cell lines (Babchia et al. 2008). Overall, 
these data suggest that Hsp90 inhibition could be a possible therapy against this 
type of cancer.

22.2.4  Therapeutic Considerations

Recent reports from oncology clinical trials have suggested that some Hsp90 in-
hibitors, such as 17-DMAG and AUY922, might lead to visual disturbances (Sessa 
et al. 2013). In a recent clinical trial for advanced solid tumors using AUY922, 43 % 
of the patients reported grades 1–3 visual symptoms, including night blindness, 
photopsia, blurred vision and visual impairment (Rajan et al. 2011). Fortunately, all 
the visual symptoms were reversible when drug use was discontinued. It is there-
fore important to identify the molecular mechanism by which Hsp90 inhibitors af-
fect vision. As predicted by the studies on R135L rhodopsin, prolonged systemic 
Hsp90 inhibition led to a reduction of GRK1 levels in the retina, confirming that 
Hsp90 is required for GRK1 biosynthesis (Aguila et al. 2014). Furthermore, phos-
phodiesterase (PDE) levels were also specifically reduced in the retina following 
Hsp90 inhibition (Aguila et al. 2014). The Leber congential amaurosis (LCA) gene 
product AIPL1 is a cochaperone for Hsp90 and is essential for PDE biosynthesis 
(Hidalgo-de-Quintana et al. 2008), suggesting that Hsp90 and AIPL1 co-operate 
in PDE biosynthesis (Fig. 22.1b). Reduction in GRK1 and PDE could cause some 
of the most common visual side-effects of Hsp90 inhibitors observed in oncology 
patients. Therefore, the effects of Hsp90 inhibition on visual function are likely to 
relate to essential Hsp90 client proteins in the phototransduction pathway in the 
retina and potentially elsewhere in the eye.
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22.3  Conclusions

A range of Hsp90 inhibitors have now been developed with different affinities and 
bioavailability. Importantly, several Hsp90 inhibitors have been studied in oncology 
clinical trials and their pharmacokinetic profile and side effects have been identi-
fied. Therefore, they could potentially be applied to RP and other neurodegenerative 
disease with prior knowledge of the risks and benefits. Collectively, the data show 
that Hsp90 has multiple roles in the retina and that the use of Hsp90 inhibitors can 
be potentially protective against retinal degeneration and ocular oncology, but their 
possible adverse effects on visual function also need to be considered.
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Chapter 23
Leber Congenital Amaurosis: Genotypes 
and Retinal Structure Phenotypes

Samuel G. Jacobson, Artur V. Cideciyan, Wei Chieh Huang, Alexander  
Sumaroka, Hyun Ju Nam, Rebecca Sheplock and Sharon B. Schwartz

Abstract Leber congenital amaurosis (LCA) patients of 10 known genotypes 
( n = 24; age range, 3–25 years) were studied clinically and by optical coherence 
tomography (OCT). Comparisons were made between OCT results across the hori-
zontal meridian (central 60o) of the patients. Three patterns were identified. First, 
there were LCA genotypes with unusual and readily identifiable patterns, such as 
near normal outer nuclear layer (ONL) across the central retina or severely dys-
plastic retina. Second, there were genotypes with well-formed foveal architecture 
but only residual central islands of normal or reduced ONL thickness. Third, some 
genotypes showed central ONL losses or dysmorphology suggesting early macular 
disease or foveal maldevelopment. Objective in vivo morphological features could 
complement other phenotypic characteristics and help guide genetic testing of LCA 
patients or at least permit a differential diagnosis of genotypes to be made in the 
clinic.
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Keywords Optical coherence tomography · Retinal dysplasia · Leber congenital 
amaurosis · Outer nuclear layer · Macular disease · Fovea development

23.1  Introduction

LCA is a genetically heterogeneous group of mainly autosomal recessive retinopa-
thies beginning in infancy and childhood with at least 19 different molecular causes 
(OMIM; www.omim.org). Once the clinical diagnosis is made, there is now an op-
portunity to make a molecular diagnosis. As in other medical disciplines involving 
genetic diagnosis, the field has advanced from discovery to research-based explora-
tion to commercially-available genetic tests, recently including whole exome and 
whole genome testing.

Is there anything to do in the retina clinic to guide gene identification? Sorting 
LCA phenotypes has occurred. One scheme uses patient behavior in response to 
light, refractive error, and other visual parameters (Kaplan 2008). LCA genes have 
been tabulated and fundus photographs or clinical descriptions provided for each 
genotype (den Hollander et al. 2008; Chung and Traboulsi 2009). OCT was used 
to examine laminar architecture of 4 LCA genotypes and differences demonstrated 
(Pasadhika et al. 2010). An attempt to combine genotyping with phenotyping to 
make genetic testing more efficient has been proposed for small outbred families 
(Hebrard et al. 2011).

In the current work, we study OCT imaging from young LCA patients repre-
senting 10 different genotypes. We categorize the retinal structural changes and 
conclude that some are associated with a specific genotype while others are indis-
tinguishable.

23.2  Materials and Methods

23.2.1  Subjects

There were 24 LCA patients, representing 10 genotypes (Table 23.1). Informed 
consent was obtained; procedures were approved by the institutional review board.

23.2.2  Imaging Studies: Optical Coherence Tomography

Retinal cross-sections with OCT were collected at the earliest-age visit of patients 
using mainly spectral-domain systems. Our methods are published (e.g. Jacobson 
et al. 2005).



17123 Leber Congenital Amaurosis: Genotypes and Retinal Structure Phenotypes

Table 23.1   Clinical and molecular characteristics of the patients
Gene (LCA type) 
Patient/Age(year)/sex

Allele 1/Allele 2 Visual acuitya, b Refractionc

GUCY2D (LCA1)
P1/11/M p.H980L/p.H980L LP  + 3.50
P2/11/F p.R768W/p.R822P 20/125–20/100  + 4.00
P3/14/F p.T280R/p.T280R CF at 6″-20/300  + 0.75

RPE65 (LCA2)
P4/7/M p.R44Q/p.R44Q 20/160 − 10.25
P5/9/M p.A500fs/ p.A500fs 20/160–20/200 − 2.00
P6/13/F p.V287F/p.V287F 20/125–20/200 − 3.75

AIPL1 (LCA4)
P7/16/F p.W278Ter/p.V33fs HM  + 2.00
P8/23/F p.C89R/p.W72R LP  + 4.00

Lebercilin (LCA5)
P9/6/M p.Q279Ter/p.Q279Ter LP  + 6.50

RPGRIP1 (LCA6)
P10/21/M p.V1211E/p.V1211E 20/100  + 3.25
P11/24/F c.630del/c.2796dup 20/400  + 0.75

CRB1 (LCA8)
P12/13/F p.C948Y/p.C948Y 20/63  + 4.75
P13/19/M p.C948Y/p.C948Y HM  + 7.50
P14/21/M p.C948Y/p.C948Y 20/100–2/200  + 3.25

NMNAT1 (LCA9)
P15/3/F p.E257K/p.I197T FF  + 8.50

CEP290 (LCA10)
P16/8/M IVS26 + 1655A > G/p.E97Ter NLP  + 7.00
P17/9/F IVS26 + 1655A > G/IVS13 + 1G > C NLP  + 4.00
P18/10/F IVS26 + 1655A > G/p.L517Ter LP  + 7.75

RDH12 (LCA13)
P19/7/M p.R259Ter/p.A270fs 20/50–20/63  + 0.75
P20/13/F p.Y194Ter/p.A206D HM-20/500 at 1M  + 6.00
P21/15/F p.A47T/p.L99I 20/63–20/125  + 4.00

TULP1 (LCA15)
P22/15/F p.Q301Ter/p.Q301Ter 20/160–20/125 − 3.00
P23/19/M p.Q301Ter/p.Q301Ter 20/640–20/400  + 6.75
P24/25/F p.G368W/p.D355V 20/80  + 0.25

LP light perception; HM hand motions; FF fix and follow; NLP no light perception
a Best corrected visual acuity
b Similar in the two eyes; otherwise, specified individually, as RE-LE
c Spherical equivalent; average of the two eyes
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23.3  Results

23.3.1  Cross Sectional Retinal Imaging

Distinctive Structural Phenotypes in Two Genotypes Retinal lamination of a nor-
mal subject and two LCA patients representing genotypes with a characteristic OCT 
are shown. The scan from a GUCY2D-LCA1 patient is remarkable for its relatively 
normal appearance; retinal and ONL thicknesses across the retina are within normal 
limits. Young GUCY2D-LCA1 patients (ages 11–14) have normal or subnormal 
retinal and ONL thickness in the central few degrees, but normal thickness across 
the rest of the scan. This pattern was typical of GUCY2D-LCA1 patients (Pasadhika 
et al. 2010; Jacobson et al. 2013a) (Fig. 23.1).

Another recognizable structural phenotype is associated with CRB1-LCA8. 
There is reduced foveal ONL, limited extracentral ONL and thickened dysplas-
tic-appearing retina across the remainder of the section (Fig. 23.1). Retained cen-
tral ONL and better acuity in some patients may lead to a diagnosis of CRB1-RP 
( Jacobson et al. 2013b). Whether LCA or RP, patients show extracentral coarse and 
abnormal lamination with thickening (Jacobson et al. 2003; Aleman et al. 2011; 
Jacobson et al. 2013b).

µ

µµ

Fig. 23.1   Two LCA genotypes with unique structural phenotypes. Top Normal OCT along the 
horizontal meridian through the fovea. Middle GUCY2D-LCA1 patient with normal retinal and 
ONL thickness. Lower CRB1-LCA8 patient with thick dysplastic-appearing retina and limited 
ONL. Quantitative analyses of retinal and ONL thicknesses in other patients with these genotypes 
( right). Normal limits ( gray lines, mean ± 2SD); P numbers refer to Table 23.1
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Preserved Central Island in Five Genotypes Five genotypes showed a preserved 
central island of ONL, but a decrease with eccentricity. The foveal ONL peak could 
be normal or reduced. A common gene mechanism in the group was ciliopathy, 
which includes Lebercilin-LCA5, RPGRIP1-LCA6, CEP290-LCA10, and TULP1-
LCA15, although the latter disorder may have a more complex mechanism (Jacob-
son et al. 2014). RPE65-LCA2 could show a similar pattern. Retinal thickness in 
these genotypes was at the lower limit of normal or subnormal, in contrast, for 
example, to CRB1-LCA8 (Fig. 23.2).

Severe Maculopathy in Three Genotypes This group includes two with macular 
disease ( AIPL1-LCA4 and RDH12-LCA13) and one that appears to be a develop-
mental abnormality with lack of foveal formation and inner retinal laminae cross-
ing the central retina ( NMNAT1-LCA9). ONL thickness in all three is  detectable, 

µ

µµ

Fig. 23.2   Five LCA genotypes with preserved foveal architecture but mainly central ONL. OCTs 
and quantitative analyses of retinal and ONL thicknesses
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but reduced centrally and across most of the scan. Retinal thickness varied in 
AIPL1-LCA4 and RDH12-LCA13; the NMNAT1-LCA15 patient had thinned retina 
(Fig. 23.3).

23.4  Discussion

Despite the advent of molecular diagnostics, there remains a need to understand dis-
ease expression (function and structure) in individual patients and within genotypes 
as treatment strategies emerge for retinal degenerations (Jacobson and Cideciyan 
2010). Function is quantified with ERG and psychophysics. Retinal structure, be-
yond ophthalmoscopy and fundus photography, was understood from post-mortem 
retina donor studies (Milam et al. 1998). Optical imaging of the human retina can 
offer microscopic-level observations, and serial quantitation.

Our survey of 10 LCA genotypes indicates that there can be similarly severe 
visual deficits, but in vivo microscopic differences. Recognizable are GUCY2D-
LCA1 patients with reduced vision but normal ONL thickness across a relatively 
wide expanse of retina (Jacobson et al. 2013a), and CRB1-LCA8 with thickened 
and coarsely laminated retinas.

Many LCA genotypes showed a foveal pit, suggesting normal central retinal 
development; foveal ONL was relatively preserved but ONL thickness declined 
with eccentricity. This implies early and profound loss of rods with less disease 
impact on central cones. Most of these genotypes are considered photoreceptor 

µ

µµ

Fig. 23.3   Three LCA genotypes with macular disease or maldevelopment. OCTs and quantitative 
analyses of retinal and ONL thicknesses
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 ciliopathies. RPE65-LCA2 is a secondary photoreceptor loss due to visual cycle 
abnormality (Cideciyan 2010).

The third LCA group shares abnormalities in foveal-macular structure. The 
foveal pit in AIPL1-LCA4 suggests foveal development but early cone (and rod) 
loss. NMNAT1-LCA15 and maculopathy are associated; lack of a foveal pit and 
persistent inner retinal laminae suggest abnormal central retinal development. The 
exact mechanism causing RDH12-LCA13 is unclear; RDH12, localized to inner 
segments of rods and cones, may detoxify stray retinal (Chen et al. 2012).
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Chapter 24
A Chemical Mutagenesis Screen Identifies 
Mouse Models with ERG Defects

Jeremy R. Charette, Ivy S. Samuels, Minzhong Yu, Lisa Stone, Wanda Hicks, 
Lan Ying Shi, Mark P. Krebs, Jürgen K. Naggert, Patsy M. Nishina and Neal 
S. Peachey

Abstract Mouse models provide important resources for many areas of vision 
research, pertaining to retinal development, retinal function and retinal disease. The 
Translational Vision Research Models (TVRM) program uses chemical mutagen-
esis to generate new mouse models for vision research. In this chapter, we report 
the identification of mouse models for Grm1, Grk1 and Lrit3. Each of these is char-
acterized by a primary defect in the electroretinogram. All are available without 
restriction to the research community.

Keywords Mutagenesis · Electroretinogram · Photoreceptor · Mice · Retina
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24.1  Introduction

Mouse models of retinal diseases are an important genetic resource for further-
ing our understanding of molecules necessary for vision. This reflects, in part, 
our ability to develop and discover mouse models that bear disruption in genes 
implicated in human conditions and that replicate key features of human disease. 
The Translational Vision Research Models (TVRM) program, sited at The Jackson 
Laboratory (JAX), uses chemical mutagenesis followed by high throughput eye-
specific screens to identify mouse models bearing mutations that lead to ocular 
phenotypes (Won et al. 2011, 2012). The purpose of this report is to describe three 
new models that extend allelic series for genes known to play important roles in 
the outer retina.

24.2  Materials and Methods

24.2.1  Mouse Mutagenesis, Husbandry, and Ocular 
Screening

As described in detail (Won et al. 2011), N-ethyl-N-nitrosourea (ENU) was admin-
istered to male C57BL/6J mice. G3 offspring generated using a three-generation 
backcross mating scheme (Won et al. 2011) were examined at 12 weeks of age. 
All mice underwent screening by indirect ophthalmoscopy (Hawes et al. 1999). A 
subset of mice were also screened by ERG, using a previously described system and 
protocol (Hawes et al. 2000). In brief, after a minimum of 2 h of dark adaptation, 
mice were anesthetized with ketamine (16 mg/kg) and xylazine (80 mg/kg) diluted 
in normal saline. Strobe stimuli were presented in darkness and again after 10 min 
of light adaption. In depth ERG studies were conducted at the Cleveland Clinic, us-
ing published protocols (Yu et al. 2012).
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24.2.2  Genetic Mapping and Mutational Analysis

We mated tvrm207 and tvrm257 mutants with abnormal ERGs with DBA/2J mice. 
Resulting F1 offspring were intercrossed to generate a segregating F2 population. 
Each F2 progeny underwent ERG testing and genome wide scans using a DNA pool-
ing strategy, and genotyping with simple sequence length polymorphism markers 
was carried out. We found tvrm207 to map to Chr. 8 proximal to marker D8Mit124 
while tvrm257 mapped to Chr. 3 between markers D3Mit348 and D3Mit14. The 
mapping was based on 154 and 704 meioses, respectively.

Exome capture libraries prepared from tvrm84 and tvrm207 mutant DNAs were 
subject to high throughput sequencing. Mutations within candidate genes were 
identified by comparison of mutant and WT sequences and verified in 10 affected 
and 10 unaffected mice from the inbred tvrm84 and tvrm207 colonies. Without ex-
ception, affected mice were homozygous for the mutation while unaffected mice 
were either heterozygous or WT for the mutations.

In the case of tvrm257, primers within introns flanking exons in candidate genes 
were generated to amplify each exon from genomic DNA. DNA of mice from the 
mapping population (10 affected and 10 unaffected) and inbred tvrm257 (5 affected 
and 5 unaffected) colonies were amplified, sequenced and compared using pub-
lished procedures (Won et al. 2011). Without exception, affected mice were homo-
zygous for the mutation while unaffected mice were either heterozygous or WT for 
the mutation.

24.2.3  Histological Analysis

Mice were euthanized by CO2 inhalation and eyes were enucleated. Eyes were fixed 
overnight in cold methanol/acetic acid solution (3:1, v/v). Paraffin embedded eyes 
were cut into 6 µm sections, stained by hematoxylin and eosin (H&E), and exam-
ined by light microscopy.

24.3  Results

24.3.1  A New Allele of Grm1tvrm84

The glutamate receptor, metabotropic 1 (GRM1) is widely expressed in the central 
nervous system (CNS). GRM1 mutations or copy number variations may predis-
pose to a variety of conditions including schizophrenia (Ayoub et al. 2012) or de-
pression (Menke et al. 2012). Previously described Grm1 mouse mutants include 
the recoil wobbler ( Grm1rcw) (Sachs et al. 2007), Grm1nmf373 (Sachs et al. 2007), 
Grm1crv4 (Conti et al. 2006) and Grm1−/− (Conquet et al. 1994) models. All have 
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reduced body size, a neurological phenotype including ataxic gait, tremor, skeletal 
defects, and learning abnormalities in the absence of gross structural defects of the 
CNS.

Affected tvrm84 mice were identified based on their ataxic phenotype. Subse-
quent ERG testing showed the presence of a normal ERG waveform of reduced 
amplitude. Affected mice present with a normal fundus appearance and retinal 
histology. Comparison of high throughout sequencing data between mutant and 
WT mice indicated a c.1607T >A mutation in Grm1. The Grm1tvrm84 mutation is 
predicted to lead to a point mutation: p.Iso536Lys.

Figure 24.1 summarizes the ERG analysis. The upper panels present representa-
tive ERGs obtained under dark-adapted (Fig. 24.1a) or light-adapted (Fig. 24.1b) 
conditions. The overall ERG waveform is maintained in Grm1tvrm84 mice, but is 
reduced under dark-adapted conditions. The lower panels present average (± sem) 
measures of the major ERG components. The reduction of the dark-adapted ERG 
is seen across the stimulus range used (Fig. 24.1c), while the light-adapted data 
superimpose (Fig. 24.1d). No gross morphological abnormalities were observed in 
homozygous Grm1tvrm84 mice (data not shown).

Fig. 24.1   ERG characteristics of Grm1tvrm84 mutant. Representative ERGs obtained from 1 month 
old mice under dark-adapted a and light-adapted b stimulus conditions. Summary response func-
tions for the major components of the dark-adapted c and light-adapted d ERG. Symbols indicate 
average ± sem of 8–9 mice
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24.3.2  A New Allele for Grk1tvrm207

Rhodopsin kinase, encoded by GRK1/Grk1, is responsible for the initial steps by 
which light-activated rhodopsin is returned to an inactive state. Rhodopsin kinase 
accomplishes this through phosphorylation of a series of serine residues on the C-
terminus of rhodopsin (Mendez et al. 2000). In humans, GRK1 mutations cause 
Oguchi’s Disease (Yamamoto et al. 1997; Cideciyan et al. 1998). In mice, single 
cell studies of Grk1−/− rods reveal abnormal phototransduction deactivation kinet-
ics (Chen et al. 1999). Grk1−/− mice have a modest loss of cells in the outer nuclear 
layer, but a more rapid loss of outer segment length (Fan et al. 2010).

The tvrm207 line was identified by a reduced amplitude ERG and this feature 
was used to map tvrm207 to Chr. 8. Comparison of exome sequences of Grk1 iden-
tified a nucleotide transition: c.1088T > C. The Grk1tvrm207 mutation is predicted to 
lead to an amino acid change: p.Leu363Pro. As shown in Fig. 24.2a, ERG ampli-
tudes are significantly reduced in Grk1tvrm207 mice. The amplitude reduction is pres-
ent as early as P19, and there is relatively little progression up to 4 months of age 
(Fig. 24.2b). Consistent with the ERG data, the outer nuclear layer of Grk1tvrm207 
mice changes little in overall thickness over the first 3 months. Photoreceptors are 
absent, however, by 1 year of age (Fig. 24.2d). The loss of photoreceptors may be 
due to the extended exposure to vivarium lighting over the lifetime of the animals, 
as Grk1−/− mice are sensitive to light induced damage (Chen et al. 1999).

Fig. 24.2   Characteristics of Grk1tvrm207 mutant. a ERGs obtained from 1-month-old mice under 
dark-adapted ( left) and light-adapted ( right) stimulus conditions. b The reduction in ERG ampli-
tude is present at an early age and remains stable across the age-range examined. c Fundus photo of 
a 12-old-mutant indicate retinal spotting and granular appearance in comparison to a 3-month-old 
C57BL/6J mouse. d Representative retinal cross-sections obtained from 1-, 3-, and 12-month-old 
mutant and 12-month-old control mice
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24.3.3  A New Allele for Lrit3tvrm257

Leucine-rich repeat, immunoglobulin-like and transmembrane domains 3 ( LRIT3) 
is the most recently identified gene in which mutations cause complete congenital 
stationary night blindness (cCSNB) (Zeitz et al. 2013). This discovery was fol-
lowed by the description of a null mutant for Lrit3, which has a preserved ERG a-
wave, an absent ERG b-wave, and normal retinal morphology (Neuillé et al. 2014). 
The tvrm257 line was identified based on an absent ERG b-wave, and this feature 
was mapped to the Lrit3 locus. Direct sequencing of amplified exons of Lrit3 from 
tvrm257 mice identified a nucleotide transition: c.401T > C. The Lrit3tvrm257 muta-
tion is predicted to lead to a point mutation: p.Leu134Pro.

ERG studies document the presence of a normal a-wave without a subsequent 
b-wave in Lrit3tvrm257 mice (Fig. 24.3). The cone ERG is also abnormal. Gross mor-
phological abnormalities are not observed in Lrit3tvrm257 mutants up to 7 months of 
age, the oldest age examined (data not shown). Overall this phenotype matches that 
of the Lrit3−/− mouse (Neuillé et al. 2014) and other mouse models involving pro-
teins expressed in depolarizing bipolar cells (Pardue and Peachey 2014).

24.4  Discussion

We report the identification of three new mouse strains with disruption in Grm1, 
Grk1 or Lrit3. The main retinal abnormality is an abnormal ERG, although the na-
ture of this abnormality differs across the three mouse models. Unlike the knockout 
models that are currently available, these mouse lines all involve missense muta-
tions which are not expected to abrogate protein translation, and all mutations are 
coisogenic on the C57BL/6J background. Overall, such point mutants are rare, as 
knockout targeting vectors are designed to ensure total loss of expression and ab-
sence of the encoded protein. Point mutants can provide information about domain 
functions and may exhibit different phenotypes compared to their knock-out coun-
terparts (e.g., Peachey et al. 2012). These mice, therefore, provide or expand the 
allelic series for the genes involved. As is the case for other TVRM models, these 
mice are available without restriction to the research community.

Fig. 24.3   ERG Character-
istics of Lrit3tvrm257 mutant. 
ERGs obtained from 1 month 
old mice under dark-adapted 
( left) and light-adapted 
( right) stimulus conditions
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Chapter 25
Ablation of Chop Transiently Enhances 
Photoreceptor Survival but Does Not Prevent 
Retinal Degeneration in Transgenic Mice 
Expressing Human P23H Rhodopsin

Wei-Chieh Chiang, Victory Joseph, Douglas Yasumura, Michael T. Matthes, 
Alfred S. Lewin, Marina S. Gorbatyuk, Kelly Ahern, Matthew M. LaVail  
and Jonathan H. Lin

Abstract RHO (Rod opsin) encodes a G-protein coupled receptor that is 
expressed exclusively by rod photoreceptors of the retina and forms the essen-
tial photopigment, rhodopsin, when coupled with 11-cis-retinal. Many rod opsin 
disease  mutations cause rod opsin protein misfolding and trigger endoplasmic 
reticulum (ER) stress, leading to activation of the Unfolded Protein Response 
(UPR) signal transduction network. Chop is a transcriptional activator that is 
induced by ER stress and promotes cell death in response to chronic ER stress. 
Here, we examined the role of Chop in transgenic mice expressing human P23H 
rhodopsin (hP23H Rho Tg) that undergo retinal degeneration. With the exception 
of one time point, we found no significant induction of Chop in these animals and 
no significant change in retinal degeneration by histology and electrophysiology 
when hP23H Rho Tg animals were bred into a Chop−/− background. Our results 
indicate that Chop does not play a significant causal role during retinal degenera-
tion in these animals. We suggest that other modules of the ER stress-induced 
UPR signaling network may be involved photoreceptor disease induced by P23H 
rhodopsin.

Keywords Rhodopsin · P23H · Unfolded protein response · UPR · ER stress · 
Photoreceptor cell death · Chop · Retinal degeneration · Transgenic mice
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25.1  Introduction

Rhodopsin protein folding begins when RHO mRNA is translated into protein at the 
endoplasmic reticulum (ER) in the photoreceptor (PR) inner segment (IS) ellipsoid 
region. Many rhodopsin mutations associated with retinal degeneration introduce 
amino acid substitutions that impair rod opsin’s ability to fold properly in the ER 
(Sung et al. 1991; Kaushal and Khorana 1994). Accumulation of unfolded proteins 
in the ER triggers ER stress. The Unfolded Protein Response (UPR) is an intracel-
lular signal transduction network that is activated by ER stress and, in turn, activates 
transcriptional, translational, and post-translational programs that help cells cor-
rect the protein misfolding problem that caused ER stress (Walter and Ron 2011). 
However, if misfolded proteins persist, UPR signaling can activate pro-apoptotic 
programs leading to cell death (Walter and Ron 2011).

Chop (C/EBP homologous protein) is one genetic component of the UPR and 
encodes a transcription factor whose mRNA and protein levels are upregulated by 
the UPR in response to ER stress (Oyadomari and Mori 2004). Chop−/− mouse 
embryonic fibroblasts are resistant to cell death induced by thapsigargin, an inhibi-
tor of the Ca2+ ATPase of the ER, and tunicamycin, which blocks N-linked glyco-
sylation (Zinszner et al. 1998). Akita mice expressing mutant insulin 2 undergo 
pancreatic β-cell death that was delayed in a Chop−/− background (Oyadomari et al. 
2002). Mice expressing mutant myelin protein zero undergo increased Schwann 
cell death that was delayed by loss of Chop (Pennuto 2008). These findings indicate 
that CHOP contributes to cell death and injury in response to certain types of ER 
stress. Here, we examined whether Chop was induced in transgenic mice  expressing 
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human P23H rhodopsin, and how retinal degeneration was affected when these ani-
mals were bred into a Chop−/− background.

25.2  Materials and Methods

Chop−/− mice were obtained from Jackson Laboratory. Human P23H rhodopsin 
transgenic (hP23H Rho Tg) mice were generated as previously described (White 
et al. 2007) and maintained in wild-type rhodopsin ( Rho+/+) background (C57Bl/6J) 
for these studies. Histologic studies were performed as previously described (Chi-
ang et al. 2014)

Quantitative PCR analysis of murine Chop mRNA levels was performed as 
previously described (Hiramatsu et al. 2011). Electroretinographic studies were 
performed on dark-adapted mice as previously described (Gorbatyuk et al. 2010). 
Studies were conducted in accordance with the ARVO Statement for the Use of Ani-
mals in Ophthalmic and Vision Research and IACUC guidelines at the University of 
California, San Francisco and the University of California, San Diego.

25.3  Results

25.3.1  Retinal Degeneration of Human P23H Rhodopsin 
Transgenic Mice in Chop−/− Background

The outer nuclear layer (ONL) thickness of Chop−/− mice did not differ from wild-
type over the first ~ 9 months of life (Fig. 25.1a). hP23H Rho Tg mice in a Rho+/+ 
background underwent relatively mild retinal degeneration compared to P23H rho-
dopsin transgenic rats (Pennesi et al. 2008) and P23H rhodopsin knock-in mice 
(Sakami et al. 2011). At postnatal day (P) 90, the ONL thickness of the hP23H 
Rho Tg mice was ~ 25 % thinner than the ONL of age-matched wild-type mice 
(Fig. 25.1b). To investigate the role of Chop in photoreceptor cell death induced by 
P23H rhodopsin, we crossed Chop−/− mice with hP23H Rho Tg mice and measured 
ONL from P30 to P210. At P60, we found a small, but significant increase in the 
ONL thickness of retinas from Chop−/− hP23H Rho Tg mice (39.9 ± 0.36 μm) com-
pared to hP23H Rho Tg mice (36.5 ± 0.42 μm) ( P = 0.00124) (Fig. 25.1b). However, 
we saw no other improvement of ONL thicknesses in Chop−/− hP23H Rho Tg mice 
compared to Chop+/− hP23H Rho Tg mice or hP23H Rho Tg mice at any other time 
points studied (Fig. 25.1b). These data indicated that loss of Chop provided a small 
transient protective effect at P60 but did not significantly alter the eventual loss of 
photoreceptors in hP23H Rho Tg mice.
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25.3.2  Expression of Chop in Human P23H Rhodopsin 
Transgenic Mice

In parallel with our histologic analysis, we measured Chop mRNA levels in the reti-
nas of hP23H Rho Tg mice by quantitative RT-PCR from P13 to P118 (Fig. 25.2). 
Chop mRNA levels in hP23H Rho Tg retinas did not differ from age-matched wild-
type mice, except at P56 when we observed a modest, but significant, increase 
of Chop expression (1.21 fold increase in Chop mRNA levels compared to age-
matched wild-types, P = 0.018) (Fig. 25.2a and 25.2b). This age of increased Chop 
expression roughly coincided with the rescue in ONL thickness we observed in P60 
Chop−/− hP23H Rho Tg mice (Fig. 25.1b).

Fig. 25.1   Retinal degeneration in wild-type, hP23H Rho Tg, Chop−/−, Chop−/− hP23H Rho Tg, 
and Chop+/− hP23H Rho Tg mice. a Mean ONL thickness of wild-type, and Chop−/− mice at the 
indicated ages. b Mean ONL thickness of wild-type, hP23H Rho Tg, Chop−/− hP23H Rho Tg, and 
Chop+/− hP23H Rho Tg at the indicated ages. Each value is the mean ± SEM of 2–7 retinas
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25.3.3  Chop Knock-out Did Not Rescue the Function of Retinas 
of Human P23H Rhodopsin Transgenic Mice

We performed electroretinogram (ERG)) analysis in wild-type and Chop−/− hP23H 
Rho Tg mice at P95, an age with clear ONL differences between hP23H Rho Tg and 
wild-type mice. Under scotopic settings, we observed decreased a-wave and b-wave 
responses in hP23H Rho Tg mice compared to that of the wild-type mice (Fig. 25.3). 
Chop−/− hP23H Rho Tg mice showed no significant difference in ERG responses 
compared to hP23H Rho Tg mice or Chop+/− hP23H Rho Tg mice (Fig. 25.3). To-
gether with our ONL measurements (Fig. 25.1), these results show that loss of Chop 
did not significantly alter photoreceptor cell death or retinal function during retinal 
degeneration in the hP23H Rho Tg mice.

Fig. 25.3   Chop deficiency 
did not rescue the function 
of photoreceptors in human 
P23H rhodopsin transgenic 
mice. ERG a- and b-wave 
amplitudes were measured 
with wild-type, hP23H Rho 
Tg, Chop−/− hP23H Rho Tg, 
and Chop+/− hP23H Rho Tg 
mice at postnatal day 95

 

Fig. 25.2   Induction of Chop mRNA in retinas of human P23H rhodopsin transgenic mice. a Anal-
ysis of Chop mRNA levels by quantitative PCR using wild-type or hP23H Rho Tg mouse retina 
samples at postnatal day age 56. Student’s two-tailed t-tests were performed to determine P values. 
b Analysis of Chop mRNA levels in the retinas of hP23H Rho Tg mice by quantitative PCR using 
mouse retina samples at indicated postnatal day ages. Samples were plotted relative to the average 
Chop mRNA levels at the same age in wild-type control mice. a–b The mean value at each time 
point is plotted as a horizontal line
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25.4  Discussion

Many mutations in the human RHO causing autosomal dominant retinitis pigmen-
tosa lead to rhodopsin misfolding and activate the UPR signaling network (Mendes 
et al. 2005; Lin et al. 2007; Gorbatyuk 2010; Chiang et al. 2012). CHOP is one 
component of the UPR that is potently induced by ER toxins in vitro and in some 
animal models of diabetes and neuropathy; and loss of Chop partially prevents cell 
death in response to these types of ER stress (Zinszner et al. 1998; Oyadomari et al. 
2002; Pennuto 2008). Here, we found that transgenic mice expressing human P23H 
rhodopsin did not induce the expression of Chop during retinal degeneration, nor 
did loss of Chop significantly alter retinal degeneration by histology or ERG during 
the time period we studied, with the exception of an early time point at ~ P60, when 
we saw a mild improvement that did not persist in older animals.

Our findings are similar to prior studies of transgenic mice expressing T17M rho-
dopsin, transgenic “GHL” mice expressing triply mutated V20G, P23H, and P27L 
rhodopsin, and heterozygous P23H rhodopsin knock-in mice ( RhoP23H/+) (Nashine 
et al. 2013; Adekeye et al. 2014; Chiang et al. 2014), where the loss of Chop also did 
not confer significant protection from retinal degeneration in T17M Rho, RhoP23H/+, 
or “GHL” mice, except in older GHL animals with severe retinal degeneration and 
then, only in their central retinas. As we did not study hP23H Rho Tg mice beyond 
9 months of age, we cannot exclude that Chop may play additional roles at more ad-
vanced stages of retinal degeneration in older hP23H Rho Tg mice. In summary, our 
results provide additional evidence that CHOP does not significantly contribute to 
the photoreceptor cell death associated with rhodopsin mutations. We suggest that 
photoreceptors expressing mutant rhodopsins may preferentially activate compo-
nents of the UPR other than CHOP. Given the complexity and diversity of signaling 
programs activated by ER stress, future studies will determine which components 
of the UPR signaling network are most important in photoreceptors undergoing 
misfolded rhodopsin-induced ER stress.
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Abstract Whole-genome linkage mapping identified a region on chromosome 
10q21.3-q22.1 with a maximum LOD score of 3.0 at 0 % recombination in a six-
generation family with autosomal dominant retinitis pigmentosa (adRP). All known 
adRP genes and X-linked RP genes were excluded in the family by a combina-
tion of methods. Whole-exome next-generation sequencing revealed a missense 
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mutation in hexokinase 1, HK1 c.2539G > A, p.Glu847Lys, tracking with disease 
in all affected family members. One severely-affected male is homozygous for this 
region by linkage analysis and has two copies of the mutation. No other potential 
mutations were detected in the linkage region nor were any candidates identified 
elsewhere in the genome. Subsequent testing detected the same mutation in four 
additional, unrelated adRP families, for a total of five mutations in 404 probands 
tested (1.2 %). Of the five families, three are from the Acadian population in Louisi-
ana, one is French Canadian and one is Sicilian. Haplotype analysis of the affected 
chromosome in each family and the homozygous individual revealed a rare, shared 
haplotype of 450 kb, suggesting an ancient founder mutation. HK1 is a widely-
expressed gene, with multiple, abundant retinal transcripts, coding for hexokinase 
1. Hexokinase catalyzes phosphorylation of glucose to glusose-6-phospate, the first 
step in glycolysis. The Glu847Lys mutation is in a highly-conserved site, outside of 
the active site or known functional sites.

Keywords Hexokinase · Founder effect · Retinitis pigmentosa · Autosomal 
dominant retinitis pigmentosa · Next-generation sequencing · Linkage mapping
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26.1  Introduction

Retinitis pigmentosa (RP) has a prevalence of approximately 1 in 4000 and affects 
more than 1.5 million individuals world-wide (Haim 2002; Daiger et al. 2007). 
RP is extremely heterogeneous: mutations in more than 60 genes cause syndromic 
and non-syndromic forms of RP, more than 3100 mutations have been described 
in these genes, and disease symptoms and progression are highly variable (Daiger 
et al. 2007; Berger et al. 2010; Wright et al. 2010; RetNet 2014). Our research fo-
cuses on finding genes and mutations causing autosomal dominant RP (adRP). To 
date mutations in more than 20 genes are known to cause adRP and these genes and 
mutations are themselves highly heterogeneous (Daiger et al. 2014a).

In research over the past 25 years we have assembled a cohort of adRP families 
and applied a wide range of methods to detect the disease-causing mutation in each 
family, most recently using several next-generation sequencing (NGS) approaches 
(Sohocki et al. 2001; Sullivan et al. 2006; Daiger et al. 2014a; Daiger et al. 2014b). 
In one large, six-generation Louisiana family, UTAD003, linkage mapping identi-
fied a novel adRP locus on chromosome 10q22. Here we report identification of the 
disease-causing gene and mutation in this family and evidence of a founder-effect 
in the gene, hexokinase 1 (HK1), accounting for approximately 1 % of adRP in 
Americans of European origin and Europeans (Sullivan et al. 2014).

26.2  Materials and Methods

26.2.1  Family Ascertainment and Clinical Characterization

Families in the Houston AdRP Cohort are ascertained and examined by clinical 
collaborators in Houston, at the Retina Foundation of the Southwest, and in other 
retinal genetics centers. Clinical examinations include best-corrected visual acu-
ity, visual fields, dark adaptometry, dark-adapted full-field electroretinograms, 
spectral-domain optical coherence tomography, anterior and indirect ophthal-
moscopy, and retinal imaging (Churchill et al. 2013; Sullivan et al. 2014). Ge-
netic testing is conducted in the Laboratory for Molecular Diagnosis of Inherited 
Eye Diseases, a CLIA-Certified research facility in the Human Genetics Center, 
School of Public Health, at the University of Texas Health Science Center, Hous-
ton. Families in the Cohort have an initial diagnosis of adRP and three or more 
affected generations with affected females, or two or more generations with male-
to-male transmission. Currently, there are 270 families in the Cohort (Daiger et al.  
2014a).

The research adhered to the tenets of the Declaration of Helsinki and the study 
was approved by the Committee for the Protection of Human Subjects at UTHealth, 
Houston, and by human subjects review boards at participating institutions.
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26.2.2  Next-Generation Sequencing (NGS)

Whole-exome NGS of 4 affected and 4 unaffected members of UTAD003 was done 
at The Genome Institute, Washington Univ., St. Louis (Bowne et al. 2011). Exome 
capture was done using a customized Agilent SureSelect All Exome Kit v.2.0 or the 
Nimblegen SeqCap EZ Human Exome Library v.2.0. Illumina paired-end sequenc-
ing, alignment, and variant calling were performed using the VarScan and Mendle-  
Scan software packages developed for this project (Koboldt et al. 2014). Variants 
were ranked based on segregation, rareness in human populations, predicted func-
tional impact, and expression level in human retinal tissue.

26.2.3  Linkage Mapping and Haplotype Analysis

DNA samples from nine affected and six unaffected, at-risk, members of the 
UTAD003 family, and an additional parent, were genotyped at the UCLA Se-
quencing and Genotyping Center with an ABI High Density 5 cM STR marker set. 
Data from the 811 STR markers were analyzed with the LINKAGE package. For 
haplotyping, STR markers were selected from the ABI linkage mapping set and 
haplotypes were determined by inspection and confirmed by segregation analysis  
(Sullivan et al. 2014).

26.3  Results

26.3.1  Linkage Mapping in UTAD003

UTAD003 is a large Louisiana adRP family with over six known, affected generations 
(Fig. 26.1). It is one of the 270 AdRP Cohort families in our studies. Probands of fami-
lies in the cohort have been tested for mutations causing adRP by Sanger sequencing 
and retinal-capture NGS and, in the absence of male-to-male transmission, for muta-
tions in RPGR and RP2 (Sullivan et al. 2006; Churchill et al. 2013; Wang et al. 2013). 
No disease-causing mutations were detected in UTAD003 by these methods.

Samples from 19 family members were tested for linkage. Multipoint linkage 
analysis with affected family members produced a single chromosomal region with 
a LOD score of 3.0, on chromosome 10q21.3–10q22.1. This region spans approxi-
mately 9 Mb and includes 96 putative genes. Subsequently, intragenic and flank-
ing STR markers from the ABI linkage set were tested to refine the linkage region  
(Sullivan et al. 2014).

Whole-exome NGS revealed a missense mutation in the HK1 gene, c.2539G > A, 
p.Glu847Lys, tracking with disease in all available, affected members of UTAD003, 
with two homozygous copies in one severely-affected family member. No other 
potentially-pathogenic mutations were identified in the linkage region or elsewhere 
in the genome.
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26.3.2  Linkage Mapping in Additional Families

The entire HK1 gene was sequenced in 346 additional, unrelated probands with a di-
agnosis of adRP (Sullivan et al. 2014). The HK1 Glu847Lys mutation was found in 
all affected members of two additional families from the AdRP Cohort, UTAD936 
and UTAD952, both from Louisiana (Fig. 26.1). No other potential disease-causing 
mutations were observed in HK1. The exon containing the HK1 mutation was then 
sequenced in 64 more adRP families, from Canada and Europe, provided by the 
McGill Ocular Genetics Laboratory, McGill Univ. Health Center, Montreal. The 
Glu847Lys mutation was observed in all affected members of two of these families, 
MOGL1 and MOGL2, from Canada and Sicily, respectively (Fig. 26.1). The small-
est shared linkage region, including one informative, unaffected, at-risk member of 
UTAD952, is 55 kb (Fig. 26.2).

26.3.3  Disease Chromosome Haplotypes

Haplotypes defined by SNP markers flanking the HK1 mutation were tested in the 
five families, including the homozygous member of UTAD003, to determine the 
degree of sharing identical-by-descent between families (Fig. 26.2—excluding the 
unaffected individual in UTAD952). Since UTAD003, UTAD936 and UTAD952 
derive from Louisiana we expected a common ancestor. In confirmation, the shared 

Fig. 26.1   Pedigrees of five adRP families with the HK1 Glu847Lys missense mutation. Squares 
males; circles females; blackened symbols affected. All individuals with an HK1 genotype indi-
cated were tested. HK1−/+, heterozygous for the mutation; HK1+/+, homozygous for the mutation; 
HK1−/−, no mutation
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region in these families is approximately 500 kb centered on the HK1 mutation. 
(The homozygous male has distinct but overlapping haplotypes.) The Canadian and 
Sicilian families also share this haplotype with a total overlap of 450 kb. This is 
consistent with the mutation arising from a common ancestor living 100s of years 
ago (Sullivan et al. 2014).

26.3.4  Functional Evaluation

At least five alternate transcripts of HK1 are expressed in humans, encoding mul-
tiple alternate protein isoforms. Two isoforms predominate in the human retina; 
both contain the Glu847Lys mutation. Analysis of pathogenicity, e.g., PolyPhen 2, 
was inconclusive because of the multiple transcripts and several close-related hexo-
kinase genes in vertebrate species. Hexokinase 1 catalyzes the first step in phos-
phorylation of glucose to glucose-6-phosphate and may play a role in mitochondrial 
activity. However, the Glu847Lys mutation, though in a highly-conserved site, lies 
outside of known active sites in the protein, so the pathogenic mechanism of the 
mutation is not established at present (Sullivan et al. 2014).

26.3.5  Clinical Findings

Affected members of the families display a highly-variable RP phenotype including 
pericentral RP, an arcuate band of pigmentary degeneration, and/or central areolar 

Fig. 26.2   Chromosomal haplotypes in cis to the HK1 Glu847Lys mutation, including two distinct 
haplotypes in the homozygous individual in UTAD003, and an unaffected, at-risk individual in 
UTAD952. Exons of HK1 and distances (in kb) of chromosome 10q21.1 are shown at the top of 
the figure. SNP and markers defining the haplotype are listed at bottom. Observed SNP alleles are 
listed in each bar. Dark gray region of bars, shared SNP alleles; light gray region of bars, alleles 
not shared. The shared haplotype across all families is 450 kb ( top arrows), whereas the short-
est region of linkage overlap, including the unaffected member of UTAD952, is 55 kb ( second 
arrows)
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choroidal dystrophy. Symptoms by mid-life are mild to moderate. The homozygous 
male showed symptoms of RP at age 4 and when examined at age 33 had count-
finger acuity, severe retinal vascular attenuation, extensive bone spicule accumula-
tion, and macular atrophy in both eyes (Sullivan et al. 2014).

26.4  Discussion and Conclusion

The Glu847Lys missense mutation in the HK1 gene on 10q22.1 causes retinal dys-
trophy in five independently-ascertained families with adRP, including a homo-
zygous patient. The five families share a 450 kb haplotype suggesting the vari-
ant arose as an ancient founder mutation. The mutation has a frequency of 1 % in 
American, Canadian and European adRP families. The HK1 transcript is abundant 
in mammalian retina, with at least five alternate transcripts. All of the transcripts are 
predicted to contain the mutation, at a highly conserved site. The hexokinase gene 
family (HK1–HK4) encodes proteins involved in the phosphorylation of glucose, 
an essential step in glycolysis. The glycolytic pathway plays a central role in photo-
receptor and retinal cell metabolism. In addition, the hexokinase 1 protein is known 
to interact with mitochondrial membranes, as a modulator of apoptosis. The HK1 
mutation may cause retinal disease as a result of perturbations in glycolysis and/or 
mitochondrial activity. Rare recessive, null, mutations in HK1 cause early-onset, 
non-spherocytic hemolytic anemia, which was not observed in these patients, and 
the Glu847Lys missense mutation is outside of any known active site. Thus the HK1 
adRP mutation may act through a unique biological mechanism.
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Chapter 27
FAM161A and TTC8 are Differentially 
Expressed in Non-Allelelic Early  
Onset Retinal Degeneration

Louise M Downs and Gustavo D Aguirre

Abstract Ciliary genes FAM161A and TTC8 have been implicated in retinal 
degeneration (RD) in humans and in dogs. The identification of FAM161A and 
TTC8 mutations in canine RD is exciting as there is the potential to develop novel 
large animal models for RD. However, the disease phenotypes in the dog and the 
roles of abnormal genes in disease pathology have yet to be fully characterized. 
The present study evaluated the expression patterns of FAM161A and TTC8 during 
normal retinal development in dogs, and in three non-allelic, early onset canine 
RD models at critical time points of the disease: RCD1, XLPRA2 and ERD. Both 
genes were differentially expressed in RCD1 and ERD, but not in XLPRA2. These 
results add evidence to the hypothesis that (a) mutations in many retinal genes have 
a cascade effect on the expression of multiple, possibly unrelated genes and (b) a 
large number and wide range of genes probably contribute to RD in general.

Keywords Retinal degeneration · Dog model · Expression study · Photoreceptor · 
Microtubules · FAM161A · TTC8

27.1 Introduction

Progressive Retinal Atrophy (PRA) is the term used for a group of inherited reti-
nal diseases that is characterized by degeneration of the retina, ultimately result-
ing in loss of vision. Rod photoreceptor (PR) responses are typically lost first, fol-
lowed by cone PR responses (Parry 1953). Bilateral and symmetrical changes are 
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observed in the fundus, including a hyper-reflective tapetum in the early stages, 
followed by attenuation of blood vessels, pigmentary changes and atrophy of the 
optic nerve head (Miyadera et al. 2012). PRA is considered the canine homologue 
of the retinitis pigmentosa (RP) group of diseases in man, and most of the genes 
that have been implicated in PRA to date have also been implicated in human retinal 
degeneration (RD).

Recently the ciliary genes FAM161A (family with sequence similarity 161, mem-
ber A) and TTC8 (tetratricopeptide repeat domain 8) have been reported to be caus-
ally associated with two distinct forms of PRA in the Tibetan Spaniel and Golden 
Retriever breeds, respectively (Downs and Mellersh 2014; Downs et al. 2014). Both 
genes have also been implicated in human RD: FAM161A in RP (Bandah-Rozenfeld 
et al. 2010; Langmann et al. 2010), and TTC8 in RP and Bardet-Biedl Syndrome 
(Ansley et al. 2003; Riazuddin et al. 2010). While these discoveries may enable the 
study of new canine models for human RD, the models have yet to be established 
and adequately characterized.

While retinal tissues from dogs homozygous for FAM161A or TTC8 mutations 
was not available for study, retinas were available from three non-allelic canine 
models: RCD1 (Suber et al. 1993; Ray et al. 1994), XLPRA2 (Zhang et al. 2002) and 
ERD (Goldstein et al. 2010). To this end, we evaluated the expression of FAM161A 
and TTC8 throughout normal retinal development, and in the three disease models, 
and compared the expression with that of PR-specific genes.

27.2 Materials and Methods

27.2.1 Tissue Samples

Retinal tissue was obtained from age-matched normal and mutant dogs as described 
previously (Genini et al. 2013). Mutant dogs comprised three canine models for 
early onset RD: rod cone dysplasia 1 (RCD1), X-linked progressive retinal atrophy 
2 (XLPRA2) and early retinal degeneration (ERD). In all three models retinal de-
velopment begins normally, but abnormalities soon develop, and there is progres-
sive and relatively fast PR degeneration (Supplementary Fig. 27.S1, reproduced 
from Genini et al. 2013). PR loss and the decrease in outer nuclear layer thickness 
is more rapid and aggressive in RCD1, and slightly delayed in XLPRA2 (Acland 
and Aguirre 1987; Farber et al. 1992; Beltran et al. 2006). ERD is characterized by 
abnormal development and degeneration of PR cells, as well as concurrent pho-
toreceptor mitosis that generated new hybrid rod/S-cone cells (Berta et al. 2011). 
Tissues were obtained from normal, RCD1 and XLPRA2 animals at 3, 5, 7 and 16 
weeks of age (3 biological replicates/time-point/group) and from two ERD mutants 
at 6.4 weeks, three at 8.3/9.9 weeks and two at 11.9/14.1 weeks of age (labelled 6, 
9 and 13 weeks, respectively, for analysis).
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27.2.2 qRT-PCR

Unlabeled primers were used to detect all isoforms of FAM161A (Fwd: GCTGAAA-
GCTGCCCACTTGGAAAC and Rev: TCAAGGAGGAAGACGGCCCTAAATC) 
and TTC8 (Fwd: ACTCATGTGGAAGCCATTGCATGC and Rev: AGCTGCCTC-
TTCTTCGTTTTCAGC). Primers and fluorescently labelled probes described pre-
viously (Komaromy et al. 2010) were used to detect RHO and OPN1LW. TaqMan 
assays (Applied Biosystems) were used to detect ARR3 (Cf03460116_m1), SAG 
(Cf02628845_m1) and GAPDH (Hs02786624_g1). The preparation of cDNA and 
qRT-PCR reactions were conducted as described previously (Genini et al. 2013), 
using the 7500 real-time PCR machine and detection software (v2.0.1, Applied Bio-
systems).

27.2.3 qRT-PCR Analysis

The CT values of the genes were normalized against those of GAPDH. The ratios 
and fold change (FC) were calculated using the ΔΔCT method (Livak and Schmitt-
gen 2001) for 3, 5 and 7 week normal versus 16 week normal; RCD1 and XLPRA2 
versus age-matched normal; and ERD at 6, 9 and 13 weeks versus normal at 5, 7 
and 16 weeks. An unpaired t-test was applied, and p-values were controlled using 
the Benjamini & Hochberg (BH) step-up false discovery rate (FDR) procedure to 
determine whether any differences observed were statistically significant ( p < 0.05). 
Samples with p < 0.05 and FC > ± 2 were considered differentially expressed (DE).

27.3 Results

27.3.1 Expression in Normal Retina

Expression levels of all six genes in normal retinal development (3, 5 and 7 weeks) 
was compared with normal adult retina at 16 weeks (Acland and Aguirre 1987). 
The expression levels of cone genes, Arrestin ( ARR3) and L/M-Opsin ( OPN1LW) 
and rod gene S-Antigen ( SAG), did not change significantly throughout develop-
ment (Fig. 27.1). However, the other rod gene analyzed, rhodopsin ( RHO), was 
DE (− 2.3 fold) at 3 weeks, and then increased from 5 weeks to levels that were not 
significantly different than at 16 weeks. Expression of FAM161A and TTC8 was 
highest at 3 and 5 weeks of age, followed by decreased expression to the levels 
in the 16 week retina; only TTC8 was DE (+ 2.6 fold) at 3 weeks compared with  
16 weeks.
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27.3.2 Expression in Disease Models

Expression levels of all six genes in mutant retina at all ages was compared 
with age-matched normals (Fig. 27.2 and Supplementary Fig. 27.S2), and 
DE genes/models/time-points identified. In all models RHO, ARR3 and SAG 
showed a general trend of down-regulation compared with age-matched nor-
mal. RHO was DE in one or more stages of all three models, ARR3 in RCD1 
and ERD, and SAG in RCD1 only. Conversely, OPN1LW was not DE in any 
disease. FAM161A and TTC8 have similar expression patterns to one another in 
each model (Fig. 27.2 and Table 27.1). In RCD1 both genes are down-regulated 
throughout, with FAM161A DE at 7 and 16 weeks (− 2.1 and − 2.5 fold, respec-
tively), and TTC8 at 3 weeks (− 2.1 fold). In XLPRA2, neither gene is DE. In 
ERD, only TTC8 is DE at 13 weeks (+ 4.1 fold), although the up-regulation of 
FAM161A is also statistically significant (+ 1.6 fold).

Fig. 27.2   RNA expression changes in RCD1 and XLPRA2 at 3, 5, 7 and 16 weeks versus age-
matched normal, and in ERD at 6, 9 and 13 weeks versus normal at 5, 7 and 16 weeks, respectively. 
An asterisk indicates statistical significance, a double asterisk differential expression and error 
bars represent standard deviation of biological triplicates/duplicates

 

Fig. 27.1   RNA expression changes in developing normal retina at 3, 5 and 7 weeks compared to 
young adult (16 weeks). A double asterisk indicates significant differential expression and error 
bars represent standard deviation of biological triplicates
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27.4 Discussion

In this study we examined the expression of FAM161A and TTC8, along with se-
lected rod- and cone-specific genes throughout normal retinal development, and in 
three canine RD models, RCD1, XLPRA2 and ERD.

FAM161A exists in two isoforms formed by alternative splicing of exon 4, and 
is expressed in multiple tissues, including the retina (Langmann et al. 2010). It lo-
calizes to the basal body, connecting cilium and centriole, and associates with the 
microtubule network during mitosis (Di Gioia et al. 2012; Zach et al. 2012). TTC8 
also exists in two main isoforms. One isoform, containing exon 2A, is expressed 
exclusively in the retina (Riazuddin et al. 2010), while the isoform lacking exon 2A 
is expressed in multiple ciliated tissues. Both isoforms localize to ciliated structures 
such as connecting cilium, centrosomes and basal bodies (Ansley et al. 2003). Our 
finding that maximum expression of TTC8 and FAM161A occurs at 3 and 5 weeks 
in normal retina, and is followed by reduced expression at 7 and 16 weeks suggests 
that both of these genes are required for both the development and maintenance of 
the retina. This is similar to previously reported results for FAM161A expression in 
mice (Langmann et al. 2010).

Similar expression patterns, for the most part, were reported for RHO, SAG, 
ARR3 and OPN1LW using the same models and time-points in a previous study 
(Genini et al. 2013). The main difference was observed with SAG, which was DE in 
the late stages of ERD and XLPRA2 in the Genini study, but not here. Two factors 
may account for these differences: (1) this study was conducted and cDNA gener-
ated separately from that of Genini et al. resulting in probable variations in template 
concentration; (2) the small number of tests in this study will have impacted the 
BH-controlled p-value. FAM161A and TTC8 are DE at one or more time-points in 
the RCD1 retina, while neither are DE in XLPRA2. The difference in expression 
between RCD1 and XLPRA2 could be due to the comparatively greater severity of 
the former. Interestingly, we observed that FAM161A and TTC8 are significantly up-
regulated at 13 weeks in ERD, compared with 16 weeks normal. FAM161A binds 
to microtubules and undergoes redistribution during mitosis (Zach et al. 2012) and 
is thought to play a role in the structural composition, maintenance and function 
of the connecting cilium (Karlstetter et al. 2014). TTC8 is thought to be associated 
with ciliary biogenesis or function (Ansley et al. 2003). Characteristic of ERD is 

ERD RCD1 XLPRA2
3 weeks FAM161A – − 1.1 − 1.0

TTC8 – − 2.1 − 1.8
5/6 weeks FAM161A − 3.1 − 1.4 − 1.2

TTC8 − 4.2 − 2.1 − 1.4
7/9 weeks FAM161A − 1.3 − 2.1 − 1.6

TTC8 − 1.3 − 1.6 + 1.0
16/13 
weeks

FAM161A + 1.6 − 2.5 − 1.2
TTC8 + 4.1 − 1.2 + 1.1

Table 27.1   Fold change of 
TTC8 and FAM161A. Dif-
ferentially expressed genes 
(FC > ± 2, p < 0.05) are in 
bold
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concurrent PR apoptosis and mitosis (Berta et al. 2011). It is therefore not entirely 
unexpected to observe the up-regulation of FAM161A and TTC8 in this disease, 
especially given the pivotal role of the microtubule network in mitosis.

We have characterized FAM161A and TTC8 expression throughout the develop-
ment of the normal retina, as well as in three non-allelic RD models. Both genes 
are DE in two of these models, providing further evidence that degeneration of the 
retina is likely caused by aberrant expression of multiple genes, not only by the 
mutant gene.
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Chapter 28
Mutations in the Dynein1 Complex  
are Permissible for Basal Body Migration  
in Photoreceptors but Alter Rab6 Localization

Joseph Fogerty, Kristin Denton and Brian D. Perkins

Abstract The photoreceptor outer segment is a specialized primary cilium, and 
anchoring of the basal body at the apical membrane is required for outer segment 
formation. We hypothesized that basal body localization and outer segment for-
mation would require the microtubule motor dynein 1 and analyzed the zebraf-
ish cannonball and mike oko mutants, which carry mutations in the heavy chain 
subunit of cytoplasmic dynein 1 ( dync1h1) and the p150Glued subunit of Dynactin 
( dctn1a). The distribution of Rab6, a player in the post-Golgi trafficking of rhodop-
sin, was also examined. Basal body docking was unaffected in both mutants, but 
Rab6 expression was reduced. The results suggest that dynein 1 is dispensable for 
basal body docking but that outer segment defects may be due to defects in post-
Golgi trafficking.

Keywords Zebrafish · Retinal development · Dynein · Basal body · Rab

28.1  Introduction

The formation of cilia, including photoreceptor outer segments, requires the migra-
tion of a mature centriole to the apical cell surface, where it docks and forms the 
basal body. Basal body docking requires an intact apical actin network and elements 
of the planar cell polarity pathway (Boisvieux-Ulrich et al. 1990; Park et al. 2006). 
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Further, disruption of the microtubule network by nocodazole did not prevent basal 
body migration, but did block cilia growth, suggesting microtubule-based motors 
may function in vesicle-mediated trafficking (Boisvieux-Ulrich et al. 1989). Never-
theless, the identity of the molecular motors and the precise cellular mechanism(s) 
governing basal body migration remain unclear. As cilia defects cause disorders 
termed “ciliopathies,” of which retinal degeneration is often a symptom (Kim et al. 
2004), it is critical to understand the mechanisms directing basal body localization.

Cytoplasmic dyneins are multisubunit, minus end-directed microtubule motors 
(Kardon and Vale 2009). Cytoplasmic dynein 1 (Dynein1) controls all minus-end 
directed microtubule transport within the cytoplasm, while cytoplasmic dynein 2 
(Dynein2) transports cargo along the ciliary axoneme. We and others have shown 
that photoreceptor outer segment formation requires both Dynein1 and Dynein2, 
but the precise mechanisms remain poorly defined (Tai et al. 1999; Krock et al. 
2009; Insinna et al. 2010). We hypothesized that Dynein1 contributes to outer seg-
ment development by promoting apical migration of the centriole and tested this 
hypothesis in zebrafish lacking components of the Dynein1 complex. The zebrafish 
cannonball ( cnb) mutant contains a null mutation in the heavy chain of Dynein1 
( dync1h1) (Insinna et al. 2010) while the zebrafish mutant mikre oko ( mok) disrupts 
the p150Glued subunit of the dynactin complex. Both mutants show outer segment 
and nuclear positioning defects (Tsujikawa et al. 2007). We investigated basal body 
localization in the zebrafish Dynein1 mutant cnb and the dynactin mutant mikre 
oko. We also explored the alternate hypothesis that outer segment disruption is due 
to impaired post-Golgi trafficking by examining the distribution of Rab6 in photo-
receptors.

28.2  Materials and Methods

28.2.1  Animal Husbandry

Adult zebrafish were maintained at 28.5 °C in recirculating water systems (Pentair, 
Apopka, FL). The cannonball mutant dync1h1mw20 and the Tg(-5actb2:cetn4-GFP) 
line (Randlett et al. 2011) were gifts from Dr. Brian Link (Medical College of Wis-
consin), while the mikre oko mutant, dctn1am632 was obtained from the Zebrafish 
International Resource Center (Eugene, OR). All experiments were approved by the 
IACUC at the Cleveland Clinic and conformed to the ARVO policy on animal care.

28.2.2  Basal Body Localization in Dynein Mutants

Larvae were fixed in 4 % paraformaldehyde in PBS, followed by infiltration with 
30 % sucrose and embedding in Tissue Freezing Medium. Cryosections (10 µm) 
were stained with Alexa-568 phalloidin (Life Technologies, 1:100) and DAPI. Im-
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aging was performed on a Zeiss AxioImager Z.2 fluorescence microscope with Ap-
oTome.2 attachment and AxioCam MRm camera. Images were exported to ImageJ, 
and basal bodies in single Z slices were categorized as being present in the ONL 
or apical to it. The ONL was defined as the region of DAPI staining between phal-
loidin reactivity at the outer limiting membrane and outer plexiform layer. Samples 
for electron microcopy were prepared as described (Sukumaran and Perkins 2009), 
although wash and dehydration steps were carried out in a BioWave Pro (Pelco).

28.2.3  Genetic Mosaics and Immunohistochemistry

In vitro transcribed RNA encoding mCherry with a nuclear localization signal (nls-
mCherry) was prepared using the Message Machine kit (Ambion) and 50 pg of 
RNA was injected into cnb;Tg(-5actb2:cetn4-GFP) and mok;Tg(-5actb2:cetn4-
GFP) embryos at the 1-cell stage. Embryos were grown to the 1000 cell stage and 
cells were transplanted to age-matched wild-type embryos. Donor embryos were 
genotyped by high-resolution melt curve analysis on a BioRad CFX96 real-time 
PCR machine. Retinal cryosections of mosaic fish were stained with a polyclonal 
mCherry antibody (BioVision, 1:500) and imaged as described above. For Rab6 im-
munostaining, sections were stained with rabbit polyclonal Rab6 antibodies (Santa 
Cruz, 1:1000), followed by Alexa conjugated secondary antibodies and imaged as 
described above.

28.3  Results

We examined basal body localization in cnb and mok larvae harboring the Tg(-
5actb2:cetn4-GFP) transgene, which expresses a centrin-GFP fusion protein from 
the actin promoter and labels centrioles and basal bodies. At 2.5 days post fertiliza-
tion (dpf) phalloidin staining was disorganized and photoreceptor nuclei failed to 
form an orderly layer in the mutants. By 4 dpf both mutants exhibited a significant 
degree of retinal degeneration, with rounded nuclei and disorganized lamination 
(Fig. 28.1a–c). Despite this phenotype, both mutants contained areas of well-pre-
served apical actin network, in which basal bodies were localized near the OLM. 
Outside of these areas, basal bodies could be occasionally observed among photo-
receptor nuclei in the ONL. Mislocalized basal bodies usually colocalized with ec-
topic actin staining (Fig. 28.1c, arrow). Semi-quantitative analysis of mutant retinas 
showed significant mislocalization of basal bodies in 3 dpf cnb fish (Fig. 28.1d). 
Transmission electron microscopy (TEM) revealed properly formed basal bodies 
and cilia near the apical membrane, but we were unable to locate any mislocalized 
basal bodies by TEM (Fig. 28.1e–g).

Closer examination of the mislocalized basal bodies revealed that they were 
apical and adjacent to nuclei that were similarly displaced (Fig. 28.2a–c), sug-
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gesting that basal bodies were properly positioned in the displaced cells. To test 
this hypothesis, mosaic animals were generated by blastula transplantation to as-
sign individual basal bodies to their nuclei. cnb;Tg(-5actb2:cetn4-GFP) and mok; 
Tg(-5actb2:cetn4-GFP) embryos were injected with RNA encoding NLS-mCherry 

Fig. 28.1   a–c Representative images of basal body positioning in 3 dpf larvae. Green = centrin-
GFP, red = phalloidin, blue = DAPI. OLM outer limiting membrane, ONL outer nuclear layer, OPL 
outer plexiform layer. Bar = 10 µm. d Quantification of basal bodies in the ONL. e–g Electron 
microscopy images of 3 dpf larvae. Bar = 1 µm. Boxed areas are magnified in e′–g′ to show basal 
bodies (bar = 250 nm)
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to label nuclei. Transplanted donor cells from these embryos had mCherry-labeled 
nuclei and GFP-labeled basal bodies in an unlabeled wild-type host. While the 
nuclei of mutant donor cells were frequently positioned at the basal extent of the 
ONL, consistent with previous observations (Insinna et al. 2010), the basal bod-
ies of these cells were not only apical relative to the cell body but also properly 
positioned near the OLM (Fig. 28.2d–f). This indicated that the apical domain re-
mained intact despite the majority of the cell’s volume being displaced, and sug-
gested that dync1h1 and dctn1a are dispensable for basal body migration in retinal  
photoreceptors.

An alternative hypothesis for the disruption of outer segment formation in cnb 
and mok larvae is that loss of Dynein1 activity blocks ciliary transport of post-
Golgi vesicles. Rab6 is present in the trans-Golgi and in rhodopsin transport carri-
ers, and interacts with the dynactin complex and the dynein light chain DYNLRB1. 
Staining with Rab6 antibodies revealed fewer Rab6-positive foci in cnb and mok 
retinas at 4 dpf, suggesting that post-Golgi trafficking is disrupted in mutant cells  
(Fig. 28.3).

Fig. 28.3.   Rab6 immunostaining ( green) is reduced in cnb and mok larvae at 4 dpf. Red = phal-
loidin, blue = DAPI. Bar = 10 µm

 

Fig. 28.2   a–c Basally displaced nuclei ( blue, outlined) are adjacent to mislocalized basal bodies 
( green, arrows). Phalloidin staining ( red). d–f Genetically mosaic 5 dpf fish expressing centrin-
GFP ( yellow) and nuclear mCherry ( red) in donor cells. Basally displaced photoreceptor nuclei 
( asterisks) are associated with properly localized basal bodies ( arrows). Sections are stained with 
phalloidin ( green) and DAPI ( blue). Bar = 10 µm

 



214 J. Fogerty et al.

28.4  Discussion

Our finding that basal body positioning at the apical membrane during ciliogenesis 
is independent of Dynein1 function is somewhat surprising, especially given the 
role of dynein in other centriole functions such as spindle positioning (Kiyomitsu 
and Cheeseman 2013). However, evidence from multiciliated epithelial cells sug-
gests that basal body positioning depends on an intact actin network, suggesting a 
myosin motor (Boisvieux-Ulrich et al. 1990). In the developing retinal epithelium, 
basal bodies remain apically polarized except during M phase, after which they 
quickly return to the apical membrane. This phenomenon is conserved even after 
centrin2 knockdown, which destabilizes tubulin (Norden et al. 2009). These obser-
vations, when combined with the results from genetic mosaic animals presented 
here, argue against a role for microtubule-based motors in basal body migration.

We evaluated a role for dynein-based motility on post-Golgi trafficking in ze-
brafish photoreceptors. The dynein light chain Tctex-1 binds rhodopsin (Tai et al. 
1999), and minus-end directed motors are thought to transport rhodopsin from the 
Golgi (Troutt and Burnside 1988). Moreover, Rab6 and Rab11 label rhodopsin-
containing vesicles and interact with components of the dynein-dynactin complex 
(Short et al. 2002; Wanschers et al. 2008; Mazelova et al. 2009). Our finding that 
Rab6 immunoreactivity is decreased in cnb and mok photoreceptors indicates that 
interactions between the dynein complex and post-Golgi trafficking machinery are 
critical for outer segment development, and may explain why mutant outer seg-
ments fail to elongate.
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Chapter 29
RDS Functional Domains and Dysfunction  
in Disease

Michael W. Stuck, Shannon M. Conley and Muna I. Naash

Abstract The photoreceptor specific tetraspanin protein retina degeneration slow 
(RDS) is a critical component of the machinery necessary for the formation of rod 
and cone outer segments. Over 80 individual pathogenic mutations in RDS have 
been identified in human patients that lead to a wide variety of retinal degenerative 
diseases including retinitis pigmentosa, cone-rod dystrophy, and various forms of 
macular dystrophy. RDS-associated disease is characterized by a high degree of 
variability in phenotype and penetrance, making analysis of the underlying molecu-
lar mechanisms of interest difficult. Here we summarize our modern understand-
ing of RDS functional domains and oligomerization and how disruption of these 
domains and complexes could contribute to the variety of disease pathologies seen 
in human patients with RDS mutations.

Keywords RDS · Retinal degeneration slow · Retinal degeneration · Pattern 
dystrophy · Outer segment · Retinitis pigmentosa · Macular degeneration

29.1 Introduction

Mutations in the photoreceptor specific gene RDS (also known as peripherin-2) 
lead to a variety of dominantly inherited retinal diseases such as cone-rod dystro-
phies, retinitis pigmentosa and various forms of macular degeneration including 
various pattern dystrophies (for review see Boon et al. 2008). RDS mutations are 
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characterized by a high degree of inter- and intra- familial phenotypic heterogene-
ity, with differences in age-of-onset, severity, and penetrance all of which compli-
cate scientific examination of underlying molecular mechanisms (Boon et al. 2008). 
To date no effective treatment has been developed that allows for the targeted treat-
ment of RDS associated pathologies.

RDS is a tetraspanin transmembrane glycoprotein that specifically localizes to 
the disc/lamellar rim region of rod and cone photoreceptor outer segments (OSs). 
It is important for the initial formation of OSs during development and the proper 
maintenance and organization of these structures over the life of the animal (Gold-
berg 2006). While both rods and cones require RDS for the proper formation of 
their OSs, it is clear that the two cell-types have differences in their utilization of 
RDS as shown by the cell-type specificity of many disease causing mutations as 
well as animal studies (Farjo et al. 2006; Boon et al. 2008).

29.2 RDS Functional Domains

RDS function and importance to OS development and maintenance can be viewed 
through two critically important functional domains, the C-terminus and the second 
intradiscal (D2) loop. The C-terminal domain of RDS is characterized by multiple 
critical regions: the OS targeting sequence, an amphipathic helix, and sites that me-
diate non-covalent protein-protein interactions. The OS targeting sequence neces-
sary for the proper delivery of RDS from its site of synthesis in the inner segment to 
the OS resides within residues 317–336 with a critical valine residue at position 332 
(Tam et al. 2004; Salinas et al. 2013). Once in the OS, the C-terminal amphipathic 
helix (residues 310–328) is thought to act as a membrane curvature sensor, encour-
age membrane fusion events, or directly promote rim curvature through insertion 
of the amphipathic helix into the outer leaflet of disc membranes (Boesze-Battaglia 
et al. 1998; Khattree et al. 2013). While it is clear that this domain plays a role in the 
membrane dynamics of the OS, it is not clear to what extent this domain regulates 
membrane curvature in vivo. The C-terminal domain also interacts with melanoreg-
ulin, calmodulin, glutamic acid rich protein (GARP), and the GARP domain on the 
cyclic nucleotide gated channel (CNGB1) (Poetsch et al. 2001; Boesze-Battaglia 
et al. 2007b; Edrington et al. 2007). GARP interactions are thought to help organize 
the rod OS by linking the disc rim to the plasma membrane through the CNG chan-
nel. Both melanoregulin and calmodulin are proposed to regulate the fusogenic/
membrane curvature activity of the RDS C-terminus and have been proposed to 
play a role in the addition of discs at the base of the OS and the shedding of discs 
to the retinal pigment epithelium (RPE) (Boesze-Battaglia et al. 2007b; Edrington 
et al. 2007).

The second critical domain of RDS is the D2 loop. The RDS D2 loop medi-
ates the assembly of RDS and its non-glycosylated homologue rod outer segment 
membrane protein-1 (ROM-1) into covalent and non-covalent homo- and hetero-
oligomers (Goldberg and Molday 1996; Ding et al. 2005). ROM-1 is thought 
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to primarily play an ancillary role in RDS function possibly through regulating 
membrane curvature/fusion and disc size (Clarke et al. 2000; Boesze-Battaglia 
et al. 2007a). Following synthesis, RDS and ROM-1 assemble into non-covalent 
heterotetramers (Goldberg et al. 1995; Goldberg and Molday 1996). These tetra-
mer “building blocks” further assemble into large stable complexes through the 
formation of a covalent disulfide bond mediated by a cysteine residue at position 
150 (Goldberg et al. 1998; Chakraborty et al. 2009). Importantly although the C-
terminus is the region involved in sensing and mediating membrane curvature, for-
mation of the large covalently linked RDS complexes is necessary for RDS to curve 
membranes (Wrigley et al. 2000), highlighting the importance of oligomerization 
for RDS function. Interestingly, while both RDS and ROM-1 form intermolecular 
disulfide bonds, ROM-1 is excluded from the largest RDS oligomers, being found 
only in intermediate and tetrameric complexes (Loewen and Molday 2000). In sum-
mary, the RDS D2 loop regulates the formation of large RDS arrays, as well as 
smaller RDS/ROM-1 oligomers which are necessary for proper OS formation.

29.3 RDS and Disease

Of the diseases associated with RDS mutations, retinitis pigmentosa remains the 
most clearly understood. As demonstrated by the rds+/− mouse, RDS haploinsuffi-
ciency leads to a significant disruption of OS morphogenesis and slow degeneration 
within the retina (Hawkins et al. 1985). In the rds+/−, rods are impacted preferential-
ly with the cones remaining largely spared from degeneration until around 6 months 
of age (Cheng et al. 1997). Rod degeneration occurs first in this model followed by 
cone death, similar to what has been seen in patients. While it is unclear why rod 
photoreceptors are more sensitive to RDS haploinsufficiency than cones, this line of 
reasoning is well supported by studies both in vitro and in vivo examining disease 
causing mutations of RDS. For example, the retinitis pigmentosa linked mutation 
C214S results in a misfolded protein which is degraded and results in haploinsuf-
ficiency in vivo (Saga et al. 1993; Stricker et al. 2005). The loss of RDS protein as 
a molecular mechanism for retinitis pigmentosa has made RDS an attractive target 
for gene replacement therapies although significant difficulties remain in terms of 
generating sufficient expression to mediate good rescue (Cai et al. 2009).

While the molecular mechanisms that underlie RDS’ role in diseases such as 
cone-rod dystrophies and macular dystrophy are less well understood, recent stud-
ies have begun to shed light on these important classes of RDS associated diseases. 
In patients, the disease progression associated with this class of RDS mutation often 
involves significant defects in the neighboring RPE cells and can lead to retinal or 
choroidal neovascularization, although phenotypes vary significantly (Wroblews-
ki et al. 1994; Khani et al. 2003; Yang et al. 2004; Boon et al. 2008). In models 
we have studied, macular or pattern dystrophy mutations produce an RDS protein 
which is able to fold sufficiently well to avoid misfolded protein-mediated degrada-
tion and retains the ability to traffic to the OS but exhibits defects in RDS/ROM-1 
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oligomerization. This results in defects in OS morphogenesis, maintenance, and 
function (Ding et al. 2004; Conley et al. 2014; Stuck et al. 2014). For example, we 
have studied mouse models carrying either of two D2 loop mutations (R172W and 
Y141C) which lead to macular or pattern dystrophy in patients. Both R172W-RDS 
and Y141C-RDS form different types of abnormal disulfide linked RDS/ROM-1 
complexes in the OS even in the presence of wild-type RDS (Conley et al. 2014; 
Stuck et al. 2014). In the case of R172W, ROM-1 is incorporated into abnormal 
intermediate sized RDS/ROM-1 disulfide linked complexes and the total pool of 
RDS is more susceptible to tryptic digestion than wild-type RDS (Ding et al. 2004; 
Conley et al. 2014). In contrast, Y141C forms abnormally large covalently linked 
complexes which also incorporate ROM-1. In keeping with the differences in oligo-
merization defects in the R172W vs. Y141C, other phenotypes were also distinct. 
R172W expression led to dramatic vascular defects and cone-specific functional 
deficits, while the Y141C mice displayed abnormal yellowish fundus flecking and 
defects in both rod and cone function.

Although the pathways that link biochemical defects in RDS oligomerization 
to changes in retinal health (like vascular/fundus abnormalities or ERG changes) 
remain under investigation, multiple types of downstream effects are known. First 
is a direct effect of the abnormal RDS on photoreceptors. Because oligomerization 
is a prerequisite for RDS function, and properly functioning RDS is required for 
OS morphogenesis, it makes sense that mutants with altered oligomerization would 
not be able to support normal OS development. This manifests as shortened and 
or swirly/malformed OSs, which logically do not function properly. Of particular 
remaining interest is how abnormal RDS/ROM-1 oligomerization could lead to al-
terations in the ability of RDS to mediate membrane curvature/fusion or OS scaf-
folding; both properties that are involved in OS development.

However, direct photoreceptor effects do not account for the many variable phe-
notypes seen in patients, thus the second level on which biochemical alterations in 
RDS complexes impact retinal health lies in their ability to disrupt the RPE. It has 
been shown that in the rds+/− mouse significant changes occur in both the size of 
RPE OS phagosomes as well as the temporal regulation of their uptake (Hawkins 
et al. 1985). We have hypothesized that in the case of macular dystrophy mutations, 
there is additional stress since the phagosomes will also be packed with abnormal 
RDS complexes which could have a negative impact on RPE health. The idea that 
RPE phenotypes in patients occur due to RPE stress from abnormal RDS complexes 
and degenerating photoreceptors is useful because it can help explain the pheno-
typic heterogeneity associated with RDS mutations. While many individual muta-
tions affect RDS oligomerization, we observe that the changes are not uniform from 
mutation to mutation and would thus be predicted to result in phenotypic variability 
in patients. Furthermore, a wide variety of non-genetic factors can also influence 
long-term RPE health which could contribute to phenotypic variability within pa-
tients carrying the same mutation. While this model provides a powerful explana-
tion for how individual mutations can lead to the complex phenotypes observed in 
different human patients, it also implies that many mutations do have toxic gain-
of-function effects and thus simple gene replacement therapies alone may not be 
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effective in treating RDS-associated diseases. Further exploration of mechanisms 
connecting defects in the photoreceptor protein RDS and abnormalities in adjacent 
tissues (such as the RPE and vasculature) are ongoing.

Many questions remain in regards to how the different types of RDS com-
plexes (tetramers, intermediate complexes, large oligomers) function in the OS 
under both normal and pathological conditions. It is unclear why rods and cones 
have differential requirements for RDS and how these differences are affected by 
disease-causing-mutations. A better understanding of how RDS fulfills its normal 
function during OS morphogenesis will play an important role in enabling us to 
elucidate disease mechanisms and develop rational therapeutics.
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Chapter 30
TULP1 Missense Mutations Induces  
the Endoplasmic Reticulum Unfolded  
Protein Response Stress Complex (ER-UPR)

Glenn P. Lobo, Lindsey A. Ebke, Adrian Au and Stephanie A. Hagstrom

Abstract Mutations in the TULP1 gene are associated with early-onset retinitis pig-
mentosa (RP); however, the molecular mechanisms related to the deleterious effects 
of TULP1 mutations remains unknown. Several studies have shown that misfolded 
proteins secondary to genetic mutations can accumulate within the endoplasmic 
reticulum (ER), causing activation of the unfolded protein response (UPR) com-
plex followed by cellular apoptosis. We hypothesize that TULP1 mutations produce 
misfolded protein products that accumulate in the ER and induce cellular apoptosis 
via the UPR. To test our hypothesis, we first performed three in-silico analyses of 
TULP1 missense mutations (I459K, R420P and F491L), which predicted misfolded 
protein products. Subsequently, the three mutant TULP1-GFP constructs and wild-
type (wt) TULP1-GFP were transiently transfected into hTERT-RPE-1 cells. Stain-
ing of cells using ER tracker followed by confocal microscopy showed wt-TULP1 
localized predominantly to the cytoplasm and plasma membrane. In contrast, all 
three mutant TULP1 proteins revealed cytoplasmic punctate staining which co-
localized with the ER. Furthermore, western blot analysis of cells expressing mutant 
TULP1 proteins revealed induction of downstream targets of the ER-UPR complex, 
including BiP/GPR-78, phosphorylated-PERK (Thr980) and CHOP. Our in-vitro 
analyses suggest that mutant TULP1 proteins are misfolded and accumulate within 
the ER leading to induction of the UPR stress response complex.
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Keywords Endoplasmic reticulum · Unfolded protein response · Photoreceptor · 
Retinal degeneration · Tulp1

Abbreviations

TULP1 Tubby like protein 1
PERK  Double-stranded RNA activated protein kinase (PKR)-like endo-

plasmic reticulum kinase
pPERK Phosphorylated PERK on amino acid position Thr980
UPR Unfolded protein response
ER Endoplasmic reticulum
wt Wild-type
RP Retinitis pigmentosa
BiP/ GRP-78  Binding of immunoglobulin protein or 78 kDa glucose-regulated 

protein
CHOP CCAAT-enhancer-binding protein homologous protein

30.1 Introduction

Retinitis pigmentosa (RP) is an inherited retinal disease estimated to affect 
approximately 1 in 4000 individuals in the US and Europe. The disease is typically 
diagnosed in young adults and the progression of retinal degeneration is insidious, 
which can ultimately lead to blindness (Hartong et al. 2006). This devastating 
disease causes functional impairment and significant decline in quality of life.  
Unfortunately, no current therapies cure or prevent the onset of symptoms. Through 
elucidating molecular pathogenesis of disease, therapeutic interventions can be 
targeted towards preventing or delaying photoreceptor cell death and subsequent 
vision loss.

Mutations in the gene Tubby-like protein-1 ( TULP1) have been shown to be 
the underlying cause of an early-onset form of autosomal recessive RP (Hagstrom 
et al. 1998). TULP1 is a photoreceptor-specific protein that is involved in protein 
transportation between the inner and outer segments (IS and OS, respectively) 
(Hagstrom et al. 1999). It has been suggested that misfolded proteins, secondary 
to genetic mutations, induce activation of the unfolded protein response (UPR) 
mediated by the ER. As a result, an intracellular signal transduction pathway 
initiates a cascade of events that ultimately leads to photoreceptor cell death 
(Chakrabarti et al. 2011; Noorwez et al. 2008; Jing et al. 2012; Ryoo et al. 2007). 
This study investigates whether TULP1 missense mutations produce misfolded 
proteins that accumulate within the ER and induce the UPR complex. Although 
this in-vitro study provides the foundation for understanding the pathogenesis of 
TULP1-induced RP, in- vivo or ex-vivo models are required to further validate 
this pathway and allow for investigation of therapeutics to aid in the attenuation 
of photoreceptor cell death.
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30.2 Materials and Methods

30.2.1 Cell Culture

Human hTERT-RPE-1 cells (human pigmented retinal pigment epithelial cells) 
were maintained in F12:DMEM medium containing high-glucose supplemented 
with 10 % fetal bovine serum (FBS).

30.2.2 In Silico Analyses of TULP1 Mutations

Protein stability of three missense TULP1 mutations were evaluated using the pro-
grams PolyPhen 2.0 (http://genetics.bwh.harvard.edu/pph2/), SIFT (http://sift.jcvi.
org/) and I-Mutant 3.0 (http://gpcr.biocomp.unibo.it/cgi/predictors/I-Mutant3.0/I-
Mutant3.0.cgi) (Adzhubei et al. 2010; Kumar et al. 2009; Capriotti et al. 2005, 
2008). SIFT predicts whether an amino acid substitution affects protein function. 
Mutations with a SIFT score of < − 2.5 are predicted to be deleterious. PolyPhen 2.0 
predicts the damaging effects of missense mutations on protein folding. I-Mutant 
3.0 predicts the thermostability changes created by a single point mutation on a 
native protein sequence. Values of < − 0.5 predict decreased protein stability with 
the potential for aggregation.

30.2.3 TULP1 Plasmid Construction

The full-length TULP1 (ENST00000229771) open-reading frame was amplified 
from human retina RNA by RT-PCR using the primers Tulp1-Fwd (5′-GGAA-
GATCTCATGCCTCTGCGGATGAA-3′) and Tulp1-Rev (5′-GTAGAATTC-
GCTCGCAAGCCAGCTTCCC-3′). The TULP1 fragment was cloned into the 
mammalian expression vector pEGFP-N1 (Clontech) containing a GFP tag. The 
pTULP1-wt-GFP plasmid was used as a template to engineer (in-vitro site directed 
mutagenesis system: Stratagene) each of the TULP1 mutations (I459K, R420P and 
F491L) previously identified in patients with RP (Hagstrom et al. 1999). Appropriate 
construction of the GFP-tagged wt and mutant TULP1 plasmids were verified by 
sequence analysis using pEGFP-N1 vector primers.

30.2.4 Cell Culture and Transient Transfection

hTERT-RPE-1 cells were grown on glass coverslips in six-well plates (for subcel-
lular localization assays) or cultured in 100 cm2 dishes (for western blot analysis). 
At 60 % confluence, cells were transfected with 3 µg of purified plasmid DNA 
(pTULP1-wt-GFP or individual mutant pTULP1-GFP) using FuGENE6 (Roche) as 
previously described (Lobo et al. 2012).

http://genetics.bwh.harvard.edu/pph2
http://sift.jcvi.org
http://sift.jcvi.org
http://gpcr.biocomp.unibo.it/cgi/predictors/I-Mutant3.0/I-Mutant3.0.cgi
http://gpcr.biocomp.unibo.it/cgi/predictors/I-Mutant3.0/I-Mutant3.0.cgi
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30.2.5 Immunofluorescence

Six days after transfection, cells on coverslips were washed once with PBS and 
stained using the ER tracker-red dye for 30 min (Invitrogen) and processed as 
described before (Lobo et al. 2010, 2012). Subcellular localization patterns of 
the GFP tagged TULP1 proteins and the ER in hTERT-RPE-1 cells was achieved 
by imaging at 488 nm (TULP1 expression-green fluorescence) and 587 nm (ER 
tracker-red fluorescence) wavelengths respectively. All experiments were carried 
out in triplicate. Approximately 100 cells from 10–15 fields were counted per 
experiment.

30.2.6 Western Blot Analysis

Total protein from transfected hTERT-RPE-1 cells was isolated using lysis buf-
fer as previously described (Lobo et al. 2010, 2012). Primary antibodies included 
anti-α-tubulin (Cell Signaling; at 1:10,000 dilution) as the loading control, anti-
Tulp1 (Hagstrom et al. 1999), anti-BiP, anti-phosphorylated PERK (Thr980) and 
anti-CHOP (Cell Signaling; all at 1:1000 dilution).

30.3 Results

30.3.1  In-Silico Analyses Predict Mutant TULP1 Protein to 
be Misfolded

We first evaluated the protein stability of three missense TULP1 mutations pre-
dicted by the programs PolyPhen 2.0, SIFT and I-Mutant 3.0. All three bioinfor-
matic programs predict that the three mutant TULP1 proteins would be unstable 
and misfolded under physiological conditions and therefore pathological 
(Table 30.1).

Table 30.1   In-silico analysis of TULP1 mutations on protein stability
TULP1 mutation SIFT score and 

predictions
Predicted protein 
tertiary structure by 
PolyPhen 2.0

I-Mutant 3.0 (kcal/mol)
Thermostability

R420P − 4.436, deleterious Misfolded − 0.94, unstable
I459K − 6.027, deleterious Misfolded − 1.80, unstable
F491L − 5.576, deleterious Misfolded − 1.55, unstable
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30.3.2 Mutant TULP1 Protein Localizes to the ER

To confirm in-silico predictions, we expressed recombinant wt-TULP1 and mutant 
TULP1 constructs in hTERT-RPE-1 cells, comparing the expression and localiza-
tion patterns of resultant proteins. Using immunostaining and confocal micros-
copy, we observed wt-TULP1 to be distributed predominantly in the cytoplasm 
and plasma membrane (Fig. 30.1a). In contrast, all three mutant TULP1 proteins 
showed punctate localization staining within the cytoplasm in a pattern resembling 
the ER. To confirm this observation, we performed immunostaining for the ER 
using an ER tracker. Merged images showed that the three mutant TULP1 proteins, 
but not wt-TULP1, co-localized with ER tracker, confirming ER localization for 
the mutant TULP1 proteins (Fig. 30.1b–d). These results provide evidence that, in 
hTERT-RPE-1 cells, mutant TULP1 protein can exist in an improperly folded state, 
the majority of which resides within the ER.

Fig. 30.1  Mutant TULP1 protein is retained within the ER. Subcellular localization of wild-type 
( wt) and mutant TULP1 proteins in hTERT-RPE1 cells. GFP tagged wt and mutant TULP1 con-
structs were transfected into hTERT-RPE1 cells. GFP-TULP1 proteins ( green) and the ER ( red) 
were visualized using a confocal microscope. Wt TULP1 protein (a) displayed predominantly 
cytoplasmic and plasma membrane localization patterns. In contrast, all three TULP1 mutants (b, 
c and d) showed punctate staining and co-localization with the ER tracker
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30.3.3  Mutant TULP1 Protein Causes Induction of the UPR 
Stress Complex

The retention of misfolded protein within the ER can trigger the induction of the 
UPR complex (Chakrabarti et al. 2011). To determine if retained mutant TULP1 
protein is indeed misfolded we first examined TULP1 protein expression levels in 
hTERT-RPE-1 cells. Immunoblotting for TULP1 in cells expressing mutant TULP1 
showed that protein levels were markedly reduced compared to cells expressing 
wt TULP1 (Fig. 30.2). Furthermore, mutant TULP1 protein displayed slower gel 
migration patterns compared to wt TULP1, indicating that mutant TULP1 proteins 
have reduced electrophoretic mobility and are likely misfolded (Fig. 30.2). We then 
examined if retained mutant TULP1 proteins can activate the UPR complex. In 
hTERT-RPE-1 cells expressing mutant TULP1 protein, we observed significantly 
elevated levels of the ER resident protein BiP/GRP-78 as compared to cells 
expressing the wt TULP1 protein (Fig. 30.2). Reduced levels of mutant TULP1 
protein expression is an indication of translational attenuation in response to UPR. 
This observation prompted us to investigate PERK, which is known to mediate this 
response (Jing et al. 2012; Ryoo et al. 2007). In fact, expression levels of phos-
phorylated PERK and its downstream target, CHOP, were markedly induced in cells 
expressing mutant TULP1 as compared to wt TULP1 expressing cells.

30.4 Discussion

Retinitis pigmentosa (RP) represents a group of inherited diseases that results in 
blindness through destruction of rod and cone photoreceptors. Mutations in TULP1 
are associated with early-onset RP. However, molecular mechanisms related to the 
deleterious effects of TULP1 mutations remain unknown. Using in- silico analysis, 

Fig. 30.2  Mutant TULP1 
protein retention within 
the ER induces the UPR 
complex. hTERT-RPE-1 cells 
were transfected with wild-
type and individual mutant 
TULP1 constructs. Six days 
post transfection, total protein 
was isolated from cells and 
approximately 25 μg was 
electrophoresed on 4–20 % 
SDS-PAGE gels. Blots 
were probed for TULP1 and 
specific stress markers of the 
UPR complex as indicated
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our investigations determined that TULP1 mutations alter protein conformation and 
stability. In an in-vitro cell based assay, we established that mutant TULP1 pro-
teins are misfolded as they displayed reduced gel electrophoretic mobility patterns 
compared to wt TULP1. The misfolded mutant proteins were predominantly retained 
within the ER, as evidenced by co-localization with ER tracker. Retention of mutant 
TULP1 within these protein-processing organelles caused a significant induction of 
BiP/GPR-78, indicating retention of misfolded mutant TULP1 within the ER and 
activation of the UPR complex to eliminate these toxic proteins. Reduced protein 
expression levels of TULP1 displayed by all mutants suggest that the UPR initiated 
translational attenuation in an effort to prevent toxic protein production and accu-
mulation. Indeed, we observed activation of phosphorylated PERK, a UPR protein 
which functions to stop translation in response to ER stress. Finally, induction of 
CHOP, a pro-apoptotic protein, in cells expressing mutant TULP1 protein indi-
cated that sustained retention of misfolded mutant TULP1 within the ER causes 
a downstream apoptotic response. Therefore, based on our in-silico and in-vitro 
analysis, we propose that misfolding and retention of mutant TULP1 in the human 
retina could induce the ER-UPR stress complex, ultimately impacting cone and rod 
viability and should be considered a potential mechanism for pathogenicity associ-
ated with photoreceptor death. Future studies should be aimed at evaluating this 
mechanism in-vivo or ex-vivo and developing therapeutic approaches to alleviate 
retinal degeneration targeted protein folding by using pharmacological chaperones 
(Noorwez et al. 2008; Calamini et al. 2010; Stevens et al. 2010).
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Chapter 31
Understanding Cone Photoreceptor Cell Death 
in Achromatopsia

Livia S. Carvalho and Luk H. Vandenberghe

Abstract Colour vision is only achieved in the presence of healthy and functional 
cone photoreceptors found in the retina. It is an essential component of human 
vision and usually the first complaint patients undergoing vision degeneration have 
is the loss of daylight colour vision. Therefore, an understanding of the biology and 
basic mechanisms behind cone death under the degenerative state of retinal dys-
trophies and how the activation of the apoptotic pathway is triggered will provide 
valuable knowledge. It will also have broader applications for a spectrum of visual 
disorders and will be critical for future advances in translational research.

Keywords Achromatopsia · Cone dystrophies · Cone photoreceptors · Cell death · 
Cone degeneration · Apoptosis

31.1  Introduction

Amongst the different neuronal cell types in the retina, photoreceptor cells are criti-
cally important as they are responsible for light detection. They form two classes, the 
rods and cones, with the cone cells responsible for daylight colour vision, photopic 
light detection and high visual acuity. In patients undergoing retinal degeneration, 
loss of acuity and colour vision is usually their main complaint and in some cases, 
vision deterioration is only reported once the degeneration has actually spread to the 
cones, even though the peripheral rods have been non-functional for months or even 
years. It is clear therefore that the quality of life of patients diagnosed with inherited 
retinal dystrophies would have a huge improvement if we were able to somehow 
preserve, or at least slow down, cone photoreceptors degeneration. However trying 
to understand the mechanisms behind cone cell death has turned out to be a complex 
web of up- and down-regulation of different cellular pathways. Several research 
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groups have now made a considerable effort towards identifying and elucidating 
these pathways and their role in triggering cone death using different models of 
retinal degeneration. The aim of this review is to offer a succinct overview of some 
of these efforts using cone-specific degeneration models.

31.2  Primary Cone Loss in Achromatopsia

Complete achromatopsia (ACHM) is an autossomal recessive congenital disorder 
where only the cone photoreceptors are non-functional and/or undergo degenera-
tion, while scotopic rod-mediated vision usually remains unaffected. It is mostly 
caused by mutations in cone-specific phototransduction genes, can affect 1:30,000 
people in the US and has debilitating symptoms like severe photophobia, reduced 
or complete loss of colour discrimination, pedular nystagmus and severely reduced 
visual acuity (Michaelides et al. 2004). So far mutations in four genes have been 
reported to cause ACHM: cone-specific alpha transducin ( GNAT2), the alpha and 
beta subunit of the cone-specific cyclic nucleotide-gated (CNG) channel ( CNGA3 
and CNGB3) and the cone-specific phosphodiesterase alpha’ subunit ( PDE6C—re-
viewed in (Berger et al. 2010). All these are key players in the phototransduction 
cascade and essential for cone function.

The historical classification of ACHM as a stationary disorder has been due to 
the fact that patients usually present with either absent cone function from birth or it 
remaines stationary with age (Sundaram et al. 2014). This led to the belief that the 
cone photoreceptors in these patients did not undergo active degeneration through-
out their lifetime. However, recent studies using high resolution optical coherence 
tomography (OCT) and adaptive optics (AO) to look at the progression of degen-
eration in ACHM patients showed that they can present mild to moderate morpho-
logical changes in the inner/outer segment region, substantial loss of foveal and 
macular cones, and, in extreme cases, hypoplasia of the retinal pigment epithelium 
(Thiadens et al. 2010; Genead et al. 2011; Scoles et al. 2014). Despite the controver-
sy surrounding cone fate in human patients, in the last few years several ACHM ani-
mal models have been described and shown to have active cone degeneration: the 
Cnga3 naturally-occurring mutant (Pang et al. 2010) and knockout mouse models 
( Cnga3-/-) (Biel et al. 1999), the Pde6c-deficient cpfl1 mouse and zebrafish models 
(Stearns et al. 2007; Chang et al. 2009) and the dog and mouse model of Cngb3 
deficiency (Sidjanin et al. 2002; Ding et al. 2009). Even though the progressive loss 
of cone photoreceptors was established in several of these models (Michalakis et al. 
2005; Ding et al. 2009; Fischer et al. 2010; Trifunovic et al. 2010; Xu et al. 2011), 
the precise kinetics of the degeneration has not yet been fully elucidated.
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31.3  PDE6 Deficiency and Cone Cell Death Mechanisms

Comparative analysis of three ACHM mouse models shows that they have a similar 
progression of cone death, with a sharp peak at roughly the same time around post-
natal day 24 (P24) (Michalakis et al. 2005; Ding et al. 2009; Trifunovic et al. 2010), 
but a continual degeneration was also reported in both the cpfl1 (Fischer et al. 2010) 
and Cnga3-/- models (Michalakis et al. 2005). The cpfl1 mouse has presented itself 
as an ideal model for understanding the mechanisms behind cone cell death since 
a fast degeneration rate is coupled with the existence of the analogous, and exten-
sively studied, rod-specific Pde6b-deficient rd1 mouse.

Seminal work in this field has been published by the Paquet-Durand group at the 
University of Tübingen where initial studies on the cpfl1 mouse indicated that the 
classical caspase-3-dependent apoptotic pathway is not activated in the degenerating 
cones (Trifunovic et al. 2010), mimicking previous results found in the rd1 mouse 
(Paquet-Durand et al. 2009; Sancho-Pelluz et al. 2010). Not surprisingly, this sug-
gests that the lack of a functional phosphodiesterase (PDE) might trigger similar cell 
death mechanism in both rods and cones. Indeed Trifunovic and colleagues were 
able to demonstrate that cyclic guanosine monophosphate (cGMP) accumulation, 
excessive activation of calcium-dependent calpains and cGMP-dependent protein 
kinase G (PKG) seen in the rd1 retina (Paquet-Durand et al. 2006, 2009) was also 
observed in the degenerating cpfl1 cones. They suggest that cone loss might be me-
diated by the phosphorylation of vasodilator-stimulated protein (VASP), a PKG sub-
strate that has been linked to cell death: accumulation of cGMP leads to excessive 
activation of PKG which in turn phosphorylates VASP. However the role of intracel-
lular calcium ([Ca2 + ]i) in the cell death mechanisms of Pde6-deficient photorecep-
tors remains unclear. A recent study using the transgenic Pde6c-deficient zebrafish 
( Pde6cw59) and rd1 mouse showed that [Ca2 + ]i levels in mutant Pde6cw59cones and 
rd1 rods was not increased compared to wild-type (Ma et al. 2013a). These results 
challenge the prevailing view that photoreceptor degeneration due to Pde6 mutation 
is driven by a global increase in [Ca2 + ]i levels although there is strong evidence that 
ablating Ca2 + influx through knockout of the CNG ion channel leads to preservation 
of rods in the rd1 mouse (Paquet-Durand et al. 2011). Furthermore, studies have 
shown that the degeneration process in rd1 rods involves a much more complex 
network of interlinked players including histone deacetylases and poly-ADP-ribose-
polymerase (Paquet-Durand et al. 2007; Sancho-Pelluz et al. 2010) which have not 
yet been investigated in the cpfl1 retina.

An alternative mechanism for cone cell death in the cpfl1 mouse was proposed 
by (Schaeferhoff et al. 2010) after showing upregulation of gene expression in cone 
and Müller glia cells of signal transducer and activator of transcription 3 ( Stat3) 
and different components of its signaling cascade like Cebpd, Socs3, Cntf and Lif. 
They suggest that activation of STAT3 signaling pathways is achieved via a 28-
fold upregulation of endothelin 2 ( Edn2) which is secreted in response to photore-
ceptor stress. Once again there are parallels between these findings and studies in 
the rd1 mouse which have shown retinal upregulation of STAT3 (Samardzija et al. 
2006) and Edn2 (Bramall et al. 2013). This suggests that Stat3 signaling and Edn2 
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 activation act as a potent cell survival response but do not however explain by 
which step of the active degeneration process they are triggered by. They also fail to 
provide evidence that Edn2 is actually expressed in photoreceptors cells, as opposed 
to activated Muller glia cells found in the outer nuclear layer (ONL).

31.4  The Role of CNG Channels in Cone Cell Death

The extremely small number of cone photoreceptors (around 2–3 %) and lack of 
a macula/foveal region in the mouse retina has been a challenging and restrictive 
step towards studying the cone system independently. An interesting approach to 
overcome this has been developed by the Ding group at the University of Okla-
homa where they have generated double knockout mouse lines of the Cngb3-/- and 
Cnga3-/- on the cone dominant Nrl-/- background (Thapa et al. 2012). These dou-
ble knockout mice show equivalent impaired cone function and degeneration to 
their respective single CNG subunit knockouts: reduced or absent eletroretinogram 
(ERG) responses, reduced expression of phototransduction proteins and increased 
TUNEL-positive apoptotic cells in the ONL. They have used these models to show 
a positive correlation between cone photoreceptors CNG channel deficiency and 
endoplasmic reticulum (ER) stress-associated apoptosis (Thapa et al. 2012). Both 
models show a significant increase in ER-stress marker proteins like Grp78/Bip, 
CHOP, phosphor-eIF2α and phosphor-IP3R; calpain II and enhanced processing of 
its substrate caspase-12, and the ER-stress suppressors Bcl-2 and Bcl-x proteins. 
The increased activation of ER stress canonical pathways in CNG deficient retinas 
was also shown to occur on a gene expression level (Ma et al. 2013b) and in in vitro 
testing of mutated CNGA3 subunits (Duricka et al. 2012). Interestingly, they also 
report nuclear translocation of mitochondria-related proteins like apoptosis-induc-
ing factor (AIF) and endonuclease G (Endo G) (Thapa et al. 2012). This is sugges-
tive that mitochondrial insult might have a role in the ER stress-mediated cell death 
process. However the fact that the levels of cytochrome c, caspase-3 and caspase-9 
are not altered indicates that mitochondria-mediated caspase-dependent apoptotic 
pathways are not active in these degenerating cones. Instead, based on their results, 
they suggest that the ER stress observed in these degenerating cones will activate 
the apoptotic response by at least three separate pathways mediated by CHOP, cas-
pase-12 and AIF/Endo G, respectively. What still remains unclear is how the ER 
stress is triggered in the first place. While Thapa et al. (2012) suggest three options, 
impaired Ca2 + homeostasis, opsin mis-localization and cGMP accumulation, their 
direct causality in this complex network of events requires further investigation.

Recently the role of cGMP cytotoxicity in CNG deficiency-related cell death 
has taken a step further as one of its major contributors (Xu et al. 2013). This 
 recent study shows that increased levels of cGMP in Cnga3-/-/Nrl-/- retinas strongly 
 correlate with increased PKG activity and expression and coincided with apoptotic 
cone cell death. Further support for cGMP involvement comes from improved cone 
survival seen in the double Cnga3-/-/Gucy2e-/- knockout mouse. Gucy2e encodes 
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retinal guanylate cyclase 1 (retGC1) and is responsible for cGMP production in 
cones, therefore knocking it out in Cnga3-/- retinas should lower cGMP levels coun-
terbalance its cytotoxic effects and promoting cone survival.

31.5  Concluding Remarks

Recent years have seen an incredible amount of data emerge from several different 
studies trying to elucidate who are the key players behind cone degeneration. The 
studies outlined above have used a variety of different approaches both technologi-
cally and in their choice of biological system. It is reassuring however that common 
pathways have been reported in different models. The increased cGMP and PKG ac-
tivity seen in both Pde6c-/- and Cnga3-/- retinas suggests a number of shared factors 
that could be involved in activating cone cell death response and therefore offers the 
promise of therapeutic interventions independent of the genetic lesion causing the 
degeneration. The role of cGMP cytotoxicity in photoreceptor cell death has already 
been recognized in other models of retinal degeneration like the rd1 and GCAP1 
mutants where it is clearly linked to a rise in intracellular Ca2 + (Paquet-Durand et al. 
2009). It is interesting to note however that the increased cGMP levels observed in 
the Pde6c-/- and Cnga3-/- models are explained by a high and low level of intracel-
lular Ca2 +, respectively. These differences between models are supported by the fact 
that the separate knockout of each of the CNG channel subunits generates around 
70 % of unshared genes being differentially expressed between the two models (Ma 
et al. 2013b). Therefore, comparisons between PDE6C- and CNG-deficiency medi-
ated cone cell death needs to take into consideration their different roles within the 
phototransduction cascade and what are the functional consequences of their demise.
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Chapter 32
Geranylgeranylacetone Suppresses  
N-Methyl-N-nitrosourea-Induced  
Photoreceptor Cell Loss in Mice

Yoshiki Koriyama, Kazuhiro Ogai, Kayo Sugitani, Suguru Hisano  
and Satoru Kato

Abstract Retinitis pigmentosa is a disease characterized by the loss of photorecep-
tor cells. The N-methyl-N-nitrosourea (MNU)-induced retinal degeneration model is 
widely used to study the mechanism of these retinal degenerative disorders because 
of its selective photoreceptor cell death. As for the cell death mechanism of MNU, 
calcium-calpain activation and lipid peroxidation processes are involved in the initi-
ation of this cell death. Although such molecular mechanisms of the MNU-induced 
cell death have been described, the total image of the cell death is still obscure. 
Heat shock protein 70 (HSP70) has been shown to function as a chaperon molecule 
to protect cells against environmental and physiological stresses. In this study, we 
investigated the effect of geranylgeranylacetone (GGA), an accylic polyisoprenoid, 
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on MNU-induced photoreceptor cell loss. HSP70 induction by GGA was effective 
against MNU-induced photoreceptor cell loss as a result of its ability to prevent 
HSP70 degradation. The data indicate that GGA may help to suppress the onset and 
progression of retinitis pigmentosa.

Keywords Retinitis pigmentosa · Heat shock protein 70 · N-methyl-N-nitrosourea · 
Photoreceptor cell death · Geranylgeranylacetone

32.1  Introduction

Retinal degenerative diseases such as retinitis pigmentosa are major causes of blind-
ness. There are no effective drugs, although it is estimated that at least 50 million 
people have these diseases. N-methyl-N-nitrosourea (MNU), an alkylating agent, 
causes selective photoreceptor cell death through an antiapoptotic mechanism (Yo-
shizawa et al. 2000). Oka et al. (2007) reported that MNU induces accumulation of 
intracellular calcium ions in the retina and induces calpain-dependent photoreceptor 
cell loss after intraperitoneal MNU injection. It has been also reported that cal-
pain activation promotes photoreceptor cell loss via a caspase-dependent pathway 
(Tsubura et al. 2010). However, the mechanism of MNU-induced photoreceptor cell 
loss is not fully understood.

Geranylgeranylacetone (GGA), an acylic polyisoprenoid developed and used 
clinically in Japan, is a unique anti-ulcer drug that protects gastric mucosa through 
heat shock protein 70 induction (Caprioli et al. 2003). HSP70 decreases photore-
ceptor apoptosis after retinal detachment (Kayama et al. 2011) and MNU treatment 
(Koriyama et al. 2014). However, the effects of GGA on MNU-induced photorecep-
tor cell death have not yet been reported. Therefore, we tested the potential role of 
GGA through HSP70 induction on MNU-induced photoreceptor cell death.

32.2  Materials and Methods

32.2.1  Experiment with Animals

All animals were maintained and handled in accordance with the ARVO Statement 
for the Use of Animals in Opthalmic and Vision Research, the guidelines of the 
Declaration of Helsinki, and the Guiding Principles in the Care and Use of Animals. 
Male C57BL/6 mice (8–9 weeks old; Japan SLC, Inc., Shizuoka, Japan) were anes-
thetized by intraperitoneal (i.p.) injection of sodium pentobarbital (30–40 mg/kg 
body weight). GGA (200 mg/ml, i.p.) was injected at 1 day before MNU injection 
(60 mg/kg, i.p.).
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32.2.2  Morphological Observation

Fixation and cryosection of retinal samples have been reported elsewhere (Koriya-
ma et al. 2013a). Mouse eyes were enucleated and fixed overnight in a 0.1 M phos-
phate buffer containing 4 % paraformaldehyde and 5 % sucrose. They were then 
incubated in 30 % sucrose overnight at 4 °C. Retinal sections were cut at a 12 μm 
thickness and mounted onto silane-coated slides. Hematoxylin and eosin staining of 
transverse sections was used to evaluate the retinal thickness.

32.2.3  Immunohistochemistry

After blocking with Block One (Nacalai Tesque, Kyoto, Japan), retinal sections 
were incubated with a primary antibody for rabbit anti-recoverin, a photoreceptor 
marker protein (Nagar et al. 2009; Chemicon, Millipore Corporation, CA, USA). 
The sections were then incubated with Alexa Fluor anti-IgG (Molecular Probes, 
Eugene, OR, USA) at 23 °C.

32.2.4  Western Blotting

Retinal extracts from mice were prepared under the indicated conditions after treat-
ment. Western blot analysis was carried out on the retina as described previously 
(Koriyama et al. 2013b). The primary antibodies used were anti-recoverin and anti-
HSP70 (Cell Signaling Technology, Tokyo, Japan).

32.3  Results

32.3.1  MNU Induces Selective and Progressive Loss  
of Photoreceptor

Hematoxylin and eosin staining in MNU-treated (60 mg/kg) mouse retinal sec-
tions showed that the ONL and outer plexiform layer became significantly thinner 
by day 3 when compared with control retinas. These changes in thickness became 
more severe by day 7 (Fig. 32.1a, b) (Koriyama et al. 2014). Western blot analysis 
of recoverin, a photoreceptor marker protein, showed that levels were significantly 
decreased from 3 days after MNU treatment (Fig. 32.1c). Terminal transferase-me-
diated dUTP nick-end labeling (TUNEL)-positive cells were observed in the ONL 
from 1 day after MNU treatment, but not in any other layers. The percentage of 
TUNEL-positive cells dramatically increased in the ONL at 1–3 days after MNU 
treatment (Koriyama et al. 2014).
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32.3.2  HSP70 Induced by GGA Protects Photoreceptor  
Cell Loss by MNU

Next, we evaluated the effect of GGA on the MNU-induced change in ONL thick-
ness. At 3 days, the ONL was thinner in MNU-treated retinas (Fig. 32.2a, b). 
Pretreatment of GGA strongly reduced this MNU-induced thinning of the ONL 
(Fig. 32.2c). To confirm the recovery effect of GGA on MNU-induced photorecep-
tor cell loss, we performed a Western blot analysis for recoverin. Recoverin levels 

cb a d

Fig.  32.2   GGA attenuated retinal degeneration by MNU in mice. a–c Immunohistochemistry 
for recoverin in vehicle control (a), 3 days of MNU (b), and 3 days of MNU + GGA (c). Scale 
bar = 50 μm. d GGA canceled the decrease of recoverin protein levels by MNU. Recoverin protein 
expression quantified by Western blot analysis. (Inh: HSP inhibitor.) *p < 0.01 vs. vehicle control, 
+p < 0.01 vs. MNU, #p < 0.01 vs. MNU + GGA ( n = 3)
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were significantly reduced at 3 days after MNU treatment (Fig. 32.2d). Pretreatment 
of GGA significantly increased the levels of recoverin in the MNU-treated retina. 
Furthermore, the HSP inhibitor (HSP inh., Calbiochem, Darmstadt, Germany) com-
pletely canceled the rescue effect of GGA on the MNU-induced reduction in recov-
erin protein levels induced by MNU.

32.3.3  MNU-Induced 4-hydroxy-2-nonenal (4HNE) Production 
and HSP70 Cleavage Before Photoreceptor Cell Loss

Tsuruma et al. (2012) reported that oxidative stress is involved in photoreceptor cell 
loss by MNU. 4HNE is generated by a free radical attack on omega polysaturated 
fatty acids and is largely responsible for pathogenesis during oxidative stress. We 
recently reported that levels of 4HNE clearly increased after MNU treatment in a 
time-dependent manner from day 1 (Koriyama et al. 2014). After 1 day of MNU 
treatment, the intact bands (~ 70 kDa) decreased, and the cleaved bands (~ 30 kDa) 
of HSP dramatically increased (Fig. 32.3). GGA dramatically returned intact HSP70 
to control levels.

32.4  Discussion

In this study, we provide compelling evidence that HSP70 induction by GGA pro-
tects photoreceptors against MNU-induced cell death. It has been reported that 
HSP70 has multiple antiapoptotic effects both upstream and downstream of caspase 
cascades (Garrido et al. 2003). In addition, we indicated that MNU cleaved HSP70 
before inducing photoreceptor cell loss. There are several reports on the mechanism 
of photoreceptor cell loss caused by MNU (Tsubura et al. 2011). The eye requires 
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more oxygen than the brain and, consequently, produces more reactive oxygen spe-
cies. Moreover, as retinal neurons are highly enriched in lipids containing polyun-
saturated fatty acids (Fliesler et al. 1983), they can easily produce 4HNE from poly-
unsaturated fatty acids during oxidation from aging. Tsuruma et al. (2012) reported 
that MNU induced oxidative radicals and production of 4HNE within a half day of 
treatment. Oka et al. (2007) further reported that the total number of calcium ion 
in MNU-treated retinas is strongly increased, and calpain activity is dramatically 
increased, from 1 day after MNU administration. Furthermore, we recently reported 
that the calpain inhibitor prevented photoreceptor cell loss by MNU (Koriyama 
et al. 2014). Recently, Yamashima et al. (2012) reported that the key event in cell 
death by the calpain-cathepsin hypothesis is HSP70 cleavage through carbonylation 
of HSP70 by 4HNE. Calpain-mediated cleavage of HSP70 after 4HNE produc-
tion may be possible in MNU-induced photoreceptor cell loss. In our recent study, 
the calpain inhibitor suppressed HSP70 cleavage and subsequent photoreceptor cell 
loss by MNU (Koriyama et al. 2014). In addition, induction of HSP70 by GGA 
prevented both HSP70 cleavage and MNU-induced photoreceptor cell loss. Taken 
together, we believe that GGA could be a new target for the treatment of retinal 
degenerative diseases, such as retinitis pigmentosa.
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Chapter 33
My Retina Tracker™: An On-line International 
Registry for People Affected with Inherited 
Orphan Retinal Degenerative Diseases  
and their Genetic Relatives - A New Resource

Joan K. Fisher, Russell L. Bromley and Brian C. Mansfield

Abstract My Retina Tracker™ is a new on-line registry for people affected with 
inherited orphan retinal degenerative diseases, and their unaffected, genetic rela-
tives. Created and supported by the Foundation Fighting Blindness, it is an interna-
tional resource designed to capture the disease from the perspective of the registry 
participant and their retinal health care providers. The registry operates under an 
Institutional Review Board (IRB)-approved protocol and allows sharing of de-
identified data with participants, researchers and clinicians. All participants sign 
an informed consent that includes selecting which data they wish to share. There 
is no minimum age of participation. Guardians must sign on behalf of minors, and 
children between the ages of 12 to 17 also sign an informed assent. Participants 
may compare their disease to others in the registry using graphical interpretations 
of the aggregate registry data. Researchers and clinicians have two levels of access. 
The first provides an interface to interrogate all data fields registrants have agreed 
to share based on their answers in the IRB informed consent. The second provides 
a route to contact people in the registry who may be eligible for studies or trials, 
through the Foundation.

Keywords Registry · Database · Clinical data · Natural history · Prevalence · 
Retinal degeneration · Retinitis pigmentosa · Longitudinal data · Usher syndrome · 
Stargardt disease
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33.1  Introduction

While many clinicians and researchers have their own private databases for patients 
and families affected by an inherited orphan retinal degenerations (IRD) there are 
no comprehensive shared resources available to the wider community. As a result it 
is difficult to understand the prevalence of the diseases, especially at a genetic level. 
There is not a lot of publically available natural history information for specific 
gene mutations, and there is little to no knowledge available that correlates clinical 
measures to the subjective measures of disease reported by affected people on a 
personal level. Enrolment for research or clinical studies can be challenging in the 
orphan disease space, dependent on being able to identify who has patients with a 
particular disease in their practice, and finding sufficient collaborators to meet the 
desired study size. To address these challenges the Foundation Fighting Blindness 
has established a new on-line resource for the community; a participant-friendly 
patient registry. While the Foundation has maintained a patient registry with over 
11,000 names for many years, it was little more than a contact list with limited dis-
ease information (Table 33.1).

To improve the value of the previous registry, the Foundation has developed 
an on-line patient registry that aims to collect longitudinal data provided both by 
affected people and their relatives, and their retinal healthcare providers. This will 
create a longitudinal set of data that reflects the subjective experience of the disease 

Table 33.1   A snapshot of the registry composition in July 2014. The entries in the previous regis-
try of the Foundation were rolled in to the new registry, My Retina Tracker™. While participants 
in the previous registry are being invited to update their entries, new profiles are also being cre-
ated.   My Retina Tracker has only been enrolling online publicly since June 2014. Significantly 
more detail on the diseases, including genotype, subtype of disease and mode of inheritance is 
available in My Retina Tracker. Currently 20 % of new profiles have a genotype associated with 
them. The current combined entries are 54 % female, 46 % male. The focus of My Retina Tracker 
is the inherited orphan retinal degenerative diseases and enrolment of people with age-related 
macular degeneration is not being actively sought
Composition of the registries
Disease Previous registry My Retina Tracker

New/updated profiles
Age-related macular degeneration 1,554 54
Retinitis pigmentosa-atypical 183 38
Retinitis pigmentosa-typical 6,941 501
Usher syndrome 879 114
Stargardt disease 631 53
Bardet-Biedl syndrome 168 12
Leber’s congenital amaurosis 145 43
Cone, cone-rod dystrophy 144 79
Choroideremia 110 110
Other 1,020 296
Total 11,775 1300
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in parallel with a clinical record of disease. The registry software platform is provid-
ed and supported by PatientCrossroads™, who also host and maintain the site www.
MyRetinaTracker.org. The registry was established using protocols approved by the 
Western Institutional Review Board (WIRB) and the US Army Medical Research 
and Materiel Command (USAMRMC) Human Research Protection Office (HRPO). 
The host site security meets HIPAA requirements to comply with the Health Infor-
mation Technology for Economic and Clinical Health Act (HITECH Act) (78 FR 
5565, January 25, 2013). Initially established as one of the registries contributing 
to the National Institutes of Health (NIH) Office of Rare Diseases, Global Rare 
Disease Registry (GRDR) initiative (Rubinstein et al. 2010), My Retina Tracker™ 
conforms to the use of the Global Unique Identifier (GUID) (Johnson et al. 2010), 
a universal subject identifier initially developed by the Simons Foundation Autism 
Research and National Database for Autism Research. This allows researchers to 
both share data specific to a study participant without exposing personally iden-
tifiable information, and to link those patients across independent databases that 
conform to the GUID standard. My Retina Tracker also conforms to the use of 
the NIH-supported Common Data Elements (CDE) for standardized terminology, 
which also facilitates the sharing of de-identified data across databases and en-
hances the accuracy of database searches.

The design of the registry was developed in collaboration with a team of 19 advi-
sors from within the US, Europe and Canada, that included leading retinal research-
ers and clinical experts, three genetic counselors, and two patient advocates. The 
site is compatible with multiple operating systems and devices, and is compatible 
with all major assistive reading technology software including Window-Eyes (GW 
Micro, Fort Wayne, IN), Apple assistive technologies (Cupertino, CA), and JAWS 
(Freedom Scientific, St. Petersburg, FL).

My Retina Tracker consists of three different portals into the registry database-
one for the registry participants, one for healthcare providers, and one for research 
access. Participation is open to anyone internationally. While the current interface 
is in English only, future plans include a multi-lingual interface. For people lacking 
internet access, or those who prefer a non-electronic submission, paper copies of the 
website are available that are then entered electronically by registry staff, trained 
in human research protection procedures. There is a complete firewall between the 
registry data and other activities of the Foundation, such as fundraising, to ensure 
the privacy of registry participants and to prevent unsolicited contact. A dedicated 
registry coordinator, who is certified in human subject research protection, provides 
active daily curation to ensure the accuracy and consistency of entered data.

33.2  Participant Portal

The participant portal is the access point for participants to create a registry account, 
establishing a username and password. After entering personal identification and 
contact information, which is not visible to users other than the registry coordina-
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tor, the participant is led through an on-line informed consent process and asked 
to make selections on how their data is shared, their willingness to be contacted if 
identified as a potential candidate for a research or clinical study, their willingness 
to share de-identified data with other registries such as the GRDR, and their prefer-
ences for being contacted by registry staff. While there is no age restriction for par-
ticipants, minors are registered by guardians, who file an informed consent on their 
behalf, and minors between the ages of 12 and 17 years old are requested to fill out 
their own informed assent form also. At the age of maturity, minors are contacted 
and asked to re-consent. Informed consent choices can be changed, on-line at any 
time by participants. Any participant can request removal from the registry at any 
time using an on-line option, or by contacting the registry coordinator by phone, 
email or regular mail. While participants cannot enter data for other members of 
their family, they can create a family ID and then invite other members of their fam-
ily to join using an “invite” function.  Exposing the family ID allows participants to 
show their family relationships if they wish. Genetic counselors may provide a fam-
ily tree which can also be entered into the registry profile using the “attachment” 
function described below.

Having established an account, a series of questions, developed with the registry 
advisory team, guide the participant to build a retinal health profile. Most entries 
use drop-down menus to select answers with standardized terminology. The ques-
tions cover the participant’s understanding of their disease and diagnosis, family 
history, general health, vision self-evaluation and visual functioning, incorporates 
the content covered by the National Eye Institute (NEI) VFQ25 (Mangione et al. 
2001) questions, impact on life such as driving and night time activities, measures 
they take for eye care including medications, vitamins and over the counter prod-
ucts, any clinical trials they have participated in and the dates of participation, their 
willingness to be considered for clinical trials, and similar lifestyle questions. While 
there are a total of 85 structured questions in the profile, some are contextual and 
seen only if relevant to previous question responses. Participants not completing 
their profiles when registering are guided back to the remaining questions at their 
next log-in. Using the registry data view, participants can then view graphs that 
show how their response to any particular question compares with the aggregated 
responses in the registry for that question. A limited number of free text boxes are 
provided for additional comments and a variety of file types including scanned 
images and pdf can be attached to the participant’s record. Importantly, the attach-
ments cannot be viewed by other users since they may contain personal identifiers, 
but the registry acts as a convenient place to store clinical notes, test results, or other 
documents the participants can have ready access to at any time. A communications 
initiative is being developed to encourage patients to actively engage with the regis-
try and update their records at least once annually to create a longitudinal record of 
the disease from their perspective.

All participants in the previous Foundation registry were rolled in to My Retina 
Tracker and are being contacted to re-consent and update their profiles.
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33.3  Clinical Portal

The clinical portal was designed with the registry advisory team, to provide a way 
for the patient to accumulate their clinical data in their registry profile, while mak-
ing the process quick and easy for their healthcare provider. Access to the clinical 
portal does not require the clinician to remember a username and password. The 
clinician navigates to the registry site, selects the “For Clinicians” tab and then en-
ters the name, postal/zip code of the patient, along with the clinician’s information. 
A data matching program determines if the patient is in the registry, and if there is a 
match puts the clinical data into a holding database, awaiting final acceptance by the 
registry curator. The portal is one-way and the clinician can not see any data in the 
registry. A clinician wanting access to their patient’s registry profile needs to request 
access from the patient. To see the universe of entries in the registry, the clinician 
must apply for access through the research portal. A downloadable form on the reg-
istry site allows the patient to formalize a written request, to their healthcare provid-
er, for data entry, for the providers’ records. Clinical data is split into 11 categories, 
and the clinician selects to display only those categories relevant to the exam they 
have performed: Diagnosis and Co-morbidities; Genetic Diagnosis (genes and spe-
cific mutations); Visual Acuity; Ocular Assessment; EZ Width; Static Visual Field; 
Kinetic Visual Field; ERG (Full Field); mfERG; Light/Dark Adaptation; and Biosa-
mples. Each category consists of a small set of essential questions, with drop-down 
menus used wherever possible to standardize and speed data entry. It is anticipated 
that data from most routine clinical exams will take no longer than 5–10 min to  
enter.

33.4  Research Portal

The research portal provides researchers and clinicians with access to all de-iden-
tified data in the registry that the participants agreed to share in their informed 
consent. A user-friendly on-line interface enables complex Boolean searches of all 
data fields available and returns the results along with the registry ID, which is a 
registry-specific ID, not the GUID. Using this interface, researchers can mine the 
data, visualize the results graphically, and carry out real-time inclusion/exclusion 
analysis to determine the numbers of participant who might be eligible for clinical 
studies. The de-identified data can be exported into an Excel file for further ma-
nipulation. 
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33.5  Access to Data in the Registry

To ensure registry participants are not being approached inappropriately, the Foun-
dation provides two levels of access to the registry data for researchers and health-
care providers. Level One access, which requires a username and password, allows 
these users to view and search the de-identified registry data. Level One access is 
applied for using a simple on-line request through the “For Researcher” tab on the 
My Retina Tracker website. The credentials of the person applying for access are 
verified before a username and password are activated. No reasonable request will 
be denied. Level Two access is provided for credentialed users seeking to make 
contact with registry participants. A Registry Scientific Review Board receives and 
reviews written applications. An application form is provided on-line, but requires a 
scientific outline and justification for the request, and evidence that the study is ap-
proved by an Institutional Review Board and an appropriate institution. If approved, 
applicants provide their contact information, a lay statement of why they wish to 
contact registry participants, a list of the registry IDs for the participants they wish 
to contact and an IRB-approved announcement or recruitment letter, if applicable. 
The registry coordinator then contacts each selected participant, provides the ap-
proved announcement, and invites the participant to contact the investigator using 
the information provided. Any further interaction occurs outside of the registry and 
its coordinator. It is in the hands of the participant who may choose whether or not 
to contact the investigator. When appropriate, the investigator may request a broad-
cast email to all registry participants, or a subset based on specific criteria, using a 
registry Newsletter functionality that enables all registrants to be contacted through 
the registry by the registry coordinator.

My Retina Tracker is free for participants and there are no charges for access to 
the clinical portal or for academic/non-profit researchers using the research portal. 
A charge will be made for commercial access to the research portal. As the registry 
grows and acquires longitudinal data this new resource should become a valuable 
tool for participants, researchers and clinicians.
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Chapter 34
A Mini-review: Animal Models of GUCY2D 
Leber Congenital Amaurosis (LCA1)

Shannon E. Boye

Abstract GUCY2D encodes retinal guanylate cylase-1 (retGC1), a protein that plays 
a pivotal role in the recovery phase of phototransduction. Mutations in GUCY2D 
are associated with a leading cause of recessive Leber congenital amaurosis 
(LCA1). Patients present within the first year of life with aberrant or unrecordable 
electroretinogram (ERG), nystagmus and a relatively normal fundus. Aside from 
abnormalities in the outer segments of foveal cones and, in some patients, foveal 
cone loss, LCA1 patients retain normal retinal laminar architecture suggesting 
they may be good candidates for gene replacement therapy. Several animal models 
of LCA1, both naturally occurring and engineered, have been characterized and 
provide valuable tools for translational studies. This mini-review will summarize 
the phenotypes of these models and describe how each has been instrumental in 
proof of concept studies to develop a gene replacement therapy for GUCY2D-LCA1.

Keywords Leber congenital amaurosis · LCA1 · Retinal guanylate cyclase · 
RetGC1 · GC1 · GUCY2D · AAV · Gene therapy

34.1  Introduction

Retinal guanylate cyclase-1 ( GUCY2D) encodes retGC1, a protein expressed in 
the outer segments of rods and cones (Dizhoor et al. 1994; Liu et al. 1994) which 
plays a pivotal role in the ability of photoreceptors to respond to light. In the dark, 
intracellular levels of Ca2+ and cGMP are high and the continuous flow of Na+ and 
Ca2+ ions through cGMP-gated channels and Na+/Ca2+ exchangers keep photore-
ceptors in a depolarized state. Absorption of photons results in hydrolysis of cGMP 
by cGMP phosphodiesterase (PDE), closure of the cGMP-gated channels, reduced 
influx of Na+/Ca2+ and ultimately hyperpolarization of the cell (Pugh et al. 1997). 
Recovery from light stimulation is owed, in part, to this change in intracellular 
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Ca2+. Vertebrate species possess two forms of retinal guanylate cyclases (retGC1 
and retGC2) and two guanlyate cyclase activating proteins (GCAP1 and GCAP2) 
(Dizhoor et al. 1995). GCAPs act as Ca2+ sensors that regulate the activity of retGCs. 
In the dark, high levels of intracellular Ca2+ promote its binding to GCAPs thereby 
inhibiting retGC activity. Upon light stimulation, Ca2+-dissociates from GCAPs, 
activating retGCs which then produce cGMP, reopen cGMP-gated channels and 
return the photoreceptor to the depolarized, dark-state (Arshavsky and Burns 2012). 
Mutations which reduce or abolish the ability of retGC1 to replenish intracellular 
Ca2+ are thought to lead to the biochemical equivalent of chronic light exposure.

34.2  LCA1 and Available Animal Models

Recessive mutations in GUCY2D are associated with Leber congenital amou-
rosis (LCA1), accounting for between 10–20 % of cases (Perrault et al. 2000). 
LCA1-causing mutations are distributed throughout GUCY2D and are predicted 
to alter enzyme structure/stability, impact transport of other peripheral membrane-
associated proteins and/or result in a null allele (Karan et al. 2010). Patients present 
within the first year of life with reduced visual acuity, aberrant or unrecordable 
ERG, nystagmus, oculo-digital sign and apparently normal fundus (Perrault et al. 
1999). Only two examples of post mortem, histopathological anaylsis from patients 
with confirmed GUCY2D mutations have been reported, each of which showed 
that LCA1 was associated with degeneration of both rods and cones (Milam et al. 
2003; Porto et al. 2003). However, more recent studies employing optical coherence 
tomography (OCT) to visualize patient retinas in-life report hallmark retinal pres-
ervation, even into the fifth decade (Pasadhika et al. 2010; Simonelli et al. 2007). 
The most thorough clinical characterization to date finds that LCA1 patients retain 
normal photoreceptor laminar architecture aside from foveal cone outer segment 
abnormalities and, in a few patients, foveal cone loss (Jacobson et al. 2013). Rod 
outer segment lengths were preserved and, in many patients, ERG, psychophysical 
and visually-guided behavior testing revealed that some rod function was retained. 
On the contrary, cone function was severely impaired. Cone ERGs were undetect-
able in all LCA1 patients evaluated. Psychophysical and behavior tests revealed 
the majority of patients lacked cone-mediated vision. This correlated with severely 
reduced visual acuity and a lack of color perception. It is now apparent that LCA1 
is a disease of profound cone dysfunction and hallmark retinal preservation sug-
gesting that these patients may be good candidates for gene replacement therapy. As 
a means to this end, several animal models of LCA1 have been characterized and 
used to establish proof of concept.
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34.2.1  GUCY1*B Chicken

The naturally occurring retinal degeneration (rd), or GUCY1*B chicken carries a 
null mutation in the gene encoding retGC1 (Cheng et al. 1980; Semple-Rowland 
et al. 1998). Affected chickens are blind at hatch and have an unrecordable ERG. 
cGMP levels in post-hatch day 1 (P1) chickens are ~ 10 % of normal and photore-
ceptors in this cone-dominant species begin degenerating at 1 week. Cones are lost 
by ~ 3.5 months followed by rods at ~ 8 months (Ulshafer and Allen 1985). With the 
goal of providing therapy as soon as possible, and because subretinal injections are 
difficult to perform in developed chickens, an in ovo treatment paradigm was devel-
oped. HIV1-based lentivirus (LV) carrying a cDNA encoding bovine GC1 (bGC1) 
was delivered to the neural tube of embryonic day 2 (E2) chickens. Within days 
of hatch, optokinetic reflex (OKN) and volitional visual behavior were evident in 
the majority of treated chickens. ERG analysis revealed modest increases (~ 6 %) 
in a- and b-wave amplitudes under both dark- and light-adapted conditions. LV-
bGC1 treatment slowed, but did not prevent retinal degeneration (Williams et al. 
2006). Results of these studies established that gene replacement could be effective 
for the treatment of LCA1. However, results were transient (behavioral and ERG 
responses disappeared after ~ 5 weeks post hatch, retinal degeneration was not pre-
vented), an in ovo treatment paradigm was used (currently not translatable to the 
patient population) and studies were conducted in a non-mammalian model. Taken 
together, this highlighted the need for a more translatable animal model and gene 
replacement strategy.

34.2.2  GC1KO Mouse

In 1999, Yang et al. described the first mammalian model of LCA1- the guanylate 
cyclase 1 knockout (GC1KO) mouse (Yang et al. 1999). This null model was en-
gineered by insertion of a neomycin resistance cassette into exon 5 of Gucy2e (the 
murine homologue). Loss of cone function in this mouse precedes their degenera-
tion (photopic ERGs are barely detectably by 1 month and cone degeneration be-
gins between 4–5 weeks of age). Rods, on the other hand, maintain variable levels 
of function (30–50 % of WT) and do not degenerate, a finding owed to the presence 
of retGC2 in these cells (Baehr et al. 2007). GCAP1 and GCAP2 transcripts and 
GCAP1 expression are downregulated and light-induced cone arrestin translocation 
is disrupted in this model (Coleman et al. 2004; Coleman and Semple-Rowland 
2005). While it was not appreciated at the time, the profound cone dysfunction, 
variably retained rod function and rod preservation highlights how well the GC1KO 
mouse models the human condition (Jacobson et al. 2013).
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For its ability to transduce postmitotic photoreceptors (Yang et al. 2002), Ad-
eno associated virus (AAV5) was used to deliver bovine cDNA (same sequence 
used in the GUCY1*B chicken studies) to the subretinal space of GC1KO mice 
(Haire et al. 2006). Due to the species non-specific nature of the cDNA used, treat-
ment failed to improve ERG or prevent cone degeneration. A later study by Boye 
et al. revealed that P14-P25 treatment with AAV5 carrying species-specific Gucy2e 
cDNA led to robust improvements in cone function (~ 45 % of WT), restoration of 
cone-mediated vision (OKN) and prevented cone degeneration (Boye et al. 2010). 
Follow up studies asked whether long term therapy was possible (Boye et al. 2011; 
Mihelec et al. 2011). Mihelec et al. showed that P10 treatment with AAV8 contain-
ing human GUCY2D restored cone ERGs (65 % of normal), cone-mediated behav-
ior (OKN), preserved cones and also significantly improved rod responses for at 
least 6 months. Proof of concept using human GUCY2D is relevant for future pre-
clinical studies. In the longest follow up to date, Boye et al. demonstrated that P14-
P25 treatment with AAV5 or AAV8(Y733F) vectors containing Gucy2e restored 
cone function, cone-mediated behavior (OKN) and preserved cones for at least 1 
year post treatment. Differences in cone ERG improvements between these studies 
(65 % vs. 45 % of WT) is likely attributed to the treatment age (prior to eye opening 
in Mihelec et al. study vs. P14-P25 in Boye et al. study)/the onset of therapeutic 
gene expression. Taken together, the stable therapeutic effects observed in AAV-
treated GC1KO mice laid the groundwork for the development of an AAV-based 
treatment for LCA1.

34.2.3  GCDKO Mouse

The retGC1/retGC2 double knockout (GCDKO) mouse lacks both rod and cone 
function (ERG) (Baehr et al. 2007). Photoreceptor outer segments shorten by 2 
months and, by 4 months there is appreciable outer nuclear layer thinning. Creation 
of this model occurred at a time when rod degeneration was thought to be a feature 
of LCA1 (Milam et al. 2003; Porto et al. 2003). Thus, it was valuable in the sense 
that it was the only model in which to evaluate the effects of GC1 expression on rod 
photoreceptors. It also provided an opportunity to examine the functional efficiency 
of AAV-delivered retGC1 (biochemical assays of guanylate cyclase activity do not 
discriminate between retGC1 and retGC2) (Olshevskaya et al. 2004).

P18-P108 treatment of GCDKO mice with AAV8(Y733F)-Gucy2e led to robust 
and stable restoration of both cone and rod ERGs, cone- and rod-mediated visual 
behavior (cortically and subcortically-driven) and preservation of photoreceptors 
over the long term (at least 1 year post-treatment) (Boye et al. 2013). As in the 
GC1KO study, WT-like visual behavior was observed in GCDKO mice that exhib-
ited only partial ERG recovery (~ 45 % of WT). retGC activity assays suggested 
complete restoration of enzyme activity in the area exposed to vector.
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34.3  Conclusions

Proof of concept now exists in three different models of LCA1- the GUCY1*B 
chicken, the GC1KO and the GCDKO mouse. Work is also underway to evaluate 
therapy in a cone-only mouse model of LCA1, the Nrl−/−Gucy2e−/− mouse. Taken 
together, these studies have paved the way for clinical application of an AAV-based 
gene therapy for treatment of this severe, early onset disease.
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Chapter 35
A Comprehensive Review of Mutations 
in the MERTK Proto-Oncogene

Célia Parinot and Emeline F. Nandrot

Abstract Phagocytosis and elimination of shed aged photoreceptor outer seg-
ments (POS) by retinal pigment epithelial cells is crucial for photoreceptor func-
tion and survival. Genetic studies on a natural animal model of recessive retinal 
degeneration allowed the identification of MerTK, the gene encoding the sur-
face receptor required for POS internalization. Following this discovery, screen-
ings of DNA samples from patients have revealed that MERTK mutations cause 
retinal degenerations in humans. MERTK patients present some of the classical 
symptoms of retinitis pigmentosa, but it is atypical in that the disease develops 
very early during childhood and the macula is also involved early on. Therefore, 
the phenotype ought to be qualified as a rod-cone dystrophy. Recently, MERTK 
has been implicated in various types of cancers and sclerosis. This review iden-
tifies the different MERTK mutations known so far and describes associated 
pathologies.

Keywords MerTK · Phagocytosis · Retinal pigment epithelium · RCS rat · 
Mutations · Rod-cone dystrophies · Retinitis pigmentosa · Photoreceptor death · 
Proto-oncogene · Cancer

35.1  Introduction

Photoreceptors (PRs) constantly renew them the photosensitive disks contained in 
their outer segments (POS) to counteract the permanent light stress affecting them. 
POS aged extremities are daily shed and phagocytosed by cells from the retinal pig-
ment epithelium (RPE) (Young and Bok 1969). With a maximum activity 2 h after 
light onset (LaVail 1976), this process is mainly achieved by two membrane recep-
tors: αvβ5 integrin allows POS binding (Finnemann et al. 1997) and initiates the 
rhythm of POS clearance (Nandrot et al. 2004) while MerTK is necessary for POS 
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engulfment (D’Cruz et al. 2000; Nandrot et al. 2000; Feng et al. 2003) and controls 
the amounts of POS bound to RPE cells (Nandrot et al. 2012). This review focuses 
on the MERTK pathological implications in various tissues.

35.2  The MerTK Receptor

35.2.1  A Tyrosine Kinase Receptor

MERTK, located on chromosome 2q14.1 (Weier et al. 1999), is expressed in several 
hematopoietic (macrophages), epithelial (RPE) and reproductive tissues (Linger 
et al. 2008). Its 19 exons encode a 999-amino acid transmembrane receptor (Gra-
ham et al. 1994) ranging from 160–205 kDa depending on glycosylation levels. 
MerTK is constituted of two immunoglobulin (Ig)-like 1 and 2 fibronectin type III 
(FnIII) extracellular domains, and of an intracellular tyrosine kinase domain includ-
ing the KWIAIES sequence specific to the TAM family of receptors. MerTK binds 
two main extracellular ligands, Gas6 (Nagata et al. 1996) and Protein S (Hall et al. 
2005), leading to MerTK dimerization, tyrosine autophosphorylations and intracel-
lular signaling (Ling et al. 1996). In macrophages, MerTK mediates the phagocytic 
clearance of apoptotic cells (Scott et al. 2001).

35.2.2  Role in RPE Cells

The Royal College of Surgeons (RCS) rat is a natural animal model which RPE 
cells are unable to phagocytose shed POS (Bok and Hall 1971). Consequently, de-
bris accumulate causing complete vision loss and PR cell death by 3 months of age 
(Dowling and Sidman 1962). In 2000, two groups characterized a large genomic 
deletion in the second exon of MerTK leading to a missing protein (D’Cruz et al. 
2000; Nandrot et al. 2000).

In vivo, the alphavbeta5 integrin–Mfg-E8 couple rhythmically signals for MerTK 
phosphorylation at peak phagocytosis time (Nandrot et al. 2004, 2007). In addition, 
both MerTK ligands are required as double knockout mice present a phenotype 
similar to RCS rats (Burstyn-Cohen et al. 2012).

35.3  MerTK Mutations and Associated Diseases

35.3.1  Retinal Degenerations

With an autosomal recessive transmission, MERTK mutations (Table 35.1) have been 
mostly identified in consanguineous families native from Spain (Brea-Fernández 
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et al. 2008), Morocco (Charbel Issa et al. 2009; Ksantini et al. 2012), the Middle 
East (Tschernutter et al. 2006; Mackay et al. 2010; Coppieters et al. 2014), Pakistan 
(Tschernutter et al. 2006; Shahzadi et al. 2010), Asia (Tada et al. 2006; Siemiatkowska 
et al. 2011) and the Faroe Islands (Ostergaard et al. 2011).

Primarily described as retinitis pigmentosa (RP) (Gal et al. 2000), patient pheno-
types are atypical. RP, a slow degeneration targeting rods, manifests progressively 
as night blindness, reduced visual fields, retinal vasculature attenuation, optic disc 
pallor, and bone spicule pigments and apparition. MERTK patient symptoms are 

Table 35.1   MERTK mutations listed in order respective to their protein domain location. Nucleo-
tide/protein changes and corresponding references are detailed ( Italics reference = cancer-related)

Protein domain Mutation Protein defect References
Signal peptide c.61 + 1G >A

intron 1 splicing
aberrant protein Mackay et al. (2010)

Ig-like1 #1–FnIII #1 exons 1–7 deletion aberrant protein Ostergaard et al. 
(2011)

Ig-like1 #2 c.718G > T
exon 4

p.Glu240X Shahzadi et al. (2010)

FnIII #2 exon 8 deletion aberrant protein Mackay et al. (2010)
Intracellular—below 
membrane

IVS10–2A > G
intron 10 splicing

aberrant protein Gal et al. (2000)

Tyrosine kinase c.1951C > T
exon 14

p.Arg651X Gal et al. (2000)
Mackay et al. (2010)

c.2070delAGGAC
exon 15

aberrant protein Gal et al. (2000)

exon 15 deletion p.Gly654AlafsX41 Siemiatkowska et al. 
(2011)

c.2164C > T
exon 16

p.Arg722X McHenry et al. (2004)

c.2180G > A
exon 16

p.Arg727Gln Coppieters et al. 
(2014)

c.2189 + 1G > T
exon 16 splicing

p.His694ValfsX4 Ebermann et al. 
(2007)
Charbel Issa et al. 
(2009)

IVS16 + 1G > T
intron 16 splicing

aberrant protein (Brea-Fernandez et al. 
2008)

c.2214delT
exon 17

p.Cys738TrpfsX31 Tschernutter et al. 
(2006)

c.2323C > T
exon 17

p.Arg775X Ksantini et al. (2012)

c.2487–2A > G
exon 19 splicing

aberrant protein Siemiatkowska et al. 
(2011)

C-terminal c.2530C > T
exon 19

p.Arg844Cys McHenry et al. (2004)

c.2593C > T
exon 19

p.Arg865Trp McHenry et al. (2004)
Hucthagowder et al. 
(2012)
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severe, often arise during the first decade of life and worsen quickly with an early 
macular atrophy. Moreover, some patients show an autofluorescent macula, sign 
of imperfect POS elimination (Tschernutter et al. 2006). Thus it seems more ap-
propriate to designate MERTK-related pathologies as rod-cone dystrophies.

35.3.2  Other pathologies

First identified as a proto-oncogene (Graham et al. 1994), MerTK carries a trans-
forming potential on cultured cells (Lierman et al. 2009). Logically, MERTK is in-
volved in various types of cancer: upregulated in a large spectrum of malignant cells 
including leukemia, lymphoma (Linger et al. 2008) and colorectal cancer (Watanabe 
et al. 2011), its expression is associated with poor prognosis in gastric cancer (Lin-
ger et al. 2008). Somatic variants exist in melanoma (p.Pro802Ser) (Tworkoski et al. 
2013), multiple myeloma (p.Thr690Ile, p.Glu823Gln; Table 35.1) (Hucthagowder 
et al. 2012), renal cancer and carcinoma (p.Ala446Gly, p.Ala708Ser) (Greenman 
et al. 2007). In addition, MerTK expression increases in various sclerotic lesions 
(Weinger et al. 2009; Hurtado et al. 2011).

35.3.3  Other Variants

Non-pathogenic MERTK variants p.Arg20Ser, p.Asp118Ser, p.Ala282Thr, 
p.Arg293His, p.Arg466Lys, p.Asp498Ser, p.Ile518Val and p.Val870Ile have been 
described (Gal et al. 2000; McHenry et al. 2004; Tada et al. 2006; Tschernutter et al. 
2006). Present at similar frequencies in retinal dystrophy and unaffected individu-
als they are enriched as somatic mutations in cancers (Greenman et al. 2007; Huc-
thagowder et al. 2012). The pathological implication of some heterozygous mis-
sense substitutions present in both patients and their unaffected parents is not clear 
(p.Glu540Lys, p.Ser661Cys, p.Ile871Thr) (Gal et al. 2000). Yet, heterozygous mu-
tations in Leber Congenital Amaurosis cases seem to co-segregate with other gene 
defects (p.Phe214Val, p.Pro958Leu) (Li et al. 2011). Taken together, these data sug-
gest that some variants might be pathogenic in combination with other factors.

35.4  Perspectives

MERTK is now considered as a good target for the treatment of certain cancers 
(Linger et al. 2013a, 2013b; Schlegel et al. 2013). Various gene therapy approaches 
have been tested in rodent retinae using adenoviruses (Vollrath et al. 2001), AAVs 
(Smith et al. 2003; Deng et al. 2012; Conlon et al., 2013) or lentiviruses (Tschernut-
ter et al. 2005). Preservation of PRs and retinal function can persist up to 12 months 
post-injection (Tschernutter et al. 2005; Deng et al. 2012). In August 2011, the first 
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phase I clinical trial has been launched in Saudi Arabia on 6 MERTK patients (clini-
caltrials.gov; NCT01482195) after validation of the vector (Conlon et al. 2013).
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Chapter 36
New Developments in Murine Imaging for 
Assessing Photoreceptor Degeneration In Vivo

Marie E. Burns, Emily S. Levine, Eric B. Miller, Azhar Zam, Pengfei Zhang, 
Robert J. Zawadzki and Edward N. Pugh, Jr.

Abstract Optical Coherence Tomography (OCT) is a powerful clinical tool that 
measures near infrared light backscattered from the eye and other tissues. OCT is 
used for assessing changes in retinal structure, including layer thicknesses, detach-
ments and the presence of drusen in patient populations. Our custom-built OCT 
system for the mouse eye quantitatively images all layers of the neural retinal, the 
RPE, Bruchs’ membrane and the choroid. Longitudinal assessment of the same reti-
nal region reveals that the relative intensities of retinal layers are highly stable in 
healthy tissue, but show progressive increases in intensity in a model of retinal 
degeneration. The observed changes in OCT signal have been correlated with ultra-
structural disruptions that were most dramatic in the inner segments and nuclei of 
the rods. These early changes in photoreceptor structure coincided with activation 
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of retinal microglia, which migrated vertically from the inner to the outer retina to 
phagocytose photoreceptor cell bodies (Levine et al., Vis Res 102:71–79, 2014). We 
conclude that quantitative analysis of OCT light scattering signals may be a useful 
tool for early detection and subcellular localization of cell stress prior to cell death, 
and for assessing the progression of degenerative disease over time. Future efforts 
to develop sensitive approaches for monitoring microglial dynamics in vivo may 
likewise elucidate earlier signs of cellular stress during retinal degeneration.

Keywords Photoreceptor · Rod · Phototransduction · Arrestin-1 · Optical 
coherence tomography (OCT) · Scanning laser ophthalmoscopy (SLO) · Imaging · 
Mouse · Microglia

36.1  Phototransduction Signaling  
and Photoreceptor Degeneration

Despite the prevalence of photoreceptor degeneration in the general population, 
we know little about how photoreceptors die. In contrast, we know more about the 
biochemistry, physiology and cell biology of rod photoreceptors than of any other 
retinal cell type. Mutations in proteins that help to transduce light into electrical 
signals (phototransduction proteins) often cause prolonged electrical signaling but 
only degeneration in certain instances. For example, prolonged rod signaling that 
arises from defects in rhodopsin deactivation causes Oguchi disease and can lead to 
light-dependent degeneration (Paskowitz et al. 2006). In contrast, loss of the pro-
tein complex responsible for G protein deactivation (RGS9–1, Gβ5-L, and R9AP) 
also greatly prolongs signaling and causes visual impairment, but does not lead 
to photoreceptor damage (Nishiguchi et al. 2004). Other RP-related mutations in 
phototransduction proteins do not cause defective signaling per se, but rather cause 
protein misfolding (Tzekov et al. 2011). Although the unfolded protein response 
(UPR) itself causes apoptosis, degeneration resulting from these mutations can be 
exacerbated by visible light (Paskowitz et al. 2006). To better understand the inter-
play between electrical signaling and the cell biology of degenerating photorecep-
tors, it is first essential to monitor photoreceptors longitudinally in vivo without 
exposure to the high intensity visible light typically used during fundus imaging 
(Cideciyan et al. 2005).

OCT, which uses the backscattering of near-infrared light to visualize retinal 
structure, allows longitudinal assessment of the same retinal region over time 
without exposure to visible light that would activate phototransduction and bleach 
visual pigment. When OCT images are not subject to auto-gain adjustments and 
are aligned with landmarks like retinal vessels, the backscattered light increases 
within photoreceptor-specific layers during light-dependent degeneration (Cideci-
yan et al. 2005; Zam et al. 2013). In mice, such changes in light scattering can pre-
cede typical measures of photoreceptor cell loss like outer nuclear layer thickness, 
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and have been correlated with ultrastructural disruptions in the inner segments and 
cell bodies (Levine et al. 2014). Further development of quantitative OCT meth-
ods may prove to be a useful tool for early detection of cell stress prior to cell  
death.

36.2  Quantitative OCT Light Scattering Measurements 
and Their Ultrastructural Correlates

We have recently constructed a Fourier-Domain OCT (Fd-OCT) system for imag-
ing the mouse eye (Zam et al. 2013). Like most OCT systems, ours uses a broad 
bandwidth near-infrared light source for a reference beam and a highly sensitive 
CMOS camera as the detector of the spectrometer. The detector captures the spec-
tral power density of the reference beam, which is modulated by the interference 
arising from the light backscattered with varying delays from reflecting elements 
in the retina. To derive an A-scan, which is the retinal scattering profile as a func-
tion of depth ( z), the Fd-OCT system computes the inverse Fourier transform of the 
measured spectral density function, yielding an intensity profile ( )I z  proportional 
to the square root of the intensity I zsample ( ) of the light backscattered from the 
sample at each depth ( z) in the retina: thus, ( )  ( )ref sampleI z I I z∝ , where Iref  is 
the (constant) average intensity of the reference beam (Wojtkowski 2010; Olden-
burg et al. 2013). B-scans, ( , )I x z , are compounded of successive A-scans, where x 
is the lateral position in the retina. Commercial OCT systems typically display OCT 
B-scan data on a logarithmic (decibel) scale:

where S ( x, z) is proportional to the display pixel value. In contrast, all analysis of 
our images was performed on 16-bit linear intensity B-scan data.

The average B-scan intensity value ( , )I x z  was measured from each retinal layer 
at precisely same eccentricity ( x) over time in the same animal (Fig. 36.1a). In a 
mouse model of dim light damage (Arr1−/− mice; (Xu et al. 1997; Chen et al. 1999)) 
a profound increase in the intensity of the reflectance of the inner segment/outer 
segment border was apparent after 12 h of light exposure. By 36 h, a 2-fold increase 
in intensity had spread to the outer nuclear layer, which corresponds to a 4-fold light 
scattering change within the retina itself (Fig. 36.1b). While these changes were 
consistently apparent in the B-scans across all animals examined, there were also 
small variations in absolute intensity across imaging sessions that arose from dif-
ferences in alignment and other factors affecting image quality. The intensity of the 
INL reflectance, which was unaffected by light exposure, was used to normalize the 
light scattering changes in the photoreceptor layers, reducing the baseline intensity 
values for both WT and Arr1−/− strains (Levine et al. 2014).

( )10 10( , ) 20 [ ( , ) ] 20log  ( , )/ /ref sample refS x z log I x z I I x z I= ∝
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Rhodopsin mutant dogs have also shown acute increases in OCT light scattering 
with photoreceptor degeneration, which is dramatically accelerated by bright light 
(Cideciyan et al. 2005). The observed changes in light scattering were restricted to 
illuminated retinal regions and did not progressively enlarge over time, though the 
extent and time course of degeneration depended on light intensity. In this model, 
the changes in light scattering were evident within 1 h and seemed to initiate at the 
inner segment/outer segment border and spread over time to the outer nuclear layer 
and beyond. A similar trend but different time scale was observed in the Arr1−/− 
OCT images and was correlated with ultrastructural changes within the photorecep-
tors themselves (Fig. 36.1b and Levine et al. 2014).

It is not known whether the slower progression of degeneration common in most 
human retinal degenerations can likewise be detected with longitudinal OCT in-
tensity comparisons. One challenge for the future will be to test the limits of OCT 
imaging sensitivity in other animal models of degeneration that proceed with dif-
ferent rates and from different retinal loci. In adapting this approach to the clinic, it 
will also be important to further develop and distribute computational tools for im-
age analysis that allow post-hoc image registration without intensity normalization, 
which most commercial platforms currently hard-wire into their imaging systems.

Fig.  36.1   Increased OCT light scattering during light-induced photoreceptor degeneration. 
a B-scan of a WT (c57Bl/6J) mouse. Yellow dashed box is shown expanded on the right and 
compared to a retinal slice in which the cones express GFP (7m8-hLM-GFP) to help demark the 
photoreceptor layers ( GC ganglion cell layer, INL inner nuclear layer, ONL outer nuclear layer, 
ELM external limiting membrane, is/os inner segment/outer segment border, RPE retinal pigment 
epithelium). b Dark-reared Arr1−/− (Xu et al. 1997) and WT (c57Bl/6J) mice were imaged sequen-
tially before and after the onset of 200 lx constant light. By 12 h, the ELM had disappeared and 
the is/os border showed increased scattering in the Arr1−/− mouse. By 36 h, the increased scatter-
ing had spread to the ONL and was correlated with increased chromatin condensation and related 
ultrastructural changes (Levine et al. 2014)
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36.3  Monitoring Microglial Dynamics during 
Photoreceptor Degeneration In Vivo

In all forms of retinal damage and degeneration, activated phagocytic monocytes 
like microglia (resident in CNS tissue) and macrophages (infiltrated from the circu-
lation) can exacerbate the loss of neural tissue (Streit et al. 2004). Microglia are the 
first responders to disease and injury in the retina, transforming from a highly dy-
namic, branched resting state to an amoeboid, activated state along a continuum of 
stages that may or may not be reversible and memoryless, depending on the severity 
and duration of the insult (Block et al. 2007; Langmann 2007). In Arr1−/− (Walter 
and Neumann 2009) mice, microglia vertically migrate to the ONL and begin to 
engulf photoreceptor somata within 12 h of light exposure (Levine et al. 2014). 
Thus, visualizing microglial dynamics in intact retinal tissue could be a sensitive 
biological indicator for early signs of cell stress.

A common tool for imaging living microglia is a commercially available strain 
in which GFP has been knocked into the fractalkine receptor locus ( Cx3cr1GFP/GFP; 
Jackson Labs 005582). However, the loss of CX3CR1 expression in the knock-in 
mutant does reduce microglial dynamics (Liang et al. 2009). Moreover, homozy-
gous Cx3cr1 knockout mice show photoreceptor degeneration and the accumula-
tion of phagocytic monocytes in the subretinal space (Combadière et al. 2007). 
While heterozygous ( Cx3cr1GFP/+) mice appear to have normal microglial behavior 
and are thus may be a convenient tool for answering certain questions about neuro-
inflammation in the retina, developing acute means for labeling microglia in vivo 
offers advantages for live tissue imaging in all species.

Viral transduction of microglia is a well-suited alternative for retinal studies be-
cause full access to the posterior eye can now be achieved by a single intravitreal 
injection (Dalkara et al. 2013). Microglial cells in the brain have been successfully 
infected with AAV2 or 5 using the promoters of F4/80 and CD11b, resulting in 
varying levels of expression (Cucchiarini et al. 2003). Low efficiency viral trans-
ductions would facilitate in vivo microglia imaging by making it more likely that a 
single microglia could be individually followed over an extended period (Cucchia-
rini et al. 2003). Indeed, using SLO and AO-SLO imaging methods in the mouse, it 
is now possible to follow the activation and migration of a microglial cells in vivo 
(Fig. 36.2a–c; Alt et al. 2014).

Quantum dots, which are readily phagocytosed by microglia and macrophages, 
are another adaptable means for achieving cell-specific labeling (Jackson et al. 
2007; Minami et al. 2012). In ex vivo retinal flatmounts, wheat germ agglutinin 
(WGA) conjugated quantum dots label rods, and can be become concentrated with-
in the lysosomes of dynamic microglia (Fig. 36.2d). Thus, quantum dots tagged 
with specific cell-surface ligands may be a way to preferentially label active phago-
cytes targeting a specific cell type, providing a way to specifically detect regions of 
active phagocytosis, both ex vivo or in vivo.
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36.4  Conclusion

Applying ocular imaging approaches like OCT and AO-SLO to the mouse retina 
presents exciting opportunities for further developing methods like quantitative 
light scatter and microglial imaging, which could lead to earlier detection of cell 
stress and degeneration. Combined with the power of mouse genetics, viral trans-
fection methods, and numerous available models of retinal degeneration, the mouse 
provides new avenues for studying the interplay between degeneration and inflam-
mation, as well as the basic biology of normal retinal physiology and homeostasis 
across an individual’s lifetime.
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Chapter 37
Reliability and Repeatability of Cone Density 
Measurements in Patients with Congenital 
Achromatopsia

Mortada A. Abozaid, Christopher S. Langlo, Adam M. Dubis,  
Michel Michaelides, Sergey Tarima and Joseph Carroll

Abstract Adaptive optics scanning light ophthalmoscopy (AOSLO) allows non-
invasive assessment of the cone photoreceptor mosaic. Confocal AOSLO imag-
ing of patients with achromatopsia (ACHM) reveals an altered reflectivity of the 
remaining cone structure, making identification of the cells more challenging than 
in normal retinas. Recently, a “split-detector” AOSLO imaging method was shown 
to enable direct visualization of cone inner segments in patients with ACHM. Sev-
eral studies have demonstrated gene replacement therapy effective in restoring cone 
function in animal models of ACHM and human trials have on the horizon, making 
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the ability to reliably assess cone structure increasingly important. Here we sought 
to examine whether absolute estimates of cone density obtained from split-detector 
and confocal AOSLO images differed from one another and whether the inter- and 
intra-observer reliability is significantly different between these modes. These find-
ings provide an important foundation for evaluating the role of these images as tools 
to assess the efficacy of future gene therapy trials.

Keywords Achromatopsia · Adaptive optics · Repeatability · Reliability · Cone 
photoreceptor

37.1  Introduction

AOSLO enables visualization of the cone photoreceptor mosaic in the living human 
eye (Dubra et al. 2011; Rossi et al. 2011). Quantitative measurements from such 
images include cone density (Chui et al. 2008), cone spacing (Duncan et al. 2007; 
Rossi and Roorda 2010; Cooper et al. 2013) and Voronoi geometry (Baraas et al. 
2007). These methods typically rely on identification of individual cones in the im-
age and thus whether this is done manually or via an automated (or semi-automated) 
process, there is a need to assess the inherent reliability and repeatability of each 
approach.

Previously we assessed the repeatability of cone density measurements in a pop-
ulation of young healthy individuals using a semi-automated method and found that 
if repeated images of the same retinal location were precisely aligned, the repeat-
ability was 2.7 % (Garrioch et al. 2012). Chiu et al. (2013) demonstrated similar 
repeatability using the same data set and a fully automatic algorithm based on graph 
theory and dynamic programming. Most recently, we examined the inter-observer 
and inter-instrument reliability of cone density measurements and found that the 
inter-observer study’s largest contribution to variability was the subject (95.72 %) 
while the observer’s contribution was only 1.03 % (Liu et al. 2014). For the inter-
instrument study, we reported an average cone density ICC of between 0.931 and 
0.975 (Liu et al. 2014).

These studies are only relevant for individuals with intact cone mosaics and do 
not apply in conditions such as ACHM, where cone appearance can be greatly al-
tered (Genead et al. 2011; Merino et al. 2011). This makes it difficult to disam-
biguate cones from other reflective material in the outer retina. Scoles et al. (2014) 
developed a split-detector AOSLO method to directly visualize cone inner seg-
ments in a manner independent of the cone’s waveguide properties (from which the 
reflective confocal AOSLO signal arises) allowing for easier and more complete 
visualization of residual cone structure in patients with ACHM. In patients with 
ACHM, we sought to (1) assess whether estimates of cone density obtained with 
split-detector AOSLO images differed from those obtained from confocal AOSLO 
images and (2) determine whether the inter- and intra-observer reliability is signifi-
cantly different between the two imaging modes. The findings presented here serve 
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as a foundation for subsequent studies aimed at monitoring residual cone structure 
over time in patients with ACHM.

37.2  Materials and Methods

37.2.1  Subjects

All research followed the tenets of the Declaration of Helsinki and study protocols 
were approved by IRBs at the Medical College of Wisconsin and Moorfields Eye 
Hospital. Subjects provided written informed consent after the nature and possible 
consequences of the study were explained. Images from seven subjects with mo-
lecularly confirmed ACHM (five with CNGB3 mutations, two with CNGA3 muta-
tions) were used in this study (five males and two females, aged 11–64 years). Axial 
length measurements were obtained from all of the subjects using an IOL Master 
(Carl Zeiss Meditec, Dublin, CA) in order to calculate the lateral scale of each 
retinal image.

37.2.2  AOSLO Imaging of the Photoreceptor Mosaic

Each patient’s head was stabilized using a dental impression on a bite bar and both 
eyes were dilated and cyclopleged using a combination of phenylephrine hydrochlo-
ride 2.5 % and tropicamide 1 %. Images of the photoreceptor mosaic were obtained 
using 790-nm light with two previously described AOSLOs that allow simultaneous 
acquisition of confocal and split-detector images as in Fig. 37.1 (Scoles et al. 2014). 
Image sequences (100–200 frames) subtending either 1 × 1° or 1.5 × 1.5° were col-
lected between the foveal center and 20° temporal to fixation. Each confocal image 
sequence was registered to produce a single image with improved signal-to-noise 
ratio (Dubra and Harvey 2010), with the same transforms applied to the correspond-
ing split-detector image sequence, yielding a second image of the exact same retinal 
location. From these images, a total of 80 100 × 100 μm areas were cropped for 
analysis.

37.2.3  Analyzing the Cone Mosaic

The data set consisted of 960 images (80 images, 2 modalities, 3 observers, 2 trials/
observer). Three observers with varying familiarity in analyzing AOSLO images 
reviewed each image and manually identified cones after adjusting the brightness 
and contrast of the image to assist in determining cone presence. Images were dis-
played in random order, with the identity and retinal location of the images masked 
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(ensuring any effect of fatigue is captured by the observer’s variance component). 
The number of cones in the cropped 100 × 100 μm region was divided by its area to 
derive an estimate of the cone density for that image.

37.2.4  Statistical Methods

The sample size and other characteristics of this study were chosen using a Monte 
Carlo simulation with preliminary estimates of unknown quantities estimated on a 
pilot data set. The objective was to secure the half-width of the 90 % CI for the rela-
tive contribution to the total variance, such that it is bounded by 1 % for observer, 
trial and image and the half-width of the 90 % CI for subjects’ relative contribution 
to the total variance is not higher than 2.5 %. In this simulation study, 1000 repeti-
tions were performed for a variance components model to assess the contribution of 
subject, mode, observer and trial to overall variability.

Highly significant biases prevented further analysis of the variance components 
model. Table 37.2 reports the fixed effects (regression coefficients) of the parsimo-

Fig.  37.1   Confocal (a, b) and split-detector (c, d) AOSLO images from two subjects with 
ACHM—JC_10069 (a, c) and MM_0005 (b, d)
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nious linear mixed regression model, including both random and fixed effects for 
predicting cone density values on a natural logarithmic (LN) scale. As each image 
was assessed 12 times (2 modes, 3 observers, 2 trials) we needed to account for 
possible correlation between measurements. To do so, our model used three random 
effects: mode, observer and trial. In addition to the three random effects accounting 
for within image correlation, we investigated three fixed effects of mode, observer 
and trial, as well as the two-way interactions and the three-way interaction. Statisti-
cal significance was declared at 5 %. We found that the three-way interaction be-
tween mode, observer and trial was not significant ( P = 0.194). The two-way inter-
action between mode and trial was also not significant ( P = 0.479). The interactions 
between observer and trial and between observer and mode were highly significant 
( P < 0.0001).

The linear mixed model used to build Table 37.2 absorbed information from all 
960 observations. The presence of significant interactions with the observer pre-
vents easily explaining the content of Table 37.1. To simplify the explanation of 
the regression modeling we fitted separate models for each observer, allowing us to 
interpret findings separately for each observer. Table 37.2 reports the estimates of 
mean LN (cone density) separately for each observer. Observer 1 had a significantly 
different interaction between trial and mode ( P = 0.006), precluding investigation 
of further interactions for this observer. The interactions between mode and trial 
( P = 0.951) and the main effect of trial ( P = 0.447) were not significant for observer 
2. Only the effect of mode was significant for observer 2 ( P < 0.0001). The interac-

Variable Estimate Std.Err. t
(Intercept) 8.35 0.060 138.53a

Mode = Split − 0.083 0.035 − 2.34a

Trial = 2 0.061 0.016 3.78a

Obs = 2 − 0.030 0.020 − 1.47
Obs = 3 − 0.119 0.029 − 4.04a

Trial = 2:Obs = 2 − 0.068 0.022 − 3.08a

Trial = 2:Obs = 3 0.035 0.022 1.59
Mode = Split:Obs = 2 − 0.074 0.022 − 3.34a

Mode = Split:Obs = 3 0.025 0.022 1.12
The model intercept corresponds to the expected LN (cone  
density) for the confocal mode, observer = 1 and trial = 1
a Statistically significant

Table 37.2   Cone density measurements for each observer
– Observer 1 Observer 2 Observer 3
Mode (trial) Estimate Std. Err. Estimate Std. Err. Estimate Std. Err.
Confocal (1) 8.34 0.062 8.32 0.058 8.24 0.056
Confocal (2) 8.43 0.057 8.31 0.058 8.32 0.050
Split (1) 8.28 0.071 8.16 0.068 8.17 0.064
Split (2) 8.31 0.067 8.16 0.068 8.27 0.060

Table 37.1   Fixed effects for 
all observers
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tion between mode and trial was not significant for observer 3 ( P = 0.632), nor was 
the main effect of mode ( P = 0.160). Surprisingly, we observed a strong effect of 
trial ( P < 0.0001).

This result indicates that the observers’ counts differ for different trials and 
modes, such that one observer may have different responses between modes and 
another observer may show no difference. Likewise, one observer may have differ-
ent responses between trials with another observer showing no difference.

37.3  Discussion

The results of the linear mixed regression model analysis demonstrated a strong 
effect of observer in cone counting in images from patients with ACHM using two 
different imaging modalities. This strong observer effect prevents further analysis 
of the reliability and repeatability of cone measurements in these retinas. Upon 
further analysis two of three observers showed a strong effect of trial (independent 
effect for one and interacting with mode for another), indicating that they were not 
able to consistently identify the same number of cells in the image set between two 
trials, with observer 1 showing an effect in the interaction between trial and mode. 
Observer 2, however, showed no effect of trial and the effect of mode indicates a 
difference between the confocal and split-detector measurements for this observer. 
Varying experience working with ACHM images (observer 2 had the most and ob-
server 3 the least) may partially explain these results—thus analysis of diseased 
retinas may require a more experienced observer than analysis of cone structure in 
normal retinas. This result demonstrates the need for more experienced observers 
to analyze images of diseased retinas and development of automated methods for 
split-detector analysis.
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Chapter 38
Quantitative Fundus Autofluorescence in Best 
Vitelliform Macular Dystrophy: RPE Lipofuscin 
is not Increased in Non-Lesion Areas of Retina

Janet R. Sparrow, Tobias Duncker, Russell Woods and François C. Delori

Abstract Since the lipofuscin of retinal pigment epithelial (RPE) cells has been 
implicated in the pathogenesis of Best vitelliform macular dystrophy, we quantified 
fundus autofluorescence (quantitative fundus autofluorescence, qAF) as an indirect 
measure of RPE lipofuscin levels. Mean non-lesion qAF was found to be within 
normal limits for age. By spectral domain optical coherence tomography (SD-
OCT) vitelliform lesions presented as fluid-filled subretinal detachments containing 
reflective material. We discuss photoreceptor outer segment debris as the source of 
the intense fluorescence of these lesions and loss of anion channel functioning as 
an explanation for the bullous photoreceptor-RPE detachment. Unexplained is the 
propensity of the disease for central retina.

Keywords Best vitelliform macular dystrophy · BEST1 · Fundus autofluorescence · 
Quantitative autofluorescence · SD-OCT
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38.1  Introduction

The inherent fluorescence of retina originates primarily from the lipofuscin of reti-
nal pigment epithelial (RPE) cells and is commonly imaged as fundus autofluo-
rescence (AF) by confocal laser scanning ophthalmoscopy (cSLO). The lipofuscin 
fluorophores that have been described are vitamin A aldehyde adducts with exci-
tation maxima from ~ 430–510 nm and peak emission of ~ 600 nm. Topographic 
patterns of fundus AF are well known to be altered in age-related macular degenera-
tion, retinitis pigmentosa, acute macular disease, pattern dystrophies and Bull’s eye 
maculopathy (von Ruckmann et al. 1997b; Robson et al. 2006; Boon et al. 2007; 
Kellner et al. 2009; Michaelides et al. 2010; Gelman et al. 2012). Fundus autofluo-
rescence intensity is particularly elevated in recessive Stargardt disease (STGD1) 
(Delori et al. 1995a; Lois et al. 2004; Cideciyan et al. 2005). Emission spectra re-
corded at the fundus in healthy eyes and in patients with STGD1 and age-related 
macular degeneration all exhibit emission maxima at 580–620 nm (Delori et al. 
1995b; Delori et al. 1995a).

38.2  Best Vitelliform Macular Dystrophy:  
Clinical Findings

Best vitelliform macular dystrophy (BVMD) is an autosomal dominant disease as-
sociated with mutations in BEST1, the gene encoding the bestrophin-1 protein lo-
cated on the basolateral membrane and within intracellular compartments of RPE 
cells (Petrukhin et al. 1998; Marmorstein et al. 2000). Ophthalmoscopic features 
of BVMD typically present in juveniles, and overt disease is most often limited to 
the macula (Boon et al. 2009). Aberrant responses recorded by electrooculography 
(EOG) can be diagnostic (Deutman 1969). The onset of the disorder is usually char-
acterized by a central oval lesion (vitelliform lesion) that exhibits intense fluores-
cence in fundus AF images (Spaide et al. 2006) (Fig. 38.1a) and that is visible as a 
dome shaped separation between photoreceptor cells and RPE in images acquired 
by spectral domain optical coherence tomography (SD-OCT) (Querques et al. 2008; 
Ferrara et al. 2010) (Fig. 38.1c).

38.3  RPE Lipofuscin and BVMD

There have been numerous reports indicating that RPE lipofuscin is increased in 
BVMD. Some of these human studies have been based on non-quantitative analysis 
(Frangieh et al. 1982; Weingeist et al. 1982) while others acquired measurements 
from electron micrographs (O’Gorman et al. 1988) or biochemical analysis (Bakall 
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et al. 2007). In some BVMD patients non-lesion posterior fundus exhibited AF lev-
els within 2 standard deviations of age-matched controls while in most cases the 
entire fundus was reported to display abnormally intense AF (von Ruckmann et al. 
1997a).

38.4  Quantitative Fundus Autofluorescence  
in Best Vitelliform Macular Dystrophy

Underlying disease processes in BVMD are poorly understood and a pathway lead-
ing to increased RPE lipofuscin formation is not obvious. Thus, we undertook a dis-
ciplined approach to measuring the intensity of fundus AF outside the lesion area. 
To this end, short-wavelength AF images (488 nm excitation) were acquired with 
a cSLO (Heidelberg Spectralis, HRA+OCT; Heidelberg Engineering, Heidelberg, 
Germany). To enable comparisons amongst patients, image grey levels (GLs) were 
normalized to the GLs in an internal fluorescent reference (Fig. 38.2b) installed in 
the instrument and the sensitivity used was within the linear range of the detector 
(GL < 175). Additional protocol details are described in Fig. 38.2 and in published 
work (Delori et al. 2011).

Fig. 38.1  Multimodal imaging of a BVMD patient (age 14 years) in the vitelliform stage. Fundus 
autofluorescence (a), color fundus photograph (b) and horizontal SD-OCT scan (c). Correspond-
ing positions in a, b and c are shown as dashed vertical lines. The position and horizontal extent 
of the SD-OCT scan (c) is indicated by the green arrow in (a). a. By fundus autofluorescence the 
foveal lesion exhibits an increased signal. In the SD-OCT image, a dome-shaped foveal lesion that 
includes a hyperreflective component is revealed. The retina appears qualitatively normal outside 
the lesion. Reflectivity bands in outer retina are attributed to outer nuclear layer ( ONL); external 
limiting membrane ( ELM); ellipsoid region of inner segment ( EZ); interdigitation zone ( IZ) and 
RPE/Bruch’s membrane complex ( RPE/Br) (Staurenghi et al. 2014). The area of separation is 
between bands attributable to EZ and RPE/Br
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As shown in Fig. 38.2a, qAF increased with age in both healthy eyes and in non-
lesion areas of BVMD retina. Importantly, in all BVMD eyes, qAF values outside 
the lesion were within normal limits for age. qAF values within the lesion were 
elevated and the emission spectra were consistent with that of lipofuscin (Duncker 
et al. 2014).

38.5  What Have We Learned?

By applying the qAF approach to BVMD patients, we found that in fundus areas 
outside the central lesion, RPE lipofuscin levels are not increased. Thus a gener-
alized increase in RPE lipofuscin is unlikely to contribute to the pathogenesis of 
BVMD. Except for the area of the lesion and an adjacent transition zone, retinal 
lamina appeared normal in SD-OCT scans.

The precise role of the BEST1 protein has been difficult to elucidate. Multi-
ple anion channel functions have been attributed to BEST1 including an outward 
calcium-dependent chloride conductance and bicarbonate efflux (Sun et al. 2002; 
Rosenthal et al. 2006; Qu and Hartzell 2008; Marmorstein et al. 2009). Due to 

Fig. 38.2   Quantitative fundus autofluorescence (qAF). qAF was calculated from images (488 nm 
excitation) obtained from 27 eyes of 16 BVMD patients ( red circles) and 277 healthy subjects 
reported previously (Greenberg et al. 2013) ( black circles) and plotted as function of age (a). qAF 
was measured in pre-determined circularly arranged segments ( red; 8 segments/ring). (b) Mean 
non-lesion qAF plotted (a) are based on values obtained from outer ring (b). Mean non-lesion qAF 
( solid black line in a) of healthy subjects is also shown. The segments were scaled to the distance 
between the temporal edge of the optic disc ( white vertical line) and the center of the fovea ( white 
cross) (b). Details of image acquisition and analysis are published (Delori et al. 2011)
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osmotic forces, the outward flux of chloride and bicarbonate across the basolateral 
membrane of RPE is followed by fluid transport. Mutations in BEST1 leading to the 
loss of anion channel activity and insufficient fluid transport could be the cause of 
the fluid-filled detachment between photoreceptor cells and RPE that is detected by 
SD-OCT. Reduced fluid flux is a feature of an induced pluripotent stem cell model 
of BVMD (Singh et al. 2013). Since RPE lipofuscin is well known to originate from 
photoreceptor outer segments (Sparrow et al. 2012), the intensely autofluorescent 
reflective material in the vitelliform lesion likely originates from accumulating out-
er segment debris within the lesion. Otherwise, increased RPE lipofuscin is unlikely 
to be a feature of the primary disease process.

Acknowledgements Supported by National Eye Institute EY024091 and a grant from Research 
to Prevent Blindness to the Department of Ophthalmology, Columbia University.
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Abstract The purpose of this study was to correlate features on flood-illuminated 
adaptive optics (AO) images with color fundus, fundus autofluorescence (FAF) 
and spectral domain optical coherence tomography (SD-OCT) images in patients 
with retinitis pigmentosa (RP). We imaged 39 subjects diagnosed with RP using 
the rtx1TM flood-illuminated AO camera from Imagine Eyes (Orsay, France). We 
observed a correlation between hyper-autofluoresence changes on FAF, disruption 
of the interdigitation zone (IZ) on SD-OCT and loss of reflective cone profiles on 
AO. Four main patterns of cone-reflectivity were seen on AO: presumed healthy 
cone mosaics, hypo-reflective blurred cone-like structures, higher frequency dis-
organized hyper-reflective spots, and lower frequency hypo-reflective spots. These 
regions were correlated to progressive phases of cone photoreceptor degeneration 
observed using SD-OCT and FAF. These results help provide interpretation of en 
face images obtained by flood-illuminated AO in subjects with RP. However, sig-
nificant ambiguity remains as to what truly constitutes a cone, especially in areas of 
degeneration. With further refinements in technology, flood illuminated AO imag-
ing has the potential to provide rapid, standardized, longitudinal and lower cost 
imaging in patients with retinal degeneration.
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Chapter 39
Interpretation of Flood-Illuminated Adaptive 
Optics Images in Subjects with Retinitis 
Pigmentosa

Michael J. Gale, Shu Feng, Hope E. Titus, Travis B. Smith  
and Mark E. Pennesi
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39.1  Introduction

Adaptive optics (AO) imaging technology has revolutionized our understanding of 
structural changes in retinal disease(Choi et al. 2006; Duncan et al. 2007; Carroll 
et al. 2008; Gocho et al. 2013; Tojo et al. 2013a; Tojo et al. 2013b). AO scanning 
laser ophthalmoscopy (AOSLO) provides high-resolution images sufficient to re-
solve single cone and rod photoreceptors. Although commercially available flood-
illuminated AO cameras do not achieve the same resolution as custom built AOSLO 
systems, they are less expensive, easier to maintain and operate, and offer standard-
ization from site to site, making them potentially useful in the clinical setting or as 
part of multi-center trials. The rtx1TM flood-illuminated AO camera has been used 
previously to study both healthy subjects(Lombardo et al. 2012) and those with reti-
nal disease(Gocho et al. 2013; Tojo et al. 2013a; Tojo et al. 2013b). Although cone-
like structures are easily identifiable in healthy regions of the macula, it is often 
difficult to distinguish a cone from debris in areas of retinal atrophy. We observed 
common patterns in RP patients including: normal cone mosaics, hypo-reflective 
blurred cone-like structures, higher frequency disorganized hyper-reflective spots, 
and lower frequency hypo-reflective spots. In order to elucidate what these differ-
ent regions represented on a microstructural level, we compared and correlated the 
AO images to registered color fundus, fundus autofluorescence (FAF) and spectral 
domain optical coherence tomography (SD-OCT) images.

39.2  Materials and Methods

This research adhered to the tenets of the Declaration of Helsinki and was approved 
by the OHSU IRB. We used the rtx1TM flood-illuminated adaptive optics camera to 
image 39 subjects with RP ranging in age from 17 to 77 years old. For each subject, 
a series of 4° × 4° retinal images with 50 % overlap between adjacent images was 
obtained in one or both eyes. Using i2k Retina (DualAlign LLC, Clifton Park, NY, 
USA), these images were combined to create a retinal montage spanning a 12° × 12° 
field of the central macula. Cone counting was performed automatically by apply-
ing background subtraction and thresholding of local maxima in Matlab (Math-
Works, Natick, MA, USA). The central fovea was excluded from cone counting 
due to the camera’s inability to resolve cones in this region. Retinal magnification 
factors for each eye were calculated with the model of the eye developed by Ben-
nett et al.(Bennett et al. 1994) from the axial length as measured by an IOLMaster 
500 (Carl Zeiss Meditec AG, Jena, Germany). The imaging success rate was also 
calculated; if the 9 central tiles and at least 20 of the 25 total images could be used to 
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form a montage, then the imaging session was considered successful. Montaged AO 
images and Voronoi cone density plots were compared to registered areas from oth-
er imaging modalities including color fundus, FAF (Optos 200 Tx ultra-widefield 
camera, Scotland, UK) and SD-OCT (Spectralis HRA-OCT, Heidelberg Engineer-
ing, Germany).

39.3  Results

39.3.1  AO Imaging Success Rate and Trends

To determine the ability to image a spectrum of RP patients, we acquired images in 
both mild and severe cases and only initially excluded patients if visually acuity was 
less than 20/200. From these patients with RP and based on our imaging success pa-
rameters, 45 out of 60 eyes (75 %) were successfully imaged. The majority of eyes 
in which we could not obtain high-quality images had at least one of the following 
issues: cataracts, corneal scarring, cloudy optical media, nystagmus, poor central 
vision or a severely degenerated outer retina. Imaging success rates also tended to 
decrease with age, with the ability to obtain useful AO images particularly difficult 
in patients over 60 years old.

39.3.2  Correlating FAF and SD-OCT to AO Images

In the subjects with RP that we imaged, a relationship was often seen between hyper-
autofluorescent regions on FAF, disruption or loss of the IZ or ellipsoid zone (EZ) 
on SD-OCT and blurred or hypo-reflective cone-like structures on AO. For example, 
FAF imaging in the left eye of subject 1 showed a hyper-autofluorescent ring in the 
central macula with the inferior nasal portion of the border located nearest to the 
fovea (Fig. 39.1a). Near the border of this ring and peripheral to it, AO density plots 
revealed a decreased number of cone-like profiles (Fig. 39.1b and c), while SD-OCT 
demonstrated disruption of the IZ and loss of the EZ (Fig. 39.1d and e). Within 
the hyper-autofluorescent ring, a healthy cone photoreceptor mosaic was observed 
(Fig. 39.1g) while blurred cones and non-uniform hyper-reflective spots were seen 
in the hyper-autofluorescent area or outside of the ring (Fig. 39.1f).

39.3.3  Stages of Cone Degeneration on AO Imaging

Four distinct types of AO images were observed and correlated to progressive phas-
es of cone photoreceptor degeneration noted by SD-OCT and FAF. The right eye of 
subject 2 showed peripheral retinal atrophy (Fig. 39.2a) and concentric advancing 
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stages of cone degeneration (Fig. 39.2b). A normal mosaic of presumptive cones 
was seen just outside of the fovea (Fig. 39.2d) and SD-OCT revealed an intact outer 
retina, especially on the temporal side of the fovea where both the IZ and EZ could 
be visualized (Fig. 39.2h). At a slightly wider eccentricity, hypo-reflective blurred 
cones were noted (Fig. 39.2e) and loss of the EZ with a thinned outer nuclear layer 
were seen on SD-OCT (Fig. 39.2h). The next concentric area revealed a mixture 
of hypo and hyper-reflective spots that were more irregularly spaced than a typical 
cone mosaic (Fig. 39.2f) and further loss of the outer nuclear layer (ONL) was ob-
served on SD-OCT (Fig. 39.2h). The perifovea showed sparse hypo-reflective spots 
with no discernable cones (Fig. 39.2g) while SD-OCT demonstrated complete loss 
of the ONL (Fig. 39.2h).
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Fig. 39.1  Multiple imaging modalities showing the OS macula of subject 1. a FAF image ( yellow 
box indicates region of AO imaging), b Voronoi cone density plot with SD-OCT line scan loca-
tions (d, e), indicated by solid black lines, and magnified AO image areas (f, g), indicated by black 
rectangles, c Voronoi cone density plot registered on the FAF image. Yellow arrowheads on d and e 
indicate the magnified AO image locations. Dashed black lines show the correlation between cone 
density change and alteration of outer retinal structure on SD-OCT
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39.4  Discussion

Due to the fact that imaging success and image quality in subjects with RP was 
influenced by factors other than outer retinal structure, caution must be used when 
interpreting flood-illuminated AO images. Interpretation was made difficult by the 
fact that what appeared to be highly reflective cone-like structures were frequently 
dispersed throughout areas of poorly reflective dying cone-like structures. It is very 
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Fig. 39.2  Multiple imaging modalities showing the OD macula of subject 2 a Color fundus image 
( yellow box indicates region of AO imaging), b AO montage. Dashed yellow lines demarcate con-
centric stages of cone degeneration and yellow boxes indicate the location of magnified AO image 
areas (d healthy cones, e stressed cones, f photoreceptor cellular debris, g RPE pigmentation), c 
Voronoi cone density plot with the SD-OCT line scan location h indicated by a horizontal black 
line. Vertical black lines show the correlation between cone density change and alteration of outer 
retinal structure on SD-OCT
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important to correlate the AO images with other imaging modalities in order to 
acquire a complete understanding of the structural state of the retina. Pockets of 
edema, cloudy media, nystagmus and poor central vision are all issues that de-
tracted from image quality.

Even though imaging patients with RP was difficult due to the previously men-
tioned factors, in many cases we managed to obtain high quality images. A cor-
relation was observed between hyper-autofluorescence on FAF, IZ disruption on 
SD-OCT and hypo-reflective blurred cone-like structures on AO. A previous study 
demonstrated an association between hyper-autofluorescence and blurred cones on 
flood-illuminated AO in patients with retinal degeneration (Tojo et al. 2013a). We 
observed the same correlation between AO and FAF, as well as noting the begin-
ning of IZ disruption on SD-OCT in these same regions. These findings suggest 
that cones found in the hyper-autofluorescent regions on FAF are still potentially 
structurally viable and could be rescued by future therapeutic treatments.

We also noted four distinct types of AO imaging patterns and correlated them to 
various stages of cone photoreceptor degeneration using SD-OCT and FAF. These 
four general types of AO images were healthy cones (Fig. 39.2d), a blurred area 
that we believe might be stressed or dying cones (Fig. 39.2e), photoreceptor and 
cellular debris (Fig. 39.2f) and RPE cell patterning and pigmentation (Fig. 39.2g). 
Other studies have shown that AOSLO images can be correlated to other imaging 
modalities and tests of visual function to elucidate cone structure in patients with 
retinal disease (Choi et al. 2006; Duncan et al. 2007; Carroll et al. 2008). Our find-
ings agree with these studies and illustrate that when compared with other imaging 
techniques, flood-illuminated AO can also be used to obtain detailed information 
about outer retinal structure.

In summary, we have found SD-OCT and autofluorescence to be the most use-
ful clinical imaging techniques for comparison with AO. SD-OCT is particularly 
helpful because it allows for the precise visualization of outer retinal layers. When 
correlated with AO images, SD-OCT allows us to be more confident that identified 
cones are actually cones rather than just cellular debris or RPE cells. While it is 
possible to acquire images from a wide variety of subjects, AO is most successful 
when imaging subjects with good central vision and at least partial photoreceptor 
preservation, such as individuals with RP. AO also appears to be most useful in 
cases of subtle or subclinical photoreceptor changes that are difficult to track on 
traditional fundus or OCT imaging modalities. Even minor changes in outer retinal 
structure can make it difficult to successfully visualize cones, which can provide 
highly sensitive information about photoreceptor health. Due to all of these factors, 
AO imaging could become an invaluable tool in tracking the longitudinal progres-
sion of a variety of photoreceptor-related diseases.
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Chapter 40
Intra-familial Similarity of Wide-Field 
Fundus Autofluorescence in Inherited Retinal 
Dystrophy

Yuka Furutani, Ken Ogino, Akio Oishi, Norimoto Gotoh, Yukiko Makiyama, 
Maho Oishi, Masafumi Kurimoto and Nagahisa Yoshimura

Abstract To examine the similarity of wide-field fundus autofluorescence (FAF) 
imaging in inherited retinal dystrophy between siblings and between parents and 
their children. The subjects included 17 siblings (12 with retinitis pigmentosa and 
5 with cone rod dystrophy) and 10 parent-child pairs (8 with retinitis pigmentosa 
and 2 with cone rod dystrophy). We quantified the similarity of wide-field FAF 
using image processing techniques of cropping, binarization, superimposition, and 
subtraction. The estimated similarity of the siblings was compared with that of the 
parent-child pairs and that of the age-matched unrelated patients. The similarity 
between siblings was significantly higher that of parent-child pairs or that of age-
matched unrelated patients ( P = 0.004 and P = 0.049, respectively). Wide-field FAF 
images were similar between siblings with inherited retinal dystrophy but different 
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between parent-child pairs. This suggests that aging is a confounding factor in gen-
otype-phenotype correlation studies.

Keywords Cone rod dystrophy · Inherited retinal dystrophy · Retinitis pigmentosa · 
Similarity · Wide-field fundus autofluorescence

40.1  Introduction

Fundus autofluorescence (FAF) has enabled the evaluation of photoreceptor cells 
and retinal pigment epithelium (RPE) status. Increased FAF is thought to occur 
because of abnormal accumulations of lipofuscin or other fluorophores, whereas 
reduced FAF seems to result from the presence of retinal pigment epithelium atro-
phy or fibrotic tissue. In retinitis pigmentosa (RP) patients, a hypo-FAF area that 
corresponds to outer retinal atrophy and a hyper-FAF area in the surviving periph-
eral retina have been reported (von Ruckmann et al. 1999; Meyerle et al. 2006). We 
used a recently developed wide-field scanning laser ophthalmoscope that allows 
non-mydriatic FAF imaging of the fundus of up to 200° and showed the usefulness 
of wide-field FAF related to visual function in RP (Oishi et al. 2013).

Theoretically, affected siblings or affected parents and their children with inher-
ited retinal dystrophy (IRD) have common causative mutations and an intra-familial 
comparison of phenotypes minimizes genetic and environmental background dif-
ferences. Thus, intra-familial comparison of phenotype helps our understanding of 
the disease with a mutation.

In the present study, we evaluated the intra-familial similarity of wide-field FAF 
in patients with RP and con-rod dystrophy (CRD), particularly between siblings, to 
determine the genetic and environmental impacts on clinical phenotype.

40.2  Material and Methods

All procedures conformed to the tenets of the Declaration of Helsinki. Approval 
from the Institutional Review Board (IRB)/Ethics Committee of the Kyoto Univer-
sity Graduate School of Medicine was obtained.

40.2.1  Inclusion of Patients

We reviewed the clinical records of 545 consecutive patients with retinal dystrophy 
who underwent wide-field FAF imaging from March 2012 through August 2013 in 
a retinal dystrophy clinic at Kyoto University Hospital. There were 17 siblings and 
10 parent-child pairs with RP or CRD among the 545 patients. The siblings were 
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from 12 families with typical RP and 5 families with CRD. The parent-child pairs 
were from 8 families with typical RP and 2 families with CRD. Additionally, we 
recruited 2 unrelated controls from the 545 patients for each sibling. The 2 controls 
were selected as phenotype-matched (with RP or CRD) and had the nearest and the 
second nearest birthday to the elder individual of the sibling pairs in the cohort. A 
clinical diagnosis of typical RP and CRD were based on detailed hearing of his-
tory and comprehensive ophthalmic examinations including fundus scope, electro-
retinography, and perimetry. Genotype screening was performed previously based 
on arrayed primer extension (Asper Biotech, Tartu, Estonia), (Ogino et al. 2013) 
Sanger sequencing and next generation sequencing of candidate genes.

40.2.2  Quantification of Similarity

Wide-field FAF images were obtained with an Optos 200 Tx imaging system (Optos 
PLC, Dunefermline, United Kingdom) as previously reported (Oishi et al. 2013). 
Left eye images were selected for the analysis, except in cases in which image qual-
ity was poor.

First, as described previously (Oishi et al. 2013), we cropped an ellipti-
cally shaped area of 3000 × 2100 pixels centered on the fovea from the original 
3900 × 3072 pixel image by using ImageJ 1.46r (National Institutes of Health, 
Bethesda, MD) (Fig. 40.1a and b). This cropping removed the peripheral area con-
taining greater errors resulting from the use of an ellipsoidal mirror and the creation 
of a planar image from a spherical globe, cilia, and eyelid. Second, the cropped 
image was converted to a binary image by thresholding on a value from the optic 
disc area, which was automatically calculated using a histogram tool after manually 
delineating the optic disc area with a polygonal selection tool (Fig. 40.1c). The pur-
pose of binarization was to quantitatively estimate the similarity of the images. The 
grey value of the optic disc area was adopted to adjust the background values of the 
2 different FAF images. Third, 2 cropped binary images were superimposed using 
Photoshop CS5.1 (Adobe Systems Inc. San Jose, CA) and a new image was created 
using a subtraction tool in which black and white pixels represented equivalent and 
differing values between the 2 images, respectively (Fig. 40.1d). We defined the 
number of black pixels as the similarity of 2 wide-field FAF images in this study.

40.2.3  Statistical Analysis

The statistical program SPSS version 20 (IBM Japan, Tokyo, Japan) was used for 
the analysis. The descriptive analyses are reported as the mean ± standard deviation, 
unless otherwise specified. The averaged similarity of the 17 siblings was compared 
to that of the 10 parent-child pairs using an unpaired t-test and to that between the 
elder sibling and 1 of the 2 age-matched controls whose birthday was closer to the 
subject’s by using a paired t-test. P-values less than 0.05 were considered statisti-
cally significant.
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40.3  Results

The characteristics of the families are shown in the figure caption (Figs. 40.2 and 
40.3). The mean difference in age between the siblings was 4.4 ± 2.3 years. The 
difference among the parent-child pairs was 29.6 ± 5.0 years. These values were 
significantly different ( P = 0.000016).

The similarity between the siblings was 3,716,285 ± 743,807 pixels (range, 
2,039,191–4,898,368 pixels). The similarity between unrelated patients was 
3,109,154 ± 823,150 pixels (range, 1,815,265–4,313,255 pixels). The similarity 

Fig. 40.1   Image processing for similarity quantification. Original image (a) cropped image with 
an elliptically shaped area of 3000 × 2100 pixels (b) and a binary image thresholded on the value 
of the optic disc area (c). Two cropped binary images were superimposed, and a new image was 
created using a subtraction tool, in which the black and white pixels represent similar and differing 
values, respectively, in the 2 images

 



30340 Intra-familial Similarity of Wide-Field Fundus Autofluorescence in Inherited …

between parent-child pairs was 2,582,853 ± 1,124,619 pixels (range, 1,017,018–
3,993,698 pixels). The original wide-field FAF images of the siblings and the par-
ent-child pairs used for estimation are shown in Figs. 40.2 and 40.3, respectively. 
The similarity of the siblings with IRD was higher than that of unrelated patients 
and that of parent-child pairs ( P = 0.049 and P = 0.004, respectively).

40.4  Discussion

In the present study, we investigated the similarity of wide-field FAF images of 
IRD within families using image processing. The estimated similarity measure we 
defined showed significantly higher intra-sibling values than those for parent-child 
pairs or between unrelated patients.

Fig. 40.2  Wide-field fundus autofluorescence findings of siblings with inherited retinal dystro-
phy. Left and right rows show images of older and younger individuals, respectively. The Arabic 
numeral indicates each family. Family 1: RP with PRCD mutation (p.M1T/p.M1T). Family 2: 
AR-CRD. Family 3: AR-RP. Family 4: CRD with ABCA4 mutation (p.Y865fs/c.1760 + 2T > G). 
Family 5: AD-RP. Family 6: RP with EYS mutation (p.S1653Kfs/deletion of exon 33). Family 7: 
AD-CRD. Family 8: RP with EYS mutation (p.S1653Kfs/p.S1653Kfs). Family 9: AR-RP. Family 
10: RP with EYS mutation (p.S1653Kfs/p.Y2935X). Family 11: AR-RP. Family 12: AR-CRD. 
Family 13: RP with MERTK mutation (p.T75fs/p.Q124X). Family 14: RP with RPGR mutation 
(p.A308P). Family 15: RP with RHO mutation (p.R135W). Family 16: AD-CRD. Family 17: RP 
with EYS mutation (p.1734_1735del/p.E2794fs). AD: autosomal dominant, AR: autosomal reces-
sive, RP: retinitis pigmentosa, and CRD: cone-rod dystrophy
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Hypo-FAF areas in RP where the RPE and photoreceptors were severely dam-
aged showed a loss of retinal sensitivity on Goldmann perimetry and were clinically 
meaningful (Oishi et al. 2013). Therefore, to reduce dimensionality and to detect 
hypo-FAF areas, we simply attempted a binarization of wide-field FAF images and 
used the reflectivity of the optic disc area as a threshold, which seemed to be rela-
tively appropriate for adjusting the background FAF of each image. We considered 
that the number of black pixels in the final images after the superimposition and 
subtraction of the 2 binary images represented some Euclidian distance between the 
2 wide-field FAF images.

As we expected, the similarity between siblings was significantly higher than 
that of unrelated patients with the same disease. This was very acceptable and con-
sistent with the hypothesis of phenotype-genotype correlation. Grover et al. previ-
ously described that there were no intra-familial variations in the pattern of the 
Goldmann visual field in RP patients and speculated that these visual field patterns 
were correlated with different genetic mutations (Grover et al. 1998). Consider-
ing our previous report (Oishi et al. 2013), which found that the hypo-FAF area 

Fig. 40.3  Wide-field fundus autofluorescence findings of parent-child pairs with inherited retinal 
dystrophy. Left and right rows show images obtained from parents and children, respectively. A 
Roman numeral indicates each family. Family I: RP with PRPH2 mutation (p.G167S). Family II: 
AD-RP. Family III: AD-RP. Family IV: AD-RP. Family V: AD-RP. Family VI: RPGR mutation 
(p.A308P). Family VII: RP with RHO mutation (p.R135W). Family VIII: AD-CRD. Family IX: 
RP with RHO mutation (p.Y60X). Family X; AD-CRD. AD autosomal dominant, AR autosomal 
recessive, RP retinitis pigmentosa, and CRD cone-rod dystrophy
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in wide-field FAF was correlated with the V-4e isopter measured by Goldmann 
perimetry, our results support Grover’s speculation. Interestingly, the similarity be-
tween siblings was higher than that of parent-child pairs. Patients with IRD must 
have the same causative gene within a family. In terms of the possibility of epistasis 
(Zernant et al. 2005; Khanna et al. 2009), a parent-child pair or siblings share 50 % 
of all genes with each other, and there tend to be similar lifestyles within a family. 
The biggest difference between siblings and parent-child pairs was thought to be 
age. Our results indicated that aging had a great impact on the phenotypic variety 
of wide-field FAF.

There are 2 major limitations to this study. First, the small number of IRD cases 
did not allow for a statistical analysis separating typical RP and CRD in this study. 
Second, we defined the similarity between 2 wide-field FAF images. To our knowl-
edge, this was the first challenge for quantifying similarity, and we used minimal 
image processing. It is thought that our method evaluated hypo-FAF areas and dis-
tributions well, but it may have underestimated the shape. Further modifications 
using updated image processing techniques would provide better and less biased 
quantification.

We conclude that wide-field FAF images were generally similar between siblings 
with IRD and were possibly influenced by aging. Intra-familial varieties previously 
reported in retinal dystrophies might derive from comparison among different gen-
erations. This should be the basis of further genotype-phenotype correlation studies.
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Chapter 41
Wide-Field Fundus Autofluorescence  
for Retinitis Pigmentosa and Cone/Cone-Rod 
Dystrophy

Akio Oishi, Maho Oishi, Ken Ogino, Satoshi Morooka and Nagahisa 
Yoshimura

Abstract Retinitis pigmentosa and cone/cone-rod dystrophy are inherited retinal 
diseases characterized by the progressive loss of rod and/or cone photoreceptors. 
To evaluate the status of rod/cone photoreceptors and visual function, visual acu-
ity and visual field tests, electroretinogram, and optical coherence tomography are 
typically used. In addition to these examinations, fundus autofluorescence (FAF) 
has recently garnered attention. FAF visualizes the intrinsic fluorescent material in 
the retina, which is mainly lipofuscin contained within the retinal pigment epithe-
lium. While conventional devices offer limited viewing angles in FAF, the recently 
developed Optos machine enables recording of wide-field FAF. With wide-field 
analysis, an association between abnormal FAF areas and visual function was dem-
onstrated in retinitis pigmentosa and cone-rod dystrophy. In addition, the presence 
of “patchy” hypoautofluorescent areas was found to be correlated with symptom 
duration. Although physicians should be cautious when interpreting wide-field FAF 
results because the peripheral parts of the image are magnified significantly, this 
examination method provides previously unavailable information.

Keywords Fundus autofluorescence · Ultra-widefield scanning laser ophthalmos-
cope · Retinitis pigmentosa · Cone rod dystrophy · Stargardt disease
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41.1  Introduction

Inherited retinal dystrophy (IRD) is a clinical term that describes a heterogeneous 
group of diseases that affect photoreceptors. IRD is a major cause of blindness, espe-
cially in developed countries (Hartong et al. 2006). IRD can be categorized into four 
major groups: rod-dominant diseases, cone-dominant diseases, generalized retinal 
degenerations, and vitreoretinal disorders (Berger et al. 2010). Retinitis pigmentosa 
(RP) and cone/cone-rod dystrophy (CD/CRD) are relatively common IRD pheno-
types, and they represent rod-dominant and cone-dominant diseases, respectively.

IRD disease severity can be evaluated using various examinations, including 
visual acuity and visual field tests, optical coherence tomography (OCT), and elec-
troretinogram (ERG). Among these, visual field tests and ERG provide information 
regarding whole retinal function; however, this examination are rather time- and 
labor-consuming.

Fundus autofluorescence (FAF) is another method to evaluate retinal integrity. 
Standard FAF imaging uses short wave-length light to excite the fluorescent materi-
al in the retina, which mainly reveals the distribution of lipofuscin. Based on the ob-
servation that the number of photoreceptor cells reduces with increasing amounts of 
lipofuscin in the retinal pigment epithelium (RPE), it is hypothesized that the accu-
mulation of lipofuscin precedes cell death (Dorey et al. 1989; von Ruckmann et al. 
1997). In fact, abnormal accumulation of lipofuscin is evident in histopathologic 
IRD studies, (Eagle et al. 1980) and increased FAF is clinically observed in these 
cases. In addition, loss of RPE results in decreased FAF. Thus, FAF is suitable for 
IRD evaluation. Although there is an inherent limitation to FAF examination in that 
the angle of view is limited to the central 30–55° using a conventional fundus cam-
era or scanning laser ophthalmoscope (SLO), recent technological advancements 
have enabled recording of the peripheral retina. Wide-field SLO Optos or Optomap 
(Optos, Scotland, United Kingdom) is a device that can record an extensive retinal 
field of view in a single image (Manivannan et al. 2005). Since photoreceptors are 
distributed throughout the retina, wide-field imaging should be considered the op-
timal method for evaluating the entire retina. In fact, several studies have reported 
the utility of Optos wide-field FAF imaging for evaluating retinal diseases such as 
chorioretinitis, (Seidensticker et al. 2011) retinal detachment, (Witmer et al. 2012) 
RP, (Oishi et al. 2013) and CD/CRD (Oishi et al. 2014b).

In this article, we will review the clinical significance of wide-field FAF as well 
as conventional FAF in RP and CD/CRD.

41.2  FAF Findings Using Conventional Fundus Camera/SLO

41.2.1  Retinitis Pigmentosa

Among IRDs, RP is the most common phenotype that starts with night blindness 
and concentric visual field defects. As the disease progresses, cone photoreceptors 
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are also affected and some patients experience total blindness (Hartong et al. 2006). 
FAF abnormalities in RP have been rigorously investigated. The most studied fea-
ture is a ring of increased FAF around the fovea. The hyperautofluorescent ring 
demarcates the preserved and damaged areas of the retina (Robson et al. 2004, 
2006; Murakami et al. 2008; Fleckenstein et al. 2009; Lima et al. 2009, 2012). 
Retinal sensitivity decreases and outer retinal structures depicted on OCT become 
disrupted outside the ring. Moreover, longitudinal observations have shown that the 
ring constricts as the disease progresses (Robson et al. 2006, 2011). In advanced 
cases, the ring disappears and increased FAF is observed in the fovea. In these 
cases, visual acuity is further impaired relative to the visual acuity in cases with 
a ring of increased FAF (Iriyama and Yanagi 2012). Taken together, the presence 
or the size of the hyperautofluorescent ring is associated with macular functions, 
including visual acuity in RP.

41.2.2   Cone/Cone-Rod Dystrophy

Cone photoreceptors are primarily affected in CD/CRD. CD and CRD were dif-
ferentiated based on the extent of rod impairment; however, the two conditions 
show both symptomatic and causative gene overlap, and this differentiation is now 
blurred (Traboulsi 2012).

The characteristics of FAF in CD/CRD are less investigated compared to those 
in RP. However, a hyperautofluorescent ring is also observed in CD/CRD (Mi-
chaelides et al. 2005; Wang et al. 2009). In contrast to RP, the retina is impaired 
inside the ring and generally preserved outside the ring. Moreover, the size of the 
ring is associated with rod and cone function and the ring enlarges longitudinally 
(Robson et al. 2008). The longitudinal enlargement of the atrophic lesions, depicted 
as decreased FAF, and the association between this area and ERG amplitude were 
also observed in Stargardt’s disease (Chen et al. 2010). Evaluation of hypoautofluo-
rescent lesions and the circumscribing hyperautofluorescent ring can be an indicator 
of visual function in these predominantly macular affecting diseases.

41.3  FAF Findings in Wide-Field SLO

41.3.1  Principle of Wide-Field Imaging

Optos uses an ellipsoid mirror, which has two foci (Fig. 41.1, F1 and F2), to 
create images. The laser source/detector is placed at F1 with a scanning mirror 
and the laser emitted from F1 always passes through F2. Setting the patient’s 
pupil at F2 allows the laser emitted from F1 to reach wide angles of the fundus 
(Fig. 41.1).

Optos employs red (633 nm wavelength), green (532 nm wavelength), and blue 
(488 nm) laser sources, and a pseudocolor image is created by compositing the red 
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and green laser images; angiography is performed with the blue laser and FAF is 
performed with the green laser.

41.3.2  Retinitis Pigmentosa

The above mentioned hyperautofluorescent ring in RP is also observed in Optos 
images. The presence of the ring is associated with worse visual acuity or retinal 
sensitivity as measured by Humphrey visual field analyzer. In addition, characteris-
tic findings are identified in more peripheral regions of the retina with this device. 
The damaged retina generally shows granular or patchy hypoautofluorescent le-
sions and the area of these hypoautofluorescent lesions is associated with the size of 
the visual field defect (Oishi et al. 2013). Other studies also reported the association 
between the hypoautofluorescent area and visual field defect using conventional 
devices (Meyerle et al. 2006) or Optos (Ogura et al. 2014). In addition, it has been 
shown that the more patchy the autofluorescent lesion, the longer the duration of 
the disease. Thus, the presence of patchy autofluorescent lesions can be an indicator 
of chronic disease processes (Oishi et al. 2013). We currently use Optos findings to 
differentiate RP from autoimmune or cancer-associated retinopathies, which show 
more rapid progression.

41.3.3  Cone-Rod Dystrophy

Although most abnormalities appear in the macular area in CD/CRD, rod photore-
ceptors and visual fields can be impaired in the late stages. The remaining periph-
eral visual field is important for patients with central scotoma, and Optos images 
provide information pertaining to remaining photoreceptor/RPE integrity in the 
periphery. Atrophic lesions in the fovea are depicted as decreased FAF with Optos 

Fig.  41.1   Schematic drawing of the principle of the wide-field SLO device. As a property of 
the ellipse, the laser emitted from one focus ( F1) is reflected and meets the other focus ( F2) and 
returns to the original focus F1, where the detector is also located. Thus, the laser can cover a wide 
range of the fundus without being disrupted by the pupil
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as well as with conventional devices. Lesions are often accompanied by hyperauto-
fluorescent margins. The abnormal FAF areas, including hyper- and hypo- autofluo-
rescence, correlate well with the area of the visual field defect and ERG amplitude 
(Oishi et al. 2014b). In CD/CRD, the extent of abnormal FAF findings can be a 
good indicator of whole retina function as well as in RP.

41.3.4  Caution When Interpreting Optos Images

As previously mentioned, Optos is useful for evaluating IRD. However, there are 
some specific issues to be cognizant of when interpreting findings or attempting 
quantification. First, Optos creates planar images from the fundus sphere, which 
involves some distortion, especially in the periphery. Recently, we used a model 
eye and investigated how much distortion exists depending on the position on the 
image. Our results showed that overall image is stretched 1.12-fold in the horizontal 
direction with respect to the vertical direction and the peripheral part of the image 
is magnified by factors up to 2.0 × 1.5 (Oishi et al. 2014a). Thus, the features on 
these images cannot be measured as is. To quantify the image, specific correction 
has to be employed, but such a methodology has yet to be established. Strategies 
to avoid or decrease the consequences of this warping include performing qualita-
tive measurements, comparing baseline and follow-up data, or creating composite 
images with pictures taken at different angles (Spaide 2011). Second, clinicians 
should ensure that the excitation wavelength and detection range are not the same 
on different devices. For example, Heidelberg retinal angiography 2 (HRA2) uses 
a 488-nm wavelength blue light for excitation and detects signals with wavelengths 
> 500 nm. Meanwhile, Optos uses a green light with a wavelength of 532 nm for 
excitation and detects the signal within a wavelength of 570–780 nm. Although the 
difference seems to be inconsequential to date, further comparisons are needed to 
fully elucidate potential complications.

41.4  Conclusions

FAF is useful for evaluating retina integrity in IRD. Wide-field FAF images obtained 
with Optos provide previously unavailable information and the Optos FAF image 
findings correlate well with visual field measurements or ERG in IRD. Although 
physicians should be cognizant of peripheral image magnification, the device will 
increase our understanding of these diseases. Investigations using wide-field FAF 
are in their infancy; thus, we expect detailed investigations of structure-function and 
phenotype-genotype correlations in the near future. Studies using this device will 
undoubtedly increase our understanding of IRD.
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Chapter 42
The Development of a Cat Model of Retinal 
Detachment and Re-attachment

Sarah Wassmer, Brian C. Leonard, Stuart G. Coupland, Adam Baker,  
John Hamilton, Renée Torlone, David N. Zacks and Catherine Tsilfidis

Abstract We present an optimized surgical technique for feline retinal detachment 
which allows for natural re-attachment, reduces retinal scarring and vitreal bands, 
and allows central placement of the detachment in close proximity to the optic 
nerve. This enables imaging via Optical Coherence Tomography (OCT) and mul-
tifocal electroretinography (mfERG) analysis. Ideal detachment conditions involve 
a lensectomy followed by a three-port pars plana vitrectomy. A 16–20 % retinal 
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detachment is induced by injecting 8 % C3F8 gas into the subretinal space in the 
central retina with a 42G cannula. The retinal detachment resolves approximately  
6 weeks post-surgery. Imaging is enhanced by using a 7.5 and 20 diopter lens for 
OCT and mfERG fundus imaging, respectively, to compensate for the removed lens.

Keywords Retinal detachment · Feline · Lensectomy · Vitrectomy · C3F8 gas 
(Octafluoropropane) · Subretinal space · Photoreceptor · Hemorrhage

42.1  Introduction

Retinal detachment is a common form of injury. Treatment typically involves 
surgical re-attachment of the retina, but recovery of vision depends on the nature 
and duration of the detachment. Retinal detachments often lead to changes in the 
retina that can have permanent effects on visual function. Loss of vision is further 
increased if the macula is involved in the detachment (Erickson et al. 1983).

Animal studies have shown histological and molecular evidence that retinal 
degeneration ensues as early as 1 h post detachment (Erickson et al. 1983; Zacks 
et al. 2003). A major cause for vision loss is photoreceptor apoptosis (Zacks et al. 
2003). Oxidative stress has also been implicated in photoreceptor apoptosis and 
disease pathology (Cederlund et al. 2013; Huang et al. 2013).

We have shown that the X-linked Inhibitor of Apoptosis (XIAP) is effective 
in protecting photoreceptor structure in a rat model of retinal detachment (Zadro-
Lamoureux et al. 2009). However, due to the small size of the rodent eye, surgical 
re-attachment is technically very challenging. Thus, while the effects of XIAP on the 
structure of photoreceptors can be determined, the function of the photoreceptors is 
difficult to assess. Consequently, for our studies, and for those of others interested 
in studying therapeutic strategies for retinal detachment, there is still a critical need 
to develop a larger animal model of detachment and re-attachment of the retina. We 
present here a feline model of detachment and re-attachment which allows central 
placement of the detachment so that structural and functional recovery of photore-
ceptors can be assessed using OCT and multifocal ERG.

42.2  Materials and Methods

42.2.1  Animals

Three wild type (domestic) cats (Liberty Research, Waverly, NY) aged 12 months 
were studied. Animal procedures were conducted in accordance with the University 
of Ottawa Animal Care Committee rules and regulations and adhered to the ARVO 
statement for the Use of Animals in Ophthalmic and Vision Research.
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42.2.2  Pre- and Post-Operative Treatments

Felines were given propofol (1 mL/min) intravenously or 5 % isoflurane by aerosol 
mask before surgery and during the anesthetic regime (see below). Throughout the 
surgery animals were kept on 2–3 % isoflurane. After the surgery, the eyes were 
treated with 5–10 drops of 1.0 % w/v atropine sulphate (Chauvin Pharmaceuticals) 
and covered with Tobradex Ophthalmic Ointment (tobramycin 0.3 %, dexametha-
sone 0.1 %) (Alcon). The animals were treated 4 times daily with Tobradex for 10 
days.

42.2.3  Animal Anesthetic Regimes

Animals were treated with one of five anesthetic regimes in order to optimize the 
drug cocktail and concentrations. Regime 1: hydromorphone (Sandoz) 0.1 mg/kg 
(2 mg/mL), acepromazine (Boerhinger) 0.1 mg/kg (10 mg/mL), glycopyrrolate 
(American Regent) 0.01 mg/mL (0.2 mg/mL) and propofol (1 mL/min); Regime 
2: medetomidine hydrochloride (Modern Veterinary Therapeutics) 0.015 mg/kg 
(1 mg/kg) and hydromorphone 0.1 mg/kg (2 mg/mL) and isoflurane; Regime 3: 
medetomidine hydrochloride 0.04 mg/kg (1 mg/kg) and isoflurane; Regime 4: 
medetomidine hydrochloride 0.015 mg/kg (1 mg/mL), hydromorphone 0.1 mg/
kg (2 mg/mL), Cerenia (Pfizer) 0.5 mg/kg (10 mg/kg), buprenorphine (Champion 
Alstoe) 0.02 mg/kg and isoflurane; Regime 5: medetomidine 0.015 mg/kg 
(1 mg/mL), hydromorphone 0.1 mg/kg (2 mg/mL), Cerenia 0.5 mg/kg (10 mg/
kg) and isoflurane. Animals were administered normosol fluids under all regimes, 
and given Mydriacyl (Alcon) (1 %), Mydfrin (Alcon) (2.5 %) and Alcaine (Alcon) 
(0.5 %) drop-wise to the surgical eye.

42.2.4  Retinal Detachment Procedure

Animals were administered one of the anesthetic regimes discussed above by in-
tramuscular injection, in addition to pre-operative treatment and held on 2–3 % iso-
flurane during the procedure. All techniques were performed under sterile operat-
ing room conditions. The head was elevated to ensure the eye was directly under 
the Zeiss ophthalmic operating microscope. The operative field was swabbed with 
10 % providone iodine (3M). Supplemental oxygen (2 L/min) was administered 
via intubation (Engler Engineering Corporation), and vital signs (oxygen satura-
tion, heartrate, blood pressure) were monitored throughout the procedure (Surgivet 
Smith Medicals).
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A generous lateral canthotomy was performed to enhance exposure of the surgi-
cal site. A fornix-based conjunctival and Tenon’s capsule flap was dissected tempo-
rally. A Barraquer wire eye speculum was placed incorporating the eyelid margins, 
the nictitating membrane and the conjunctival and Tenon’s capsule flap. Bipolar 
cautery of the scleral surface with a 25 gauge (G) straight disposable bipolar pen-
cil (Kirwan Surgical Products) minimized bleeding from the rich ciliary vascular 
complex. Three sclerotomies were then fashioned 4 mm from the limbus within this 
tight temporal area of exposure. One 20 G equatorial incision was placed centrally 
with a 20 G 1.3 mm V-lance knife (Alcon) to accommodate a 20 G Alcon Accurus 
Fragmatome handpiece, flanked by two 25 G cannula ports used interchangeably 
for a 25 G Accurus vitrectomy handpiece, an intraocular infusion cannula and an 
endoilluminator probe. Placement of all three sclerotomies into the lateral temporal 
quadrant was necessary due to the limited exposure imposed by the large feline eye, 
deeply set within a small tight socket.

A pars plana lensectomy was performed with linear phacofragmentation using 
a 20 G Accurus Fragmatome handpiece. A vitrectomy was performed with a 25 G 
Accurus vitrectomy handpiece with visualization from an Oculus BIOM posterior 
segment panoramic imaging system with image inverter. A 16–20 % retinal detach-
ment was placed in the posterior central pole by subretinal injection of 8 % C3F8 gas 
via an angled 42 G subretinal cannula using a disposable vitrectomy flat lens (Dutch 
Ophthalmic). Coaxial illumination from the microscope through the contact lens 
system, without an endoilluminator probe, provided a sufficient magnified view 
of the posterior segment to allow precise two-handed placement of the subretinal 
cannnula.

At the completion of the surgery, the posterior chamber was filled with auto-
mated air-fluid exchange to promote internal sclerotomy wound integrity. The 
sclerotomies, conjunctiva and Tenon’s capsule were closed with 7-0 Vicryl suture 
(Ethicon).

42.2.5  Functional Testing

Multifocal electroretinograms (mfERGs) were recorded with the VERISTM Mul-
tifocal System (Electro-Diagnostic Imaging, Inc), using an unscaled stimulus 
containing 7 hexagonal elements projected on the central 45 ° of retina through a 
dilated pupil. Multifocal ERGs were recorded with OcuScience ERG-jet contact 
lens electrodes and ERG signals were amplified 50,000 times using Grass P511J 
amplifiers (Grass Technologies) with a 10–100 Hz bandpass. The first order kernel 
of the M-13 sequence was extracted and displayed. Spectral-domain Optical Co-
herence Tomography (sd-OCT) (OPKO SLO/OCT) was used to image the area of 
the retinal detachment. Accessory lenses (Eschenbach Optik GmbH) were used for 
mfERGs and sd-OCT imaging to compensate for the aphakia and provide focused 
conditions. Line scans, raster scanning and 3-D retinal topographic scanning modes 
were used.



42 The Development of a Cat Model of Retinal Detachment and Re-attachment 319

42.3  Results

In order to optimize the retinal detachment model, three parameters were evaluated: 
type of surgery required (lens/vitreous removal or sparing), method of detachment 
(percentage of the C3F8 gas), and the optimal anesthetic regime to be administered.

A total of three cats were studied to determine the proper parameters for a retinal 
detachment and re-attachment. The detachment surgery for the first animals was a 
“direct” approach in which the lens and vitreous were spared. We used a 42 G can-
nula to inject C3F8 gas into the subretinal space. In an attempt to place the detach-
ment as centrally as possible, the lens was slightly nicked, and this later presented as 
a mild, stable cataract. The detachment surgery caused a small retro-vitreal hemor-
rhage (which later resolved) and the appearance of vitreal bands that extended from 
the pars plana sclerotomy sites to the posterior retinotomy. However, the fiber tracts 
did not progress to full tractional bands, as one would expect in a non-vitrectomised 
eye. Overall, we found that the large size of the feline lens discouraged lens and 
vitrectomy-sparing procedures because it made it virtually impossible to place the 
detachment site in the central retina. Consequently, imaging of the detached retina 
via sd-OCT and functional assessment with mfERG were impossible since the in-
struments can only monitor the central 29 and 45 °, respectively, of the retina. As a 
result, removal of the lens and vitreous was necessary to allow central placement 
of the detachment and to remove hemorrhages or vitreal bands from the posterior 
chamber.

In the second cat, a mechanical suction cutter (cutter speed of 800 and vacuum 
up to 175) was used to remove the lens. However, the size and viscosity of the lens 
posed challenges that interfered with the timely and complete removal of the lens, 
and created post-operative complications in the eye. Therefore, the ideal technique 
for rapid and efficient removal of the lens involved phacofragmentation of the lens, 
with 100 % power, 2500 cut rate and 600 mmHg with an Alcon Accuris Vitrector & 
Fragmatome. This was followed by a vitrectomy to clean the vitreous cavity and to 
prevent retinal scarring and vitreal bands.

A 42 G needle was used to deliver C3F8 gas into the subretinal space to induce the 
retinal detachment. We tested several different concentrations of the C3F8 gas (100, 
16 and 8 %) and monitored the detachment over time for spread and speed of reab-
sorption. The 100 and 16 % C3F8 gas expanded in the subretinal space, allowing less 
control over the size of the detachment. The 8 % gas did not expand. In all cases, the 
gas was slowly reabsorbed (within 6 weeks), allowing the retina to re-attach on its 
own without surgical intervention. A 6-week detachment is ideal for neuroprotec-
tion studies as it creates a significant amount of permanent damage, allowing the 
testing of therapeutic interventions to prevent photoreceptor death.

Notably, we found that the anesthetic protocol can drastically affect the multi-
focal ERG waveform. Animals administered drug regimen 3, 4 or 5 (see Materi-
als and Methods) displayed flat-lined mfERGs. These results were not due to a 
malfunction of the equipment, as a similar set up yielded healthy waveforms in 
rats (under 2 % isoflurane administration) and human volunteers. Using the same 
equipment, and anesthetic regimens 1 and 2 in the cats (ie. no Cerenia and a low 
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dose of medetomidine [0.015 mg/mL]), the mfERG waveforms obtained were typi-
cal of a healthy cat (Fig. 42.1).

42.4  Discussion

In this study, we determined the ideal experimental conditions for the creation 
of a cat model of retinal detachment and re-attachment. We found that a 3-port 
pars plana phacofragmentation lensectomy followed by a full vitrectomy allows 
unfettered access to the central retina where a controlled retinal detachment can 
be induced by the injection of 8 % C3F8 gas into the subretinal space through a 
42 G cannula. The detachment slowly resolves over 6 weeks, allowing the retina 
to re-attach without surgical intervention. We also determined that an anesthetic 
regimen that contains low dose medetomidine and no Cerenia is critical for obtain-
ing mfERGs. The effects of the anesthetic on the amplitude of the ERG may not 
be surprising since it has been shown that mild to moderate sedation in dogs using 
medetomidine significantly lowers flash electroretinogram a- and b-wave values 
(Norman et al. 2008; Lin et al. 2009). Furthermore, the antiemetic, Cerenia, is a 
substance-P inhibitor. Substance-P is an important signaling neuropeptide in two 
subpopulations of amacrine cells in the feline (Pourcho and Goebel 1988). Inhibit-
ing this neuropeptide may have contributed to the flat-line mfERG responses.

It has previously been reported that vitreous or sclerotomy hemorrhage is quite 
prevalent in cat models of stem cell or allograft transplantation (Bragadottir and 

Fig. 42.1  Multifocal ERG set up and results. a A 7 hexagon array was projected onto the central 
45° of the retina. b Control image of a human subject. c Experimental cat set-up with contact lens 
electrode on the cornea, and reference and ground electrodes in the forehead and ear, respectively. 
d Healthy mfERG in a cat. e Flat-lined ERG with the same experimental setup as d, but with the 
anesthetic cocktail containing Cerenia and a higher dose of medetomidine hydrochloride
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Narfstrom 2003). This is due to the large vascular plexus in the pars plana region. 
Cauterization of the episcleral venous plexus and the use of topical vasoconstric-
tion drugs to reduce intraocular hemorrhage have been proposed as a solution. In 
our hands, intraoperative hemorrhage did not present a significant problem. Small 
haemorrhages, when they presented, were treated by cauterizing the vessels.

The feline model that we have developed offers advantages over small rodent 
models of retinal detachment for testing therapeutic compounds. In rodent mod-
els, retinal detachment is most often induced by injection of hyaluronic acid into 
the subretinal space. The viscosity of the hyaluronic acid, and the small size of 
the rodent eye makes surgical reattachment and functional assessment of photo-
receptors technically challenging. The size of the cat eye allows re- attachment of 
the retina and subsequent analysis of retinal structure and function by OCT and 
mfERG. Moreover, a number of studies have previously been conducted on retinal 
detachment in cats (Lewis and Fisher 2000; Sakai et al. 2014), although as far as we 
are aware, none of these studies have subsequently re-attached the retina after long-
term detachment. Thus, a good body of literature exists on the structural alterations 
(remodeling) in the retina following retinal detachment, and this information is very 
useful for assessing the therapeutic efficacy of experimental compounds.
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Chapter 43
The Role of X-Chromosome Inactivation  
in Retinal Development and Disease

Abigail T. Fahim and Stephen P. Daiger

Abstract The expression of X-linked genes is equalized between males and 
females in mammalian species through X-Chromosome inactivation (XCI). Every 
cell in a female mammalian embryo randomly chooses one X Chromosome for 
epigenetic silencing at the 8–16 cell stage, resulting in a Gaussian distribution of 
XCI ratios with a peak at 50:50. At the tail extremes of this distribution, X-linked 
recessive mutations can manifest in disease in female carriers if the mutant allele is 
disproportionately active. The role of XCI skewing, if any, in X-linked retinal dis-
ease is still unknown, although many have speculated that such skewing accounts 
for phenotypic variation in female carriers of X-linked retinitis pigmentosa (XlRP). 
Some investigators have used clinical findings such as tapetal-like reflex, pigmen-
tary changes, and multifocal ERG parameters to approximate XCI patches in the 
retina. These studies are limited by small cohorts and the relative inaccessibility 
of retinal tissue for genetic and epigenetic analysis. Although blood has been used 
as a proxy for other tissues in determining XCI ratios, blood XCI skews with age 
out of proportion to other tissues and may not accurately reflect retinal XCI ratios. 
Future investigations in determining retinal XCI ratios and the contribution of XCI 
to phenotype could potentially impact prognosis for female carriers of X-linked 
retinal disease.

Keywords X-Chromosome inactivation · Dosage compensation · Skewed 
inactivation · Escape genes · Retinal dystrophies · X-linked retinitis pigmentosa · 
X-linked retinoschisis · Choroideremia



326 A. T. Fahim and S. P. Daiger

43.1  Introduction

X-Chromosome Inactivation (XCI) is a dosage compensation mechanism used in 
mammals to equilibrate the expression of X-linked genes across genders (Lyon 
2002). Every cell in the female embryo inactivates either the maternal or the pa-
ternal X chromosome, and the inactivation choice is passed down to subsequent 
daughter cells. This choice is typically made at random, although there are excep-
tions, and the XCI ratio in newborn females follows a normal distribution with a 
peak at 50:50. Inactivation of the X chromosome is facilitated by expression of 
XIST RNA, which binds to the chromosome of choice and mediates downstream 
methylation and inactivation (Brown et al. 1991).

XCI is determined at the 8–16 cell stage. This was demonstrated in human em-
bryo studies that showed accumulation of XIST RNA starting at the 8-cell stage (van 
den Berg et al. 2009). Another study modeled distribution curves for XCI ratios 
based on theoretical numbers of stem cells present at the time of XCI choice. The 
predictions for 8- and 16-cell embryos most closely fit the empirically determined 
distribution curve, suggesting that XCI occurs within this window (Amos-Landgraf 
et al. 2006).

43.2  Escape Genes and Retinal Disease

A subgroup of X-linked genes escapes inactivation and is expressed from both 
X chromosomes. In a comprehensive study looking at inactivation status of 612 
X-linked genes in human-rodent hybrid cells, 15 % of genes escaped inactiva-
tion, and an additional 10 % showed variable inactivation between individuals 
(Carrel and Willard 2005). Escape genes were often expressed at lower levels from 
the inactivated chromosome compared to the active chromosome. Both Retinitis 
Pigmentosa GTPase Regulator ( RPGR) and RP2, which are together responsible 
for  > 90 % of X-linked retinitis pigmentosa (XLRP), were found to be completely 
silenced. See Table 43.1 for a complete list of X-linked genes associated with retinal 
disease and their inactivation status in the hybrid cell lines (Carrel and Willard 
2005; Daiger 2014).

43.3  XCI Skewing

Skewing of the XCI ratio from the expected 50:50 ratio can occur at the time of XCI 
choice in the early embryo (primary), or during embryonic development or later in 
life (secondary). In mice, XCI choice is greatly biased by variation at the X Control-
ling Element locus ( XCE) on the X chromosome (Courtier et al. 1995; Chadwick 
and Willard 2005). In humans, nonrandom XCI choice occurs due to mutations in 
X-linked genes, including the XIST gene (Plenge et al. 1997).
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Disease-causing X-linked mutations often bias cell survival and replication 
during development and cause secondary XCI skewing (Orstavik 2009). For 
example, in Lesch-Nyhan Syndrome and Menkes disease, cells with a normal 
active X chromosome have a growth advantage over cells with a mutant active 

Table 43.1   Retinal disease genes and inactivation status. (Carrel and Willard 2005; Daiger 2014)
Gene or locus (alias) Disease Inactivation
OFD1 (RP23, CXORF5) Joubert syndrome, orofa-

ciodigital syndrome 1, Simp-
son-Golabi, Behmel syndrome 
2, retinitis pigmentosa

Escapes inactivation

RS1 (XLRS1) Retinoschisis Variable escape
RP6 Retinitis pigmentosa Not determined
DMD Oregon eye disease Variable escape
OPA2 Optic atrophy Not determined
NYX (CSNB1, CSNB1A, 
CSNB4)

Congenital stationary night 
blindness

Not determined

COD1 Cone dystrophy Not determined
RPGR (CORDX1, RP3) Retinitis pigmentosa, cone 

dystrophy
Inactivated

PRD Primary retinal dysplasia Not determined
NDP (EVR2) Norrie disease, familial exuda-

tive vitreoretinopathy, Coats 
disease

Not determined

AIED (OA2) Åland island eye disease Not determined
CACNA1F (CORDX3, 
CSNB2, CSNB2A, CSNBX2)

Congenital stationary night 
blindness, ÅIED-like disease, 
cone-rod dystrophy

Inactivated

RP2 Retinitis pigmentosa Inactivated
PGK1 Retinitis pigmentosa with 

myopathy
Inactivated

CHM Choroideremia Variable escape
TIMM8A (DDP, DDP2, 
DFN1)

Optic atrophy with deafness-
dystonia syndrome

Variable escape

RP24 Retinitis pigmentosa Not determined
COD2 (CORDX2) Cone dystrophy Not determined
RP34 Retinitis pigmentosa Not determined
OPN1LW (BCM, CBP, 
COD5, RCP)

Deuteranopia, macular dys-
trophy in blue cone mono-
chromacy with loss of locus 
control element

Not determined

OPN1MW (CBD, GCP) Protanopia, macular dystrophy 
in blue cone monochromacy 
with loss of locus control 
element

Not determined

The table includes a comprehensive list of X-linked genes and loci known to be associated with 
retinal phenotypes and their inactivation status on the inactivated X chromosome in human-rodent 
hybrid cell lines
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X (Migeon 2007; Desai et al. 2011). In contrast, some female carriers of Duch-
enne Muscular Dystrophy and Hemophilia A demonstrate preferential inactivation 
of the wild-type allele and can manifest disease (Pegoraro et al. 1994; Di Michele 
et al. 2014). This pattern appears to be heritable in some cases (Renault et al. 2007; 
Esquilin et al. 2012), indicating that either the disease locus or another genetic 
modifier is biasing XCI in these families.

Even in the absence of a pathologic mutation XCI ratios skew with age, in some 
tissues more than others (Hatakeyama et al. 2004; Amos-Landgraf et al. 2006). 
Blood is particularly prone to XCI skewing with time, and blood has shown in-
creased XCI skewing compared to buccal mucosa, skin, muscle, and urinary epi-
thelium (Sharp et al. 2000; Knudsen et al. 2007; Bolduc et al. 2008). Only 4.9 % 
of newborns show skewing  > 80:20 in blood compared to 14.2 % of adults (Amos-
Landgraf et al. 2006). This is particularly relevant because blood is the most fre-
quently sampled tissue in the literature for determining XCI ratios and may not 
always be a good proxy for the tissue of interest. For example, in severely affected 
female carriers of X-linked ornithine transcarbamylase deficiency, skewed XCI was 
found in the liver, but not in the blood (Yorifuji et al. 1998).

There is very little data on correlation of XCI in the retina compared to blood. 
In one study that examined multiple tissues at autopsy from a female affected with 
Leber’s Hereditary Optic Neuropathy, the XCI ratio in retina was 43:57, compared 
to 65:35 in blood and 56:44 in optic nerve (Pegoraro et al. 2003). Not only was the 
ratio more skewed in blood than in retina, but it was also skewed in the opposite 
direction.

43.4  XCI Patches in the Retina

Due to the relative inaccessibility of human retina tissue for investigation, XCI 
patches in the retina have largely been studied in animal models. The mouse retina 
displays clonal patches of XCI in a radial pattern. XCI occurs between E5.5 and 
E8.5 in mice, and at day E10.5 female mice heterozygous for an X-linked lacZ trans-
gene showed random intermingling of lacZ active and inactive cells, indicating free 
migration of neuroepithelial cells. At birth, the mouse retinas showed alternating 
columns of lacZ active and inactive cells, indicating that the progenitor cells became 
fixed in location at some point (Reese and Tan 1998; Smallwood et al. 2003). Cone, 
horizontal, amacrine, and ganglion cells were interspersed into non-matching col-
umns, suggesting tangential migration of these cells (Reese and Galli-Resta 2002).

In XLPRA2, a canine model of XLRP, carrier female dogs displayed patches of 
mislocalization of rod opsin at 3.9 weeks, followed by outer segment disruption and 
rod loss in these patches, which the authors attributed to patches of inactivation of 
the wild-type allele (Beltran et al. 2009). Older dogs by 39 weeks of age had a more 
uniform, although thinner, outer nuclear layer, which the authors speculated may 
result from early migration of healthy rods into diseased areas.
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Adaptive optics was used to examine the cone mosaic in a human female carrier 
of protan color-blindness (deficiency of L-opsin on one X-chromosome) (Hofer 
et al. 2005). If cones were organized into XCI patches, one would see patches of M-
cones devoid of L-cones. Instead, the L, M, and S cones were randomly dispersed 
in the fovea. The ratio of L:M cones was 0.37:1 (or 27 % L cones), suggesting an 
XCI ratio of approximately 54:46. This interspersion of cones is consistent with 
prior studies demonstrating migration of cones into the fovea during fetal develop-
ment (Yuodelis and Hendrickson 1986; Diaz-Araya and Provis 1992). It is unknown 
whether rods are distributed in XCI patches in the adult human retina.

43.5  XCI Patches and Skewing in Retinal Disease

XCI has been investigated in several X-linked retinal diseases, including XLRP, 
choroideremia, and retinoschisis. XLRP in particular is known for variable manifes-
tation in female carriers, and differences in XCI ratios have been proposed as a chief 
mechanism for this variation. To date, investigations have been performed in small 
groups of patients using blood to determine XCI ratios. In one study involving three 
families with the same RPGR mutation, XCI ratios in blood were not associated 
with carrier phenotype (Banin et al. 2007). Of note, two families had unaffected 
carriers and shared a common haplotype, while the third family had severely af-
fected carriers with a different surrounding haplotype, suggesting a linked genetic 
modifier affecting phenotype. Others have reported patchy disease in female carri-
ers of XLRP (Szamier and Berson 1985; Cideciyan and Jacobson 1994; Banin et al. 
2007). In one study of multifocal electroretinography (mfERG) in five clinically 
unaffected female carriers of XLRP, two carriers demonstrated patches of reduced 
amplitude, and three carriers demonstrated patches of implicit time delay. However, 
these patches did not correlate with each other and did not correlate with patches of 
tapetal-like reflex (Vajaranant et al. 2002).

In a study of seven obligate carriers of X-linked choroideremia, one carrier 
showed visual field abnormalities, six carriers showed patches of significant im-
plicit time delays on mfERG, and four of these six also showed overlapping patches 
of significantly reduced amplitude (Vajaranant et al. 2008). All carriers had patches 
of pigmentary retina changes on fundoscopic exam, although these patches did not 
always correlate with areas of reduced function on mfERG. In two families with 
X-linked choroideremia, no link was found between female carrier phenotype and 
XCI skewing in peripheral blood (Perez-Cano et al. 2009).

Carriers of X-linked retinoschisis (XLRS) are generally not affected. There are 
rare reports of fundoscopic and psychophysical abnormalities (Ali et al. 2003; Ro-
driguez et al. 2005). In a study of mfERG in nine obligate carriers of XLRS, two 
carriers showed patches of significant implicit time delay that overlapped almost 
perfectly with patches of significantly reduced amplitude (Kim et al. 2007).
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43.6  Conclusion

The studies described above have yielded variable results, and the extent to which 
XCI ratios contribute to X-linked retinal diseases remains controversial. Of note, 
these studies have all included very small numbers of patients, and those that looked 
at XCI ratios did so in blood samples. Given the notoriety of blood for instability 
of XCI populations and increased XCI skewing with age, this tissue may be a par-
ticularly poor proxy for retina tissue despite the advantage of accessibility. Future 
studies would benefit from larger cohorts and exploration of XCI ratios in other ac-
cessible tissues with potentially more stable XCI. Determining the contribution of 
XCI ratios to phenotype could have prognostic utility for carriers of X-linked retinal 
diseases. In particular, female carriers of XLRP vary in phenotype from unaffected 
to severely affected and may benefit from prognostic information, which is cur-
rently lacking. In addition, with gene therapy on the horizon for XLRP, prognostic 
factors may play an important role in selecting appropriate female candidates for 
intervention.
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Chapter 44
A Non-Canonical Role for β-Secretase in the 
Retina

Qingwen Qian, Sayak K. Mitter, S. Louise Pay, Xiaoping Qi, Catherine Bowes 
Rickman, Maria B. Grant and Michael E Boulton

Abstract It has long been established that β-Secretase (BACE) plays a critical role 
in the formation of amyloid plaques in Alzheimer’s Disease patients, but it is only 
recently that the importance of β-secretases in retinal pathophysiology has been 
recognized. BACE expression is elevated in response to stress, and downregulation 
results in lysosomal abnormalities and mitochondrial changes. Inhibition of BACE 
can lead to reduced retinal function, retinal thinning, lipofuscin accumulation and 
vascular dysfunction in mice. Furthermore, BACE inhibition accelerates choroidal 
neovascularization (CNV) in mice. We propose that BACE plays an important role 
in retinal homeostasis and that BACE upregulation in response to stress is a protec-
tive measure.

Keywords β-secretase · Retinal degeneration · Choroidal neovascularisation · 
Retinal pigment epithelium · Lysosomes · Mitochondria · Angiogenesis · Age-
related macular degeneration

44.1   Introduction

There are two β-secretase enzymes, BACE1 and BACE2. BACE1 is a 501 amino acid 
type 1 transmembrane aspartic protease with levels reportedly highest in the brain and 
pancreas (De Strooper et al. 2010; Zhao et al. 2011). BACE1 catalyzes the rate limit-
ing step in the production of the β-amyloid (Aβ) protein. Amyloid precursor protein 
(APP) undergoes sequential proteolytic cleavage by BACE1 and γ-secretase to liber-
ate Aβ, which is a consistent feature of amyloid plaques associated with Alzheimer’s 
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disease (AD) (Vassar et al. 2009). BACE2 shares approximately 68 % homology with 
BACE1, but is expressed at low levels in neurons of the brain and does not have the 
same cleavage activity on APP as BACE1. Studies in animals demonstrate the critical 
importance of BACE1. Crossing BACE1−/− mice with APP transgenic Tg2576 mice 
markedly reduces Aβ deposition (Ohno et al. 2004), and BACE RNA interference 
reduces amyloid Aβ production and neurodegeneration in an APP transgenic mouse 
model (Singer et al. 2005). BACE1 has therefore emerged as a promising therapeutic 
target for AD, resulting in the design of numerous BACE1 inhibitors (Vassar et al. 
2009; De Strooper et al. 2010). In addition to cleavage of APP, BACE1 also cleaves 
a growing number of other substrates including vascular endothelial growth factor 
receptor-1 (VEGFR1), voltage-gated sodium (Nav) channel β2-subunit (Navβ2) and 
potassium (Kv) channel subunits KCNE1, KCNE2, neuregulin, interleukin-1 receptor 
2 and LDL receptor-related protein (Vassar et al. 2009; Klaver et al. 2010; Cai et al. 
2012). Thus, it is likely that BACE has an important physiological role in a number 
of tissues including the retina. In this review, we summarize the physiological roles of 
BACE1 and BACE2 in the retina, the implications for BACE1 in retinal degeneration 
and consider the off target effect of BACE1 inhibitors in the retina.

44.2  Retinal Localization of BACE1 and 2

Although it is widely known that BACE1 is highly expressed in the brain there has 
been surprisingly little investigation into BACE expression in other tissues even 
though, for example, BACE 1 appears to be more highly expressed in the pancreas 
than in the brain (Yan et al. 1999). In the eye, BACE1 and 2 have been detected in the 
lens, neural retina, retinal pigment epithelium (RPE) and choroid of mice, rats and 
humans (Li et al. 2003; Cai et al. 2012; Wang et al. 2012). BACE1 expression is ob-
served in all layers of the retina, however, it is strongest in the inner and outer plexi-
form layers and the retinal vasculature in both mouse and human retinas. Levels of 
BACE1 in the neural retina are approximately half that observed in the brain. BACE1 
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is weakly expressed in both RPE and the choroid. In contrast, BACE2 is highly ex-
pressed in the RPE and choroid where it is over 30 times higher than BACE1, but it is 
only weakly expressed in the neural retina (Cai et al. 2012; Wang et al. 2012).

The intracellular localization of BACE within retinal cells has also received lim-
ited attention. In the brain, BACE primarily localizes to endosomes to facilitate 
cellular translocation and the necessary acidic pKa for optimal enzyme activity. 
BACE expression has also been reported in lysosomes but this has been assumed 
to be part of the degradation pathway. However, studies in retinal cells indicate that 
BACE1, in addition to localization in endosomes, also associates with mitochondria 
and lysosomes where it plays a functional role (Qian and Boulton, unpublished).

44.3  The Role of BACE in Retinal Homeostasis  
and Dysfunction

It is reasonable to infer that since both BACE1 and BACE2 are expressed at high 
levels in normal retina and choroid, these enzymes play an important functional role 
in the physiology of the posterior segment. This is supported by studies involving 
BACE1 knock-down in RPE cell cultures with either pharmacological agents or 
siRNA which have demonstrated: (a) an increase in lysosomal pH, (b) a decrease in 
lysosomal enzyme activity, (c) the formation of lipofuscin-like material (Cai et al. 
2012) and (d) regulation of mitochondrial integrity (Qian and Boulton, unpublished 
data). Interestingly, mitochondrial respiratory function has been reported to increase 
BACE expression in the rat retina (Xiong et al. 2007). BACE1 also plays a criti-
cal role in maintaining retinal vascular endothelial cell quiescence by cleaving the 
ectodomain of VEGFR1 and facilitating negative regulation of angiogenesis (Cai 
et al. 2012). BACE2 is expressed in pigmented cells, cleaving pigment-cell-specific 
melanocyte protein (PMEL) to produce amyloid fibrils required for production of 
melanin by melanocytes (Rochin et al. 2013). However, although highly expressed in 
the RPE choroid, the physiological importance of BACE2 remains largely unknown.

Elucidation of the role for BACE in retinal dysfunction has come from BACE 
inhibition studies. BACE1−/− mice exhibit reduced, visual function thinning of the 
neural retina, atrophic retinal ganglion cells (RGCs), decreased retinal capillary 
density in both the superficial and deep retinal plexus, a marked increase in lipo-
fuscin and areas of RPE atrophy with thinning of underlying Bruch’s membrane 
compared to age-matched wild type controls (Cai et al. 2012). In support of these 
findings, Drosophila BACE ortholog knockdown in photoreceptor neurons leads to 
degeneration of glia (Bolkan et al. 2012). A different, much milder retinal pheno-
type was observed in BACE2−/− mice in which the overall neural retina appeared 
normal apart from occasional foci of hyperplasia. However, the choroid was highly 
disrupted in BACE2−/− mice, which was not observed in BACE1−/− mice. Abnormal 
melanosome morphology in the RPE was also observed in BACE2−/− mice con-
sistent with the role of BACE2 in melanogenesis (Rochin et al. 2013) and altered 
melanophore migration is observed in BACE2−/− zebrafish (van Bebber et al. 2013). 
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BACE1−/−BACE2−/− double knockout mice exhibited a retinal phenotype similar to 
BACE1−/− mice. Since knockout mice can compensate and may not truly represent 
loss of BACE activity in adult animals, we and others undertook studies in which 
BACE1 activity was reduced by either siRNA knockdown or chemical inhibitors 
(May et al. 2011; Cai et al. 2012). This resulted in photoreceptor loss, increased 
lipofuscin accumulation in the RPE and an acceleration of laser-induced CNV in 
rodents. These studies strongly support the hypothesis that BACE1 plays a critical 
role in normal retinal function, and that its inhibition is detrimental. The mechanism 
remains largely uninvestigated, but may be context-dependent since BACE inhibi-
tion has been reported to be neuroprotective to retinal ganglion cells in vitro (Ya-
mamoto et al. 2004) while the opposite has been reported in vivo (Cai et al. 2012).

44.4  Implications for BACE in AMD and Diabetic 
Retinopathy

A number of studies over the last decade have suggested that AD shares several clini-
cal and pathological features with age-related macular degeneration (AMD), includ-
ing the deposition of Aβ (Anderson et al. 2004; Ding et al. 2011). As described earlier 
BACE1 performs the first of two sequential cleavages of APP in the formation of Aβ. 
Elevated Aβ levels are associated with aging and senescence of retinal cells (Wang 
et al. 2012) and anti-amyloid therapy protects against RPE damage and vision loss in 
a mouse model of AMD (Ding et al. 2011). Interestingly, BACE cleavage of APP is 
required for glial survival in Drosophila (Bolkan et al. 2012). BACE2 is known to be 
important to preserve RPE morphology and function (Rochin et al. 2013). However, 
the increase of Aβ, the product of BACE1 cleavage, also results in an increase in the 
paracellular permeability of RPE cells in AD patients (Kim et al. 2012; Cao et al. 
2013), suggesting that reduced RPE barrier function may result in accumulation of 
BACE inhibitors in the inner retina, augmenting their effects on BACE1.

Oxidative stress, a risk factor in both AMD and diabetic retinopathy (DR), is 
associated with increased BACE levels in a variety of retinal and non-retinal cells 
types (Xiong et al. 2007; Zhu et al. 2009; Parada et al. 2013; Qian and Boulton 
unpublished). A significant feature of retinal disease is cell death, with acellular 
capillaries a feature of DR and RPE cell loss a hallmark of geographic atrophy in 
AMD. The contribution of BACE to apoptosis is controversial. Some studies show 
that an increase of BACE1 and Aβ leads to apoptosis, whereas other studies have 
suggested that Aβ increase has no effect on apoptosis. BACE1 activity and protein 
levels have been shown to be increased 31 and 67 %, respectively, in ischemic corti-
cal extracts, compared with contralateral cortical extracts and elevated BACE colo-
calizes with TUNEL-positive cells in ischemic regions (Wen et al. 2004). Caspase 3 
levels increase with Αβ level in rats with optic nerve transection (Zhao et al. 2011) 
and BACE2 can protect against caspase 3-dependent apoptosis in other cell types 
(Li et al. 2001). A balance between BACE1 and BACE2 may be required to protect 
against apoptosis in response to oxidative stress in normal cellular function. Con-
firmation of the role of BACE in retinal cell death requires further investigation.
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BACE1 also has a potential role in the regulation of aberrant neovascularization 
such as occurs in wet AMD and proliferative DR. Pigment epithelium derived factor 
(PEDF) is a potent anti-angiogenic factor, capable of inhibiting the pro-angiogenic 
effect of vascular endothelial growth factor (VEGF) (Cai et al. 2011). Interestingly, 
PEDF induces a time-dependent, six-fold increase in the levels of BACE1 in cul-
tured retinal endothelial cells, but has no effect on BACE1 expression in RPE cells. 
Inhibition of BACE1 blocks the inhibitory effect of PEDF on VEGF-induced an-
giogenesis, both in vitro and in a laser-induced CNV mouse model. It appears that 
BACE1 plays a critical role in the PEDF-induced ectodomain cleavage of VEGFR1, 
which is required for the regulation of angiogenesis (Cai et al. 2012). Therefore, it 
appears likely that BACE plays a critical role in maintaining vascular quiescence.

44.5  Conclusions and Future Directions

Given the significant expression of BACE in the retina and choroid it is surprising 
that so little research has been undertaken to determine the role that BACE1 and 2 
play in pathophysiology. This is, however, now beginning to be addressed and it is 
evident that BACE is associated with maintaining retinal pathophysiology and that its 
upregulation in response to stress may reflect a protective mechanism. The observa-
tion that BACE plays an important role in retinal health strongly advises caution in 
the development of BACE inhibitors for AD patients. Further research is required to 
delineate the role of BACE in retinal maintenance and the mechanisms by which it 
can regulate lysosomal and mitochondrial function. Furthermore, it is important to de-
termine the role BACE plays in retinal pathologies such as AMD and DR and whether 
BACE expression changes are cause or consequence of these diseases (Fig. 44.1).

Fig.  44.1   The diagram summarizing the role of BACE in retinal homeostasis and pathology. 
Arrows indicate functional targets of BACE. Blind ending lines indicate pathological response 
following BACE inhibition
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Chapter 45
The Consequences of Hypomorphic RPE65  
for Rod and Cone Photoreceptors

Marijana Samardzija, Maya Barben, Philipp Geiger and Christian Grimm

Abstract RPE65 is essential for both rod- and cone-mediated vision. So far, more 
than 120 disease-associated mutations have been identified in the human RPE65 
gene. Differential clinical manifestations suggested that some patients suffer from 
null mutations while others retain residual RPE65 activity and some useful vision. 
To understand the mechanism of retinal degeneration or dysfunction caused by such 
hypomorphic RPE65 alleles, we generated an Rpe65R91W knock-in mouse ( R91W) 
that expresses a mutant RPE65 protein with reduced function. Data obtained sug-
gested that the R91W mouse is highly suitable to study the impact of RPE65 insuf-
ficiency on rod pathophysiology. To study the impact on cones, we combined the 
R91W with the Nrl−/− mouse that develops an all-cone retina. Here we summarize 
the consequences of hypomorphic RPE65 function (reduced 11-cis-retinal synthe-
sis) for rod and cone pathophysiology.

Keywords RPE65 · Retina · Photoreceptors · Cones · Nrl · Dystrophy · Blindness · 
Degeneration · Mouse model · R91W

45.1  Introduction

Retinal pigment epithelial protein RPE65 is essential for the regeneration of 11-cis-
retinal—the chromophore of both cone and rod visual pigments. Photoisomerisation 
of 11-cis-retinal results in the dissociation of all-trans-retinal from the opsin mol-
ecule. The restoration of light sensitivity of the bleached opsin requires regeneration 
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of 11-cis-retinal through an enzymatic pathway termed the visual cycle. RPE65 acts 
in this cycle as an isomerohydrolase catalyzing the hydrolysis of all-trans-retinol 
and subsequently the isomerization into 11-cis-retinol (Jin et al. 2005; Moiseyev 
et al. 2005; Redmond et al. 2005). Mutations in RPE65 lead to autosomal reces-
sive dystrophies ranging from Leber congenital amaurosis to Retinitis Pigmentosa 
(Marlhens et al. 1997; Morimura et al. 1998). Recently, however, a dominant-acting 
mutation was also reported in RPE65 patients (Bowne et al. 2011). Based on the 
clinical picture some mutations are null, while some are hypomorphic and allow 
partial RPE65 activity leading to reduced but detectable vision in affected patients. 
Mouse models exist to mimic both situations in patients, with Rpe65−/− (Redmond 
et al. 1998) and rd12 (Pang et al. 2005) mice being null mutants, and R91W (Sa-
mardzija et al. 2008) mice (see below) representing a group of patients with a milder 
phenotype and remnant visual function. Here we discuss the consequences of the 
hypomorphic RPE65R91W protein for rod and cone function, and retinal pathology 
in general.

45.2  R91W

Patients with an amino acid substitution at position 91 (R91W) in the RPE65 
gene have useful cone-mediated vision in the first decade of life (El Matri et al. 
2006) suggesting partial activity of the mutant RPE65R91W protein. To understand 
the retinal pathophysiology caused by the mutant RPE65 protein, we generated 
and analyzed the R91W knock-in mouse (Samardzija et al. 2008). Consistent to 
the assumed diminished enzymatic activity of mutant RPE65R91W in patients, the 
R91W mice exhibit very low chromophore levels—accounting for less than 10 % 
of wild-type levels. The low chromophore content is a direct result of the mutant 
RPE65R91W protein which (a) has severely reduced enzymatic activity, (b) is mis-
localized and (c) is expressed at much lower levels than wt (Takahashi et al. 2006; 
Samardzija et al. 2008). It was previously shown that reduction of RPE65 protein 
levels directly influences rhodopsin regeneration kinetics; i.e. less RPE65 means 
that less 11-cis-retinal can be synthetized in a given period (Wenzel et al. 2003). All 
of these factors lead to the severely impaired synthesis of 11-cis-retinol resulting 
in minute amounts of 11-cis-retinal chromophore and accumulation of retinyl ester 
substrate in the retinal pigment epithelium of R91W mice (Samardzija et al. 2008). 
Maximal 11-cis-retinal amount recovered after 24 h dark-adaptation in R91W mice 
corresponded to 6 % of wt levels (Samardzija et al. 2008). Even after prolonged 
dark-adaptation—adult mice were placed for days in darkness—rhodopsin levels 
were still below 10 % of normal. Only mice that were born and kept for 24 weeks in 
complete darkness had rhodopsin levels 94.2 ± 11.8 pmol per eye, which is 20 % of 
normal levels (unpublished data).

Figure 45.1a, b shows retinal morphology of wild-type and R91W mice. The 
R91W mutation causes slow but progressive retinal degeneration, which is char-
acterized by the initial rapid loss of cones that is followed by a slow rod photo-
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receptor death (Samardzija et al. 2008, 2009). Dark-adapted electroretinography 
(ERG) responses were almost undetectable but strong light-adapted responses ini-
tially suggested better preservation of the cone function in R91W mice (Samardzija 
et al. 2008). This would have been in line with the human pathology caused by the 
R91W mutation: night blindness and retention of useful color vision in younger pa-
tients. However, upon closer inspection of crossbreeds between R91W, Rho−/− and 
Gnat1−/− mice, generated to specifically segregate rod- from cone-mediated func-
tion, it became evident that R91W mice cannot generate significant cone-driven re-
sponses (Samardzija et al. 2009). Namely, the small amount of chromophore found 
in the rod-dominated retina of R91W mice is utilized almost exclusively by rods 
and not by cones. Since rods outnumber cones roughly by 20:1 (Carter-Dawson and 
LaVail 1979) and maximal levels of chromophore regenerated never exceeds 10 %, 
rod photoreceptors in R91W mice may simply have a higher chance to acquire the 
scarce chromophore. Rods may thus act as ‘chromophore trap’ preventing 11-cis-
retinal delivery to cones. Cone opsin mislocalization in R91W, a known conse-
quence of chromophore insufficiency (Rohrer et al. 2005), further supports such 
conclusion (Samardzija et al. 2009). The final proof that under limiting conditions 
the chromophore ends up in rods rather than in cones came from R91W;Gnat1−/− 
double mutant mice. Gnat1−/− mice have a morphologically normal retina but lack 
rod transducin alpha and therefore have non-functional rods (Calvert et al. 2000). 
The lack of any photopic and scotopic responses in R91W;Gnat1−/− mice suggests 
that their cones have no access to the chromophore and that the function detected in 
single mutant R91W mice indeed originated from rods. This was further confirmed 

Fig. 45.1  Morphological consequences of hypomorphic RPE65 on rods and cones. R91W mice 
show reduced numbers of cone photoreceptor nuclei and a pronounced disorganization of rod outer 
segments already at 4 weeks of age. The functional all-cone retinas of 6 week-old R91W;Nrl−/− 
mice have a normal layering and better preserved cone outer segments than age-matched single 
mutant Nrl−/− mice
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in R91W;Gnat1−/−;Rho−/− triple mutant mice in which a clear ERG response was re-
corded that could only have been generated by cones. Obviously, physical removal 
of the rod opsin eliminated the chromophore trap allowing 11-cis-retinal to reach 
cones and restore cone function in R91W;Gnat1−/−;Rho−/− mice.

Considering that the rod-cone ratio in the human macula is distinctive from the 
rest of the retina, the results obtained in R91W mice most likely phenocopy the situ-
ation in the peripheral retina of patients suffering from hypomorphic RPE65. As the 
mice lack a cone-rich macular region we decided to analyze the consequences of the 
R91W mutation by using the all-cone Nrl−/− mouse (Mears et al. 2001).

45.3  R91W;Nrl−/−

The lack of neural retina leucine zipper (NRL) transcription factor during mouse 
retinal development drives all photoreceptor progenitors towards a cone cell fate 
(Mears et al. 2001). Functionally, rod-like behavior is suppressed and a super-nor-
mal light-adapted ERG is detected in Nrl−/− mice. The Nrl−/− retina is populated 
by a surplus of S-cones while M-cones seem to retain normal number. However, 
retinal morphology of Nrl−/− mice is dysmorphic and characterized by formation of 
rosette-like structures within the cone photoreceptor layer (Fig. 45.1c). Cone pho-
toreceptors in Nrl−/− mice degenerate with time and rosettes are lost in older mice. 
We and others reported normal photoreceptor layering in Rpe65−/−;Nrl−/−, which, 
along with other evidence, suggested that rosettes may arise from normal levels 
of chromophore supplied by wild-type RPE65 (Wenzel et al. 2007; Feathers et al. 
2008; Kunchithapautham et al. 2009). As Rpe65−/−;Nrl−/− mice lack cone function, 
they cannot be used to test treatment options to prevent cone loss on a functional 
level. To reduce chromophore supply to the cones and to generate a mouse model 
to study the effects of the hypomorphic R91W mutation in an all-cone environment, 
which should represent the situation found in the macular region of patients suf-
fering from this mutation, we crossbred R91W and Nrl−/− mice. Owing to reduced 
(3 % of wt) but detectable levels of chromophore, the resulting R91W;Nrl−/− double 
mutant mouse had a normally layered retinal structure without rosettes (Fig. 45.1d) 
and preserved retinal function (Samardzija et al. 2014). It is interesting to note that 
the all-cone retina of R91W;Nrl−/− mice is relatively stable with only very slow 
degeneration despite the severely reduced chromophore levels (Samardzija et al. 
2014). Under similar—low chromophore—conditions, cone opsin is mislocalized 
and cones degenerate rapidly in the rod-dominated retina of R91W and even faster 
in retinas of Rpe65–/– mice that lack the chromophore (Samardzija et al. 2009). Pre-
vious studies suggested the importance of the chromophore for proper cone opsin 
trafficking and that cone opsin mislocalization detected in synaptic terminals in 
both R91W and Rpe65–/– mice can be corrected by different means of chromophore 
supplemetation (Rohrer et al. 2005; Znoiko et al. 2005; Fan et al. 2006; Zhang et al. 
2008; Kunchithapautham et al. 2009; Samardzija et al. 2009; Kostic et al. 2011). 
The lack of cone opsin mislocalization in R91W;Nrl−/− suggested that the minute 
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amounts of chromophore in R91W;Nrl−/− are sufficient for proper cone opsin traf-
ficking thereby stabilizing cone cells. Indeed, qualitative comparison of retinal de-
generation in Rpe65–/–;Nrl−/− (Wenzel et al. 2007; Kunchithapautham et al. 2009) 
and R91W;Nrl−/− (Samardzija et al. 2014) suggests better preservation of the all-
cone retina in the latter. Yet, it is unclear why in the absence of chromophore cones 
die rapidly in rod-dominant retinas ( Rpe65−/−) but survive much longer in all-cone 
retinas ( Rpe65−/−;Nrl−/−).

45.4  Concluding Remarks

Human vision largely depends on cones and the incidence of cone degenerative 
diseases such as age-related macular degeneration is expected to rise in the near fu-
ture. The understanding of cone physiology and pathophysiology is urgently needed 
to develop therapeutic approaches for the preservation of cone-mediated vision in 
patients. R91W knock-in mice mimic many aspects of the human pathology caused 
by RPE65 insufficiency, complementing the Rpe65 knock-out mouse model. While 
R91W mice are representative for the situation in the retinal periphery, R91W;Nrl−/− 
mice mimic more closely the situation in the central, cone-rich retina of human 
patients suffering from hypomorphic RPE65 function. R91W;Nrl−/− mice not only 
allow the investigation of the consequences of disease causing cone-specific muta-
tions in an organized all-cone environment, but their preserved retinal function and 
retinal morphology should also improve the qualitative and quantitative outcomes 
of experiments aiming at rescuing cones on a functional level. The mice might es-
pecially be suited for neuroprotective studies, gene therapy approaches and above 
all, for cone cell transplantation experiments to rescue cone vision.
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Chapter 46
The Rate of Vitamin A Dimerization in 
Lipofuscinogenesis, Fundus Autofluorescence, 
Retinal Senescence and Degeneration

Ilyas Washington and Leonide Saad

Abstract One of the earliest events preceding several forms of retinal degeneration 
is the formation and accumulation of vitamin A dimers in the retinal pigment epithe-
lium (RPE) and underlying Bruch’s membrane (BM). Such degenerations include 
Stargardt disease, Best disease, forms of retinitis pigmentosa, and age-related mac-
ular degeneration (AMD). Since their discovery in the 1990’s, dimers of vitamin A, 
have been postulated as chemical triggers driving retinal senescence and degenera-
tion. There is evidence to suggest that the rate at which vitamin A dimerizes and the 
eye’s response to the dimerization products may dictate the retina’s lifespan. Here, 
we present outstanding questions, finding the answers to which may help to eluci-
date the role of vitamin A dimerization in retinal degeneration.

Keywords Stargardt · Age-related macular degeneration · AMD · ABCA4 · RPE · 
Vitamin A · Retinaldehyde · Bisretinoids · Vitamin A dimer · A2E · Lipofuscin · Fundus 
autofluorescence · Visual cycle

 46.1 Introduction: How and where does vitamin A 
dimerize in the eye?

Vitamin A as retinaldehyde (RAL) (Fig. 46.1-1; Note: All numbers in bold, below, 
refer to Fig. 46.1) (1) can dimerize on any primary amine (2). The first step involves 
condensation of RAL on the amine to form a Schiff base (3). The second step is the 
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rate-limiting step and involves rearrangement of the Schiff base to a nucleophilic 
reactive intermediate (4) (Kaufman et al. 2011; Ma et al. 2011). In the third step, the 
intermediate (4) attacks another RAL, leading to two major products: an ambiphilic 
pyridinium (5) and a neutral dimer (6). The dimer’s name depends on the terminal 
group (R). In addition, the dimers exist as isomers, with different chemical proper-
ties. For example, 5 can exist in as many as 15 isomers reflecting the possible con-
figurations of the shorter polyene arm (all-trans, 9- or 11-cis) and the longer arm (all-
trans-, 9-, 11-, 13-cis and 9,13-di-cis). Compound 7 is an example of such an isomer.

Dimerization is more likely to occur where relatively high concentrations of 
RAL and primary amines exist. In the eye, these two requirements can be met 
in the retinal disc membranes, where RAL is concentrated due to its binding to 
densely packed opsin proteins. Dimerization may occur when RAL enters or exits 
opsin binding sites for any number of reasons. The most abundant primary amine 
in the disc is phosphatidylethanolamine (PE). As a result, a large proportion of di-
mers might form on the surface of these lipids (8). Dimerization can also occur 
on primary amines such as lysine residues, on proteins such as opsin (8) and on 
exogenous and endogenous primary amines (such as histamine, amphetamines, do-
pamines, thyronamines, small molecule therapeutics, etc.) (8).

Fig. 46.1   Vitamin A dimers: formation and proposed roles in retinal degeneration. For further 
description, see the bolded numbers in the main text
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 46.2  How Many Vitamin A Dimers are There and What is 
A2E?

Subsequent to dimerization, dimers 5 and 6 can undergo transformations yielding 
dozens of dimers with potentially unique chemical and biological properties. After 
dimerization on PE, hydrolysis of the phosphate ester yields A2E. A2E has been 
studied the most because it is relatively easy to make, extract and quantify (Penn 
et al. 2014). This has made A2E an exemplar dimer to study the effects of dimerized 
vitamin A in retinal health. Although A2E is often used as an indication of dimeriza-
tion, A2E might not be the most abundant nor toxic dimer.

There are potentially dozens of other dimers, about which less is known. Some 
of the dimers are de novo synthesized on other primary amines, and some result 
from subsequent chemical transformations such as re-arrangements, deamination, 
oxidation, isomerization, degradation and nitration of the dimers (Murdaugh et al. 
2010). For example, A2E has been suggested to rearrange to form 9. Deamination 
of 6, yields what has been called the ATR-dimer (all-trans retinal dimer, 10). Poly-
ene chains of the dimers are held in a spatial orientation making them more sus-
ceptible to light-induced and/or auto-oxidation (Washington et al. 2005, 2006). For 
example, one to nine oxygen atoms can be added to any geometric isomer of A2E, 
resulting in dozens of oxidative derivatives of A2E. Further, dimers may oxidatively 
degrade giving rise to multiple products. Combining the number of primary amines 
that vitamin A can dimerize on and the above transformations, countless dimers can 
be formed and deposited in the RPE and BM (11).

 46.3  How Might Dimerized Vitamin A be Bad for the 
Retina?

Several mechanisms have been proposed by which the dimers, mainly A2E, may 
dysregulate cellular homeostasis (Eldred 1993; Sparrow et al. 2003; Sparrow 
and Boulton 2005; Sparrow et al. 2012). Mechanisms include: solubilizing lipid 
membranes (12), inactivating lysosomes by increasing lysosomal pH (13), and in-
hibiting the mitochondria (14), properties all shared by most cationic detergents. 
Once dimerized, oxidation of the dimers leads to reactive ketone, aldehyde and 
epoxide toxicants (15) (Yoon et al. 2012). Others mechanisms include, inhibit-
ing RPE65 (Moiseyev et al. 2010), binding to retinoic acid receptors, increasing 
VEGF (Iriyama et al. 2008) and cyclooxygenase-2 (Lukiw et al. 2006) and cova-
lently modifying biomolecules (Fishkin et al. 2003; Thao et al. 2014) (8 and 16). 
More recent data suggest that dimerized vitamin A act as immunogens triggering 
chronic inflammation via activation of the complement cascade (Issa et al. 2015; 
Radu et al. 2014; Zhou et al. 2006).
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 46.4  If Everyone Accumulates Vitamin A Dimers with 
Age, Why Doesn’t Everyone Develop Retinal 
Degeneration?

The concentration of dimers is thought to increase with age in the RPE and BM 
(11). This accumulation can result from faster synthesis and/or slower clearance, 
with age or from an accumulation over a lifetime. The rates of appearance and dis-
appearance of the dimers most likely vary with the retina’s milieu, e.g. peripheral 
vs. central retina, or with the amine the dimer forms on (i.e. lipid, protein, small 
molecule), however, current knowledge is limited.

Two major factors seemingly influence one’s susceptibility to dimer-induced tox-
icity: (1) the rate of dimerization; and (2) an individual’s response to dimers potential 
insult. Genetics can influence the dimerization rate. For example, genetic mutations 
that lead to decreased activity of proteins such as ABCA4 and retinaldehyde dehy-
drogenases (RDH), can increase the rate of dimerization. Severe mutations in ABCA4 
result in accelerated dimerization leading to Stargardt disease. In contrast, decreased 
activity in RPE65, LRAT, retinol binding protein (RBP), transthyretin (TTR) or the 
stimulated by retinoic acid 6 (STRA6) protein can all reduce concentrations of RAL 
and thus its chances of dimerizing (17). Subtle differences in the activities of all the 
above genes can potentially affect dimerization rates. Additional factors that influ-
ence the flux of RAL in and out of the disc, such as phagocytosis, daily photon catch, 
retinal detachments, retinal degeneration, nicotine exposure (Brogan et al. 2005) and 
certain drugs, may also influence the dimerization rate of vitamin A.

Out of the many potential mechanisms for toxicity, the actual mechanism of 
dimer-induced retinal death may differ based on genetics and environment. For 
example, RPE cells with the AMD-predisposing CFH haplotype are attacked by 
complement following exposure to dimers more so than RPE cells with the AMD-
protective CFH haplotype (Radu et al. 2014). Environmental factors such as dietary 
carotenoids may protect against dimer toxicity (Bhosale et al. 2009). Retinal degen-
erations remain multifactorial, and so are the factors that dictate the formation of 
and response to vitamin A dimerization.

 46.5  What is the Relationship Between Dimerized 
Vitamin A and Lipofuscin?

Lipofuscin is approximately 1000 nm in diameter and thought to be end-stage ly-
sosomes, and accumulate with age in the RPE and other tissues. Vitamin A dimers 
are small molecules about 2.5 nm in size. In the eye, the dimers can be found as 
components of lipofuscin (18).

Defects in ABCA4 result in increased dimerization and RPE lipofuscin, which 
can be quantified by electron microscopy. Conversely, defects in RPE65 or LRAT 
result in decreased dimerization and lipofuscin. Further, restricting dietary intake 
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of vitamin A in rodents, results in a decrease in lipofuscin. Finally, inhibiting the 
ability of vitamin A to dimerize, without modifying its concentration or movement 
through the visual cycle, causes a decrease in lipofuscin (Kaufman et al. 2011; Ma 
et al. 2011).

Although evidence suggest that dimerization is involved in RPE lipofuscinogen-
esis, how dimers contribute to lipofuscin formation is not clear. For example, lipo-
fuscin may be formed when dimers act as a lysosomal poison (13). Alternatively, 
oxidative metabolites of dimers may crosslink tissue (15), which is also known to 
increase lipofuscin. These mechanisms of dimer-induced lipofuscinogenesis pre-
dict respectively a positive or negative correlation between dimers and lipofuscin 
granules. Both mechanisms may be at play, making the overall relationship unclear. 
However, they both predict a positive correlation between the rate of dimerization 
and the volume occupied by lipofuscin granules, as observed in animal models and 
humans.

 46.6  How is Fundus Autofluorescence Related  
to Lipofuscin and Dimerized Vitamin A?

Historically, tissue autofluorescence (AF) has been used as a measure of lipofuscin 
granules and as an indicator of aging. However, in the eye, fundus AF is compli-
cated by overlapping fluorescence of dimers. Although the dimers, in particularly 
A2E, can be incorporated into lipofuscin granules, they do not necessarily reflect 
the amount of lipofuscin granules. The rate of dimerization seems to be positively 
correlated with abnormal fundus AF but the concentration of A2E dimer, typically 
used to quantify dimerization, might not be correlated with fundus AF or dimeriza-
tion rate. For example, dimers on protein surfaces might be expected to exhibit 
stronger AF due to decreased vibrational relaxation of the excited state. Further, 
dimer-induced tissue cross-linking (15) might be a major contributor to fundus AF. 
Thus, while patterns and intensity of AF may be used to monitor and predict the 
progression of retinal degenerations, the exact contribution of each molecular entity 
to AF signals is not understood.

 46.7  What Might Cause Toxicity, Lipofuscin Granules  
or Dimerized Vitamin A?

The majority of proposed mechanisms by which dimers, such as A2E, might induce 
toxicity, involve the free molecule. It is unclear whether the dimers are confined 
to lipofuscin granules or if they sample the cytoplasmic space. As A2E is slightly 
water-soluble—its oxidative adducts and metabolites ever more so—the dimers 
are probably not confined because of the entropic cost of confinement. Lipofuscin 
granules are thought to disrupt cell functioning mainly by taking up cytoplasmic 
space thereby physically inhibiting phagocytosis and by acting as a photosensitizer. 
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However, free A2E has also been shown to inhibit phagocytosis (Finnemann et al. 
2002) and is thought to confer lipofuscin its phototoxic properties.

The observation of dimers in lipofuscin granules could be the result of the dimers 
acting as a nucleation site for granule formation or that of dimer sequestration into 
formed granules. Sequestrated dimers would be expected to have reduced toxic-
ity. They would not for example, be as available to display surfactant-like prop-
erties (12), inhibit lysosomes (13), bind to RPE65 or RAR proteins, or modulate 
Cox-2 expression (16). Sequestration would also be expected to protect the polyene 
chains from degrading into toxic small molecules such as methylglyoxal and gly-
oxal (19 and 20) (Yoon et al. 2012). Recently, Dontsov concluded that “A2E excess 
in the RPE could be bound by melanosome melanin and lose its [photo-] toxicity” 
(Dontsov et al. 2013). Taken together, sequestration of dimers into lipofuscin 
granules might serve to mute their toxicity.

46.8 Is There Any Benefit to Vitamin A Dimerization?

Based on an observation that A2E’s precursor, RAL, was more toxic towards a RPE 
cell line, it was suggested that dimerization might be protective by decreasing the 
overall amount of free RAL (Maeda et al. 2009). However, upon closer investiga-
tion, A2E was found to be more toxic than RAL (Mihai and Washington 2014). As a 
small fraction of RAL is thought to dimerize at a given time, dimerization is not ex-
pected to significantly reduce the flux of RAL and thus is unlikely a mechanism to 
reduce the concentrations of RAL. Dimerization is not an enzymetically-catalyzed 
process, suggesting that it has not been directly selected for and is a byproduct of 
vision. In mice, reduction of the rate of dimerization by 5-fold for 9 months was 
shown to be safe, demonstrating that the dimerization of vitamin A does not confer 
any benefit (Issa et al. 2015). To date, vitamin A dimers have only been shown to 
be detrimental.
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Chapter 47
Can Vitamin A be Improved to Prevent 
Blindness due to Age-Related Macular 
Degeneration, Stargardt Disease and Other 
Retinal Dystrophies?

Leonide Saad and Ilyas Washington

Abstract We discuss how an imperfect visual cycle results in the formation of vita-
min A dimers, thought to be involved in the pathogenesis of various retinal diseases, 
and summarize how slowing vitamin A dimerization has been a therapeutic target 
of interest to prevent blindness. To elucidate the molecular mechanism of vitamin A 
dimerization, an alternative form of vitamin A, one that forms dimers more slowly 
yet maneuvers effortlessly through the visual cycle, was developed. Such a vitamin 
A, reinforced with deuterium (C20-D3-vitamin A), can be used as a non-disruptive 
tool to understand the contribution of vitamin A dimers to vision loss. Eventually, 
C20-D3-vitamin A could become a disease-modifying therapy to slow or stop vision 
loss associated with dry age-related macular degeneration (AMD), Stargardt dis-
ease and retinal diseases marked by such vitamin A dimers. Human clinical trials of 
C20-D3-vitamin A (ALK-001) are underway.

Keywords Stargardt · Age-related macular degeneration · AMD · Retinal 
dystrophies · ABCA4 · Vitamin A · Retinaldehyde · ALK-001 · C20-D3-vitamin A ·  
Bisretinoids · Vitamin A dimer · A2E · Lipofuscin · Visual cycle

47.1  Introduction

Age-related macular degeneration (AMD) is currently the leading cause of unpre-
ventable blindness and principally affects the elderly with a prevalence of 12 % for 
those over 80 years of age. Macular dystrophies such as Stargardt disease, Best 
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disease and cone-rod dystrophy result in comparable vision loss but are rarer and af-
fect younger individuals. Except for a minority of people—those with neovascular 
AMD—there are no treatments for any of these conditions.

47.2  Vitamin A, Lipofuscin & Eye Disease

One of mankind’s earliest recorded medical treatments, documented on Egyptian 
papyrus (Kahun ~ 1825 B.C), describes applying ox liver, a source of vitamin A, 
directly to the eye as a treatment for night blindness. Four thousand years later, 
vitamin A has been evaluated as a potential therapy for eye diseases such as retinitis 
pigmentosa, dry eye, Stargardt disease and AMD. The National Eye Institute (NEI) 
currently recommends oral vitamin A for some forms of retinitis pigmentosa. Con-
versely, vitamin A, once recommended for Stargardt, is now more widely discour-
aged. Vitamin A is also less commonly advised for AMD. Despite attempts, vitamin 
A-based interventions have shown inconsistent results for the prevention of vision 
loss.

Nevertheless, there is continued interest in the role played by vitamin A to en-
able or steal vision. For example, genetic impairments that result in mishandling of 
vitamin A in the retina can lead to accelerated (ABCA4 defects) or reduced (RPE65 
or LRAT defects) amounts of ocular lipofuscin, yet both lead to retinal degeneration. 
Although lipofuscin’s age-dependent increase is a feature consistent with aging and 
diseased eyes, how and why lipofuscin forms is not understood (See Chap. 46 in 
this book). Data however seem to indicate the involvement of vitamin A, in particu-
lar its ability to dimerize (Issa et al. 2015).

With toxicity demonstrated in models, it is believed that dimerized vitamin A 
plays an active role in triggering and sustaining retinal degeneration. Decreasing the 
formation of vitamin A dimers may therefore slow or prevent vision loss in diseases 
characterized by increased rates of vitamin A dimerization.

47.3  Preventing Vitamin A Dimers Through Alterations 
of the Visual Cycle

Because dimers are thought to be formed as byproducts of the “visual cycle”, the 
process used by the eye to enable vision (Radu et al. 2003; Maiti et al. 2006; Gol-
czak et al. 2008), molecules designed to slow the cycle, known as visual cycle 
modulators, could potentially retard the formation of these dimers. Among such 
molecules, emixustat hydrochloride, a RPE65 inhibitor, which slows the regenera-
tion of rhodopsin, is in Phase 2b clinical trials in geographic atrophy (Dugel et al. 
2015). Another approach developed to retard dimerization is to reduce the delivery 
of vitamin A to the eye, thereby lowering its likelihood to dimerize (Radu et al. 
2005). For example, fenretinide, a retinol binding protein (RBP) antagonist, has 
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been tested in a 246 patient trial in geographic atrophy (Mata et al. 2013). Further, 
molecules known as “retinal traps” are being researched in hopes of trapping vi-
tamin A to prevent it from dimerizing (Maeda et al. 2012). As the proper function 
and survival of the retina is contingent upon an adequate supply of vitamin A and 
upon its unhindered processing by the visual cycle, short-term interference with 
the cycle can result in visual side effects such as night blindness and impaired dark 
adaptation, while long term interference might lead to constitutive opsin signaling, 
photoreceptor death and vision loss as seen in those with genetically impaired vi-
sual cycles due to LRAT, RPE65 or RBP4 defects.

47.4  Can Deuterium Prevent Vitamin A Dimerization?

Vitamin A dimers are formed via a non-enzymatic reaction when two molecules of 
vitamin A react with an amine (Fig. 47.1a). Although the most abundant amine in 
the photoreceptors is the lipid phosphatidylethanolamine, dimerization also occurs 
on other amines of the visual cycle proteins, such as opsin, and potentially on other 
endogenous and/or exogenous amines (Vollmer-Snarr et al. 2006). To dimerize, a 

Fig.  47.1   Several forms of retinal degeneration can be characterized by the accumulation of 
dimerized vitamin A in the RPE and BM followed by the death of the photoreceptors and support-
ing cells, leading to loss of vision. a Vitamin A dimers are formed in the disc membranes of the 
retina on the surface of lipid membranes and proteins. b To dimerize, a carbon-hydrogen at carbon 
20 of retinaldehyde must be cleaved. c By enriching the C20 hydrogens with deuterium atoms, the 
vitamin’s vibrational energy is lowered. Thus, more energy is required to cleave the bond, imped-
ing dimerization
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carbon-hydrogen bond must be broken at the carbon twenty (C20) position of vi-
tamin A (Fig. 47.1b). By substituting hydrogen atoms on C20 with deuteriums, the 
energy required to break that bond is raised, slowing dimerization (Fig. 47.1c). The 
potential of this approach has been demonstrated in test tube, wild-type rodents and 
in a mouse model of Stargardt. In Abca4 knock-out mice given C20-D3-vitamin A, 
the amount of vitamin A dimers was reduced to approximately that of wild-type 
animals raised on non-deuterated vitamin A. Impeding dimerization resulted in re-
ductions in both lipofuscin and fundus autofluoresence, along with a preservation 
of visual function as measured by electroretinography (Kaufman et al. 2011; Ma 
et al. 2011; Issa et al. 2015). Notably, the amount of dimerized vitamin A, lipo-
fuscin granules and fundus autofluoresence all decreased the longer animals were 
given C20-D3-vitamin A, regardless of whether they were treated from birth or from 
adulthood. In addition, complement status was found to be dysregulated due to the 
Abca4 defect, and administration of C20-D3-vitamin A prevented this dysregulation. 
When the animals were returned to their normal vitamin A diet, dimerized vitamin A 
and fundus autofluoresence increased (Issa et al. 2015). Since vitamin A dimerizes 
through a non-enzymatic and therefore species-independent process, it is likely that 
the dimerization will also be slowed in humans by replacing dietary vitamin A with 
its C20-D3-vitamin A counterpart.

Deuterium is a stable, non-radioactive, and naturally-occurring isotope of hy-
drogen. The properties of a carbon-deuterium bond are close to identical to that of 
a carbon-protonium (the more abundant isotope of hydrogen) bond. However, deu-
terium contains an extra neutron doubling the mass of protonium. As a result, car-
bon-deuterium bonds require more energy to break compared to carbon-protonium 
bonds, therefore chemical reactions involving the breaking of a carbon-deuterium 
bond will proceed more slowly compared to the same reactions in which a carbon-
protonium is broken (Fig. 47.1c). This process is known as “kinetic isotope effect”.

47.5  C20-D3-vitamin A as a Drug for Macular 
Degenerations

To effectively reduce vitamin A dimerization, a “sufficiently high” percentage 
of C20-D3-vitamin A relative to total vitamin A would need to be reached and 
maintained in the retina. The higher this percentage, the more dimerization will be 
impeded. In mice, a diet containing 80 or 95 % deuterated vitamin A reduced the 
concentration of the A2E vitamin A dimer four- (Kaufman et al. 2011; Ma et al. 
2011) or fivefold (Issa et al. 2015), respectively, compared to mice fed normal 
vitamin A.

While direct delivery to the retina could be considered, for example with eye-
drops, intravitreal injections, or drug-eluting implants, oral delivery as a pill could 
improve compliance and convenience. This is particularly true when chronic ad-
ministration is required in children and the elderly. Oral delivery is also appropriate 
for vitamin A, absorbed and stored by the body then rapidly taken up by the eye 
(Mihai et al. 2013).
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Swine given oral daily doses of 95 % deuterated C20-D3-vitamin A attained a 
steady state of 95 % deuterated retinaldehyde in the retina after 4 weeks despite con-
suming dietary beta-carotene (Mihai et al. 2013). These preclinical findings indicate 
that swapping the retina’s vitamin A with C20-D3-vitamin A is fast relative to the 
rate of disease progression, and confirm that dietary pro-vitamin A carotenoids do 
not significantly contribute to the retinol pool when consuming an adequate amount 
of vitamin A. Nonetheless, how high a percentage of deuterated vitamin A can be 
achieved in humans remains to be shown.

To prevent vitamin A toxicity (hypervitaminosis A), the total consumption of 
vitamin A should be kept within known tolerable limits. Adverse events linked to 
chronic hypervitaminosis A (Myhre et al. 2003) are usually reversible upon discon-
tinuation of vitamin A. While the adult Recommended Dietary Allowance is about 
3000 IU per day, vitamin A has been administered for over a year in clinical trials at 
doses up to 300,000 IU/day with reasonable tolerability (Infante et al. 1991; Alberts 
et al. 2004). Such 300,000 IU/day doses would however not be suitable for children, 
pregnant or lactating women, and other populations that might be sensitive or in-
tolerant to vitamin A (Allen and Haskell 2002). Because the deuteriums at the C20 
position on vitamin A are non-exchangeable, they are not expected to exchange with 
hydrogens in the body during deuterated vitamin A metabolism. Finally, a daily 
dose of 10,000 IU of C20-D3-vitamin A, a dose commonly found in drug stores, 
would contain approximately 500 times less deuterium than deuterium naturally 
present in the average volume of drinking water consumed daily.

Administration of deuterated vitamin A in humans is common when studying 
vitamin A’s pharmacokinetics and metabolism (Reinersdorff et al. 1996). Because 
none of the known metabolites of vitamin A involve cleavage of the C20 carbon-
hydrogen bonds (NCI 1996), the only reaction potentially slowed by C20-D3-
vitamin A should be its aberrant dimerization.

As C20-D3-vitamin A should have the same biological activity as vitamin A, 
swapping vitamin A with C20-D3-vitamin A is not expected to result in a side effect 
or toxicity profile any different from that of vitamin A. The visual cycle, using the 
substituted C20-D3-vitamin A should work seamlessly, as demonstrated in animals, 
differentiating C20-D3-vitamin A from alternative approaches aimed at preventing 
the formation of vitamin A dimers

Hence, C20-D3-vitamin A could be used as a precise clinical tool to determine 
the extent to which the dimerization of vitamin A triggers or participates in the 
progression of retinal degenerations such as Stargardt disease or dry-AMD. If the 
molecule is capable of modifying the course of such diseases, C20-D3-vitamin A 
could also become an intervention to treat these unpreventable currently causes of 
blindness.
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47.6  Conclusion

Retinal degenerations and dystrophies make up a phenotypically and genetically 
(over 200 associated genes) complex group. A common thread among these de-
generative conditions is the enhanced autofluorescence thought to be caused by 
increased rates of vitamin A dimerization. Evidence gathered over three decades 
suggest that the dimers are toxic (See Chapter 46) and that reducing their formation 
may impede the progression of retinal degeneration. A 2-year clinical trial provided 
human evidence that preventing vitamin A dimerization could slow the progression 
of late stage dry-AMD (Mata et al. 2013). Nevertheless, establishing a cause-effect 
relationship between dimers, lipofuscin and vision loss remains an active topic of 
research. Such a relationship may however only be confirmed through human clini-
cal testing.

Stargardt disease is a rare and seriously debilitating genetic disease marked by 
the rapid dimerization of vitamin A followed by irreversible vision loss. As the 
disease is diagnosed early during childhood, an oral prophylactic that could slow 
disease progression would be of significant benefit. C20-D3-vitamin A acts as a sub-
stitute for vitamin A and prevents its non-enzymatic dimerization. If tolerability of 
C20-D3-vitamin A is clinically confirmed and sufficient levels of C20-D3-vitamin A 
can be achieved in the blood, there would be reasonable likelihood that the dimer-
ization of vitamin A would be slowed in the human eye. At the time of this writing, 
Phase 2 clinical trials assessing C20-D3-vitamin A (ALK-001) are on-going.
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Chapter 48
Class I Phosphoinositide 3-Kinase Exerts a 
Differential Role on Cell Survival and Cell 
Trafficking in Retina

Seifollah Azadi, Richard S. Brush, Robert E. Anderson and Raju V.S. Rajala

Abstract Phosphoinositide 3-kinases (PI3Ks) are a family of lipid kinases that phos-
phorylates the 3’OH of the inositol ring of phosphoinositides. They are responsible 
for coordinating a diverse range of cell functions including proliferation, cell survival, 
degranulation, vesicular trafficking, and cell migration. The PI 3-kinases are grouped 
into three distinct classes: I, II, and III. Class III PI3K has been shown to be involved in 
intracellular protein trafficking, whereas class I PI3K is known to regulate cell survival 
following activation of cell surface receptors. However, studies from our laboratory and 
others have shown that class I PI3K may also be involved in photoreceptor protein traf-
ficking. Therefore, to learn more about the role of class I and class III P13K in traffick-
ing and to understand the impact of the lipid content of trafficking cargo vesicles, we 
developed a methodology to isolate trafficking vesicles from retinal tissue. PI3K class 
I and III proteins were enriched in our extracted trafficking vesicle fraction. Moreover, 
levels of ether phosphatidylethanolamine (PE) and ether phosphatidylcholine (PC) were 
significantly higher in the trafficking vesicle fraction than in total retina. These two lipid 
classes have been suggested to be involved with fusion/targeting of trafficking vesicles.
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48.1 Introduction

Phosphoinositide 3-kinases (PI3Ks) are a family of lipid kinases that catalyze the 
phosphorylation of D3-hydroxyls in the inositol head group and generate several 
phosphorylated phosphoinositides (Fruman et al. 1998). These lipid second mes-
sengers regulate a diverse range of cell functions including proliferation, cell sur-
vival, degranulation, vesicular trafficking, and cell migration. The PI 3-kinases are 
grouped into three distinct classes: I, II, and III (Leevers et al. 1999). Class III 
PI3K-generated PI-3P has been previously reported to be involved in the vesicular 
trafficking of rhodopsin (Chuang et al. 2007), whereas class I PI3K is known to 
regulate cell survival (Gross and Bassell 2014). However, in Drosophila, arrestin 
binds to class I PI3K-generated PI-3,4,5-P3, which appears to regulate its movement 
their photoreceptor cells (Lee et al. 2003). Studies from our laboratory on the condi-
tional deletion of class I PI3K (deletion of regulatory p85α-subunit of PI3K) in rods 
resulted in the delay of light-dependent arrestin trafficking from the inner segment 
to the outer segment of rod photoreceptors (Ivanovic et al. 2011a). Interestingly, 
conditional deletion of class I PI3K in cones resulted in age-related cone degenera-
tion (Ivanovic et al. 2011b). These studies suggest that class I PI3K may be involved 
in both cell survival and protein trafficking in retinal photoreceptor cells. However, 
the detailed mechanism of PI3K trafficking and the role of this protein family in the 
targeting of other retinal proteins are poorly understood.

In this chapter, we describe a novel methodology for purifying trafficking vesi-
cles from bovine retinal tissue. We provide evidence that both class I and III PI3K 
are present in trafficking vesicles. Moreover, we report the results of our analysis 
of the lipid contents of the trafficking vesicle-enriched fraction, which show an 
increase in ether lipids in the major phospholipid classes.

48.2 Materials and Methods

48.2.1  Fractionation of Bovine Retina Followed by 
Sedimentation Using a Continuous 30–50 % Sucrose 
Gradient

One bovine retina was lysed in 2 ml hypotonic buffer (HB) containing 20 mM 
Hepes (pH 7.4) and a protease inhibitor (Roche). Retinal lysate was then centri-
fuged for 10 min at 1000 g. The pellet contained nuclei and unbroken cells (P1K). 
The supernatant (S1K) was centrifuged one more time to ensure removal of large 
particles and the S1K was centrifuged at 11,000 g, which pelleted all the heavy 
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membranes, including rough ER, rough Golgi, and ribosomes (P11K). This frac-
tion also contained the photoreceptor outer segments. The supernatant (S11K) was 
further centrifuged for 20 min at 50,000 g. The pellet containing light membranes 
such as smooth ER, newly synthesized outer segment discs, and trafficking vesicles, 
was washed twice with the same HB. Using a gradient maker (Bio-Rad), we gener-
ated a continuous 30–50 % sucrose gradient, and the homogenized P50K pellet was 
placed on the top of this gradient and centrifuged for 15 h at 25,000 g. The gradient 
was fractionated into 26 samples using an Econo Gradient Pump kit (Bio-Rad) and 
each was examined by acrylamide SDS gel electrophoresis. Western blotting was 
performed using specific antibodies against p85α-subunit of class I PI3K (Upstate 
Biotechnology, Lake Placid, NY, 1/2000), catalytic subunit of class III PI3K (Cell 
Signaling, Beverly, MA, 1/2000), rab11 (Sigma, St. Louis, MO,1/1000), VAMP2 
(Gottingen, Germany, 1/1000), syntaxin3 (Synaptic System, Gottingen, Germany, 
1/1000), calretinin (Sigma, St. Louis, MO, 1/2000), and GM130 (Sigma, St. Louis, 
MO, 1/2000). An aliquot of the P50K pellet was fixed and cross-linked to a glass 
slide for immunohistochemistry (IHC). Antibodies against class I PI3K and Rab11 
(a trafficking marker) were applied to show that the fraction was enriched in traf-
ficking markers. Tandem mass spectrometry analysis of the lipid content of the traf-
ficking vesicle fraction was performed as described previously (Bennett et al. 2014).

48.3 Results

48.3.1  Protein and Lipid Characterization of Trafficking 
Vesicles from Bovine Retina: Enrichment and 
Further Purification of Trafficking Vesicles from 
Bovine Retina

Our methodology successfully enabled us to enrich the trafficking vesicles from 
whole bovine retina lysates. Figure 48.1 illustrates the different fractions obtained 
in this procedure. We hypotonically lysed bovine retina using a hypotonic buffer, 
followed by several centrifugations to isolate different fractions (see Materials and 
Methods). The P50K contained light membranes, but also contained particles of oth-
er organelles, which were impossible to avoid at this stage. Therefore, we further pu-
rified the P50K fraction using a 30–50 % continuous sucrose gradient. As illustrated 
in Fig. 48.2, a peak of trafficking markers, vesicle-associated membrane protein 2 
(VAMP2) and rab11, were enriched in fraction 20 (F20). Syntaxin3 was also strongly 
enriched in this fraction (not shown). Both Class I and Class III PI3K were detected 
in P50K (Fig. 48.2). The Class III antibody also detected two other proteins with low-
er molecular weights (Fig. 48.2a), which may be nonspecific. The P50K was fixed 
and cross-linked to a glass slide for IHC. We applied antibodies against PI3K class I 
as well as a known trafficking marker, Rab11, to show that the fraction was enriched 
in trafficking markers (Fig. 48.2b). We found a co-localization of class I PI3K with 
Rab11, suggesting the presence of class I PI3K in trafficking vesicles (Fig. 48.2).
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48.3.2  Ether-PC or Ether-PE in the Enriched Trafficking 
Vesicle Fraction

The importance of ether lipids in the structure and function of trafficking cargo 
vesicles has frequently been proposed (Thai et al. 2001; Kuerschner et al. 2012). 
We therefore performed a detailed analysis on the lipid content of purified traffick-
ing vesicles. Tandem mass spectrometry analysis showed higher levels of PE- and 
PC-ether species in the trafficking vesicle fraction than in the bovine total control 
retinas (32 %, p < 0.001; Fig. 48.3). Individual species of ether–PE, including 34:01, 
36:01, 36:02, 36:04, and 38:03 showed a greater increase in our trafficking vesicle 
fraction. Although we could not differentiate between alkyl and vinyl ethers by 
MS, based on a large literature, we predict that the PC ethers are alkyl and the PE 
ethers are vinyl. The total amount of ether-PC was 21 % higher in P50K than in total 
retina ( p < 0.01). Individual ether-PC showed significant increases, including 34:02, 
36:00, 36:01, and 38:02, and were more abundant in P50K than in total retina.

48.4 Discussion

The lack of proper protein targeting in the retina is known to cause several degen-
erative diseases (Hunt et al. 2010). However, the molecular mechanisms executing 
the trafficking pathways are still ambiguous and need to be thoroughly evaluated. 
This ambiguity is in large part due to the structural differences between photorecep-
tor and other cell types (Sung and Chuang 2010). VAMP2 is the main component 
of a protein complex involved in the active, ATP-required docking and/or fusion 
of vesicles with the target membranes. VAMP2, SNAPs (Synaptosome-Associated 
Proteins), and syntaxin are the three main components of this protein complex, 
the assembly of which results in active exocytosis (Caceres et al. 2014). We found 

Fig. 48.1   Fractionation of 
bovine retina using dif-
ferential centrifugation. 
Hypotonically lysed retina 
was subjected to subsequent 
rounds of centrifugation. 
P50K contains the putative 
particles of trafficking cargo 
vesicles
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that both VAMP2 and syntaxin 3 were enriched in fraction 20 (Fig. 48.2), which 
strongly suggests that we were successful in isolating the active trafficking vesicles.

We found that Class I and Class III PI3K were present in the same peak as 
the trafficking markers (Fig. 48.2). Therefore, we suggest that these play a role 
in protein trafficking in the retina. Moreover, this is likely the first report of the 
biochemical detection of any components of Class I PI3K in association with traf-
ficking membranes. This finding provides an opportunity to explore the detailed 
mechanism of targeting of these proteins or lipid products (PIPs) by detecting the 
interacting partners in fraction 20. This will certainly help to define the role of PI3K 
in targeting of other proteins.

Analysis of the lipid content of the trafficking vesicle fraction shows several 
changes in ether lipids species. An involvement of these lipids in membrane organi-

Fig. 48.2   Purification of P50K using 30–50 % continuous sucrose gradient. Following the cellular 
fractionation, P50K was placed on top of a continuous sucrose gradient. The fractions were then 
equally distributed to 26 tubes using an automatic pump and a sample collector (see Materials and 
Methods). The resultant fractions were then separated by an acrylamide SDS gel, transferred to 
PVDF membrane, and finally subjected to Western blotting
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zation, fusion, and targeting has been suggested and the lack of these lipids has been 
shown to cause impaired trafficking and neurological dysfunction and degeneration 
(Thai et al. 2001). Therefore, it is important to perform further analyses to under-
stand how these lipids may regulate the process of trafficking in the retina.

In conclusion, isolation of trafficking vesicles facilitates the identification of the 
protein/lipid key molecules that are involved in this process, and allows a deeper 
understanding of the trafficking of membrane proteins in the retina.
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Chapter 49
Cell Cycle Proteins and Retinal Degeneration: 
Evidences of New Potential Therapeutic Targets

Yvan Arsenijevic

Abstract During different forms of neurodegenerative diseases, including the reti-
nal degeneration, several cell cycle proteins are expressed in the dying neurons 
from Drosophila to human revealing that these proteins are a hallmark of neuro-
nal degeneration. This is true for animal models of Alzheimer’s, and Parkinson’s 
diseases, Amyotrophic Lateral Sclerosis and for Retinitis Pigmentosa as well as 
for acute injuries such as stroke and light damage. Longitudinal investigation and 
loss-of-function studies attest that cell cycle proteins participate to the process of 
cell death although with different impacts, depending on the disease. In the retina, 
inhibition of cell cycle protein action can result to massive protection. Nonetheless, 
the dissection of the molecular mechanisms of neuronal cell death is necessary to 
develop adapted therapeutic tools to efficiently protect photoreceptors as well as 
other neuron types.

Keywords Retinal degeneration · Alzheimer’s disease · Parkinson’s disease · 
CDK5 · BMI1 · Cell cycle · Neuroprotection · Stroke · CDK4

49.1 Introduction

Cell cycle protein expression is a hallmark of neuronal degeneration. During devel-
opment, the proliferation of stem cells, progenitors and finally precursors is tightly 
controlled by several cell cycle proteins that define different steps of the cell cycle 
to harmonize the DNA duplication with the final mitosis. When the differentiation 
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occurs, the cells are arrested at Go phase in a postmitotic state. The strict regulation 
of cell proliferation is required for organs to reach their correct size and content of 
the different cell populations composing the organ. In the CNS, after development 
neurons are in consequence frozen in their final phenotype and cannot further pro-
liferate in physiological conditions.

In a quiescent cell (G0), E2F1 activity is inhibited by the binding of the reti-
noblastoma protein (Rb). The transition to G1 consists in phosphorylating Rb to 
release E2F1 which will activate the different genes necessary for DNA replication 
and cell mitosis. At least 4 phosphorylated sites are necessary to inactivate Rb. 
CDK4 and CDK2 are involved in this process when they are activated by Cyclin-D 
and Cyclin-E respectively. The S-phase then occurs with DNA and centrosome du-
plications, followed by the G2 phase which prepares the mitosis process (M phase). 
The coordination of each phases is in part controlled by the gene expression regu-
lation and by specific tumor suppressors that inhibit the CDK actions at defined 
stages of the cell cycle progression (for review (Hindley and Philpott 2012)).

Several independent studies reported that during neurodegenerative processes, 
neurons express some proteins of the cell cycle. Indeed, the expression of certain 
CDKs such as CDK4 and CDK2 is found in the motoneurons of the SOD1(G37R) 
mouse model of the Amyotrophic Lateral Sclerosis (Nguyen et al. 2003), of Cyclins 
in the dopaminergic neurons of the substantia nigra of mouse models of Parkinson’s 
disease (PD) and PD patients (Hoglinger et al. 2007), and of Cyclins and CDKs in the 
brain of patients affected by Alzheimer’s disease (Vincent et al. 1997). Interestingly 
these neurons also expressed CDK4 and CDK2 when cell death was studied in vitro 
facilitating the molecular dissection of their actions. In the retina of the Rd1 mouse, 
bearing a mutation in the Pde6b gene coding for a protein of the phototransduction 
pathway, the number of photoreceptors expressing CDK4 is 4–5 times more elevated 
than the number of photoreceptors containing CDK2 (Zencak et al. 2013). Moreover, 
transgenic rats affected by a dominant mutation in the rhodopsin gene also express 
CDK4 during the time course of photoreceptor cell death process. Acute injury simi-
larly induces CDK4 expression in the retina and the brain consecutively to high light 
exposure and stroke respectively (Zencak et al. 2013; Osuga et al. 2000), suggesting 
that these kinases may have an important role in the process of cell death for both 
inherited diseases and acute injury. In all these different disease cases, the expression 
of the CDKs was observed in correct location, the nucleus, suggesting that other pro-
teins of the cell cycle regulation may also be expressed during this degenerative stage.

The downstream target of CDK4 and CDK2 is the phosphorylation of Rb which 
provokes the release of the E2F1 transcription factor. Phospho-Rb was detected in 
degenerating dopaminergic and motoneurons as well as in photoreceptors (Nguyen 
et al. 2003; Hoglinger et al. 2007; Zencak et al. 2013). Injection of the BrdU or EdU 
thymidine analogues during neuron loss revealed that certain neuron types duplicate 
or attempt to duplicate their DNA. Dopaminergic neurons undergo DNA synthesis, 
whereas only very few photoreceptors incorporated BrdU or EdU during the retina 
degeneration process of the Rd1 mouse (Menu dit Huart et al. 2004; Hoglinger 
et al. 2007; Zencak et al. 2013). In contrast, in an animal model of polyglutamine 
expansion, the Spinocerebellar ataxia 7 (SCA7) mouse, several photoreceptors 
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incorporated BrdU and were positive for phospho-Histone-3 during the course of 
the disease, indicating that markers of the late phase of the cell cycle can also be 
present during the course of cell death (Yefimova et al. 2010). So far however it is 
unclear whether the mutation provokes an abnormal development of the rods due 
to a deregulation of the cell cycle control, and/or whether the features related to the 
cell cycle are the consequence of the degenerative process. The fact that such events 
occur during 7–9 weeks suggest that the appearance of cell cycle markers is prob-
ably more related to the process of cell death.

Other proteins involved in the cell cycle regulation were also observed during 
the process of neuronal cell death. Ki-67 is present during all phases of the cell 
cycle and allows in consequence to identify the cell fraction in proliferation (for 
review (Scholzen and Gerdes 2000)). Ectopic Ki-67 expression has been detected in 
the retina of Rd1 mice (unpublished data). PCNA (proliferation cell nuclear antigen) 
which favors DNA polymerase action and coordinates the action of other proteins 
(review (Moldovan et al. 2007)) was also documented to be present in the dopa-
minergic neurons of rodent models of Parkinson’s disease (Hoglinger et al. 2007). 
Interestingly, in dogs affected by mutations in STK38L, a kinase controlling the cell 
cycle, many photoreceptor cells express cell cycle markers during the early stage of 
the disease, when the animals are aged from 7 to 14 weeks, then the photoreceptor 
number decreases dramatically (Berta et al. 2011). Indeed, PCNA and phospho-H3 
are present in the ONL and not in the microglia (CD18) of the STK38L mutant 
dogs. RT-PCR analysis confirms the expression of cell cycle proteins such as Cyclin 
A1 and LATS1, which are related to STK38L. LATS1, acts as a tumor suppressor. 
In this case, it is seems that the deregulation of the cell cycle during photoreceptor 
generation affects their survival.

The expression of cell cycle protein during neuronal degeneration including pho-
toreceptors appears to be a hallmark of all the neurodegenerative diseases studied so 
far. Interestingly, such phenomenon seems to be conserved through evolution over 
a long period. Indeed, Drosophila expressing a mutated form of the filament tau 
also present a degenerating retina together with an expression of diverse cell cycle 
proteins revealing the importance of such proteins for the control of neuronal cell 
death (Khurana et al. 2006).

49.2  Cell Cycle Proteins Intervene at a Late Phase  
of the Neuron Death Process

Several molecular pathways are involved in the process of retinal degeneration im-
plicating numerous actors (for review (Sancho-Pelluz et al. 2008)). Studies of the 
cell cycle protein expression at different stages of the degenerative process have 
revealed that certain cell cycle proteins are expressed in TUNEL-positive neurons. 
For instance in a rat stroke model, cortical neurons expressing pRb are also positive 
for TUNEL (Osuga et al. 2000). In the retina a co-localization analysis of photo-
receptors expressing both CDK4 and TUNEL revealed that a large percentage of 
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CDK4-positive cells undergo DNA fragmentation (Zencak et al. 2013). In contrast, 
the accumulation of cGMP known to be a marker of the photoreceptor degenerative 
process does not co-localize with TUNEL-positive cells (Sahaboglu et al. 2013) 
showing that distinct processes occur at different time points of the photoreceptor 
death induction. Interestingly by revealing different events occurring during retinal 
degeneration Sahaboglu et al. (Sahaboglu et al. 2013) estimated the duration of the 
process of photoreceptor death to be around 83 h, including cell clearance, and that 
DNA fragmentation happens during the last 7–8 h. These data reveal that the cell 
cycle proteins are expressed at a late stage of the cell death process suggesting that 
either they attempt to save the cell or they participate to cell execution.

49.3  Cell Cycle Proteins are Involved in the Process 
of Cell Death

Different approaches were used in vitro and in vivo to repress the action of the 
different cell cycle proteins to reveal their contribution to the process of neuron 
death. The overexpression of a dominant-negative form of CDK4, but not of CDK2 
protects CA1 hippocampal neurons against ischemia produced by middle artery oc-
clusion (Rashidian et al. 2005). Around 40 % of CA1 neurons survived in this group 
compared to 15 % in the control GFP group. The genetic ablation of E2f1 in mice 
injected with MPTP which is neurotoxic for nigral dopaminergic neurons, protects 
these dopaminergic neurons. In absence of E2F1, 50 % of the neurons survived 
whereas only 30 % remained in the control group (Hoglinger et al. 2007). In Rd1 
retina explants, the inhibition of CDK activity by the roscovitin inhibitor rescued 
around 40 % of the photoreceptors (Zencak et al. 2013). A similar protection was 
also observed at P18 when E2f1 is deleted, but the rescue is only transient. Inter-
estingly looking upstream of CDK actions, BMI1, a master actor of the cell cycle 
regulation, has an important role in the process of photoreceptor death. BMI1 is a 
polycomb protein which has a permissive role in the cell cycle by preventing the 
p16 and p19 tumour suppressor actions, by inhibiting their locus (Jacobs et al. 1999; 
Meng et al. 2010). The deletion of Bmi1 in the Rd1 mouse protects around 70 % of 
rods at P30, when almost no rods remained at this age in the Rd1 control animal 
(Zencak et al. 2013). This rescue is the most effective to protect Rd1 photorecep-
tors and is not related to interference with components of the transduction pathway. 
Interestingly, cones, which are not affected by the Pde6b mutation and which die 
due to the loss of rods, survive well in the Rd1;Bmi1−/− genetic background and are 
functional showing that the rescue of rods allows the survival of functional cones. 
Nonetheless, whether cone degeneration is also mediated by cell cycle proteins and 
whether function inhibition of these proteins directly protects cones are two ques-
tions that remain to be solved.
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49.4  Are Cell Cycle Proteins Involved in the Reinitiation 
of the Cell Division or Do They Play Another Role?

Few studies have attempted to verify whether the neurons undertake division during 
the process of neurodegeneration. Analyses of dopaminergic neurons of PD patients 
revealed that some of these neurons duplicate their DNA. Indeed, FISH staining for 
specific chromosome markers confirmed that some dopaminergic neurons contain 
4 chromosomes 18 and 2 chromosomes X in a male patient (Hoglinger et al. 2007). 
In this case, the neurons duplicate the DNA, but there is no data indicating that they 
actually can divide or whether DNA synthesis is an attempt to repair the DNA. In 
the retina, no strong evidence of cell division was documented during the course 
of retinal degeneration with the exception of the STK38L dog (Berta et al. 2011), 
but this mutation affects the function of a gene involved in the regulation of the cell 
cycle, and in this case we probably face a development problem. Beside cell cycle 
regulation, cell cycle proteins may have other targets.

For instance, CDK5 is involved in the cell cycle regulation by recruiting p27 in 
the nucleus to maintain neurons in a postmitotic state (Zhang et al. 2010). During 
neuronal degeneration CDK5 is also expressed in various neurons of animal models 
of neurodegenerative diseases (for review (Herrup and Yang 2007)). Interestingly 
in an animal model of PD, CDK5 was shown to act as a kinase on different targets 
depending on the isoform of the p35 protein which activates it (like Cyclin). When 
p35 binds CDK5, the kinase has multiple functions during development including 
cell cycle regulation, whereas when p35 is cleaved into p25, p25 modifies the ac-
tivity of CDK5 which in turn phosphorylates the Peroxidase-2 thus decreasing its 
activity and increasing reactive oxygen species leading to neuronal death (Qu et al. 
2007). These results show that during the disease process the cell cycle proteins may 
be diverted from their original target and participate to a “pathological” pathway.

The most common target of BMI1 is the INK4a/ARF locus which codes for the 
two tumor suppressors p16Ink4a and p19Arf. In the Rd1;Bmi1−/− retina, the ablation of 
this locus does not restore retinal degeneration indicating that BMI1 acts on other 
genes (Zencak et al. 2013). Different works have shown that BMI1 is involved, but 
dispensable, in the DNA repair initiation, as well as in the control of the oxidative 
stress or mitochondria function (Chatoo et al. 2009; Liu et al. 2009) confirming 
that BMI1 has different actions. In consequence, it would be interesting to also 
investigate whether the cell cycle proteins in the retina may be involved in other 
mechanisms than the cell cycle regulation.

49.5 Conclusions

Cell cycle protein re-expression appears to be a hallmark of a wide range of neuro-
degenerative processes, including retinal degeneration. In this case, the interference 
with the cell cycle protein function leads to a massive neuroprotection opening 
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new targets for therapy. However, the function and the action mechanisms of these 
proteins have to be unraveled to better translate this knowledge to the clinic using 
adapted therapeutic tools to efficiently protect the photoreceptors. Such develop-
ment can be beneficial for other neuron types.

Ackowledgements I thank Martial K. Mbefo for fruitful discussions. This work was supported by 
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Chapter 50
Nitric Oxide Synthase Activation as a 
Trigger of N-methyl-N-nitrosourea-Induced 
Photoreceptor Cell Death

Suguru Hisano, Yoshiki Koriyama, Kazuhiro Ogai, Kayo Sugitani  
and Satoru Kato

Abstract Retinal degeneration (RD) such as retinitis pigmentosa and age-
related macular degeneration are major causes of blindness in adulthood. As 
one of the model for RD, intraperitoneal injection of N-methyl-N-nitrosourea 
(MNU) is widely used because of its selective photoreceptor cell death. It has 
been reported that MNU increases intracellular calcium ions in the retina and 
induces photoreceptor cell death. Although calcium ion influx triggers the neu-
ronal nitric oxide synthase (nNOS) activation, the role of nNOS on photorecep-
tor cell death by MNU has not been reported yet. In this study, we investigated 
the contribution of nNOS on photoreceptor cell death induced by MNU in mice. 
MNU significantly increased NOS activation at 3 day after treatment. Then, we 
evaluated the effect of nNOS specific inhibitor, ethyl[4-(trifluoromethyl) phe-
nyl]carbamimidothioate (ETPI) on the MNU-induced photoreceptor cell death. 
At 3 days, ETPI clearly inhibited the MNU-induced cell death in the ONL. These 
data indicate that nNOS is a key molecule for pathogenesis of MNU-induced 
photoreceptor cell death.

Keywords Oxidative stress · N-methyl-N-mitrosourea · Photoreceptor cell death · 
Neural nitric oxide synthease
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50.1  Introduction

Retinal degeneration (RD) such as retinitis pigmentosa and age-related macular 
degeneration is one of the major causes of blindness (Margalit and Sadda 2003; 
Hartong et al. 2006). To understand the mechanisms and potential treatments for 
RD, there are a number of retinal degeneration animal models that mimic human 
pathology. N-methyl-N-nitrosourea (MNU), a DNA alkylating agent has been wide-
ly used to produce retinal degeneration models in various animals (Tsubura et al. 
2011). MNU can induce selective photoreceptor cell death through an apoptotic 
mechanism (Yoshizawa et al. 2000), and results in retinal thinning (Koriyama et al. 
2014). However, the mechanism of MNU-induced photoreceptor cell death is only 
partially understood. For example, MNU increases retinal calcium concentration 
(Oka et al. 2007). Given that neuronal nitric oxide synthase (nNOS) is activated by 
calcium through calmodulin activation (Koch et al. 1994), it is possible that nNOS 
may play a central role in MNU-induced photoreceptor cell death. Therefore, in this 
study we investigated the relationship between nNOS and photoreceptor cell death 
induced by MNU.

50.2  Materials and Methods

50.2.1  Animals and Retinal Section Preparation

The Animal Care and Use Committee of Kanazawa University approved all ani-
mal care and handling procedures. Male C57BL/6 mice (8–9 weeks old) were 
used throughout this study. Mice were anesthetized by intraperitoneal injection of 
sodium pentobarbital (30–40 mg/kg body weight). MNU (60 mg/kg body weight) 
treatment was performed by intraperitoneal injection. Under anesthesia, an nNOS 
inhibitor, ethyl [4-(trifluoromethyl)phenyl] carbamimidothioate (ETPI) (400 nM/
eye, Cayman Chemical, Ann Arbor, Michigan, USA), was intraocularly injected 
immediately after MNU treatment. Enucleated eyes were fixed overnight in 4 % 
paraformaldehyde at 4 °C. After fixation, the eyes were incubated in 30 % su-
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crose overnight at 4 °C followed by embedding in optimal cutting temperature 
compound (Sakura finetek, Tokyo, Japan). Cryosections were prepared at 12 µm 
thickness.

50.2.2  NADPH Diaphorase Staining

The retinal cryosections were incubated in 0.1 M Tris-HCl (pH 8.0) containing 
0.3 % Triton X-100 overnight at 23 °C. They were then stained in buffer including 
NADPH and 4-nitroblue tetrazolium chloride (Roche Diagnostics Corporation, In-
dianapolis, IN, USA) for 2–3 h at 37 °C.

50.2.3  Immunohistochemistry

The retinal sections were microwaved in 0.1 M citrate buffer followed by incuba-
tion with primary antibody of anti-nNOS (Sigma Aldrich, St. Louis, MO, USA). 
The sections were then incubated with appropriate Alexa Fluor-conjugated second-
ary antibody (Molecular Probe, Eugene, OR, USA).

50.2.4  Terminal Transferase-Mediated dUTP Nick-End Labeling 
(TUNEL) Staining

Apoptotic cells were detected using In Situ Cell Death Detection Kit, Fluorescein 
(Roche Applied Science, Mannheim, Germany) according to the procedure de-
scribed by the manufacturer. In brief, the retinal cryosections were microwaved in 
0.1 M citrate buffer (pH 6.0), washed, blocked and incubated with terminal trans-
ferase and fluorescein-conjugated dUTP. To count the number of TUNEL-positive 
cells in ONL, we randomly selected one area (400 × 100 µm, covering whole layer) 
of retina in each image of section (× 200 magnification). The number of TUNEL-
positive cells in ONL of the area was counted using ImageJ software (Wayne Ras-
band, NIH, Bethesda, MD, USA).

50.3  Results

50.3.1  MNU Induces nNOS Activation in Inner 
Segment (IS)

To examine NOS activity in retina after MNU treatment, we assessed retinal 
NADPH diaphorase activity which reflects NOS activity (Koriyama et al. 2009; 
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Dauson et al. 1991), by NADPH diaphorase staining. In vehicle control retina, 
NADPH diaphorase activity was observed in IS (Fig. 50.1a). MNU treatment 
significantly increased NADPH diaphorase activity in IS at 3 days after treat-
ment compared to control retina (Fig. 50.1). Next, we examined nNOS localiza-
tion by immunohistochemistry. In retinal section, the immunoreactivity of nNOS 
was localized in IS (Y. Koriyama unpublished data).

50.3.2  nNOS Inhibition Reduces Photoreceptor Cell Death  
by MNU Treatment

In ONL, TUNEL-positive cells dramatically increased by 3 days after MNU 
treatment (Koriyama et al. 2014, Table 50.1). We evaluated the effects of nNOS 
inhibition on the number of TUNEL-positive cells in ONL after MNU treat-
ment. At 3 days post MNU treatment, ETPI significantly decreased the number 
of TUNEL-positive cells compared to MNU alone (Table 50.1).

Table 50.1   ETPI inhibited photoreceptor cell death induced by MNU. The numbers of TUNEL-
positive cells in the ONL per visual field (× 200 magnification) are shown
The number of TUNEL-positive cell in ONL
– TUNEL+ cells (mean ± SEM)
Vehicle control  1.15 ± 0.33
3 days post MNU alone 53.15 ± 7.92a

3 days post MNU and ETPI 31.80 ± 6.57a,b

a P < 0.05 versus vehicle control ( n = 20)
b P < 0.05 versus MNU alone ( n = 20)

Fig. 50.1  MNU induced nNOS activation in IS. a, b: NADPH diaphorase staining in the retina 
increased at 3 day after MNU treatment (b) compared to vehicle control retina (a). (c) NADPH 
diaphorase activity in IS. *P < 0.05 versus vehicle control ( n = 4). Scale bar = 50 µm

 



50 Nitric Oxide Synthase Activation as a Trigger … 383

50.4  Discussion

In animal models and human cases of retinitis pigmentosa, photoreceptor cell loss is 
led by apoptosis via common final pathway (Chang et al. 1993). A number of stud-
ies have described MNU toxicity to retina, and proposed various possible therapies 
for MNU-induced photoreceptor cell death (Tezel 2006; Kindzelskii et al. 2004; 
Doonan et al. 2003). In the present study, we showed evidence that the NOS were 
activated in IS after MNU intraperitoneal injection, and nNOS immunoreactivity 
was observed in the same area. Although IS of photoreceptors were weak of re-
duction product of NADPH diaphorase (Darius et al. 1995), nNOS is abundantly 
present in the OS (Neufeld et al. 2000). Oka et al. reported that total calcium ion 
in MNU-treated retinas is significantly increased before induction of photorecep-
tor cell death (Oka et al. 2007). Koch et al. further reported that NOS activity is 
strongly enhanced by elevated free calcium ion in photoreceptor cells (Koch et al. 
1994). In the light-induced photoreceptor cell death model, elevation of intracel-
lular calcium levels took place in an early and rapid event in light-induced cell 
death (Donovan et al. 2001). In this study, we clearly showed that ETPI, a selective 
inhibitor of nNOS, significantly decreased the number of apoptotic cells in ONL, 
suggesting a possibility that MNU-induced photoreceptor cell death was caused 
dominantly by nNOS activation (e.g., Fig. 50.2). These findings in turn will propose 
the possibility that nNOS inhibitors can be one of the new candidates of the therapy 
for RD such as retinitis pigmentosa.

Fig. 50.2   Proposed pathway of MNU-induced photoreceptor cell death in this study. MNU might 
induce the influx of calcium ions, which in turn activates nNOS via calmodulin activation. Acti-
vated nNOS might be a key factor for induction of photoreceptor cell death as nNOS inhibitor 
(ETPI) could prevent cell loss
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Chapter 51
Molecular Principles for Decoding Homeostasis 
Disruptions in the Retinal Pigment Epithelium: 
Significance of Lipid Mediators to Retinal 
Degenerative Diseases

Nicolas G. Bazan

Abstract Dysregulated neuroinflammatory signaling during impending disruption 
of homeostasis in retinal pigment epithelium (RPE) and photoreceptor cells (PRC) 
takes place in early stages of retinal degeneration. PRCs avidly retain and display 
the highest content in the human body of docosahexaenoic acid (DHA; an omega-3 
essential fatty acid). Docosanoids are DHA-derived mediators, such as neuropro-
tectin D1 (NPD1), made on-demand that promote repair, phagocytic clearance, cell 
survival, and are active participants of effective, well-concerted homeostasis res-
toration. Here we develop the concept that there is a molecular logic that sustains 
PRC survival and that transcriptional signatures governed by NPD1 in the RPE may 
be engaged.

Keywords Docosahexaenoic acid · Neuroprotectin D1 · Retinal pigment 
epithelium · 661W · Pigment epithelial-derived factor

51.1  Introduction

A consequence of increased life expectancy is a rise in the occurrence of PRC sur-
vival failure, as reflected by age-related macular degeneration (AMD) and other 
neurodegenerative diseases. Retinal development, as is the case with the rest of 
the central nervous system, is driven by neuronal apoptotic cell death, and thereaf-
ter neurons, including PRC, are post-mitotic cells. In retinal degenerative diseases, 
apoptosis and other forms of cell death are set in motion, leading to PRC loss. AMD 
is a disease of failed aging and not of developmental failure (Sharma et al. 2014).
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There is a marvelous interdependent relationship between PRC and RPE where-
by key molecules are recycled (Bazan 2007; Lehmann et al. 2014) by the daily 
shedding of PRC tips and RPE phagocytosis (Strauss 2005; Mukherjee et al. 2007b; 
Mazzoni et al. 2014). These include the tightly-regulated recycling of retinoids of 
the visual cycle in rod PRC. The cone PRC retinoid recycling also involves the 
Müller cell. DHA, attains its highest concentrations in the human body in the PRC 
(Fliesler and Anderson 1983), and it is remarkable that this fatty acid is retained 
and conserved between PRC and RPE cells (Bazan et al. 2011; Gordon and Bazan 
1990). The outer and disks membranes of PRC features phospholipids richly en-
dowed with DHA acyl chains. In contrast, the other essential fatty acid family, the 
omega-6, is present in all tissues in similar amounts, and its major member, arachi-
donic acid (AA), is the precursor of eicosanoids that includes prostaglandins and 
related mediators.

Although age is the main risk factor for AMD, not everyone develops this dis-
ease during aging. Despite decades of important findings about signaling that sus-
tains functional integrity of PRC and RPE cells, the decisive mechanisms that sus-
tain the survival of these cells remain incompletely understood. Here we discuss the 
notion that there is a molecular logic that sustains PRC survival and the potential 
significance of transcriptional signatures in the RPE directed by DHA-derived lipid 
mediators.

51.2  Photoreceptor Cell Survival

It is becoming apparent that consequences of dysregulated networks of neuroinflam-
matory signaling responses to impending homeostasis disruptions underlie RPE de-
mise. Since these cells are necessary for PRC functional integrity and survival, it is 
important to understand and unravel key signaling engaged under these conditions. 
We are learning that DHA is related to pivotal events for vision, which include the 
following: (a) DHA is the precursor of very long chain polyunsaturated fatty ac-
ids (VLC-PUFAs), which are intimately associated with rhodopsin (Aveldaño et al. 
1988) and remarkably decrease in content in Stargardt syndrome and in AMD (these 
fatty acids are made by an ELOV4-mediated elongation pathway) (Harkewicz et al. 
2012; Liu et al. 2010; Logan et al. 2013); (b) DHA is the precursor of cytoprotec-
tive, homeostasis modulator neuroprotectin D1 (NPD1; 10R,17S-dihydroxy-doc-
osa-4Z,7Z,11E,13E,15Z,19Z-hexaenoic acid) and of other bioactive docosanoids; 
and (c) DHA peroxidation protein adducts evolve and accumulates in Drusen in 
AMD, exerting enhancing actions on its pathology (Hollyfield et al. 2008).

NPD1 is a mediator made on demand; thus, a question to ask is “what is the 
‘signal/s’ for turning on the synthesis of this lipid mediator?” Using primary hu-
man RPE cells in monolayer cultures, the neurotrophin pigment epithelium-de-
rived factor (PEDF), and others to a smaller extent, were found to be agonists for 
the synthesis and, apical release of NPD1 (Mukherjee et al. 2007a). Thus even 
though the significance of phospholipid signaling in PRCs is becoming clearer, 
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we still have major gaps in our understanding of the molecular principles that 
underlie these critical events decisive for cell integrity. Docosanoids include me-
diators that promote repair, phagocytic clearance and homeostasis, and that are 
active participants of an effective, active, well-concerted process of homeostasis 
restoration; they comprise NPD1, resolvins D1 and D2 (RvD1, RvD2), and ma-
resins (Bazan et al. 2011).

51.3  What are the Molecular Principles that Decode 
Homeostasis Disruptions in the Retinal Pigment 
Epithelium to Sustain PRC Functional Integrity?

This question highlights our quest based on the following: (a) in inheritable reti-
nal degenerative diseases (and in other familial forms of neurodegeneration), 
why doesn’t the disease manifest during latency?; (b) does a cell-specific initial 
response/s counteract the consequences of mutation expression?; and (c) why can 
the latency period last for decades? Because early responses to retinal degenerative 
diseases engage uncompensated oxidative stress and neuroinflammation, corollar-
ies to these questions are whether a neuroadaptation failure response is involved, 
and also whether there is an impediment to membrane encoding of information for 
retention and/or release of specific mediators (Bazan 2014). There are a multitude 
of factors involved, including developmentally-expressed genes, since most of the 
inherited retinal degenerative diseases remain asymptomatic during development 
and maturation of the retina. Our lab began deciphering aspects of the molecular 
logic that sustain RPE survival by uncovering molecular principles (transcriptional 
signatures) governed by the docosanoid NPD1. In other neural cells, bioactivity of 
NPD1, in addition, modulates amyloid precursor protein processing, inducing cell 
survival (Zhao et al. 2011).

51.4  How Does the PRC Counter Early Disruptions 
of Homeostasis?

The cellular molecular protective responses of the RPE/PRC to potential homeostat-
ic disturbances are only partly understood. For example, oxidative stress is needed 
for cell functions, however uncompensated oxidative stress is a central disruptor 
of homeostasis. There are several offsetting signals that respond to set in motion 
neuroprotection, that, in turn, might influence RPE/PRC integrity. While searching 
for early mechanisms set in motion in RPE cells in response to survival threats, we 
have discovered and named NPD1 (Mukherjee et al. 2004). This finding has pro-
vided initial validation to the concept that signaling mechanisms are activated early 
to sustain homeostasis.
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Hinting at an inability to further allow pathways to form the bioactive products, 
and further supporting the notion of a perturbation in docosanoid synthesis, a cor-
ollary of these predictions is that administered DHA will make the precursor of 
docosanoids accessible to cells. As a consequence, the synthesis of lipid mediators 
would be increased and nurture a resolving inflammatory response; this, in turn, 
would counteract sustained inflammation.

Recently, using mouse-derived transformed cone 661W cells, it was shown that 
NPD1 is also made in PRC (Kanan et al. 2014). NPD1 exerts protective bioactiv-
ity on these cells upon incubation with 9-cis retinal in the presence of bright light 
that triggers cell damage and death. Viability assays of 9-cis retinal-treated cells 
demonstrated DHA protection after bright light exposure, and that NPD1 further 
increased protection. The bioactivity of DHA is supported by the observation that 
d4-DHA added to the media synthesized 4–9 times as much d4-NPD1 under bright 
light exposure compared to cells in darkness (Kanan et al. 2014). Thus RPE and 
at least a transform cone PRC are able to synthesize NPD1. The implications are 
that DHA in both cells can become the NPD1 precursor to counter disruptions of 
homeostasis.

51.5  Lipid-Mediated RPE-Specific Transcriptional 
Modulation Necessary to Withstand Cell Survival: 
cREL, an Intracellular Messenger of NPD1

Omega-3 fatty acids from the diet, linolenic and DHA are taken up by the liver. 
The liver is endowed with active enzymes to elongate and introduce double bonds 
in linolenic acid, leading to the formation of DHA. This fatty acid is then shuttled 
to the nervous system, where it becomes acylated in phospholipids that, in turn, is 
used for membrane biogenesis of PRC and synapses, as shown during postnatal 
development (Scott and Bazan 1989). Figure 51.1 illustrates the routes followed by 
DHA. Box a indicates the presence of a molecule for the retention of the fatty acid 
in the RPE cell. Very recently, adiponectin receptor 1 was shown to be this molecule 
(Rice et al. 2015). Box b is the high affinity binding site for NPD1 (Marcheselli 
et al. 2010). NPD1 induces RPE transcriptional upregulation of cREL followed by 
BIRC3 (baculoviral IAP-inhibitor of apoptosis protein-repeat containing 3) expres-
sion, which in turn leads to cell survival. NPD1-mediated c-Rel transcription nucle-
ar translocation occurs, as was recently identified in human RPE cells (Calandria 
et al. 2015). Based on these results, it is tempting to postulate that the selective 
upregulation of BIRC3 by DHA, using cREL as an intracellular messenger, reveals 
a transcriptional signature that might underlie a key molecular principle fostering 
RPE/PRC survival. Figure 51.1 outlines the route of DHA as a precursor of NPD1 
to elicit transcriptional activation of cREL after its release from the RPE cell. cREL 
acts as an intracellular messenger of NPD1 that regulates BIRC3 and, in turn, up-
regulates RPE cell survival (Calandria et al. 2015).
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51.6  Perspective Outlooks

Phospholipid signaling stemming from RPE or PRC DHA reservoirs leads to the 
synthesis of docosanoids that promote cell survival. NPD1 mediates transcriptional 
signatures in the RPE, highlighting cREL as an intracellular messenger that acti-
vates BIRC3 transcription and, in turn, cell survival. These findings open an avenue 
to ascertain mechanistic details that counteract unresolved inflammation, retinal mi-
croglial activation (Sheets et al. 2013) and uncompensated oxidative stress to foster 
homeostasis restoration. The homeostatic responses mediated by DHA/NPD1 could 
be mimicked in preventive and therapeutic approaches. Thus identification of the 
molecular principles that control the molecular logic for supporting PRC survival 

Fig.  51.1   Cartoon of the RPE cell. DHA is depicted being recycled from PRC outer segment 
renewal ( short loop) and being used as the precursor for NPD1 synthesis. In the top, Box a indi-
cates a putative mechanism for DHA uptake. The high affinity binding site for the lipid mediator 
is depicted in b. cREL transcription is induced by NPD1, and then it becomes an intracellular mes-
senger to induce BIRC3 transcription that executes RPE cell survival
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will bring a paradigm shift to the understanding, prevention and treatment of retinal 
degenerative diseases.
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Chapter 52
Aging and Vision

Marcel V. Alavi

Abstract Aging involves defined genetic, biochemical and cellular pathways that 
regulate lifespan. These pathways are called longevity pathways and they have rele-
vance for many age-related diseases. In the eye, longevity pathways are involved in 
the major blinding diseases, cataract, glaucoma, age-related macular degeneration 
(AMD) and diabetic retinopathy. Pharmaceutical targeting of longevity pathways 
can extend healthy lifespan in laboratory model systems. This offers the possibility 
of therapeutic interventions to also delay onset or slow the progression of age-related 
eye diseases. I suggest that retinal degeneration may be viewed as accelerated aging 
of photoreceptors and that interventions extending healthy lifespan may also slow 
the pace of photoreceptor loss.

Keywords Lens · Cataract · Retinal ganglion cells · Glaucoma · Retina · Age-
related macular degeneration (AMD) · Insulin Diabetic retinopathy · Longevity 
pathways · Aging · Vision impairments

52.1  Aging and Longevity

Aging is the time-dependent accumulation of cellular insults or damage accom-
panied by subsequent functional decline that increase organisms’ vulnerability to 
death (Lopez-Otin et al. 2013). This involves typical diseases associated with ad-
vanced age. The World Health Organization classifies these age-related diseases 
as noncommunicable diseases, the leading cause of death worldwide (Hunter and 
Reddy 2013). Age-related diseases of the eye are the major blinding diseases, cata-
ract, glaucoma, age-related macular degeneration (AMD) and diabetic retinopathy, 
amongst others.

Many extrinsic factors in parallel influence the time-dependent accumulation of 
cellular insults or damage. Hence, there is no single aging process, and this is also 
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the case for the aging eye. On the other hand, mutations in single genes can extend 
lifespan of laboratory model organism suggesting that there are defined genetic, 
biochemical and cellular pathways that regulate lifespan (Kenyon et al. 1993; Par-
tridge 2010; Kenyon 2011). How evolution selected for these pathways is beyond 
the scope of this review and I would like to refer the interested reader to the litera-
ture (e.g. Gavrilov and Gavrilova 2002; Pletcher et al. 2007; Partridge 2010). Path-
ways that (1) manifest over time, (2) whose experimental aggravation accelerates, 
and (3) whose amelioration retards the normal aging process are called longevity 
pathways, or hallmarks of aging (Lopez-Otin et al. 2013). To date, nine different 
hallmarks of aging have been identified, all of which more or less fulfill these three 
criteria. These longevity pathways are: genomic instability, telomere attrition, epi-
genetic alterations, loss of protein homeostasis (proteostasis), deregulated nutrient 
sensing, mitochondrial dysfunction, cellular senescence, stem cell exhaustion, and 
altered intercellular communication (Lopez-Otin et al. 2013).

A classical paradigm for a longevity pathway, and the first discovered (Ken-
yon et al. 1993; Kenyon 2011), is the nutrient sensing insulin- and insulin-like 
growth factor 1 (IGF-1)-signaling pathway, because IGF-1 levels decline during 
aging, anabolic signaling accelerates aging, and decreased nutrient signaling ex-
tends longevity (Alic and Partridge 2011; Barzilai et al. 2012). Another paradigm 
for a longevity pathway is loss of proteostasis, with profound alterations in the 
elderly. These alterations involve decline of quality control mechanisms that ei-
ther degrade unfolded, misfolded, or aggregated proteins by the proteasome or 
the lysosomal system, or preserve the stability and functionality of the proteome 
by chaperones (Hartl et al. 2011). In various model systems proteostasis also 
can be experimentally manipulated in both directions, shortening and increas-
ing lifespan (Hartl et al. 2011; Lopez-Otin et al. 2013). Age-related proteotoxic-
ity thus contributes to development of age-related pathologies emphasizing how 
interwoven longevity pathways and age-related diseases are (Koga et al. 2011; 
Lopez-Otin et al. 2013). This is also the case for age-related eye diseases as dis-
cussed below.

52.2  Age-Related Diseases of the Eye

Age-related diseases are clinically heterogeneous and multifactorial with environ-
mental and complex genetic contributions. As discussed above, the complex genetic 
contribution to age-related diseases involve longevity pathways. The eye is a ter-
minally differentiated organ, which forms during development and is maintained 
throughout life. Advanced age is widely recognized as one of the biggest risk fac-
tors for many of the leading causes of vision loss, such as cataract, glaucoma, AMD 
and diabetic retinopathy (Klein and Klein 2013). Longevity pathways also play a 
pivotal role in the pathophysiology of these blinding diseases.
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52.2.1  Cataracts—Loss of Proteostasis

Cataracts are very common in older people; in fact they are the leading cause of 
blindness worldwide. The prevalence for cataract was estimated at 17.2 %, and this 
increased with ethnicity, sex, and age, with a maximum prevalence of 77 % for 
caucasian woman above 80 years of age (Klein and Klein 2013). A cataract is cloud-
ing of the lens that affects vision. The lens is a key refractive element of the visual 
apparatus and its high protein content accounts for the high refractive index. Crys-
tallins make up 30 % of these proteins. With age, a continuous series of biochemi-
cal and biophysical changes caused by loss of proteostasis and mainly involving 
post-translational modifications of crystallins and other lens proteins lead to cloud-
ing, stiffness and increased light-scattering of the lens. To date, the best available 
treatment still is removing the cloudy lens and replacing it with an artificial lens 
(Michael and Bron 2011).

52.2.2  Glaucoma— Mitochondrial Dysfunction

Glaucoma is the leading cause of incurable worldwide blindness. It is a non-syn-
dromic optic neuropathy clinically characterized by visual impairments and patho-
logical changes of the optic nerve, which is caused by loss of retinal ganglion cells 
(Quigley 2011). Retinal ganglion cells project their axons via the optic nerve from 
the eye to the brain and are key for visual perception. What is more, there seems to 
be something special about retinal ganglion cells making them more vulnerable to 
age-related changes than other neurons. Hence, retinal ganglion cell impairments 
are associated with—and even precede—neurological changes in major age-relat-
ed neurodegenerative diseases, including Parkinson’s disease (Garcia-Martin et al. 
2014; Satue et al. 2014), multiple sclerosis (Petzold et al. 2010), and Alzheimer’s 
disease (Hinton et al. 1986). Glaucoma—as do many neurodegenerative diseas-
es—involves mitochondrial dysfunction (Osborne 2010; Maresca et al. 2013). 
Mitochondrial quality control plays a pivotal role in containing mitochondrial dys-
function. Therefore, it is not surprising that sequence variants in mitochondrial 
quality control genes are associated with neurodegenerative diseases (Cho et al. 
2010), in particular familial Parkinsonism (Pilsl and Winklhofer 2012). Remark-
ably, sequence variants in one mitochondrial quality control gene ( OPA1), how-
ever, are associated with dominant optic atrophy, a juvenile non-syndromic optic 
neuropathy. For this, one may say that the relation of dominant optic atrophy to 
glaucoma is the same relation as of familial Parkinsonism to Parkinson’s disease 
(Alavi and Fuhrmann 2013). To date, glaucoma is treated by intra-ocular pressure 
lowering drugs, because of a correlation of intra-ocular pressure and retinal gan-
glion cell loss (Quigley 2011). Drugs that prevent retinal ganglion cell loss still are 
not available.
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52.2.3  Age-Related Macular Degeneration (AMD)—Altered 
Intercellular Communication

Not surprisingly, there is a correlation between patients showing signs of Al-
zheimer’s disease and yet another devastating eye disease, AMD, as the risk for 
both diseases strongly increases with age (Williams et al. 2014). AMD is the 
leading cause of blindness in persons over the age of 50 and it affects 1.8 mil-
lion Americans, who suffer from progressive central vision loss through photo-
receptor degeneration (Swaroop et al. 2009). The majority of patients present 
with the dry forms of AMD, characterized by lipid deposits (drusen) beneath the 
retina and geographic atrophy (Curcio et al. 2011). Dry forms may progress to 
wet or neovascular forms of AMD, associated with sudden, acute and irrevers-
ible vision loss, because nascent vessels are leaky and prone to hemorrhages, 
which cause severe photoreceptor degeneration (Swaroop et al. 2009; Curcio 
et al. 2011). Immune processes play an essential role in the development and 
progression of AMD as lipid deposits provoke activation of the complement 
pathway, which leads to inflammation and aggravation of the disease (Ambati 
et al. 2013). AMD involves several longevity pathways, amongst others altered 
intercellular communication, because of the strong immune component of this 
disease (Ambati et al. 2013). The currently available therapies for AMD mainly 
target neovascularization, and there are no effective therapies for the majority of 
patients presenting with dry AMD.

52.2.4  Diabetic Retinopathy—Deregulated Nutrient Sensing

Another blinding disease, characterized by microaneurysms and small hemor-
rhages apparent on ophthalmoscopic examination, is diabetic retinopathy, the 
leading cause of blindness in working age adults. Diabetes is a multifactorial 
chronic disease that gives rise to many symptoms, such as cardiovascular im-
pairments, stroke and neuropathy, and every third patient with diabetes develops 
diabetic retinopathy. Diabetes is a metabolic disorder with deregulated nutrient 
sensing, which involves the Insulin- and IGF-1-signaling pathway, among oth-
ers. Insulin resistance increases with age leading to adult-onset or type 2 dia-
betes (Barzilai et al. 2012). Duration of diabetes and level of metabolic control 
are major risk factors for diabetic retinopathy, because hyperglycemia appears to 
drive development of the disease (Cunha-Vaz et al. 2014). Hyperglycemia affects 
different components of the retinal neurovascular unit giving rise to individual 
variation in the presentation and course of diabetic retinopathy (Cunha-Vaz et al. 
2014). Therapeutic options for diabetic retinopathy to date are limited to govern-
ing these different symptoms.
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52.3  Significance and Outlook

Gradual decline in mortality rates and fertility steadily increase the length of life 
and the proportion of older people. Consequently age-related diseases are be-
coming a growing burden for society. One way to alleviate society’s burden is to 
increase healthy and disease-free lifespan. Manipulations of longevity pathways 
extends lifespan, and these interventions often keep laboratory models healthy 
and pathology-free to later ages by protecting them against age-related diseases, 
including neurodegenerative diseases and cancer (Lopez-Otin et al. 2013). If this 
holds true in a broader and more general context, then longevity pathways are 
promising targets for pharmacological interventions for age-related eye diseases, 
as well. Preserving proteostasis may help maintain the refractive properties of 
the lens and therefore delay onset of cataracts. More stringent mitochondrial 
quality control, on the other hand, counteracts age-related decline of mitochon-
drial integrity, and pharmaceuticals able to manipulate the mitochondrial quality 
control machinery may be neuroprotective in many neurodegenerative diseases, 
including glaucoma. Understanding the complex aspects of immune regulation 
in the eye will lead to new immune-based therapies for patients with AMD. Dia-
betic retinopathy involves deregulated nutrient sensing, and maintaining well 
regulated blood glucose levels also protects the eyes.

52.4  Concluding Remarks

Loss of proteostasis is a hallmark of aging with relevance for many age-related 
diseases. Roughly one-third of all cellular proteins reside in or pass through the 
endoplasmatic reticulum (ER), and a complex set of efficient signaling pathways, 
collectively referred to as the unfolded protein response (UPR) of the ER, carefully 
regulate proteostasis within the ER (van Anken and Braakman 2005). The UPR also 
triggers cellular responses that lead to apoptosis upon persistent ER stress (Lin et al. 
2007). Interestingly, deletions of xbp1, a critical signaling molecule in the UPR, 
shortens lifespan in the worm C. elegans (Henis-Korenblit et al. 2010), while over-
expression of a spliced xbp1 isoform is able to alleviate ER stress and extend the 
healthy lifespan (Taylor and Dillin 2013), emphasizing the relation of proteostasis 
and aging. Rhodopsin mutations that cause ER stress lead to retinal degeneration in 
patients with autosomal dominant retinitis pigmentosa, as well as different labora-
tory models (Lin et al. 2007), and proteins of the UPR are promising targets for the 
treatment of this complex disease (Gorbatyuk et al. 2010; Ghosh et al. 2014). Given 
the fundamental significance of proteostasis for cell maintenance and survival, one 
may view retinal degeneration as accelerated aging of photoreceptor cells. Thera-
pies that can extend healthy lifespan of organisms hence should also have the po-
tential to slow photoreceptor cell loss in retinal degeneration.
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Chapter 53
The Potential Use of PGC-1α and 
PGC-1β to Protect the Retina by Stimulating 
Mitochondrial Repair

Carolina Abrahan and John D. Ash

Abstract Damage to mitochondria is a common mechanism of cell death in 
inherited neurodegenerative disorders. Therefore, mitochondrial protection and 
mitochondrial repair are promising strategies to induce retinal neuroprotection. Per-
oxisome proliferator-activated receptor γ coactivator-α (PGC-1α) and β (PGC-1β) 
are transcriptional coactivators that are the main regulators of mitochondrial biogen-
esis. We propose that PGC-1α and PGC-1β could play a role in regulating retina cell 
survival, and may be important therapeutic targets to prevent retinal degeneration.

Keywords Neuroprotection · Retina · PGC-1alpha · PGC-1beta · Mitochondrial 
biogenesis

Abbreviations

PGC-1α Peroxisome proliferator-activated receptor γ coactivator-α
PGC-1β Peroxisome proliferator-activated receptor γ coactivator-β
ROS Reactive oxygen species
mtDNA Mitochondrial DNA
NRF-1 and NRF-2 Nuclear respiratory factors -1 and 2
PPAR Peroxisome proliferator-activated receptor
AMPK Adenosine mono-phoshpate-dependent Kinase
UCP Uncoupling protein
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53.1  Introduction

Retinal neurodegenerative disorders are associated with aging and inherited mu-
tations. As with other neurodegenerative diseases, retinal degeneration has been 
associated with mitochondrial dysfunction and toxic oxidative damage. The mito-
chondrial free-radical theory of aging proposes that cumulative oxidative damage 
to cellular macromolecules is a consequence of reactive oxygen species (ROS) 
produced by a leaky mitochondrial respiratory chain. Therefore, one of the first 
approaches to revert or stop the mitochondrial decline was the development of 
antioxidant therapies, or therapies designed to stimulate antioxidant self-defense 
systems. Despite promising results in cell culture and animal studies, antioxidant 
therapies in humans have not been highly beneficial (Stuart et al. 2014). These 
disappointing setbacks have led to realization that prevention of oxidative stress is 
not sufficient and that treatment of mitochondrial dysfunction is likely to require a 
more multifaceted approach. This has been supported by studies showing that ROS 
production is not necessarily a cause for disease, but may in fact by a signaling 
mechanism to induce protective pathways (Bratic and Larsson 2013). Oxidative 
stress may be a sign of mitochondrial damage, but other factors may be responsible 
for cell damage. Recent studies suggest that somatic mutations in mitochondrial 
DNA could be involved in degeneration (Srivastava et al. 2009). Repairing or re-
placing damaged mitochondria is therefore a promising new approach to slow or 
prevent retinal degeneration.

53.2   PGC-1α and β as Regulators of Mitochondrial 
Biogenesis

Multiple transcription factors have been shown to be essential regulators of mito-
chondrial biogenesis and nuclear encoded gene expression. Most mitochondrial 
proteins are encoded by nuclear genes. Therefore, nuclear transcription factors 
are essential for regulating mitochondrial biogenesis and function. Two key fac-
tors are nuclear respiratory factors-1 and 2 (NRF-1 and NRF-2). These factors 
activate the synthesis of nuclear proteins that are involved in transport of proteins 
through mitochondrial membranes as well as protein in the respiratory chain and 
Krebs cycle (Ventura-Clapier et al. 2008). In addition, NRF-1 and -2 promote 
mitochondrial biogenesis by activating the expression of mitochondrial tran-
scription factor A (Tfam), transcription factor B1 and B2 (TFB1M and TFB2M), 
which increase mtDNA transcription and mitochondrial RNA polymerase activ-
ity, and DNA replication (Chen et al. 2009). While NRFs are essential factors for 
mitochondrial gene expression, they require co-factors for activity. Peroxisome 
proliferator-activated receptor γ coactivator (PGC-1) is a family of co-activators 
that are important for NRF activity. To date there are three related genes in the 
family including PGC-1α, PGC-1β, and PRC-1. The three proteins share a do-
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main (LXXLL), through which they interact with nuclear hormone receptors. 
PGC-1α and β have an NH2-terminal activation domain as well as RNA recogni-
tion motifs. In addition, PGC-1α has a COOH-terminal arginine/serine rich (R/S) 
domain through which PGC-1α activates transcription and RNA processing. This 
(R/S) domain is absent in PGC-1β (Scarpulla 2008). Both PGC-1α and PGC-
1β have prominent roles in mitochondrial biogenesis and gene expression, but 
little is known about PRC-1. PGC-1α has been shown to induce expression of 
NRF-1 and NRF-2, and bind both factors to enhance their transcriptional activ-
ity (Gleyzer et al. 2005). In addition to NRF-1and NRF-2, PGC-1α and PGC-1β 
have been shown to be binding partners and co-activators of additional transcrip-
tion factors required for mitochondrial gene expression including PPARs (Per-
oxisome proliferator-activated receptor), ERR (estrogen-related receptor), RXR 
(retinoid X receptor), PXR (pregnane X receptor), FOXO1 (forkhead box O1), 
MEF-2 (myocyte enhancer factor-2), and SREBP1 (Sterol regulatory element-
binding transcription factor 1) (Finck and Kelly 2006). Thus, PGC-1s play a 
prominent role in mitochondrial biogenesis.

53.3   Regulation of PGC-1α Expression and Activity

PGC-1 expression and activity is highly regulated. Most studies have focused on 
the regulation of PGC-1α. Depending of the tissue, PGC-1α expression can be up-
regulated by several pathways including activation of Ca2+/calmodulin-dependent 
protein kinase IV (CaMKIV), calcineurin A, the p38 mitogen-activated protein 
kinase (p38 MAPK), adenosine mono-phosphate-dependent Kinase (AMPK) and 
protein kinase A (PKA). However, PGC-1α is normally maintained in an inac-
tive state by acetylation at multiple sites on the protein. The activity of PGC-
1α can be modified by post-translational modifications such as phosphorylation, 
ubiquitination, methylation and acetylation. A review of how PGC-1α expression 
and activity is regulated can be found in (Fernandez-Marcos and Auwerx 2011). 
To become fully active, PGC-1 must be deacetylated by NAD-dependent-protein 
de-acetylaces such as Sirtuin 1 (Sirt-1) and phosphorylated by serine/threonine 
kinases such as AMPK (Canto and Auwerx 2009). Because of the requirement 
for de-acetylation and phosphorylation, PGC-1 activity is highly regulated by mi-
tochondrial output and oxidative stress. Under conditions of mitochondrial dys-
function, cells have elevated ratios of adenosine mono-phosphate (AMP) to ad-
enosine tri-phosphate (ATP), and increased levels of NAD+, which will activate 
both AMPK and Sirt-1 respectively. Then, AMPK and Sirt-1 cooperate to activate 
PGC-1s by phosphorylation and de-acetylation. Once activated, PGC-1s increase 
mitochondrial gene expression to increase energy production and reduce oxidative 
stress and thus rescue the cell. PGC-1s are therefore a target to induce protection 
by regulating mitochondrial biogenesis and repair.
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53.4  PGC-1s as Regulators of Mitochondrial Editing 
and Repair

Mitochondria can have multiple copies of their genome, so that it is possible 
that damaged or mutated mtDNA coexists with normal mtDNA (heteroplasmy). 
MtDNA mutations can cause respiratory chain dysfunction, and this will lead to 
catastrophic oxidative stress and cell death. It is know that mitochondria with-
in a cell exist as a dynamic network capable of exchanging proteins and DNA. 
These processes are regulated by cycles of fusion and fission (Seo et al. 2010). 
Through a process of fusion, smaller mitochondria fuse together as a way to 
equilibrate the concentration of all nuclear-encoded mitochondria proteins in the 
mitochondria network, exchange and mix mitochondrial DNA as a mechanism 
to dilute damaged DNA, and to improve efficiency of ATP production. On the 
other hand, fission is thought to be a mechanism of mitochondrial editing. Under 
stress states, mitochondria are fragmented into smaller segments, and segments 
that cannot maintain a membrane potential are removed by mitophagy (Kowald 
and Kirkwood 2011). Once oxidative stress is reduced, mitochondria undergo a 
biogenic repair by inducing mtDNA replication and increased gene expression, 
and reinitiate fusion. Promoting cycles of fission, followed by editing, biogen-
esis, and fusion can be a therapeutic target to prevent cell death. This process of 
biogenesis and fusion can be regulated by PGC-1α. In a mouse model of acceler-
ated mitochondrial damage, overexpression of PGC-1α in the muscle improved 
skeletal muscle function by increasing mitochondrial biogenesis. Although the 
overexpression of PGC-1α did not reduce the proportion of mutated mtDNA (Dil-
lon et al. 2012), the coactivation of the orphan nuclear receptor ERRα by PGC-
1α could stimulate the transcription of Mitofusin 1 and 2, two proteins involved 
in the mitochondrial fusion as part of the neuroprotective program activated by 
PGC-1α (Martin et al. 2014; Cartoni et al. 2005). By these mechanisms, PGC-1α 
can promote mitochondrial activity by increasing the synthesis of nuclear encod-
ed mitochondrial proteins, and their distribution by fusion through the mitochon-
dria network. It is interesting to note that the process of fission, mitophagy, fu-
sion and biogenesis is coordinated by the activation of AMPK. AMPK is thought 
to promote mitophagy of defective mitochondria, but also activates PGC-1α to 
initiate a program of biogenesis and replacement with new, more functional mi-
tochondria (Mihaylova and Shaw 2011)).

53.5  Regulation of Uncoupling Proteins as a Mechanism 
of Protection

Functionally, PGC-1α and β have some similarities as well as differences. For 
example, both PGC-1α and β are capable of inducing mitochondrial biogenesis, 
however, it is know that PGC-1α activates thermogenesis in brown fat and gluco-
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neogenesis in hepatocytes and PGC-1β does not (Lin et al. 2003). PGC-1s were 
first described as cofactors of nuclear receptor PPARγ (Peroxisome proliferator-
activated receptor γ) and the thyroid hormone receptor. Through these interactions 
PGC-1 was shown to be responsible for promoting the expression of uncoupling 
protein-1 (UCP-1) and promoting an increase in mitochondrial DNA as part of 
adaptive thermogenesis (Puigserver et al. 1998). Later, PGC-1α and β were shown 
to be activators of UCP-2 and UCP-3 transcription (Rigoulet et al. 2011). As with 
UCP-1, these two proteins are anion carriers, however, they are not associated 
with adaptive thermogenesis (Brand and Esteves 2005). Instead, it has been pro-
posed that these two uncoupling proteins could have neuroprotective properties 
by reducing mitochondrial ROS production (Mattiasson et al. 2003; Mailloux and 
Harper 2011). Experiments in vitro have shown that isolated mitochondria have a 
higher rate of ROS production when the electrochemiosmotic potential is higher. 
Proton leak through UCPs or protonophores across the mitochondrial inner mem-
brane leads to a reduced production of ROS with minimal respiration rate but still 
sufficient ATP production (Brand and Esteves 2005). It is know that UCP-2 protein 
is expressed in ganglionar cells but it is not clear if UCPs are expressed in pho-
toreceptors (Barnstable and Tombran-Tink 2006). Whether or not these proteins 
have neuroprotective properties after activation by PGC-1α or β in the retina is 
not known yet.

53.6   PGC-1α and β in the Retina

Despite numerous studies on the role of PGC-1s in muscle and adipose tissue, little 
is known about their roles in the neural retina and RPE. In ARPE-19 human retinal 
pigment epithelial cells, hydroxytyrosol, an antioxidant polyphenol, protects cells 
from oxidative stress by activating PGC-1α (Zhu et al. 2010). As was found in skel-
etal muscle, PGC-1α induces the expression of vascular endothelial growth factor 
(VEGFA) in retinal cells. Since PGC-1α is highly expressed in the inner nuclear 
layer of the retina in a mouse model of oxygen-induced retinopathy, it therefore 
suggests a role for PGC-1α during neovascularization (Saint-Geniez et al. 2013). 
Moreover, there are other studies that suggest a role of PGC-1α and β in the neural 
retina, as their expression would be important in preventing light damage (Egger 
et al. 2012).

53.7  Future Approaches

The number of studies to develop therapeutic tools based on induction of mitochon-
drial biogenesis are growing. This strategy could have an impact on diseases caused 
by mitochondrial disorders, but may also be beneficial in aging and neurodegenera-
tive diseases.
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More work is needed to establish the function of PGC-1α and β in the retina. 
Retina specific knockouts for PGC-1α and β can now be used to determine if these 
factors play and important role in rod and cone function under normal conditions, 
and in aging or during oxidative stress. PGC-1α and β have partially redundant 
functions and therefore simple knockouts might not show an alteration in retina 
function. The development of double knockouts may be required to clarify the im-
portance of PGC-1α and/or β in the retina in normal and stressed conditions. Fur-
thermore, as metabolic activity in the retina is different depending on the cell type, 
cell-type specific PGC-1α/β knockouts are necessary.

Overexpression of PGC-1α and β appears to be a promising approach to promote 
cell survival (Srivastava et al. 2009). Adeno-associated virus gene therapy vectors 
could be used. However, it is necessary to deliver the proper isoforms of PGC-1α 
and/or PGC-1β to photoreceptors or RPE to induce cell survival. In addition to the 
overexpression of the PGC-1s, it may also be necessary to induce a physiological 
state to activate these coactivators.

It is clear that more research is needed to determine the role of the different iso-
forms of PGC-1s in the retina, and the mechanisms of activation. This knowledge 
is necessary to develop drug or gene therapies to promote retinal protection through 
induced mitochondrial biogenesis.
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Chapter 54
Retinal Caveolin-1 Modulates Neuroprotective 
Signaling

Alaina Reagan, Xiaowu Gu, Stefanie M. Hauck, John D. Ash, Guangwen Cao, 
Timothy C. Thompson and Michael H. Elliott

Abstract Caveolin-1 (Cav-1), the scaffolding protein of caveolae, is expressed 
in several retinal cell types and is associated with ocular pathologies. Cav-1 
modulates neuroinflammatory/neuroprotective responses to central nervous 
system injury. We have shown that loss of Cav-1 results in a blunted cytokine 
response in retinas challenged with inflammatory stimuli. As neuroinflammatory 
and neuroprotective signaling overlap in their cytokine production and down-
stream signaling pathways, we hypothesized that loss of Cav-1 may also sup-
press neuroprotective signaling in the retina. To test this, we subjected mice in 
which Cav-1 was deleted specifically in the retina to a neurodegenerative insult 
induced by sodium iodate (NaIO3) and measured STAT3 activation, a measure 
of neuroprotective signaling. Our results show that Cav-1 ablation blunts STAT3 
activation induced by NaIO3. STAT3 activation in response to intravitreal admin-
istration of the IL-6 family cytokine, leukemia inhibitory factor (LIF), was not 
affected by Cav-1 deletion indicating a competent gp130 receptor response. 
Thus, Cav-1 modulates neuroprotective signaling by regulating the endogenous 
production of neuroprotective factors.

Keywords Caveolin-1 · Cre/lox · Conditional knockout · Neuroprotection · 
Cytokines · Sodium Iodate · STAT3
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54.1  Introduction

Cav-1 is the principal protein of caveolae and is involved in cellular functions 
including endocytosis, mechanotransduction, and cell signaling (Parton and Si-
mons 2007). Cav-1 is expressed in several retinal cell types including retinal 
vasculature, retinal pigment epithelium (RPE) and Müller glia (Gu et al. 2014a, 
b; Li et al. 2014). Cav-1 is linked to diseases with significant retinal pathologies 
including diabetic retinopathy and glaucoma (Klaassen et al. 2013; Thorleifs-
son et al. 2010) but its role in retinal neuroprotection is unknown. Retinal cells 
express several toll-like receptors (TLRs) that recognize and respond to patho-
genic stimuli and initiate pro-inflammatory cytokine responses. Cav-1 associates 
with TLRs and regulates TLR signaling (Jiao et al. 2013). In addition to recruit-
ing circulating leukocytes during inflammation, cytokines also act as ligands for 
neuroprotective signaling. In particular, IL-6 family cytokines including ciliary 
neurotrophic factor (CNTF) and LIF activate the JAK/STAT pathway, which up-
regulates anti-apoptotic factors to prevent retinal neuronal death (Chucair-Elliott 
et al. 2012; Lavail et al. 1992).

The purpose of this study was to determine if retina-specific ablation of Cav-1 
alters expression of downstream neuroprotective signaling after insult. We sub-
jected retina-specific Cav-1 knockout and littermate control mice to NaIO3 treat-
ment, which induces RPE damage and secondary retinal degeneration (Carido 
et al. 2014). We show that loss of Cav-1 dampens injury-induced STAT3 activa-
tion in the retina.
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Fig. 54.1   a Cartoon illustrating deletion of exon 2 of Cav-1 by tissue-specific Cre recombinase 
expression. b Cav-1 localization in retinal sections of conditional KO and the control retinas. 
Cav-1 ( green), Na-K ATPase ( red) and DAPI ( blue)

 

54.2  Materials and Methods

54.2.1  Mice

All procedures were carried out according to the Association for Research in Vi-
sion and Ophthalmology Statement for the Use of Animals in Ophthalmic and Vi-
sion Research and were approved by Institutional Animal Care and Use Committee 
of the University of Oklahoma Health Sciences Center. Retina specific Cav-1 KO 
mice (Retina-Cav-1-KO) were generated by crossing floxed Cav-1 mice carrying 
loxP sites inserted in intronic regions flanking exon 2 of the Cav1 gene (Cao et al. 
2003) with mice carrying Cre recombinase driven by the Chx10 promoter (Rowan 
and Cepko 2004). Mice were backcrossed to generate littermate mice homozygous 
for the Cav1 floxed allele that carried either Chx10-Cre (Retina-Cav-1-KO) or did 
not (littermate controls wild type for Cav-1 expression). Recombined retinal cells 
in Retina-Cav-1-KO mice were null for Cav-1 protein (Fig. 54.1b) as previously 
described for global Cav-1 KO mice generated using the same floxed construct 
(Cao et al. 2003).

54.2.2  Sodium Iodate and LIF Injection

Adult male and female retina-Cav-1-KO mice and littermate controls were sys-
temically injected with 25 mg/kg NaIO3 (Sigma-Aldrich, St. Louis, MO). In other 
experiments, 0.5 µg LIF in 1 µL PBS (Millipore, Billerica, MA) was injected in-
travitreally. Seven days after NaIO3 treatment or 24 h after LIF injection mice were 
euthanized by CO2 inhalation, eyes were prepared for eyecup flatmounts, histology, 
immunohistochemistry, and Western blot analysis.
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54.2.3  Retinal Flatmount Preparation, Immunohistochemistry

For eyecup flatmounts, enucleated eyes were fixed in 4 % paraformaldahyde (PFA; 
Electron Microscopy Sciences, Hattfield, PA) in PBS for 10 min after a small inci-
sion was made at the limbus. Anterior segments, lens and vitreous were removed 
and eyecups were fixed for an additional 40 min. Retinas were then removed and 
resulting eyecups with RPE intact were permeabilized in PBS containing 1 % Triton 
X-100. Immunohistochemistry was performed as previously described for retinas 
(Gu et al. 2014a). Eyecups were stained with FITC-Phalloidin (Life Technologies, 
Grand Island, NY) to label the actin cytoskeleton at RPE cell borders. Immunohisto-
chemistry of retinal paraffin sections fixed with Prefer fixative (Anatech, Ltd., Bat-
tlefield, MI) was performed as described (Gu et al. 2014b) using rabbit polyclonal 
rabbit anti-Cav-1 (1:400, BD Biosciences, San Jose, CA) and monoclonal anti-α1-
Na/K-ATPase (clone a6f; 1:100, DSHB, University of Iowa, Iowa City, IA). Imag-
ing was performed on an FV1200 (Olympus, Tokyo, Japan) confocal microscope.

54.2.4  Western Blotting

Retinas were lysed in buffer containing 60 mM octylglucoside, 10 mM Tris-HCl, 
pH 7.4, 100 mM NaCl, 0.5 mM EDTA and 1 mM orthovanadate and Western blots 
were probed with: mouse monoclonal antibodies against β-actin (Sigma, 1:7500) 
and α-tubulin (Sigma, 1:500) and rabbit polyclonal antibodies against Cav-1 (BD 
Biosciences, 1:3000) and pSTAT3 (Cell Signaling, 1:1000). Imaging and densitom-
etry were performed on an In Vivo F-Pro Image System (Carestream Health, Inc., 
Rochester, NY).

54.3  Results

54.3.1  Efficient Cav-1 Deletion in Retina-Cav-1-KO Mice

The Chx10 promoter is expressed in neuroretinal progenitor cells during develop-
ment (Rowan and Cepko 2004) and Chx10-driven Cre expression promotes effi-
cient recombination in retinal neurons and Müller glia (Chucair-Elliott et al. 2012). 
Recombination of floxed Cav-1 (Fig. 54.1a) resulted in loss of Cav-1 protein in 
the neural retina except for a small number of cells with Müller glial morphology 
(Fig. 54.1b). Cav-1 expression is retained in retinal vasculature and RPE as these 
cells are not targeted by Chx10-driven Cre. By quantitative mass spectrometry and 
Western blot densitometric analysis (not shown), Cav-1 protein was reduced by 
70 %. As the non-targeted retinal vasculature contributes to the remaining 30 % of 
Cav-1 protein in whole retinal lysates, we estimate the deletion in targeted cells to 
be even more efficient.



41554 Retinal Caveolin-1 Modulates Neuroprotective Signaling

Fig. 54.2   a–c RPE damage is similar between genotypes at 7 day post-NaIO3 treatment. Eyecups 
were stained with Phalloidin ( green) and DAPI ( blue). d, e Hematoxylin/eosin stained sections 
from Retina-Cav-1-KO and littermate controls after NaIO3 treatment

 

54.3.2  Sodium Iodate Induces Similar Damage to the RPE 
of Both Genotypes

Intraperitoneal injection of NaIO3 specifically destroys the RPE resulting in sec-
ondary retinal injury resembling that observed in macular degenerations. As the 
RPE is not targeted by Chx10-Cre, Cav-1 expression in the RPE is retained simi-
larly in both genotypes. Thus, RPE damage from NaIO3 should not differ between 
genotypes and any effects on the retina should be derived only from deletion of 
Cav-1 in the neural retina. In undamaged eyes, the hexagonal RPE cells are con-
sistent in size and shape and are, in many cases, binucleated. Figure 54.2a shows 
a typical WT RPE monolayer from an untreated Retina-Cav-1-KO mouse stained 
with Phalloidin and DAPI. As expected, 7 days after NaIO3 treatment, RPE dam-
age was not different between genotypes (Fig. 54.2b and c). Figure 54.2d and e 
show representative retinal sections from n = 4 eyes per genotype that also display 
similar damage. Quantitative assessment of retinal neuronal loss is difficult at this 
relatively early post-NaIO3 time, so we are not yet certain if loss of Cav-1 specifi-
cally in the neural retina/Müller glia results in enhanced neurodegeneration. Of 
note, retinal function as assessed by electroretinography was also virtually lost in 
both genotypes treated with NaIO3 (data not shown). As NaIO3 induced similar 
insults to the RPE in both genotypes, we next assessed whether Cav-1 deletion 
specifically in the retina resulted in altered endogenous neuroprotective signaling.
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54.3.3  STAT3 Activation is Suppressed in NaIO3-Treated 
Retina-Cav-1-KO Retinas

The typical retinal damage response results in local production of endogenous neu-
roprotective molecules including IL-6 family cytokines (Lavail et al. 1992; Chucair-
Elliott et al. 2012). This results in activation of the IL-6 family signaling receptor, 
gp130, and a downstream STAT3 response. Thus, we assessed STAT3 activation in 
NaIO3-treated Retina-Cav-1-KO and control retinas by Western blot analysis for 
phosphorylated STAT3 as previously described (Chucair-Elliott et al. 2012). Sodium 
iodate treatment resulted in characteristic STAT3 activation in littermate controls 
which was dramatically suppressed in Retina-Cav-1-KO retinas (Fig. 54.3a). These 
results suggest that retinal Cav-1 modulates either the production of neuroprotective 
cytokines and/or the downstream activation of the gp130 receptor pathway.

To directly determine whether the gp130/STAT3 pathway is competent in Retina-
Cav-1-KO retinas, we intravitreally injected LIF and assessed STAT3 activation. As 
shown in Fig. 54.3b, LIF induced equivalent STAT3 activation in both genotypes 
suggesting that the blunted neuroprotective response to NaIO3 is upstream of gp130.

54.4  Discussion

Here we demonstrate the first successful generation of a conditional knockout 
mouse with efficient retina-specific Cav-1 deletion. Because Cav-1 has previously 
been linked to ocular pathologies (Klaassen et al. 2013; Thorleifsson et al. 2010), 

Fig. 54.3   a Blunted STAT3 activation in Retina-Cav-1 KO mice after NaIO3 treatment. b Acti-
vation of STAT3 pathway by exogenous administration of LIF is not affected by retina-specific 
Cav-1 ablation
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this mouse model allows us to test the retina-intrinsic roles of Cav-1 in retinal neu-
roprotection in a variety of disease-relevant insults. Using this unique mouse model 
we show here that retinal Cav-1 plays a critical role in modulating stress-induced 
neuroprotective signaling. As inducers of retinal STAT3 activation (e.g., CNTF) are 
currently in clinical trials for retinal degenerative diseases, understanding the en-
dogenous signaling cascades that mediate retinal neuroprotection is essential. Our 
results provide evidence that retina-intrinsic Cav-1 promotes neuroprotective sig-
naling upstream of the gp130 receptor. We have recently shown that Cav-1 supports 
the production of inflammatory cytokines such as IL-6 in response to inflammatory 
challenge (Li et al. 2014). In the context of these published results, the findings 
presented herein suggest that Cav-1 may also promote the damage-associated in-
duction of neuroprotective cytokines but this remains to be determined directly. 
Intriguingly, Cav-1 regulates TLR4 activity (Jiao et al. 2013) outside of the eye and 
our results suggest that similar Cav-1-modulated innate immune receptors may also 
initiate damage responses in the retina. Because retinal pathology so often results 
in functional and/or morphological neuronal loss, the identification of Cav-1 as a 
potential neuroprotective modulator may be significant.
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Chapter 55
Photoreceptor Neuroprotection: Regulation 
of Akt Activation Through Serine/Threonine 
Phosphatases, PHLPP and PHLPPL

Raju V.S. Rajala, Yogita Kanan and Robert E. Anderson

Abstract Serine/threonine kinase Akt is a downstream effector of insulin receptor/
PI3K pathway that is involved in many processes, including providing neuropro-
tection to stressed rod photoreceptor cells. Akt signaling is known to be regulated 
by the serine/threonine phosphatases, PHLPP (PH domain and leucine rich repeat 
protein phosphatase) and PHLPPL (PH domain and leucine rich repeat protein 
phosphatase-like). We previously reported that both phosphatases are expressed in 
the retina, as well as in photoreceptor cells. In this study, we examined the PHLPP 
and PHLPPL phosphatase activities towards non-physiological and physiological 
substrates. Our results suggest that PHLPP was more active than PHLPPL towards 
non-physiological substrates, whereas both PHLPP and PHLPP dephosphorylated 
the physiological substrates of Akt1 and Akt3 with similar efficiencies. Our results 
also suggest that knockdown of PHLPPL alone does not increase Akt phosphoryla-
tion, due to a compensatory increase of PHLPP, which results in the dephosphoryla-
tion of Akt. Therefore, PHLPP and PHLPPL regulate Akt activation together when 
both phosphatases are expressed.
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55.1  Introduction

Akt (serine/threonine protein kinase B) is an important kinase that is activated by a 
variety of growth factors and insulin (Galetic et al. 1999; Lawlor and Alessi 2001; 
Marte and Downward 1997). These factors activate phosphoinositide-3-kinase 
(PI3K), which in turn leads to the generation of the lipid second messengers phos-
phoinositide-3,4,5-trisphosphate (PI-3,4,5-P3) and phosphoinositide-3,4-bisphos-
phate (PI-3,4-P2). These lipid second messengers recruit Akt to the membrane by 
engaging its PH domain and facilitate its activation. Activated Akt dissociates from 
the membrane and phosphorylates many substrates in the cytoplasm and nucleus. 
Thus, activated Akt plays an important role in the regulation of metabolism, apop-
tosis, cell cycle, and transcription of various genes (New et al. 2007; Parcellier 
et al. 2008).

Two serine/threonine protein phosphatases, PHLPP (PH domain and leucine rich 
repeat protein phosphatase) and PHLPPL (PH domain and leucine rich repeat pro-
tein phosphatase-like) have been discovered that can directly dephosphorylate Akt 
at the serine 473 residue and terminate downstream Akt signaling (Brognard et al. 
2007; Gao et al. 2005). We have previously reported that these two phosphatases are 
expressed in the retina (Kanan et al. 2010). Akt activation is an essential component 
of retinal neuroprotection (Li et al. 2007, 2008). The major remaining question is 
how Akt overcomes the effect of these two phosphatases. In this study, we charac-
terized how PHLPP and PHLPPL activate Akt and how they affect each other.

55.2  Materials and Methods

55.2.1  Cloning, Construction, and Expression of PHLPP 
and PHLPPL Phosphatase Domains

Phosphatase domains were amplified from PHLPP and PHLPPL cDNA  
(Open  Biosystems, Rockford, IL) using primers: PHLPP—sense: CGGAATTCAC-
CATGTCAATAACATTCGCTGCTTCA, antisense: GCGTCGACTCATCCTT-
GATGACCATGTTGACG; PHLPPL—sense: CGGAATTCACCATG-
CAGAAGCCTTTGCCAGCCACAGAC, antisense: GCGTCGACTCACAAATA-
AACCACCATTGCCCCCACGTT. The transcripts were cloned into the EcoR1 and 
Sal1 sites in pGEX-4T-1 vector. The protein expression and purification was carried 
out as described (Rajala et al. 2013). Activity of the phosphatase domains of PHLPP 
or PHLPPL was determined by incubating the GST-phosphatase domains of PHLPP 
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or PHLPPL with 0, 10, 15, 20, 25, 30, 35, 40, and 45 mM p-nitrophenylphosphate 
(pNPP) substrate for 1 h at 30 °C (Brognard et al. 2007).

55.2.2  Knockdown of PHLPPL with siRNA

Silencer® select Pre-designed siRNA directed against PHLPPL were purchased 
from Ambion Biosystems (Austin, TX). The targeting sequences were siRNA-1 
sense- GCAUCUAUAAUGUACGCAAtt, antisense-UUGCGUACAUUAUA-
GAUGCca. siRNA-2 sense-CUGUCAAUGCUGUACGUCAtt, antisense-UGAC-
GUACAGCAUUGACAGct. The PHLPPL-directed siRNAs and Silencer® select 
negative control (scrambled siRNA) were transfected under serum-free conditions 
using siPORT™ NeoFX™ transfection agent. After transfection overnight in se-
rum-free media, media containing serum was added to the cells and the cells were 
allowed to grow for 72 h before the cells were harvested for analysis of PHLPPL 
knockdown. An untransfected control was also included as a control.

55.3  Results

55.3.1  Phosphatase Domains of PHLPP and PHLPPL  
are Catalytically Active In Vitro

The phosphate domains of PHLPP and PHLPPL share more than 58 % homology in 
their primary structure (data not shown). We found that both phosphatase domains 
were catalytically active by their ability to dephosphorylate pNPP substrate. How-
ever, PHLPP was more active than PHLPPL in our in vitro experiments (Fig. 55.1a). 
To verify if the phosphatase domains of PHLPP and PHLPPL were active against 
their physiological substrate, recombinant HA-tagged Akt1 and Akt3 were immu-
noprecipitated from HEK-293T transfected cells (gown in 10 % serum) with anti-
HA-antibody, followed by incubation with bacterially-expressed phosphatase do-
mains of PHLPP or PHLPPL. Control experiments were carried out in the absence 
of enzyme. After incubation at 30 °C for 1 h, reactions were stopped by addition of 
SDS sample buffer. The reaction products were subjected to Western blot analysis 
with anti-pAkt antibody. To ensure an equal amount of Akt pull-down in each im-
munoprecipitate, the blot was stripped and reprobed with anti-Akt antibody. Den-
sitometric analysis of immunoblots was performed in the linear range of detection 
and absolute values were normalized against total Akt. Both PHLPP and PHLPP de-
phosphorylated Akt 1 (Fig. 55.1b and c) and Akt3 (Fig. 55.1d and e). These results 
suggest that retinal PHLPP and PHLPPL phosphatase domains are functionally ac-
tive and could dephosphorylate the physiological substrates.
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55.3.2  Knockdown of PHLPPL by siRNA Activates PHLPP

Since PHLPPL is the principal phosphatase that regulates Akt in the photoreceptors, 
we studied the effects of PHLPPL knockdown on PHLPP levels and phosphorylation 
of Akt (p473) in HEK-293T cells that express both PHLPP and PHLPPL. HEK-293T 
cells were transfected with 2 siRNAs against PHLPPL and a negative or scrambled 
control siRNA. We were able to successfully knock down PHLPPL to 80 % with 
siRNA-1 and 98 % with siRNA-2. Transfection with the negative control did not 
change levels of PHLPPL in HEK-293T cells compared with non-transfected con-
trols (Fig. 55.2b). Under these conditions, we found that the levels of pAkt (p473) 
surprisingly decreased to 40 % of non-transfected controls in siRNA-1 to complete 
absence of p473 in siRNA-2 transfected HEK samples (Fig. 55.2c). The levels of 
p473 in the negative controls were similar to non-transfected controls (Fig. 55.2c). 
The total Akt and actin levels in the cells transfected with siRNA-1 and siRNA-2 
were similar to the negative controls and non-transfected controls (Fig. 55.2d and e). 
To account for low levels of p473, we looked at the levels of PHLPP in the siRNA-1 
and siRNA-2 transfected controls, and found increased levels of PHLPP in siRNA-1 
and siRNA-2 transfected HEK-293T cell lysates, which may account for decreased 
levels of p473 in the siRNA transfected samples (Fig. 55.2a). HEK-293T lysates 
transfected with negative control had similar levels of PHLPP levels compared with 
non-transfected controls (Fig. 55.2a). Therefore, inhibiting PHLPPL alone does not 
increase pAKT levels in the cells because PHLPLL activates PHLPP, which results 
in dephosphorylation of p473. Therefore, PHLPP and PHLPPL together regulate 
pAKT levels in cells where both phosphatases are expressed.

Fig.  55.1   Activity of PHLPP and PHLPPL phosphatase domains (PP2C) towards non-physio-
logical (pNPP) and physiological substrates (Akt1 and Akt3). PHLPP and PHLPPL phosphatase 
domains were incubated in the presence of varying concentrations of pNPP (0–45 mM) and mea-
sured the phosphatase activity (a). Western blot of pAkt (ser 473) levels in Akt1 (b) or Akt3 (d) 
immunoprecipitated from HEK-293T cells incubated with no enzyme or phosphatase domains of 
PHLPP or PHLPPL for 1 h at 30 °C. Quantification of data expressed as pAkt/Akt for Akt1 (c) 
and Akt3 (e). Samples treated in the absence of enzyme were considered to be 100 %. Data are 
expressed as mean + SD, n = 3. Student’s t test was used to calculate the significance between the 
groups. *p < 0.05
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55.4  Discussion

The Akt pathway is active in the retina and protects the photoreceptors from oxida-
tive stress (Yu et al. 2006), light stress (Li et al. 2007, 2008), and apoptotic stimulus 
(Mackey et al. 2008). Inactivating the Akt pathway using PI3K inhibitors results in 
photoreceptor death (Mackey et al. 2008; Yu et al. 2004, 2006). The retina expresses 
all three Akt isoforms: Akt1, Akt2, and Akt3 (Li et al. 2007; Reiter et al. 2003). 
However, the isoform-specific regulation of Akt was a mystery until the discovery 
of the PHLPP family of protein phosphatases.

The PHLPP family of proteins comprises 2 members, PHLPP and PHLPPL, 
which belong to the PP2C subfamily of phosphatases and selectively dephosphor-
ylate Akt isoforms (Brognard et al. 2007; Gao et al. 2005). We have previously 
reported their expression in rod and cone photoreceptors (Kanan et al. 2010). In ad-
dition, we have previously described light-induced Akt1 and Akt3 phosphorylation, 
but not Akt2, in rod photoreceptors in the presence of both PHLPP and PHLPPL 
(Li et al. 2008). These observations suggest that these two phosphatases may not be 
functional in the intact retina. In order to address this possibility, we expressed the 
phosphatase domains of PHLPP and PHLPPL and examined their activity towards 
preferred substrates. We found phosphatase activities associated with both PHLPP 
and PHLPPL.

It is interesting to note that knockdown of PHLPPL alone did not increase Akt 
phosphorylation, but increased the expression of PHLPP, which results in the de-
phosphorylation of Akt. This result suggests that PHLPP and PHLPPL together 
regulate pAKT levels in cells in which both phosphatases are expressed. In photore-
ceptors, Akt overcomes inactivation by PHLPP and PHLPPL through inhibition of 
their activities via insulin receptor activation of phosphoinositide 3-kinase (Kanan 

Fig. 55.2   Effect of siRNA knockdown of PHLPPL in HEK cells. HEK-293T cells were trans-
fected with two siRNAs directed against PHLPPL ( siRNA-1 and siRNA-2), a negative control ( NC, 
scrambled siRNA), and compared for expression against a non-transfected control (NT). HEK-
293T cell proteins were subjected to Western blot analysis with anti-PHLPP (a), anti-PHLPPL (b), 
anti-pAkt (c), anti-Akt (d) and anti-actin (e) antibodies
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et al. 2010). Further studies are required to understand the interaction of these phos-
phatases on Akt isoforms in the retina.
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Chapter 56
The Role of AMPK Pathway in Neuroprotection

Lei Xu and John D. Ash

Abstract Adenosine monophosphate-activated kinase (AMPK) is a highly conserved 
protein kinase found in all eukaryotic genomes. It exists as heterotrimeric protein 
consisting of α, β, and γ subunits. AMPK is activated by elevated levels of adenosine 
mono-phosphate (AMP), which is produced during conditions of low ATP produc-
tion and perhaps mitochondrial dysfunction. Activation of AMPK has been shown to 
regulate a large number of downstream pathways. These will either increase energy 
production such as increase oxidation of fatty acids and glucose, or decrease energy 
utilization such as inhibiting synthesis of glycogen, fatty acid synthesis, and protein 
synthesis. In addition, being a key regulator of physiological energy dynamics, AMPK 
has been demonstrated to play roles in regulating various cellular processes such as 
mitochondrial biogenesis (Jager et al. Proc Natl Acad Sci U S A 104:12017–12022, 
2007), autophagy (Hyttinen et al. Rejuven Res 14:651–660, 2011) and inflammation 
and immune responses (Giri et al. 2004). Retinal neurons have a high energy demand 
but have a poor energy storage capacity. Because of this, it is likely that the AMPK 
signaling pathway plays an important role in maintaining energy balance, and there-
fore may be a therapeutic target to prevent or delay retinal degeneration.

Keywords Neuroprotection · AMPK · Mitochondrial biogenesis · Autophagy · 
Inflammation response

Abbreviations

AMPK Adenosine monophosphate protein activated kinase
CaMKK IIβ Calmodulin-dependent protein kinase kinase IIβ
TAK1 Mammalian transforming growth factor β-activated kinase
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AMP Adenosine monophosphate
ADP Adenosine diphosphate
PGC-1 Peroxisome proliferator-activated receptor-γ co-activator
AICAR 5-aminoimidazole-4-carboxamide ribonucleoside
mTOR Mammalian target of rapamycin
ICAM1 Intercellular adhesion molecule 1
4E-BP1 Eukaryotic translation initiation factor 4E-binding protein 1.

56.1  Introduction

Adenosine monophosphate-activated kinase (AMPK) is an evolutionally conserved 
serine/threonine kinase. Homologs for AMPK subunits have been found in all eu-
karyotic species including Snf1 kinase in yeast. AMPK has been considered to func-
tion as energy sensor to maintain energy homeostasis at the cellular level. AMPK 
functions as a heterotrimeric protein comprising of catalytic α-subunit (α1, α2), 
β-regulatory subunit (β1, β2) and the AMP-binding subunit (γ1, γ2 and γ3). Each 
of these three subunits has a specific role in regulating the activity and stability of 
AMPK. Because there are multiple isoforms for each subunit in mammals, there are 
12 possible combinations of subunits and therefore 12 unique AMPK complexes. 
However, isotypes have different tissue distributions, suggesting that not all AMPK 
complex’s exist in anyone cell type. For example α1 and α2 are both present in 
liver; while in adipose tissue, AMPK complexes containing the α1 catalytic subunit 
(Viollet et al. 2009). In addition, different isotypes may have different cellular dis-
tributions. For example AMPKα2 containing complexes are found in both the nu-
cleus and the cytoplasm, which raises the possibility that α2 complexes may phos-
phorylate transcription co-activators and transcription factors in the nucleus to regu-
late gene expression (Viollet et al. 2006; Jager et al. 2007). In contrast, AMPKα1 
containing complexes are localized only in the cytoplasm. These unique tissue and 
sub-cellular distributions suggest that complex types may have different substrates 
and therefore have unique functions. Consistent with this possibility, AMPK α2 
but not α1 mediates oxidative stress-induced inhibition of RPE cell phagocytosis 
of photoreceptor outer segment (Qin and De Vries 2008). In addition, in vitro data 
have suggested AMPKα1 and α2 play distinct roles in regulating 4-HNE effects on 
RPE function and viability (Qin and Rodrigues 2010). The role of each isoform and 
their distribution in the retina is not yet known. This review will introduce the vari-
ous pathways regulated by AMPK, and how these may function in neuroprotection.

56.2  AMPK as an Energy Sensor

AMPK is allosterically activated by elevated AMP, and the mechanisms of activa-
tion have been reviewed in (Hardie et al. 2012). In brief, binding of AMP to the 
γ-subunit promotes a conformational change that either enables the phosphorylation 
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of Thr172 in the activation domain of the α-subunit or prevents it dephosphoryla-
tion by protein phosphatases. Several kinases have been proposed to phosphorylate 
AMPK including LKB1 (a tumor suppressor gene whose germ line mutations in 
humans are the cause of Peutz-Jeghers syndrome), CaMKK IIβ (calmodulin-depen-
dent protein kinase kinase IIβ), and TAK1 (mammalian transforming growth factor 
β-activated kinase) (Herrero-Martin et al. 2009; Viollet et al. 2009). Because AMPK 
is activated by elevated AMP levels, it has been proposed that AMPK functions as 
a cellular energy sensor and plays a central role in regulating energy homeostasis. 
Normal functioning cells have very little AMP, and AMPK is maintained in the 
inactive, dephosphorylated state. When cells undergo an energy crisis, and ATP lev-
els decline, adenylate kinase is activated, which uses two molecules of adenosine 
diphosphate (ADP) to produce ATP and the byproduct AMP. As AMP levels rise, 
AMPK is phosphorylated making it an activated kinase. AMPK functions to re-
store energy balance by turning down ATP-consuming pathways such as protein 
synthesis, RNA synthesis, and fatty acid synthesis, while at the same time turning 
on pathways that generate ATP such as glycolysis, β-oxidation, and mitochondrial 
biogenesis (Hardie et al. 2012).

56.3  Regulation of Mitochondrial Biogenesis by AMPK

The mitochondrion is a critical organelle for cell function and survival. It is not 
only the major source of energy production, but also is a major source of reac-
tive oxygen species (ROS). However, mitochondria are also the major source of 
ROS detoxifying enzymes, and produce ATP among many other activities, includ-
ing steroid synthesis, and calcium regulation. Mitochondrial dysfunction has been 
proposed as a mechanism of cell death in retinal degenerative diseases, such as age 
related macular degeneration, diabetic retinopathy, inherited retinal degenerations, 
and glaucoma (Barot et al. 2011). Regulation of mitochondrial biogenesis has been 
proposed as a neuroprotection target in retinal degeneration models and diseases 
(Lee et al. 2011) since mitochondrial biogenesis is likely an adaptation to compro-
mised bioenergetics (Wu et al. 2014).

Mitochondrial biogenesis is regulated by nuclear transcription factors NRF-1 
and NRF-2, EER, thyroid hormone receptors, and retinoic acid receptors. These 
however, all require a co-activator peroxisome proliferator-activated receptor-λ 
co-activator (PGC-1α) (Lin et al. 2005). AMPK has been shown to directly phos-
phorylate and activate PGC-1α in muscle to induce mitochondrial biogenesis (Jager 
et al. 2007). PGC-1α and β are expressed in mouse retina, and have been shown to 
determine susceptibility to light damage (Egger et al. 2012). Retinal mitochondrial 
biogenesis is impaired in diabetic retinopathy, possibly due to decreased transport 
of TRAM to the mitochondria (Santos et al. 2011). These studies suggest that PGC-
1α activation is important for photoreceptor survival under conditions of oxida-
tive stress. This suggests that AMPK is also important for mitochondrial function 
and resistance to oxidative stress. In support of this hypothesis, mice lacking both 
AMPK α1 and α2 subunits in the muscle had greatly reduced muscle mitochondrial 
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DNA content (O’Neill et al. 2011). A small molecular agonist of AMPK, Metfor-
min, has been used to promote mitochondrial biogenesis and conferring neuropro-
tection against apoptotic cell death in primary cortical neurons in vitro (El-Mir et al. 
2008). In in vivo studies, daily subcutaneous injections of metformin in Balbc/j 
mice for 7 days results in activation of AMPK in the retina, increased mitochondrial 
DNA content, and protected photoreceptors from light damage (unpublished data 
from L. Xu and J. Ash).

56.4  Regulation of mTOR Pathway by AMPK

A potential mechanism by which AMPK activation can protect neurons is through 
activation of autophagy or inhibition of protein synthesis. These processes are regu-
lated by AMPK substrates mTORC1 and mTORC2 respectively. Activated AMPK 
kinase will inhibit mammalian target of rapamycin (mTOR). The mTOR pathway 
is a serine/ threonine protein kinase that regulates multiple cellular processors such 
as cell growth, cell cycle and autophagy. mTOR forms two protein complexes: 
mTOR complex 1 (mTORC1) and mTOR complex 2 (mTORC2). AMPK directly 
phosphorylates multiple components in the mTORC1 pathway including TSC2 and 
Raptor (Hyttinen et al. 2011; Inoki et al. 2012). Activation of ULK1 and ULK2 are 
essential to form autophagosomes. It has been shown that AMPK and mTOR regu-
late autophagy through direct phosphorylation of ULK1 (Kim et al. 2011). Experi-
mental evidence has suggested that pre-activation of AMPK-dependent autophagy 
pathway with metformin treatment confers neuroprotection against focal cerebral 
ischemia (Jiang et al. 2014), also induction of AMPK dependent autophagy by 
ischemic preconditioning can also protect from ischemic stroke (Jiang et al. 2015). 
In retinal RPE cells, autophagy regulating kinases have been proposed as poten-
tial therapeutic targets for age-related macular degeneration through activation of 
AMPK pathway (Kaarniranta et al. 2012). In support of this hypothesis, another 
agonist of AMPK, AICAR, was found to protect RPE cells in response to oxidative 
stress (Qin and De Vries 2008). Moreover, AMPK-induced autophagy protected 
RPE cells from TRAIL-induced cell death (Herrero-Martin et al. 2009).

Activation of AMPK inhibits mTORC2 signaling pathway, thus regulating trans-
lation and protein synthesis through inhibiting eukaryotic translation initiation fac-
tor 4E-binding protein 1 (4E-BP1) and S6 kinase 1 (S6K1). Pharmacological inhibi-
tion of mTOR with rapamycin has been proposed to applied in neurodegenerative 
diseases, such as Parkinson’s disease, Huntington’s disease and Alzheimer’s disease 
and retinal degeneration such as age-related retinal degeneration (Bove et al. 2011). 
In the eye, treatment with rapamycin blunted RPE dedifferentiation and hypertro-
phy as well as preserved photoreceptor numbers and function for both metabolic 
and oxidative stress models (Zhao et al. 2011). In addition, treatment with rapamy-
cin dramatically promotes retinal ganglion cells survival in a rat chronic ocular 
hypertension model (Ai et al. 2014). AMPK linage to mediator of protein synthesis 
and cell growth through regulation of mTOR pathway could be a potential target for 
preventing retinal degeneration.
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56.5  Regulation of Inflammation Response by AMPK

Multiple inflammatory signaling pathways are involved in the pathogenesis of reti-
nal degeneration. Although AMPK is well known for its role in cellular energy 
homeostasis, it may also regulate inflammatory signals (O’Neill and Hardie 2013). 
In a lipopolysaccharide (LPS) induced mouse model of retina inflammation, AICAR 
injections preserved photoreceptor function and rhodopsin protein levels. This pro-
tection was associated with inhibition of NF-κB signaling (Kamoshita et al. 2014). 
In diabetic retinopathy, the role of AMPK has also been examined. Inflammation 
in diabetes was found to down regulate the AMPK pathway which lead to NF-κB 
activation and increased inflammation as shown by elevated ICAM1 (Intercellular 
adhesion molecule 1) and VEGF expression (Kubota et al. 2011). In addition, res-
veratrol also prevents the development of choroid neovascularization by restoring 
AMPK activity and inhibiting macrophage migration (Nagai et al. 2014).

56.6  Conclusion and Perspectives

Many approaches has been proposed and applied to induce neuroprotection. AMPK 
is a major energy sensor of energy and redox status. Once activated, AMPK can 
restore energy balance to promote cell health and function. The ability of AMPK to 
stimulate mitochondrial biogenesis, autophagy, inhibit inflammation, and prevent 
cell death suggest that AMPK should be considered as a key target for new therapies 
to slow or prevent retinal degeneration.
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Chapter 57
Tauroursodeoxycholic Acid Protects Retinal 
Function and Structure in rd1 Mice

Eric C. Lawson, Shagun K. Bhatia, Moon K. Han, Moe H. Aung, Vincent 
Ciavatta, Jeffrey H. Boatright and Machelle T. Pardue

Abstract We explored the potential protective effects of tauroursodeoxycholic acid 
(TUDCA) on cone photoreceptor survival in a model of rapid retinal degenera-
tion, the ß-Pde6rd1 ( rd1) mouse model. We injected two strains of rd1 mice (B6.
C3-Pde6brd1Hps4le/J and C57BL/6J-Pde6brd1−2/J mice) daily from postnatal day 
(P) 6 to P21 with TUDCA or vehicle. At P21, retinal function was evaluated with 
light-adapted electroretinography (ERG) and retinal structure was observed with 
plastic or frozen sections. TUDCA treatment partially preserved function and 
structure in B6.C3-Pde6brd1Hps4le/J mice but only partially preserved structure 
in C57BL/6J-Pde6brd1−2/J mice. Our results suggest a possible intervention for 
patients undergoing rapid retinal degeneration.

Keywords Tauroursodeoxycholic acid · Bile acids · TUDCA · rd1 mice · Retinal 
degeneration · Retinitis pigmentosa.
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57.1  Introduction

Tauroursodeoxycholic acid (TUDCA) is neuroprotective in several rodent models 
of neurodegeneration (reviewed in Boatright et al. 2009) and retinal degeneration 
(Boatright et al. 2006; Phillips et al. 2008). In this study we explored the possible 
neuroprotective effects of daily injections of TUDCA on two strains of rd1 mice. 
The rd1 mouse, considered a model of retinitis pigmentosa, has a nonsense mutation 
in the ß-subunit of the rod cGMP phosphodiesterase, resulting in loss of rod photo-
receptors beginning at postnatal day P10 and finishing by about P21 (Sancho-Pelluz 
et al. 2008). Despite the rapid degeneration of rod photoreceptors, cone photorecep-
tors degenerate at a slower rate, providing potential therapeutic opportunities. In 
this study, we sought to examine whether TUDCA could preserve cone function. 
We were able to replicate that no functional protection was observed in C57BL-rd1 
mice with TUDCA (Drack et al. 2012), even though we found partial structural 
preservation. More importantly, we show functional and structural protection with 
daily injections of TUDCA from P6 to P21 in B6.C3-rd1 mice.

57.2  Material and Methods

57.2.1  Animals

All animal procedures were approved by the Institutional Animal Care and Use 
Committee at the Atlanta VA Medical Center and conform to the standards of the 
Association for Research in Vision and Ophthalmology Statement for the Use of 
Animals in Ophthalmic and Vision Research. Two strains of ß-Pde6rd1 mice were 
obtained from Jackson Laboratories (Bar Harbor, ME): B6.C3-Pde6brd1Hps4le/J 
mice (B6.C3-rd1; Stock #: 000002) and C57BL/6J-Pde6brd1−2/J mice (C57BL-rd1; 
Stock #: 004766). All mice were housed under controlled lighting conditions on a 
12 h light/12 h dark cycle.

57.2.2  TUDCA Treatments

rd1 litters were randomly divided at P6 to receive TUDCA (500 mg/kg, Calbio-
chem, San Diego, CA) or vehicle (0.15 M NaHCO3 1 ml/kg) treatment. TUDCA 
solution was made fresh daily and pH was adjusted to 7.4 using 0.1 M HCl. Daily 
intraperitoneal injections began at P6 as it has been previously shown that injections 
every 3 days have no protective effects on the rd1 retina, most likely due to the 
increased degeneration rate compared to other models (Boatright et al. 2009). Treat-
ments ended at P21 for each animal. Mice were weighed daily prior to injection to 
determine proper dosing of TUDCA and vehicle.
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57.2.3  Electroretinography

Electroretinography was performed at P21, as previously detailed (Mocko et al. 
2011). Briefly, mice were anesthetized with ketamine (80 mg/kg) and xylazine 
(16 mg/kg), the cornea was anesthetized (1 % tetracaine), and the pupils dilated 
(1 % tropicamide) in both eyes. The body temperature was maintained at 37 °C via 
a heating pad while the recording electrode, a nylon-silver thread, contacted the 
cornea using 1 % methylcellulose. The responses were referenced and grounded 
to needle electrodes placed in the cheek and tail, respectively. A series of full-field 
flash stimuli (−  0.82 to 1.9 log cd-s/m2) were presented by a Ganzfeld dome under 
light-adapted conditions (30 cd/m2) to isolate cone responses. Acquired responses 
were stored on a commercial ERG system (UTAS 3000, LKC Technologies, Gaith-
ersburg, MD).

57.2.4  Histology

Retinal morphology was assessed as previously reported (Mocko et al. 2011). 
Briefly, mice were euthanized and eyes enucleated, injected with 4 % paraformal-
dehyde, and immersion fixed in the same fixative for 45 min. Eyecups of B6.C3-
rd1 mice were rinsed with 0.1 M phosphate buffer, processed through a graded 
alcohol series, and embedded in plastic resin (Embed 812/DER 736, Electron Mi-
croscopy Science, Inc, Hatfield, PA). Sections (0.5 µm) bisecting the optic disc 
at the superior-inferior axis were cut using an ultramicrotome (Reichert Ultracut, 
Leica Inc., Buffalo Grove, IL) with a histo-diamond knife. Eyecups of C57BL-rd1 
mice were frozen in OCT and cryosectioned (10 µm thickness) onto glass slides. 
Both plastic and cryosections sections were stained with 1 % aqueous toluidine 
blue (Sigma; St. Louis MO) and imaged using a phase contrast microscope (Leica 
DM LB, Leica Inc., Buffalo Grove, IL) at 20 × power. Photoreceptor nuclei cells 
were counted using an image analysis program (Image-Pro Plus 5.0; MediaCy-
bernetics; Rockville, MD). For each retinal section, we quantified photoreceptor 
nuclei across the retina moving outwards superiorly and inferiorly from the optic 
nerve. The number of photoreceptor nuclei were averaged across three retinal 
sections for each eye.

57.2.5  Statistical Analyses

We performed two-way repeated measures ANOVAs with Holm-Sidak post-hoc 
comparisons and Student’s t-tests using commercial statistical analysis software 
(SigmaStat 3.5; Systat Software; Chicago, IL). Significance was set at p < 0.05 
for all analyses and values are expressed as mean ± standard error of the mean 
(sem).
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57.3  Results

57.3.1  TUDCA Injections Preserved Retinal Function 
to P21 in B6.C3-rd1 Mice

Light-adapted ERG waveforms from representative mice in each group showed larg-
er amplitudes with TUDCA treatment for B6.C3-rd1 mice compared to B6.C3-rd1 
vehicle treated (Fig. 57.1a). Within the B6.C3-rd1 mice, those injected with TUDCA 
had significantly preserved light adapted b-wave amplitudes compared to vehicle 
treated mice at the brightest flash stimuli (Fig. 57.1b; 0.4, 0.9, 1.4, and 1.9 log cd s/
m2; two-way repeated measures ANOVA; F(1, 41) = 16.986, p = 0.005). C57BL-rd1 
mice exhibited no measurable a-or b-waveforms at P21, regardless of treatment.

57.3.2  TUDCA Injections Preserved Photoreceptor Cell Counts 
in Both rd1 Strains

After TUDCA injections, the retinas of B6.C3-rd1 and C57BL-rd1 mice main-
tained a thicker outer nuclear layer (ONL) of about 2 rows of photoreceptor nuclei 
(Fig. 57.2b and 57.3b) compared to vehicle treated mice, which degenerated to a 
sparse single row of photoreceptor nuclei (Fig. 57.2a and 57.3a). The summed pho-
toreceptor nuclei across the retina in TUDCA-treated B6.C3-rd1 mice was signifi-
cantly greater compared to vehicle-treated littermates (Student’s t-test; p = 0.005; 

Fig.  57.1   TUDCA protects cone photoreceptor function in B6.C3-rd1 mice at P21. a Repre-
sentative light-adapted ERG waveforms from B6.C3-rd1 mice across flash stimuli (−  0.81 to 
1.9 log cd s/m2). b B6.C3-rd1 TUDCA-treated mice have significantly larger b-wave amplitudes 
responses at the brightest flash stimuli compared to vehicle-treated mice (two-way repeated mea-
sures ANOVA; F(1, 41) = 16.986, p = 0.005). C57BL-rd1 mice did not exhibit measurable b-wave 
responses at any flash stimulus
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Fig. 57.2c). C57BL-rd1 mice also showed significantly more photoreceptor nuclei 
with TUDCA treatment (Student’s t-test; p = 0.038; Fig. 57.3c).

57.4  Discussion

Here we demonstrate that significant cone protection in rd1 mice is possible with 
TUDCA injections. Daily injections of TUDCA were sufficient to protect both reti-
nal function (specifically light-adapted ERGs) and structure in B6.C3-rd1 mice. 
However, in C57BL-rd1 mice, photoreceptor nuclei were preserved, but not retinal 
function. A previous report also observed no functional preservation in C57BL-rd1 

Fig.  57.2   TUDCA protects cone photoreceptor structure in B6.C3-rd1 mice. Retinal micro-
graphs of plastic sections taken 1.0 mm from the optic nerve from B6.C3-rd1 mice shows that 
mice injected with TUDCA had a thicker ONL (b) compared to those injected with vehicle (a). c 
TUDCA-treated B6.C3-rd1 mice had significantly more photoreceptor nuclei compared to vehi-
cle-treated mice (Student’s t-test; p = 0.005)

  

Fig. 57.3   TUDCA protects cone photoreceptor structure in C57BL-rd1 mice. Retinal micrographs 
of cryosections taken 1.0 mm from the optic nerve in C57BL-rd1 mice injected with TUDCA had 
a thicker ONL (b) compared to those injected with vehicle (a). c TUDCA-treated C57BL-rd1 mice 
had significantly more photoreceptor nuclei compared to vehicle-treated mice (Student’s t-test; 
p = 0.038)
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mice (Dr. Val Sheffield, personal communication) with TUDCA injections at P21 
(Drack et al. 2012), however, structural preservation was not explored. The differ-
ences in efficacy of TUDCA between the two strains of rd1 mice may be due to 
the different rates of degeneration. It is possible that C57BL-rd1 have a more ag-
gressive degeneration compared to B6.C3-rd1 mice, as C57BL-rd1 mice have no 
measurable ERG response at any age (Chang et al. 2007), while B6.C3-rd1 mice 
treated with vehicle still have residual ERG responses at P21 (Fig. 57.1). Nonethe-
less, our findings illustrate the protective effects of TUDCA on cone photoreceptors 
in a model of rapid retinal degeneration, and suggest a possible intervention for 
aggressive forms of retinitis pigmentosa.

Acknowledgments Grant support provided by NIH P30 EY006360, NIH R01 EY014026 and 
a grant from the Abraham J. & Phyllis Katz Foundation (to J.H.B.), Rehabilitation Research and 
Development Service Veterans Affairs Research Career Scientist Award (to M.T.P.), Atlanta VA 
Center of Excellence in Vision and Neurocognitive Rehabilitation, and Departmental Award from 
Research to Prevent Blindness.

References

Boatright JH, Moring AG, McElroy C et al (2006) Tool from ancient pharmacopoeia prevents 
vision loss. Mol Vis 12:1706–1714

Boatright JH, Nickerson JM, Moring AG et al (2009) Bile acids in treatment of ocular disease. J 
Ocul Biol Dis Inform 2:149–159

Chang B, Hawes NL, Pardue MT et al (2007) Two mouse retinal degenerations caused by mis-
sense mutations in the beta-subunit of rod cGMP phosphodiesterase gene. Vis Res 47:624–633

Drack AV, Dumitrescu AV, Bhattarai S et al (2012) TUDCA slows retinal degeneration in two dif-
ferent mouse models of retinitis pigmentosa and prevents obesity in Bardet-Biedl syndrome 
type 1 mice. Invest Ophthalmol Vis Sci 53:100–106

Mocko JA, Kim M, Faulkner AE et al (2011) Effects of subretinal electrical stimulation in mer-KO 
mice. Invest Ophthalmol Vis Sci 52:4223–4230

Phillips MJ, Walker TA, Choi HY et al (2008) Tauroursodeoxycholic acid preservation of 
photoreceptor structure and function in the rd10 mouse through postnatal day 30. Invest 
Ophthalmol Vis Sci 49:2148–2155

Sancho-Pelluz J, Arango-Gonzalez B, Kustermann S et al (2008) Photoreceptor cell death 
mechanisms in inherited retinal degeneration. Mol Neurobiol 38:253–269



437© Springer International Publishing Switzerland 2016 
C. Bowes Rickman et al. (eds.), Retinal Degenerative Diseases, Advances in 
Experimental Medicine and Biology 854, DOI 10.1007/978-3-319-17121-0_58

J. T. Eells ()
Department of Biomedical Sciences, University of Wisconsin-Milwaukee, 2400 E. Hartford Ave.,  
Milwaukee, WI 53201, USA
e-mail: jeells@uwm.edu

S. Gopalakrishnan
College of Nursing, University of Wisconsin-Milwaukee, Milwaukee, WI 53201, USA
e-mail: sandeep@uwm.edu

K. Valter
Divsion of Biomedical Sciences, Research School of Biology, Australian National University,  
Acton 0200, Australia
e-mail: krisztina.valter-kocsi@anu.edu.au

Chapter 58
Near-Infrared Photobiomodulation in Retinal 
Injury and Disease

Janis T. Eells, Sandeep Gopalakrishnan and Krisztina Valter

Abstract Evidence is growing that exposure of tissue to low energy pho-
ton irradiation in the far-red (FR) to near-infrared (NIR) range of the spectrum, 
collectively termed “photobiomodulation” (PBM) can restore the function of dam-
aged mitochondria, upregulate the production of cytoprotective factors and prevent 
apoptotic cell death. PBM has been applied clinically in the treatment of soft tissue 
injuries and acceleration of wound healing for more than 40 years. Recent stud-
ies have demonstrated that FR/NIR photons penetrate diseased tissues including 
the retina. The therapeutic effects of PBM have been hypothesized to result from 
intracellular signaling pathways triggered when FR/NIR photons are absorbed by 
the mitochondrial photoacceptor molecule, cytochrome c oxidase, culminating in 
improved mitochondrial energy metabolism, increased cytoprotective factor pro-
duction and cell survival. Investigations in rodent models of methanol-induced 
ocular toxicity, light damage, retinitis pigmentosa and age-related macular degen-
eration have demonstrated the PBM attenuates photoreceptor cell death, protects 
retinal function and exerts anti-inflammatory actions.

Keywords Photobiomodulation (PBM) · Methanol intoxication · Light damage 
(LD) · Macular degeneration · Retinitis pigmentosa.
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58.1  Introduction

Mitochondrial dysfunction and oxidative damage to the retina have been implicated 
in many forms of retinal injury and degeneration including methanol intoxication, 
light-induced retinal damage, age-related macular degeneration (AMD) and reti-
nitis pigmentosa (Shen et al. 2005; Stone et al. 1999; Jarrett and Boulton 2012). 
Mitochondrial repair and attenuation of oxidative stress are critical to the long-term 
survival of the retina.

Therapeutic strategies directed towards improving mitochondrial integrity and 
function and reducing oxidative stress have considerable potential for the treatment 
of retinal disease. Low-intensity far-red to near-infrared (FR/NIR) light has been 
shown to act on mitochondria-mediated signaling pathways to preserve mitochon-
drial function, attenuate oxidative stress, stimulate the production of cytoprotec-
tive factors and prevent neuronal death in cultured neurons and in animal models 
of neuronal injury and disease (Karu, 1999 Eells et al. 2004; Wong-Riley et al. 
2005; Huang et al. 2011; Chung et al. 2012). FR/NIR photons penetrate the brain, 
retina and optic nerve and this treatment, commonly known as photobiomodulation 
(PBM) has documented efficacy in the prevention and treatment of neurodegenera-
tive diseases in experimental and clinical studies (Fitzgerald et al. 2013). Numerous 
studies have documented the therapeutic potential and mechanism(s) of action of 
PBM in the treatment and pathogenesis of retinal injury and disease.

58.2  Methanol Intoxication

Methanol intoxication produces toxic injury to the retina and optic nerve, result-
ing in blindness. Both acute and chronic exposure to methanol has been shown to 
produce retinal dysfunction and optic nerve damage clinically and in experimental 
animal models (Seme et al 1999). A toxic acute exposure to methanol results in 
formic acidemia, metabolic acidosis and visual toxicity within 72 h of ingestion 
(Seme et al. 1999). The toxic metabolite is formic acid, a mitochondrial toxin 
known to inhibit the essential mitochondrial enzyme, cytochrome c oxidase (Eells 
et al. 2003). Eells et al. (2003) reported the first direct link between the actions of 
far-red to NIR light on mitochondrial oxidative metabolism in vitro and retinopro-
tection in vivo in a well-established rodent model of methanol toxicity (Seme et al. 
1999). Using the electroretinogram as a sensitive indicator of retinal function, these 
studies demonstrated that three brief 670-nm LED treatments (160 s at 25 mW/cm2 
producing a fluence 4 J/cm2 at the surface of the eye) delivered at 5, 25, and 50 h of 
methanol intoxication, attenuated the retinotoxic effects of methanol-derived for-
mate. There was a significant recovery of rod- and cone-mediated function in PBM-
treated, methanol-intoxicated rats. 670 nm PBM also protected the retina from the 
histopathologic changes induced by methanol-derived formate.
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58.3  Light-Induced Retinal Damage

Oxidative damage produced by photo-oxidation of the photoreceptor outer seg-
ments is widely accepted as the initiating event in light-induced retinal damage 
(LD) (Hollyfield et al. 2008). Lesions produced by LD are characterized by pho-
toreceptor cell death, RPE cell damage, Müller cell gliosis and disruption of the 
outer limiting membrane (OLM). In addition to these structural changes, there is the 
induction of an inflammatory state characterized by an invasion of the outer retina 
by activated microglia (Albarracin et al. 2011; Albarracin and Valter, 2012.). This 
progressive degeneration has been used to model many of the factors contributing 
to the expansion of the degenerative area, similar to the changes observed in AMD 
(Rutar et al. 2010, 2011, 2012).

Several studies have shown that 670 nm PBM is protective against light-induced 
retinal degeneration (Albarracin et al. 2011; Qu et al. 2010; Natoli et al. 2010). 
670 nm PBM (9 J/cm2) administered before, during or after exposure to LD pro-
tected photoreceptor function as measured by ERG responses and morphology. This 
protection involved a reduction in photoreceptor cell death and inflammatory stress 
biomarkers in the retina, and reduction in microglial and macrophage invasion (Al-
barracin et al. 2011). Pretreatment with PBM proved to be most effective against 
LD compared to treatment during or after LD. However, animals treated with PBM 
post-LD also recovered photoreceptor function by 1 month post-exposure (Albar-
racin et al. 2011).

Complement activation is associated with the pathogenesis of AMD, and also 
occurs following LD (Rutar et al. 2012). 670 nm PBM pretreatment (9 J/cm2) 
reduced the expression of complement components and receptors in the retina 
following LD (Rutar et al. 2010). Moreover, there was a reduction in the recruit-
ment of C-3 expressing microglia/macrophages in the retina following 670 nm 
PBM, and a concomitant reduction in the biomarker of oxidative damage 4-hy-
droxynonenal (4-HNE). These findings indicate the 670 nm PBM pretreatment 
attenuates oxidative damage to photoreceptors and reduces inflammation, which 
may reduce the stimulation of the complement cascade, thus further protecting 
photoreceptors.

58.4  Retinitis Pigmentosa

The therapeutic efficacy and mechanism of action of 670 nm PBM was investi-
gated in a rodent model of retinitis pigmentosa, the P23H rat (Kirk et al. 2013). 
In this model, the transgene is a rhodopsin gene engineered to mimic a mutation 
that causes an autosomal dominant form of human RP common in North America. 
P23H rat pups were treated once per day during the critical period of photoreceptor 
development with a 670 nm LED array (180 s treatments at 50 mW/cm2; fluence 
9 J/cm2). Sham-treated rats were restrained, but not exposed to NIR light. In the first 
series of studies, rats were treated from postnatal day (p) 16 to p20. The status of 
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the retina was determined at p22 by assessment of mitochondrial function, oxidative 
stress and cell death. In a second series of studies, rat pups were treated from p10–
p25. Retinal status was assessed at p30 by measuring photoreceptor function by 
ERG and retinal morphology by Spectral Domain Optical Coherence Tomography 
(SD-OCT). 670 nm PBM increased retinal mitochondrial cytochrome c oxidase ac-
tivity and upregulated the retina’s production of the key mitochondrial antioxidant 
enzyme, manganese superoxide reductase (MnSOD). PBM also attenuated photo-
receptor cell loss and improved photoreceptor function. PBM thus protects photore-
ceptors in the developing P23H retina, by augmenting mitochondrial function and 
stimulating antioxidant protective pathways.

58.5  Aging and Age Related Macular Degeneration

Inflammation is a common feature in the aged retina, and in many retinal diseases 
including AMD. In addition, mitochondrial function has been shown to decline 
in aging and AMD (Jarrett and Boulton 2012). Brief exposure to 670 nm PBM in 
the aged retina has been shown to increase mitochondrial membrane potential and 
reduce inflammation (Kokkinopoulos et al. 2012). Using an aged mouse model 
of AMD, the complement factor H knockout (CFH−/−) in which inflammation is a 
key feature. Begum et al. (2013) investigated the effects of 670 nm PBM delivered 
briefly in environmental lighting rather than directly focused on the retina. Mice 
were exposed to 670 nm for 6 min twice a day for 14 days in the form of supple-
mented environmental light. Exposed animals exhibited a significant increase in 
cytochrome c oxidase. Complement component C3, an inflammatory marker in 
the outer retina was downregulated, as were vimentin and glial fibrillary acidic 
protein (GFAP) expression, which reflect retinal stress in Müller glia. Hence, 
670 nm PBM is effective in reducing retinal inflammation likely by cytochrome 
c oxidase activation in mice with a genotype similar to that in 50 % of AMD pa-
tients, even when brief exposures are delivered via environmental lighting. The 
efficacy revealed here supports current early stage clinical trials of 670 nm in 
AMD patients.

58.6  Conclusions

Taken as a whole, these studies in experimental models of retinal and optic nerve 
injury and disease show that far-red (FR) and NIR PBM improves mitochondrial 
function, reduces oxidative stress, and modulates inflammatory mediators, leading 
to decreased apoptosis and retinoprotection. Further studies are necessary to char-
acterize the effect of PBM on the human retina and to define safe protocols for the 
application of this novel therapy to mechanistically complex diseases.
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Chapter 59
Exercise and Cyclic Light Preconditioning 
Protect Against Light-Induced Retinal 
Degeneration and Evoke Similar Gene 
Expression Patterns

Micah A. Chrenek, Jana T. Sellers, Eric C. Lawson, Priscila P. Cunha, 
Jessica L. Johnson, Preston E. Girardot, Cristina Kendall, Moon K. Han, 
Adam Hanif, Vincent T. Ciavatta, Marissa A. Gogniat, John M. Nickerson, 
Machelle T. Pardue and Jeffrey H. Boatright

Abstract To compare patterns of gene expression following preconditioning cyclic 
light rearing versus preconditioning aerobic exercise. BALB/C mice were precon-
ditioned either by rearing in 800 lx 12:12 h cyclic light for 8 days or by running on 
treadmills for 9 days, exposed to toxic levels of light to cause light-induced retinal 
degeneration (LIRD), then sacrificed and retinal tissue harvested. Subsets of mice 
were maintained for an additional 2 weeks and for assessment of retinal function by 
electroretinogram (ERG). Both preconditioning protocols partially but significantly 
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preserved retinal function and morphology and induced similar leukemia inhibi-
tory factor (LIF) gene expression pattern. The data demonstrate that exercise pre-
conditioning and cyclic light preconditioning protect photoreceptors against LIRD 
and evoke a similar pattern of retinal LIF gene expression. It may be that similar 
stress response pathways mediate the protection provided by the two precondition-
ing modalities.

Keywords Aerobic exercise · Retinal degeneration · Preconditioning · Light-
induced retinal degeneration · Cyclic light rearing

59.1  Introduction

Preconditioning of neural tissue produces local and systemic responses that protect 
the tissue from toxic levels of stress. For instance mild hypoxia/ischemia (Roth 
et al. 1998; Grimm et al. 2005, 2006; Gidday 2006; Li et al. 2006; Zhu et al. 2007; 
Thiersch et al. 2009; Grimm and Willmann 2012; Wacker et al. 2012), moderate-in-
tensity cyclic light (Li et al. 2001, 2003; Chollangi et al. 2009; Ueki et al. 2009), and 
even whole body exercise (Zhang et al. 2011) are preconditioning stressors that pro-
tect several neuronal structures from the effects of exposure to toxic levels of stress. 
These reports and others further suggest that the mechanisms of preconditioning 
stressors may be common across preconditioning and toxic modalities. We recently 
demonstrated that modest treadmill exercise protects photoreceptor morphology 
and function against light-induced retinal degeneration (LIRD; reported elsewhere 
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at this meeting and in (Lawson et al. 2014)). We hypothesized that preconditioning 
cyclic light rearing and preconditioning exercise will be protective against LIRD 
and that the two forms of preconditioning elicit similar patterns of gene expression.

59.2  Methods

Adult male albino BALB/C mice were used in all experiments; n = 3–6 per experi-
mental condition. For cyclic light preconditioning, mice were reared on 12:12 h 
light:dark cycles. Half the mice were exposed to light at ~ 50 lx (i.e., normal main-
tenance level) and for the other half to 800 lx. After 8 days, half of each light-rearing 
group was exposed to 5000 lx white light for 4 h (i.e., toxic light) and the other half 
were exposed to 50 lx of light. Immediately following light exposure, subsets of 
mice were sacrificed and retinas harvested for RNA extraction for use in real-time 
reverse-transcriptase PCR. In some cases, retinal extracts were pooled from indi-
vidual eyes prior to PCR. To confirm the putative protective effect, another subset 
of mice was returned to maintenance housing and after 2 weeks were assessed for 
visual function by electroretinogram (ERG), after which they were sacrificed and 
ocular paraffin sections prepared for morphological assessment (data not shown).

For exercise preconditioning, mice were exercised on a treadmill running at 
10 m/min for 1 h for 9 consecutive days. Controls were mice placed on a stationary 
treadmill at the same time. Immediately following the last exercise period, mice 
were exposed to either maintenance levels or toxic levels of light as above. At the 
end of exposure, mice were sacrificed and retinas harvested for RNA extraction. To 
confirm the putative protective effect, in other experiments, mice were exercised for 
2 weeks, exposed to maintenance or toxic light, then exercised 2 more weeks, after 
which their ERGs were obtained, they were sacrificed, and ocular paraffin sections 
prepared for morphological assessment.

59.3  Results

Both forms of preconditioning protected against LIRD to remarkably similar ex-
tents, with cyclic light and exercise preconditioned mice showing significantly pre-
served retinal function (Fig. 59.1) and photoreceptor nuclei (2x greater total counts) 
and thicker outer nuclear layers than non-preconditioned mice exposed to toxic 
light (data not shown). Real-time polymerase chain reaction assays using retina 
RNA revealed that preconditioning by cyclic light rearing and aerobic exercise 
similarly increased the expression of LIF (Fig. 59.2). Increases were also seen in 
expression of other preconditioning or stress response genes (e.g., HMOX1, IL-6, 
PPARgamma, STAT3, HIF1alpha, etc.), but not in expression of CLU and citrate 
synthetase (data not shown).
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Fig. 59.2   Preconditioning by cyclic light rearing or by treadmill running increases expression of 
LIF. Rearing in 800 lx cyclic light (“PC”) or treadmill running (“treadmill”) similarly increased 
expression of the preconditioning gene LIF immediately following exposure toxic light (5000 lx 
for 4 h)

  

Fig. 59.1   Preconditioning protects retinal function. Panels show ERG stimulus response curves 2 
weeks after light exposure for dark-adapted a-wave ( left panels) and b-wave ( right panels) ampli-
tudes. Exposure to “bright” light (5000 lx for 4 h; dashed black lines) suppressed ERG amplitudes 
compared to exposure to “dim” (50 lx) light ( solid black lines). Rearing in 800 lx cyclic light ( top 
panels) or treadmill running ( bottom panels) preserved ERG amplitudes ( dashed red lines)
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59.4  Discussion

The data suggest that exercise preconditioning and cyclic light preconditioning 
protect photoreceptors against LIRD and evoke similar patterns of retinal gene 
expression. Models of protective preconditioning have been used well to increase 
our understanding of innate protective stress responses in retina (Roth et al. 1998; 
Li et al. 2001; Grimm et al. 2002, 2004, 2005, 2006; Li et al. 2003; Zhu et al. 2006, 
2007, 2008; Chollangi et al. 2009; Thiersch et al. 2009; Ueki et al. 2009; Gid-
day 2010; Grimm and Willmann 2012; Zhu et al. 2012; McLaughlin and Gidday 
2013); such approaches are revealing several exciting potential therapeutic targets. 
In the case of exercise, though, it may be that this form of preconditioning, which is 
accessible to the majority of the population, is itself a therapeutic intervention. To 
that end, additional studies on the mechanisms underlying this neuroprotection, the 
optimal exercise regimen, and effects in humans are being pursued.
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Chapter 60
Small Molecules that Protect Mitochondrial 
Function from Metabolic Stress Decelerate 
Loss of Photoreceptor Cells in Murine Retinal 
Degeneration Models

Craig Beeson, Chris Lindsey, Cecile Nasarre, Mausumi Bandyopadhyay, 
Nathan Perron and Bärbel Rohrer

Abstract One feature common to many of the pathways implicated in retinal degen-
eration is increased metabolic stress leading to impaired mitochondrial function. We 
found that exposure of cells to calcium ionophores or oxidants as metabolic stressors 
diminish maximal mitochondrial capacity. A library of 50,000 structurally diverse 
“drug-like” molecules was screened for protection against loss of calcium-induced 
loss of mitochondrial capacity in 661W rod-derived cells and C6 glioblastomas. 
Initial protective hits were then tested for protection against IBMX-induced loss 
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of mitochondrial capacity as measured via respirometry. Molecules that protected 
mitochondria were then evaluated for protection of rod photoreceptor cells in reti-
nal explants from rd1 mice. Two of the molecules attenuated loss of photoreceptor 
cells in the rd1 model. In the 661W cells, exposure to calcium ionophore or tert-
butylhydroperoxide caused mitochondrial fragmentation that was blocked with the 
both compounds. Our studies have identified molecules that protect mitochondria 
and attenuate loss of photoreceptors in models of retinal degeneration suggesting 
that they could be good leads for development of therapeutic drugs for treatment of 
a wide variety of retinal dystrophies.

Keywords Mitochondria · Respirometry · Glycolysis · Neuroprotectant · ATP

60.1  Introduction

Photoreceptors are specialized to convert light to neurochemical signals, a pro-
cess that has high energy requirements, calcium ion transients, and oxidative stress 
(Stone et al. 1999; Linton et al. 2010). Thus, photoreceptor degeneration can result 
from changes in energy metabolism, calcium ion concentrations, or oxygen ten-
sion (Lohr et al. 2006). It is thus perhaps not surprising to find that alterations 
in metabolic pathways that produce ATP, whether they be glycolysis or oxidative 
phosphorylation, underlie a number of retinal pathologies. For example, our group 
has shown that in three different mouse models of retinal degeneration, the rd1 and 
the rds mouse, two models for retinitis pigmentosa (RP), as well as the constant 
light damage model in Balb/c mice, gene expression for metabolic genes such as 
phosphofructokinase-1, the rate limiting enzyme for glycolysis, is increased prior to 
the onset of degeneration, but drops as degeneration commences (Lohr et al. 2006). 
Acosta and colleagues made similar observations in the rd1 mouse retina as well as 
in the P23H rhodopsin rat (line 3) in which they reported increased lactate dehydro-
genase activities prior to degeneration, followed by a drop in activity with the onset 
of photoreceptor cell loss (Acosta et al. 2010). On the other hand, reduced retinal 
complex I activity (oxidative phosphorylation) concomitant with oxidative stress 
was reported at stages prior to cell death in four mouse RP models, including the 
rd1 and rds mouse (Vlachantoni et al. 2011). In contrast, in the RCS rat, Graymore 
(Graymore 1964) demonstrated a reduction in LDH activity prior to degeneration. 
These observations in animal models were strengthened by reports in patients. Vin-
golo and colleagues (Vingolo et al. 1999) demonstrated that RP patients showed sig-
nificant improvements in their maximum electroretinogram responses when treated 
with hyperbaric oxygen therapy. Finally, mitochondrial structure and function ap-
pears to be altered in general aging, retinal dysfunction associated with Parkinson’s 
disease, retinal diseases including diabetic retinopathy and glaucoma, age-related 
diseases such as age-related macular, as well as in neurodegeneration (Soane et al. 
2007). Thus, it is reasonable to hypothesize that early changes in energy metabolism 
underlie a, number of photoreceptor dystrophies; and that agents that ameliorate the 
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dysregulation of energy metabolism could be developed into therapeutic strategies 
for treatment of retinal degeneration.

In previous publications we have shown that we can utilize 661W cells 
(Kunchithapautham and Rohrer 2007) treated with the Ca2+ -ionophore A23187, 
non-hydrolyzable cGMP (8-Bromo-cGMP), or IBMX (phosphodiesterase inhibi-
tor and adenosine receptor antagonist), to mimic the pathological increased Ca2+ 
influx seen in the rd1 photoreceptors. Likewise, 661W cells challenged with hy-
droperoxides recapitulate many of the steps in cell death observed in the light-
damaged albino mouse retina, a model for oxidative stress in AMD (Kunchithap-
autham and Rohrer 2007). Both the light-damage and the rd1 mouse retina have 
been used to investigate neuroprotective therapies, focusing predominantly on 
neurotrophins and antioxidants. Although the effects of excess calcium or oxida-
tive stress on mitochondrial function have not been measured directly in the mouse 
retina, we found that rd1 retina expressed high levels of stress and metabolic genes 
at onset of damage but expression of metabolic genes dropped in parallel with the 
loss of cells.

60.2  Results

60.2.1  Screening with Metabolic Assays

Recently, novel assay methods have become available to monitor energy metabo-
lism using high throughput assay platforms. In particular, the technology developed 
by Seahorse Biosciences, based on the original work using the Cytosensor® micro-
physiometer to measure extracellular fluxes linked to energy metabolism (Wiley 
and Beeson 2002; Ferrick et al. 2008), demonstrated the feasibility of a multi-well 
plate assay (XF24 or XF96) for measuring extracellular fluxes of metabolic acid 
extrusion, a measure of glycolysis, and oxygen uptake, a measure of oxidative 
phosphorylation (Ferrick et al. 2008). Using the XF assay, we made a similar ob-
servation regarding increased glycolytic rates prior to the onset of cell death that 
we observed in retinas of RP models, when analyzing the metabolic responses of 
the 661W cells to the calcium or oxidant stress before succumbing to cell death 
(Perron et al. 2013).

Thus, it is reasonable to hypothesize that these early metabolic perturbations are 
the phenotypic measures of losses of mitochondrial integrity that underlie retinal 
pathology leading to loss of photoreceptor structure and function. Based on this 
assumption, we first used a high throughput MTT assay to screen the ChemBridge 
DiverSET 50,000 chemical diversity small molecule library for protection against 
the A23187 calcium stress known to cause loss of metabolic function in many cells 
(Perron et al. 2013). The hits identified in this screen were confirmed using rat C6 
glioblastoma cells using the same calcium stress, to show that protective effects 
translate to other cell types of neuroectodermal lineage. The 12 hits identified in the 
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initial assay were used to test for protection of maximal oxygen capacity, estimated 
from FCCP uncoupled rates, to identify leads that protect against loss of mitochon-
drial function. The respirometric assay identified four compounds that protect mito-
chondria from 24 h exposure to IBMX.

60.2.2  Photoreceptor Protection in rd1 Organ Cultures

The combined data thus far suggested that we had identified unique compounds 
with mostly unknown activities that protect mitochondrial metabolism in cells treat-
ed with calcium or oxidant stress. As a translational bridge we utilized mouse retina 
organ cultures. These retinal explants are a powerful ex vivo screening tool that 
allow the testing of photoreceptor cell survival within the retinal network without 
systemic interference. Here we utilized the rd1 mouse. The genotype of the rd1 
mouse is a mutation in the β-subunit of the phosphodiesterase gene that results in 
high levels of cGMP, leaving an increased number of the cGMP-gated channels in 
the open state, allowing intracellular calcium to rise to toxic levels and rapid rod de-
generation ensues (Sharma and Rohrer 2007). The genetic deficit and the retinal pa-
thology is very similar to that observed in the patients with βPDE-dependent RP. In 
these mice, rod photoreceptor degeneration starts after postnatal day 10 (P10), pro-
gressing rapidly, such that at P21, only 1–2 rows of photoreceptor remains, mainly 
representing cones. Finally, the rd1 mouse retina is amenable to culturing, replicat-
ing both retinal development and degeneration, following the same time course as 
in vivo (Ogilvie et al. 1999; Bandyopadhyay and Rohrer 2010). The retinal explants 
were cultured for 11 days ex vivo. Explants were treated with CB3, CB10, CB11 
or CB12 (5 µM). Additives were replaced with fresh medium every alternate day. 
At the end of the experiments, tissues were fixed, sectioned and stained with 0.1 % 
toluidine and numbers of rows of photoreceptors remaining in the outer nuclear 
layer (ONL) were counted. Rd1 explants treated with vehicle only were found to 
contain 1.2 ± 0.19 cells in the ONL. This is in contrast to cultures treated with CB10 
(2.9 ± 0.32), CB11 (3.2 ± 0.36) and CB12 (3.9 ± 0.10) that all contained significantly 
( P < 0.001) more rows of photoreceptors. CB3, was found to cytotoxic in the rd1 
explants.

60.2.3  Effects of CB11 and CB12 on Mitochondrial Morphology

Mitochondria play an essential role in mediating cell health and death. The mito-
chondrial network is constantly being remodeled via fission/fusion, autophagy and 
biogenesis, with dysfunctional mitochondria being removed and replaced via bio-
genesis. Since some of the hits increase mitochondrial respiration, it would stand to 
reason that the mitochondrial network is more structurally intact in compound-treat-
ed as opposed to vehicle-treated cells under toxicant stress. Live 661W cells were 
imaged using nonyl-acridine orange (NAO, 50 nM), a dye that is partly selective for 
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cardiolipin-containing membranes such as the mitochondrial inner membrane. The 
mitochondrial network in control cells exhibited a complex morphology, consisting 
of mainly fused mitochondria, whereas in 661W cells treated with 600 µM IBMX, 
the network consisted of mostly small, punctate mitochondria. A pro-fission state of 
mitochondria is often an implication of mitochondrial damage and disease. CB11 
and CB12 were found to both protect against mitochondrial fission, promoting a 
more healthy balance between mitochondrial fusion and fission in IBMX-treated 
cells. CB11 and or CB12 did not alter mitochondrial morphology in non-stressed 
cells. Mitochondrial fission and fusion are controlled by Drp1, a GTPase that is a 
member of the dynamin superfamily of proteins, and Mfn1/2, which are GTPases 
embedded in the mitochondrial outer membrane. Treatment of naïve 661W cells 
with CB11 or CB12 induced an increase in the protein level of Mfn2 and a con-
comitant decrease in Drp1 that are consistent with the morphology measurements 
in stressed cells.

60.3  Discussion

The genesis of the program to identify metabolic neuroprotectants was our previ-
ously published observation that calcium or oxidative stress causes a rapid loss 
in maximal mitochondrial ATP-producing capacity in 661W cells as measured by 
respirometry, and that the degree of loss in maximal capacity was predictive of 
subsequent cell death measured (Perron et al. 2013). Our rationale was that a pri-
mary screen focused on metabolic capacity (MTT assay) would rapidly identify 
potential cytoprotective agents that we could follow up with secondary and tertiary 
screens focused on separating out those agents that specifically target the metabolic 
phenotype related to photoreceptor cell degeneration.

Following this strategy, the main results of the current study are that 12 
compounds out of the 50,000 compound ChemBridge library were identified that 
reversed dysregulation of energy metabolism triggered by calcium stress, the respi-
rometry assay confirmed that 4/12 compounds protected against calcium stress by 
increasing maximum respiratory capacity, and three of the lead compounds were 
found to attenuate loss of photoreceptor cells in the rd1 mouse organ culture.

In our perspective, the regulatory pathways determining a givens cell’s response 
to metabolic load and its ability to deal with dysfunction is likely related to the path-
ways that emerged during metazoan development. Prior to that evolutionary stage, 
nascent eukaryotes were tuning their regulatory pathways that involved a some-
what related “metazoan-like” existence in which endosymbiotic bacterial particles 
now called mitochondria were becoming part of the whole unicellular organism. 
As the pre-mitochondria evolved into committed intracellular organelles, they shed 
much of their own genome and adopted proteins encoded by the nuclear genome. 
The best evidence to date suggests that eukaryote divergence during early mega-
evolution coincided with expansion of the myosin domain and motor structural het-
erogeneity and these proteins were also involved in structural assemblies found in 
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mitochondria ( i.e., the mitochondrial ATP synthase) and regulatory pathways seen 
in the mitochondria intersect with cellular life/death decisions. For example, oxida-
tive stress will damage biomolecules but cells have evolved efficient mechanisms 
of dealing with oxidants. The deactivation of oxidants, and repair of oxidative dam-
age is part of the metabolic load that a tissue bears. While dysfunctions in either 
the endogenous antioxidant or repair mechanisms are certainly deleterious, in the 
long run, the primary effect of oxidative stress is the increased metabolic load and, 
thus, they are not fundamentally different than other stressors that cause metabolic 
load. For example, many RP mutations cause protein misfolding and a subsequent 
unfolded protein response (UPR) leading to endoplasmic reticulum (ER) stress with 
increased metabolic load. We would predict that UPR and ER stress are not sig-
nificantly different than oxidative stress and the molecules identified here could be 
more generally protective in many forms of RP.
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Chapter 61
Histone Deacetylase: Therapeutic Targets 
in Retinal Degeneration

Conor Daly, Jun Yin and Breandán N. Kennedy

Abstract Previous studies report that retinitis pigmentosa (RP) patients treated 
with the histone deacetylase inhibitor (HDACi) valproic acid (VPA) present with 
improved visual fields and delayed vision loss. However, other studies report poor 
efficacy and safety of HDACi in other cohorts of retinal degeneration patients. Fur-
thermore, the molecular mechanisms by which HDACi can improve visual function 
is unknown, albeit HDACi can attenuate pro-apoptotic stimuli and induce expres-
sion of neuroprotective factors. Thus, further analysis of HDACi is warranted in 
pre-clinical models of retinal degeneration including zebrafish. Analysis of HDAC 
expression in developing zebrafish reveals diverse temporal expression patterns 
during development and maturation of visual function.

Keywords Histone deacetylase · Histone deacetylase inhibtors · Retinal degen-
eration · Retinitis pigmentosa · Zebrafish

Abbreviations

BDNF Brain derived neurotrophic factor
CNTF Ciliary neurotrophic factor
DPF Days post fertilisation
HAT Histone acetyltransferase
HDAC Histone deacetylase
HDACi Histone deacetylase inhibitor
HPF Hours post fertilization
rd1 Retinal degeneration 1
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RP Retinitis pigmentosa
TSA Trichostatin A
VA Visual acuity
VF Visual field

61.1  Introduction

The 18 HDAC proteins are divided into two families, “classical” HDACs and SIR2 
HDACs which are further subdivided into four classes based on homology to yeast 
HDAC orthologues and functional activity. In general, Class I members (HDAC1, 
2, 3, 8) are localized to the nucleus while Class II members (HDAC4, 5, 6, 7, 9, 
10) can be either localised in the nucleus or cytoplasm. Class III are a family of 
7 NAD+ dependent proteins, known as sirtuins (SIRT1–7), similar to yeast Sir2 
proteins. Class IV HDACs show structural similarity to both Class I and II HDACs 
(Yang and Seto 2008). These proteins can control gene transcription via epigenetic 
alteration of chromatin or modulate the activity of non-histone proteins by altering 
their acetylation (Choudhary et al. 2009). Consequently, HDACs regulate cell cycle 
progression, differentiation and survival.

61.2  HDACi as Potential Therapeutics for Treatment 
of Retinal Degeneration

A retrospective study of 7 RP patients reported improved visual field (VF) and 
visual acuity (VA) scores and delayed vision loss in five patients following treat-
ment for 4 months with a mean dose of 643(+/− 133) mg/day valproic acid (VPA) 
(Clemson et al. 2011). Only mild side-effects, such as fatigue and stomach irritation 
were reported and liver function and blood chemistry remained normal. However, 
in a similar study of pigmentary dystrophy patients treated with 500–1000 mg/
day VPA for 10 months; the five patients for which VF field tracings were avail-
able before and after treatment presented with a decline in VF, 22 patients had a 
decline in VA and 12 patients reported severe negative side effects inclding high 
alanine aminotransferase, aspartate aminotransferase and ammonia levels (Bhalla 
et al. 2013). The Clemson study has been criticised regarding study design, patient 
numbers (van Schooneveld 2011), and statistical analyses (Sandberg et al. 2011). 
Indeed, VPA may compromise photoreceptor function due to antagonistic effects 
on sodium and calcium channels in the retina (Sisk 2012). Despite these concerns, 
a randomized, placebo-controlled trial of oral VPA for treatment of autosomal 
dominant RP (NCT01233609), and a non-randomized trial (NCT01399515) are 
in progress.
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61.3  HDAC Inhibition in a Pre-Clinical Rodent Model 
of Retinal Degeneration

In the rd1 (retinal degeneration 1) mouse model of RP, histone acetylation is dra-
matically reduced in retinal cells. Retinal degeneration in rd1 mice is mediated by 
phosphodiesterase-6 (PDE6) dysfunction resulting in high cyclic guanosine-mono-
phosphate (cGMP) levels and increased oxidative stress (Sahaboglu et al. 2013). 
Increased expression of cell proliferation and oxidative stress genes is observed 
during rd1 photoreceptor degeneration (Hackam et al. 2004) as is increased HDAC 
activity, with class I/II HDACs contributing the majority of total HDAC activity 
(Sancho-Pelluz et al. 2010). TUNEL positive cells in the degenerating rd1 mouse 
eye also have reduced histone acetylation. Overall, reduced histone acetylation 
due to aberrant HDAC activity appears to be a major contributing factor to reti-
nal degeneration in the rd1 model. Notably, treatment of rd1 retinal explants with 
Class I/II HDAC inhibitors, 1 µM Trichostatin A (TSA) or 6 µM Scriptaid, reduced 
photoreceptor cell death and restored photoreceptor outer segments (Sancho-Pelluz 
et al. 2010). These results suggest a major contribution of class I/II HDACs, to 
mutation-induced rd1 photoreceptor cell death.

61.4  Mechanism of Action

A number of mechanisms by which HDACi produce their therapeutic effects have 
been suggested. HDACi diminish the activity of the Hsp90 chaperone, by increased 
acetylation (Scroggins et al. 2007; Kekatpure et al. 2009). Hsp90 inhibition increases 
expression of the neuroprotective chaperone Hsp70, which promotes neuronal sur-
vival (Wen et al. 2008). TNF-α is lowly expressed in wildtype retina but increased 
in models of ischemic injury (Genini et al. 2013). Pharmacological inhibition of 
Class I/II HDACs with 2.5 mg/kg TSA blocks increases in TNF-α levels in the rat 
eye post ischemic injury (Crosson et al. 2010). HDACi also modulate expression 
of brain derived neurotrophic factor (BDNF) via repression of its promoter. Selec-
tive pharmacological inhibition of class II HDACs with 5 µM MC1568 leads to 
rapid induction of BDNF expression while inhibition of class I HDACs with 5 µM 
MS-275 leads to a comparatively slower induction (Koppel and Timmusk 2013). In 
agreement, treatment of rd1 retinal explants with BDNF and ciliary neurotrophic 
factor (CNTF) provides a neuroprotective effect (Azadi et al. 2007).

61.5  HDAC Expression in The Zebrafish Model

Zebrafish eye development is rapid. At 11 hpf the optic vesicle is visible (Kimmel 
et al. 1995). At 3 days post fertilisation (dpf) all cell types of the retina have dif-
ferentiated and measurable cone mediated visual responses develop (Easter and 
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Nicola 1996). The zebrafish eye has a similar structure to other vertebrates, shar-
ing the cell types and laminate structure present in humans. In early stages of de-
velopment (2–16 hpf) hdac1 is ubiquitously expressed. At later stages (36–48 hpf), 
expression is partially restricted to the branchial arches, fin bud mesenchyme and 
hindbrain. Pharmacological inhibition of HDACs by TSA results in a failure of 
craniofacial cartilage to develop from these tissues (Pillai et al. 2004). Similarly, 
in the hindbrain of hdac1 mutants there is reduced cell proliferation marked by 
defects in axial extension of hindbrain branchiomotor neurons caused by reduced 
activation of non-canonical Wnt/PCP pathway regulators (Cunliffe 2004). In ad-
dition, inhibition of class I/II HDACs affects migration of the posterior lateral 
line primordium. Treatment disrupted neuromast deposition in a dose dependent 

Fig. 61.1   Heatmap overview of gene expression profiles of HDACs using RNA-sEq. RNA-seq 
data sets on whole embryos were used. Genes expression levels were depicted using Log2 trans-
formed Reads per kilobase per million ( RPKM)
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manner (He et al. 2014). Treatment with VPA also reduces proliferation of neural 
stem cells in the adult zebrafish optic tectum via inhibition of Notch signaling 
(Dozawa et al. 2014).These reports underline the importance of HDAC activity for 
cell proliferation and migration.

An analysis of publically available RNA-seq data (Fig. 61.1) depicts the ex-
pression of zebrafish HDACs during development in whole larvae (Aanes et al. 
2011; Collins et al. 2012). Hdac genes show diverse expression patterns during 
development. Hdac1 and hdac3 (Class I) are highly expressed from 2–4 cells until 
7 dpf, when visual function is matured. Sirt7, hdac7 and hdac11 (Class III, II and 
IV respectively) show higher expression at earlier stages, while sirt2 and hdac9b 
(Class II) show increased gene expression after 6 hpf or at later developmental 
stages.

To begin to explore the importance of HDACs in the zebrafish eye, we profiled 
HDAC gene expression in eyes from 3, 4 and 5 dpf larvae (Yin et al. 2012). As 
shown in Fig. 61.2, hdac1 and hdac3 show similar decreasing expression from 
3–5 dpf. In contrast expression of hdac9b significantly increased from 3–5 dpf. 
The differential expression of hdacs during the development of visual function 
indicates a temporal importance of HDAC expression during eye development. 
Other hdac genes did not exhibit any significant difference in gene expression from 
3 to 5 dpf.

With the notable exception of hdac1, the role of most HDAC genes in the 
zebrafish eye is poorly understood. The absence of hdac1 in the zebrafish retina 
results in increased cell proliferation, the optic stalk fails to terminally differentiate 
resulting in a reduced plexiform layer and number of retinal ganglion cells, pho-
toreceptors are also absent (Stadler et al. 2005). hdac1 is necessary for controlling 
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transcription of the key cell cycle regulators cyclin D1 and E2. hdac1 appears to be 
required for the switch from proliferation to differentiation in the zebrafish retina 
mediated by the Wnt and Notch pathways (Yamaguchi et al. 2005).

61.6  Conclusion

Clinical and pre-clinical studies suggest that HDACi may be effective therapeutics 
in certain models of retinal degeneration. Zebrafish are an excellent model to gain 
further insight into the requirement of HDACs for eye development and function. 
Aditionally, zebrafish models of inherited blindness can be utilised to determine the 
efficacy and safety of HDACi in genetically diverse models of retinal degeneration 
and to understand the neuroprotective mechanisms of HDACi.
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Chapter 62
Therapeutic Approach of Nanotechnology 
for Oxidative Stress Induced Ocular 
Neurodegenerative Diseases

Rajendra N. Mitra, Shannon M. Conley and Muna I. Naash

Abstract Oxidative stress plays a role in many different forms of neurodegenera-
tive ocular disease. The imbalance between the generation of endogenous reactive 
oxygen species (ROS) and their corresponding neutralization by endogenous anti-
oxidant defense systems leads to cellular oxidative stress, oxidation of different 
bio-macromolecules, and eventually retinal disease. As a result, the administra-
tion of supplemental endogenous antioxidant materials or exogenous ROS scav-
engers is an interesting therapeutic approach for the treatment of forms of ocular 
disease associated with oxidative stress. Thus far, different dietary antioxidant 
supplements have been proven to be clinically reliable and effective, and different 
antioxidant gene therapy approaches are under investigation. In addition, various 
metal oxide nanoparticles were shown to be effective in defending against oxida-
tive stress-associated injury. These benefits are due to free radical scavenging 
properties of the materials arising from non-stoichiometric crystal defects and 
oxygen deficiencies. Here we discuss the application of this approach to the pro-
tection of the retina.

Keywords Nanoparticle · Antioxidant · Oxidative stress · ROS · Rescue · Light 
damage · Retinitis pigmentosa · Glaucoma · Diabetic retinopathy · Age-related 
macular degeneration · Enzymes · Vitamins · Mice · Rat
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62.1  Introduction

Accumulation of ROS including oxygen free radicals, hydrogen peroxide, super-
oxide, and hydroxyl free radicals can be induced by physiological overproduction 
and/or poor endogenous antioxidant defense systems. Importantly, oxidative stress 
plays a crucial role in the progression of widely varying diseases ranging from 
cancer and diabetes to different neurodegenerative conditions (Uttara et al. 2009). 
Retinal photoreceptor cells are susceptible to oxidative stress since they have a large 
number of mitochondria, high exposure to intense light, and a high rate of metabo-
lism. Imbalance between the production and neutralization of ROS leads to oxida-
tion to DNA, RNA, lipids and protein molecules and eventually to dysfunction and 
degeneration of retinal tissues (Kowluru and Chan 2007; Cabrera and Chihuailaf 
2011). Oxidative stress worsens with age and becomes a key contributor to age 
related cellular degeneration by increasing the amount of dysfunctional cellular en-
tities. Hence, neutralizing ROS has been proposed as a logical therapeutic approach 
in dealing with oxidative stress associated retinal disorders.

62.2  Oxidative Stress in Ocular Diseases

Several ocular diseases have been linked to oxidative stress and accumulation 
of ROS, including retinitis pigmentosa, macular dystrophy, diabetic retinopathy, 
glaucoma, retinopathy of prematurity, cataract etc. (Chen et al. 2006; Kowluru and 
Chan 2007; Martinez-Fernandez de la Camara et al. 2013). For example, it was long 
thought that oxidative stress played a role in the pathology of age-related macu-
lar degeneration (AMD), a leading cause of blindness in the United States associ-
ated with progressive loss of central vision. This hypothesis was confirmed when 
mass spectroscopy revealed multiple oxidized proteins in analyses of druse that 
were collected from human AMD patients (Crabb et al. 2002). The pathobiology 
of diabetic retinopathy also involves oxidative stress (Kowluru and Kanwar 2009). 
For example, it has been shown that levels of superoxide and hydrogen peroxide 
are increased in the retinas of diabetic rats (Kowluru and Chan 2007). In addition, 
complications in diabetic retinopathy can arise when oxidative stress causes disrup-
tion in the tight-junction complex, vascular permeability, the blood–retinal barrier 
(BRB) and mitochondrial DNA (mtDNA) (Frey and Antonetti 2011).

Oxidative stress has also been associated with other ocular disorders. Ascorbic 
acid and glutathione (GSH) are two important antioxidant components of aqueous 
humor that protect from photo-oxidation. It was observed that ascorbic acid levels 
were reduced in animals with cataracts suggesting that oxidative stress may play 
a role in the development of cataracts in elderly patients (Cabrera and Chihuailaf 
2011). Oxidative stress is also thought to be involved in glaucoma. For example, 
it has been shown that oxidative stress in retinal ganglion cells may be an early 
response to increased intraocular pressure, a key risk factor for glaucoma (Liu et al. 
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2007), and other studies have suggested that glaucoma patients may have reduced 
levels of some antioxidants (Lopez-Riquelme et al. 2014).

62.3  Approaches for Antioxidant Therapy

Oxidative stress is generated by radical and non-radical medicated mechanisms. 
Both of these components can induce chemical modifications to different biological 
molecules like lipids, protein, DNA or RNA. Ocular tissues are under the protection 
of endogenous enzymatic and non-enzymatic antioxidants. Superoxide dismutase 
(SOD), catalase (CAT), and glutathione peroxidase (GPx) are key enzymatic an-
tioxidant systems, while vitamin A, vitamin C, vitamin E, and GSH are the most 
important non-enzymatic antioxidant systems that protect the eye from oxidative 
stress (Cabrera and Chihuailaf 2011). Therefore radical scavenging by supplemen-
tal enzymatic or non-enzymatic antioxidants is a logical approach to defend against 
oxidative stress induced degeneration of retinal cells and thus prevent or delay the 
development of ocular diseases.

Delivery of different exogenous antioxidants can be beneficial for a variety of 
retinal diseases. Alpha-lipoic acid is a well-known biological antioxidant which 
showed reduced oxidative stress and improved survival of retinal ganglion cells in 
the DBA/2J mouse model of glaucomatous optic neuropathy (Inman et al. 2013). 
Similarly, lithospermic acid B (LAB), an isolated antioxidant compound from 
Salvia miltiorrhiza radix (a traditional Chinese herbal medicine), provided partial 
protection from the development of diabetic retinopathy in a rat model of type 2 
diabetes (Jin et al. 2014).

Several models which share phenotypes with AMD also benefit from a vari-
ety of exogenous antioxidants. The antioxidant rich dietary components grapes or 
marigold extract (which contain macular pigments lutein/zeaxanthin) prevented 
loss of retinal function in a mouse model with age related retinal pigment epithe-
lium damage (Yu et al. 2012). Curcumin, an important antioxidant component of 
turmeric, protected retinal neurons in a rat model of light-induced retinal degenera-
tion (LIRD) which exhibits a significant amount of oxidative stress and has been 
characterized as an AMD model (Mandal et al. 2009). It was observed that N-acetyl 
cysteine (NAC), a thiol antioxidant, was able to protect bovine retinal RPE cells 
from hypoxia induced degeneration (Castillo et al. 2002) and has thus been sug-
gested to slow the development of AMD. Lutein, an antioxidant located in the lens 
and macula that can scavenge free radicals and filter toxic blue light, showed neu-
roprotection of retinal cells against retinal oxidative injury (Koushan et al. 2013).

Several groups have also tried to combat oxidative stress by modulating endog-
enous antioxidant pathways. For example, the delivery of antioxidant enzymes like 
SOD and catalase via adenoviral vectors was able to decrease oxidative injury and 
delay retinal degeneration in some mouse models characterized by ROS elevation 
(Rex et al. 2004; Qi et al. 2007). Similarly, low dose irradiation was observed to 
protect photoreceptor cells by up regulating the endogenous antioxidant gene per-
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oxiredoxin-2 (Prdx2) which has been shown to play a role in RP and other oxidative 
stress related neurodegenerative diseases (Otani et al. 2012).

62.4  Alternative Therapeutic Approach: Use of 
Nanotechnology

The availability of wide ranging forms of nanotechnology have significantly en-
hanced the development of advanced ocular therapeutics. Nanoparticles come in 
two main categories, those that are intended as packaging/delivery vehicles for 
other drugs or genes, and those which have intrinsic therapeutic properties. Often, 
nanoparticles are easy to synthesize and manipulate at the atomic level, and their 
small size facilitates direct interaction at the cellular level. Over the past few years, 
the antioxidant nanoparticle field has emerged as an exciting and promising research 
area and has progressed quickly. Searching PubMed for “antioxidant nanoparticle” 
from 2003 to 2013 highlights the rapid growth of interest and development in this 
new field of nanotherapy, particularly in comparison to hits for “antioxidant and 
retina” which have held constant over that same time period (Fig. 62.1).

Several different types of nanoparticles fall into the group of particles that have 
intrinsic beneficial properties. For example, gold nanoparticles were well-tolerated 
and able to protect pancreatic cells against hyperglycemia induced degeneration in 
diabetic mice (Barathmanikanth et al. 2010). However, lanthanide- and lanthanide-
like nanoparticles have been more thoroughly explored. They often have high re-
dox scavenging capability due to non-stoichiometric crystal defects (Schubert et al. 
2006) and they have shown little or no toxicity after delivery to the eye (Mitra 
et al. 2014). Nanoceria (nanoparticulate cerium oxide), a well-known redox active 
lanthanide nanoparticle (Karakoti et al. 2010), was able to prevent the peroxide 
induced accumulation of ROS in primary cultures of retinal cells (Chen et al. 2006). 
Consistent with this benefit, intravitreal injection of these nanoparticles in a light-

Fig. 62.1   Graph of 
antioxidant nanoparticle 
research from 2003 to 2013. 
(Data were obtained from 
PubMed searches)
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induced rat model of retinal degeneration showed a rescue of photoreceptor cells 
(Chen et al. 2006; Karakoti et al. 2010). More recent work has shown that nanoceria 
can also be effective in inherited models of retinal degeneration (Kong et al. 2011). 
Nanoceria have both direct scavenging activity enabling neutralization of ROS, 
and also showed the ability to up-regulate cell-survival genes (Kong et al. 2011). 
Nanoceria also decreased retinal angiomatous proliferation by scavenging radicals 
and down regulating vascular endothelial growth factor (VEGF) in very low den-
sity lipoprotein receptor (Vldlr) knockout mice, a model which mimics some AMD 
phenotypes (Zhou et al. 2011). Nanoceria and nanoyttria (another rare earth sub-
stance, nanoparticulate yttrium oxide) also showed free radical scavenging activity 
and protection of neuronal cell line (HT22) from exogenous oxidants (Schubert 
et al. 2006). Our group recently demonstrated that nanoyttria could also prevent 
photoreceptor degeneration and loss of retinal function in a murine light damage 
model (Mitra et al. 2014). Interestingly, we observed therapeutic benefits when the 
nanoparticles were delivered either before or after light damage suggesting they 
may be useful in practical applications (i.e. where treatment before insult is not 
possible) (Mitra et al. 2014). These encouraging results suggest that safe lanthanide 
oxide nanoparticles may be an excellent option for ocular antioxidant therapy.

On the gene therapy side, human serum albumin nanoparticles were used to en-
capsulate and deliver a plasmid containing the Cu/Zn superoxide dismutase (SOD1) 
gene both in the ARPE-19 cell line and in the retina of mice (Mo et al. 2007). 
Though these were not tested for therapeutic efficacy, they may be beneficial in fu-
ture. In addition, poly (lactic co-glycolic acid) nanoparticles were used to encapsu-
late catalase, an endogenous antioxidant enzyme. Importantly, the authors showed 
that encapsulation in the nanoparticles did not adversely affect the catalase activity, 
and were able to protect cultured neurons from hydrogen peroxide-induced oxida-
tive damage (Singhal et al. 2013).

62.5  Conclusion

Here we have demonstrated the promising potential of antioxidant nanotechnology 
for the prevention and retardation of degenerative ocular diseases associated with 
oxidative stress. Lanthanide and lanthanide-like nanoparticle antioxidant systems 
have shown efficient protection of retinal cells against oxidative damages in light 
stress animal models. Future testing may include assessment in other chronic 
degenerative models. In addition, the promising protective effect of this nanopar-
ticle approach can also be extended to other neurodegenerative diseases such as 
Parkinson disease, Alzheimer disease, Huntington disease, and amyotrophic lateral 
sclerosis in which oxidative stress has also been implicated.
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Chapter 63
Transscleral Controlled Delivery  
of Geranylgeranylaceton Using a Polymeric 
Device Protects Rat Retina Against Light Injury

Nobuhiro Nagai, Hirokazu Kaji, Matsuhiko Nishizawa,  
Toru Nakazawa and Toshiaki Abe

Abstract We evaluated the effects of a transscleral drug delivery device, consist-
ing of a reservoir and controlled-release cover, which were made of photopoly-
merized polyethylene glycol dimethacrylate and triethylene glycol dimethacrylate, 
combined at different ratios. Geranylgeranylacetone (GGA), a heat-shock protein 
(HSP) inducer, was loaded into the device. The GGA was released from the device 
under zero-order kinetics. At both 1 week and 4 weeks after device implantation 
on rat sclera, HSP70 gene and protein expression were up-regulated in the sclera-
choroid-retinal pigment epithelium fraction of rat eyes treated with the GGA-loaded 
device compared with rat eyes treated with saline-loaded devices or eyes of non-
treated rats. Flash electroretinograms were recorded 4 days after white light expo-
sure (8000 lx for 18 h). Electroretinographic amplitudes of the a- and b-waves were 
preserved significantly in rats treated with GGA-loaded devices compared with 
rats treated with saline-loaded devices. Histological examination showed that the 
outer nuclear layer thickness was preserved in rats that had the GGA-loaded device. 
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These results may show that transscleral GGA delivery using our device may offer 
an alternative method to treat retinal diseases.

Keywords Drug delivery · Geranylgeranylacetone · Heat shock protein (HSP) · 
Poly(ethyleneglycol) dimethacrylate (PEG) · Tri(ethyleneglycol) dimethacrylate 
(TEG) · Phototoxicity · Transsclera

63.1  Introduction

Recent studies have shown that administration of geranylgeranylacetone (GGA), an 
acyclic polyisoprenoid, up-regulates heat-shock protein (HSP) expression and ex-
erts protective effects on a variety of organs, such as the eye (Suemasu et al. 2009; 
Tanito et al. 2005; Kayama et al. 2011), the brain (Yasuda et al. 2005), neurons (Kat-
suno et al. 2005), and the heart (Ooie et al. 2001). In the retina, GGA induced both 
HSP72 and thioredoxin (Trx) predominantly in the retinal pigment epithelium layer 
(RPE) and protected photoreceptors from light damage (Tanito et al. 2005). We 
found that administration of GGA decreased photoreceptor apoptosis after retinal 
detachment, through prolonged activation of the Akt pathway (Kayama et al. 2011).

Drug delivery to intraocular tissue by topical application may be limited by the 
significant barrier of corneal epithelium and the process of tear drainage. Systemic 
drug administration is not a viable alternative, due to the blood-retina barrier that 
limits the drug access to the posterior tissues of the eye with possible side effects 
(Choonara et al. 2010). Although intravitreal injections and implants deliver drugs 
effectively to the retina, this approach is invasive and may cause severe adverse ef-
fects such as endophthalmitis and retinal detachment. The periocular or transscleral 
routes are less invasive than intravitreal administration and provide higher retinal 
and vitreal drug bioavailability (0.01–0.1 %) compared to eye drops (≤ 0.001 %). 
Due to a high degree of hydration and a low cell population, soluble substrates pass 
easily through the sclera (Kim et al. 2007). Thus, the transscleral route is a promis-
ing method for intraocular drug delivery that is more effective and less invasive.

We recently developed a polymeric delivery system that consists of a drug reser-
voir sealed with a controlled-release cover (Kawashima et al. 2011). This episcleral 
implantable device offers localized drug delivery via a less invasive method com-
pared to intravitreous drug administration. In this study, we made a GGA-releasing 
device with photopolymerized polyethylene glycol dimethacrylate (PEGDM) and 
triethylene glycol dimethacrylate (TEGDM) and evaluated the drug effects in a rat 
model of phototoxicity.
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63.2  Materials and Methods

63.2.1  Device Fabrication, GGA Loading, and Release

The GGA-releasing device was made from PEGDM and TEGDM, as reported pre-
viously (Kawashima et al. 2011). GGA was obtained from Eisai Co., Ltd. (Tokyo, 
Japan) and was suspended in P60 prepolymer (60 % PEGDM + 40 % TEGDM) at 
a concentration of 250 mg/mL. The GGA mixture (1.2 μL) was poured into the 
reservoir and photopolymerized for 90 s. A reservoir cover was prepared by apply-
ing a prepolymer mixture of the required concentrations of PEGDM and TEGDM 
of P0 (0 % PEGDM + 100 % TEGDM), P40 (40 % PEGDM + 60 % TEGDM), or 
P80 (80 % PEGDM + 20 % TEGDM) to the reservoir, followed by ultraviolet light 
(UV) curing for 3 min. A device with no cover (pellet) was prepared as the control. 
The devices were incubated in 1 mL of phosphate-buffered saline (PBS) at 37 °C, 
and GGA amounts were then measured by high-performance liquid chromatogra-
phy. The results are reported as the mean ± standard deviation (SD) of six evaluated 
samples of each device (GGA, saline, or pellets alone).

63.2.2  Animals, Device Implantation, and Light Exposure

Male Sprague-Dawley rats (Japan SLC; Hamamatsu, Japan) were used in this study. 
All animals were handled in accordance with the ARVO Statement for the Use 
of Animals in Ophthalmic and Vision Research, after receiving approval from the 
Institutional Animal Care and Use Committee of the Tohoku University Environ-
mental & Safety Committee (No. 22MdA-457). The rats were anesthetized and the 
devices were placed onto the left eyes at the sclerae, then the conjunctiva was su-
tured in place. The right eye of each animal served as the control. The pupils were 
dilated and exposed to 8000 lx of white fluorescent light (Toshiba Corp.; Tokyo, 
Japan) for 18 h, kept in the dark for 4 days, and then electroretinograms (ERGs) 
were recorded.

63.2.3  RNA Extraction and RT-PCR

To explore the GGA effects on the retina, HSP70 and Trx1 expression in the retina 
and RPE/choroid were examined by real-time polymerase chain reaction (RT-PCR). 
The entire retina and RPE-choroid-sclera tissues ( n = 6 eyes/group) were homog-
enized, followed cDNA generation, and RT-PCR was performed. The sequences 
of the PCR primer pairs were: HSP70, 5ʹ- CCA AGA ATG CGC TCG AGT CCT 
ATG—3ʹ (forward) and 5ʹ- CCT CTT TCT CAG CCA GCG TGT TAG A—3ʹ (re-
verse); Trx1, 5ʹ- ATG GTG AAG CTG ATC GAG AGC—3ʹ (forward) and 5ʹ- TTA 
GGC AAA CTC CGT AAT AGT GG—3ʹ (reverse); GAPDH, 5ʹ- AAG GTG AAG 
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GTC GGA GTC AA—3ʹ (forward) and 5ʹ- TTG AGG TCA ATG AAG GGG TC—
3ʹ (reverse).

63.2.4  Western Blotting

The retinas were lysed, electrophoresed, and transferred to polyvinylidene fluoride 
membranes (Nagai et al. 2014). A primary antibody against HSP70 (1:1000; Cell 
Signaling Technology; Danvers, MA, USA) and GAPDH (1:1000; Cell Signaling) 
were used.

63.2.5  ERG

At 1 and 4 weeks after light exposure, flash ERGs were recorded (Mayo Corp.; 
Aichi, Japan) according to the methods we reported previously (Nagai et al. 2014).

63.2.6  Histological Analysis

At 1 and 4 weeks after light exposure, the eyes were enucleated and kept immersed 
for 24 h at 4 °C in a fixative solution containing 4 % paraformaldehyde, and stained 
with hematoxylin and eosin.

63.2.7  Statistical Analysis

Experimental data are presented as means ± SD. Statistical significance was calcu-
lated with Ekuseru-Toukei 2012 (Social Survey Research Information Co., Ltd.; 
Tokyo, Japan), using unpaired t-tests. Differences were considered significant if 
P < 0.05.

63.3  Results

63.3.1  ControlledRrelease of GGA, RT-PCR, Western 
Blotting

The GGA was loaded in the polymeric device with capsule dimensions of 2.5 mm 
(length) × 2 mm (width) × 1 mm (height). The GGA was released according to the 
PEGDM/TEGDM ratio. Namely, increasing the PEGDM ratio increased the release 



47563 Transscleral Controlled Delivery of Geranylgeranylaceton Using ...

of GGA. If we applied no PEGDM (P0), no GGA was released; conversely, a burst 
was observed if we used no capsule and cover (pellets alone) (Fig. 63.1a). Gene 
expression analysis showed significant upregulation of HSP70 and Trx1 in the 
sclera/choroid/RPE of rats treated with the GGA-loaded device (at 1 week post-im-
plantation) compared with those rats treated with PBS-loaded device (Fig. 63.1b). 
In the neural retina, HSP70 and Trx1 were slightly up-regulated at 4 weeks post-
implantation. Western blotting also showed induction of HSP70 and Trx1 in sclera/
choroid/RPE fraction (Fig. 63.1c). HSP70 and Trx1 expression were not affected 
in the retina.

63.3.2  ERG and Histology

The ERG b-wave amplitudes in rats receiving the GGA-loaded devices were sig-
nificantly preserved at 1 week (Fig. 63.2a) and 4 weeks (Fig. 63.2b) after device 

Fig. 63.1   a GGA was released depending on the ratio of PEGDM/TEGDM. P0, 40, and 80 show 
the PEGDM ratio against TEGDM. Pellet shows no reservoir. HSP70 and Trx1 expression were 
examined in the sclera/choroid/RPE ( RPE fraction) and retina at 1 or 4 weeks after device implan-
tation using RT-PCR (b) or western blotting (c). Statistically significant HSP70 gene expression 
was observed in the GGA-loaded device-treated RPE fraction at 1 week after implantation
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implantation when compared to those rats receiving the PBS-loaded device or the 
non-treated control rats. Histological evaluations showed that the outer nuclear 
layer (ONL) thickness was remarkably thinned in the PBS-loaded device group 
or the non-treated group; the group receiving the GGA-loaded device significantly 
suppressed light damage when compared with the PBS-loaded device group at both 
1 and 4 weeks (Fig. 63.2c, d).

63.4  Discussion

The design of drug-delivery systems targeting the retina is a challenging ophthal-
mological task. Transscleral delivery has emerged as a more attractive method for 
treating retinal disorders, because it can deliver a drug locally and is less invasive 
compared with intravitreal injections. In the present study, we demonstrated retinal 
neuroprotection using a polymeric device that can release GGA transsclerally.

Fig. 63.2   The ERG b-wave amplitudes were significantly preserved in rats at 1 week (a) and 4 
weeks (b) after GGA-loaded device implantation when compared to those receiving the PBS-
loaded devices or the non-treated controls. c shows representative results of histological exami-
nation. d represents the results of each thickness of outer nuclear layer ( ONL). Statistically 
significant preservation of the ONL thickness was observed in the GGA-loaded device treated rats 
when compared to those of PBS-loaded device group. * and ** show significant difference at 1 
week and 4 weeks, respectively
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The challenges of transscleral delivery are the reduction of drug elimination by 
conjunctival lymphatic/blood clearance and a device design that can release drugs 
in a zero-order controlled-release manner while being implantable onto the sclera. 
Lee et al. (2010) reported that conjunctival blood and lymphatic vessel elimination 
considerably limit transscleral drug delivery to the retina. Ranta et al. (2010) noted 
that local clearance by blood flow and lymphatics removes most of a drug dose. 
The loss from the sub-conjunctival depot to the blood and lymphatic vessels is 83 to 
95 % (Ranta et al. 2010). Our device released drug mainly to the sclera-facing side, 
but not to the conjunctiva. Although the devices were loosely covered with connec-
tive tissue by the end of our experiments, the amount released after implantation 
was almost the same as before implantation (data not shown). This may indicate that 
the release performance would be maintained after transplantation.

In conclusion, transscleral GGA delivery using our device protected rats against 
light-induced retinal damage. This device may offer a less-invasive drug delivery 
method to treat retinal diseases.
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Chapter 64
Targeting the Proteostasis Network in 
Rhodopsin Retinitis Pigmentosa

David A. Parfitt and Michael E. Cheetham

Abstract Mutations in rhodopsin are one of the most common causes of retinitis 
pigmentosa (RP). Misfolding of rhodopsin can result in disruptions in cellular pro-
tein homeostasis, or proteostasis. There is currently no available treatment for RP. 
In this review, we discuss the different approaches currently being investigated for 
treatment of rhodopsin RP, focusing on the potential of manipulation of the proteo-
stasis network as a therapeutic approach to combat retinal degeneration.

Keywords Retinal degeneration · Retinitis pigmentosa · Rhodopsin · P23H · 
Proteostasis · Molecular chaperones · Heat shock proteins · ERAD

64.1  Introduction

Retinitis pigmentosa is a group of inherited disorders that cause retinal degenera-
tion via progressive loss of the rod and cone photoreceptors (Hartong et al. 2006). 
The first RP gene identified was rhodopsin (Dryja et al. 1990). Rhodopsin is the 
prototypical G-protein coupled receptor (GPCR), responsible for detecting light in 
the rod photoreceptors, comprised of the protein rod opsin with its chromophore 
11-cis-retinal. Rod opsin is produced in the endoplasmic reticulum (ER), where 
it undergoes multiple post-translational modifications, such as glycosylation and 
disulfide bond formation (Kosmaoglou et al. 2008). Correctly folded rhodopsin is 
then transported and packed into the disks in the outer segment (OS) of the photo-
receptor (Pearring et al. 2013). Over 200 point mutations in rhodopsin have been 
identified so far (RetNet https://sph.uth.edu/retnet/), which can be classified accord-
ing to their biochemical and cellular properties (Mendes et al. 2005). The majority 
of rhodopsin mutations are class II mutations, including P23H the most common 
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mutation in North America, that cause protein misfolding, retention in the ER and 
degradation. Rhodopsin is the major protein of the rod OS, so there is a high de-
mand on the photoreceptor ER to produce rhodopsin. Photoreceptors have multiple 
mechanisms to cope with high protein turnover and maintain protein homeostasis, 
or proteostasis, including the heat shock response (HSR), the unfolded protein re-
sponse (UPR), ER-associated degradation (ERAD) and autophagy systems (Balch 
et al. 2008; Athanasiou et al. 2013). Misfolded proteins, such as P23H rhodopsin, 
can induce these adaptive networks to reduce protein production, enhance folding 
facilitators and stimulate degradation. Targeting these networks may, therefore, be 
beneficial in rhodopsin RP.

64.2  Potential Treatments for Rhodopsin RP

Pharmacological agents may be used to directly target the folding of misfolded pro-
teins, as in the case of pharmacological and chemical chaperones, or by inducing the 
cell’s molecular chaperone machinery.

64.2.1  Pharmacological and Chemical Chaperones

Pharmacological chaperones are compounds that specifically bind and stabilize 
near-native states to improve the folding of misfolded proteins. For example, the 
retinoids 9-cis- and 11-cis-retinal have been shown to stabilize P23H rod opsin in 
the ER allowing it to traffic through the secretory pathway and improve the yield 
of folded rhodopsin (Saliba et al. 2002; Noorwez et al. 2004). Importantly, toxic 
gain-of-function effects, cell death and protein aggregation, of misfolded P23H rod 
opsin were reduced by retinoids in a cell model. Retinoids also counteracted the 
dominant-negative effect of misfolded rod opsin on wild-type rod opsin (Mendes 
and Cheetham 2008). Furthermore, transgenic mice with another rhodopsin mis-
folding mutation, T17M, had improved electroretinogram (ERG) responses and 
preservation of photoreceptor survival when treated with 11-cis-retinal (Li et al. 
1998). Recent work suggests that 11-cis-retinal treatment can partially rescue the 
traffic and folding of a range of rhodopsin misfolding mutants in vitro (Krebs et al. 
2010); however, the rescued mutant rhodopsin is still inherently unstable (Opefi 
et al. 2013; Chen et al. 2014) and is likely to misfold after leaving the ER, especially 
if the retinoid leaves the binding pocket following light exposure.

In contrast, chemical chaperones or kosmotropes are small molecules (e.g. 
4-phenylbutyric acid (4-PBA)) that stabilize proteins in a non-specific manner. 
Kosmotropes have been shown to reduce P23H-mediated cell death and insoluble 
protein load in cells (Mendes and Cheetham 2008). Tauroursodeoxycholic acid 
(TUDCA) is another chemical chaperone with anti-apoptotic properties. P23H 
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transgenic rats treated with TUDCA had improved ERG responses and preserved 
retinal architecture (Fernandez-Sanchez et al. 2011).

64.2.2  HSR Inducers

The HSR is a transcriptional response to a wide variety of cell stress and induces the 
expression of many proteins, in particular heat shock proteins (Hsps). Many Hsps 
function as molecular chaperones to help proteins attain their correct conformation, 
regulate protein quality control and the degradation of misfolded client proteins. 
Therefore, this network is a potential target to treat protein-misfolding diseases, 
and upregulation of the HSR can protect against several models of neurodegen-
eration. One method of upregulating molecular chaperone expression is to inhibit 
Hsp90. Hsp90 is in a feedback loop with the HSR transcription factor, heat shock 
factor 1 (HSF-1), and Hsp90 inhibition results in the post-translational modifica-
tion and traffic of HSF-1 to nucleus where it induces other heat shock proteins 
that act on misfolded proteins (Fig. 64.1; Morimoto 1998). Treatment with Hsp90 
inhibitors reduced aggregation of P23H rod opsin and associated cell death in a cell 
model (Mendes and Cheetham 2008). Furthermore, the Hsp90 inhibitor HSP990 

Fig.  64.1   Pharmacological manipulation of proteostasis networks in rhodopsin RP. Inducing 
molecular chaperone expression by manipulating (1) the HSR, (2) the UPR or (3) inhibiting Hsp90 
can alleviate the effects of misfolded rhodopsin. (4) Inducing autophagy helps remove aggregated 
misfolded protein. (5) ER chaperones such as BiP, EDEM1 and ERdj5 can be directly manipulated 
to maintain solubility in the ER and promote ERAD (6) for the removal of misfolded rhodopsin
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can improve retinal function and architecture in vivo in models of rhodopsin RP 
(Aguila et al. 2014).

Another method to induce the HSR is with hydroxylamine derivatives (HADs), 
such as bimoclomol and arimoclomol (Vigh et al. 1997). These compounds potenti-
ate the induction of the HSR but rely upon a boosting a pre-existing stress; as such 
they are HSR co-inducers. We recently used arimoclomol in cell and animal models 
of P23H rhodopsin RP (Parfitt et al. 2014). Arimoclomol potentiated the HSR in the 
presence of P23H rhodopsin in cells, leading to enhanced Hsp expression. Interest-
ingly, the HSR was already activated by the mutant rhodopsin expression in the 
retinae of P23H transgenic rats and this HSR was further enhanced by arimoclomol 
treatment. Furthermore, arimoclomol led to improved ERG responses and photore-
ceptor survival in lines of transgenic rats with fast (P23H-1) and medium (P23H-3) 
rates of degeneration. Arimoclomol treatment caused a reduction of rhodopsin im-
munoreactivity in the cell bodies of the ONL and decreased the amount of insoluble 
rhodopsin, but there was no change in the normalized levels of soluble rhodopsin, 
suggesting that arimoclomol was stimulating the degradation of aggregation-prone 
rhodopsin, rather than rescuing the folding of the mutant protein. These changes 
correlated with a preservation of the photoreceptor OS structure implying that the 
defects in OS structure seen in these models is due, at least in part, to a dominant 
gain of function potentially related to unstable rhodopsin, which can be suppressed 
by arimoclomol. Interestingly, in addition to the enhanced HSR, arimoclomol po-
tentiated the UPR in the retina, suggesting that these two proteostasis pathways 
might co-operate in photoreceptors (Parfitt et al. 2014).

64.3  The UPR in Rhodopsin RP

The UPR is activated in P23H and T17M animal models (Lin et al. 2007; Kunte 
et al. 2012). Chronic activation of the UPR is associated with cell death; however, 
arimoclomol treatment enhanced the activation of all three branches of the UPR, 
whilst still protecting against mutant rhodopsin (Parfitt et al. 2014). Furthermore, 
the ablation of CHOP, which is a downstream pro-apoptotic effector of PERK, in 
P23H or T17M rhodopsin mouse models did not alter retinal degeneration (Nashine 
et al. 2013; Adekeye et al. 2014). Collectively these data suggest that activation of 
the UPR by mutant rhodopsin per se is not toxic to photoreceptors and might be 
a protective adaptive response that stimulates factors that can help deal with the 
mutant rhodopsin.

64.4  ER Chaperones and ERAD of Rhodopsin.

The ER-resident chaperones that interact with WT and mutant rhodopsin in the ER 
to facilitate rhodopsin folding or quality control and degradation are starting to be 
identified. BiP (HSPA5) has an important role in rod opsin biogenesis, as wild type 
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rod opsin aggregates in the absence of BiP, whereas BiP overexpression improves 
P23H rhodopsin mobility and loss of BiP increases P23H rhodopsin aggregation 
(Athanasiou et al. 2012). BiP expression is increased in P23H transgenic rats (Lin 
et al. 2007; Parfitt et al. 2014), and overexpression of BiP in P23H rats improves 
ERG responses and ONL thickness (Gorbatyuk et al. 2010).

In ERAD, misfolded proteins are transported out of the ER where they are de-
graded by the ubiquitin-proteasome system (UPS) in the cytosol (Fig. 64.1). The 
ERAD effector EDEM1 can stimulate the degradation of P23H mutant rhodop-
sin and promote the traffic of the remaining P23H protein by improving fold-
ing, although this is only transient as the protein is unstable once it leaves the ER 
(Kosmaoglou et al. 2009). The ER-resident reductase, ERdj5 (DNAJC10), forms a 
chaperone network with EDEM1 and BiP and also plays a role regulating the bio-
genesis of rhodopsin, maintaining solubility of mutant rhodopsin within the ER and 
stimulating ERAD (Athanasiou et al. 2014). The identity of the complex involved 
in translocation of P23H rhodopsin is unknown; however, the AAA-ATPase VCP/
p97 promotes the retrotranslocation and degradation of P23H rhodopsin (Griciuc 
et al. 2010).

An alternative method for removing misfolded protein is autophagy, where sub-
strates are enclosed in double-membrane autophagosomes before degradation by 
lysozymes. Rapamycin is an inhibitor of mTOR, which is a negative regulator of 
autophagy. Rapamycin treatment reduced inclusion formation in cells expressing 
P23H rod opsin (Mendes and Cheetham 2008). Recent work showed that rapamycin 
treatment in P23H-3 rats improved ERG responses (Sizova et al. 2014).

64.5  Conclusions

The proteostasis networks have varied roles in protecting cells against misfolded 
proteins, which is particularly important in photoreceptors. Manipulation of these 
pathways, through chemical or genetic means, has provided insights into the mech-
anisms behind this protection. The identification of compounds with low toxicity, 
like arimoclomol, that can restore proteostasis could be potentially beneficial for 
rhodopsin RP.
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Chapter 65
Gene Therapy for MERTK-Associated Retinal 
Degenerations

Matthew M. LaVail, Douglas Yasumura, Michael T. Matthes, Haidong Yang, 
William W. Hauswirth, Wen-Tao Deng and Douglas Vollrath

Abstract MERTK-associated retinal degenerations are thought to have defects in 
phagocytosis of shed outer segment membranes by the retinal pigment epithelium 
(RPE), as do the rodent models of these diseases. We have subretinally injected 
an RPE-specific AAV2 vector, AAV2-VMD2-hMERTK, to determine whether this 
would provide long-term photoreceptor rescue in the RCS rat, which it did for up 
to 6.5 months, the longest time point examined. Moreover, we found phagosomes 
in the RPE in the rescued regions of RCS retinas soon after the onset of light. 
The same vector also had a major protective effect in Mertk-null mice, with a con-
comitant increase in ERG response amplitudes in the vector-injected eyes. These 
findings suggest that planned clinical trials with this vector will have a favorable 
outcome.

Keywords Gene therapy · Retinal degeneration · MERTK · Phagocytosis · 
Treatment
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65.1  Introduction

Retinitis pigmentosa is a family of diseases that affects approximately one in 3500 
people worldwide and is a major cause of inherited blindness in the Western world. 
More than 50 genes have been identified in which mutations lead to retinitis pig-
mentosa (http://www.sph.uth.tmc.edu/ retnet/). Vision loss results from the degen-
eration of rod and cone photoreceptors due to mutation of genes expressed either in 
these cells, or in the closely interacting retinal pigment epithelial (RPE) cells.

The RCS rat is a widely studied retinal degeneration (RD) model in which pho-
toreceptor cells begin to degenerate at postnatal day (P) 20, with most disappearing 
by about P60 (Dowling and Sidman 1962). It has been known since the 1970s that 
this degeneration has a defect in the ability of the RPE to phagocytize rod outer 
segment tips, leading to an accumulation of outer segment debris in the subretinal 
space (Bok and Hall 1971; Mullen and LaVail 1976). The gene responsible for 
the defect in RCS rats was identified as the mer proto-oncogene tyrosine kinase 
( Mertk) (D’Cruz et al. 2000), which encodes a transmembrane receptor tyrosine 
kinase (Strick and Vollrath 2010).

Once the mutated gene was identified, proof of concept of gene replacement 
therapy was obtained in RCS rats using an adenovirus vector by Vollrath et al. 
(2001). Subsequently, a number of studies using different vectors, including adeno-
associated virus (AAV) (Smith et al. 2003; Deng et al. 2012) and lentivirus (Tscher-
nutter et al. 2005) were effective to different degrees, each showing improvement 
in photoreceptor survival, electroretinographic responses and RPE phagocytic func-
tion.

Numerous studies have described individuals with inherited RD due to MERTK 
mutations (Gal et al. 2000; Thompson et al. 2002; Tschernutter et al. 2006; Charbel 
Issa et al. 2009; Mackay et al. 2010; Shahzadi et al. 2010; Ostergaard et al. 2011), 
emphasizing the critical need for appropriate vectors for gene replacement therapy. 
Recombinant AAV (rAAV) in particular has gained prominence in the treatment of 
inherited retinal disorders in recent years (Boye et al. 2013). Three separate Phase 
I clinical trials for Leber congenital amaurosis type 2 have demonstrated the safety 
of AAV2 in human patients (Jacobson et al. 2006; Bainbridge et al. 2008; Cideciyan 
et al. 2008; Maguire et al. 2008).

A series of preclinical potency and safety evaluations of an AAV2 vector ex-
pressing human MERTK cDNA driven by an RPE-specific VMD2 (Bestrophin) 
promoter that was planned for human patients was recently carried out (Conlon 
et al. 2013). The − 585/+ 38 bp version of the human VMD2 promoter had previ-
ously been shown to drive efficient and exclusive transgene expression in the RPE 
(Alexander and Hauswirth 2008). The effectiveness of the vector in RCS rats was 
demonstrated by electroretinogram (ERG) analysis done 60 days after injection at 
P9. The potential toxicity of the vector was assessed in Sprague–Dawley (SD) rats 
by electrophysiology, retinal morphology, and GLP-compliant experiments based 
on clinical observations and histopathology.
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For the assessment of this RPE-specific vector on RDs for clinical trial applica-
tion, it would be useful to know whether the vector is effective in long-term reversal 
of the defect in RPE phagocytosis and in rescue of photoreceptors in RCS rats. In 
addition, it would be important to demonstrate that the vector can rescue photo-
receptors in a MERTK-associated RD in a different species with a different gene 
mutation. In this study, we have addressed both of these issues.

65.2  Materials and Methods

65.2.1  Animals

All studies were conducted in accordance with the ARVO Statement for the Use 
of Animals and the IACUC at UCSF. Inbred, pink-eyed RCS rats with inherited 
retinal dystrophy due to a deletion in the Mertk gene (D’Cruz et al. 2000) were 
characterized previously (Dowling and Sidman 1962; LaVail and Battelle 1975). 
Mertk knockout mice with an RCS-like retinal dystrophy phenotype were described 
earlier (Duncan et al. 2003).

65.2.2  Vector Injections, ERG Procedure and Histological 
Analysis

Subretinal injections of the AAV2-VMD2-hMERTK vector were made at P10 for 
RCS rats and at P4 for Mertk knockout mice using a previously described method 
(Lewin et al. 1998).

ERG analysis was carried out as previously described (Lewin et al. 1998).
For histologic studies to quantify the outer nuclear layer (ONL) thickness, meth-

ods previously described were used (LaVail and Battelle 1975; LaVail et al. 1987; 
Faktorovich et al. 1992).

65.3  Results

65.3.1  Long-Term Photoreceptor Rescue and Reversal of 
Phagocytosis Defect in RCS Rats

Comparison at P196 of the retinal structure of eyes of RCS rats injected subretinally 
with AAV2-VMD2-hMERTK and uninjected contralateral control eyes revealed a 
remarkable difference, equal to that seen by Conlon et al. (2013) for younger rats. 
In the uninjected eyes, most of the photoreceptor nuclei in the ONL had degenerated 
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and disappeared, and an outer segment debris layer characteristic of retinal dys-
trophy in RCS rats was evident (Fig. 65.1a). By contrast, the vector-injected eyes 
appeared virtually normal in the areas of maximal rescue (Fig. 65.1b). The extent 
of photoreceptor rescue was typically about half of the full retinal length as shown 
in a retinal spidergram (Fig. 65.1c). When the RCS retinas were taken soon after 
the onset of light in the morning, large packets of outer segment disc membranes 
(phagosomes) were abundant in the RPE cell processes and internally within the 
RPE cell bodies (Fig. 65.1d).

65.3.2  Photoreceptor Rescue in the MERTK-null Mouse

The differences at P52 in retinal structure between eyes of Mertk knockout mice in-
jected subretinally with AAV2-VMD2-hMERTK at P4 and uninjected contralateral 

Fig. 65.1   Structural analysis of RCS rats injected subretinally into one eye with AAV2-VMD2-
hMERTK compared with uninjected (UI) contralateral eyes of the same rats. a, b Light micro-
graphs of 1-µm plastic sections of the posterior retina of the UI eye (a), where most photoreceptor 
nuclei in the ONL have degenerated and disappeared, and an outer segment debris (d) zone is pres-
ent. The retina of the opposite eye from the eye injected with vector is shown (b), which is compa-
rable in appearance to that of normal rat retinas. c Retinal spidergram showing the ONL thickness 
along the vertical meridian of UI and vector-injected eyes (each data point is the mean ± SD from 2 
rats). d Higher magnification of a vector-injected eye showing phagosomes ( arrows) at the apical 
surface and intracellularly in the RPE. IS inner segments. Scale bars: b = 20 µm; d = 5 µm
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eyes were also remarkable. In the uninjected eyes, the ONL had been reduced to less 
than one complete row (Fig. 65.2a). By contrast, the vector-injected eyes appeared 
virtually normal in the areas of maximal rescue (Fig. 65.2b). The extent of photo-
receptor rescue typically was most of the full retinal length, as viewed in a retinal 
spidergram of ONL thickness (Fig. 65.2c). The ERG responses were dramatically 
different for each of the waveforms; the uninjected eyes showed no scotopic a- or 
b-waves, and only minimal photopic b-waves, but the vector-injected eyes had re-
sponses that were 40–60 % of normal (Fig. 65.2d).

65.4  Discussion

In this study, we found that when the RPE-specific AAV2-VMD2-hMERTK vec-
tor was injected subretinally, it protected photoreceptors from degeneration in the 
RCS rat for up to 6.5 months of age, the oldest examined. Moreover, the absence 

Fig. 65.2   Structural and functional analysis of Mertk knockout mice injected subretinally into 
one eye with AAV2-VMD2-hMERTK (b) compared with uninjected (UI) contralateral eyes of the 
same mice (a). Labeling as described in Fig. 65.1 and in the text. c Retinal spidergram showing 
the ONL thickness along the vertical meridian of UI and vector-injected eyes (each data point is 
the mean ± SD from 5 mice). d Electroretinographic response amplitudes from the same mice as 
in c. Scale bar = 20 µm
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in phagocytosis imparted by the Mertk gene defect in the RCS rats (Bok and Hall 
1971) was clearly reversed, as large phagosomes were abundant when the eyes were 
taken soon after the onset of light, typical of circadian outer segment disc shedding 
in the rat (LaVail 1976, 1980).

We also found that in the Mertk knockout mouse, which exhibits rapid loss of 
most photoreceptors (Duncan et al. 2003), subretinal injection of the AAV2-VMD2-
hMERTK vector protected a majority of photoreceptor cells from degenerating. As 
a consequence, the electrical activity of the photoreceptors in response to light was 
significantly increased over that in the uninjected control eyes, where the responses 
were almost abolished.

These findings strongly suggest that the RPE-specific AAV2-VMD2-hMERTK 
vector that is being used in a clinical trial of different forms of MERTK-associated 
RDs (FS Alkuraya, personal communation) will prove to be effective.
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Chapter 66
Tamoxifen-Containing Eye Drops Successfully 
Trigger Cre-Mediated Recombination in the 
Entire Eye

Anja Schlecht, Sarah V Leimbeck, Ernst R Tamm and Barbara M Braunger

Abstract Embryonic lethality in mice with targeted gene deletion is a major issue 
that can be circumvented by using Cre-loxP-based animal models. Various induc-
ible Cre systems are available, e.g. such that are activated following tamoxifen 
treatment, and allow deletion of a specific target gene at any desired time point 
during the life span of the animal. In this study, we describe the efficiency of topical 
tamoxifen administration by eye drops using a Cre- reporter mouse strain ( R26R). 
We report that tamoxifen-responsive CAGGCre-ERTM mice show a robust Cre- 
mediated recombination throughout the entire eye.

Keywords Cre · Cre-loxP · Tamoxifen · Eye drops · Eye · Retina

66.1  Introduction

When working with genes associated with germline null alleles that are required for 
major developmental or cell maintenance pathways, scientists frequently face the 
problem of embryonic lethality after constitutional targeted deletion of their gene of 
interest (Branda and Dymecki 2004; Maddison and Clarke 2005). The use of Cre-
loxP-based animal models has greatly expanded the possibilities for scientists to 
delete essential genes in the mouse and thus circumvent the embryonic lethality, as 
this approach allows the generation of tissue- or cell-specific conditional deletions 
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(Kühn and Torres 2002). Moreover, different inducible Cre systems are availabe, 
like such that are tamoxifen-responsive, and allow gene deletion at any desired time 
point. In this study, we used CAGGCre-ERTM mice (Hayashi and McMahon 2002) 
that carry the Cre-ERTM fusion protein, which is comprised of the Cre-recombinase 
fused to a mutant form of the mouse estrogen receptor (Hayashi and McMahon 
2002). The fusion protein is restricted to the cytoplasm and Cre- ERTM will only 
access the nucleus after exposure to tamoxifen. Thus, exposure to tamoxifen in a 
spatially-defined manner allows tissue-specific targeted gene deletion. In this ar-
ticle, we describe a protocol that efficiently causes Cre-mediated recombination 
following topical tamoxifen treatment by applying tamoxifen-containing eye drops. 
Using a Cre- reporter mouse strain ( R26R), we show a robust Cre-mediated recom-
bination throughout the entire eye.

66.2  Material and Methods

Mice All procedures conformed to the tenets of the National Institutes of Health 
Guidelines on the Care and Use of Animals in Research, the EU Directive 2010/63/E, 
and institutional guidelines. Mice that were heterozygous for CAGGCre-ERTM were 
crossed with homozygous Cre-reporter ( R26R) (Soriano 1999) mice. R26R mice 
carry a loxP-flanked DNA segment that prevents the expression of the downstream 
lacZ gene. However, when R26R mice are crossed with a Cre transgenic strain, the 
Cre expression results in the removal of the loxP-flanked DNA segment and lacZ 
is expressed in all cells or tissues where Cre is expressed. In this study, CAG-Cre-
ERTM/R26R mice were used as experimental mice, and R26R littermates as control 
mice. Genetic backgrounds were 129SV ( R26R) or C57Bl6 ( CAGGCre-ERTM).

66.2.1  Tamoxifen Treatment

To induce the nuclear trans-localization of the Cre recombinase and its activation, 
CAG-CreERTM/R26R mice and R26R littermates were treated with tamoxifen-con-
taining eye drops. To this end, tamoxifen (Sigma) was diluted in corn oil (Sigma) to 
a final concentration of 5 mg/ml and the solution was pipetted as eye drops (10 µl/
drop) onto the closed eyelids of mouse pups three times per day in 4 h intervals. Our 
treatment started at p8 and lasted to p12, which obviously can be adjusted for other 
time points depending on the gene and molecular processes of interest.

66.2.2  PCR Analysis

Genotypes were screened by isolating genomic DNA from tail biopsies and testing 
for transgenic sequences by PCR as described previously (Braunger et al. 2013b). 
The following PCR primers were used: Cre genotyping (5′-CAC CCT GTT ACG 
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TAT AGC-3′ and 5′-CTA ATC GCC ATC TTC CAG-3′) and LacZ genotyping (5′-
ATC CTC TGC ATG GTC AGG TC-3′ and 5′-CGT GGC CTG ATT CAT TCC-3′). 
The thermal cycle profile was denaturation at 96 °C for 30 s, annealing at 57 °C 
(Cre), or 60 °C (LacZ) for 30 s, and extension at 72 °C for 1 min for 35 cycles.

66.2.3   β-galactosidase Staining

Lac-Z-staining was performed in mixed CAGGCre-ERTM/R26R and R26R mice fol-
lowing a previously published protocol (Baulmann et al. 2002). Briefly, after enu-
cleation, eyes were fixed in LacZ fixative solution (2 mM MgCl2, 5 mM EGTA (pH 
7.3), 0.2 % glutaraldehyde in 0.1 M phosphate buffer (pH 7.3) at 4 °C for 30 min. 
After three 10 min rinses in LacZ wash buffer (0.01 % sodium deoxycholate, 0.02 % 
NP-40, 2 mM MgCl2 in 0.1 M phosphate buffer (pH 7.3)), β-galactosidase activity 
was visualized in X-Gal staining solution (500 mM K4 Fe(CN)6 × 3 H20, 500 mM 
K3Fe(CN)6, 1 mg/ml X-gal in LacZ wash buffer). The eyes were stained in X-Gal 
solution at 37 °C for 24 h, rinsed in LacZ wash buffer (3 × 10 min) followed by one 
10 min rinse in phosphate buffer and then processed to paraffin embedding. Paraf-
fin sections (6 µm thick) were analyzed as mentioned previously (Braunger et al. 
2013a).

66.3  Results- Localization of Cre-mediated 
Recombination in Ocular Tissues

After topical tamoxifen treatment with eye drops, we used β-galactosidase staining 
to localize Cre-mediated recombination in the eye. Eyes of CAGGCre-ERTM/R26R 
mice (Fig. 66.1b) showed an intense β-galactosidase reaction throughout the en-
tire organ while control eyes ( R26R) were essentially negative (Figs. 66.1a and 
Fig. 66.2a, c, e, and g). The detailed analysis of CAGGCre-ERTM/R26R eyes showed 
an intense β-galactosidase reaction in the anterior eye segment. We observed in 
particular a strong β-galactosidase staining in the structures of the chamber angle 
outflow pathway, in the ciliary body (Fig. 66.2b) and in the cornea, as well as in 
the epithelium of the lens (Fig. 66.2d). In the posterior eye segment of CAGGCre-
ERTM/R26R eyes, the sensory retina, the retinal pigment epithelium (RPE) and the 
choroid (Fig. 66.2f) stained positive for β-galactosidase indicating a successful Cre-
mediated recombination in basically every ocular cell type. In addition, in sections 
where the optic nerve was cut, we observed positive staining along the sheaths sur-
rounding the nerve indicating that tamoxifen had been distributed outside the eye 
(Fig. 66.2h).
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Fig. 66.2   Detailed localiza-
tion and activation of Cre 
recombinase in the eye. 
Detailed magnification of 
the β-galactosidase stain-
ing in the structures of the 
chamber angle outflow 
pathway (b), the cornea and 
the lens epithelium (d), the 
retina and choroid (f) and the 
optic nerve (h) of a 14 days 
old CAGGCre-ERTM/R26R 
mouse. The control littermate 
did not show a positive reac-
tion for β-galactosidase (a, 
c, e and g). RGC retinal gan-
glion cells, INL inner nuclear 
layer, ONL outer nuclear 
layer, RPE retinal pigment 
epithelium, C choroid, ON 
optic nerve, CB ciliary body, 
CO cornea, TM Trabecular 
meshwork, SC Schlemm’s 
canal, LE lens

 

Fig. 66.1   Localization and activation of Cre recombinase in the eye following tamoxifen con-
taining eye drops. An intense β-galactosidase staining throughout the entire eye in 14 days old 
CAGGCre-ERTM/R26R mouse (b) indicates a successful activation of the Cre recombinase in ocu-
lar tissue following treatment with tamoxifen eye drops. Control littermates ( R26R) (a) did not 
show a positive reaction
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66.4  Discussion

Our results show that induction of Cre recombinase by using tamoxifen-containing 
eye drops is a suitable method to induce a tamoxifen-dependent Cre-mediated re-
combination in ocular tissues.

The topical application of tamoxifen-containing eye drops provides several ad-
vantages. As a non-invasive method it greatly reduces or even avoids the potential 
risk of infections, which might eventually result from intra-peritoneal injections 
(Leenaars et al. 1998; Leenaars and Hendriksen 2005), which is a common method 
to administer tamoxifen. Intravitreal tamoxifen injections harbor the same risks of 
infection. Furthermore this route might influence the expression level of potential 
genes of interests because intravitreal injection of the vehicle alone already results 
in the activation of microglia and/or an elevated expression of neuroprotective mol-
ecules (Braunger 2014; Seitz and Tamm 2014).

In our study, we noticed staining along the optic nerve outside the eye, a find-
ing that appears to indicate that tamoxifen is distributed to tissues outside the eye. 
One could avoid this and achieve even greater spatial control of Cre expression by 
reducing the duration of tamoxifen treatment, e.g. from 5 days, to 3 days or maybe 
even less. Of course, this approach could in turn result in a Cre-mediated recombi-
nation gradient in the eye itself. This scenario might be of great interest for scientist 
focusing on the anterior segment of the eye like the cornea or the chamber angle 
outflow pathway. Here, a reduced exposure time might reduce the tamoxifen- in-
duced Cre- mediated recombination in other parts of the eye or the body to an even 
greater extend. As a side note, our system also allows the usage of strong promoters 
like CMV or β- actin that would drive Cre- expression in every cell. The expression 
of Cre, however, can be spatially controlled, as the tamoxifen is applied topical.

Finally, considering tamoxifen induced toxicity, which may influence cell vi-
ability or even promote cell death (Kim et al. 2014), the topical administration of 
tamoxifen using eye drops could obviously reduce this risk, too.

In summary, our approach may be of great interest for scientists in the field of 
experimental eye research.
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Chapter 67
Distinct Expression Patterns of AAV8 Vectors 
with Broadly Active Promoters from Subretinal 
Injections of Neonatal Mouse Eyes at Two 
Different Ages

Wenjun Xiong and Constance Cepko

Abstract The retinal expression patterns were analyzed following the injection of 
serotype 8 adeno-associated virus (AAV8) vectors that utilize two broadly active 
and commonly used sets of transcription regulatory sequences. These include 
the human cytomegalovirus (CMV) immediate early (IE) enhancer/promoter and 
the hybrid CAG element (also known as CAGGS or CBA) composed of a partial 
human CMV IE enhancer and the chicken β-actin promoter and intron. Subretinal 
delivery to postnatal day 0 (P0) or 6 (P6) mouse eyes resulted in efficient labeling 
of retinal cells, but with very distinct patterns. With P0 delivery, AAV8-CMV-GFP 
selectively labelled photoreceptors, while AAV8-CAG-GFP efficiently labeled both 
outer and inner retinal neurons, including photoreceptors, horizontal cells, amacrine 
cells and retinal ganglion cells. With P6 delivery, both vectors led to efficient label-
ing of photoreceptors and Müller glia cells, but not of inner retinal neurons. Our 
results suggest that the cell types that express the genes encoded by subretinally 
delivered AAV8 vectors are determined by both the timing of the injection and the 
regulatory sequences.

Keywords AAV8 · Subretinal injection · Neonatal mouse eye · Cellular tropism  
· Transgene expression · Human cytomegalovirus (CMV) immediate early (IE) 
enhancer/promoter · Chicken β-actin promoter/enhancer/intron
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67.1  Introduction

In recent years, adeno-associated virus (AAV) vectors have been widely used for 
ocular gene transfer. It has been shown that the labeling pattern of retinal cell types 
is determined by several factors, including the AAV serotype, administration route 
(intravitreal vs. subretinal) and timing (neonatal vs. adult), as well as the regulatory 
sequences used. Although cell type-specific regulatory elements of human origin 
are ideal for clinical applications, composite elements, such as CMV (human CMV 
IE enhancer/promoter/human β-globin intron) and CAG (human CMV IE enhancer/
chicken β-actin promoter/intron with rabbit β-globin 3’ splice site, also called the 
CBA or CAGGS promoter) (Boshart et al. 1985; Niwa et al. 1991), are useful for 
robust and long-term transgene expression in a broad range of cell types in preclini-
cal animal studies. Here we report on the labeling patterns from these two broadly 
active sets of elements in AAV8 vectors following subretinal delivery at two differ-
ent ages. The expression patterns from these vectors changed dramatically when 
they were delivered at P0 vs. P6, demonstrating that the timing of injection during 
neonatal eye development is an important determinant of the expression patterns 
within retinal cell types. These changes in expression patterns may reflect the fate 
of AAV genomes when delivered to mitotic vs. postmitotic cells.

67.2  Materials and Methods

67.2.1  AAV Vector Construction and Production

AAV-CMV-GFP was constructed by cloning GFP cDNA from a pCAG-GFP vector 
(Addgene plasmid 11150 (Matsuda and Cepko 2004)) via EcoR1/Not1 sites into 
an AAV-MCS8 vector, which was obtained from HMS DF/HCC DNA resource 
core. The AAV-CMV-GFP construct contains a human CMV enhancer/promoter, 
human β-globin intron, GFP cDNA, SV40 polyA signal. AAV-CAG-GFP was con-
structed by replacing the CMV promoter with the CAG promoter from pCAG-GFP 
via Spe1/EcoR1. The AAV-CAG-GFP construct contains partial human CMV IE 
enhancer, chicken β-actin promoter, a hybrid intron composed of a chicken β-actin 
5’ splice site and rabbit β-globin 3’ splice site with the majority of the intron deriv-
ing from the chicken β-actin intron 1, GFP cDNA, woodchuck hepatitis virus post-
transcriptional regulatory element, and SV40 polyA. AAV8 vectors were produced 
by triple transfection of 293T cells (AAV vector, Rep2/Cap8, and pHGTI-adeno1 
helper plasmids), purified based on published method (Vandenberghe et al. 2010), 
titered by RT-PCR, and diluted to 5 × 1012 genome copies (gc)/ml in PBS.
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67.2.2  Animals and AAV Injection

Timed pregnant E18 CD1 animals were ordered from Charles River Laboratory. 
Subretinal injection of P0 and P6 eyes was performed as described (Matsuda and 
Cepko 2004; Wang et al. 2014). A preset volume of virus (~ 0.3 μl) was delivered 
by the Femtojet (Eppendorf).

67.2.3  Histology and Imaging

At 15 days post injection, retinas were processed for immunohistochemistry as de-
scribed (Matsuda and Cepko 2004; Wang et al. 2014). Antibodies used in this study 
included goat anti-ChAT (Millipore, 1:100) and Cy3 anti-goat (Jackson Immuno, 
1:1000).

67.3  Results

67.3.1  Distinct Patterns of GFP Expression from AAV8-
CMV-GFP and AAV8-CAG-GFP Following 
Subretinal Injection into P0 Mouse Eyes

CMV and CAG are two commonly used broadly active sets of regulatory elements 
that drive robust gene expression in a broad spectrum of cell types. Although these el-
ements have been evaluated in the past for their expression in the retina in the context 
of AAV vectors (Allocca et al. 2007; Watanabe et al. 2013), a comparison of the pat-
terns following injection at P0 has not been reported. P0 subretinal injections allow 
for fairly uniform spread of an inoculum throughout the entire retina, presumably as 
the photoreceptor outer segments have not yet developed, and thus their interactions 
with the retinal pigment epithelium (RPE) have not created a barrier to the spread 
of the inoculum. We evaluated the activities of these promoters in AAV8 vectors for 
retina transduction (Fig. 67.1a). AAV8-CMV-GFP or AAV8-CAG-GFP vectors at a 
dose of ~ 1.5 × 109 gc/eye were injected subretinally into P0 CD1 mouse eyes, and 
retinas were harvested 15 days after virus injection. Bright GFP signal was observed 
from nearly all retinas under a dissecting fluorescent microscope, demonstrating that 
the early mouse retina is quite susceptible to infection and expression from these 
vectors (Fig. 67.1b). About 90 % of the eyes examined appeared to have nearly the 
entire retina expressing GFP, at least some cells throughout indicating that the inocu-
lum can indeed spread readily throughout the subretinal space when delivered at P0.

Retinal sections were processed and imaged for direct GFP fluorescence. We 
found that AAV8-CMV-GFP and AAV8-CAG-GFP resulted in distinct patterns of 
GFP expression. AAV8-CMV-GFP mainly resulted in labelled photoreceptor cells 
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in the outer nuclear layer (ONL), with very few cells expressing GFP in the in-
ner nuclear layer (INL) and ganglion cell layer (GCL) (Fig. 67.2a). In contrast, 
AAV8-CAG-GFP led to expression in many retinal cells in the ONL, INL, and GCL 
(Fig. 67.2b). In AAV8-CMV-GFP infected retinas, cones were the most efficiently 
and brightly labelled, while rods expressed a modest level of GFP (Fig. 67.2c). The 
inner, more vitreal, rods were more obviously labeled than the outer rods. In AAV8-
CAG-GFP infected retinas, the cell types that expressed GFP included rods, cones, 
horizontal cells, amacrine cells, and ganglion cells (Fig. 67.2d). ChAT antibody 
staining showed that most cholinergic amacrine cells were transduced by AAV8-
CAG-GFP (data not shown). As RPE cells were not included in the analysis, we 
cannot compare the labeling efficiency by these two vectors in the RPE. In summa-
ry, AAV8-CMV-GFP resulted in efficient labeling of photoreceptors, while AAV8-
CAG-GFP provided a broader labeling pattern.

67.3.2  The Timing of Subretinal Injections in Neonatal Animals 
Yields Different Labelling Patterns

Next we examined the expression patterns following subretinal injection of the same 
AAV8 vectors at P6. At 15 days post infection, retinas were harvested and analyzed. 
Both vectors resulted in efficient transduction of photoreceptors and Müller glia 
cells, a pattern that is different from those following P0 injections (Fig. 67.2e, f).

67.4  Discussion

We found that the CMV and CAG elements drive different expression patterns of a 
GFP reporter in retinal cells when used in AAV8 vectors and delivered subretinally 
at P0. Because AAV8-CMV-GFP and AAV8-CAG-GFP vectors were packaged us-
ing the same AAV8 capsids, the different expression patterns are due to the activi-
ties of the regulatory elements. The fact that AAV8-CAG-GFP results in efficient 
expression of cells in the ONL, INL, and GCL demonstrates that AAV8 virions can 

Fig. 67.1   a Illustrations of AAV-CMV-GFP and AAV-CAG-GFP constructs. b The native GFP 
fluorescence of the retinas transduced by AAV8-CMV-GFP with P0 subretinal injection. Retinas 
were harvested 15 days post infection
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diffuse across the retina to infect the innermost cells. The fact that no GFP signal 
was observed in these cell types following AAV8-CMV-GFP P0 subretinal infection 
must be a reflection of the regulatory elements in this vector. This is consistent with 
the previous reports that the CMV element has more variability in expression than 
other broadly active elements and that it is silenced in some cell types (Qin et al. 
2010). Although the term “promoter” is often used to describe these elements, it 
is worth noting that not only the promoter sequence, but also the intron and splice 
sequences, differ among these vectors. In the CAG vector, the majority of the intron 
is from the chicken β-actin intron 1, which is thought to include enhancer activ-
ity (Niwa et al. 1991). In the CMV vector, the intron and splice sites were taken 
from human β-globin intron b region. Furthermore, the human CMV IE enhancer 
in the CAG vector is a short version (~ 360 bp) of the one used in the CMV vector 

Fig 67.2   The entire cross sections of AAV8-CMV-GFP (a) and AAV8-CAG-GFP (b) P0 infected 
eyes. Retinal sections were imaged for native GFP signal ( green) and Cy3 for ChAT staining ( red), 
which highlighted laminae 2&4 in the INL. c–d Higher magnification images of the retinas shown 
in a–b. Representative cell types that were efficiently infected and expressed GFP are labeled. e–f 
Higher magnification images of retinal sections from P6 infected and P21 harvested retinas. In 
both groups of retinas, photoreceptors and Müller glia were efficiently transduced
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(~ 700 bp). Any or all of these differences might contribute to the different expres-
sion patterns noted between these two vectors.

In addition to the differences in the patterns seen using the two sets of regula-
tory sequences, the timing of the subretinal injection resulted in a fairly dramatic 
difference in the final expression patterns. One developmental difference that may, 
at least in part, be responsible for these observations concerns the access of the 
virions to the inner retina. P6 subretinal injections of either AAV8-CMV-GFP or 
AAV8-CAG-GFP resulted in efficient GFP expression in photoreceptors and Mül-
ler glial cells, but not in inner retinal neurons. Müller glia are born postnatally, and 
form the outer limiting membrane (OLM). Although the timing of formation of the 
OLM has not been specifically tracked in mice, it may be at least partially in place 
by P5 (Uga and Smelser 1973). The OLM may restrict the diffusion of AAV to the 
inner retina, but allow access of AAV to photoreceptors, which have their develop-
ing inner/outer segments protruding beyond the OLM. Similarly, Müller glia may 
be infected through their OLM processes. Higher titer inoculations, or viruses with 
other capsids, may produce more infection of the INL, but were not tested here.

AAV injection relative to a cell’s last cell cycle may also be important in deter-
mining the expression pattern. Transgene expression may be different following 
introduction into mitotic vs. postmitotic cells. Given that AAV does not replicate, 
and the vector form integrates with a very low efficiency into the host cell's genome 
(McCarty et al. 2004), an AAV genome will be passed on to only one daughter cell 
in each cell cycle. It might be the case that an initially infected postmitotic cell re-
tains many or all of the AAV genomes delivered by the inoculum, but the daughters 
of mitotic cells receive a diluted number of AAV genomes. This may explain why 
cones, horizontal, and retinal ganglion cells have the highest GFP expression level 
in AAV8-CAG-GFP P0 infected retinas, as these cells are postmitotic by P0. This 
is also in keeping with the curious finding that inner rods, relative to outer rods, 
express GFP more highly following infection at P0. Birthdating studies have shown 
that the inner rods are born before or at P0-P1, while the majority of the outer rods 
are born after P0 (Young 1985). Both inner and outer rods express GFP equally well 
following P6 infection, so there is no intrinsic difference between them regarding 
their use of the viral regulatory sequences. The fate of the AAV genome in mitotic 
may also differ from its fate in postmitotic cells. Silencing, or destruction of the ge-
nome, are additional possibilities for the lack of GFP expression in the descendants 
of infected mitotic cells.

One additional aspect of the expression patterns to be considered is the absence 
of expression in bipolar cells using either vector and infection time. This could be 
due to a lack of diffusion of virions to bipolar cells at P6, and/or a lack of a recep-
tor on bipolar cells for AAV8, and/or lack of activity of the regulatory elements in 
bipolar cells. We have noted that CMV-based plasmids do not express as highly in 
bipolar cells as they do in Müller glia when plasmids are delivered by electropora-
tion into retinal progenitor cells, suggesting a limitation in the strength of these ele-
ments in bipolar cells (Matsuda and Cepko 2004). Moreover, AAV8 vectors with 
a Grm6 promoter, which is active in ON-bipolar cells, can express in bipolar cells 
when delivered to adult murine retinas from intravitreal injections, when the capsid 
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has a tyrosine mutation in the capsid (Doroudchi et al. 2011). This mutation presum-
ably reduces proteosomal degradation of the capsid in bipolar cells and thus may 
result in a higher copy number of AAV genomes in bipolar cells. Recent reports 
have shown improved expression of AAV-encoded genes in bipolar cells following 
intravitreal injection in adults. These vectors had changes in the capsid (Cronin 
et al. 2014; Macé et al. 2014) and improvements in the regulatory elements that 
were more active in bipolar cells (Cronin et al. 2014). These findings indicate that 
both infection and expression in bipolar cells need to be addressed for efficient ex-
pression, at least from intravitreal injections, and this may well be true for success-
ful expression in bipolar cells following subretinal injections as well.
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Chapter 68
Characterization of Ribozymes Targeting  
a Congenital Night Blindness Mutation  
in Rhodopsin Mutation

Shannon M. Conley, Patrick Whalen, Alfred S. Lewin and Muna I. Naash

Abstract The G90D mutation in the rhodopsin gene leads to autosomal dominant 
congenital stationary night blindness (CSNB) in patients. This occurs because the 
G90D mutant protein cannot efficiently bind chromophore and is constitutively 
active. To combat this mutation, we designed and characterized two different ham-
merhead ribozymes to cleave G90D transcript. In vitro testing showed that the 
G90D1 ribozyme efficiently and specifically cleaved the mutant transcript while 
G90D2 cleaved both WT and mutant transcript. AAV-mediated delivery of G90D1 
under the control of the mouse opsin promoter (MOP500) to G90D transgenic eyes 
showed that the ribozyme partially retarded the functional degeneration (as mea-
sured by electroretinography [ERG]) associated with this mutation. These results 
suggest that with additional optimization, ribozymes may be a useful part of the 
gene therapy knockdown strategy for dominant retinal disease.

Keywords Rhodopsin · G90D · Gene therapy · Ribozyme · Retinal degeneration · 
Congenital stationary night blindness
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68.1  Introduction

Mutations in the rhodopsin gene cause both retinitis pigmentosa and CSNB. The 
dominant nature of these diseases means that gene therapy is likely to require 
knockdown of the mutant allele in addition to supplementation with the wild-type 
(WT) allele. One knockdown approach employs ribozymes which cleave RNAs in a 
site-specific manner (e.g. (Lewin et al. 1998; Shaw et al. 2006)). Hammerhead ribo-
zymes recognize the substrate sequence on either side of an NUX cleavage site by 
means of two flanking arms that hybridize to the substrate RNA. Cleavage occurs 
with variable efficiency at the 3ʹ end of the NUX site, where N = any nucleotide, and 
X = any nucleotide except G (Shimayama et al. 1995).

Our goal was to develop an effective ribozyme targeted to the G90D CSNB 
mutation. This mutation results in a constitutively active rhodopsin protein and sup-
presses rod sensitivity (Rao et al. 1994; Naash et al. 2004). Patients with the G90D 
mutation experience largely stationary night blindness with retinal degeneration oc-
curring only late in life (Sieving et al. 1995). To study G90D-associated disease we 
generated transgenic mice carrying the G90D mutation (Naash et al. 2004). Because 
overexpression of rhodopsin protein is toxic to photoreceptors (Tan et al. 2001), we 
identified a transgenic line which expresses normal amounts of total rhodopsin pro-
tein. These mice exhibit reduction of scotopic a- and b-wave amplitudes by 4 weeks 
of age. However, as in patients, retinal degeneration is not present in transgenic 
mice until later ages: progressive thinning of the photoreceptor layer is first detect-
able at ~ 4 months of age (Naash et al. 2004). Here we generate and characterize 
hammerhead ribozymes targeting the G90D mutant opsin transcript and assess their 
ability to retard functional losses in G90D transgenic animals.

68.2  Materials and Methods

68.2.1  Generation of Ribozyme Constructs and Target 
Oligonucleotide

Ribozymes and target oligonucleotides were generated as described previously 
(Partono and Lewin 1991; Fritz et al. 2004). Sequences were as follows: G90D1 
ribozyme: sense strand-5ʹCCG GGA TCC GTC GTA ACT GAT GAG CCG CTT 
CGG C, and antisense strand-5ʹGCC ACG CGT CGG AGA TTT CGC CGC CGA 
AGC GG, G90D2 ribozyme: sense strand-5ʹCGG GAA TTC ATC TCC CTG ATG 
ACG GCG AAA GCC GGA AAA GAC CAC GCG TCG G, antisense strand-
5ʹCCG ACG CGT GGT CTT TTC CGG CTT TCG CCG TCA TCA GGG AGA 
TGA ATT CCC G, mutant G90D1 RNA oligonucleotide: 5ʹGGA GAU UUU ACG 
AC, wild-type (WT) G90D1: 5ʹGGA GGA UUC ACC AC, mutant G90D2: 5ʹUGG 
UCU UCG GAG AUU, WT G90D2: 5ʹUGG UCU UCG GAG GAU.
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68.2.2  In Vitro Cleavage Reactions

Ribozyme cleavage reactions were performed as described previously (Drenser 
et al. 1998; Fritz et al. 2004). For time course experiments, ribozyme was diluted 
to 20 nM and a volume of 40 µL, while the substrate was diluted to 400 nM and a 
volume of 50 µL. Aliquots of 5 µL were taken at various intervals. In order to deter-
mine kinetic parameters, the final concentration of ribozyme was kept constant at 
10 nM while the concentration of target RNA ranged from 40 to 180 nM.

68.2.3  Total Retinal RNA Extraction and Cleavage

RNA was prepared from mouse retinas according to manufacturer’s instructions 
using Trizol (Life Technologies, Grandview, NY). Briefly, ~ 6 µg of total RNA was 
incubated with 600 nM ribozyme and RNase inhibitor at 37 °C. Reverse transcrip-
tion was performed with β-actin primer or a mouse opsin primer. The product was 
amplified by PCR with β-actin/opsin primers. When the PCR reaction finished, 
10 µCi of [α- 32P] ATP was added and an additional cycle was carried out followed 
by digest with NcoI which enables differentiation of WT vs. mutant transcript.

68.2.4  Recombinant AAV Ribozyme Constructs

G90D1 was cloned into a recombinant AAV construct based on the pTR-UF2 
vector. The ribozyme was expressed from the MOP500 promoter (Flannery et al. 
1997). In control AAVs the ribozyme was replaced by GFP, allowing transduction 
efficiency to be determined. DNA constructs were packaged into AAV particles as 
in (Lewin et al. 1998).

68.2.5  Animals Experiments

All animal procedures were approved by the Institutional Care and Use Committee, 
and conformed to guidelines set forth by the Association for Research in Vision and 
Ophthalmology. G90D transgenic animals (line G0.5/86 (Naash et al. 2004)) on the 
rhodopsin heterozygous background ( rho+/−) or WT ( rho+/+) were used. Mice were 
maintained under a 14L:10D cycle (~ 7 foot-candles). Mice were anesthetized with 
ketamine (60 mg/kg) and xylazine (8 mg/kg) and dilated with phenylephrine and 
tropicamide. A 30G needle was guided through sclera and choroid until the needle 
tip was seen in the intravitreal space. 2–3 µl of AAV-G90D ribozyme or AAV-GFP 
were given (1012 vector particles/mL). For ERG, animals were dark-adapted over-
night and anesthetized/dilated as above. Full-field ERG responses were measured 
at flash intensities ranging from − 3.01 to 1.02 log-cd/s m2.
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68.3  Results

68.3.1  In Vitro Characterization of Catalytic Activity of 
G90D Ribozymes

Two ribozymes targeting the G90D transcript were designed. G90D1 targeted an 
AUU cleavage triplet created by the G90D mutation (Fig. 68.1a). G90D2 target-
ed a UUC cleavage triplet (known to be more efficiently cleaved than AUU) just 
upstream of the mutation which should cleave mutant but not WT mRNA due to 
mismatched base pairs disrupting the hybridization of the ribozyme arm to the sub-
strate (Joseph et al. 1993). The rates of cleavage and specificity were measured 
by incubating ribozymes with radiolabeled RNA oligonucleotides corresponding to 
either the G90D mutant or WT RNA. For G90D1, the amount of cleaved product 
(bottom band Fig. 68.1b) increased linearly for the duration of the experiment with 
10 % of the substrate cleaved by 12 h, and cleavage was specific to the mutant RNA. 
Although G90D2 cleaved the mutant RNA substrate more efficiently than G90D1 
(10 % cleavage in 4 h, not shown), it also cleaved the WT substrate. Due to this lack 
of specificity, G90D2 was not examined further.

To ensure cleavage of RNA substrates in vivo, it is important to design ribo-
zymes with the highest possible catalytic activity. This requires the determination 

Fig. 68.1   Characterization of G90D1 ribozyme. a The sequence of the G90D1 ribozyme. b Rep-
resentative autoradiogram showing that the G90D1 hammerhead ribozyme cleaves [32P]-labled 
mutant but not WT RNA oligonucleotide. The substrate (Subs.) is 13 nucleotides and the prod-
uct (Prod.) is 7 nucleotides. Bottom panel quantifies the time courses of the cleavage reaction. c 
Kinetic analysis was performed after 12 h with constant ribozyme and varying concentrations of 
substrate. Bottom panel shows the Eadiee-Hofstee plot used to calculate the kinetic coefficients. 
d RNA prepared from G90D/rho+/+ retinas underwent treatment with ribozyme for 48 h followed 
by RT-PCR using opsin primers and digestion with NcoI. All experiments were repeated at least 
three times
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of the turnover number (kcat) and Michaelis constant (KM) of the ribozymes. Here 
we measured cleavage at 12 h using 10 nM ribozyme and substrate concentrations 
ranging from 40 to 180 nM (Fig. 68.1c). Product was first detected when ribozyme 
was incubated with 80 nM substrate, and the ribozyme was saturated at a substrate 
concentration of approximately 160 nM. Eadie-Hofstee analysis showed that the 
G90D1 ribozyme had a KM of 24 nM, a kcat of 1.33 × 10−3/min, and an efficiency 
(kcat/KM) of 5.5 × 104 min−1 M−1.

68.3.2  In Vivo Cleavage of G90D Substrate in the Presence of 
WT Rhodopsin

Next we determined whether G90D1 ribozyme cleaved G90D mutant transcript 
in the presence of the WT. We prepared RNA from G90D/rho+/- retinas (in which 
the ratio of transgene:WT opsin message is 1:1). After incubation of retinal RNA 
with G90D1 ribozyme, RT-PCR was used to amplify from the rhodopsin gene 
(or β-actin as a control). The WT opsin amplicon contains two NcoI sites, one of 
which is ablated in the transgene. As a result, digest with NcoI results in the forma-
tion of 279 bp and 157 bp bands from the transgenic transcript, and 197, 157, and 
80 bp (not shown on the gel) bands arising from the WT transcript. Examination 
of the ratio of the 279:197 bands in ribozyme treated vs. untreated samples showed 
that ~ 66 % of the mutant transgene was specifically degraded (Fig. 68.1d) in 48 h 
with no ribozyme-mediated degradation of the WT.

68.3.3  Phenotypic Benefit of G90D Ribozymes In Vivo

We next asked whether the G90D1 ribozyme provided therapeutic benefit when 
delivered to the G90D mouse model of CNB. Photoreceptor-specific MOP500-
G90D1 and MOP500-GFP (as a control) constructs were formulated into rAAVs. 
G90D/rho+/- animals were intravitreally injected at 4 weeks of age. We observed 
GFP-positive cells distributed diffusely throughout the retina after confirming 
transduction of retinal cells. GFP-positive cells were first detected at PI-6 weeks 
and remained evident up to 10 months.

Animals next underwent scotopic ERG. At PI-6 weeks, there was no difference 
between the AAV-G90D1 and AAV-GFP eyes after intravitreal injection (Fig. 68.2a). 
However, at both 3 and 8 months after injection, mean scotopic b-waves in AAV-
G90D1-treated eyes were increased by ~ 25 and ~ 66 % (respectively) at the highest 
light intensity compared to AAV-GFP controls (Fig. 68.2b, c). The sample size was 
too small to detect statistically significant differences between individual pairs of data 
points, however, regression analysis of log light intensity vs. mean b-wave amplitude 
indicated that the slopes were significantly different between AAV-GFP and AAV-
G90D1 at PI-3 and PI-8 months ( P = 0.018, and P = 0.00024, respectively) suggesting 
that the G90D1 ribozyme is capable of preserving ERG function in G90D mice.

68 Characterization of Ribozymes Targeting a Congenital Night Blindness …
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68.4  Discussion

Here we identified a ribozyme that specifically cleaved the mutant G90D allele. 
We used two different strategies during the design process: the G90D1 ribozyme 
targets a cleavage triplet (AUU) found only in the mutant allele, while the G90D2 
ribozyme targets a cleavage triplet found in both the mutant and WT alleles (UUC) 
but which is close enough to the mutation that the two most distal nucleotides in one 
of the hybridizing arms were specific to the mutant allele. Two noteworthy obser-
vations arose from comparison of these two ribozymes. The first is that in spite of 
the mismatches in the hybridizing arm between G90D2 and the WT substrate, the 
WT was cleaved as efficiently as the mutant. This is consistent with previous work 
showing that mismatches in the regions of the hybridizing arms closer to the cleav-
age site are more effective for preventing binding between the ribozyme and the 
substrate (Joseph et al. 1993). Secondly, the UUC triplet is cleaved 9.4 times more 
efficiently than the AUU triplet (Shimayama et al. 1995). However, comparison of 
the time it took each ribozyme to cleave 10 % of its substrate under similar condi-
tions showed that the G90D2 ribozyme was only three times more efficient than 
the G90D1 ribozyme suggesting that more factors than the cleavage triplet affect 
ribozyme efficiency.

Although our goal here was specific knockdown of the G90D transcript, allele-
independent knockdown is a popular strategy for dominant disease genes, including 
rhodopsin. This approach involves the development of a knockdown vector which 
targets both the mutant and WT allele and is usually coupled with concurrent sup-
plementation of a knockdown-resistant WT gene. This approach has been tested 
with multiple knockdown strategies (e.g. (Gorbatyuk et al. 2007a, b)). It has the 
dual benefits of enabling design of an optimal ribozyme without reference to the 
location of the mutation and of targeting multiple different disease causing muta-
tions with the same therapeutic. For a gene with as many disease causing mutations 
as rhodopsin, this is a striking benefit, so testing of this therapeutic approach is 
ongoing.

Fig. 68.2   Functional improvements after in vivo delivery of G90D1 ribozyme. G90D1 ribozyme 
was packaged in rAAV and delivered via intravitreal injection. a–c. Shown are mean scotopic 
b-wave amplitudes after full-field ERG at the indicated timepoints. N = 2–5/group
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We showed that the G90D1 ribozyme effectively slowed the long-term loss of 
ERG function associated with the G90D transgene. Interestingly, although ERGs 
in this model are reduced (compared to WT) as early as 4 weeks of age, we did not 
see benefits of G90D1 until 3 and 9 months post-injection. The time course of this 
outcome suggests that the ribozyme-mediated knockdown may slow photoreceptor 
cell loss; however confirmation of this must await histological study. In conclu-
sion these results suggest that ribozymes can be used to knockdown mutant alleles 
and provide some therapeutic benefit. With additional optimization, they may be a 
useful addition to our repertoire of knockdown technologies for dominant genetic 
diseases.
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Chapter 69
Antisense Oligonucleotide Therapy for Inherited 
Retinal Dystrophies

Xavier Gerard, Alejandro Garanto, Jean-Michel Rozet and Rob W. J. Collin

Abstract Inherited retinal dystrophies (IRDs) are an extremely heterogeneous 
group of genetic diseases for which currently no effective treatment strategies exist. 
Over the last decade, significant progress has been made utilizing gene augmenta-
tion therapy for a few genetic subtypes of IRD, although several technical chal-
lenges so far prevent a broad clinical application of this approach for other forms 
of IRD. Many of the mutations leading to these retinal diseases affect pre-mRNA 
splicing of the mutated genes. Antisense oligonucleotide (AON)-mediated splice 
modulation appears to be a powerful approach to correct the consequences of such 
mutations at the pre-mRNA level, as demonstrated by promising results in clinical 
trials for several inherited disorders like Duchenne muscular dystrophy, hypercho-
lesterolemia and various types of cancer. In this mini-review, we summarize ongo-
ing pre-clinical research on AON-based therapy for a few genetic subtypes of IRD, 
speculate on other potential therapeutic targets, and discuss the opportunities and 
challenges that lie ahead to translate splice modulation therapy for retinal disorders 
to the clinic.

Keywords Antisense oligonucleotides · AON · CEP290 · Genetic therapy · 
Inherited retinal dystrophy · Splice correction · Splicing
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69.1  Therapeutic Possibilities for Inherited Retinal 
Dystrophies

Inherited retinal dystrophies (IRDs) are a large and heterogeneous group of disor-
ders, that, based on the age of onset, rate of progression, and the primary involve-
ment of either rod or cone photoreceptor cells, can be subdivided into different 
subtypes (den Hollander et al. 2010). Mutations in more than 200 different genes 
have been reported to underlie one or more of the clinical subtypes of IRD, and 
this number is still growing (https://sph.uth.edu/retnet/). Although IRDs for a long 
time have been considered incurable diseases, recent progress in different areas 
now offers a number of therapeutic possibilities. As IRDs in general are progressive 
diseases due to the concomitant death of retinal cells, the most effective therapeutic 
strategy to a large extent will depend on the stage of the disease. With the primary 
genetic defect often affecting a gene expressed in the photoreceptor or retinal pig-
ment epithelium (RPE) cells, directly correcting the consequences of these muta-
tions, e.g. with gene therapy, only makes sense if there are sufficient photoreceptor 
or RPE cells left to treat (Boye et al. 2013; Sahel and Roska 2013). If not, other 
strategies can be applied, such as cell transplantation therapy (Stern and Temple 
2014), optogenetics (Sahel and Roska 2013) or epi-/subretinal electronic implants 
(Stingl and Zrenner 2013). Each of these strategies has made tremendous progress 
over the last few years, and may ultimately be suitable for specific groups of IRD 
patients. On the short term however, the best improvement in visual function is 
expected in the field of genetic therapy, as here, the naturally existing photoreceptor 
or RPE cells are targeted.

The safety and efficacy reported in phase I/II clinical trials of a RPE65 gene 
augmentation therapy, by subretinal delivery of adeno-associated viruses (AAVs) 
carrying the wild-type RPE65 cDNA, have enormously boosted the field of ocular 
gene therapies (Bainbridge et al. 2008; Hauswirth et al. 2008; Maguire et al. 2008), 
and resulted in the development of similar approaches for other subtypes of IRD, 
with promising results (MacLaren et al. 2014). A severe limitation of this approach 
however is the limited packaging capacity (~ 4.9 Kb) of AAV-vectors. Several of the 
most frequently mutated IRD genes (e.g. ABCA4, CEP290, EYS and USH2A) have 
a cDNA size way exceeding this limit and hence are not amenable for AAV-based 
gene therapy. Other vectors (e.g. lentiviruses, adenoviruses) with a larger cargo ca-
pacity have a limited tropism for photoreceptor cells, and may produce insertional 
mutagenesis by integration into the host genome.

An alternative therapeutic strategy that can bypass these impediments, focuses 
on rescuing aberrant pre-mRNA processing rather than supplementing a healthy 
cDNA copy of a gene that is mutated. Antisense oligonucleotides (AONs) are small 
and versatile molecules that are complementary to their target mRNA, and as such 
can modulate pre-mRNA splicing or stability. Since a substantial amount of IRD-
causing mutations also affects pre-mRNA splicing of the corresponding genes, 
AON-based therapy may be an attractive treatment strategy for IRDs.

https://sph.uth.edu/retnet/
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69.2  Antisense Oligonucleotides: Structure, Function  
and Clinical Applications

Pre-mRNA splicing is an essential step in the production of a correct template for 
protein synthesis. This process is carried out by the spliceosome, and involves mul-
tiple interactions mediated by splicing factors that recognize regulatory elements in 
the target pre-mRNA molecules (Hastings and Krainer 2001). It is estimated that 
up to 50 % of disease-causing mutations affect pre-mRNA splicing (Disterer et al. 
2014), with obvious consequences at the protein level. Thus, altering splicing of-
fers an interesting therapeutic strategy for many genetic disorders (Hammond and 
Wood 2011).

Initially, AONs were used to inhibit gene expression by degrading the target 
mRNA through RNase-H mediated cleavage (Zamecnik and Stephenson 1978; 
Kurreck 2003). Subsequently, different generations of oligonucleotides have been 
developed, with chemical modifications to make them resistant to the RNase-H ac-
tivity, increase their half-life and improve their binding affinity (Chan et al. 2006). A 
major class of AONs are those with a phosphorothioate backbone, and based on the 
chemistry 2ʹ-O-methyl or 2ʹ-O-methoxyethyl, or the phosphoramidate morpholino 
oligonucleotides (Chan et al. 2006; Disterer et al. 2014). These molecules have a 
high ability to interfere with splicing, either by masking splice sites, or by targeting 
regulatory sequences to promote or block splicing (Hammond and Wood 2011). A 
great advantage of this strategy is that the endogenous transcriptional regulation of 
the target gene is preserved.

Examples of AON-based therapies that have reached the clinic mainly focus on 
inducing exon skipping or insertion. The most advanced studies are several phase 
II clinical trials for Duchenne muscular dystrophy, where AONs are used to skip 
exons in order to restore the reading-frame of the DMD mRNA that is disrupted as 
a result of recurrent deletions (van Deutekom et al. 2007; Kinali et al. 2009; Cirak 
et al. 2011; Goemans et al. 2011; Koo and Wood 2013). Another phase I/II clinical 
trial utilizes AONs to induce the insertion of exon 7 of the SMN2 gene in patients 
with spinal muscular atrophy (Zanetta et al. 2014), and for the treatment of patients 
with familial hypercholesterolemia, an AON targeting APOB has recently been ap-
proved as a drug in the US (Raal et al. 2010).

Besides monogenic disorders, AON-based therapies have also been developed 
to treat several cancer and inflammation disorders, such as chronic lymphocytic 
leukemia (Durig et al. 2011), acute myeloid leukemia (Erba et al. 2013), or psoriasis 
(Colin et al. 2014). All these studies denote the potential of AONs as a treatment 
strategy for a wide range of disorders, by showing beneficial effects in the patients 
with low toxicity and little inflammatory responses.
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69.3  AON-based Therapy for Inherited Retinal 
Degenerations

Given the high therapeutic potential of AONs, plus the advantages of the eye as a 
therapeutic target organ, using AONs to treat certain genetic subtypes of IRD seems 
logical. An ideal candidate for AON-based therapy is a recurrent intronic mutation 
in CEP290 (c.2991 + 1655A > G) that is causative for up to 15 % of all LCA cases 
in the US and several European countries (den Hollander et al. 2006; Perrault et al. 
2007; Stone 2007; Coppieters et al. 2010). This mutation activates a cryptic splice 
donor site that results in the insertion of a pseudo-exon with a premature termination 
codon to approximately 50–75  % of the CEP290 transcripts (den Hollander et al. 
2006; Gerard et al. 2012). We have shown that, in lymphoblastoid and fibroblast 
cells from LCA patients with a homozygous intronic CEP290 mutation, administra-
tion of AONs targeting the pseudo-exon fully restores normal CEP290 pre-mRNA 
splicing (Collin et al. 2012; Gerard et al. 2012) (Fig. 69.1a). In addition, AON treat-
ment resulted in an increase in wild-type CEP290 protein levels and fully rescued a 
ciliary defect present in the patient fibroblast cell lines (Gerard et al. 2012), demon-
strating the enormous potential of AON-based therapy for CEP290-associated LCA.

Fig. 69.1   AON-therapy for CEP290-associated LCA or USH1C-associated Usher syndrome. a A 
deep-intronic mutation in CEP290 (c.2991 + 1655A > G, in red) results in the insertion of a pseudo-
exon with a premature termination codon to part of CEP290 mRNA. Administration of AONs (in 
green) blocks the recognition of the pseudo-exon and restores normal CEP290 splicing (Collin 
et al. 2012; Gerard et al. 2012). b An exonic mutation in USH1C (c.216G > A) activates a new 
cryptic splice donor site that results in the insertion of a shorter fragment of exon 3 to USH1C 
mRNA, causing a frame-shift and premature termination of the harmonin protein encoded by 
USH1C. Administration of AONs (in green) blocks the cryptic splice donor site and restores nor-
mal USH1C splicing (Lentz et al. 2013)
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Other deep-intronic mutations underlying IRD and that could be treated in a sim-
ilar way include those in ABCA4 (Braun et al. 2013; Zernant et al. 2014), CHM (van 
den Hurk et al. 2003), OFD1 (Webb et al. 2012) and USH2A (Vache et al. 2012). 
Alternatively, AONs can be employed to skip (combinations of) exons that contain 
nonsense or frame-shift mutations, taking into account to leave the reading-frame 
intact, or to restore the reading-frame in case this is disrupted by large deletions 
encompassing one or more exons. This may particularly be beneficial for larger 
genes, as the shortened protein that results from exon skipping should still have 
some residual function as recently shown in CEP290-associated LCA (Drivas et al. 
2015; Rozet and Gerard 2015). A third therapeutic approach involves restoring nor-
mal splicing in case exonic mutations activate cryptic splice sites within the exon. 
An illustrative example of this is a recurrent mutation in USH1C (c.216G > A), 
underlying Usher syndrome type 1C, a disease characterized by hearing impair-
ment, vestibular dysfunction and retinal dystrophy. This mutation activates a cryptic 
splice donor site, resulting in a shortened mRNA and premature termination of the 
harmonin protein (Lentz et al. 2005). In a humanized mouse model carrying part 
of the human USH1C gene, including the c.216G > A mutation, systemic delivery 
of AONs targeting the exonic region with the mutation, resulted in an increase of 
correctly spliced USH1C transcripts and the rescue of the auditory and vestibular 
phenotype (Lentz et al. 2013) (Fig. 69.1b).

It is to be expected that several other exonic variants for which the potential 
pathogenicity is currently not well understood, may also affect pre-mRNA splicing 
of the corresponding gene. In addition, with transcriptome and whole genome se-
quencing emerging as widely-used tools to discover the remaining genetic causes of 
IRD, many other mutations that are amenable to AON therapy are likely identified 
in the coming years.

69.4  Future Perspective: Translating AON-based 
Therapies for IRD into the Clinic

An important question that remains is how to translate AON-based therapy for 
IRDs to the clinic. One crucial step entails identifying the right in vitro and in vivo 
models to assess the therapeutic efficacy. Many of the genes underlying IRD are 
predominantly or exclusively expressed in the retina, and hence it is often not pos-
sible to study these genes in easily accessible patient cells such as lymphoblasts or 
fibroblasts. The ability to generate photoreceptor-like cells in vitro via induced plu-
ripotent stem cell technology offers opportunities in this area (Tucker et al. 2013). 
An alternative approach involves animal studies, aiming to show proof-of-principle 
in the retina in vivo. Since AON-therapy in general is considered to be a mutation-
specific therapy, tailor-made models, e.g. mice need to be generated in order to 
mimic the exact human genotype and phenotype. Whereas in some cases, this works 
well (Lentz et al. 2013), in other cases the mouse splicing machinery fails to rec-
ognize cryptic splice sites or pseudo-exons, as was shown in a mouse model for 
the recurrent LCA-causing intronic CEP290 mutation (Garanto et al. 2013). The 
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generation of other animal models more closely resembling humans is also chal-
lenging, although with novel gene editing strategies like CRISPR/Cas9 emerging, 
this will likely get easier in the near future (Hsu et al. 2014).

For the actual therapeutic intervention in patients, AONs have to be able to ef-
ficiently reach their target cells (e.g photoreceptors), without causing undesired 
side effects. Approaches of topically delivered oligonucleotides have not been suc-
cessful so far to reach intraocular tissues, probably due to the impermeable nature 
of the cornea (Janoria et al. 2007). As mentioned earlier, a single intraperitoneal 
injection of AONs could rescue an auditory and vestibular phenotype in a mouse 
model for USH1C (Lentz et al. 2013), although no rescue of the retinal degenera-
tion was mentioned in that model. Indeed, upon systemic drug delivery, it is hard 
to reach the desired effective concentration in the eye because of the blood-retina 
barrier (Lalezari et al. 1997), and obviously, this also increases the chances of side 
effects. Intraocular administration of AONs seems to be the best way to bypass 
these anatomical and physical obstacles. In humans, intravitreal injections of naked 
AONs have proven safety and efficacy to treat cytomegalovirus-induced retinitis in 
immunocompromized individuals (Tawse and Baumal 2014). Although these injec-
tions are common practice in the eye clinic to treat some chronic diseases, long-
term therapeutic effects of AONs need to be improved in order to facilitate their 
clinical development. In this view, a virus-based delivery of AONs to retinal cells 
sounds appealing. Strategies using modified U7snRNA constructs containing AON 
sequences packaged into AAV vectors have been shown to be effective in cellu-
lar and animal models for Duchenne muscular dystrophy (Goyenvalle et al. 2004). 
With the increasing availability of multiple AAV serotypes that efficiently transduce 
the various cell types in the retina (Vandenberghe and Auricchio 2012), this strategy 
can become a powerful tool to modulate splicing in photoreceptor cells.

In conclusion, the applications of AON-based therapy for IRDs are just starting 
to emerge and show great promise, although some locks must be lifted to ensure 
their success. The private nature of many IRD-causing mutations poses a significant 
challenge on a broad implementation of splicing therapy, as safety and efficacy 
data need to be generated for each individual mutation. Identifying ways to deliver 
AONs to the retina in a safe and effective manner will be a major step forward in the 
pre-clinical development of AON-based therapies for IRD, and will reveal the true 
potential of this approach for restoring vision, or at least halting or slowing down 
disease progression.
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Chapter 70
Functional Rescue of Retinal Degeneration-
Associated Mutant RPE65 Proteins

Minghao Jin, Songhua Li, Jane Hu, Heather H. Jin, Samuel G. Jacobson  
and Dean Bok

Abstract More than 100 different mutations in the RPE65 gene are associated with 
inherited retinal degeneration. Although some missense mutations have been shown 
to abolish isomerase activity of RPE65, the molecular bases leading to loss of func-
tion and retinal degeneration remain incompletely understood. Here we show that 
several missense mutations resulted in significant decrease in expression level of 
RPE65 in the human retinal pigment epithelium cells. The 26S proteasome non-
ATPase regulatory subunit 13, a newly identified negative regulator of RPE65, 
mediated degradation of mutant RPE65s, which were misfolded and formed aggre-
gates in the cells. Many mutations, including L22P, T101I, and L408P, were mapped 
on nonactive sites of RPE65. Enzyme activities of these mutant RPE65s were sig-
nificantly rescued at low temperature, whereas mutant RPE65s with a distinct active 
site mutation could not be rescued under the same conditions. 4-phenylbutyrate 
(PBA) displayed a significant synergistic effect on the low temperature-mediated 
rescue of the mutant RPE65s. Our results suggest that a low temperature eye mask 
and PBA, a FDA-approved oral medicine, may provide a promising “protein repair 
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therapy” that can enhance the efficacy of gene therapy for delaying retinal degen-
eration caused by RPE65 mutations.

Keywords RPE65 · Retinoid · Visual cycle · Leber congenital amaurosis · Retinitis 
pigmentosa · PSMD13 · Proteasome · Low temperature · Chemical chaperone · 
Gene therapy · Retina

70.1  Introduction

RPE65 is a key retinoid isomerase (Jin et al. 2005; Moiseyev et al. 2005) necessary 
for regenerating 11-cis retinal, which functions as a molecular switch for activating 
opsins in response to light stimulation. The significance of RPE65 in retinal health is 
reflected by the effect of its mutations, over 100 of which are associated with retinal 
degenerative diseases. Among these mutations, more than 70 are missense muta-
tions. Although most of these mutations have not been studied for their pathogenicity, 
some mutations have been shown to severely eliminate isomerase activity of RPE65 
(Redmond et al. 2005). The activities of mutant RPE65s measured in the laboratory 
were related to whether or not they were disease-causing in the patients (Philp et al. 
2009). Several missense mutations resulted in rapid degradation of RPE65 in HEK 
cell lines with unknown mechanisms (Chen et al. 2006; Takahashi et al. 2006).

Recent gene therapy trials showed improvement in vision in some patients with 
RPE65 mutations (Cideciyan et al. 2008; Hauswirth et al. 2008; Maguire et al. 
2008). However, a subsequent study showed that gene therapy could not stop the 
progressive retinal degeneration (Cideciyan et al. 2013). In general, gene therapy 
can confer enzyme activity to retinal pigment epithelium (RPE) of patients by ex-
pressing wild-type (WT) RPE65, but it cannot stop the degenerative component 
of the disease process. Recently, a dominant mutation in the RPE65 gene has been 
found in patients with retinitis pigmentosa (Bowne et al. 2011). Misfolding, mis-
localization, and aggregation of mutant RPE65 (Chen et al. 2006; Takahashi et al. 
2006; Li et al. 2014) may cause cytotoxic effects. To enhance the gene therapy ef-
fect, it is important to develop a strategy that can rescue the enzyme activity but also 
reduce cytotoxic effects of mutant RPE65s. In this study, we investigated the com-
mon properties of several disease-causing RPE65s with regard to their pathogenic 
mechanism and rescue of their function.

70.2  Materials and Methods

70.2.1  Immunohistochemistry and Immunoblot Analysis

All animal experiments were approved by the Institutional Animal Care and Use 
Committee for the Louisiana State University Health Sciences Center and per-
formed according to guidelines established by the Association for Research in Vi-
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sion and Ophthalmology Statement for the Use of Animals in Ophthalmic and Vi-
sion Research. Retinal and cellular immunostaining as well as immunoblot analysis 
were performed as described previously (Sato et al. 2013; Li et al. 2014).

70.2.2  Cell Culture, Transfection and Knockdown of PSMD13

Primary human RPE (Hu and Bok 2001), ARPE-19 (Dunn et al. 1996), and 
293 T-LC (Jin et al. 2005) cells were maintained as described previously. PolyJet 
(SignaGen) was used for transfection. To reduce the expression level of endogenous 
RPE65 in the human RPE cells, transfected RPE was maintained in plastic culture 
plates instead of Millicell-HA chambers (Hu and Bok 2001). Knockdown of the 26S 
proteasome non-ATPase regulatory subunit 13 (PSMD13) in ARPE-19 cells was 
performed by transfecting PSMD13 siRNA (OriGene).

70.2.3  Retinoid Isomerase Assay

The 293 T-LC cells transfected with wild-type (WT) or mutant RPE65 constructs 
(Philp et al. 2009; Li et al. 2014) were incubated with 5 μM all-trans-retinol 
(atROL) for 16 h at 30 or 37 °C. Retinoids extracted from the cells were saponified 
and analyzed by HPLC (Jin et al. 2007).

70.3  Results

70.3.1  PSMD13 Promoted Degradation of Disease-
Associated RPE65 Proteins

To analyze the impact of disease-causing mutations on expression of RPE65 in 
RPE, we transfected WT and mutant RPE65 constructs into primary human RPE 
cells. As shown in Fig. 70.1a, protein levels of all tested mutant RPE65s were sig-
nificantly lower than that of WT RPE65. Coexpression of PSMD13 exacerbated 
the decrease in protein levels of some mutant RPE65s, whereas knockdown of 
PSMD13 increased proteins of these mutant RPE65s (Fig. 70.1b). Immunohisto-
chemistry revealed that PSMD13 expresses in mouse RPE (Fig. 70.1c).

70.3.2  Rescue of Enzyme Activity of Disease-Causing RPE65s 
with Nonactive Site Mutations

By mapping disease-causing mutation sites onto the crystal structure of RPE65 
(Kiser et al. 2009), we found that many mutations are nonactive site mutations 
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(Fig. 70.2). This observation prompted us to test whether low temperature can 
rescue enzyme activity of mutant RPE65s. Isomerase activities of three mutant 
RPE65s with nonactive site mutations (L22P, T101I, and L408P) are significantly 
increased at 30 °C, whereas mutant RPE65s with active site (H180R and H313R) or 
near active site (Y239D, C330Y, and E417Q) mutations could not be rescued under 
the same conditions (Table 70.1).

Fig. 70.2  Mapping of disease-causing mutation sites on the crystal structure of bovine RPE65. 
The catalytic site containing Fe2+ ( brown sphere) is in the center of RPE65. The three mutation 
sites ( L22, T101, & L408) shown in green are mapped in the nonactive sites, whereas the other 
three mutation sites ( Y239, C330, & E417) shown in red are close to the active site cavity. The four 
iron-binding histidines (H180, H241, H313, & H527) are shown in blue

 

Fig. 70.1   PSMD13 mediates degradation of mutant RPE65s. a Immunoblot analysis of human 
RPE cells transfected with the indicated amount of pRK5 mock vector and constructs for WT or 
disease-causing RPE65. Beta actin was used as a loading control. b Immunoblot analysis of WT 
and mutant RPE65s in ARPE-19 cells cotransfected with the indicated vector or siRNA. c Mouse 
retinal immunohistochemistry for PSMD13. Nuclei were stained with DAPI
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70.3.3  Low Temperature Inhibited Aggregate Formation of 
Mutant RPE65s

Results described above suggest that misfolding is the main molecular basis for loss 
of function of the nonactive site mutant RPE65s. We tested this possibility by im-
munocytochemistry. As shown in Fig. 70.3, the mutant RPE65s formed numerous 
aggregates in ARPE-19 cells grown at 37 °C. These aggregates were significantly 
reduced in the cells incubated at 30 °C (Fig. 70.3).

Table 70.1   Retinoid isomerase activities of WT and the indicated mutant RPE65s were deter-
mined by measuring synthesis of 11-cis retinol (11cROL) at 30 or 37 °C. Numbers indicate 
11cROL content (pmol ± SD, n = 3) in 1 mg of cellular protein ( middle columns) or ratio of the 
isomerase activities at 30 °C to those at 37 °C ( right column). NA no activity
Synthesis of 11cROL (pmol/mg protein)
Mutation Activity at 30° C Activity at 37° C Ratio 30/37 ° C
L22P 22 ± 3 4 ± 1 5.5
T101l 12 ± 2 2 ± 1 6.0
L408P 26 ± 3 5 ± 1 5.2
H180R NA NA –
H313R NA NA –
Y239D 1.3 ± 0.3 1.3 ± 0.5 1.0
C330Y 1.8 ± 0.3 1.6 ± 0.3 1.1
E417Q 1.2 ± 0.4 1.1 ± 0.4 1.1
WT 124 ± 10 138 ± 10 0.9

Fig. 70.3   Low temperature reduced aggregation of mutant RPE65s. ARPE-19 cells expressing WT 
or the indicated mutant RPE65 were incubated at 37  or 30 °C, stained with RPE65 antibody, and 
observed using a confocal microscope. Scale bar denotes 10 m
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70.3.4  PBA Enhanced Low Temperature Rescue of the Nonactive 
Site Mutant RPE65s

4-phenylbutyrate (PBA) has been shown to help proper folding of other mutant pro-
teins (Bonapace et al. 2004; Li et al. 2013a). We therefore tested whether PBA and 
low-temperature display synergistic effects on rescue of mutant RPE65s. As shown 
in Fig. 70.4a, activity of L22P RPE65 was increased approximately 10-fold at 30 °C 
in the presence of PBA compared to its activity at 37 °C. Association of the mutant 
RPE65 with membrane was also significantly increased in the cells incubated with 
PBA at 30 °C (Fig. 70.4b).

70.4  Discussion

The role of PSMD13 in vision and retinal health remains poorly understood. In 
our previous study, we identified PSMD13 as a negative regulator of RPE65 (Li 
et al. 2013b). The RPE65-mediated synthesis of 11-cis retinol (11cROL) was re-
duced PSMD13-cotransfected cells (Li et al. 2013b). This might be due to the slight 
promotion of RPE65 degradation by PSMD13 (Fig. 70.1b). Abundant expression 
of PSMD13 in RPE (Fig. 70.1c) suggests that PSMD13 could regulate synthesis 
of 11cROL by controlling degradation of RPE65. Importantly, PSMD13 strong-
ly promoted degradation of disease-causing RPE65s (Fig. 70.1b). Knockdown of 
PSMD13 significantly increased expression levels of mutant RPE65s (Fig. 70.1b), 
indicating that PSMD13 mediates degradation of mutant RPE65s in the protea-
some. The results also suggest that PSMD13 may play a critical role in regulation 
of pathogenicity of mutant RPE65s.

Low temperature has been shown to restore functions to mutated proteins and 
reduce cellular damage by promoting proper folding of many mutated proteins 
(Denning et al. 1992; Li et al. 2013a). In this study, we observed that low tempera-
ture significantly reduced formation of aggregates of mutant RPE65s (Fig. 70.3), 
and rescued enzyme activity of disease-causing RPE65s with different mutations in 

Fig. 70.4   a PBA enhanced low temperature-mediated rescue of mutant RPE65s. Relative retinoid 
isomerase activities of the indicated mutant RPE65s at 30 °C in the presence of PBA are shown 
as fold of their activities at 37 °C. Error bars show SD ( n = 3). b Association of the mutant RPE65 
with membrane was also significantly increased in the cells incubated with PBA at 30 °C
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nonactive sites (Fig. 70.2 and Table 70.1). Under the same experimental conditions, 
RPE65s with mutations in the active or near the active sites could not be rescued 
(Fig. 70.2 and Table 70.1). Although the biochemical attributes of amino acid resi-
due mutated are important in determining the enzyme activity of a mutant RPE65 
(Nikolaeva et al. 2010), our results also suggest that the relative spatial distance be-
tween a mutation site and the catalytic site is a critical factor in determining whether 
the mutant RPE65 can be rescued. Importantly, many disease-causing missense mu-
tations are nonactive site mutations. Further studies are needed to test whether these 
mutations can also be rescued at low temperature.

PBA, a FDA-approved safe oral medication, has also been shown to reverse cel-
lular mislocalization and rescue function of many mutant proteins (Rubenstein and 
Zeitlin 1998; Bonapace et al. 2004; Li et al. 2013a). We observed that PBA and low 
temperature exhibited a significant synergistic effect on rescue of the nonactive site 
mutant RPE65s (Fig. 70.4a). Since low temperature inhibited aggregate formation 
of mutant RPE65s (Fig. 70.3), our results suggest that low temperature and PBA not 
only can restore enzymatic function to nonactive site mutant RPE65s but also can 
reduce the cytotoxic effect of misfolded RPE65s. Continuing retinal degeneration 
in patients who received gene therapy (Cideciyan et al. 2013) indicates that a com-
binatorial therapy is needed to improve vision and to prevent or delay progressive 
retinal degeneration in patients with RPE65 mutations. A low temperature eye mask 
and PBA functioning as a “protein repair therapy” may be a promising option for 
combinatorial therapy.
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Chapter 71
Evaluation of Ocular Gene Therapy  
in an Italian Patient Affected by Congenital 
Leber Amaurosis Type 2 Treated in Both Eyes

Francesco Testa, Albert M Maguire, Settimio Rossi, Kathleen Marshall, 
Alberto Auricchio, Paolo Melillo, Jean Bennett and Francesca Simonelli

Abstract Gene therapy clinical trials with gene augmentation therapy for Leber 
Congenital Amaurosis have shown partial reversal of retinal dysfunction. Most 
studies described the effect of treatment in a single eye and limited evidence is 
reported in literature about patients treated in both eyes. In this chapter, we pres-
ent the findings of a young patient treated in both eyes. Efficacy of the treatment 
was assessed with Best Corrected Visual Acuity, Goldman Visual Field testing, 
Esterman computerized binocular visual field and Microperimetric testing. Post-
treatment results showed improvement of visual function in both eyes, in particular, 
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a strong amelioration was observed after the first injection, by using conventional 
monocular tests. Moreover, the treatment in the second eye resulted in a further 
improvement of binocular visual functionality, as easily detected by computerized 
binocular visual field. In conclusion, our data suggest that gene therapy can inhibit 
retinal degeneration and can be safe and effective in restoring visual functionality 
in young subjects treated in both eyes. Finally, new outcome measurements, in par-
ticular binocular computerized visual field parameters, can therefore be useful to 
quantify overall visual gain in patients undergoing gene therapy in both eyes.

Keywords Gene therapy · Leber’s Congenital Amaurosis · Optical coherence 
tomography · Microperimetry · Binocular computerized visual field

71.1  Introduction

In the last decade, gene therapy was explored for the treatment of incurable in-
herited retinal diseases both in animal models and in human subjects. Particu-
larly, 3 independent clinical trials that began almost contemporaneously in 2007–
NCT00481546 (Cideciyan et al. 2009), NCT00516477 (Maguire et al. 2008), 
NCT00643747 (Bainbridge et al. 2008) - were performed to evaluate safety and 
efficacy of gene therapy for Leber Congenital Amaurosis type 2 (LCA2), a retinal 
degeneration resulting from mutations in the RPE65 gene.

In the three initial clinical trials, the patients were treated with a single unilateral 
subretinal injection of adeno-associated virus 2 (AAV2) carrying the RPE65 gene 
in the eye with worse vision. A safety assessment showed the presence of minimal 
systemic immunological response in two trials (Hauswirth et al. 2008; Maguire 
et al. 2008) and the absence of serious adverse events in all three trials. In par-
ticular, in the clinical trial NCT00516477, performed at the Children’s Hospital of 
Philadelphia (CHOP) in conjunction with the Second University of Naples (SUN), 
12 patients were treated by subretinal AAV2-hRPE65v2 injection in the worse eye 
(Maguire et al. 2009). The findings of this clinical trial showed an improvement 
of visual functionality and a stability over long-term follow-up in most patients 
(Simonelli et al. 2010; Testa et al. 2013). The promising results obtained motivated 
a new clinical trial for the re-injection of previously treated patients in the contra-
lateral eye (NCT01208389). Since there is limited evidence in literature about LCA 
patients treated in both eyes, in this chapter we present our clinical findings in the 
youngest subject of our cohort of patients treated in both eyes.

71.2  Materials and Methods

All details on design, consent, and vector administration in this clinical trial have 
previously been reported (Maguire et al. 2009). Briefly, the LCA subject NP15, 
aged 8 years old was first evaluated at the Second University of Napoli (Napoli, 



53571 Evaluation of Ocular Gene Therapy in an Italian Patient Affected by …

Italy) and received the diagnosis based on visual and retinal function studies 
(Simonelli et al. 2007). All patients underwent mutation screening for LCA genes 
and received molecular diagnosis of LCA2 by the Telethon Institute of Genetics 
and Medicine. After informed consent and confirmation of trial eligibility criteria, 
including independent evaluation of the likelihood that the mutations were disease-
causing (Carver Lab, Iowa City, IA), the eye with worse visual function was se-
lected for delivery of AAV2-hRPE65v2. The study subject (NP15) underwent an 
initial AAV2-hRPE65v2 injection in the right eye (at the age of 11 years) and after 
3 years in the left eye (at the age of 14 years). NP15 received the same dose/volume 
(1.5 × 1011 vg/300 µl) in both eyes. Baseline tests and follow-up visits up to day 30 
were performed at both the Children’s Hospital of Philadelphia and Second Univer-
sity of Napoli while the follow-up visits were performed at the Second University 
of Napoli. Follow-up data are available up to 4 years after the initial treatment and 
1 year after the treatment in the contralateral eye. In the current study, efficacy of 
the treatment was assessed with Best Corrected Visual Acuity (BCVA), Goldman 
Visual Field testing (VF), Esterman computerized binocular visual field and Micro-
perimetric testing (MP).

BCVA was measured by trained vision examiners using a standard protocol in-
volving Early Treatment Diabetic Retinopathy Study (ETDRS) charts and letter 
counts. Letter scores were converted to the log of the Minimum Angle of Resolu-
tion (logMAR), on a scale ranging from 0.00 to 2.00, with higher values indicating 
poorer vision. Eyes that could detect hand motion were assigned a score that was 
one line worse than the largest printed line on the chart tested at a standardized 
distance of 4 m (< 20/1600) to provide the most conservative evaluation in terms of 
underestimating the actual extent of visual impairment.

VF was measured using Goldman perimetry (Haag Streit Perimeter 940; Haag 
Streit, Mason, OH).(Ross et al. 1984) The visual field isopters were obtained using 
the V4e test object.

The Esterman binocular visual field test on the field analyzer perimeter uses a 
grid of 120 test points to examine more than 130° of visual field. It was originally 
developed for manual perimeters and, similar to its monocular predecessor, gives 
more weight to the functionally more important parts of the visual field (i.e., central 
and inferior).(Esterman 1982)

Microperimetry was performed by an automatic fundus-related perimeter (MP1 
Microperimeter, Nidek Technologies, Padova, Italy). For the purpose of this study, 
the following parameters were used: a fixation target of 2° in diameter consisting 
of a red ring; a white monochromatic background with a luminance of 4 abs; and 
a Goldman III–size stimulus with a projection time of 200 ms.(Sohn et al. 2010) 
The stimulus was randomly projected according to a customized radial grid of 61 
points covering the central portion of the retina (108 centered onto the fovea; points 
aligned on the 08, 308, 608, 908, 1208, and 1508 radial axes, 18 apart), and a 4-2-1 
double staircase strategy was used with an automatic eye tracker that compensated 
for eye movements.(Midena et al. 2007)
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71.3  Results

Both eyes showed improvement in visual functionality, as evaluated 1 year after 
treatment.

In particular, in the first treated eye (right eye), BCVA improved from 0.85 to 
0.42 logMAR, Mean macular sensitivity increased from 0.8 dB (with unstable fixa-
tion) to 17.9 dB (with stable fixation), and central VF radius increased from 44° 
(area: 6197°2) to 52° (area: 8549°2; p < 0.001). Figure 71.1 shows the microperim-
etry macular sensitivity maps before and after treatment.

One year after treatment in the second eye (left eye) BCVA improved from 0.42 
to 0.34 logMAR; Mean macular sensitivity remained stable (16.6 vs 14.2 dB with 
stable fixation); and central VF radius increased from 46° (area: 6659°2) to 50° 
(area: 7,762°2; p = 0.02). Moreover, binocular computerized visual field, performed 
before and after the injection in the contralateral left eye and reported in Fig. 71.2, 
showed an improvement of Esterman score from 59 to 74 %, associated with an 
increase of mean sensitivity from 2.9 to 8.4 dB.

Comparing the 1 year post-injection time-points, we observed a BCVA improve-
ment of 51 % (RE) and 19 % (LE), a fixation stability increase of 10 (RE) and 0.02 
times (LE), and a VF enlargement of 38 % in the right eye and 17 % in the left eye.

Fig. 71.1  Microperimetry macular sensitivity maps before and after treatment
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As regards the 4-year follow-up, the right eye showed an improved visual 
functionality compared to baseline, i.e., improved BCVA (0.56 vs 0.82 logMAR), 
increased mean macular sensitivity (10.3 vs 0.8 dB), enlarged VF area (8211 vs 
6197°2). Moreover, mean Macular Thickness evaluated by Spectral Domain OCT 
remained stable over the follow-up in both eyes (239 ± 3 µm in the right eye, 
239 ± 8 µm in the left eye, see Fig. 71.3).

71.4  Discussion

The results of previous studies on gene therapy for LCA patients with RPE65 muta-
tions support the hypothesis that the greatest improvement in visual function with 
subretinal gene therapy will occur in young individuals (Simonelli et al. 2010). 
Although young patients had better visual function at baseline than did older indi-
viduals, they also had the greatest overall improvement in vision. However, most 
previous studies focused on treatment of the first eye, while only one study report-
ed the results of re-injections in the contralateral (untreated) eye in three patients, 
showing that the gains in retinal and visual function that had resulted from the 
initial injection were maintained after the second eye was injected (Bennett et al. 
2012). In addition, the results of retreatment may reflect an age effect whereby 
the individuals who were younger (and thus whose retinas had not undergone as 
much degeneration) showed larger gains than older individuals. Here we reported 

Fig. 71.2   Binocular visual 
field performed before (a), 
and after (b), treatment in the 
left eye

 

Fig. 71.3   OCT scans performed before and after treatment
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the preliminary findings related to a teenager treated in both eyes, who represents 
the youngest subject among those treated in both eyes and described in literature. 
The post-treatment results showed improvement of visual function in both eyes, in 
particular, a strong amelioration was observed after the first injection, by using con-
ventional monocular tests (i.e., BCVA, microperimetry and Goldman visual field). 
Moreover, the treatment in the second eye did not alter the gain achieved in the first 
eye and resulted in a further improvement of binocular visual functionality, as easily 
detected by computerized binocular visual field.

In literature, data on retinal degeneration revealed by OCT scan in patients treated 
in another clinical trial showed that therapy did not slow retinal degeneration, since 
a thinning of the outer nuclear layer (ONL) was detected by an ad hoc segmentation 
algorithm (Cideciyan et al. 2013). Although the comparison was limited by differ-
ences in methods (ad hoc developed versus commercial software), in demographic 
characteristics (i.e. age), and in the vector preparation and surgical approach, our 
observations showed that the overall macular thickness, including ONL, measured 
in OCT scans, remained stable over the whole follow-up (4 years), suggesting that 
gene therapy can slow retinal degeneration. However, further analysis on the overall 
treated cohort with a similar technique could be useful to confirm this hypothesis.

In conclusion, our data suggest that gene therapy can inhibit retinal degenera-
tion and can be safe and effective in restoring visual functionality in young subjects 
treated in both eyes. In particular, the treatment in the second eye resulted in a fur-
ther improvement of binocular visual functionality. Finally, new outcome measure-
ments, in particular binocular computerized visual field parameters, can therefore 
be useful to quantify overall visual gain in patients undergoing gene therapy in both 
eyes.
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Chapter 72
Regenerative Medicine: Solution in Sight

Qingjie Wang, Jeffrey H. Stern and Sally Temple

Abstract The retina, like other central nervous system tissues, has poor regenera-
tive properties in humans. Therefore, diseases that cause retinal cell loss, such as 
Age-related macular degeneration (AMD), retinitis pigmentosa (RP), Leber con-
genital amaurosis, Usher syndrome, glaucoma, and diabetic retinopathy, typically 
result in permanent visual impairment. Stem cell technologies have revolutionized 
our ability to produce neural cells in abundant supply. Much stem cell research effort 
is focused on producing the required cell types for cell replacement, or to gener-
ate disease-in-a-dish models to elucidate novel disease mechanisms for therapeutic 
development. Here we review the recent advances in stem cell studies relevant to 
producing RPE and retinal cells, and highlight future directions.

Keywords Stem cells · Retina · RPE · hESC · iPSC · Progenitor · Direct cellular 
reprogramming · Disease modeling

72.1  Induction of RPE and Neural Retinal lineages  
from Embryonic Stem Cells

Since the derivation of embryonic stem cells (ESCs), first in mouse and later in 
human (Evans and Kaufman 1981; Martin 1981; Thomson et al. 1998), several pro-
tocols have been developed to direct ESC differentiation towards RPE and neural 
retinal progeny. A combination of environmental factors known to stimulate retinal 
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development in animal models, including Lefty-A, Dkk1 and Activin A, were used 
to induce retinal progenitor cells from mouse ESCs, which resulted in 25–30 % Rx+/
Pax6+ retina progenitor cells (Ikeda et al. 2005). Pioneering studies using human 
embryonic stem cells (hESCs) demonstrated that treatment with a combination of 
BMP inhibitor, Wnt inhibitor and IGF-1 efficiently generated (~ 80 %) human neu-
ral retinal progenitor cells (Lamba et al. 2006). A combination of Wnt and BMP/
Nodal antagonists was also found effective in neural retina induction from hESCs 
(Osakada et al. 2008). Functional RPE cells have been derived from hESCs, first via 
spontaneous differentiation (Klimanskaya et al. 2004; Lund et al. 2006) and then by 
more rapid and efficient protocols assisted by Nicotinamide and Activin A (Idelson 
et al. 2009). These RPE cells can be purified by manual picking, which is effective 
but laborious, or by a simpler enzymatic process (Maruotti et al. 2013).

Recent technological advances have created three dimensional organoid cul-
tures resembling the optic cup or the neural retina. In modified serum-free and 
growth-factor-reduced medium (SFEBq culture), mESCs spontaneously form 
a hollow vesicle of neuroepithelium. The suspension organoid cultures then can 
form a cup-like structure resembling the embryonic optic cup, a process driven 
by self-organization (Eiraku et al. 2011). Similar self-forming optic cup structures 
have been observed when using human pluripotent stem cells (Nakano et al. 2012; 
Zhong et al. 2014). The 3-D organoid cultures result in more robust and efficient 
retinal cell differentiation and are better models to recapitulate eye development. 
Still, production of functional photoreceptors with fully developed outer segments 
in vitro remains a key goal.

72.2  Using iPSCs to Model Retinal Degenerative Diseases

The regenerative medicine field witnessed another unprecedented discovery when 
Takahashi and Yamanaka reported the first study on turning somatic cells into 
an embryonic stem cell-like state: induced pluripotent stem cells (iPSCs) (Taka-
hashi and Yamanaka 2006). Like ESCs, iPSCs can give rise to the full repertoire 
of somatic cell types. Most importantly, iPSCs match the patient from which they 
are derived in genetic background, and therefore are invaluable to model diseases, 
especially those with a strong genetic component. The RPE cells derived from hu-
man iPSC lines show similar properties to the ones derived from hESCs: they have 
similar gene expression profiles and phenotypic features, e.g. they maintain ZO-1 
positive tight junctions, express functional visual cycle enzymes and are capable 
of photoreceptor outer segment (POS) phagocytosis (Buchholz et al. 2009; Meyer 
et al. 2009; Osakada et al. 2009; Maeda et al. 2013). In addition, neural retinal pro-
genitor cells and their progeny including photoreceptor cells were also successfully 
derived from human iPSCs (Meyer et al. 2009; Osakada et al. 2009; Lamba et al. 
2010; Mellough et al. 2012; Zhong et al. 2014).
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Most retinal degenerative diseases are complex, and their underlying mecha-
nisms remain unclear. Disease modeling using patient-specific iPSCs is a promising 
approach to elucidate the mechanisms of degenerative disorders. Patient-specific 
iPSC lines derived from RP patients with distinct mutations in the RP1, RP9, PRPH2 
or RHO genes have been generated, and rod photoreceptors derived from such lines 
expressed markers of cellular stress and underwent degeneration, recapitulating key 
aspects of the disease (Jin et al. 2011). In a separate study, iPSCs derived from RP 
patients with mutations in the USH2A gene were used to generate the multi-layer 
eyecup-like organoid cultures (Tucker et al. 2013). Analysis of the photoreceptor 
precursor cells revealed that the USH2A variant Arg4192His causes photorecep-
tor degeneration through protein mis-folding and ER stress (Tucker et al. 2013). 
Best disease (BD) is another inherited retinal degenerative disease; it is caused by 
mutations in the BESTROPHIN1 (BEST1) gene. RPE cells derived from BD pa-
tient-specific iPSCs are less effective in conducting POS phagocytosis (Singh et al. 
2013). These studies demonstrate the potential of using patient-specific iPSCs to 
model and study retinal degenerative diseases. More such retinal disease models 
are anticipated, and further studies are eagerly awaited to identity disease pathways 
and drug candidates.

72.3  Direct Cellular Reprogramming

Several cellular reprogramming strategies have been developed: (1) cell fusion; 
(2) nuclear transfer (3) forced expression of cell fate specific transcription factors; 
(4) stimulation with small molecules and environmental factors. The iPSC repro-
gramming technology indicates that surprising plasticity is present in many types of 
cells. However, it takes multiple steps and a long time to reprogram somatic cells 
back to a pluripotent state then differentiate them towards the targeted cell types. 
An alternative is direct reprogramming, which aims to switch cells from one type to 
another directly. To date, there are just a few studies focused on generating induced 
retinal cells or induced RPE cells via direct cellular reprogramming.

Cell fusion mediated somatic cell reprogramming is a classic strategy to push 
cells towards different fates (Ambrosi and Rasmussen 2005). Retinal cells includ-
ing Müller glia, amacrine and retinal ganglion neurons can fuse with transplanted 
hematopoietic stem and progenitor cells (HSPCs), ESCs or retinal stem and pro-
genitor cells (RSPCs) in vivo upon retinal damage (Sanges et al. 2013). Activation 
of the Wnt/β-catenin signaling pathway in the transplanted cells is critical for cell 
fusion and reprogramming to occur. The fused cells can proliferate and differentiate 
in vivo, to partially regenerate the damaged retinal tissue (Sanges et al. 2013).

Müller glial cells are an endogenous resource for regeneration and repair of reti-
nal injuries in fish and amniotes, and several studies have examined the plasticity of 
mammalian Müller glia. Müller glia harvested from both adult human vitreoretinal 
explants and the adult mouse retina are able to produce cells similar to other retinal 
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cell types, including bipolar, amacrine, horizontal cells and photoreceptors, under 
a defined differentiation environment (Giannelli et al. 2011). Forced-expressing of 
Ascl1 ( Mash1) in mouse Müller glia cells resulted in retinal progenitor-like cells 
that could proliferate in vitro and showed neuron-like response to neurotransmitters 
(Pollak et al. 2013).

Other cell types also show potential for direct reprogramming into retinal prog-
eny. By forcing expression of the photoreceptor specific homeobox gene Crx, pri-
mary cells derived from adult rat iris tissue could produce photoreceptor-like cells 
that expressed rhodopsin and recoverin (Haruta et al. 2001). Combinations of (1) 
Crx and Otx2, (2) Crx, Nrl and NeuroD or (3) Crx, Rx and NeuroD produced similar 
results, and generated photoreceptor-like cells that express photoreceptor-specific 
markers and exhibited rod photoreceptor-specific electrophysiological responses to 
light stimuli (Akagi et al. 2004, 2005; Seko et al. 2012). A related strategy has been 
applied to generate RPE-like cells from human fibroblast cells. A combination of 
cMYC, Mitf, Otx2, Rax, Crx, Kif4, Nrl and Pax6 was found to reprogram human 
fibroblast cells into RPE-like cells (Zhang et al. 2014). The induced RPE-like cells 
form a typical cobblestone morphology and express key RPE markers including 
Bestrophin1, ZO-1 and Cralbp but have low expression of RPE65 and Tyr. It will be 
useful to perform additional characterization of these RPE-like cells, including ex-
amination of cell polarity, physiology and phagocytosis, to understand how similar 
they are to native RPE.

Specific combinations of intrinsic factors and environmental cues are critical for 
successful direct reprogramming. Additional work to optimize conditions such as 
the mixture of transcription factors, the growth factors used, and the sequence of 
their application, is needed to determine the optimal protocols for deriving specific 
retinal and RPE cells that function well. Nevertheless, work to date indicates that 
direct cellular reprogramming is a viable and potentially more efficient strategy to 
generate specific retinal cell types from various sources of cells.

72.4  Future Perspectives

Through these pioneering stem cell studies we have learned that key factors that gen-
erate neural retinal and RPE cells are evolutionarily conserved, and that the retinal 
cells emerging in the dish have remarkable powers of self-assembly to create struc-
tures with appropriately organized layers. Still, there is the need for improvements in 
technologies that will include (a) even more efficient and consistent differentiation 
protocols, especially for the neural retinal lineages (b) more rapid differentiation, 
(c) production of purified retinal populations. Using the variety of culture methods 
being developed, from 2D to organoid cultures, we look forward to gaining a better 
understanding of human retinal cell development. We predict that iPSC-based mod-
eling will profoundly improve study of disease mechanism and therapeutic develop-
ment. An exciting future strategy deserving exploration is regeneration of retinal 
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cells via endogenous sources such as RPE cells and Müller glia. This will require 
strategies to safely activate the target cells, and possibly direct reprogramming by 
introducing genes, taking advantage of strides made in viral gene delivery to the 
retina (Day et al. 2014). In summary, stem cell research provides the opportunity to 
advance basic research relevant to human retinal development and function. We look 
forward to translational research progress from bench to bedside, and ultimately, to a 
new era of regenerative medicine for preserving and improving vision.
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Chapter 73
Personalized Medicine: Cell and Gene Therapy 
Based on Patient-Specific iPSC-Derived Retinal 
Pigment Epithelium Cells

Yao Li, Lawrence Chan, Huy V Nguyen and Stephen H Tsang

Abstract Interest in generating human induced pluripotent stem (iPS) cells for 
stem cell modeling of diseases has overtaken that of patient-specific human embry-
onic stem cells due to the ethical, technical, and political concerns associated with 
the latter. In ophthalmology, researchers are currently using iPS cells to explore var-
ious applications, including: (1) modeling of retinal diseases using patient-specific 
iPS cells; (2) autologous transplantation of differentiated retinal cells that undergo 
gene correction at the iPS cell stage via gene editing tools (e.g., CRISPR/Cas9, 
TALENs and ZFNs); and (3) autologous transplantation of patient-specific iPS-
derived retinal cells treated with gene therapy. In this review, we will discuss the 
uses of patient-specific iPS cells for differentiating into retinal pigment epithelium 
(RPE) cells, uncovering disease pathophysiology, and developing new treatments 
such as gene therapy and cell replacement therapy via autologous transplantation.

Keywords iPS · RPE · Gene therapy · Cell therapy · Disease modeling · Sub-retinal 
transplantation · Gene correction
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73.1  Introduction

As a platform to study patient-specific targeted disease cells, iPS cells have exciting 
potential in regenerative medicine and human disease modeling. The in vitro phe-
notypes of disease-specific iPS-derived cells can be used to bridge the gap between 
the clinical phenotype and molecular/cellular mechanisms, creating new strategies 
for drug screening, and developing novel therapeutic agents for clinical trials with-
out the use of more expensive animal models (Tsuji et al. 2010; Jin et al. 2011; 
Lustremant et al. 2013; Singh et al. 2013).

iPS-based therapies hold great promise for treating retinal degenerative diseases. 
Among these diseases, retinitis pigmentosa (RP) is one of the most devastating and 
prevalent, affecting 1.5 million people worldwide. Cell transplantation into the hu-
man retina has the potential to restore vision and provide treatment in diseases like 
RP with significant retinal pigment epithelium (RPE) loss. Replacement of dam-
aged RPE in patients with age-related macular degeneration (AMD), another lead-
ing cause of blindness, is now being offered (Wang et al. 2010). In 2011, the U.S. 
Food and Drug Administration advanced the treatment of macular degenerations by 
approving clinical trials using embryonic stem (ES) cell-derived RPE transplants 
(Schwartz et al. 2012). In addition to the prospect of transplantations, human iPS 
cell technology provides a platform for investigating the pathophysiological mecha-
nisms of genetic mutations and testing of gene therapy vectors on RPE-based dis-
ease models. iPS-derived RPE (iPS-RPE) can be reproducibly isolated and closely 
monitored both morphologically and functionally before experiments.

73.2  RPE Loss and Retinal Disease

Dysfunction and death of RPE has been observed in various blinding diseases, 
including AMD and RP, two of the leading causes of blindness in the developed 
world. AMD alone affects approximately 8 million Americans, and its incidence 
is expected to double by 2020. The RPE, a monolayer of cells located at the back 
of the eye between the retina and Bruch’s membrane, is essential for photoreceptor 
function and survival. Hence, RPE loss accounts for a significant number of neu-
rodegenerative diseases that severely impair activities of daily living. Anti-VEGF 
therapy has been shown to slow the rate of vision loss, but it has no more than a 10 % 
rate of effectiveness in all AMD cases (Rosenfeld et al. 2006). No other treatments 
are currently available to restore the vision of patients who suffer from RPE loss.

Researchers have generated animal models to develop treatments such as stem 
cell replacement therapy for retinal disease caused by RPE loss. One model is the 
Rpe65rd12/Rpe65rd12 (rd12) mouse for studying Leber congenital amaurosis (LCA) 
(Pang et al. 2005). LCA Type 2 is caused by mutations in the gene encoding RPE-
specific protein 65 kDa (RPE65), an isomerase that is involved in the conversion of 
the chromophore necessary for rhodopsin to detect light (Jin et al. 2005). Successful 
stem cell replacement therapy resulting in functional improvements with this model 
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has been previously reported (Wang et al. 2010; Li et al. 2012). Another model that 
has been widely tested with gene therapy is the Mfrprd6/Mfrprd6 mouse, which has a 
deletion in the Membrane Frizzled-Related Protein ( Mfrp) gene. These mice have 
abnormal expressions of MFRP protein, an RPE-specific membrane receptor, and 
exhibit progressive retinal degeneration beginning at 1 month of age, with photore-
ceptor function completely extinguished by 70 weeks (Kameya et al. 2002). Due to 
their slow rates of degeneration, these mice are ideal recipients for testing in vivo 
treatments for RP caused by MFRP deficiency.

73.3  iPSC and Eye Disease

73.3.1  Cell Therapy: Retinal Pigment Epithelium  
Sub-retinal Transplantation

The eye is an ideal testing ground for stem cell therapies for numerous reasons: 
its relative immune privilege, its accessibility for monitoring and imaging, and the 
presence of a contralateral control eye. iPS cells offer a compelling alternative ap-
proach for stem cell therapy, given its potentially unlimited capacity for generating 
cells for functional testing and optimization studies. When derived from the trans-
plant recipient, autologous iPS-derived cells obviate the need for immunosuppres-
sion after transplantation.

RPE transplantation poses fewer challenges than other kinds of cell transplanta-
tion since routine culture of RPE cells has been well described (Idelson et al. 2009; 
Sonoda et al. 2009). Pigmented RPE monolayers have an easily identifiable hexag-
onal structure and can be isolated and transferred to a variety of substrates without 
the need for synaptic integration. Much information regarding pluripotent cell-
derived RPE transplantation has come from a multicenter trial, run by Advanced 
Cell Technologies, for the treatment of dry macular degeneration and Stargardt 
macular dystrophy (Schwartz et al. 2012). In these studies, a near pure population 
of RPE was obtained from human ES cells maintained under good manufactur-
ing practice (GMP) conditions and injected subretinally into the patients with good 
results. Similarly, iPS-RPE autologous cell transplantations have recently been ap-
proved in Japan for AMD clinical trials (Cyranoski 2013).

At present, human iPS-derived RPE cell transplantation data are limited to ani-
mal models. In one experiment, Li et al. injected dissociated suspensions of human 
iPS-RPE into the subretinal space of the Rpe65 mutant mouse model and showed 
integration of the transplant with the host RPE, as well as a modest improvement of 
visual function as measured by electroretinogram (ERG) (Li et al. 2012). Carr et al. 
(2009) also showed that subretinal injections of dissociated human iPS-RPE into 
Royal College of Surgeons (RCS) rats resulted in long-term preservation of visual 
function. Intracellular RHO staining suggested that these transplanted cells behaved 
normally by phagocytosing photoreceptor outer segments in vivo (Carr et al. 2009).
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73.3.2  Progress of Retinal Disease Modeling

The first retinal disease to be modeled via patient-specific iPS cells is Best vitelli-
form macular dystrophy (BVMD) (Singh et al. 2013). BVMD is caused by a defect 
in the RPE gene BEST1, which results in the subretinal accumulation of photore-
ceptor waste products (e.g., lipofuscin) and fluid, leading to secondary photorecep-
tor death and central vision loss. Singh et al. observed clinically relevant disease 
phenotypes for BVMD, such as disrupted fluid flux and increased accrual of auto-
fluorescent material, in iPS-RPE from affected patients compared to those obtained 
from unaffected siblings. On a molecular level, rhodopsin degradation after pho-
toreceptor outer segment (POS) feeding was delayed in BVMD iPS-RPE, directly 
implicating impaired POS handling in the pathophysiology of the disease.

iPS cells have also been used to study the pathophysiology of AMD. Although the 
closely linked ARMS2/HTRA1 genes were found to be strongly associated with the 
risk of AMD, their downstream targets are unknown. Further complicating the study 
of this age-related disease is the lack of appropriate models; mice do not have macu-
lae and human autopsy samples are from the end, not early, stages of disease. To cir-
cumvent these obstacles, Yang et al. created AMD patient-specific iPS-derived RPE 
that were pharmacologically aged with bisretinoid N-retinylidine-N-ethanolamine 
(A2E) and blue light (Yang et al. 2014). With this novel AMD model, the research-
ers showed that impaired superoxide dismutase 2 (SOD2) response was related to a 
high risk of AMD. SOD2 and reactive oxygen species (ROS) assays confirmed that 
the AMD-associated genetic risk factors impair the ability of RPE to defend against 
aging-related oxidative stress, thereby contributing to AMD pathogenesis.

In a recently published report (Li et al. 2014), the authors showed that the pheno-
types of patient-specific cells differed from that of a mouse model, underscoring the 
necessity for multiple models of disease. Compared to wild-type control iPS-RPE 
cells, patient iPS-RPE containing a mutation in the Mfrp gene exhibited the loss of 
apical microvilli as observed by electron microscopy. This result was in stark con-
trast to the phenotype Mfrprd6/Mfrprd6 mice RPE, which showed higher densities of 
apical microvilli (Fogerty and Besharse 2011). Because differences in phenotypic 
expression can be observed among species with the same genetic mutation, it is 
important to study patient-specific cell lines as a complement to mouse models.

73.4  Personalized Medicine: Patient-Specific iPSC-based 
Therapy

73.4.1  Development of Gene Correction on Patient-Specific 
iPSCs

Gene-corrected patient-specific iPS cells offer a unique approach to autologous 
therapies, with the potential to treat a wide range of acquired and inherited diseases. 
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Genome editing tools, such as zinc finger nucleases (ZFNs), transcription activator-
like effector nucleases (TALENs), and the clustered regularly interspaced short pal-
indromic repeats (CRISPR)/Cas9 system, are able to correct the mutations that lead 
to genetic diseases. By editing the mutations in the patients’ genomic DNA through 
double strand break induction and subsequent homology-directed repair, the cor-
rected gene will remain under the normal endogenous expression control elements 
(Tucker et al. 2014).

Among the three technologies, the CRISPR/Cas9 system is particularly attrac-
tive because its guide RNAs can be more readily generated, unlike the protein-
based DNA targeting motifs of ZFNs and TALENs. Mali et al. reported success 
in targeting the endogenous AAVS1 locus in human iPSCs via the CRISPR/Cas9 
system and achieved homology-directed repair of fibroblast-derived iPSCs (Cho 
et al. 2013; Mali et al. 2013). Despite the ease of use, there are concerns of pos-
sible mispairings between the guides and genomic DNA, as well as induction of 
double strain breaks in undesired locations (Fu et al. 2013). Accordingly, strategies 
to decrease these risks of off-targeting are being developed. Ran et al. recently dem-
onstrated that by mutating a single amino acid in the catalytic domain of the Cas9 
nuclease, they could generate a “nicking” enzyme that only cleaves a single strand 
of DNA in DNA repair (Ran et al. 2013). The researchers were able to achieve ef-
ficient modification of three distinct genetic loci with a 200 to 1500-fold increase in 
specificity (Ran et al. 2013). In short, these experiments demonstrate the potential 
of employing nickases to increase the specificity and safety of the CRISPR/Cas9 
genome editing technology.

73.4.2  Gene Therapy on Patient-Specific iPSC-Derived  
RPE Cells.

There are also reports of using patient-specific iPS-derived RPE cells as the re-
cipient for gene therapy. In 2013, researchers at the University of Pennsylva-
nia used adeno-associated virus (AAV)-mediated gene therapy to restore Rab 
Escort Protein 1 (REP1) function in iPSC from choroideremia (CHM) patients 
(Vasireddy et al. 2013). Less than 1 year later, Cereso et al. applied AAV2/5-
mediated gene therapy to the differentiated RPE cells from CHM patient-specific 
iPSCs (Cereso et al. 2014). With this CHM model, they assayed a panel of AAV 
vector serotypes and showed that AAV2/5 is the most efficient at transducing 
iPSC-derived RPE.

Meanwhile, Li et al. showed successful correction of the overall phenotype us-
ing human iPS-RPE cells as gene therapy recipients (Li et al. 2014). They created 
two patient-specific iPS-derived RPE cell lines with MFRP defects and applied 
the AAV8 vector expressing human MFRP. As a result, AAV-treated Mfrp mutant 
iPS-RPE cells recovered wildtype pigmentation and transepithelial resistance. The 
AAV-mediated gene therapy was also evaluated in Mfrprd6/Mfrprd6 mice, yielding 
long-term improvement in visual function as observed via ERG.

73 Personalized Medicine: Cell and Gene Therapy Based on Patient-Specific …
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73.5  Future Directions

iPS technology has the promise to make significant contributions to our understand-
ing of the most pressing blinding diseases of our time. Patient-specific iPS cells 
have been shown to not only complement animal models of human disease but also 
be an excellent model in their own right. These cells provide a window for testing 
the efficacy of gene- or drug-based therapies, elucidate new mechanisms and path-
ways of disease, and enable researchers to experiment with the parameters for suc-
cessful cell replacement therapy in vitro. The efforts of the biotechnology industry 
to make large-scale stem cell production feasible will only make stem cell technol-
ogy more widely accessible (Borooah et al. 2013). Major progress has also been 
made in developing Good Manufacturing Practice (GMP) laboratories and bringing 
iPS applications to clinical trials. The future direction of iPS development offers the 
hope of slowing progression or perhaps improving visual function for patients with 
currently untreatable retinal diseases.
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Chapter 74
Human Retinal Pigment Epithelium  
Stem Cell (RPESC)

Janmeet S. Saini, Sally Temple and Jeffrey H. Stern

Abstract The retinal pigment epithelium (RPE) is a pigmented cellular monolayer 
that supports photoreceptor cells located in the overlying neural retina. The RPE is 
critical for vision and its dysfunction results in numerous pathologies, several with 
limited available disease-altering strategies. Regeneration of the retina from RPE is 
robust in lower vertebrates, but is not normally exhibited in mammals. We recently 
found that a subpopulation of human RPE cells can be stimulated in culture to gen-
erate multipotent self-renewing cells—the RPE stem cell (RPESC). RPESC can be 
expanded to generate RPE progeny that are a potential source for cell replacement 
therapy. Alternatively, RPESC can produce mesenchymal progeny which serve as a 
disease model of epiretinal membrane formation. Yet another potential application 
of RPESCs is activation within the eye to awaken dormant endogenous repair.

Keywords Retina · Stem cells · Tissue specific stem cells · Retinal pigment 
epithelium (RPE) · Retinal pigment epithelium stem cells (RPESC) · Regeneration ·  
Disease modeling · Epiretinal membrane · Transplantation · Endogenous repair

74.1  Introduction

The sense of sight is critical, and our quality of life deteriorates with vision loss, 
for example due to retinal disease. Vision loss associated with the dysfunction and 
death of retinal pigment epithelial (RPE) cells occurs in several types of retinal 
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degenerative disease, including age-related macular degeneration and forms of 
retinitis pigmentosa. Disease-altering strategies are lacking for many of these RPE 
degenerative diseases. We recently discovered that a sub-population of multipotent, 
self-renewing RPE stem cells (RPESC) are present in the human RPE layer (Salero 
et al. 2012). In this chapter we review the unique RPESC and its use to (1) generate 
RPE progeny for RPE replacement therapy, (2) produce disease-in-a-dish models 
for drug discovery and (3) promote endogenous RPE layer self-repair.

74.2  The RPE Layer

The eye derives from the neuroepithelium during embryonic development. Early in 
this process, the neuroepithelium invaginates to give rise to the optic cup with two 
distinct layers: an inner layer that forms the neural retina, including the light-sen-
sitive photoreceptor cells, and an outer layer that forms the RPE layer. Subsequent 
maturation of neural retina and RPE occurs in concert and is driven by interac-
tion between the layers and the surrounding tissues, including the mesenchyme and 
overlying ectoderm (Strauss 2005). Initially, the cells of the optic vesicle are all 
competent to make RPE and neural retina and are morphologically and molecu-
larly similar. Specification and differentiation of the different retinal cell types is 
regulated by signaling molecules over time (Chow et al. 1999; Zuber et al. 2003) 
resulting in differentiated progenitor cells that produce the specialized cells of the 
fully mature eye (Zaghloul et al. 2005).

The differentiated RPE layer has many functions, including providing nutrition 
to the inner retina, visual pigment recycling, fluid and electrolyte homeostasis, cy-
tokine release, photoreceptor phagocytosis and protecting the photoreceptors from 
light damage (Bok 1993; Strauss 2005). Most types of epithelium undergo constant 
replacement of damaged cells via tissue homeostasis (Blanpain et al. 2007); in con-
trast, the RPE, like other central nervous system tissues, shows limited renewal. 
Thus progressive damage due to aging and disease results in permanent loss of RPE 
cells.

74.3  Regeneration of the Retina

The vertebrate eye structure and its development are highly conserved evolution-
arily (Wawersik and Maas 2000; Vopalensky and Kozmik 2009). However, in lower 
vertebrates, the retina retains the ability to regenerate and in several species, RPE 
cells have a critical role in this process (Keefe 1973; Mitashov 1997; Raymond and 
Hitchcock 2000; Fischer and Reh 2001). Retinal injury in amphibians, for example, 
can activate RPE cells to revert to a proliferative neuroepithelial fate and then re-
constitute the entire retina (Klein et al. 1990; Mitashov 1997). Unknown factors 
prevent such RPE cell activation in adult mammals, and thus prevent the regenera-
tion of the retina (Mitashov 1997).
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74.4  Tissue-Specific Stem Cells

Stem cells are defined by their ability to self-renew and differentiate into special-
ized cells. While embryonic stem cells are pluripotent, having the ability to dif-
ferentiate into all the derivatives of the three germ layers, tissue-specific stem cells 
primarily generate cell types of their parent tissue (Young and Black 2004; Blanpain 
et al. 2007). During development, the cells of the three germ layers undergo rounds 
of proliferation giving rise to progenitor cells and subsequently to differentiated 
cells; a fraction of cells leave this continuum and become reserve somatic stem or 
progenitor cells. Such cells may mediate continuous repair and maintenance of tis-
sues (Young and Black 2004). Tissue specific stem cells or somatic stem cells have 
been identified in the hematopoietic system (Mikkola and Orkin 2006; Moore and 
Lemischka 2006), skin (Ghazizadeh and Taichman 2001), and intestinal epithelia 
(Bjerknes and Cheng 2002) where a rapid rate of cellular turnover is required. More 
recently, somatic stem cells have been found in tissues with lower self-renewal 
demand such as prostate (Lawson et al. 2007) and nervous system (Reynolds and 
Weiss 1992; Clarke et al. 2000). Typically, somatic stem cells are dormant or slowly 
dividing, but upon activation generate a rapidly dividing cellular pool of transit 
amplifying cells that will differentiate into a particular cell lineage and thus repair 
tissue (Moore and Lemischka 2006; Blanpain et al. 2007).

74.5  RPE Stem Cells (RPESC)

Pioneering studies have demonstrated that human RPE from fetal through adult 
stages can proliferate in culture and produce monolayers valuable for studying RPE 
cell function and polarity (Hu and Bok 2001; Maminishkis et al. 2006; Blenkinsop 
et al. 2013). We recently determined that although RPE cells appear morphological-
ly similar, only a subpopulation of them have the ability to proliferate extensively. 
Therefore, monolayers of RPE are typically produced from a minor subpopulation 
of cells. We recently characterized this process and described a sub-population of 
tissue-specific adult human RPESC that can be stimulated in culture to self-renew 
and produce multipotent proliferating cells (Salero et al. 2012).

In order to establish the existence of stem cell characteristics in adult human 
RPE, we extracted the cells from donated globes and performed well-established 
tests of stem cell activity: clonal non-adherent sphere formation assays (Reynolds 
and Rietze 2005) and clonal adherent growth assays (Davis and Temple 1994). We 
found that a minor subset of RPE cells can form spheres in non-adherent cultures, 
and just 3–10 % of isolated RPE cells are highly proliferative in clonal adherent cul-
tures. Time-lapse movies of acutely isolated RPE cells also demonstrate that most 
RPE cells divide occasionally, but a subpopulation of RPE cells has a much more 
substantial capacity to proliferate, migrate and contribute to a confluent monolayer 
of cells. Combined, these observations demonstrate that the adult RPE contains a 
subset of cells that can be activated to a stem cell state (RPESC), extensively self-
renewing to produce new RPE cells in vitro.
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RPESCs divide robustly and can be induced to differentiate into a highly polar-
ized cobblestone monolayer accompanied by expression of RPE markers such as 
RPE-65, CRALBP, Bestrophin and MITF (Blenkinsop et al. 2013). We have ex-
panded RPESC to produce > 5 × 108 progeny after 2 passages which then differenti-
ate into polarized RPE, suggesting that this is a useful candidate cell source for 
RPE replacement therapy. When grown on transwell polyester membranes, these 
RPESC-derived RPE can be transplanted into animal models such as the rabbit and 
remain as a stabilized, polarized monolayer for at least a month (Stanzel et al. 2014).

We also found that RPESCs are multipotent and can differentiate into neural and 
mesenchymal progeny when grown in culture conditions known to promote these 
fates. RPE cells grown in media that stimulates the production of neural progeny 
from human pluripotent stem cells can up-regulate neural progenitor cell markers, 
including Nestin and TuJ1 (von Bohlen Und Halbach 2007), however to date, these 
progeny do not acquire the morphology of mature neurons or glia. In contrast, the 
generation of differentiated mesenchymal progeny from RPESC cultures is robust 
when RPESC are exposed to mesenchymal differentiation media. Importantly, we 
have observed differentiation in clonal RPE lines split into different growth condi-
tions- the same RPESC-derived clonal line that in control conditions produces RPE 
progeny, when exposed to osteogenic, adipogenic or chondrogenic media can pro-
duce differentiated cells of these mesenchymal lineages.

Mesenchymal progeny are found in retinal diseases such as epiretinal membrane 
formation that are known to involve RPE cells (Newsome et al. 1981; Heidenkummer 
and Kampik 1991). The disease process has been suggested to involve an epithelial 
to mesenchymal transition and differentiation of the cells into mesenchymal fates. 
Our findings that this can be reproduced in the culture dish strengthens the concept 
that RPE is an important cell of origin in epiretinal membranes. In addition, RPESC 
cultures can be used as a model of epiretinal membrane formation, useful to under-
stand the disease process and for drug discovery. We found that RPE cells gener-
ated from pluripotent sources, including human embryonic stem cells and induced 
pluripotent stem cells, or from fetal eyes can also generate mesenchymal progeny, 
hence this is not a unique feature of the adult RPESC. It is important to understand 
the mechanisms underlying this plasticity not only because it has implications for 
retinal pathologies, but also because pluripotent stem cell-derived RPE are already 
approved for clinical trials (DR1-01444; Schwartz et al. 2012), and this is a poten-
tial adverse event that must be avoided.

RPESC cultures also provide a model to study the factors that stabilize RPE 
to prevent RPE and retinal regeneration in higher organisms. We have observed 
that appropriate culture conditions switch off repressive factors to activate RPESC 
proliferation. Doing so within a patient’s eye to activate the intrinsic surviving RPE 
is a strategy to replenish the RPE layer and may also benefit the neural retina by 
producing beneficial growth factors or improving RPE support of neural retinal 
cell function. A number of challenges remain to selectively activate the RPESC to 
differentiate along appropriate RPE lineages without affecting other eye progenitor 
cell types. We are currently exploring RPESC activation both in vitro and in vivo to 
define conditions that safely increase RPE cell number by activating endogenous 
RPESCs as a therapeutic avenue for retinal degenerative disease.



56174 Human Retinal Pigment Epithelium Stem Cell (RPESC)

Our ongoing work aims to uncover the factors and pathways promoting stem cell 
like behavior in mature human RPE. FGF (Spence et al. 2007), Shh (Spence et al. 
2004; Spence et al. 2007), Activin (Sakami et al. 2008), ERK (Mizuno et al. 2012) 
and other signaling factors have been implicated in the regulation of RPE in regen-
erating retina of lower vertebrates. Prior studies of intraocular growth factors have 
shown benefit in degenerative disease models (Unoki and LaVail 1994; Kimizuka 
et al. 1997), and combinations of exogenous factors may selectively activate the 
RPESC in vivo.

In the future, we hope that discovery of the RPESC and further characterization 
of this cell will enable us to control endogenous RPE regeneration in vivo. This ap-
proach may be preferable to increasing the RPE cell number by surgical implanta-
tion of cells because endogenous activation has the potential to avoid surgical injury 
and immunosuppression. Overcoming the barriers to endogenous regeneration and 
enabling RPE cell repair in vivo could, in the future, lead to further regenerative 
abilities of the RPESCs, to benefit patients suffering from retinal degenerations.
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Chapter 75
Embryonic Stem Cell-Derived Microvesicles: 
Could They be Used for Retinal Regeneration?

Debora B. Farber and Diana Katsman

Abstract Mouse embryonic stem cells (mESCs) release into the medium in which 
they are cultured heterogeneous populations of microvesicles (mESMVs), impor-
tant components of cell-cell communication, that transfer their contents not only to 
other stem cells but also to cells of other origins. The purpose of these studies was to 
demonstrate that ESMVs could be the signals that lead the retinal progenitor Mül-
ler cells to de-differentiate and re-entry the cell cycle, followed by differentiation 
along retinal lineages. Indeed, we found that ESMVs induce these processes and 
change Müller cells’ microenvironment towards a more permissive state for tissue 
regeneration.

Keywords Embryonic stem cells · Stem cells · Stem cell microvesicles · Retina · 
Retina regeneration · Müller progenitor cells · Müller cell cultures · De-differentiation 
· Differentiation · Retinal cell lineages

75.1  Introduction

mESMVs released by mESCs into the intercellular environment are heterogeneous 
in size (from ~ 30 nm to 1 um) and contain mRNA, miRNA and proteins (Yuan 
et al. 2009). They can transfer their contents to cells of other origins, acting as 
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“physiologic liposomes”. ESMVs have been shown to reprogram and enhance the 
proliferation of hematopoietic progenitors (Ratajczak et al. 2006) and to induce the 
regenerative capacity of several tissues, likely by activating endogenous progenitor 
cells. As a result, ESMVs have helped to repopulate and repair injured liver (Her-
rera et al. 2010), lung (Tetta et al. 2011) and kidneys (Bruno et al. 2012). Moreover, 
ESMVs may be responsible for the paracrine effect ESCs demonstrate on adjacent 
and distant tissues.

Müller cells meet several of the requirements to be considered progenitor cells, 
including the ability to differentiate along multiple retinal lineages such as pho-
toreceptors and inner retina neurons (Jadhav 2009; Bernardos et al. 2007). More-
over, it has been shown that Müller cells are activated in injured retinas with some 
regenerative success (Karl et al. 2008), but functional retinal recovery has not yet 
been achieved. Identification of factors that induce Müller cells to de-differentiate, 
enter the cell cycle, and differentiate along retinal neural lineages may lead to novel 
therapy development for retinal degenerative diseases. We explored the possibility 
of employing mESMVs as agents that activate the regeneration program in Müller 
cells.

75.2  mESMVs from mESCs Containing a GFP Transgene 
Transfer GFP mRNA/protein to Unlabeled mESCs

To determine if mESMVs can transfer transgenes expressed in ESCs (i.e., GFP), 
we incubated Vybrant DiD-labeled ESCs with ESMVs from ESCs containing GFP, 
and imaged the cells by confocal microscopy, using the appropriate DiD or GFP 
filter sets (Figs. 75.1a and b, respectively). Figure 75.1b shows many green vesicles 
docked on the ESCs and several patches of diffuse GFP signal inside the cells near 
the plasma membrane and in the cytoplasm, confirming that mESMVs transfer GFP 
mRNA/protein to other ESCs (Yuan et al. 2009). Figure 75.1c shows the merged 
images of Figs. 75.1a and 75.1b.

Fig. 75.1   ESMVs transfer GFP. a DiD signal from ESCs incubated with ESMVs containing the 
GFP transgene. b GFP signal from the same cells. Arrows indicate signal representing docked 
vesicles. Arrowheads indicate signal likely from the diffusion of GFP inside the cell or from the 
production of newly translated GFP. c Merged (a) and (b). (Modified from Yuan et al. 2009)
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75.3  mESMVs Transfer to Human Müller Cells mRNAs 
and miRNAs that Induce Pluripotency and 
Expression of Early Retinal Genes

Using qRT-PCR and species-specific primers, we were able to distinguish the 
mESMV transfer to human Müller cells of mRNAs from the induction by mESMVs 
of the endogenous human Müller cell transcripts. Mouse Oct4 mRNA level was 27-
fold higher than in control cells 8 h after transfer and decreased to 1.7-fold above 
control in 2 days. Human Oct4 mRNA was increased above control 3-fold 8 h post-
mESMV exposure and remained elevated 1.8 fold for the next 40 h, indicating that 
its induction by ESMVs may persist for days (Katsman et al. 2012). Similar induc-
tion (5- and 180-fold increases above control, respectively) of the human early reti-
nal genes Pax6 and Rax, which encode transcription factors expressed throughout 
retinogenesis (Mathers 2000), was detected post mESMV exposure. miRNAs 292 
and 295 also transferred efficiently and at very high levels (~ 200–400-fold) from 
mESMVs to Müller cells and persisted for at least 48 h post treatment, possibly 
playing a role in gene expression alterations of Müller cells. The lack of nanog 
mRNA transfer, despite its abundance in mESMVs, suggests that there exists a se-
lection mechanism to direct the genetic transfer, or that only a subset of mRNAs 
transferred are retained by the recipient cells, while the rest are rapidly degraded.

75.4  mESMV Exposure Induces Morphological Changes 
in Müller Cells

Differences in the morphology of mESMV-treated and control Müller cells became 
evident after the first mESMV exposure. With continued treatments every 48 h, 
the mESMV- exposed cells showed decreased cell-cell adhesion than the sheets of 
homogeneous, spindle-like control Müller cells, and many grew as heterogeneous 
individual cells with multiple processes or unilateral boutons, stellar shapes and 
often enlarged nuclei. However, the number of cells in treated and control cultures 
remained very similar (Katsman et al. 2012). A couple of times we were able to 
visualize ESC-like colonies among the regular looking Müller cells. Moreover, we 
found that these colonies expressed Oct4 (Fig. 75.2).

To further characterize the heterogeneous Müller cell population resulting from 
the mESMV treatment, we analyzed their immunocytochemical expression of reti-
nal cell lineage markers. In addition to GS, we observed immunoreactivity to syn-
taxin 1a, an amacrine cell marker, Brn3a, a ganglion cell marker and rhodopsin, 
a rod photoreceptor marker (Fig. 75.3). Gad67, an amacrine and horizontal cell 
marker and NeuN, an amacrine and ganglion cell marker, were also found in small 
populations of ESMV-treated Müller cells. None of these markers were present in 
untreated cultures. Our data suggest that mESMV treatment induces human Müller 
cells to de-differentiate, turn on an early retinogenic program, and transdifferenti-
ate towards cells of amacrine, ganglion cell, and rod photoreceptor lineage in vitro.
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75.5  mESMV Exposure of Müller Cells Activates in them 
a Transcriptome Markedly Different from that of 
Untreated Müller Cells

We used microarrays of cDNAs and stringent statistical parameters to compare the 
transcriptional response of mESMV-treated and untreated Müller cells (Katsman 
et al. 2012). mESMV exposure caused enrichment in pro-pluripotency genes, early 
retinal genes, retinoprotective genes, and genes known to induce regeneration, and 
depletion of pro-differentiation genes, consistent with our observations of Müller 
cells’ morphological changes towards a more de-differentiated phenotype. Among 
the differentially regulated genes were also those coding for ECM components and 
modifying molecules, their changes reflecting a shift to a tissue remodeling profile. 
Interestingly, c-Myc, a pluripotency-inducing factor detected in Müller cells (Taka-
hashi 2006), remained unchanged during the course of ESMV treatments. Follow-
ing are examples of mRNAs up- and down-regulated in Müller cells by mESMV 
exposure:

Up-Regulated 

• Pluripotency genes: Oct4, Lin28, Klf4, Lif
• Early retinal genes that direct retinal cell differentiation during embryogenesis: 

Bmp7, Olig2, FoxN4, Prox1, Dll1, Pax6, Rax, Neurog2
• Notch Pathway genes that activate progenitor phenotype in Müller cells regulat-

ing cell cycle re-entry and de-differentiation: Hes1, Notch1, Notch2, NeuroD1, 
Cyclin D2, Bmp7

• Genes with retinal protective properties: Il6, Csf2, Igf2

Fig. 75.2   Appearance of ESC-like colonies in cultured Müller cells after several mESMV treat-
ments administered every 48 h. a Phase contrast microscopy image (10X) of live ESC-like colo-
nies ( arrows) growing among Müller cells that exhibit typical post-ESMV treatment morphology, 
with larger individual cells and increased heterogeneity than the untreated control culture (e), 
which grows as an adherent cellular sheet of tightly packed spindle-like cells. The ESC-like colo-
nies have a rounded shape and a dense mass of cells. b-c Confocal image of one of the ESC-like 
colonies and (f-g) untreated Müller cells, doubly labeled with the pluripotency marker Oct-4 ( red) 
and Müller cell marker glutamine synthase (GS, green). Panels (d) and (h) are merged images of 
(b) and (c) and (f) and (g), respectively. While GS staining is scant within the ESC-like colony and 
mostly seen in its borders (b), some of the Oct4 positive cells retained GS staining ( yellowish in 
(d)), indicative of their Müller cell origin. Cell nuclei were counterstained with DAPI ( blue). No 
Oct-4 staining is seen in control Müller cells
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• Genes that are inducers of retinal regeneration: Fgf2, Igf2, GDNF, Ascl1
• Extracellular matrix (ECM) modifying genes that create permissive environment 

for tissue remodeling: Mmp3, Mmp9
• Genes encoding markers of retinal lineages: glutamine synthase, clusterin, aqua-

porin 4, S100 calcium binding protein A16, Vimentin, and Gfap (Müller cells), 
calbindin 1 (horizontal and amacrine cells), syntaxin 1a (amacrine cells) and 
rhodopsin (rod photoreceptors)

Down-Regulated 

• Genes that promote differentiation: Dnmt3a, Gata4
• Genes encoding ECM components that inhibit retinal regeneration: Aggrecan, 

Versican, heparan sulfate, Tenascin C, Décor
• Genes encoding inhibitory scar tissue components: Gfap and chondroitin sulfate 

proteoglycans
• Genes driving retinal progenitors towards Müller glial fate during retinogenesis: 

Egfr

Fig.  75.3   Confocal photomicrographs of mESMV-treated and control Müller cells immunos-
tained for markers of various retinal lineages. a Syntaxin 1a. b Brn3a. c rhodopsin. All secondary 
antibodies were conjugated to Alexa 488 ( green). Cell nuclei were labeled with DAPI ( blue). No 
green staining is observed in control cells. (Modified from Katsman et al. 2012)
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We also used microRNA arrays to study the miRNA transcriptional changes in 
human Müller cells post-mESMV treatments and found that, as with mRNAs, 
mESMV exposure profoundly altered the miRNA expression profile of the retinal 
progenitor cells. For example:

Up-Regulated miRNAs 

• The 290 cluster (miRNAs 291b-5p, 292, 294 and 295) and miRNAs 133a and 
146a, involved in the maintenance of pluripotency

• miRNAs 1, 96, 182 and 183, the appearance of which marks progression of early 
retinal development

75.5.1  Down-Regulated miRNAs

• The let-7 cluster (miRNAs let-7b and let-7c), known to promote differentiation 
in most cells

• miRNA 125-2b, abundant in adult retina
• miRNA 7, which promotes photoreceptor differentiation and miRNAs 199b-5p, 

214 and 143, promoting differentiation in ESCs, neuroblasts and smooth muscle 
progenitors, respectively

We validated the results of all microarrays with qRT-PCR of mESMV-treated and 
untreated RNA from Müller cells (Katsman et al. 2012). It is possible that the 
mESMV transfer of miRNAs changes both the mRNA and miRNA expression pro-
files of Müller cells.

Overall, our studies suggest that mESMVs induce cultured Müller cells to de-
differentiate, turn on an early retinogenic program, and differentiate towards cells of 
retinal lineage. In retina, ESMVs may induce these effects on the quiescent Müller 
cells causing changes in their cellular microenvironment towards a more permisive 
state for tissue regeneration.

We tested this hypothesis in preliminary studies, injecting mESMVs + BrdU into 
the left eyes of mice with NMDA-damaged retinas while the right damaged eyes 
served as controls and received PBS + BrdU. Most cells proliferating in response to 
the mESMV treatment expressed the Müller cell marker, CRALBP, and some pro-
liferating cells examined 30 days post-ESMV expressed Syntaxin 1a, GAD67 and 
Brn3a, suggesting that they had differentiated along the amacrine and ganglion cell 
neural lineages. A striking improvement in the ERG b-waves after 14 and 30 days 
post-ESMV injection (amplitude ~ 65 % higher than after NMDA damage) reflected 
recovery of retinal function. Our ongoing studies are investigating the efficiency of 
the mESMV in vivo induction of retinal regeneration and the mechanisms involved 
in this process.
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Chapter 76
Intravitreal Implantation of Genetically 
Modified Autologous Bone Marrow-Derived 
Stem Cells for Treating Retinal Disorders

Christopher J. Tracy, Douglas N. Sanders, Jeffrey N. Bryan,  
Cheryl A. Jensen, Leilani J. Castaner, Mark D. Kirk and Martin L. Katz

Abstract A number of retinal degenerative diseases may be amenable to treatment 
with continuous intraocular delivery of therapeutic agents that cannot be delivered 
effectively to the retina via systemic or topical administration. Among these dis-
orders are lysosomal storage diseases resulting from deficiencies in soluble lyso-
somal enzymes. Most cells, including those of the retina, are able to take up these 
enzymes and incorporate them in active form into their lysosomes. In theory, there-
fore, continuous intraocular administration of a normal form of a soluble lysosomal 
enzyme should be able to cure the molecular defect in the retinas of subjects lack-
ing this enzyme. Experiments were conducted to determine whether genetically 
modified bone marrow-derived stem cells implanted into the vitreous could be used 
as  vehicles for continuous delivery of such enzymes to the retina. Bone marrow-
derived mesenchymal stem cells (MSCs) from normal mice were implanted into 
the vitreous of mice undergoing retinal degeneration as a result of a mutation in 
the PPT1 gene. The implanted cells appeared to survive indefinitely in the vitreous 
without proliferating or invading the retina. This indicates that intravitreal implan-
tation of MSCs is likely a safe means of long-term delivery of proteins synthesized 
by the implanted cells. Experiments have been initiated to test the efficacy of using 
genetically modified autologous MSCs to inhibit retinal degeneration in a canine 
model of neuronal ceroid lipofuscinosis.
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Keywords Mesenchymal stem cells · Retinal degeneration · Intravitreal 
implantation · Trophic effects · Autologous, therapy · Lysosomal storage disease

76.1  Introduction

In recent years substantial research has been conducted to assess potential therapeu-
tic applications of stem cells. The focus of much of this work has been on utilizing 
stem cells to regenerate tissues, including the retina, that have been damaged as a 
result of injury or disease (Ramsden et al. 2013). We implanted embryonic stem 
cell-derived neural precursors from normal mice into the vitreous of mice under-
going progressive retinal degeneration due to a mutation in CLN8 (Meyer et al. 
2006). The implanted cells migrated to and associated closely with the inner retinal 
surface. A fraction of the cells also migrated into the retina where they appeared 
to differentiate into specific types of retinal neurons appropriate to the retinal lay-
ers in which they were located. The proportion of the retinal neurons replaced by 
the donor cells was quite small. However, a profound preservation of host retinal 
photoreceptor cells occurred in areas of the retina with which the donor cells had 
closely associated. This suggested that the donor cells exerted a trophic effect that 
inhibited degeneration of the surrounding retina. The trophic factors involved in this 
protective effect were not identified, but the observed effect suggested that thera-
peutic compounds produced by donor cells may be effective in preventing retinal 
degeneration resulting from many causes. We are undertaking studies to further 
investigate this possibility.

In particular, we are studying the possibility that retinal degeneration resulting 
from lack of soluble lysosomal enzymes can be inhibited by secretion of these en-
zymes by cells implanted into the vitreous. To avoid potential problems associated 
with using embryonic stem cell derivatives as donor cells, we are evaluating the use 
of genetically modified autologous mesenchymal stem cells (MSCs) as the source 
of replacement enzymes. Initial experiments have been conducted to assess the be-
havior of such cells after implantation into the vitreous of eyes in animals undergo-
ing progressive retinal degeneration.
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76.2  Materials and Methods

76.2.1  Bone Marrow-Derived Mesenchymal Stem Cells

For the mouse studies, bone marrow-derived MSCs were isolated from the femurs 
of 4–8 week old male C57BL/6-Tg(ACTB-EGFP)1Osb/J mice (Jackson Labs). 
These mice constitutively express eGFP in most cells, including the MSCs. Marrow 
was flushed from the isolated femurs with MSC culture medium (Gibco ά-MEM 
(Invitrogen) + 20 % FBS, 2 mM L-Glutamine, 1 % Penicillin/Streptomycin), plated 
in culture flasks and grown in the MSC medium. After 24 h, non-adherent cells 
were removed and the adherent cells were defined as MSCs (Williams and Hare 
2011). These cells could be maintained in culture for over 60 passages, confirming 
that they were stem cells. They could be induced to differentiate into adipocytes and 
osteocytes, confirming their identity as mesenchymal progenitors.

For the dog studies, MSCs were obtained from Dachshunds homozygous for a 
null mutation in TPP1 that encodes the soluble lysosomal enzyme tripeptidyl pepti-
dase-1 (Awano et al. 2006). When the dogs were 2.5–3 months of age, bone marrow 
was aspirated from the humerus using a modification of a technique described pre-
viously (Frimberger et al. 2006). The marrow was mixed with MSC culture medium 
and grown in culture in the same manner as the mouse MSCs. At passage 3 when 
the cells were near confluency, they were transduced with either AAV2-CAG-GFP 
or AAV2-CAG-TPP1 (SignaGen Laboratories, Gaithersburg, MD) at multiplicities 
of infection of 10,000–50,000. After transduction, the cells were maintained in cul-
ture for multiple passages.

76.2.2  Intravitreal Implantation of Mouse MSCs

Mice used as recipients for intravitreal MSC implantation had a null mutation in 
PPT1 that encodes the soluble lysosomal enzyme palmitoyl protein thioesterase-1 
(Gupta et al. 2001) . Via multiple backcrosses, the mutation was placed on a pure 
C57BL/6 J strain background. The retina in these mice appears to develop normally 
and then undergoes a progressive degeneration (Lei et al. 2006).

For intravitreal implantation into the mutant mice, the eGFP-expressing nor-
mal C57BL/6 J mouse MSCs were harvested after 4–12 passages and suspended 
in minimal essential medium at a concentration of 40,000 cells/µl. The recipi-
ent mice were anesthetized and approximately 2 µl of the cell suspension was 
injected into the vitreous. At various times up to 16 weeks after implantation, 
the recipient mice were euthanized. The eyes were enucleated immediately after 
death and prepared for and examined with either fluorescence or light microscopy 
(Meyer et al. 2006).
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76.2.3  Characterization of Canine MSCs

Canine MSC cultures were established and maintained as described for the mouse 
cells. Expression of GFP in the transduced cells was monitored with fluorescence 
microscopy. Expression of TPP1 by the cells transduced with AAV2-CAG-TPP1 
was monitored by measuring TPP1 enzyme activity in the medium in which the 
cells were maintained using an established protocol (Tian et al. 2006).

All studies were performed in compliance with the ARVO Statement for the 
“Use of Animals in Ophthalmic and Vision Research” and were approved by the 
University of Missouri Animal Care and Use Committee.

76.3  Results

76.3.1  Mouse MSCs After Intravitreal Implantation

The mice tolerated the intravitreal injections with no apparent adverse effects, ex-
cept in rare cases where the injection needle penetrated the lens capsule. In the latter 
cases, the mice developed cataracts within a few days of the injection. If the lens 
capsule was not ruptured the implanted cells formed net-like sheets within the vitre-
ous (Fig. 76.1). The numbers of cells within these sheets remained stable over the 
16 week evaluation period, with no evidence of donor cell proliferation or loss. Un-
like neural precursor cells (Meyer et al. 2006), there was no evidence of donor cell 
migration toward or into the retina; the sheets of donor cells remained suspended in 
the vitreous. The presence of the donor cells in the vitreous did not appear to have a 
significant effect on the rate of retinal degeneration.

In cases where the lens capsule was damaged during the injection, many donor 
cells migrated to the lens. Some of these cells formed a layer that tightly adhered 
to the posterior side of the intact portions of the lens capsule. The majority of the 
donor cells migrated into the lens itself.

Fig. 76.1   Fluorescence micrographs of a sheet of GFP donor cells in the vitreous in the intact eye 
(a). in a retinal flat mount (b). and in a cryostat section of the eye (c). Light micrograph of a cross-
section sheet of donor cells in the vitreous after fixation and embedding the eye in epoxy resin  
(d). All images were from eyes collected 16 weeks after MSC implantation
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76.3.2  In Vitro Characterization of Canine MSCs

Cells from the bone marrow aspirates were allowed to attach to culture plates for 
a period of 24 h, after which the plates were washed repeatedly to remove non-
adherent cells. Those cells remaining were identified as MSCs by their morphology 
and adherence to plastic (Williams and Hare 2011). The cells typically reached con-
fluency by 96 h after plating, at which time the cells were passaged. Subsequently 
the cells typically reached confluency by 48–72 h after passaging. Cell morphology 
remained indicative of an MSC lineage through multiple passages (Fig. 76.1).

Canine MSCs were transduced with AAV2-CAG vectors at passage 4 by add-
ing the vector to the culture media. The inoculated media was left on the plates for 
96 h, after which it was replaced with fresh media. GFP expression was detectable 
at 96 h post-transduction and increased in intensity over time, reaching a stable 
high level of intensity approximately 5 days after transduction (Fig. 76.2). GFP 
expression remained stable for at least two passages post-transduction. P4 and P5 
transduced cells kept at confluency without additional passaging maintained high 
levels of fluorescence for at least 70 days in vitro.

To gauge TPP1 expression in vitro, the culture medium was collected once every 
24 h starting 24 h after transduction for up to 72 h and each sample was analyzed 
for TPP1 enzyme activity. Based on the TPP1 activity in the conditioned media the 
estimated release of enzyme by the MSCs in vitro was approximately 3 to 5 pg per 
cell per 24 h.

76.4  Discussion

The mouse studies suggest that intravitreal implantation of MSCs may be a safe 
means of long-term intraocular delivery of therapeutic agents. As long as there was 
no damage to the lens the donor cells appeared to survive indefinitely in the vitreous 

Fig. 76.2   Fluorescence (a). phase contrast (b). micrographs of rAAV2-CAG-GFP transduced pas-
sage 4 canine MSCs in vitro. Image in (c). is an overlay of images from (a) and (b)

 

76 Intravitreal Implantation of Genetically Modified Autologous Bone …



576 C. J. Tracy et al.

without proliferating or damaging the retina or lens. As the studies with the canine 
MSCs demonstrated, these cells can be genetically modified to produce and release 
therapeutic proteins, which are then likely to reach the target eye tissues adjacent 
to the vitreous.

In vitro the mouse MSCs proliferate indefinitely, yet after implantation into the 
vitreous, no proliferation was observed. This suggests that the vitreous contains 
factors that inhibit proliferation. These factors are present not only in eyes in which 
the retina is undergoing active degeneration, as the behavior of the MSCs was es-
sentially the same when they were implanted into the eyes of normal C57BL/6 J 
mice. Although the vitreous is not vascularized, the donor cells apparently received 
enough oxygen and nutrients from the adjacent retina to support their long-term 
survival. In the mouse eye, the vitreous is confined to a thin layer close to the retina 
due to the fact that the lens occupies most of the internal volume of the eye. The 
consequent close proximity of the donor cells to the retina may have aided in their 
long-term survival. However, preliminary studies of implantation of autologous 
bone marrow derived MSCs into the eyes of dogs indicate that such close proximity 
may not be necessary for donor cell survival. MSCs implanted into the vitreous of 
a dog far from the retina were still present several months after implantation. This 
will be important in developing implantation of these cells for human therapies 
as the anatomy of the dog eye is more similar to that of the human eye than is the 
mouse eye.

The migration of the donor cells toward and into the lens when the lens capsule 
was damaged suggests that the lens contains trophic factors to which the donor 
cells respond strongly. Potential donor cell responses to endogenous trophic factors 
is an important consideration when considering using intravitreal implantation of 
such cells for treating retinal degenerative diseases. Tissues undergoing degenera-
tion release a variety of trophic factors to which the donor cells may respond, and 
different donor cell types may respond differently to such trophic factors. Indeed, 
we found that mouse neural precursors derived from embryonic stem cells migrate 
toward and into the degenerating mouse retina (Meyer et al. 2006), whereas no such 
migration is observed with the MSCs.

These studies indicate that intravitreal implantation of genetically modified 
MSCs is promising as a means of long-term delivery of therapeutic agents to the 
retina. While the mouse and preliminary dog studies support the safety of this ap-
proach, efficacy in treating retinal degenerative disease remains to be demonstrated. 
Such efficacy studies are currently under way using a canine model of neuronal 
ceroid lipofuscinosis which exhibits a slowly progressive retinal degeneration (Katz 
et al. 2008).
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Chapter 77
Gliosis Can Impede Integration Following 
Photoreceptor Transplantation  
into the Diseased Retina

Claire Hippert, Anna B. Graca and Rachael A. Pearson

Abstract Retinal degenerations leading to the loss of photoreceptor (PR) cells are a 
major cause of vision impairment and untreatable blindness. There are few clinical 
treatments and none can reverse the loss of vision. With the rapid advances in stem 
cell biology and techniques in cell transplantation, PR replacement by transplanta-
tion represents a broad treatment strategy applicable to many types of degeneration. 
The number of donor cells that integrate into the recipient retina determines trans-
plantation success, yet the degenerating retinae presents a number of barriers that 
can impede effective integration. Here, we briefly review recent advances in the 
field of PR transplantation. We then describe how different aspects of gliosis may 
impact on cell integration efficiency.

Keywords Gliosis · Müller glia · Intermediate filament · GFAP · CSPG · 
Photoreceptor transplantation · Barrier modulation

77.1  Introduction

Despite very different aetiologies and pathogenesis, retinal neurodegenerative dis-
eases like age-related macular degeneration, retinitis pigmentosa (RP), glaucoma 
and diabetic retinopathy culminate in the loss of light-sensing PR cells and the 
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subsequent loss of vision. Currently, there are few effective therapeutic approaches 
to treat PR loss, and none of them can reverse the loss of vision. Innovative medical 
therapies such as electronic retinal implants (Stingl and Zrenner 2013), or gene and 
cell therapy (Cuenca et al. 2014) are attractive approaches for the treatment of reti-
nal disease. Gene therapy for the treatment of inherited retinal disorders has yielded 
very exciting and promising results (Smith et al. 2012), however this therapeutic 
strategy can only be applied in the early stages of retinal degeneration as it relies on 
the presence of the endogenous PR cells, offering limited help for advanced disease. 
Cell replacement therapy is of particular interest in this particular circumstance as 
it offers a direct replacement of the lost tissue and can potentially restore visual 
function. Over the past decade, we have seen a considerable progress in using this 
approach to repair the degenerating retina (Cuenca et al. 2014). However, it has 
been shown that although it is possible to treat some forms of end stage (Kwan et al. 
1999; Singh et al. 2013), the precise nature and characteristics of the degeneration 
arising from a given disease-causing defect is important in determining transplanta-
tion outcome. As degeneration progresses the retinal microenvironment undergoes 
a number of significant changes that are potentially hostile to therapeutic interven-
tions. A number of studies have indicated that a major determinant of successful ret-
inal transplantation is the extent of reactive gliosis within the recipient retina, which 
acts as both a physical and chemical barrier to migrating cells (Pearson et al. 2014).

77.2  Advances in the Field of PR Transplantation

In recent years, one of the most extensively studied therapeutic strategies has been 
the transplantation of dissociated PRs and their precursor cells. MacLaren et al. 
demonstrated that integration and appropriate differentiation of donor PR cells is 
achievable if the transplanted cells are at an appropriate developmental stage at the 
time of transplantation (MacLaren et al. 2006). The use of a genetic marker, Nrl, a 
transcription factor first expressed in immature rods shortly after terminal mitosis 
(Akimoto et al. 2006), demonstrated that post-mitotic rod precursor cells taken from 
postnatal retinae were optimal for transplant and led to better integration than donor 
cells from earlier or later stages in development. These transplanted PR precursors 
were able to migrate from the site of transplantation, the subretinal space, into the 
recipient outer nuclear layer (ONL), where they settled in an appropriate place. The 
new PRs continue to mature and form inner and outer segments and synaptic con-
nections with the remaining neurons within the retina (Warre-Cornish et al. 2013). 
Moreover, these new PRs are light sensitive and can transmit visual information 
to the brain, leading to restoration of visual function in a murine model of station-
ary night blindness (Pearson et al. 2012). Recent advances in stem cell technology 
have demonstrated the potential to generate renewable sources of donor cells from 
embryonic (ES) and induced pluripotent stem cells. Gonzalez-Cordero et al. have 
shown that ES-derived rod precursors can migrate and integrate into the recipient 
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retina in a manner very similar to precursors derived from the developing retina 
(Eiraku et al. 2011; Gonzalez-Cordero et al. 2013).

Much of the research into PR transplantation has been performed in wild-type 
or isolated models of RP. This raises the fundamental question as whether PR 
transplantation is equally able to treat a wide spectrum of inherited retinopathies. 
It is well known that during disease progression the retina undergoes structural re-
modeling, including changes in neuronal connections, gliosis and changes in outer 
limiting membrane integrity (OLM). These changes may then have a positive or 
negative influence on the outcome of PR precursor cell transplantation. Barber et al. 
performed the first comprehensive study of rod PR transplantation in murine mod-
els of slow, moderate and fast PR degeneration. Importantly, they found that PR 
transplantation was feasible in all examined animals; however disease type had a 
significant impact on both the number of integrated cells and their morphology. 
This study identified two key determinants of transplant success; the extent of glial 
scarring and the integrity of OLM. Both factors can impede the migration of donor 
cells from the subretinal space and their successful integration within the recipient 
retina. Below, we focus on gliosis and its impact on cell transplantation.

77.3  Gliosis a Potential Barrier to Photoreceptor 
Transplantation

Gliosis is the term given to the process in which the glial cells become activated. 
When these cells are activated, they upregulate the glial intermediate filament (IF) 
proteins vimentin and glial fibrillary acidic protein (GFAP), their apical terminal 
processes may undergo hypertrophy and a concomitant increase in the deposition 
of inhibitory extracellular matrix (ECM) molecules, such as chondroitin sulphate 
proteoglycans (CSPGs) can be observed. These changes represent physical and bio-
chemical barriers, respectively, which may prevent transplanted PRs from reaching 
the recipient retina.

77.3.1  Glial Cell Hypertrophy May Act as a Physical Barrier

In the retina, Müller glia (MG) span the entire thickness of the vertebrate retina and 
represent the major type of glial cells. They are responsible for the structural stabi-
lization of the retina, support the functioning and metabolism of retinal neurons and 
are active players in normal retinal function as well as in virtually all types of retinal 
degeneration where they undergo reactive gliosis (Bringmann et al. 2006). Gliosis 
in the retina can be induced by mechanical insult (Lewis et al. 2010), retinal degen-
eration (Zhang et al. 2003), inflammation (Dinet et al. 2012) and/or ageing (Kim 
et al. 2004). It includes morphological, biochemical and physiological changes, 
which can vary with the type and severity of the insult. One of the readily detectable 
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responses to retinal diseases and injuries, which is often used as a universal early 
cellular marker for retinal injury, is the upregulation of the IF protein, GFAP (Dahl 
1979). In a healthy retina expression of GFAP+ve IF is largely restricted to astrocytes 
with only a few GFAP+ve Müller glial processes detected in the inner retina. In the 
diseased retina, GFAP is increased in both activated cell types. The level and locali-
sation of GFAP IF expression in the MG processes is disease specific (Hippert et al., 
unpublished data). The increased expression of IFs is thought to help stabilize the 
newly formed terminal processes of MG and provide resistance to mechanical stress 
(Verardo et al. 2008). At first, gliosis seems to represent a cellular attempt to protect 
the tissue from further damage to promote repair and to limit neuronal remodeling. 
However, MG activation can also be exacerbated and lead to the hypertrophy of 
the MG end-feet processes, which fill in the gaps where PRs die (Bringmann et al. 
2006). This contributes to the formation of a glial scar in the subretinal space which 
may impair neurite outgrowth and act as a barrier to regenerating and/or transplant-
ed cells. Supporting this view are the findings that transgenic animals lacking both 
GFAP and vimentin in MG shown a more permissive environment for the grafted 
cells as shown by better integration and differentiation of transplanted cells as well 
as a higher neurite outgrowth than in wild-type recipients (Kinouchi et al. 2003). 
In line with this, Barber et al. (2013) reported that transplantation outcome of rod 
precursor cells in different models of inherited blindness is broadly inversely cor-
related with the extent of GFAP expression.

77.3.2  The Extracellular Matrix Changes May Act  
as a Chemical Barrier

The retinal environment, like elsewhere in the CNS, is enriched in CSPGs. These 
include a variety of core proteins each carrying chondroitin sulphate glycosamino-
glycans (GAG) chains. CSPGs bind many different ECM proteins and growth fac-
tors making them important players in a variety of regulatory processes including 
cell adhesion, migration and differentiation (Ichijo 2004). In the CNS, CSPGs are 
upregulated after injury and participate in the inhibition of axon regeneration main-
ly through their GAG side chains. Application of the bacterial enzyme chondroi-
tinase ABC (ChABC), which degrades GAG chains into disaccharides, promotes 
functional recovery in the injured CNS (Bradbury et al. 2002). In retinal degenera-
tion our understanding of the role of CSPGs is surprisingly limited. In the healthy 
retina, CSPGs are found in several regions including the optic nerve, inner and outer 
plexiform layer, the interphotoreceptor matrix and in the ganglion cell layer (Inatani 
and Tanihara 2002). When using a broad spectrum CSPG antibody in murine mod-
els of RP, we have observed marked variations in the level of expression of CSPGs 
(Hippert et al., unpublished data). Numerous studies with both stem cell and PR 
precursor transplants demonstrated that treatment with ChABC prior the transplan-
tation increased the number and survival of integrated donor cells (Singhal et al. 
2008; Ma et al. 2011; Barber et al. 2013). An improvement of viral vector diffusion 
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and transduction has also been described when applying this enzyme in conjunction 
with lentiviral vector to the sub-retinal space (Grüter et al. 2005).

77.4  Conclusion; Importance of Characterizing Retinal 
Environment Changes

Dependent on the ocular disease type, different changes occur in the retina which 
lead to altered retinal microenvironments. A better understanding and character-
ization of these changes is essential for the development of new therapeutic ap-
proaches. To our knowledge no drugs have been able to show an efficient removal 
of IF proteins to overcome the glial scar barrier. We are using RNA interference to 
modulate the expression of GFAP in conjunction with PR precursor transplantation, 
to establish the precise role of GFAP in impeding donor cell integration (unpub-
lished data). Currently, local treatment with ChABC is the major strategy to over-
ride the inhibitory effect of CSPGs on cell-based therapies. However, ChABC pres-
ents some disadvantages in using it as a therapeutic treatment in patients, including 
the potential for inflammatory reaction due to its bacterial origin (Lee et al. 2010). 
A more detailed characterization of the major changes in ECM composition may 
enable the identification of specific CSPGs that undergo potentially disease-specific 
changes. This may enable targeted breakdown of specific CSPGs and enhance cell 
transplantation efficiency. Our focus here has been gliosis as a barrier to cell trans-
plantation, however other barriers exist. Different studies reported that the OLM 
may also act as a physical barrier to cell transplantation (West et al. 2008; Pearson 
et al. 2010). Finally, combining cell transplantation with the manipulation of two 
or more barriers will be another interesting approach to investigate. We recently 
combined OLM disruption and CSPG degradation with encouraging results (Barber 
et al. 2013), while others have combined ChABC with growth factors (IGF-1)(Ma 
et al. 2011).

In summary, significant progress has been made in the field of PR transplanta-
tion therapy but achieving high numbers of new integrated PRs in the diseased 
retina remains a major challenge. A better understanding of the microenvironmental 
changes in the degenerating retina should help to overcome this.]

References

Akimoto M, Cheng H, Zhu D et al (2006) Targeting of GFP to newborn rods by Nrl promoter 
and temporal expression profiling of flow-sorted photoreceptors. Proc Natl Acad Sci U S A 
103:3890–3895

Barber AC, Hippert C, Duran Y et al (2013) Repair of the degenerate retina by photoreceptor 
transplantation. Proc Natl Acad Sci U S A 110:354–359

Bradbury EJ, Moon LD, Popat RJ et al (2002) Chondroitinase ABC promotes functional recovery 
after spinal cord injury. Nature 416:636–640



C. Hippert et al.584

Bringmann A, Pannicke T, Grosche J et al (2006) Müller cells in the healthy and diseased retina. 
Prog Ret Eye Res 25:397–424

Cuenca N, Fernández-Sánchez L, Campello L et al (2014) Cellular responses following retinal in-
juries and therapeutic approaches for neurodegenerative diseases. Prog Ret Eye Res 43:17–75 

Dahl D (1979) The radial glia of Müller in the rat retina and their response to injury. An immu-
nofluorescence study with antibodies to the glial fibrillary acidic (GFA) protein. Exp Eye Res 
28:63–69

Dinet V, Bruban J, Chalour N et al (2012) Distinct effects of inflammation on gliosis, osmoho-
meostasis, and vascular integrity during amyloid beta-induced retinal degeneration. Aging Cell 
11:683–693

Eiraku M, Takata N, Ishibashi H et al (2011) Self-organizing optic-cup morphogenesis in three-
dimensional culture. Nature 472:51–56

Gonzalez-Cordero A, West EL, Pearson RA et al (2013) Photoreceptor precursors derived from 
three-dimensional embryonic stem cell cultures integrate and mature within adult degenerate 
retina. Nat Biotech 31:741–747

Grüter O, Kostic C, Crippa S et al (2005) Lentiviral vector-mediated gene transfer in adult mouse 
photoreceptors is impaired by the presence of a physical barrier. Gene Ther 12:942–947

Ichijo H (2004) Proteoglycans as cues for axonal guidance in formation of retinotectal or retinocol-
licular projections. Mol Neurobiol 30:23–33

Inatani M, Tanihara H (2002) Proteoglycans in retina. Prog Ret Eye Res 21:429–447
Kim K-Y, Ju W-K, Neufeld AH (2004) Neuronal susceptibility to damage: comparison of the reti-

nas of young, old and old/caloric restricted rats before and after transient ischemia. Neurobiol 
Aging 25:491–500

Kinouchi R, Takeda M, Yang L et al (2003) Robust neural integration from retinal transplants in 
mice deficient in GFAP and vimentin. Nat Neurosci 6:863–868

Kwan AS, Wang S, Lund RD (1999) Photoreceptor layer reconstruction in a rodent model of reti-
nal degeneration. Exp Neurolo 159:21–33

Lee H, McKeon RJ, Bellamkonda RV (2010) Sustained delivery of thermostabilized chABC en-
hances axonal sprouting and functional recovery after spinal cord injury. Proc Natl Acad Sci 
U S A 107:3340–3345

Lewis GP, Chapin EA, Luna G et al (2010) The fate of Müller’s glia following experimental reti-
nal detachment: nuclear migration, cell division, and subretinal glial scar formation. Mol Vis 
16:1361–1372

Ma J, Kabiel M, Tucker BA et al (2011) Combining chondroitinase ABC and growth factors pro-
motes the integration of murine retinal progenitor cells transplanted into Rho–/– mice. Mol Vis 
17:1759–1770

MacLaren RE, Pearson R, MacNeil A et al (2006) Retinal repair by transplantation of photorecep-
tor precursors. Nature 444:203–207

Pearson R, Barber A, West E et al (2010) Targeted disruption of outer limiting membrane junc-
tional proteins (Crb1 and ZO-1) increases integration of transplanted photoreceptor precursors 
into the adult wild-type and degenerating retina. Cell Transpl 19:487–503

Pearson RA, Barber AC, Rizzi M et al (2012) Restoration of vision after transplantation of photo-
receptors. Nature 485:99–103

Pearson RA, Hippert C, Graca AB et al (2014) Photoreceptor replacement therapy: challenges 
presented by the diseased recipient retinal environment. Vis Neurosci 31:1–12

Singh MS, Charbel Issa P, Butler R et al (2013) Reversal of end-stage retinal degeneration and 
restoration of visual function by photoreceptor transplantation. Proc Natl Acad Sci U S A 
110:1101–1106

Singhal S, Lawrence JM, Bhatia B et al (2008) Chondroitin sulfate proteoglycans and microglia 
prevent migration and integration of grafted Müller stem cells into degenerating retina. Stem 
Cells 26:1074–1082

Smith AJ, Bainbridge JW, Ali RR (2012) Gene supplementation therapy for recessive forms of 
inherited retinal dystrophies. Gene Ther 19:154–161



77 Gliosis Can Impede Integration Following Photoreceptor … 585

Stingl K, Zrenner E (2013) Electronic approaches to restitute vision in patients with neurodegen-
erative diseases of the retina. Ophthal Res 50:215–220

Verardo MR, Lewis GP, Takeda M et al (2008) Abnormal reactivity of Müller cells after retinal de-
tachment in mice deficient in GFAP and vimentin. Investig Ophthalmol Vis Sci 49:3659–3665

Warre-Cornish K, Barber AC, Sowden JC et al (2013) Migration, integration and maturation of pho-
toreceptor precursors following transplantation in the mouse retina. Stem Cell Dev 23:941–954

West E, Pearson R, Tschernutter M et al (2008) Pharmacological disruption of the outer limiting 
membrane leads to increased retinal integration of transplanted photoreceptor precursors. Exp 
Eye Res 86:601–611

Zhang Y, Caffé AR, Azadi S et al (2003) Neuronal integration in an abutting-retinas culture sys-
tem. Investig Ophthalmol Vis Sci 44:4936–4946



587© Springer International Publishing Switzerland 2016
C. Bowes Rickman et al. (eds.), Retinal Degenerative Diseases, Advances in 
Experimental Medicine and Biology 854, DOI 10.1007/978-3-319-17121-0_78

D. R. Hyde ()
Department of Biological Sciences and the Center for Zebrafish Research, University of Notre 
Dame, 027 Galvin Life Sciences Building, Notre Dame, IN 46556, USA
e-mail: dhyde@nd.edu

M. Lahne
Department of Biological Sciences and the Center for Zebrafish Research, University of Notre 
Dame, Galvin Life Sciences Building, Notre Dame, IN 46556, USA
e-mail: Manuela.Lahne.1@nd.edu

Chapter 78
Interkinetic Nuclear Migration  
in the Regenerating Retina

Manuela Lahne and David R. Hyde

Abstract In the adult zebrafish, death of retinal neurons stimulates Müller glia to 
re-enter the cell cycle to produce neuronal progenitor cells (NPCs) that undergo 
further cell divisions and differentiate to replace lost neurons in the correct 
spatial locations. Understanding the mechanisms regulating retinal regeneration 
will ultimately provide avenues to overcome vision loss in human. Recently, 
the observation of interkinetic nuclear migration (INM) of Müller glia in the 
regenerating zebrafish retina resulted in the inclusion of an additional complex step 
to the regeneration process. The pathways regulating INM and its function in the 
regenerating retina have not been well studied. Here, we summarize the evidence 
for INM in the regenerating retina and review mechanisms that control INM during 
neuro-epithelial development in the context of pathways known to be critical during 
retinal regeneration.

Keywords Retinal regeneration · Retinal damage · Müller glia · Neuronal progenitor 
cell · Interkinetic nuclear migration · Cytoskeleton · Signaling

Abbreviations

INL Inner nuclear layer
INM  Interkinetic nuclear migration
MLC Myosin light chain
NPC Neuronal progenitor cell
ONL Outer nuclear layer
pH3 Phospho-histone-3
PCNA Proliferating cellular and nuclear antigen
Rock Rho-associated coiled-coil kinase
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78.1  Introduction

In the human retina, loss/death of photoreceptors or their secondary neurons that 
integrate and transmit visual information results in irreversible vision loss. Currently, 
cures to restore vision have not been identified. In contrast to mammals, zebrafish 
have emerged as an organism that robustly regenerates retinal neurons following 
damaging insults (Vihtelic and Hyde 2000; Fausett and Goldman 2006; Bernardos 
et al. 2007; Kassen et al. 2007) and offer the unique opportunity to unravel an 
intrinsic regeneration program with the aim to develop strategies to stimulate retinal 
regeneration in humans.

A variety of techniques are used to damage specific retinal subtypes (Vihtelic 
and Hyde 2000; Fausett and Goldman 2006; Bernardos et al. 2007; Fimbel et al. 
2007; Kassen et al. 2007; Montgomery et al. 2010). Regardless of the mechanism 
of damage or the cell types lost, the residing Müller glia dedifferentiate and re-enter 
the cell cycle to produce neuronal progenitor cells (NPCs, Fig. 78.1, (Bernardos 
et al. 2007; Kassen et al. 2007)). These NPCs divide further before migrating to the 
site where neurons are absent and differentiate into the lost cells (Vihtelic and Hyde 
2000). Recently, an additional event, interkinetic nuclear migration (INM) of Mül-
ler glia nuclei, was observed in the regenerating light-damaged retina (Fig. 78.1, 
(Nagashima et al. 2013)). INM is the movement of nuclei between the apical and 
basal limits of epithelia in phase with the cell cycle and has been studied in the 
developing retina, brain and neural tube (Pearson et al. 2005; Baye and Link 2007; 
Del Bene et al. 2008; Norden et al. 2009; Lee and Norden 2013). Though progress  

Fig. 78.1   Diagram of the light-damage-induced regeneration timecourse (a) A subset of healthy 
Müller glia ( green with blue nuclei) upregulate PCNA (b, red nuclei) in response to photoreceptor 
death (b, smaller dark blue nuclei). Subsequently, Müller glia nuclei migrate to the ONL where 
they divide (c), producing NPCs that return to the basal INL (d) to undergo S-phase. NPC nuclei 
also migrate between the ONL and the basal INL in phase with the cell cycle, represented by black 
and red arrows, respectively (e). The question mark indicates discrepancies between different 
light-damage models in regard to NPC INM. NPCs upregulate genes that induce photoreceptor 
lineage commitment ( yellow, f) before they migrate to the ONL (g) to differentiate into photore-
ceptors and regenerate a functional retina (h). GCL, ganglion cell layer; INL, inner nuclear layer; 
NPC, neuronal progenitor cell; ONL, outer nuclear layer; PCNA, proliferating cellular and nuclear 
antigen
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has been made in identifying signaling events that induce Müller glia-mediated 
regeneration, the mechanisms that govern INM and its role in the regenerating 
retina are largely unknown (Gorsuch and Hyde 2013). Here, evidence for INM in 
the regenerating zebrafish retina and mechanisms regulating it in development will 
be reviewed.

78.2  Müller Glia INM

During development, NPC nuclei migrate along the apico-basal axis of the neu-
roepithelium in phase with the cell cycle, i.e. they replicate their DNA in S-phase 
in basal regions before migrating to the apical limit during G2-phase where they 
undergo mitosis (Lee and Norden 2013). In the adult retina, the outer nuclear layer 
(ONL) that houses rod and cone photoreceptors corresponds to the apical region. 
Previously, Müller glia/NPC migration to the ONL was observed during retinal 
regeneration; however, it either did not receive further attention or was investigated 
in the context of differentiation (Vihtelic and Hyde 2000; Fausett and Goldman 
2006; Bernardos et al. 2007; Karl et al. 2008). Recently, Müller glia nuclei were 
observed to translocate from their typical basal inner nuclear layer (INL) position to 
the ONL, where they colabel with the mitotic marker phospho-histone-3 (pH3). The 
subsequent return of the arising NPCs to the basal INL gave the first evidence that 
INM also occurs in the light-damaged zebrafish retina (Lahne & Hyde, unpublished 
data; Nagashima et al. 2013). Interestingly, ablation of ganglion cells and INL 
neurons by ouabain, also induced Müller glia nuclei to migrate apically; however, 
most of these Müller glia remained in the apical INL and those that passed into the 
ONL did not attach to the outer limiting membrane (Nagashima et al. 2013). This 
raises the question as to the signal(s) that impose(s) the directionality of this nuclear 
migration specifically towards the apical site of the retina. During development, the 
position of the centrosome near the apical limit of the neuroepithelium was sug-
gested to dictate the direction of nuclear migration during G2 and thus determined 
the location of mitosis (Taverna and Huttner 2010). The position of centrosomes in 
Müller glia is currently unknown; though presumably they are located at the apical 
limit of Müller glial processes in the ONL, recapitulating development. It is likely 
that other unidentified factors such as signaling gradients also act as driving forces 
of INM.

Although INM is observed in both light- and ouabain-damaged retinas, the apical 
migration potential is clearly reduced in the latter (Nagashima et al. 2013). Spatial 
restrictions due to the maintained presence of intact photoreceptors following inner 
retinal cell death by ouabain exposure could explain the relatively lower migra-
tion potential of Müller glia nuclei into the ONL compared to the light-damaged 
retina lacking photoreceptors. Similarly, NPC divisions in the developing retina 
change from apical to non-apical at the onset of ONL formation (Weber et al. 2014), 
supporting that cell density restrictions at least partially determine the position of 
mitosis.
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78.3  Do Müller Glia-derived NPCs Undergo INM?

While Müller glia undergo INM, NPCs were suggested to divide non-apically based 
on pH3-positive cells only being present in the ONL early during the regenera-
tion response in retinas acutely damaged by brief exposure to high intensity light 
(Nagashima et al. 2013). It is quite surprising that in the regenerating retina, Müller 
glia and not the Müller glia-derived NPCs behave more similar to NPCs during 
retinal development. Using a different light-damage paradigm that exposes zebra-
fish to constant intense light, the majority of mitotic nuclei were observed in the 
ONL at timepoints when NPCs divide. Subsequently, NPC clusters of four or more 
cells are present in the INL indicating that both Müller glia and NPCs undergo INM 
(Lahne & Hyde, unpublished data). Live cell imaging using transgenic lines that 
distinguish between Müller glia and NPCs would clarify whether INM is a process 
limited to Müller glia. In ouabain-damaged retinas neither the migration pattern nor 
the positon of pH3-positive NPC nuclei was investigated. However, the presence of 
PCNA-positive proliferating nuclei in the ONL hints that NPCs gain the capacity 
to undergo INM to the ONL following inner retinal cell death (Fimbel et al. 2007; 
Nagashima et al. 2013).

78.4  Motor Proteins Driving INM

The mechanisms mediating INM in the regenerating retina are currently unknown. 
During retinal development the velocity and mean squared displacement indicate 
that apical movement of NPC nuclei in the G2-phase of the cell cycle is an actively 
driven process (Baye and Link 2007; Norden et al. 2009; Leung et al. 2011). 
Although microtubules play a role, actin myosin-mediated contraction is the main 
driving force of nuclear migration during G2 in the developing retina. (Murciano 
et al. 2002; Del Bene et al. 2008; Norden et al. 2009; Yu et al. 2011). Both, fila-
mentous actin and phosphorylated myosin light chain (MLC) accumulate basally to 
G2-phase nuclei (Norden et al. 2009; Leung et al. 2011). Various kinases, including 
myosin light-chain kinase and Rho-associated coiled-coil kinase (Rock) mediate 
MLC phosphorylation (Vicente-Manzanares et al. 2009); however, the specific 
kinase that phosphorylates MLC during INM has not been identified. Interestingly, 
disruption of Rock signaling by expressing a dominant-negative version of either 
Rock2a or its activator RhoA causes mislocalization of pH3-positive nuclei in basal 
regions of the developing retina, indicative of a defect in INM (Herder et al. 2013). 
Hence, Rock2 could be the MLC phosphorylating kinase.

In the regenerating retina, we also observed actin filaments at the rear of 
migrating Müller glia nuclei at the onset of INM (Lahne & Hyde, unpublished 
data). Moreover, disrupting actin filament formation by the actin polymerization 
inhibitior, cytochalasin D resulted in a significantly greater number of pH3-positive 
Müller glia in the basal INL, where quiescent Müller glia typically reside (Lahne 
& Hyde, unpublished data). Inhibition of Rocks caused a similar mislocalization 
defect alongside reduced phosphorylation of MLC, suggesting that actin-myosin-
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mediated forces facilitate apical migration of Müller glia nuclei, potentially reca-
pitulating retinal development.

In contrast to the actively driven apical migration, basal movement in G1 occurs 
in a stochastic passive manner (Baye and Link 2007; Norden et al. 2009; Kosodo 
et al. 2011; Leung et al. 2011). Blocking S-phase progression not only halts apical 
nuclear migration, but significantly reduced the speed of basally moving G1-phase 
nuclei, indicating that actively migrating G2-phase nuclei displace those that have 
already divided from the apical neuroepithelium to more basal positions (Kosodo 
et al. 2011). In contrast, disrupting both microtubule-mediated transport and the 
actin cytoskeleton were also shown to affect basalward nuclear migration (Del Bene 
et al. 2008; Norden et al. 2009; Schenk et al. 2009; Tsai et al. 2010). In the re-
generating light-damaged retina, only a subset of Müller glia proliferate. Thus, the 
ONL unlikely becomes overcrowded during Müller glia INM, raising the question 
whether both apical and basal migration are mediated by active mechanisms.

78.5  Function of INM

The function of INM is difficult to determine as disruption of signaling pathways 
or cellular components not only affect INM but also other cellular events. It was 
suggested that the physical separation of S-phase and mitosis acts as a regulatory 
mechanism that exposes cells to distinct gradients of signaling factors which in turn 
control the decision of cell cycle exit/differentiation versus continued proliferation 
(Murciano et al. 2002; Del Bene et al. 2008). In the developing retina, Notch recep-
tors, its ligands, and downstream targets, are expressed in an apico-basal manner 
(Murciano et al. 2002; Del Bene et al. 2008; Clark et al. 2012). Overexpression 
of the Notch intracellular domain in the INM defective dynactin mutants rescues 
the observed differentiation defect that is characterized by the overproduction of 
ganglion cells at the expense of late-born retinal neurons due to early cell cycle 
exit. These data, suggest that INM exposes cells to specific Notch gradients that 
regulate cell fate choices. In the adult zebrafish retina, Notch-signaling regulates 
the number of Müller glia that are recruited into the cell cycle upon retinal damage 
(Conner et al. 2014; Wan et al. 2012). While the role of Notch signaling in INM and 
in the regulation of cell cycle exit decisions of Müller glia and NPCs has not been 
examined in the regenerating retina, it is possible that its function is similar to that 
in the developing retina.

78.6  Concluding Remarks

The recent observation of INM in the regenerating zebrafish retina raises many 
questions regarding the regulatory mechanisms and its function. Knowledge gained 
studying INM during neuroepithelial development can provide candidate signaling  
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pathways. Long-term, establishing the function of INM in influencing neurogen-
ic/proliferative cell fate decisions in the regenerating zebrafish retina might help 
reveal why the injured mammalian retina exhibits a low proliferation response (Karl 
et al. 2008). Thus, identifying means that can stimulate and control INM in the 
damaged mammalian retina could result in effective Müller glia proliferation and 
neuronal regeneration.
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Chapter 79
Use of a Machine Learning-Based High Content 
Analysis Approach to Identify Photoreceptor 
Neurite Promoting Molecules

John A. Fuller, Cynthia A. Berlinicke, James Inglese and Donald J. Zack

Abstract High content analysis (HCA) has become a leading methodology in 
phenotypic drug discovery efforts. Typical HCA workflows include imaging cells 
using an automated microscope and analyzing the data using algorithms designed 
to quantify one or more specific phenotypes of interest. Due to the richness of 
high content data, unappreciated phenotypic changes may be discovered in exist-
ing image sets using interactive machine-learning based software systems. Primary 
postnatal day four retinal cells from the photoreceptor (PR) labeled QRX-EGFP 
reporter mice were isolated, seeded, treated with a set of 234 profiled kinase inhibi-
tors and then cultured for 1 week. The cells were imaged with an Acumen plate-
based laser cytometer to determine the number and intensity of GFP-expressing, i.e. 
PR, cells. Wells displaying intensities and counts above threshold values of interest 
were re-imaged at a higher resolution with an INCell2000 automated microscope. 
The images were analyzed with an open source HCA analysis tool, PhenoRipper 
(Rajaram et al., Nat Methods 9:635–637, 2012), to identify the high GFP-inducing 
treatments that additionally resulted in diverse phenotypes compared to the vehicle 
control samples. The pyrimidinopyrimidone kinase inhibitor CHEMBL-1766490, 
a pan kinase inhibitor whose major known targets are p38α and the Src family 
member lck, was identified as an inducer of photoreceptor neuritogenesis by using 
the open-source HCA program PhenoRipper. This finding was corroborated using 
a cell-based method of image analysis that measures quantitative differences in the 
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mean neurite length in GFP expressing cells. Interacting with data using machine 
learning algorithms may complement traditional HCA approaches by leading to the 
discovery of small molecule-induced cellular phenotypes in addition to those upon 
which the investigator is initially focusing.

Keywords Photoreceptor · Neuritogenesis · Imaging · qHTS · High content analysis 
· Machine learning · Phenotypic screening · Protein kinase · Inhibitor

79.1  Introduction

A common challenge in HCA phenotypic screening is utilizing the image data to its 
fullest capacity. Generally, images are analyzed using investigator devised analysis 
algorithms that measure a certain set of defined features. Although this approach is 
powerful, it limits the assay to combinations of the stated parameters. A growing 
trend in the field is the use of supervised and unsupervised machine learning-based 
approaches that can both accelerate analysis of HCA data sets as well as facilitate 
discovery of novel induced phenotypes. Several open-source platforms containing 
machine-learning based methods have been developed and are available either as 
stand-alone applications such as PhenoRipper and CellCognition (Rajaram et al. 
2012; Held et al. 2010) or as modules within popular HCA packages such as 
CellProfiler Analyst (Sommer et al. 2011; Carpenter et al. 2006).

We have been using phenotypic screening combined with primary and stem 
cell-derived retinal cell-based assays to identify molecules that promote differentia-
tion and survival of PRs and retinal ganglion cells (Fuller et al. 2014; Welsbie et al. 
2013). In this study, we explored the added value of the machine learning approach 
to analyze images from a PR differentiation and survival screen. We used the pub-
licly available open-source program PhenoRipper (Rajaram et al. 2012) to profile 
cells treated with a small molecule library. PhenoRipper uses a bag-of-features 
classification approach to characterize images (Csurka et al. 2004). The method 
consists of reducing image features to a quantized color state (q-color), character-
izing blocks of pixels demonstrating different q-color states, and characterizing and 
classifying contiguous block (superblock) types across an image (Rajaram et al. 
2012; Csurka et al. 2004). A significant advantage to this approach is that it does not 
require cell segmentation, and can identify unique features in clumped cells. Using 
this software helped us identify a molecule that promotes PR neuritogenesis in vitro.

79.2  Materials and Methods

79.2.1  Primary Cell Dissociation

All animal procedures were performed in accordance with the ARVO statement 
on the “Use of Animals in Ophthalmic and Vision Research” and were approved 
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by the Institutional Animal Care and Use Committees at the Johns Hopkins 
University School of Medicine. Retinal cells were isolated and prepared for culture 
as previously described (Fuller et al. 2014). Briefly, retinas from the 114 strain of  
QRX-IRES-EGFP mice (Wang et al. 2004) are isolated at postnatal day 4. Animals 
are sacrificed by isoflurane overdose followed by decapitation. Eyes were 
enucleated, and retinas dissected and dissociated into single cell suspensions by 
incubation with activated papain in Hibernate-E without Ca2+ (BrainBits) for 15 
min at 37 °C.

79.2.2  1536 well Cell Plating and Compound Library Treatment

1536 well plates were filled with 4 µL of neuronal culture medium consisting of 
Neurobasal-E, 2 % B-27, 0.5 mM L-Glutamine, and 1X final penicillin/streptomy-
cin (all Life Technologies). 23 nL of a stock compound solution with concentrations 
ranging from 10 mM to 170 nM in DMSO was transferred to each well in the cul-
ture plate from a library plate using a robotic pintool transfer tool (Wako) resulting 
in final concentrations ranging from 25 µM to 420 pM. Cells were resuspended at 
a concentration of 1.25 × 105 cells/mL, filtered, then dispensed into plates at a final 
well culture volume of 8 µL (1000 cells/well). Plates were then incubated for 7 days 
in 95 % humidity at 37 °C.

79.2.3  Fixation and Imaging

Fixation and imaging of the cells were performed as described previously (Fuller 
et al. 2014). The cells were fixed with (4 % final) paraformaldehyde, washed, 
stained with Hoechst 33,342, and imaged with an Acumen Explorer (TTP Labtech) 
plate cytometer. PRs are defined as GFP positive objects with size and GFP fluo-
rescence intensity above defined threshold values. “On the fly” analysis identified 
“hit” wells, defined as wells that display a fraction of GFP positive cells greater than 
2*SD relative to the vehicle (DMSO) controls or wells with the mean total GFP in-
tensity/object greater than 8877 RFU, a threshold found to be significant in previous 
screens. Brightfield, nuclei and GFP images of the hit wells were then acquired with 
a microscope-based INCell2000 HCA platform (GE) using a 20X objective lens.

79.2.4  Analysis

The INCell images from the Hoechst (nuclei) and GFP (QRX promoter reporter) 
channels of the control and hit wells were loaded into PhenoRipper (Rajaram et al. 
2012). All default parameters for threshold values as well as block size (15 pixels 
per block) for PhenoRipper were used for analysis. Representative vehicle (DMSO) 
control wells were used as a replicate image subsampling group. All points that 
are found on the periphery of the multidimensional scaling (MDS) plot (apparent 
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outliers) were examined and excluded from analysis if deemed to contain artifacts. 
The putative positive hit and control images were also analyzed using a custom 
algorithm developed using Neuronal Profiling 4.1 (ThermoFisher).

79.3  Results

79.3.1  Photoreceptor Neuritogenesis Uncovered by 
Machine Learning

In order to screen for small molecules that promote photoreceptor differentiation, 
we developed a high-throughput assay utilizing dissociated retinal cells from a 
QRX-GFP transgenic mouse that we previously reported (Wang et al. 2004). Our 
intended readout of the assay was number of cells expressing GFP and expression 
level per cell. As expected, using this assay we detected a number of molecules 
that modulated GFP expression, and further characterization of these molecules is 
underway (Fuller et al. unpublished results).

To complement the GFP intensity measurement algorithm, we also analyzed the 
cell image data sets using a PhenoRipper-derived MDS plot (Fig. 79.1a). This anal-
ysis revealed a superblock (common cell morphology) that appeared to be enriched 
in wells containing QRX positive neurites (Fig. 79.1b arrow). Cells treated with 
6-(2-chlorophenyl)-8-methyl-2-(oxan-4-ylamino)pyrido[2,3-d]pyrimidin-7-one/
CHEMBL-1766490/Pubchem CID 23551786, herein referred to by the CHEMBL 
identifier, were identified as having higher neurite counts as compared to vehicle 
treated cells (Fig. 79.1d, e). Analysis of the same images using an algorithm devel-
oped with the Cellomics Neuronal Profiling package measured an increased neurite 
length over multiple compound concentrations compared to control (Fig. 79.1c). It 
should be noted that the images analyzed were taken from a well-based preselection 
of images; therefore the neurites/well clusters may not necessarily be reflective of 
the dataset of kinase inhibitors as a whole.

79.4  Discussion

High content analysis is typically undertaken by acquiring images of interest and 
performing feature-specific (e.g. fluorescent marker intensity) analysis. Although 
current HCA software algorithms are capable of discerning many patterns with high 
precision, the algorithms are generally selected and optimized to measure specific 
image features and phenotypes that are already of interest to the investigator. It is 
generally difficult to discern a ‘global’ treatment-specific phenotype (e.g. finding 
every different morphological parameter compared to control). Although it is pos-
sible to run an image set through every possible feature algorithm to maximize the 
treatment specific response, this can be labor and time intensive and is not typically 
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done. Additionally, cellular heterogeneity within a cell population can make subtle 
(though possibly important) changes difficult to identify, and is a common phenom-
enon that has been widely reported in HCA data. (Gough et al. 2014; Burrell et al. 
2013; Huang 2009; Altschuler and Wu 2010).

Advanced informatics methods are also being used in conjunction with tradi-
tional HCA algorithms to identify novel morphological changes within an image 
set. Software packages such as PhenoRipper does not rely on cell segmentation, 
and instead focuses on clustering similar and dissimilar morphological features 
within a particular experiment (Rajaram et al. 2012). It is then incumbent on the 

Fig.  79.1   Enhanced photoreceptor neurites following treatment with CHEMBL-1766490. 
a 2D MDS plot of PhenoRipper derived image profiles for QRX-GFP retinal cells cultured 1 
week. b Histogram of representative superblocks that best distinguish vehicle control from 
CHEMBL-1766490 treated wells. Red arrow: superblock containing neurites. c Quantification of 
average neurite length using Cellomics Neuronal Profiling following treatment with DMSO vehi-
cle or CHEMBL-1766490. d, e Representative images from control (d) and CHEMBL-1766490 
(e) treated wells
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user to determine whether a discovered feature is of biological interest. We used 
PhenoRipper as an agnostic way to visualize dissimilar cell morphologies within an 
experiment, and discovered that a particular small molecule (CHEMBL-1766490) 
enhanced neurite outgrowth. This finding was then validated with a more “classi-
cal” algorithm specifically designed to quantify neurite outgrowth.

Although defining the mechanism of action for this small molecule is outside 
the scope of this discussion, this serves as a case in point for one of the main chal-
lenges of phenotypic screening, which is elucidating the molecular mechanism of 
action. CHEMBL-1766490 is reported to have p38α MAPK inhibitory activity 
(Goldstein et al. 2011). It has been reported that p38α inhibition induces neuronal 
differentiation, whereas other reports suggest that neurite outgrowth is inhibited fol-
lowing p38α knockdown in PC12 and P19 committed neuronal cell lines (Morooka 
and Nishida 1998; Iwasaki et al. 1999; Aouadi et al. 2006). Although inhibiting 
p38MAPK to enhance neuritogenesis may be a postnatal photoreceptor-specific 
phenomenon, it is possible that this is an “off-target” mechanism of the molecule, 
perhaps due to inhibition of one or more other kinases. Indeed, the kinase selectivity 
profile of the pyrimidinopyridone family from which this molecule was found dem-
onstrates submicromolar inhibition of 10 out of the 300 kinases tested (Goldstein 
et al. 2011). Future studies performed in a photoreceptor-specific systems pharma-
cology context may uncover currently unknown effects of similar small molecules 
on cellular phenotypes.

In this study, we started with an image data set that was derived from a screen that 
was originally designed to assess GFP reporter expression as a marker for photo-
receptor differentiation. Then, using a machine learning-based analytical approach, 
we uncovered a small molecule that increased neurite outgrowth of developing 
photoreceptors. As many laboratories performing image-based analyses typical-
ly have extensive archives of data from previous studies, they could potentially 
benefit from a similar approach. By integrating machine-learning based approaches 
with established analysis algorithms, it should be possible to uncover previously 
unknown phenotypic features, and to identify molecules that modulate and regulate 
the pathways controlling these morphologies and phenotypes.

References

Altschuler SJ, Wu LF (2010) Cellular heterogeneity: do differences make a difference? Cell 
141:559–563

Aouadi M, Bost F, Caron L et al (2006) p38 mitogen-activated protein kinase activity commits 
embryonic stem cells to either neurogenesis or cardiomyogenesis. Stem Cells 24:1399–1406

Burrell RA, McGranahan N, Bartek J et al (2013) The causes and consequences of genetic 
heterogeneity in cancer evolution. Nature 501:338–345

Carpenter AE, Jones TR, Lamprecht MR et al (2006) CellProfiler: image analysis software for 
identifying and quantifying cell phenotypes. Genome Biol 7:R100

Csurka G, Dance C, Fan L et al (2004) Visual categorization with bags of keypoints. Proc Workshop 
Statistical Learning Comput Vis 1:22



79 Use of a Machine Learning-Based High Content Analysis Approach … 603

Fuller JA, Shaw GC, Bonnet-Wersinger D et al (2014) A high content screening approach to 
identify molecules neuroprotective for photoreceptor cells. Adv Exp Med Biol 801:773–781

Goldstein DM et al (2011) Discovery of 6-(2,4-difluorophenoxy)-2-[3-hydroxy-1-(2-
hydroxyethyl)propylamino]– 8-methyl-8H-p yrido[2,3-d]pyrimidin-7-one (pamapimod) 
and 6-(2,4-difluorophenoxy)-8-methyl-2-(tetrahydro-2H-pyran-4-ylamino)pyrido[2,3-d]py 
rimidin-7(8H)-one (R1487) as orally bioavailable and highly selective inhibitors of p38alpha 
mitogen-activated protein kinase. J Med Chem 54:2255–2265

Gough AH, Chen N, Shun TY et al (2014) Identifying and quantifying heterogeneity in high 
content analysis: application of heterogeneity indices to drug discovery. PLoS One 9:e102678

Held M, Schmitz MH, Fischer B et al (2010) CellCognition: time-resolved phenotype annotation 
in high-throughput live cell imaging. Nat Methods 7:747–754

Huang S (2009) Non-genetic heterogeneity of cells in development: more than just noise. 
Development 136:3853–3862

Iwasaki S, Iguchi M, Watanabe K et al (1999) Specific activation of the p38 mitogen-activated 
protein kinase signaling pathway and induction of neurite outgrowth in PC12 cells by bone 
morphogenetic protein-2. J Biol Chem 274:26503–26510

Morooka T, Nishida E (1998) Requirement of p38 mitogen-activated protein kinase for neuronal 
differentiation in PC12 cells. J Biol Chem 273:24285–24288

Rajaram S, Pavie B, Wu LF et al (2012) PhenoRipper: software for rapidly profiling microscopy 
images. Nat Methods 9:635–637

Sommer C, Strähle C, Köthe U, Hamprecht FA (2011) in: Eighth IEEE International Symposium 
on Biomedical Imaging (ISBI). Proceedings, 230–233 

Wang QL, Chen S, Esumi N et al (2004) QRX, a novel homeobox gene, modulates photoreceptor 
gene expression. Hum Mol Genet 13:1025–1040

Welsbie DS et al (2013) Functional genomic screening identifies dual leucine zipper kinase as a 
key mediator of retinal ganglion cell death. Proc Natl Acad Sci U S A 110:4045–4050



605© Springer International Publishing Switzerland 2016
C. Bowes Rickman et al. (eds.), Retinal Degenerative Diseases, Advances in 
Experimental Medicine and Biology 854, DOI 10.1007/978-3-319-17121-0_80

S. A. Hagstrom () · L. A. Ebke · G. J. T. Pauer
Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland,  
OH 44195, USA
e-mail: hagstrs@ccf.org

S. A. Hagstrom
Department of Ophthalmology, Cleveland Clinic Lerner College of Medicine of Case Western 
Reserve University, Cleveland, OH 44195, USA

L. A. Ebke
e-mail: ebkel@ccf.org

G. J. Pauer
e-mail: pauerg@ccf.org

B. Willard
Proteomics Core Services, Lerner Research Institute, Cleveland Clinic, Cleveland,  
OH 44195, USA
e-mail: willarb@ccf.org

Chapter 80
A Novel Approach to Identify Photoreceptor 
Compartment-Specific Tulp1 Binding Partners

Lindsey A. Ebke, Gayle J.T. Pauer, Belinda Willard  
and Stephanie A. Hagstrom

Abstract Photoreceptors (PRs) are highly polarized and compartmentalized cells 
with large amounts of proteins synthesized in the inner segment (IS) and transported 
to the outer segment (OS) and synaptic terminal. The PR-specific protein, Tulp1, 
is localized to the IS and synapse and is hypothesized to be involved in protein 
trafficking. To better understand the molecular processes that regulate protein traf-
ficking in PRs, we aimed to identify compartment-specific Tulp1 binding partners. 
Serial tangential sectioning of Long Evans rat retinas was utilized to isolate the IS 
and synaptic PR compartments. Tulp1 binding partners in each of these layers were 
identified using co-immunoprecipitation (co-IP) with Tulp1 antibodies. The co-IP 
eluates were separated by SDS-PAGE, trypsinized into peptide fragments, and pro-
teins were identified by liquid chromatography tandem mass spectrometry. In the 
IS, potential Tulp1-binding partners included cytoskeletal scaffold proteins, protein 
trafficking molecules, as well as members of the phototransduction cascade. In the 
synaptic region, the majority of interacting proteins identified were cytoskeletal. 
A separate subset of proteins were identified in both the IS and synapse including 
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chaperones and family members of the GTPase activating proteins. Tulp1 has two 
distinct PR compartment-specific interactomes. Our results support the hypothesis 
that Tulp1 is involved in the trafficking of proteins from the IS to the OS and the 
continuous membrane remodeling and vesicle cycling at the synaptic terminal.

80.1  Introduction

Retinitis Pigmentosa (RP) is the most common subtype of hereditary retinal degen-
eration affecting one in 4000 people worldwide (Hartong et al. 2006). The disease 
progresses from night blindness to peripheral visual field loss, and eventual total 
blindness. Mutations in the gene TULP1 cause autosomal recessive RP and Leb-
er Congenital Amarosis (Hagstrom et al. 1998; Hanein et al. 2004; Mataftsi et al. 
2007). In these patients, the disease phenotype consists of night vision disturbances, 
nystagmus, central vision impairment, and pigmentary retinopathy (Jacobson et al. 
2014).

Extensive phenotyping of the tulp1-/- mouse has provided evidence that Tulp1 
plays an important role in protein trafficking in PR cells (Hagstrom et al. 1999, 
2001, 2012; Grossman et al. 2011). Tulp1 is expressed in PR regions in which mas-
sive amounts of protein trafficking occurs; the IS and the synaptic terminal (Hag-
strom et al. 1999). At an early age in tulp1-/- mice prior to PR degeneration, rho-
dopsin and other OS-specific proteins are mislocalized (Hagstrom et al. 1999, 2001; 
Grossman et al. 2011). In addition, synapses of tulp1-/- PRs lack the tight spatial 
relationship between specific ribbon-associated proteins, and few intact synaptic 
ribbons are present (Grossman et al. 2009). These defects initiated our hypothesis 
that Tulp1 is involved in protein transport and raise the question of whether Tulp1 
plays unique roles at opposite ends of the cell. We aimed to determine the unique 
binding partners of Tulp1 in the PR IS and synaptic terminal.

80.2  Materials and Methods

80.2.1  Animals

The generation of tulp1-/- mice has been described previously (Hagstrom et al. 
1999). Wild-type C57Bl6/J mice were purchased from the Jackson Laboratory and 
Long Evans rats were purchased from Charles River Laboratory. All animal ex-
periments were approved by the IACUC of the Cleveland Clinic and performed in 
compliance with the ARVO Statement for the Use of Animals in Ophthalmic and 
Visual Research.
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80.2.2  Serial Tangential Sectioning

Tangential sectioning of rat retinas were carried out as previously described (Song 
and Sokolov 2009) with several optimizations. Long Evans rat retinas were dissect-
ed in DMEM/F12 media supplemented with complete protease inhibitors (Roche) 
and positioned on a disc of nitrocellulose paper photoreceptor-side down. Each 
retina was cut into halves or quarters and flattened individually in a custom-made 
flattening chamber (Fig. 80.1) by positioning the retina above a glass capillary array 
(BURLE Electro-Optics) and slowly removing the media from the lower chamber. 
The flattened retina was secured onto a 2 × 2 cm glass slide using superglue and 
clamped with a top slide wrapped in non-stick optically-clear tape separated by 
0.5 mm plastic spacers. This sandwich assembly was placed on dry ice to freeze 
for 1 h. A mound of OCT compound (Sakura Finetek) was frozen on the cryostat 
chuck and sectioned to create a flat surface large enough to accommodate the bot-
tom glass slide. The clamps and top slide were removed and the base slide was 
pressed against the OCT surface and frozen in place by the addition of water drops 
around the back of the glass base. The peripheral edges of each retina piece were 
trimmed with a scalpel blade to remove uneven parts and finally serial sectioned at a 
thickness of 10 μm, collecting each section in 50 μl of 2x Tris-Glycine SDS sample 

Fig. 80.1   Flowchart overview of experimental approach. a Flattening chamber with a quartered 
retina laying atop a quartered nitrocellulose disc; inset: a depiction of the glass capillary array. b 
A depiction of serial tangential sectioning through the retina; each 10 μm slice is collected into an 
individual microcentrifuge tube of sample buffer. The IS- and OPL-containing samples are identi-
fied and pooled across multiple retinas prior to co-IP. (Schematic illustration of retina reprinted 
with permission from Song and Sokolov (2009). (Copyright 2014 American Chemical Society)
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buffer (Life Technologies) or Pierce IP lysis buffer (Thermo Scientific) depending 
upon  downstream analysis. Verification of tangential sectioning was analyzed by 
rhodopsin dot blot as described previously (Song and Sokolov 2009). Only the tan-
gentially sectioned retinas which contain rhodopsin in the outermost 3–6 sections 
corresponding to the OS were selected for proteomic analysis.

80.2.3  Tulp1 co-Immunoprecipitation

Tangentially sectioned samples containing IS, outer plexiform layer (OPL), and 
inner plexiform layer (IPL) regions were identified based on Western blot analysis 
of representative tangential sectioned retinas with compartment-specific antibodies 
(data not shown). The IPL lacks Tulp1 and was used as a negative control. Whole 
retinal lysate from tulp1-/- mice was also used as a negative control. In order to ob-
tain sufficient protein for downstream proteomic analysis, region-specific samples 
across multiple retinas were pooled (Fig. 80.1). Co-IP of pooled IS, OPL, and nega-
tive control layers were performed as previously described (Grossman et al. 2013).

80.2.4  Liquid Chromatography Tandem Mass Spectrometry 
(LC-MS/MS)

Eluted co-IP products were run onto SDS-PAGE gels. For in-gel digestions, the lanes 
were excised and divided into a number of smaller areas for trypsin digestion ac-
cording to a previously published method (Kinter and Sherman 2005). Trypsinized 
peptides were extracted from the polyacrylamide and resuspended in 1 % acetic acid 
for analysis by LC-MS/MS on a LTQ-Obitrap Elite hybrid mass spectrometer system 
coupled to a Dionex Ultimate 3000 HPLC. Five μL aliquots of the digests were load-
ed onto a 75 μm Acclaim Pepmap C18 reverse phase column and eluted by an ace-
tonitrile/0.1 % formic acid gradient. The digest was analyzed using a data dependent 
acquisition and the proteins were identified by searching the LC-MS/MS data with 
the programs Mascot and Sequest against the rat Reference Sequence Databases. 
These search results were uploaded into the program Scaffold for relative quantita-
tion using normalized spectral counts for each protein across these samples. Identi-
fied interacting partners were analyzed through the use of QIAGEN’s Ingenuity® 
Pathway Analysis (IPA®, QIAGEN) and UniProt online protein knowledgebase.

80.3  Results

80.3.1  Tulp1 Interacting Proteins in the IS and Synapse

Our experimental approach to identify compartment-specific Tulp1 binding part-
ners was to physically isolate PR IS and synaptic regions using serial tangential 
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 sectioning of flat-mounted rat retinas, followed by co-IP and a proteomics-based 
approach (Fig. 80.1). Tangentially sectioned IPL and whole retinal lysate from 
tulp1-/- mice were used as Tulp1-negative tissues. Our inclusion criteria required 
each protein to be present at least two fold higher than in negative controls, and 
identified by a minimum of two unique peptides and at least five spectral counts. 
Proteomic analysis of the co-IP products identified 275 potential Tulp1-binding 
partners; 110 proteins were identified in the IS region, 15 proteins were identified in 
the synapse, and an additional 150 proteins were identified in both compartments. 
Tulp1 was identified in the IS co-IP product by 27 peptides covering 53 % of the 
protein sequence and in the synaptic co-IP product by 14 peptides covering 31 % of 
the protein sequence.

Next, we classified the proteins from each PR compartment into functional cat-
egories using bioinformatics methods. Two of the most abundant functional catego-
ries in the IS were protein transport molecules and cytoskeletal proteins. Examples 
of potential Tulp1-binding partners in this region include C2 domain-containing 
protein 2-like, coatomer protein complex subunit alpha, elongator complex protein 
1, G kinase-anchoring protein 1, interphotoreceptor matrix proteoglycan 1 precur-
sor, kinectin 1, kinesin family members 3a and 3b, microtubule-associated protein 
9, oxygen-regulated protein 1, and both tubulin alpha-1A and -4B chains. Surpris-
ingly, results also identified 11 known phototransduction cascade proteins which 
may bind Tulp1 during their transport from the IS to the OS.

The most abundant category in the synaptic region was cytoskeletal proteins. 
Examples of potential Tulp1-binding partners in this region include alpha-adducin, 
cytoskeleton-associated protein 4, desmoglein-4 precursor, and syntrophin beta 2.

A subset of proteins were present in both the IS and synaptic regions. The most 
abundant categories include protein synthesis and mRNA processing, examples in-
clude many ribosomal and mitochondrial proteins. However, some of the most interest-
ing potential Tulp1-binding partners identified in both compartments included chap-
erone proteins such as heat shock proteins, several GTP-ase activating proteins, and 
the cytoskeletal proteins ensconsin isoform 1 and microtubule-associated protein 1B.

80.4  Discussion

In this study, we demonstrated a novel experimental method to isolate PR IS and 
synaptic regions followed by co-IP and identification of potential Tulp1 binding 
partners from each compartment. Our goal was to identify Tulp1 IS-specific and 
synaptic-specific interactions. Previous research from our lab has shown that Tulp1 
is a cytoplasmic protein that associates with membranes through binding phospho-
lipids and the cytoskeletal components F-actin, dynamin-1, and MAP1B (Xi et al. 
2005, 2007; Grossman et al. 2013, 2014). Our current results support this finding, 
as many of the possible Tulp1 binding partners identified only in the IS and only in 
the synapse were components of the cytoskeleton and members of the protein trans-
port system. To our surprise, we also identified multiple phototransduction cascade 
proteins that possibly interact with Tulp1 in the IS. Further experiments are required 
to confirm these interactions.

80 A Novel Approach to Identify Photoreceptor Compartment-Specific …
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Potential Tulp1 interacting proteins that were identified in both the IS and syn-
aptic regions included many involved in protein synthesis, such as ribosomal and 
mitochondrial proteins. This is not entirely surprising since proteins are synthesized 
in the PR IS and the IS also contains the vast majority of PR-specific mitochondria. 
This finding may be indicative of one of the limitations of co-IP, i.e. the identifica-
tion of many nonspecific interactors that may be copurified with bait proteins. In 
fact, many of the identified proteins in this functional category are known members 
of the “CRAPome”, or Contaminant Repository for Affinity Purification. This on-
line resource (www.crapome.org) contains negative control data from hundreds of 
studies (Mellacheruvu et al. 2013).

Overall, our results indicate that Tulp1 could function at the IS in several ca-
pacities. First, it may serve as an adapter protein involved in selecting cargo for 
inclusion into transport vesicles. Second, it may be part of a dynamic microtubule 
scaffold connecting transport vesicles with the cytoskeleton. Third, it may regulate 
vesicle trafficking from the Golgi to the basal body for further transport to the OS. 
Tulp1 in the OPL is likely involved in the assembly of the ribbon synapses at the 
active zone, or compensatory vesicle cycling at the periactive zone. Confirmation 
of potential Tulp1 interacting partners identified in this study requires further in-
vestigation.
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Chapter 81
Thyroid Hormone Signaling and Cone 
Photoreceptor Viability

Hongwei Ma and Xi-Qin Ding

Abstract Thyroid hormone (TH) signaling regulates cell proliferation, differentia-
tion, and apoptosis. In the retina, TH signaling plays a central role in cone opsin 
expression. TH signaling inhibits S opsin expression, stimulates M opsin expres-
sion, and promotes dorsal-ventral opsin patterning. TH signaling has also been 
associated with cone photoreceptor viability. Treatment with thyroid hormone tri-
iodothyronine (T3) or induction of high T3 by deleting the hormone-inactivating 
enzyme type 3 iodothyronine deiodinase (DIO3) causes cone death in mice. This 
effect is reversed by deletion of the TH receptor (TR) gene. Consistent with the 
T3 treatment effect, suppressing TH signaling preserves cones in mouse models of 
retinal degeneration. The regulation of cone survival by TH signaling appears to 
be independent of its regulatory role in cone opsin expression. The mechanism by 
which TH signaling regulates cone viability remains to be identified. The current 
understanding of TH signaling regulation in photoreceptor viability suggests that 
suppressing TH signaling locally in the retina may represent a novel strategy for 
retinal degeneration management.

Keywords Thyroid hormone · Thyroid hormone receptor · Cone · Cone opsin · 
Retinal degeneration

81.1  Introduction

Thyroid hormone (TH) signaling regulates numerous physiological functions, 
including cell growth, differentiation, and metabolic homeostasis. In healthy 
humans, the thyroid gland produces predominantly the prohormone thyroxine (T4) 
along with a small amount of the bioactive hormone triiodothyronine (T3). In the 
peripheral tissues, T4 and T3 are transported to cells where T4 is converted to T3 
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by the type 1 and type 2 iodothyronine deiondinases (DIO1 and DIO2). T3 is then 
transferred to the nucleus and binds to the TH receptors (TRs), initiating the down-
stream responses. The type 3 iodothyronine deiondinase (DIO3) deactivates T4 and 
T3 by converting T4 and T3 to reverse T3 (rT3) and 3,5-diiodo-l-thyronine (T2), re-
spectively (Fig. 81.1). Though the TH level in the circulation is essential for normal 
TH signaling, increasing evidence suggests that the local control of TH signaling 
activity via TRs and the enzymes that regulate cellular T3 levels plays a critical role 
in cellular functional regulation (Cheng et al. 2010; Dentice and Salvatore 2011).

TRs belong to the nuclear hormone receptor superfamily and function as 
ligand-dependent transcription factors. In the absence of T3, TRs are bound to 
a co-repressor, as monomers, homo-dimers, or heterodimers with the retinoid X 
receptor (RXR). Upon T3 binding, TRs are dissociated from the co-repressor and 
bind to a co-activator, which initiates transcriptional responses (Fig. 81.1). Two 
genes encode related TRα and TRβ across vertebrate species (Flamant et al. 2006; 
Brent 2012). There are three TRα splice variants: TRα1 is expressed predominant-
ly in brain, heart, and skeletal muscle while TRα2 and TRα3 are non-T3-binding 
splice products. TRβ has three major T3-binding splice products: TRβ1 is expressed 
widely; TRβ2 is expressed primarily in the brain, retina, and inner ear; and TRβ3 is 
expressed in kidney, liver, and lung (Brent 2012). In the retina, TRβ2 is expressed 
in the developmental cones (Applebury et al. 2007; Ng et al. 2009a). TH has also 
been shown to exert its action through non-genomic (non-TR) actions which do not 
include initial nuclear actions of TR or gene transcription, but involve the cell sur-
face receptor and signal transduction pathway (Hiroi et al. 2006; Cheng et al. 2010).

TH signaling plays a central role in cone opsin expression both in developmental 
and adult retinas. TH signaling has also been associated with cone viability. Treat-
ment with T3 or induction of high T3 by deleting DIO3 causes cone death in mice. 
Consistent with the T3 treatment effect, suppressing TH signaling preserves cones 

Fig. 81.1   The action of 
thyroid hormones at the cell 
level. T4 and T3 are trans-
ported into target cells where 
T4 is converted to T3. In the 
absence of T3, TR homodi-
merizes or heterodimerizes 
with RXR, and then binds to 
a TRE and a corepressor. T3 
binding to the ligand-binding 
domain results in disruption 
of corepressor binding and 
promotion of coactivator 
binding, which then leads to 
initiation of gene transcrip-
tion. Adapted from Brent 
2012
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in mouse models of retinal degeneration. In this review, we summarize the regula-
tory roles of TH signaling in cone opsin expression and cone viability.

81.2  Regulation of TH Signaling in Cone Opsin 
Expression

The regulation of TH signaling in cone opsin expression and patterning distribution 
is well documented in mouse models with TH signaling inhibition at the receptor 
or hormone levels. During retinal development and in the adult postmitotic retina, 
TH signaling via TRβ2 suppresses expression of S opsin, induces expression of M 
opsin, and promotes the dorsal-ventral opsin patterning distribution (Ng et al. 2001; 
Glaschke et al. 2011). Thrβ2−/− mice display loss of M opsin, universal expression of 
S opsin in all cones, and loss of dorsal-ventral expression patterning (Ng et al. 2001). 
A similar phenotype was observed in RXR−/− mice (Roberts et al. 2005) and in mice 
with a deficiency in NeuroD1, a transcription factor essential for TRβ2 expression 
(Liu et al. 2008). Consistent with the observations in models with TR defects, studies 
using hypothyroid mice, including Tshr-/- and Pax8-/-mice and mice treated with anti-
thyroid drugs, further demonstrated the essential role of TH signaling in cone opsin 
expression and patterning (Lu et al. 2009; Glaschke et al. 2010; Glaschke et al. 2011).

At the transcriptional level, TRβ2 signaling controls M opsin expression through 
the 5’-UTR and intron 3–4 region (Iwagawa et al. 2013). In the mouse retina, TRβ2-
positive cells first appear between embryonic day 10, and 12, and continue to increase 
until near birth, correlating with generation of the cone population. At birth, TRβ2-
expressing cells decrease until postnatal day 10, and then decline to very low levels 
in adulthood (Ng et al. 2009a). It has been shown that TRβ2 is expressed in human 
foveal cones by fetal week 12, during the period of cone genesis (Lee et al. 2006).

Mutations in the TRβ gene have been identified in humans. These mutations 
are primarily located in the ligand binding domain of the receptor. TRβ mutations 
are clinically characterized by generalized TH resistant syndrome (GTHR) with 
elevated T3 and T4 levels and normal or elevated thyrotropin levels (Rivolta et al. 
2009; Ferrara et al. 2012). Patients with TRβ mutations have reduced vision acuity, 
pendular nystagmus, and a bull’s-eye type of macular atrophy (Newell and Diddie 
1977). Spectral electroretinogram (ERG) examinations demonstrated reduced L/M 
cone response, increased S cone function, and severely reduced photopic response 
(Weiss et al. 2012).

81.3  Regulation of TH Signaling in Cone Viability

TH signaling regulates cone viability. The typical evidence is obtained from studies 
using Dio3−/− mice. These mice show a dramatically reduced cone number and 
enhanced cone apoptosis, similar to mice receiving a high dose of T3 treatment 
(Ng et al. 2010). Deletion of TRβ2 abolished the cone degeneration phenotype in 
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Dio3−/− mice and in mice treated with T3, indicating a TRβ2-mediated death mech-
anism. Studies using Cngb3−/− and Gucy2e−/− mice, models of retinal degeneration, 
also demonstrated that stimulating TH signaling by T3 treatment deteriorates cones 
(Ma et al. 2014).

TH signaling regulation of cone viability is further demonstrated by studies 
showing that suppressing TH signaling promotes cone survival in mouse models 
of retinal degeneration. Rpe65-/- and cpfl1 mice show rapid and severe cone death. 
Suppressing TH signaling with anti-thyroid drugs significantly improved cone 
survival in these mice (Ma et al. 2014). It is worth mentioning that anti-thyroid 
treatment does not cause rod degeneration, although T3 treatment or deletion of 
DIO3 has been shown to reduce rod numbers (Ng et al. 2010; Ma et al. 2014).

TH signaling regulation of cell viability has been demonstrated in other tissues 
and cell lines. Excessive TH signaling induces auditory defects (Ng et al. 2009b), 
causes cerebellar abnormalities (Peeters et al. 2013), and is associated with apop-
tosis of a variety of human cell lines, including lymphocytes (Mihara et al. 1999), 
breast cancer cells (Sar et al. 2011), and pituitary tumor cells (Chiloeches et al. 
2008). In addition, TR signaling has been well documented in apoptotic tissue 
remodeling during anuran metamorphosis (Shi et al. 2001; Buchholz et al. 2004).

It appears that TH signaling-mediated regulation of cone viability is likely 
independent of TH regulation of cone opsin expression. Suppressing TH signaling 
in Rpe65-/- and cpfl1 mice greatly reduced cone death, which was accompanied by 
increased expression of S-opsin, increased S cones, and decreased M cones (Ma 
et al. 2014). Stimulating TH signaling in Cngb3-/- and Gucy2e-/- mice increased 
cone death, which was accompanied by reduced levels of S-opsin expression (Ma 
et al. 2014). Stimulating TH signaling induces degeneration of rods (Ng et al. 2010; 
Ma et al. 2014) and cochlear hair cells (Ng et al. 2009b), which do not express 
cone opsin. Moreover, TH signaling induces death in numerous cancer cell lines 
(Yamada-Okabe et al. 2003; Chiloeches et al. 2008; Sar et al. 2011).

The mechanism(s) by which TH signaling regulates cone viability remains 
unclear, though it appears to involve apoptotic death processes (Ng et al. 2010). TH 
signaling-induced cancer cell death has been shown to involve several signaling 
pathways. The activation of TRβ by T3 binding was revealed to induce senescence 
and DNA damage in cultured cells and in tissues of young hyperthyroid mice 
(Zambrano et al. 2014). In the MCF-7 human breast cancer cell line, expression of 
TRβ in the presence of T3 was shown to promote apoptosis via down-regulation of 
the JAK-STAT-cyclin D pathways (Park et al. 2013).

81.4  Future Perspectives

The current understanding of TH signaling regulation in cone photoreceptor viability 
suggests that suppressing TH signaling locally in the retina may represent a novel 
strategy for retinal degeneration management. The first step in testing this potential 
is to determine whether local suppression of TH signaling in the retina protects 
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cones. It would be valuable to test whether ocular administration of TR antagonists, 
photoreceptor-specific TRβ2 deletion, and photoreceptor-specific DIO3 overex-
pression/activation reduces cone death in animal models of retinal degeneration. It 
is also important to understand how TH signaling prompts cell death. The resulting 
knowledge will help to identify new target(s) to manipulate this powerful signaling 
pathway for photoreceptor protection.
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Chapter 82
In-Depth Functional Diagnostics of Mouse 
Models by Single-Flash and Flicker 
Electroretinograms without Adapting 
Background Illumination

Naoyuki Tanimoto, Stylianos Michalakis, Bernhard H. F. Weber,  
Christian A. Wahl-Schott, Hans-Peter Hammes and Mathias W. Seeliger

Abstract Electroretinograms (ERGs) are commonly recorded at the cornea for 
an assessment of the functional status of the retina in mouse models. Full-field 
ERGs can be elicited by single-flash as well as flicker light stimulation although 
in most laboratories flicker ERGs are recorded much less frequently than single-
flash ERGs. Whereas conventional single-flash ERGs contain information about 
layers, i.e., outer and inner retina, flicker ERGs permit functional assessment of 
the vertical pathways of the retina, i.e., rod system, cone ON-pathway, and cone 
OFF-pathway, when the responses are evoked at a relatively high luminance (0.5 
log cd s/m2) with varying frequency (from 0.5 to 30 Hz) without any adapting 
background illumination. Therefore, both types of ERGs complement an in-depth 
functional characterization of the mouse retina, allowing for a discrimination of an 
underlying functional pathology. Here, we introduce the systematic interpretation 
of the single-flash and flicker ERGs by demonstrating several different patterns 
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of functional phenotype in genetic mouse models, in which photoreceptors and/or 
bipolar cells are primarily or secondarily affected.

Keywords Functional diagnostics · Electroretinogram · Single-flash · Flicker · 
Mouse model · Photoreceptor · Retinal bipolar cell · Congenital stationary night 
blindness · Retinal ischemia · X-linked juvenile retinoschisis

82.1  Introduction

Full-field electroretinogram (ERG) recordings at the cornea have been useful 
to characterize retinal functional properties of rodent models of human disease. 
Whereas single-flash ERGs are commonly analyzed in many laboratories, flicker 
ERGs are less frequently recorded, in part likely due to the variety of recording pa-
rameters and analytical methods. In our laboratory, we have used a practical flicker 
ERG protocol for functional phenotyping of mouse models, which is short (less 
than 4 min) and can be used directly after the conventional dark-adapted single-
flash luminance series. The flicker ERG data partly confirm light-adapted ERG data 
and also contain certain types of information that cannot be assessable by single-
flash ERGs only, enabling comprehensive in vivo functional diagnostics. In this 
chapter we will first give a brief description of the ERG protocols, followed by 
examples of differential diagnosis in genetic mouse models in terms of single-flash 
and flicker ERGs.

82.2  Electroretinography

Full-field ERG is a mass response of transient electrical activity of the entire retina 
to light stimulation, but importantly, the functionality of certain neuronal compo-
nents, systems, and pathways can be assessed by varying stimulus luminances, fre-
quencies, or additional background illumination.

82.2.1  Dark-Adapted Single-Flash ERG Luminance Series

In this series, no background illumination is used, and responses are recorded by 
using single white-flash stimuli in a wide luminance range (5.5 log units, in our labo-
ratory). Under these conditions, only the rod system contributes to the waveform up to  
− 2 log cd s/m2 (scotopic), whereas both rod and cone photoreceptors are activated 
above − 2 log cd s/m2 (mesopic) (Tanimoto et al. 2013, 2015). The initial negative-go-
ing a-wave that appears at middle and high luminance is initiated by photoreceptors, 
whereas the following positive-going b-wave is mainly generated by ON-bipolar cells 
(for further details on the origin of ERG components, see Frishman and Wang 2011).
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82.2.2  Flicker ERG Frequency Series

This series is started approximately 30 s after the end of the preceding single-flash 
protocol. Responses to trains of brief flashes for a fixed luminance (0.5 log cd s/m2) 
with varying frequency (12 steps from 0.5 to 30 Hz) are obtained without any back-
ground illumination (0 cd/m2) which are averaged over time (Tanimoto et al. 2013, 
2015). This series is divided into three frequency ranges that are dominated by ac-
tivity in the rod pathways (below 5 Hz, range A), cone ON-pathway (between 5 and 
15 Hz, range B), and cone OFF-pathway (above 15 Hz, range C) (Tanimoto et al. 
2015).

82.3  Mouse Models with Photoreceptor Dysfunction

Figure 82.1 shows representative single-flash and flicker ERGs in two photorecep-
tor dysfunction models. In Gnat1 knockout (KO) mice, rods are dysfunctional due 
to a lack of the rod transducin α-subunit (Calvert et al. 2000), whereas cones are 
not affected in these mice due to the fact that cone transducin is formed by other 
isoforms. cpfl1 mice are naturally occurring mutants that have two mutations in the 
cone specific phosphodiesterase gene, Pde6c; thus, only cones reveal a dysfunction 
(Chang et al. 2009). Due to the absence of rod signaling in Gnat1 KO mice, no re-
sponse is evoked in the scotopic luminance range up to − 2.0 log cd s/m2, and there 
is no substantial single-flash ERG a-wave (Fig. 82.1a). In contrast, these rod-driven 
ERG components are comparable between cpfl1 and corresponding wild-type mice 
(Fig. 82.1c), as rods in cpfl1 mice function normally. The cone photoreceptor func-
tion loss in cpfl1 mice is demonstrated by flicker ERG, lacking any flicker respons-
es at 5 Hz and above (Fig. 82.1d). In contrast, Gnat1 KO mice generate normal 
flicker responses in ranges B and C (Fig. 82.1b), as the cone system is normal in 
Gnat1 KO mice.

82.4  “No b-wave” Models

There are a number of mouse mutants that have a “no b-wave” ERG phenotype 
(with a preservation of the a-wave) (Pardue and Peachey 2014), which indicates 
a pre- or postsynaptic involvement of the photoreceptor to ON-bipolar synapse. A 
dysfunction of Cav1.4 L-type Ca2+ channels at photoreceptor synaptic terminals in 
Cav1.4 KO mice (Specht et al. 2009) features presynaptic disruption of glutamate 
release from rod and cone photoreceptors affecting both ON- and OFF-bipolar cells, 
whereas in naturally occurring nob mutants (Pardue et al. 1998) only ON-bipolar 
cells are postsynaptically disturbed due to an impairment of the signaling cascade 
in ON-bipolar cells. In Fig. 82.2, ERGs in these pre- and postsynaptic “no b-wave” 
models are compared. The single-flash ERG a-wave is not reduced in the two models 
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(Fig. 82.2a, c), as the function of photoreceptor outer segments (phototransduction 
cascade and associated ion channels) is not affected. In contrast, the single-flash 
ERG b-wave is completely missing owing to a lack of light-evoked responses from 
ON-bipolar cells in both models. Therefore, the dark-adapted single-flash ERG can-
not discriminate the two mouse models (Fig. 82.2a, c). In flicker ERG, both mod-
els display similar responses in range A, revealing the unchanged negative-going 
deflection and a lack of the positive-going signals. However, in range C where the 
responses are dominated by activity in the cone OFF-pathway, nob flicker ERGs 
are normal in size (Fig. 82.2b), reflecting the intact cone OFF-pathway in nob mice. 
In contrast, responses in range C are very strongly reduced in Cav1.4 KO mice 
(Fig. 82.2d), as the cone OFF-pathway is also affected.

Fig. 82.1   Comparison of Gnat1 knockout (KO) and cpfl1 ERGs. a, c Representative dark-adapted 
single-flash ERG luminance series and b, d flicker ERG frequency series at 0.5 log cd s/m2 in a, 
b Gnat1 KO ( right) and corresponding wild-type (WT, left) mice, and c, d cpfl1 ( right) and cor-
responding WT ( left) mice. The a-wave and the b-wave are indicated by open arrows in a. See 
section 82.2.2 for details of the frequency ranges A, B, and C in b, d
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82.5  Other “b-Wave Mutants”

The strong attenuation of the b-wave is caused not only by synaptic disturbances 
but also by inner retinal ischemia, e.g., in Angiopoietin-2 ( Ang2) KO mice in which 
a proper formation of retinal vascular network is disturbed (Fig. 82.3a) (Feng et al. 
2009). The b-wave reduction is also characteristic for the mouse model of X-linked 
juvenile retinoschisis ( Rs1h KO) (Weber et al. 2002). Retinoschisin plays a critical 
role in the maintenance of the retinal architecture; thus, Rs1h KO mice demonstrate 
a highly disorganized retina including displacement of bipolar cells and abnor-
malities at the photoreceptor-bipolar synapse, leading to a reduction in the b-wave 
(Fig. 82.3c) (Molday et al. 2012; Weber et al. 2002). In both Ang2 KO and Rs1h KO 
mice, all types of bipolar cells are affected, i.e., in the absence of any vertical path-
way-/system-specificity the inner retina is affected. Therefore, flicker responses are 

Fig. 82.2   Comparison of nob and Cav1.4 knockout (KO) ERGs. a, c Representative dark-adapted 
single-flash ERG intensity series and b, d flicker ERG frequency series at 0.5 log cd s/m2 in a, 
b nob ( right) and corresponding wild-type (WT, left) mice, and c, d Cav1.4 KO ( right) and cor-
responding WT ( left) mice.
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reduced in all ranges A, B, and C (Fig. 82.3b, d). These models can be discriminated 
in the single-flash ERG a-wave: The a-wave is reduced in Rs1h KO mice owing to 
the progressive outer retinal alterations with age (Fig. 82.3c) (Janssen et al. 2008). 
In contrast, the a-wave is unchanged in Ang2 KO mice likely due to photoreceptors 
being supplied normally by the choroid (Fig. 82.3a).

82.6  Summary

In this chapter, our diagnostic strategies on the basis of the conventional dark-adapt-
ed single-flash and a novel flicker ERG protocol were presented in different genetic 
mouse models. All of these mouse mutants showed qualitatively different patterns 
of alteration in the ERGs, i.e., the flicker responses in the ranges A–C together with 

Fig. 82.3   Comparison of Ang2 knockout (KO) and Rs1h KO ERGs. a, c Representative dark-
adapted single-flash ERG luminance series and b, d flicker ERG frequency series at 0.5 log cd s/
m2 in a, b Ang2 KO ( right) and corresponding wild-type (WT, left) mice, and c, d Rs1h KO ( right) 
and corresponding WT ( left) mice
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the single-flash a- and b-waves, allowing for a discrimination of the underlying 
functional pathology. Therefore, differential diagnosis of retinal disorders in these 
animal models could greatly benefit by both the single-flash and the flicker ERGs.
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Chapter 83
The Role of Intraflagellar Transport  
in the Photoreceptor Sensory Cilium

Daniel G. Taub and Qin Liu

Abstract The photoreceptor is a complex specialized cell in which a major compo-
nent responsible for visual transduction is the photoreceptor sensory cilium (PSC). 
Building and maintenance of the PSC requires the transport of large proteins along 
microtubules that extend from the inner segments to the outer segments. A key 
process, termed intraflagellar transport (IFT), has been recognized as an essential 
phenomenon for photoreceptor development and maintenance, and exciting new 
studies have highlighted its importance in retinal and cilia related diseases. This 
review focuses on the important roles of IFT players, including motor proteins, 
IFT proteins, and photoreceptor-specific cargos in photoreceptor sensory cilium. 
In addition, specific IFT components that are involved in inherited human diseases 
are discussed.

Keywords Inherited retinal degeneration · Intraflagellar transport (IFT) · Cilia · 
Photoreceptor · Protein transport

83.1  Introduction

Intraflagellar Transport (IFT) is the process by which large polypeptides are trans-
ported along microtubules facilitated by motor proteins and IFT proteins in ciliated 
cells. In the past decade, a large number of studies have demonstrated that IFT 
is essential for ciliogenesis, signaling, and ciliary maintenance (Cole et al. 1998; 
Davis and Katsanis 2012). Consistent with the importance of IFT in cilia biology, 
mutations in genes that encode IFT related proteins are increasingly recognized as 
the underlying cause of a number of inherited cilia disorders that affect multiple 
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organ systems (Davis and Katsanis 2012). The photoreceptor sensory cilium (PSC) 
elaborated by rod and cone photoreceptors in the retina is among the largest of 
mammalian cilia (Besharse 1985). As in other primary cilia, IFT is essential for the 
development, function and maintenance of the photoreceptor sensory cilium, an or-
ganelle responsible for the transduction of light into neural signals. In this chapter, 
we briefly summarize the common features and the important roles of IFT players, 
including motor proteins, IFT complex proteins, and IFT cargos in primary cilia, 
with particular emphasis on photoreceptor sensory cilium. In addition, specific IFT 
components that are involved in inherited retinal diseases are discussed.

83.2  A Brief History of IFT

IFT was originally described by Keith Kozminski in the lab of Joel Rosenbaum 
at Yale University in 1993 (Kozminski et al. 1993). Using a paralyzed flagellar 
mutant of Chlamydomonas, they observed particles continuously moving along 
the cilium in both an anterograde and retrograde fashion (Kozminski et al. 1993). 
Later research identified that these IFT particles themselves are composed of more 
than 20 individual proteins organized into two subcomplexes, termed A- and B- 
complexes (Cole et al. 1998). The movement of IFT particles in the anterograde di-
rection to the cilia tip is attributed to the molecular motor kinesin-2, while dynein-2 
was attributed as the motor powering the retrograde IFT transport (Pazour et al. 
1998). The studies took the primary cilium, a previously ignored organelle, into the 
spotlight as it became clear that primary cilium is an integral structure of the cell 
that coordinates the development and function of many tissues and organs through-
out the body.

83.3  Mutations in IFT Components Cause Ciliopathies  
in Human

Since the discovery of IFT more than 20 years ago, considerable effort has gone 
into the discovery of the association between the IFT process and human diseases. 
Mutations that alter a component of IFT complex A or B, or mutations in the protein 
components of either one of the motor complexes, result in defective formation, 
elongation, or function of cilia in all organisms investigated (Cole et al. 1998; Pa-
zour et al. 2002). Thus, IFT is absolutely required for ciliogenesis and maintenance. 
In the past few years, all six IFT-A components and their motor protein, DYNC2H1, 
have been linked to human ciliopathies, including Jeune asphyxiating thoracic dys-
trophy (JATD), Nephronophthisis (NPHP), Meckel Syndrome (MS), Joubert Syn-
drome, Bardet-Biedl Syndrome (BBS), Senior Loken Syndrome, Sensenbrenner 
syndrome, and Mainzer-Saldino syndrome (MSS) (Arts et al. 2011; Walczak-Sztul-
pa et al. 2010; Gilissen et al. 2010; Bredrup et al. 2011; Davis et al. 2011; Perrault 
et al. 2012; Dagoneau et al. 2009). However, despite the strong evidence showing 
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that disruption of IFT complex B proteins results in various of ciliary phenotypes in 
animal models, the majority of the 14 IFT complex B proteins have unknown roles 
in human disease, except IFT80 (Beales et al. 2007), IFT172 (Halbritter et al. 2013) 
and IFT27 (Aldahmesh et al. 2014). Cilia-related syndromic disorders can manifest 
as a large phenotypic and severity spectrum that include primarily retinal degenera-
tion, renal disease, cerebral anomalies, skeletal dysplasias, congenital fibrocystic 
diseases of the liver and pancreas, diabetes and obesity. For example, the same mis-
sense mutation p. Leu710Ser in WDR19/IFT144 can cause a phenotypic severity 
spectrum ranging from very severe manifestations such as those in Sensenbrenner 
syndrome and JATD to less severe isolated cases of NPHP, autosome recessive 
retinitis pigmentosa (arRP) and polycystic kidney with arRP (Coussa et al. 2013). 
In addition to IFT144, we have recently shown that mutations in IFT172 can cause 
non-syndromic inherited retinal degeneration in humans as well (Bujakowska et al. 
2014). These findings strongly suggest the presence of modifying genes and/or mu-
tations, genetic or micro environment variations (Davis et al. 2011; Badano et al. 
2006).

83.4  The Photoreceptor Outer Segment as a Specialized 
Sensory Cilium

The outer segment (OS) of rod and cone photoreceptor cells in the vertebrate retina 
is highly modified sensory cilium that is responsible for the first step of photo-
transduction cascade. Like all other cilia, the photoreceptor sensory cilium (PSC) is 
comprised of a membrane domain and its cytoskeleton backbone. During develop-
ment, the microtubule based structural backbone of PSC arises from the basal body 
in the inner segments with the plasma membrane forming the cilia membrane. At 
the same time, ciliary transport mechanisms move large amount of lipids and mem-
brane proteins synthesized in the inner segment into the cilium, initially in a form 
of disorganized vesicular and tubular structures, which later assembled into highly 
specialized discs stacking along the axoneme (Besharse et al. 1985). This transport 
process continues throughout the lifetime of the PSC as ~ 10 % of the OS are shed 
from the distal tip each day and new discs are formed at the base of the OS (Young 
1967). The molecular mechanisms underlying the transport of membrane proteins 
from the cell body to the PSC is largely unknown but current evidence strongly sup-
ports IFT systems as an important player (Insinna and Besharse 2008; Bhowmick 
et al. 2009).

83.5  IFT Particles and PSC Transport

In photoreceptor sensory cilia, IFT occurs along with the axonemal backbone be-
tween the inner segment and the outer segment. Of the 20 IFT particles originally 
identified in Chlamydomonas, all but one have been found to have mammalian 
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homologues within the PSC proteome (Liu et al. 2007). A few IFT proteins, in-
cluding IFT88, IFT57, and IFT52, have previously been localized in the transi-
tion zone of photoreceptor cells (Baker et al. 2003). We have recently studied the 
localization of another six additional IFT proteins in PSC, including IFT20, IFT46, 
IFT54, IFT27, IFT22, IFT144, and one putative IFT protein, CLUAP1/DYF3. We 
observed that the IFT46 and IFT54 were localized at the transition zone and base 
of the axoneme, similar to the location of TTC21B/IFT139 (Davis et al. 2011). 
The remaining five IFT proteins were localized to multiple compartments, but pre-
dominantly to the inner segment and axoneme/transition zone region. In addition 
to IFT complex proteins, there are a number of IFT-associated proteins including 
motor proteins, BBSome proteins, and putative IFT proteins that are also present 
in the PSC proteome (Liu et al. 2007). All three subunits of the kinesin-2 motor 
co-immunoprecipitate with IFT proteins in retinal extract (Baker et al. 2003). Both 
heavy chain and light intermediate chain of the dynein 2 are also present in bovine 
photoreceptor cilia (Mikami et al. 2002). This demonstrates the large number of 
components involved in IFT as well as the comparability of model organisms in 
studying ciliogenesis and cilia maintenance.

The IFT system is required for the assembly of most types of eukaryotic cilia 
including the outer segments of rod and cone photoreceptors (Marszalek et al. 2000; 
Pazour et al. 2002). This has been further demonstrated in IFT deficient animal 
models. A well-characterized example of this is mutations in Tg737, the mouse 
homolog to IFT88, a Complex-B particle. Mutations in Tg737 gene result in abnor-
mal OS morphology, disorganized disc formation, and photoreceptor death between 
postnatal day 45 and 77 (Pazour et al. 2002). Furthermore, while rhodopsin is found 
in the OS of mutants, it is also mislocalized within the inner segments. This indi-
cates that reduced transport is occurring either by a compromise of the structural 
integrity of the PSC or reduced active transport (Pazour et al. 2002). In contrast to 
the example of IFT complex-B dysfunction, alterations in IFT complex-A present a 
different etiology and phenotype. The alien mouse, a knockout of the Ttc21b/Ift139 
gene, presents embryonic lethality at E18.5 (Herron et al. 2002). We have recently 
generated a rod-specific conditional Ttc21b/Ift139 knockout mouse line. Homozy-
gous Ttc21b mice demonstrated an early-onset retinal degeneration with disrupted 
stability of OS and mislocalization of rhodopsin. We are currently using Ttc21b/
Ift139 conditional knockout mice as a model to better understand the retrograde IFT 
transport in the PSC and other cilia.

83.6  Cargo of IFTs in the PSC

The development and maintenance of photoreceptor sensory cilium requires the 
transport of both cilium-specific and photoreceptor-specific proteins from inner seg-
ment to outer segment. Although it has been confirmed that the IFT system provides 
a mechanism for the transport of cilium-specific proteins in PSC and other cilia, the 
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molecular mechanisms on how IFT proteins bind to putative photoreceptor-specific 
cargo remains to be determined. Given the limited number of IFT particles known, 
it is likely that a number of options exist including conserved transport domains 
among cargo proteins, a large and heterogeneous number of binding sites present 
on the IFT particle, a certain order of IFT assembly to bind select cargo, or other 
external cofactors that aid in binding. One of the first studies examining the role of 
IFT in the photoreceptor utilized a conditional knockout mouse model of the an-
terograde motor kinesin-2 subunit, Kif3A (Marszalek et al. 2000). Loss of KIF3A, 
and therefore antereograde IFT, resulted in accrual of opsin and arrestin within the 
inner segments while α-transducin expression was unaffected. This suggests that 
structural defects in transport pathways were not causal for opsin and arrestin mis-
localization (Marszalek et al. 2000). Given the influence of antereograde transport 
on arrestin trafficking, it was expected that retrograde transport might help facilitate 
the removal of arrestin from the OS. Surprisingly, disruption of the dynein-2 motor 
does not alter arrestin translocation and this process is most likely accomplished by 
passive diffusion (Krock et al. 2009). In 2009, Bhowmick et al. identified antero-
grade IFT-cargo complexes containing IFT proteins, kinesin 2 family proteins, two 
photoreceptor specific membrane proteins, guanylyl cyclase 1 and rhodopsin, and 
the chaperones MRJ and HSC70 by using a yeast two hybrid and a pull-down assay 
(Bhowmick et al. 2009). The role of retrograde IFT and which cargo it is transport-
ing has been a complicated question to answer. Based on studies in other tissues and 
organisms, it is reasonable to predict that retrograde IFT could play a role in sup-
port of PSC dynamics at the distal tip by returning the anterograde IFT components 
and the soluble phototransduction proteins to the inner segment (Signor et al. 1999; 
Calvert et al. 2006).

83.7  Perspectives

The PSC is a tantalizing model to undertake the study of the IFT system. Genetic 
manipulations of the photoreceptors can be easily achieved and the effects of these 
manipulations can be readily measured via functional and histologic testing. The 
photoreceptor-specific features and the level of accessibility make the PSC an im-
portant system that can provide new insights into the function of IFT in trafficking 
of cell-specific cargo. While many questions have been answered, many are still 
puzzling. These include how the IFT particles are assembled at the base of cilia, 
how the specific cargos are recognized by, bound to, and released from the IFT par-
ticles, and how the IFT rafts are moved bi-directionally. Since function of each IFT 
protein must be essential and there is little to no overlap functionally, as knockout 
of anyone of the IFT particle can destroy the cilia formation or function, the study 
of these particles will have to take place both independently and within their native 
complexes. More research on the structure of these IFT particles will be crucial to 
ascertaining their functional role in PSC and retinal disease.
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Chapter 84
Regulation of Retinal Development via  
the Epigenetic Modification of Histone H3

Sumiko Watanabe and Akira Murakami

Abstract We are interested in the roles of epigenetic mechanisms in retinal 
development. By ChIP-qPCR using whole retinal extracts at various developmental 
stages, we found that the levels of methylation of histones H3K27 and H3K4 and 
acetylation of histone H3 at specific loci in various genes, which play critical roles 
in retinal proliferation and differentiation, changed dramatically during retinal 
development. We next focused on the roles of H3K27 trimethylation in retinal 
development. Ezh1 and Ezh2 are methyltransferases that act on H3K27, while Jmjd3 
and Utx are demethylases. We found that Ezh2 and Jmjd3 were mainly expressed 
during retinal development, and a loss-of-function of these genes revealed a role 
for H3K27me3 in the maturation of subsets of bipolar cells. Furthermore, Ezh2 
and Jmjd3 regulate H3K27 trimethylation at specific loci within Bhlhb4 and Vsx1, 
which play critical roles in the differentiation of subsets of bipolar cells. Utx is 
expressed weakly in retina, and the down-regulation of Utx by sh-RNA in retinal 
explants suggested that Utx also participates in the maturation of bipolar cells. Ezh1 
is expressed weakly in postnatal retina, and the phenotype of Ezh2-knockout retina 
suggested that Ezh1 plays a role in the methylation of H3K27 in the late phase of 
retinal differentiation. Taken together, we found that these four genes, which exhibit 
temporally and spatially unique expression patterns during retinal development, 
play critical roles in the differentiation of retinal subsets through the regulation of 
histone H3K27 methylation at critical genetic loci.

Keywords Retinal development · Epigenetics modification · Histone H3 
methylation · Histone H3 acetylation · ChIP-qPCR · Bipolar cells · Rod 
photoreceptors
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84.1  Introduction

The methylation and acetylation of basic amino acid residues in histone proteins 
are crucial epigenetic modifications that positively and negatively regulate gene 
expression. Particular patterns of methylation and acetylation regulate the accessi-
bility of target loci by transcription factors and RNA polymerase II, and the remod-
eling of heterochromatin to euchromatin (Greer and Shi 2012). The importance of 
histone methylation to retinal development has been highlighted in several papers 
(Kizilyaprak et al. 2010; Rao et al. 2010). The role of epigenetic modifications 
in diabetic retinopathy is emerging (Wegner et al. 2014); together, these findings 
indicate the potential utility of epigenetic modifications as therapeutic targets. We 
are interested in the epigenetic regulation of retinal development through histone 
modification at critical genetic loci. For that purpose, we examined changes in his-
tone modification and employed a loss-of-function analysis to reveal the roles of 
histone H3 methylases and demethylases during retinal development. This article 
summarizes the main findings presented in Poster 149 at the RD2014 meeting and 
published in 2014 (Iida et al. 2014). Additional data related to this issue are pre-
sented and discussed.

84.2  Materials and Methods

84.2.1  Experiment with Animals

ICR mice were obtained from Japan SLC Co. All animal experiments were approved 
by the Animal Care Committee of the Institute of Medical Science, University of 
Tokyo and conducted in accordance with the ARVO (Association for Research in 
Vision and Ophthalmology) statement for the use of animals in ophthalmic and 
vision research. Mice used in our work are free of retinal degeneration mutations.

84.2.2  Chromatin Immunoprecipitation (ChIP) Assay, RT-qPCR 
and Immunostaining

ChIP assay was done as described previously (Iida et al. 2014). Control IgG 
experiments gave only negligible values. Quantitative PCR (qPCR) was done by the 
SYBR Green-based method using the Roche Light Cycler 1.5 apparatus. Antibodies 
used are anti-acetyl Histone H3 (acetylH3, Millipore 06-599177), -Histone H3 
tri-methyl Lys27 (H3K27me3, Abcam6002205), and -Histone H3 tri-methyl Lys27 
(H3K4me3, active motif 39159178) antibodies. Immunostaining of frozen sections 
was done as described previously (Iida et al. 2014).
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84.3  Results

84.3.1  Examination of the Epigenetic Modification  
of Histone H3 at Retinal Development-Related 
Genetic Loci during Retinal Development

We first examined the changing levels of three major epigenetic modifications of 
histone H3 at retina-related genetic loci during retinal development. ChIP-qPCR 
analysis using whole retinal extracts at several different developmental stages was 
done for histone H3K4 trimethylation (H3K4me3), acetylation of histone H3 (ace-
tyl H3), and histone H3K27 trimethylation (H3K27me3). H3K4me3 modification 
is known to positively affect transcription (Greer and Shi 2012). A number of genes 
that are strongly expressed in early retinal progenitors, including Math5, Ngn2, 
Foxn4, and Sox11, showed relatively high levels of H3K4me3 at these loci, but the 
level was low in adult retina (Fig. 84.1a). Rod cells are present in postnatal retina, 
and the transcription of rod-related genes such as Nrl, PNR, and Rhodopsin (Rho) 
are induced mainly during the postnatal stage of development. H3K4me3 modifica-
tion at these genetic loci was strongly induced after birth. The pattern of H3K4me3 
modification at other loci, which play pivotal roles in the differentiation of retinal 
subsets, showed a variety of patterns. The acetylation of histone H3, which occurs 
at several lysine residues, is generally understood to correlate with transcriptional 
activation via the modulation of chromatin structure (Wegner et al. 2014). Changes 
in the level of acetyl H3 at retina-related genetic loci are similar to those observed 
for H3K4me3 by ChIP analysis—especially at progenitor-enriched and rod-relat-
ed genetic loci (Fig. 84.1b). H3K27me3 is generally recognized as a suppressive 
modification for transcription (Greer and Shi 2012), and the H3K27me3 level of 
genes expressed in retinal progenitor cells was mostly constantly increased, but 
in rod cells the level was very low and did not change during retinal development 
(Fig. 84.1c). In contrast, the H3K27me3 level at differentiation-related loci was 
relatively high, and that at Cdkn2a3 was consistently high (Fig. 84.1c).

84.3.2  Roles of H3K27me3 in Retinal Development

We next focused on H3K27me3 and analyzed the expression pattern of enzymes 
related to H3K27me3 during retinal development. There are two major methyl-
transferases, Ezh1 and Ezh2; two major demethylases, Jmjd3 (Kdm6b) and Utx 
(Kdm6a); and a Y chromosome-specific demethylase, Uty (Kdm6c). We analyzed 
expression levels of these genes at E14, P7, and P14 whole retina by RNA-seq data 
(Iida et al. 2014b) and found that Ezh1 and Jmjd3 were expressed much stronger 
than Ezh2 and Utx, respectively in embryonic retina (Fig. 84.2a). We analyzed more 
detailed temporal changes in the expression of these genes during retinal develop-
ment by RT-qPCR (Fig. 84.2). Ezh2 was strongly expressed in embryonic retina, 
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but its expression deceased during the postnatal period. Ezh1 expression was very 
low during the embryonic period, and significant expression was observed after 
birth (Fig. 84.2a). Jmjd3 showed low-level expression in embryonic retina, but it 
increased after birth and peaked at around P5. Utx showed relatively weak expres-
sion with a slightly higher level during the postnatal stage (Fig. 84.2b). We next 
examined the roles of H3K27me3 in retinal development.

Fig. 84.1   Histone modifications in loci of genes related to retinal development. ChIP-qPCR of 
antibodies anti-Histone H3K4me3 (a), -acetyl-Histone H3 (b), and -Histone H3K27me3 (c) was 
done using whole retinal extract prepared from mice at E14, E18, P5, and adult. Values are indi-
cated as % of input

 



84 Regulation of Retinal Development via the Epigenetic Modification … 639

We created an sh-RNA-mediated loss-of-function of Jmjd3 using retinal explants 
(Iida et al. 2014). The down-regulation of Jmjd3 in developing retina resulted in a 
failure of progenitor cells to differentiate to protein kinase C (PKC)-positive bipolar 
cell subsets (rod-ON-BP), and it reduced the expression of Bhlhb4, which is critical 
for the differentiation of rod-ON-BP cells (Iida et al. 2014). Furthermore, the H3K-
27me3 level at the Bhlhb4 locus was specifically lower in a bipolar cell-enriched 
fraction. Since Jmjd3 was expressed in the inner nuclear layer during late retinal 
development (Iida et al. 2014), we propose that the lineage-specific H3K27me3 
demethylation of critical loci by spatio-temporal-specific Jmjd3 expression allows 
the appropriate maturation of certain subsets of retinal cells (Fig. 84.2c). We next 
assessed the roles of Utx using the same strategy as for Jmjd3. sh-Utx was intro-
duced into retinal explants at E17, and retinal differentiation was examined after 2 
weeks of culture by immunostaining of frozen sections. We detected a loss of PKC 
positive rod-ON-BP cells (Fig. 84.2c), but not other retinal cell subtypes, similar 
to the phenotype caused by the down-regulation of Jmjd3 (Iida et al. 2014). Thus, 
Jmjd3 and Utx may play cooperative roles in the maturation of certain subsets of 
retinal cells.

We next examined the roles of Ezh2 during retinal development using Ezh2 ret-
ina-specific knockout mice (Ezh2fl/fl:Dkk3-cre, Ezh2-CKO). Retinas of Ezh2-CKO 
showed microphthalmia, and proliferation at the postnatal stage was ablated (Iida et 
al. 2014b). All of the examined retinal subtypes differentiated and were localized to 
the appropriate sub-retinal layer, but the population of PKCα-positive rod-ON-BP 
cells was larger in Ezh2-CKO than in control mice (Iida et al. 2014b). Interestingly, 
a ChIP analysis of the H3K27me3 level showed that while H3K27me3 modifica-
tion of the examined genetic loci was ablated in embryonic retina of Ezh2-CKO, 
significant residual H3K27me3 modification was present in P8 retina at several  

Fig.  84.2   Roles of H3K27me3 in retinal development. a, b Transition of expression of Ezh1, 
Ezh2, Jmjd3, and Utx during retinal development was examined by RNA-sequence (a), and RT-
qPCR (b). In b, Gapdh was used as an internal control, and the time point with maximum values 
in each gene are expressed as 1, and others are expressed as relative values to the maximum value. 
c sh-Utx or control vector was electroporated into retinal explant prepared from E17 mouse, and 
cultured for 2 weeks. Differentiation was examined by immunostaining of frozen sections
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loci, suggesting that Ezh1 plays a role in the methylation of these loci in postnatal 
retina. Taking these data together, we propose that H3K27me3 plays major roles in 
the maturation and proliferation of subsets of bipolar cells in postnatal retina, and 
that the H3K27 methylation of four related enzymes, which have different spa-
tio-temporal expression patterns, has distinct as well as redundant roles in retinal 
development.

84.4  Discussion

By examining temporal changes in the level of H3K4me3 at various genetic loci in 
developing retina, we found that the H3K4me3 level at rod photoreceptor-related 
loci increased constantly during retinal development. Previous work showed that 
H3K4me2 occupancy at the transcription start site of a group of genes, whose 
expression increased in parallel with rod cell maturation, was lost in rd1/rd1 retinas 
that lacked rods (Popova et al. 2012). Therefore, H3K4me2/3 modification plays 
critical roles in the up-regulation of rod photoreceptor-related genes in postnatal rod 
lineage cells. A remaining question is how such cell lineage-specific modification 
occurs during the commitment of retinal progenitor cells to a rod photoreceptor fate. 
Many enzymes are reported to methylate or demethylate H3K4 residues, and we 
examined the expression patterns of these enzymes using RNAseq data from CD73-
positive and -negative retinal fractions at various developmental stages, but none of 
the enzymes showed specific expression in rod photoreceptor lineage or other cells 
(data not shown). Therefore, we propose the involvement of adaptor proteins or 
other modifications leading to H3K4 methylation of a specific group of genetic loci.

The level of H3K4me3 at several retinal progenitor-specific loci was decreased 
in adult retina, while the H3K27me3 level at the loci was strongly increased. These 
results indicate that attenuation of the expression of progenitor-specific genes is 
achieved, at least in part, by low H3K4me3 and high H3K27me3 levels, suggesting 
that we must consider controlling epigenetic status when attempting to reprogram 
differentiated retinal cells into naïve cells. Taken together, these data suggest that 
histone modifications, especially H3K27me3, temporally and spatially regulate 
retinal cell subset differentiation during retinal development.
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Chapter 85
The Potential Role of Flavins and Retbindin  
in Retinal Function and Homeostasis

Ryan A. Kelley, Muayyad R. Al-Ubaidi and Muna I. Naash

Abstract Flavins are highly concentrated in the retina; likely because they are 
involved as cofactors in energy metabolism and photoreceptors have an extremely 
high metabolic rate. How this concentration is established is currently unknown, but 
photoreceptor specific proteins may exist that shuttle flavins to flavoproteins, which 
may also function in retinal neuron specific processes. It has been suggested due 
to sequence homology to folate receptors that retbindin could be binding flavins in 
the retina. Here we present a brief overview of flavins in the retina and initial find-
ings that suggest retbindin may be located in the photoreceptor layer where flavin 
acquisition from the RPE would occur.

Keywords Retbindin · Flavin · Flavoprotein · Retina · Photoreceptor

85.1  Introduction

Flavins are essential cofactors involved in a wide range of biological processes 
where they function as electron carriers in oxidation-reduction reactions (Fraaije 
and Mattevi 2000). This process is carried out by the addition of one or two elec-
trons and subsequent addition of hydrogen atoms to the isoalloxazine ring of ribo-
flavin (Horwitt 1967). It is this ability that allows FAD to mediate steps in oxidative 
phosphorylation and fatty acid oxidation (Pollard et al. 2003; Ghisla and Thorpe 
2004). These functional roles make this group of molecules integral to energy me-
tabolism in the cell.
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Given the high energy metabolism and the demand for poly unsaturated fatty 
acids in the photoreceptor cells (Stone et al. 1979; Alder et al. 1990) it is no surprise 
that the retina concentrates flavins. Batey et al. observed in the rabbit retina that 
flavins were present at a concentration of 51.9 ± 4.3 pmol/mg, while the blood con-
tained only 2.55 ± 0.32 pmol/mg (Batey and Eckhert 1991). This finding was further 
confirmed by the same authors in rat retina and blood with values of 48 ± 1.7 and 
2.57 ± 0.31 pmol/mg, respectively (Batey et al. 1992). Interestingly when the dietary 
intake of riboflavin was increased from the normal 3 mg/kg body weight to 30 mg/
kg the concentration present in the retina did not significantly increase (Batey and 
Eckhert 1991). Furthermore, this phenomenon also occurred when the animals were 
fed 300 mg/kg riboflavin diet. When the mice were fed riboflavin-free diets, the 
flavin concentration fell drastically to 28.3 ± 2.2 pmol/mg (Batey et al. 1992). Taken 
together these data suggest that there is a mechanism for flavin acquisition and 
concentration in the retina. The high levels of polyunsaturated fatty acids present 
in the outer segments, the high metabolic rate of the photoreceptor cells, and their 
positioning adjacent to the dietary source (the retinal pigment epithelium) make 
photoreceptors a prime candidate for the acquisition and utilization of flavins.

The importance of proper flavin concentration in the neural retina is exemplified 
by the detrimental effects of abnormal flavin levels on the photoreceptors. When 
dietary intake of riboflavin is significantly decreased (ariboflavinosis), affected in-
dividuals first experience an increased sensitivity to light and poor dim light vision 
(Kruse 1940; Goldsmith 1975). On the other hand, when dietary intake of riboflavin 
is increased, unbound flavins are photo-reduced and cause lipid peroxidation of 
outer segments, which subsequently causes photoreceptor degeneration (Eckhert 
et al. 1993). These results are not surprising when we consider the role that the citric 
acid cycle and fatty acid oxidation play in the photoreceptor cells. If these two pro-
cesses are perturbed the photoreceptor cells could have improper energy stores and 
an aberrant set of fatty acids, both of which are important for proper phototransduc-
tion and maintenance of the outer segment.

However, the high concentration of flavins in the retina and the detrimental effect 
of aberrant dietary riboflavin intake cannot be explained solely by metabolism and 
fatty acid oxidation. The neural retina must utilize flavins and/or flavoproteins in 
other ways that would account for the high concentration. In the neural retina a few 
different processes outside of metabolism could be utilizing this class of molecules. 
Flavins are utilized as cofactors in many isomerization reactions: such reactions are 
very important for retinoid and carotenoid metabolism and recycling (Olson 1964; 
Fraaije and Mattevi 2000; von Lintig et al. 2010). As an example, xanthine oxidase 
is a flavoprotein which contains two FAD molecules at its catalytic site (Fridovich 
and Handler 1958). Xanthine oxidase is responsible for the conversion of retinol to 
retinoic acid, and is localized to the cone outer segments (Fox and van Kuijk 1998; 
Taibi et al. 2001; Taibi and Nicotra 2007). While retinoic acid is mainly involved in 
the development of the eye, research has shown that it could be used as a transcrip-
tion activation signal in the adult mammalian retina (Wagner et al. 1997; Luo et al. 
2006). It has also been shown that cryptochromes are flavin associated proteins, 
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which are sensitive to blue light and have been implicated in the regulation of circa-
dian rhythm in mammals (Thompson et al. 2003; Ozturk et al. 2008).

Not much is known about how the retina acquires and concentrates flavins. In 
2002 Wistow et al. proposed the existence of a novel member of the folate receptor 
superfamily that is present exclusively in the neural retina (Wistow et al. 2002). 
This protein is now known as retbindin as it has 27 % sequence identity (over 135 
residues) to chicken riboflavin binding protein and belongs to the folate receptor 
superfamily (Wistow et al. 2002; Finn et al. 2014). Guo et al. further characterized 
the gene and protein to determine its localization in the retina (Guo et al. 2004). 
They presented that human and monkey retbindin message was expressed through-
out their respective retinas. Using immunoblots they found the protein to be highly 
expressed in the peripheral retina, while immunohistochemistry found the protein 
to be localized predominantly to cones (Guo et al. 2004). However, Bhattacharya 
et al. did not identify the human retbindin locus as a disease-causing gene in their 
patient cohort (Bhattacharya et al. 2003). Here we further explore the properties of 
retbindin and its role in the retina.

85.2  Materials and Methods

85.2.1  Animals

All experiments involving mice were approved by the local Institutional Animal 
Care and Use Committees and adhered to the recommendations in the Guide for 
the Care and Use of Laboratory Animals of the National Institute of Health and the 
Association for Research in Vision and Ophthalmology Resolution on the Use of 
Animals in Research. C57BL/6 J mice were purchased from the Jackson Laborato-
ries (Bar Harbor, ME, USA).

85.3  Immunoblots

Immunoblots were conducted as previously described (Ding et al. 2004). The 
following primary antibodies were used: Anti-retbindin antibody (1:500), Rds 
(1:1000) (Ding et al. 2004), and Na/K ATPase (1:5000) (mouse monoclonal, a5, 
developed by D.M. Fambrough was obtained from the Developmental Studies Hy-
bridoma Bank, created by the NICHD of the NIH and maintained at The University 
of Iowa, Department of Biology, Iowa City, IA 52242.). Goat-anti rabbit conjugated 
to horseradish peroxidase (1:25000) (KPL, Gaithersburg, MD, USA) was used as a 
secondary antibody. Blots were probed with an anti-actin HRP conjugated antibody 
as a loading control. Developmental immunoblots were completed in triplicate us-
ing three separate animals for each time point.
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85.3.1  Outer Segment Enrichment

Outer segment enriched preparations were prepared as previously described (Liu 
et al. 1997). Briefly, samples on a discontinuous sucrose gradient were centrifuged 
at 60,000 g for 15 min at 4 °C in a Sorvall M150 ultracentrifuge (Thermo Scientific, 
Waltham, MA, USA) equipped with a fixed angle rotor (Sorvall no. S55S-1009). 
The interface was collected and the pellet was resuspended in homogenization buf-
fer and centrifuged at 80,000 g for 30 min. The supernatant was layered onto the 
discontinuous gradient and centrifuged at 60,000 g for 15 min at 4 °C. The inter-
face was collected and added to the previous sample. This process was completed 
two more times and finally the pellet was resuspended in homogenization buffer. 
Samples were analyzed via immunoblot as described in the above section. Three 
separate preparations were made and analyzed in triplicate via immunoblot.

85.4  Retbindin as a Possible Flavin Binding Protein in 
the Neural Retina

Using an anti-peptide antibody against retbindin amino acids 115–131, we per-
formed a developmental immunoblot. This sample set was comprised of neural 
retinal extracts from post-natal day (P) 3, P11, P21, P30, P45, and P60 wild-type 
mice. Retbindin protein begins to appear at P3 (Fig. 85.1a) right after the peak 
of rod photoreceptor proliferation (Young 1984, 1985). Levels rise significantly at 
P11 and peak at P21 (Fig. 85.1a), which is concomitant with photoreceptor outer 
segment development and elongation, respectively (LaVail 1973). This develop-
mental expression seems to suggest that retbindin is associated with the rod outer 
segments (Kelley 2015). Indeed when we perform an outer segment preparation we 
find that retbindin is present predominantly within the outer segment enriched frac-
tion (Fig. 85.1b). However, retbindin is still present at a significant amount in the 
outer segment depleted fraction confirming our earlier observation that it is a that it 
is a photoreceptor-specific protein (Kelly 2015).

85.5  Conclusions

If retbindin is indeed functioning as some sort of riboflavin binding protein it would 
need to be positioned at the rod outer segments where metabolite exchange with the 
RPE occurs. However, it could be that other currently unidentified proteins are also 
responsible for this binding and retbindin functions as a carrier within the retina. 
Further examination of the retbindin protein needs to be conducted to determine if 
and how this protein is involved in flavin binding and/or transport. Understanding 
how flavins are concentrated and used in the retina is of high importance given 
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the active role of metabolism and lipid peroxidation during retinal development, 
homeostasis, and disease progression. Further understanding of flavin/flavoprotein 
mediated processes could lead us to exciting new understandings of retinal function 
and the treatment of retinal diseases.
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Chapter 86
Identification of Tyrosine O Sulfated Proteins  
in Cow Retina and the 661W Cell Line

Yogita Kanan and Muayyad R. Al-Ubaidi

Abstract Lack of tyrosine O Sulfation compromises both rod and cone electro-
retinographic responses emphasizing the importance of this post-translational 
modification for vision. To identify tyrosine sulfated proteins in retina, cow retinal 
lysates were subjected to immunoaffinity purification using an anti-sulfotyrosine 
antibody. The tyrosine sulfated proteins were eluted from the column using a sul-
fotyrosine pentapeptide and identified using mass spectrometry. Similarly, tyrosine 
sulfated proteins secreted by the 661W cell line were identified. Proteins identified 
were vitronectin, fibronectin, fibulin 2, nidogen, collagen V alpha 2, complement 
component 3 and C4 and fibrinogen beta. All proteins were subjected to analysis by 
‘Sulfinator’ to determine potential sulfated tyrosines.

Keywords Tyrosine sulfation · 661W · Retina · PSG2 · Posttranslational 
modification

86.1  Introduction

Tyrosine sulfation is a post-translational modification of proteins that is utilized 
in all ocular tissues (Kanan et al. 2009, 2012) and plays a very important role in 
vision (Sherry et al. 2010, 2012). Eliminating tyrosine sulfation reduces scotopic 
electroretinographic responses to 25 % of normal and photopic responses to 15 % 
of normal (Sherry et al. 2010). Besides these functional deficits, ultrastructural 
examination reveals rod outer segments abnormalities (Sherry et al. 2010). To 
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identify the tyrosine sulfated proteins that may be responsible for these effects, 
we immunoaffinity purified tyrosine sulfated proteins from neural retina using the 
anti-sulfotyrosine antibody PSG2 (Hoffhines et al. 2006). Column elution using a 
sulfated pentapeptide was followed by mass spectrometry. Since all sulfated pro-
teins are secreted, some of the tyrosine sulfated proteins produced by the cell line 
661W (Tan et al. 2004) were identified by fractionating conditioned media followed 
by western blotting with PSG2. Proteins that immuno-reacted were identified by 
in-gel digestion of excised bands followed by mass spectrometry.

86.2  Materials and Methods

86.2.1  Preparation of Bovine Retinal Lysates

Bovine eyes were obtained from Country Home Meat Slaughter House (Edmond, 
OK). Neural retinas were isolated and lysates were prepared in buffer A (25 mM 
MOPS, 100 mM NaCl, pH 7.5). Bradford assay was performed and lysate concen-
trations were adjusted to 4 mg/ml in buffer A prior to loading onto the column.

86.2.2  PSG2 Affinity Purification of Tyrosine O Sulfated 
Proteins

Ten mg of extracts were filtered using a 0.45 µm syringe filter (Millipore, Bil-
lerica, MA) and loaded onto the PSG2-Affi-Gel-10 HPLC column (Hoffhines et al. 
2009). Column was washed with buffer A, wash buffer 1 (25 mM MOPS, 200 mM 
NaCl), wash buffer 2 (25 mM MOPS, 400 mM NaCl) and eluted with elution buf-
fer (25 mM MOPS, 400 mM NaCl, 4 mM sulfated pentapeptide). Eluted samples 
were concentrated with acetone precipitation. The tyrosine-sulfated pentapeptide 
LDYSDF was synthesized by Bio-Synthesis Inc. (Lewisville, TX).

86.2.3  Mass Spectrometry

Column fractions were separated by SDS-PAGE to remove the sulfated pentapep-
tide and gel lane was cut into 1 mm slices and subjected to in-gel trypsin digestion, 
reduction and alkylation followed by LC MS/MS analysis (ABI MDS Sciex Qstar 
Elite, (Life Technologies, Grand Island, NY). MS/MS data were collected using 
ABI Analyst QS 2.0 software and submitted to MASCOT (Matrix Science) server 
for protein identification against the NCBInr protein database.
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86.3  Results

86.3.1  Tyrosine O Sulfated Proteins Identified  
by Immunoaffinity Purification

About 10 % of eluted proteins were run on a gel and immunoblotted with PSG2 
(Hoffhines et al. 2006). Identified proteins ranged from 250 kD to 37 kDa in size 
(Fig. 86.1a). The remaining eluate was acetone precipitated, fractionated by SDS-
PAGE and subjected to mass spectrometry. Since tyrosine sulfated proteins transit 
the secretory pathway (Moore et al. 2003), only membrane or secreted proteins 
were included in Table 86.1. Identified targets belonged to multiple protein fami-
lies such as serpins, extracellular matrix proteins and complement proteins. Since 
the major function of tyrosine sulfation is protein-protein interaction (Zhu et al. 
2011; Costagliola et al. 2002; Ramachandran et al. 1999), immunoaffinity may have 
pulled down non-tyrosine sulfated proteins that co-purified due to their direct or 
indirect interaction with tyrosine-sulfated proteins. Therefore, each of the identified 
proteins was subjected to prediction of sulfated tyrosines using the software ‘Sul-
finator’ (Monigatti et al. 2002). Seven of the proteins were predicted to be tyrosine 
sulfated (Table 86.2). Fibronectin and fibrinogen have previously been shown to 
be tyrosine sulfated (Liu and Suiko 1987; Hortin et al. 1986) and we have recently 
shown fibulin 2 and vitronectin to be tyrosine sulfated (Kanan et al. 2014a, 2014b). 
Complement component 3 and fibrinogen beta have not been previously shown 
to be tyrosine sulfated. Sulfinator did not predict tyrosine sulfated sites on retinol 
binding protein 3 (IRBP), pigment epithelium-derived factor (PEDF) precursor, 
collagen (type I, alpha 1), neuronal membrane glycoprotein M6-b, isoform 2 and 
fibrinogen alpha. The presence of these proteins suggests that they may be interact-
ing partners to some of the identified tyrosine sulfated proteins.

Fig. 86.1   Tyrosine sulfated proteins in cow retinal extracts and 661W cells. a Immunoaffinity 
column purification of tyrosine O sulfated proteins from cow retinal lysates. SDS-PAGE and coo-
massie blue staining of cow retinal lysates eluted from the column and western blotted with PSG2. 
b Tyrosine O sulfated proteins from cone derived cell line 661W. SDS-PAGE and coomassie blue 
staining of 661W conditioned media and western blotting with PSG2
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86.3.2  Tyrosine Sulfated Proteins in 661W-Conditioned Media

661W-conditioned media was SDS-PAGE fractionated and immunoblotted with 
PSG2 revealing two major proteins between 150–250 kDa (Fig. 86.1b). These 
proteins were excised and subjected to MALDI MS/MS analysis. The top band 
(marked by an asterisk, Table 86.3) was a mixture of three proteins and the bottom 

Table 86.2   List of potential sulfated tyrosines residues in cow retina as identified by Sulfinator. 
Citations are provided for the tyrosine sulfation sites that were experimentally identified
Protein Site Sequence Reference
Vitronectin 75 LPEDEYGFHDY Novel
Vitronectin 80 YGFHDYSDAQT Novel
Fibulin 2 197 DPERHYEDPYS Kanan et al. (2014a)
Fibulin 2 201 HYEDPYSYDQE Kanan et al. (2014a)
Fibulin 2 203 EDPYSYDQEVA
Complement component 3 1559 DDFDEYIMVIE Novel
Vitronectin 75 LPEDEYGFHDY Kanan et al. (2014b)
Vitronectin 80 YGFHDYSDAQT Kanan et al. (2014b)
Vitronectin 275 FKGNHYWEYVF Kanan et al. (2014b)
Vitronectin 278 NHYWEYVFQQQ Kanan et al. (2014b)
Fibrinogen beta 33 QFPTDYDEGQD Novel
Fibrinogen beta 259 ETSEMYLIQPE Novel
Fibrinogen beta 273 KPYRVYCDMK Novel
Fibronectin 877 QPGVQYNITIY Liu and Suiko (1987)
Fibronectin 882 YNITIYAVEEN Liu and Suiko (1987)
Complement C4 944 REEMVYELNPL Hortin et al. (1986)
Complement C4 1414 EAEEDYEDYEY Hortin et al. (1986)
Complement C4 1417 EDYEDYEYEDL Hortin et al. (1986)
Complement C4 1419 YEDYEYEDLLA Hortin et al. (1986)

Table 86.1   List of proteins identified in cow retinal lysates after immunoaffinity purification and 
mass spectrometric analysis. Eleven proteins were identified in cow retinal lysates by MALDI-
MS/MS analysis of PSG2 immunoaffinity column eluent

Protein Mascot score %Coverage
 1 Retinol binding protein 3 (IRBP) 1500 35
 2 Fibulin 2 1281 24
 3 Pigment epithelium-derived factor 

precursor
1002 39

 4 Complement component 3 925 22
 5 Vitronectin 766 35
 6 Fibrinogen beta 692 17
 7 Collagen, type I, alpha 1 563 35
 8 Fibronectin 472 7
 9 Complement C4 407 14
10 Neuronal membrane glycoprotein 

M6-b, isoform 2
318 16

11 Fibrinogen alpha 92 4
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band (denoted by #, Table 86.3) was identified as collagen, type V, alpha 2. Sulfina-
tor predicted all the four proteins to be tyrosine sulfated (Table 86.4), which has 
been experimentally confirmed (Liu and Suiko 1987; Kanan et al. 2014a; Paulsson 
et al. 1985; Fessler et al. 1986).

86.4  Discussion

We have previously shown the importance of tyrosine sulfation for vision (Sherry 
et al. 2010; Sherry et al. 2012) and here we identify some of the tyrosine sulfat-
ed proteins in ocular tissues. We subjected cow retinal extracts to immunoaffinity 
purification with PSG2. Eleven proteins were identified and seven of those were 
predicted to be tyrosine sulfated. The rest of the proteins may have been co-purified 
with their tyrosine sulfated interacting partners since tyrosine sulfation enhances 
protein-protein interactions (Zhu et al. 2011; Costagliola et al. 2002; Ramachandran 
et al. 1999). Of the identified proteins, fibulin 2 and vitronectin were also detected 
in cow RPE to be tyrosine O sulfated (Kanan et al. 2014a, b).

Since the retina is composed of six different classes of cells, identified proteins 
may belong to any and/or all cell types. Therefore, we used the cone derived cell 
line 661W to identify tyrosine sulfated proteins that may be cone specific. We iden-
tified fibronectin, fibulin 2, nidogen 2 and collagen V proteins from this cell line. 
These proteins were experimentally shown to be tyrosine sulfated (Liu and Suiko 
1987; Kanan et al. 2014a; Paulsson et al. 1985; Fessler et al. 1986).

Table 86.4   List of sulfated tyrosines residues in cone derived cell line, 661W. All four proteins 
have been experimentally proven to contain sulfated tyrosines and citations provided
Protein Site Sequence Reference
*Fibronectin 875 QPGVQYNITIY Liu and Suiko (1987)
*Fibronectin 880 YNITIYAVEEN Liu and Suiko (1987)
*Fibulin 2 192 DSERQYEDPYS Kanan et al. (2014a)
*Fibulin 2 196 YEDPYSYDQEV Kanan et al. (2014a)
*Fibulin 2 198 EDPYSYDQEVA Kanan Y et al. (2014a)
#Nidogen 2 94 PRETQYVDDDF Paulsson et al. (1985)
#Nidogen 2 317 EDSFHYYDENE Paulsson et al. (1985)
#Nidogen 2 318 DSFHYYDENEE Paulsson et al. (1985)
#Nidogen 2 327 EEDVEYPPVEP Paulsson et al. (1985)
#Collagen, type V, alpha 2 34 QENDEYDEEIA Fessler et al. (1986)
#Collagen, type V, alpha 2 1238 DIMGHYDENMP Fessler et al. (1986)

Protein Mascot score % Coverage
1.* Fibronectin 1019 11
2.* Fibulin 2 643 14
3.* Nidogen-2 408 7
4.# Collagen, type 

V, alpha 2
524 15

Table 86.3   List of proteins 
identified in 661W-conditioned 
media. Four proteins were 
identified from conditioned 
media of 661W cells following 
SDS-PAGE and MALDI-MS/
MS analysis
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This is the first report of the identification of tyrosine sulfated protein in the ret-
ina and in 661W cells. Further experiments will identify the cell type that produces 
these proteins in the retina. The function of tyrosine sulfation in these proteins and 
how it affects vision will only be revealed using ‘In-Vivo knock-in’ mutants that will 
have the tyrosine sulfated residues mutated to phenylalanines.
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Chapter 87
The Function of Arf-like Proteins ARL2  
and ARL3 in Photoreceptors

Christin Hanke-Gogokhia, Houbin Zhang, Jeanne M. Frederick  
and Wolfgang Baehr

Abstract Arf-like proteins (ARLs) are ubiquitously expressed small G proteins of 
the RAS superfamily. In photoreceptors, ARL2 and ARL3 participate in the traf-
ficking of lipidated membrane-associated proteins and colocalize in the inner seg-
ment with UNC119A and PDEδ. UNC119A and PDEδ are acyl- and prenyl-binding 
proteins, respectively, involved in trafficking of acylated (transducin-α subunit, 
nephrocystin NPHP3) and prenylated proteins (GRK1, PDE6). Germline Arl3 
knockout mice do not survive beyond postnatal day 21 and display ciliary defects 
in multiple organs (kidney, liver and pancreas) as well as retinal degeneration. Con-
ditional knockouts will be necessary to delineate mechanisms of protein transport 
in retina disease.
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87.1  Introduction

Arf-like (ARL) proteins were discovered in Drosophila more than 20 years ago. To 
date, 16 genes encoding ARL proteins (ARL1–16) have been identified in the mam-
malian genome. ARL proteins are 20 kDa protein with 40–60 % sequence similarity 
and function as key molecular switches by exchanging GDP with GTP catalyzed 
by a Guanine nucleotide Exchange Factor (GEF). Importantly, ARL proteins func-
tion in various membrane- and cytoskeleton-associated cellular processes, which 
are critical for cell homeostasis. ARL proteins contribute to the localization and 
activity of other cellular proteins and downstream signaling pathways. Those in-
teractants include posttranslational modifiers, guanine nucleotide exchange factors 
(GEFs), GTPase-activating proteins (GAPs) and effectors (PDEδ, UNC119A and 
UNC119B) that bind specifically to the GTP-bound conformation.

87.2  ARL1-ARL3

ARL proteins, discovered in Drosophila more than 20 years ago (Tamkun et al. 
1991), are 20 kDa protein with 40–60 % sequence similarity (reviewed in Burd et al. 
2004; Gillingham and Munro 2007). ARL1-3 (Fig. 87.1) are the best-characterized 
of the 16 ARL genes (ARL1-16) discovered to date in the mammalian genome. 

Fig.  87.1   Sequence alignment of ARL1-ARL3. Sequences of ARL1, ARL2 and ARL3 share 
~ 78 % similarity. The P-loop involved in GDP/GTP binding is boxed. Blue bars denote switch 
1 and switch 2 (areas of conformational change upon GDP/GTP exchange). The region between 
switches 1 and 2 (interswitch) of ARL2 and ARL3 is involved in binding of lipidated proteins 
(PDEδ, RP2, and UNC119 paralogs). Sites for dominant-inactive (T30, highlighted in green) and 
dominant-active (Q71, magenta) are conserved among ARL proteins 1-3
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Upon exchange of GDP by GTP, like other GTPases, ARLs change conformation 
affecting N-terminal regions termed Switch 1 and Switch 2. ARL1 is closely re-
lated to Arf1 (the human protein shares 76 % similarity) and shows some residual 
Arf activity (ADP-ribosylation of stimulatory G-proteins in the presence of cholera 
toxin) (Hong et al. 1998). Yeast and human ARL1 are N-myristoylated (Boman 
et al. 1999). In Drosophila, deletion of ARL1 was embryonically lethal demonstrat-
ing an essential function (Tamkun et al. 1991). ARL1 is found at the Golgi complex 
and its active conformation recruits various effectors to the Golgi, especially GRIP-
domain-containing coiled-coil proteins. Depletion of mammalian ARL1 results in 
defective protein transport between endosomes and the Golgi complex, but its pre-
cise role is unknown (Lu et al. 2005; Graham 2013).

Mammalian ARL2 and ARL3 were cloned by PCR with degenerate primers 
(Clark et al. 1993; Cavenagh et al. 1994). In contrast to ARL1, ARL2 and ARL3 
have no Arf activity and are not substrates for N-myristoyl transferase, most likely 
due to interruption of the N-myristoylation motif (Fig. 87.1) (Cavenagh et al. 1994; 
Ismail et al. 2012). ARL3 localizes predominantly to connecting cilia and inner seg-
ments of human (Grayson et al. 2002) and mouse photoreceptors where it colocal-
izes with its effectors, UNC119A and PDEδ. ARL2 has nucleotide affinities in the 
sub-μM range, while ARL3 has only a weak affinity for GTP (48 μM). ARL3 has 
very slow intrinsic GTPase-activity of 0.000012/sec, and RP2 was identified as a 
GAP for ARL3-GTP (Veltel et al. 2008). The active conformation of ARL3 is found 
to be both soluble and membrane-associated due to weak affinity to membrane 
(Wright et al. 2011). The ARL3-specific GEF stimulating GDP-GTP exchange is 
unknown.

87.3  ARL2/ARL3 Interacting Proteins

ARL2 interacts with the tubulin-specific chaperone, cofactor D, which is involved 
in αβ-tubulin heterodimer assembly (Bhamidipati et al. 2000). Other interactants 
are the ubiquitously expressed Binder of ARL2 (BART), also called ARL2BP (Da-
vidson et al. 2013) forming a soluble complex (Sharer and Kahn 1999), PDEδ (see 
below), protein phosphatase 2A (PP2A) (Shern et al. 2003) and UNC119 isoforms. 
ARL2BP mutations have been linked to recessive retinitis pigmentosa (Davidson 
et al. 2013). PDE6D (encoding PDEδ) null mutations in human cause a severe syn-
dromic ciliopathy (Joubert syndrome) (Thomas et al. 2014) and in mouse, a reces-
sive cone-rod dystrophy (Zhang et al. 2007). A heterozygous stop codon (K57ter) 
associated with dominant cone-rod dystrophy was identified in the human UN-
C119A gene (Kobayashi et al. 2000). Mutant ARL2 or ARL3 genes have not been 
linked to human disease so far.
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87.4   ARL2-PDEδ Interactions

ARL2 and ARL3 interact with PDEδ and the complex ARL2/PDEδ was cocrystal-
lized (Hanzal-Bayer et al. 2002). Structure of the PDEδ and ARL2-GTP complex was 
determined at 2.3 Å resolution. The PDEδ structure exhibits an  immunoglobulin-like 
β-sandwich fold with two β-sheets forming a hydrophobic pocket to accommodate 
lipids. The interface between ARL2-GTP and PDEδ derives from the interaction of 
β-sheets involving the interswitch region of ARL2 and β7 of PDEδ. The β-sandwich 
structure can accommodate farnesyl (C15) and geranylgeranyl (C20) lipids, but not 
fatty acids. The β-sheet structure of PDEδ is closely related to RhoGDI (Hoffman 
et al. 2000) and UNC119A (Zhang et al. 2011) although the sequence similarities 
among these polypeptides are relatively low. Photoreceptor PDEδ interacts with 
prenyl side chains of GRK1, PDE6 catalytic subunits and transducin-γ to form sol-
uble complexes. ARL3-GTP is thought to function as a GDI Displacement Factor 
(GDF) to unload prenylated cargo to the destination membrane (Ismail et al. 2012). 
Binding of ARL2- or ARL3-GTP to the soluble complex of PDEδ-GRK1 constricts 
the hydrophobic pocket, thereby expelling the prenyl side chain and delivering car-
go (GRK1) to its target membrane. This mechanism is supported by deletion of the 
Pde6d gene in mouse in which trafficking of rhodopsin kinase (GRK1), and rod and 
cone PDE6 subunits, from the inner to the outer segment is impeded (Zhang et al. 
2007).

87.5  The ARL3-RP2 Complex

A truncated (residues 17-177) version of ARL3 with GMPPNP bound was cocrys-
tallized with RP2 (Kuhnel et al. 2006). ARL3 forms an interface with RP2 through 
the P-loop, and switch regions. RP2 structure shows an N-terminal, right-handed 
β-helix consisting of three stacked β-sheets (Veltel et al. 2008); the β-helix inter-
acts with ARL3 providing the GTPase active site. Interaction with RP2 accelerates 
GTPase activity more 90,000-fold under saturating conditions and 1,400-fold with 
catalytic amounts of RP2 (Veltel et al. 2008).

87.6  The ARL3-UNC119 Complex

Truncated (residues 17-178) ARL2 and full-length ARL3-GMPPNP were co-crys-
tallized with UNC119A (Ismail et al. 2012). The structures show that switch 1, 
interswitch and switch 2 regions of both ARLs interact with UNC119A β-strands. 
Both ARL3-GTP and ARL2-GTP bind to UNC119A with similar affinities, but only 
ARL3-GTP releases myristoylated cargo (nephrocystin NPHP3 or transducin-α) 
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from UNC119A (Ismail et al. 2012). The mechanism of cargo release from UN-
C119A differs from that of the ARL2/PDEδ/Rheb ternary complex. Binding of 
ARL-GTP to PDEδ alters the open conformation of PDEδ to a closed conforma-
tion, thereby squeezing the prenyl side chain and extruding the prenylated protein 
to the target membrane. Binding of ARL3-GTP to UNC119A, by contrast, widens 
the binding pocket to release the myristoyl side chain.

Release of myristoylated transducin-α from its binding partner UNC119A is 
relevant In-Vivo. Transducin-α translocates to the rod inner segment in constant 
 daylight, a mechanism regulating light adaptation. During dark adaptation, UN-
C119A serves as a chaperone that mediates return of transducin-α to the rod outer 
segment (Zhang et al. 2011). Release of transducin-α to target membranes is likely 
mediated by the GDF ARL3-GTP. Taken together, UNC119, PDEδ and RP2 may 
cooperate in a network as effectors of ARL3-GTP in regulating the assembly and 
targeting of a subset of lipidated proteins.

87.7  ARL3 Knockout

Germline Arl3 knockout mice were generated to study the function ARL3 In-Vivo 
(Schrick et al. 2006). Absence of ARL3 caused a syndromic ciliopathy with mul-
tiple organ defects and knockout mice survived no longer than 3 weeks. Germline 
Arl3 knockout mice were born at a sub-Mendelian ratio and showed ciliary dys-
function in the kidney, liver and pancreas as well as photoreceptor degeneration. 
Rod outer segments were absent in the Arl3-/- mouse retinas reflecting defects in the 
trafficking of phototransduction proteins. ARL3 is also essential for spermiogenesis 
in mouse where ARL3 functions as a manchette-associated protein (Qi et al. 2013). 
Although the Arl3 gene is not yet associated with human ciliopathy, other ARL fam-
ily members (ARL6 and ARL13B) are known to be mutated in Bardet-Biedl and 
Joubert Syndromes (Wiens et al. 2010; Humbert et al. 2012; Cantagrel et al. 2008).

87.8  Future Directions

To further study photoreceptor protein trafficking, we generated ARL3 condition-
al knockout mice. We have generated Arl3f/f;iCre75+and Arl3f/f;Six3Cre+ mice in 
which ARL3 is depleted in rod photoreceptors and the entire retina, respectively, 
with the expectation of observing prenylated protein mislocalization, rapid photo-
receptor degeneration and blindness. Embryonic deletion of ARL3 in the retina is 
predicted to produce more serious effects, including degeneration of inner retina 
neurons.



660 C. Hanke-Gogokhia et al.

References

Bhamidipati A, Lewis SA, Cowan NJ (2000) ADP ribosylation factor-like protein 2 (Arl2) regulates 
the interaction of tubulin-folding cofactor D with native tubulin. J Cell Biol 149:1087–1096

Boman AL, Kuai J, Zhu X et al (1999) Arf proteins bind to mitotic kinesin-like protein 1 (MKLP1) 
in a GTP-dependent fashion. Cell Motil Cytoskeleton 44:119–132

Burd CG, Strochlic TI, Gangi Setty SR (2004) Arf-like GTPases: not so Arf-like after all. Trends 
Cell Biol 14:687–694

Cantagrel V, Silhavy JL, Bielas SL et al (2008) Mutations in the cilia gene ARL13B lead to the 
classical form of Joubert syndrome. Am J Hum Genet 83:170–179

Cavenagh MM, Breiner M, Schurmann A et al (1994) ADP-ribosylation factor (ARF)-like 3, a new 
member of the ARF family of GTP-binding proteins cloned from human and rat tissues. J Biol 
Chem 269:18937–18942

Clark J, Moore L, Krasinskas A et al (1993) Selective amplification of additional members of the 
ADP-ribosylation factor (ARF) family: cloning of additional human and Drosophila ARF-like 
genes. Proc Natl Acad Sci U S A 90:8952–8956

Davidson AE, Schwarz N, Zelinger L et al (2013) Mutations in ARL2BP, encoding ADP-ribosyl-
ation-factor-like 2 binding protein, cause autosomal-recessive retinitis pigmentosa. Am J Hum 
Genet 93:321–329

Gillingham AK, Munro S (2007) The small G proteins of the Arf family and their regulators. Annu 
Rev Cell Dev Biol 23:579–611

Graham TR (2013) Arl1 gets into the membrane remodeling business with a flippase and ArfGEF. 
Proc Natl Acad Sci U S A 110:2691–2692

Grayson C, Bartolini F, Chapple JP et al (2002) Localization in the human retina of the X-linked 
retinitis pigmentosa protein RP2, its homologue cofactor C and the RP2 interacting protein 
Arl3. Hum Mol Genet 11:3065–3074

Hanzal-Bayer M, Renault L, Roversi P et al (2002) The complex of Arl2-GTP and PDE delta: from 
structure to function. EMBO J 21:2095–2106

Hoffman GR, Nassar N, Cerione RA (2000) Structure of the Rho family GTP-binding protein 
Cdc42 in complex with the multifunctional regulator RhoGDI. Cell 100:345–356

Hong JX, Lee FJ, Patton WA et al (1998) Phospholipid- and GTP-dependent activation of cholera 
toxin and phospholipase D by human ADP-ribosylation factor-like protein 1 (HARL1). J Biol 
Chem 273:15872–15876

Humbert MC, Weihbrecht K, Searby CC et al (2012) ARL13B, PDE6D, and CEP164 form a 
functional network for INPP5E ciliary targeting. Proc Natl Acad Sci U S A 109:19691–19696

Ismail SA, Chen YX, Miertzschke M et al (2012) Structural basis for Arl3-specific release of my-
ristoylated ciliary cargo from UNC119. EMBO J 31:4085–4094

Kobayashi A, Higashide T, Hamasaki D et al (2000) HRG4 (UNC119) mutation found in cone-
rod dystrophy causes retinal degeneration in a transgenic model. Invest Ophthalmol Vis Sci 
41:3268–3277

Kuhnel K, Veltel S, Schlichting I, Wittinghofer A (2006) Crystal structure of the human retinitis 
pigmentosa 2 protein and its interaction with Arl3. Structure 14:367–378

Lu L, Tai G, Hong W (2005) Interaction of Arl1 GTPase with the GRIP domain of Golgin-245 
as assessed by GST (glutathione-S-transferase) pull-down experiments. Methods Enzymol 
404:432–441

Qi Y, Jiang M, Yuan Y et al (2013) ADP-ribosylation factor-like 3, a manchette-associated protein, 
is essential for mouse spermiogenesis. Mol Hum Reprod 19:327–335

Schrick JJ, Vogel P, Abuin A et al (2006) ADP-ribosylation factor-like 3 is involved in kidney and 
photoreceptor development. Am J Pathol 168:1288–1298

Sharer JD, Kahn RA (1999) The ARF-like 2 (ARL2)-binding protein, BART. Purification, cloning, 
and initial characterization. J Biol Chem 274:27553–27561



87 The Function of Arf-like Proteins ARL2 and ARL3 in Photoreceptors 661

Shern JF, Sharer JD, Pallas DC et al (2003) Cytosolic Arl2 is complexed with cofactor D and pro-
tein phosphatase 2A. J Biol Chem 278:40829–40836

Tamkun JW, Kahn RA, Kissinger M et al (1991) The arflike gene encodes an essential GTP-
binding protein in Drosophila. Proc Natl Acad Sci U S A 88:3120–3124

Thomas S, Wright KJ, Le CS et al (2014) A homozygous PDE6D mutation in Joubert syndrome 
impairs targeting of farnesylated INPP5E protein to the primary cilium. Hum Mutat 35:137–146

Veltel S, Gasper R, Eisenacher E, Wittinghofer A (2008) The retinitis pigmentosa 2 gene product is 
a GTPase-activating protein for Arf-like 3. Nat Struct Mol Biol 15:373–380

Wiens CJ, Tong Y, Esmail MA et al (2010) Bardet-Biedl syndrome-associated small GTPase 
ARL6 (BBS3) functions at or near the ciliary gate and modulates Wnt signaling. J Biol Chem 
285:16218–16230

Wright KJ, Baye LM, Olivier-Mason A et al (2011) An ARL3-UNC119-RP2 GTPase cycle targets 
myristoylated NPHP3 to the primary cilium. Genes Dev 25:2347–2360

Zhang H, Li S, Doan T et al (2007) Deletion of PrBP/{delta} impedes transport of GRK1 and PDE6 
catalytic subunits to photoreceptor outer segments. Proc Natl Acad Sci U S A 104:8857–8862

Zhang H, Constantine R, Vorobiev V et al (2011) UNC119 regulates G protein trafficking in sen-
sory neurons. Nature Neuroscience 14:874–880



663© Springer International Publishing Switzerland 2016 
C. Bowes Rickman et al. (eds.), Retinal Degenerative Diseases, Advances in 
Experimental Medicine and Biology 854, DOI 10.1007/978-3-319-17121-0_88

C. M. Craft ()
Departments of Ophthalmology and Cell & Neurobiology, USC Eye Institute, 
Keck School of Medicine of the University of Southern California, Institute 
for Genetic Medicine, 2250 Alcazar Street, CSC 135H, Los Angeles,  
CA 90089-9075, USA 
e-mail: eyesightresearch@hotmail.com

J. D. Deming
Departments of Ophthalmology, USC Eye Institute, Keck School of Medicine 
of the University of Southern California, Institute for Genetic Medicine, 2250 
Alcazar St CSC 215, Los Angeles, CA 90033, USA
e-mail: jddeming@usc.edu

K. Van Craenenbroeck
University of Ghent, Proeftuinstraat 86, Gent 9000, Belgium
e-mail: kathleen.vancraenenbroeck@ugent.be

Y. S. Eom · E.-J. Lee
Biomedical Engineering, Viterbi School of Engineering, University of Southern California, 
1042 Downey way, DRB 140, Los Angeles, CA 90007, USA
e-mail: yuneom@usc.edu

E.-J. Lee
e-mail: eunjinl@usc.edu

Chapter 88
Characterization of Antibodies to Identify 
Cellular Expression of Dopamine Receptor 4

Janise D. Deming, Kathleen Van Craenenbroeck, Yun Sung Eom, 
Eun-Jin Lee and Cheryl Mae Craft

Abstract The dopamine receptor D4 (DRD4) plays an important role in vision. 
In order to study the DRD4 expression in vivo, it is important to have antibodies 
that are specific for DRD4 for both immunoblot and immunohistochemical (IHC) 
applications. In this study, six antibodies raised against DRD4 peptides were tested 
in vitro, using transfected mammalian cells, and in vivo, using mouse retinas. Three 
Santa Cruz (SC) antibodies, D-16, N-20, and R-20, were successful in IHC of trans-
fected DRD4; however, N-20 was the only one effective on immunoblot analysis 
in DRD4 transfected cells and IHC of mouse retinal sections, while R-20, 2B9, and 
Antibody Verify AAS63631C were non-specific or below detection.

Keywords Dopamine receptor D4 · Dopamine · Antibody · Transfection · HEK · 
Immunoblot · Retina · Immunohistochemistry
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Abbreviations

DRD4 Dopamine receptor D4
DRD1 Dopamine receptor D1
IHC Immunohistochemistry
SC Santa cruz biotechnologies
GPCR G-protein-coupled receptor
GFP Green fluorescent protein
MW Molecular weight
CT Circadian time
SDS Sodium dodecyl sulfate
PAGE Polyacrylamide gel electrophoresis
HRP Horseradish peroxidase
OCT Optimal cutting temperature
PFA Paraformaldehyde
PBS Phosphate–buffered solution
GCL Ganglion cell layer
IS Inner segment
OS Outer segment
ONL Outer nuclear layer
OPL Outer plexiform layer
INL Inner nuclear layer
IPL Inner plexiform layer
EC Extracellular
IC Intracellular
TM Transmembrane

88.1  Introduction

Dopamine plays an important but complex role in regulating vertebrate vision. It is 
synthesized in a subpopulation of amacrine cells and diffuses throughout the retinal 
layers to activate five types of dopaminergic G-protein-coupled receptors (GPCRs) 
(reviewed in Missale et al. 1998). In mice and zebrafish, the dopamine receptors 
DRD1 and DRD4 contribute to normal vision. In genetically engineered DRD1 and 
DRD2 null mice, physiological and behavioral responses were tested with electro-
retinography and optokinetic tracking, and these studies concluded that DRD1 and 
DRD2 play an important role in contrast sensitivity and visual acuity (Nir et al. 
2002; Jackson et al. 2012). Other studies revealed these GPCRs regulate retinal 
clock genes (Hwang et al. 2013), phosphorylation levels in photoreceptors (Poz-
deyev et al. 2008), and the opening and closing of gap junctions between retinal 
neurons (Hu et al. 2010; Li et al. 2013).

Tools to study DRD1 and DRD4 have been developed including GPCR-specific 
agonists and antagonists and even a transgenic mouse expressing green fluorescent 
protein (GFP)-tagged DRD4 (Gong et al. 2003), which are helpful but limited in 
elucidating receptor function. In addition, in situ hybridization studies have clearly 
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localized Drd4 mRNA in photoreceptors, the inner nuclear layer, and a subpopula-
tion of ganglion cells (Klitten et al. 2008; Li et al. 2013); however, the cellular 
localization and amount of endogenous DRD4 protein are still unclear because of a 
lack of specific antibodies.

Although many DRD4 antibodies are commercially available, only limited pub-
lished data are available on these reagents. It is difficult to produce good antibod-
ies against GPCRs, which are 7-transmembrane pass cell surface receptors. With 
five unique, but closely related, dopamine receptors, the development is even more 
challenging. Previous characterizations of these antibodies have yielded confusing 
results, including varying molecular weights (MW) of DRD4 protein on denaturing 
acrylamide gels followed by immunoblot (Gomez et al. 2002; Bavithra et al. 2012), 
and some with no MW listed (Chu et al. 2004; Li et al. 2007; Strell et al. 2009; Gon-
zalez et al. 2012). Doubt has been cast on whether any of these DRD4 antibodies 
should be trusted (Bodei et al. 2009).

A reliable, specific antibody recognizing DRD4 to study the localization of the 
receptor, both in the retina and in the brain, is essential. Furthermore, it is a waste 
of time and resources to test multiple commercially available antibodies only to dis-
cover that they are not DRD4 specific. In this study, we characterized six anti-DRD4 
antibodies using immunoblot analysis and IHC, both with human DRD4 overex-
pressed in transfected HEK cells and with mouse retinas from C57Bl/6J and Drd4-/-.

88.2  Materials and Methods

88.2.1  Mice

All animals were treated and protocols were approved by USC IACUC. Breed-
ers for C57BL/6J and Drd4-/- (strain B6.129P2-Drd4tm1Dkg/J) mice were obtained 
from Jackson Laboratory (Bar Harbor, MN). They were bred and their offspring 
were reared in 12 h light/12 h dark cycling light conditions. Mice were sacrificed in 
the dark at circadian time (CT) 0, before lights were turned on. Eyes were enucle-
ated and eyecups were processed for IHC or retinas were stored at − 80 °C for im-
munoblot analysis.

88.2.2  HEK293 Cell Culture and Transfection

HEK293T/17 (HEK293T) cells were purchased from ATCC (Manassas, VA) and 
maintained at 37 °C, 5 % CO2 and used for experiments below 15 passages. For 
transient transfection, HEK293T were transfected with FuGENE 6 transfection re-
agent (Promega) for 48 h before being harvested for analysis.
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88.2.3  DRD4 Expression Plasmids

Each mammalian expression plasmids encodes a common variant of human DRD4, 
along with an HA- or FLAG-tag for labeling and verification and were previously 
characterized (pcDNA3-HA-DRD4.4, and pFLAG-DRD4.4) (Oak et al. 2000; Van 
Craenenbroeck et al. 2005).

88.2.4  Anti-DRD4 Antibodies

Six anti-DRD4 antibodies raised against slightly different regions of rat or human 
DRD4 protein were tested: five from Santa Cruz Biotechnologies (2B9, D-16, 
H-50, N-20, R-20) and one from Antibody Verify (AAS63631C).

88.2.5  Immunoblot Analysis

Retinas or frozen cell pellets were homogenized in 50 mM Tris, pH 7.6 plus 
cOmplete protease inhibitor cocktail (Roche), sonicated to break apart DNA and 
denatured with SDS, then subjected to 10 % SDS-polyacrylamide gel electropho-
resis (PAGE) and transferred to PVDF membranes (Millipore). Anti-DRD4 (1:100 
dilution) or anti-HA (1:1000 dilution, Cell Signaling) primary antibodies were 
used in conjunction with HRP-conjugated secondary antibodies (1:10,000 dilution, 
Bio-Rad or Santa Cruz). Hi-Blot Chemiluminescence kit (Denville) was used for 
detection with film.

88.2.6  Immunohistochemistry (IHC)

Mouse retinas: Mouse eyes were enucleated and immediately fixed using published 
methods (Zhu et al. 2002). They were fixed in 4 % paraformaldehyde (PFA) for 
10 min. Eyes were cut into 20 µm sections. Retina sections were blocked with nor-
mal donkey serum in PBS, and antibodies were diluted in PBS.

HEK 293: Cells were seeded onto glass slides in multi-well plates and given 24 h 
to adhere. Cells were transfected (see above) and 48 h later rinsed with PBS and 
fixed in 4 % PFA. After fixation, cells were either blocked with Blotto (3 % Milk, 
1 mM CaCl2 in TBS), or permeabilized with Blotto plus 0.01 % Triton-X. Antibod-
ies were diluted in Blotto.

Retinas and transfected cells were labeled with anti-DRD4 primary antibodies 
(1:50 dilution, SC antibodies; 1:100, Antibody Verify; 1:500 dilution anti-HA or 
anti-FLAG for transfected cells). After rinsing with PBS, cells were labeled with 
fluorescent secondary antibodies (1:500, anti-goat, anti-rabbit, or anti-mouse Alexa-
Fluor 488 and anti-rabbit or anti-mouse AlexaFluor 568), mounted with Vectashield 
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mounting medium with DAPI (Vector Labs), and visualized using confocal fluores-
cent microscopy. (Zeiss Laser Scanning Microscope 710)

88.3  Results

88.3.1  Immunohistochemistry: Transfected Cells

Three SC antibodies, D-16, N-20, and H-50, labeled the DRD4-transfected cells 
brightly and did not label non-transfected cells (Fig. 88.1). The anti-DRD4 signal 
was identical to the anti-FLAG signal and the cells were labeled both with and with-
out permeabilization, indicating an extracellular binding site (data not shown). The 
other three antibodies, R-20, 2B9, and AAS63631C, had little overlap with FLAG 
signal, indicating that the anti-DRD4 signal was not specific to the tagged protein. 
Interestingly, there was no signal in non-transfected cells for these antibodies.

88.3.2  Immunoblots

To test specificity of each anti-DRD4 antibody on immunoblot analysis, C57BL/6J 
and Drd4-/- total retinal proteins were electrophoresed simultaneously on 10 % 
SDS-PAGE, along with HEK293T (untransfected) and HEK239T transfected with 

Fig. 88.1   IHC of HEK 293T with or without FLAG-DRD4 transfection. N-20, D-16, and H-50 
show bright DRD4 staining that overlaps with anti-FLAG staining. No detectable signal was 
observed in the DRD4 untransfected cells or with 2B9 or AAS-63631C
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HA-DRD4.4. The MW of human DRD4.4 is calculated to be 43.1 kiloDaltons 
(kDa), while mouse DRD4 is 41.5 kDa. Out of six antibodies, only N-20 recognized 
human DRD4, evidenced by two bands in the lane with transfected HEK293T that 
were not in the lane with untransfected HEK293T although their MW was higher 
than expected (45 and 48 kDa) (Fig. 88.2a). The bands were verified to be HA-
DRD4 by their consistency with the bands identified by the anti-HA antibody (data 
not shown). In contrast, no distinct bands were observed in the control retina lane 
that were not in the Drd4-/- samples. There were multiple non-specific bands for all 
of the antibodies (data not shown).

88.3.3  Immunohistochemistry: Mouse Retinas

All antibodies were tested on frozen sections of control and Drd4-/- mouse retinas 
collected at CT0, when DRD4 mRNA expression is highest (Klitten et al., 2008; 
Kim et al., 2010). For all but the N-20 antibody, there was no difference between 
the signal intensity of control versus knockout samples (data not shown). The N-20 
antibody showed a significant signal in the ganglion cell layer of the control retina 
that was not present in the Drd4-/- mouse retina (Fig. 88.2a). A small increase in the 
inner segments of the photoreceptor layer in control compared to Drd4-/- was seen; 
however, no differences in the outer segment layer (OS), outer nuclear layer (ONL), 
outer plexiform layer (OPL), inner nuclear layer (INL), or inner plexiform layer 
(IPL) were observed.

Fig. 88.2   a Immunoblot analysis of N-20 anti-DRD4 antibody labels DRD4 in transfected cells 
(45 and 48 kDa), as evidenced by the two missing immunoreactive proteins ( arrowheads) in 
untransfected lane, which overlaps with the anti-HA antibody bands (data not shown). No proteins 
were observed in control retina that are not present in Drd4-/-, indicating that N-20 does not rec-
ognize mouse retina DRD4 on immunoblot. b IHC of control versus Drd4-/- retina sections using 
N-20 ( green) control retina compared to Drd4-/- displays specific labeling in ganglion cell layer 
( GCL) ( arrows) and in photoreceptor inner segment layer ( IS) ( arrowheads)
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88.4  Discussion

These data collectively demonstrate that only one antibody candidate, N-20, tested 
for both mouse and human DRD4, was effective in specific labeling of control 
retina compared to Drd4-/- and immunoblot labeling of human DRD4 in HEK293T 
cells. The three antibodies D-16, H-50, and N-20 all show immunological labeling 
of DRD4-transfected cells using IHC.

It is unclear why these antibodies do not reveal an obvious retinal difference 
between control mice and Drd4-/-. This may be because, as a previous study sug-
gested, anti-DRD4 antibodies may recognize other dopamine receptors as well (Bo-
dei et al. 2009). If this is the case, DRD4 expression in the retina is not high enough, 
even at its mRNA observed peak at CT0, to show significant signal above the other 
four dopamine receptors. Based on non-specific bands in immunoblot analysis, 
the anti-DRD4 antibodies may also recognize unrelated proteins of various sizes, 
additionally clouding the signal of DRD4.

The differences between the in vitro and in vivo studies may also be due to 
sequence differences. Most of the antibodies were raised against peptides based on 
the sequence of human DRD4, not mouse. Since the transfected cells were over-
expressing human DRD4, small differences in the peptide sequence may make the 
antibodies specific for human, and not mouse, DRD4. The only exception is R-20, 
which was raised against a rat DRD4 peptide. Rat DRD4 is similar to the mouse se-
quence with 94 % identity between mouse DRD4 and rat DRD4, compared to 73 % 
for mouse and human. This may explain why R-20 did not recognize the human 
DRD4 in transfected cells.

Overall, no antibody was able to give clear results in all applications, but N-20 is 
the best choice for future studies of DRD4 in mouse retinas and transfected human 
cells (Deming et al. 2015).
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Chapter 89
A Possible Role of Neuroglobin in the Retina 
After Optic Nerve Injury: A Comparative Study 
of Zebrafish and Mouse Retina

Kayo Sugitani, Yoshiki Koriyama, Kazuhiro Ogai, Keisuke Wakasugi and 
Satoru Kato

Abstract Neuroglobin (Ngb) is a new member of the family of heme proteins and 
is specifically expressed in neurons of the central and peripheral nervous systems in 
all vertebrates. In particular, the retina has a 100-fold higher concentration of Ngb 
than do other nervous tissues. The role of Ngb in the retina is yet to be clarified. 
Therefore, to understand the functional role of Ngb in the retina after optic nerve 
injury (ONI), we used two types of retina, from zebrafish and mice, which have 
permissible and non-permissible capacity for nerve regeneration after ONI, respec-
tively. After ONI, the Ngb protein in zebrafish was upregulated in the amacrine 
cells within 3 days, whereas in the mouse retina, Ngb was downregulated in the 
retinal ganglion cells (RGCs) within 3 days. Zebrafish Ngb (z-Ngb) significantly 
enhanced neurite outgrowth in retinal explant culture. According to these results, 
we designed an overexpression experiment with the mouse Ngb (m-Ngb) gene in 
RGC-5 cells (retinal precursor cells). The excess of m-Ngb actually rescued RGC-5 
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cells under hypoxic conditions and significantly enhanced neurite outgrowth in cell 
culture. These data suggest that mammalian Ngb has positive neuroprotective and 
neuritogenic effects that induce nerve regeneration after ONI.

Keywords Neuroglobin · Optic nerve regeneration · Neurite outgrowth · Neurite 
sprouting · Neuroprotection · Retina · Cell viability · Hypoxic damage · Zebrafish · 
Mouse

89.1  Introduction

In 2000, neuroglobin (Ngb) was discovered as a new member of the globin superfamily 
predominantly expressed in neurons (Burmester et al. 2000) and it contains hexaco-
ordinated heme Fe atoms. Mammalian Ngb has shown high affinity for O2 and might 
be involved in the alleviation of various types of oxidative stresses, elimination of 
reactive oxygen species (Li et al. 2008, 2011), and in preservation of mitochondrial 
function via prevention of apoptosis (Brittain et al. 2010; Raychaudhuri et al. 2010). 
Furthermore, Wakasugi et al. (2005) proposed a new function of Ngb as a regula-
tor protein in signal transduction where it inhibits the dissociation of GDP with the 
α-subunit of a G protein. It is well known that retina contains the highest concen-
tration of Ngb among various nervous tissues (Schmidt et al. 2003; Burmester and 
Hankeln 2009). Fish retinal ganglion cells (RGCs) can survive and regenerate their 
axon after optic nerve injury (ONI), whereas mouse RGCs cannot survive and fail to 
regenerate after ONI (Kato et al. 2013). In the present study, we examined in detail 
the changes of Ngb expression in zebrafish and mice after ONI. After ONI, opposite 
responses in retinal Ngb levels could be seen: upregulation of Ngb in the fish retina 
and downregulation of Ngb in the mouse retina. On the basis of these results, we tried 
to achieve overexpression of mouse Ngb in RGC-5 cells, a retinal precursor cell line, 
to induce nerve regeneration in the mammalian retina after ONI.

89.2  Stimulation of Neurite Sprouting by z-Ngb 
in the Zebrafish Retina after ONI

In a previous study (Kamioka et al. 2013), we reported that the level of z-Ngb 
mRNA in the zebrafish retina increased 3 days after ONI and returned to the control 
levels by 20 days after ONI. The cellular localization of z-Ngb mRNA was in ama-
crine cells. Immunohistochemical analysis further supported this finding regarding 
z-Ngb: immunoreactivity of z-Ngb in the control retina could be barely seen in the 
inner retina (Fig. 89.1, zebrafish 0 d). The immunoreactivity of z-Ngb increased in 
the amacrine cells in the inner nuclear layer and inner plexiform layer 3 days after 
ONI (Fig. 89.1, zebrafish 3 d). In particular, immunoreactivity of amacrine cells 
became conspicuously stronger than that of control retinas. Addition of z-Ngb into 
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the zebrafish retinal explant cultures induced a significant neurite outgrowth in a 
naïve (intact) retina (Sugitani, unpublished data). On the other hand, the z-Ngb pro-
tein did not protect zebrafish ZF4 cells from cell death caused by hydrogen peroxide 
exposure (Kamioka et al. 2013). The reason being that z-Ngb has a cell membrane-
penetrating domain but not a cell-protecting domain (Wakasugi et al. 2005). Thus, 
the z-Ngb protein that is upregulated in the amacrine cells after ONI is easily se-
creted and translocated into the damaged ganglion cells to induce neurite sprouting 
at such an early stage (3 days) of optic nerve regeneration (Kato et al. 2013).

89.3  Neuroprotective and Neurite Sprouting Effects 
of Mouse Ngb in the Retina After ONI

The structure of m-Ngb comprises a monomer of 151 amino acid residues with a 
molecular mass of 17 kDa. The m-Ngb exhibited a very high homology with human 
Ngb (94 % identity). Although m-Ngb has no cell membrane-penetrating activity, 
it exerts a cell-protecting effect through its GDP anchor protein (Wakasugi et al. 
2005). Immunohistochemical analysis revealed that strong signals of the m-Ngb 
protein can be seen in the control retina: the tissue localization is limited to the gan-
glion cells (Fig. 89.1, mouse 0 d). Lechauve et al. (2013) recently showed this kind 
of strong immunoreactivity in rat RGCs. After ONI, m-Ngb signals disappeared 

Fig. 89.1   Immunohistochemical staining of zebrafish and mouse retina with an anti-neuroglobin 
(anti-Ngb) antibody. The panel (zebrafish) 0 d: very weak zebrafish Ngb (z-Ngb) signals can be 
seen in the control (intact) retina. 3 d: z-Ngb expression clearly increased in the amacrine cells 
in the inner nuclear layer and the inner plexiform layer 3 days after optic nerve injury. The panel 
(mouse) 0 d: m-Ngb signals can be seen in the control (intact) retina. 3 d: m-Ngb expression 
clearly decreased in the ganglion cell layer 3 days after optic nerve injury. The scale bar is 20 μm. 
INL inner nuclear layer; IPL inner plexiform layer; GCL ganglion cell layer
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from the mouse retina after 3 days (Fig. 89.1, mouse 3 d). To further explore the 
role of m-Ngb in mouse retina, we performed an overexpression experiment with 
the m-Ngb gene using murine retinal precursor cells, RGC-5 cells (Krishnamoorthy 
et al. 2001). The m-Ngb overexpression certainly enhanced cell viability of RGC-
5 cells under hypoxia-reperfusion conditions compared to mock or control cells 
(Fig. 89.2a). Furthermore, the overexpressed m-Ngb induced the growth of signifi-
cantly long neurites in RGC-5 cells in culture (Fig. 89.2b). These data suggest that 
m-Ngb is involved in dual neuroprotective and neuritogenic mechanisms. In the 
case of lens injury and advanced glaucoma, Ngb protein is certainly upregulated in 
the Müller cells and inner nuclear cells (Lechauve et al. 2013; Rajendram and Rao 
2007). In the case of acute ONI, production of m-Ngb cannot catch up to the excess 
amount of oxygen radicals. If we overcome this disadvantage, Ngb might become 
a key molecule for therapeutic regeneration of mammalian central neurons, for ex-
ample, in the form of a chimeric Ngb protein with a cell membrane-penetrating 
module from z-Ngb (Kamioka et al. 2013).

89.4  Conclusions

In this study, we compared Ngb expression in the retina before and after ONI 
(Table 89.1). Fish Ngb, upregulated in amacrine cells after ONI, might be re-
leased from amacrine cells followed by translocation into neighboring RGCs, and 

Fig. 89.2   Effects of Ngb overexpression on a cell viability and b neurite outgrowth in RGC-5 
cells. a Overexpression of mouse Ngb (m-Ngb) increased cell viability under oxidative stress 
(hypoxic conditions for 24 h) compared with the control cells and mock-transfected cells 
(**P < 0.01: decreased relative to the control without oxidative stress, *P < 0.05: decreased relative 
to the control without oxidative stress, ++P < 0.01: increased relative to the control with oxidative 
stress). b Overexpression of m-Ngb increased the length of neurite outgrowth compared with the 
control or mock-transfected cells (**P < 0.01 increased relative to the control or mock). Differ-
ences between the groups were analyzed using one-way analysis of variance (ANOVA), followed 
by Dunnett’s multiple-comparison test
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may induce nerite sprouting in damaged RGCs at the early stage of optic nerve 
regeneration. In contrast, mammalian Ngb downregulated immediately after ONI. 
Mammalian Ngb has been known to have beneficial effects: neuroprotective and 
neuritogenic. Thus, a successful method for the maintenance of high levels of Ngb 
expression in the retina after ONI may protect neural cells from cell death and might 
induce neurite outgrowth in damaged RGCs.
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Table  89.1   Comparison of Ngb expression in mouse and zebrafish retina after optic nerve 
injury (ONI)

Ngb expression after 
ONI

Localization in retina Function

Mouse Ngb Decreases Retinal ganglion cells Enhances cell viability
Neurite outgrowth

Zebrafish Ngb Increases (~ 20 days) Amacrine cells Neurite outgrowth
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Abstract Mitogen-activated protein kinases (MAPKs) are key regulators that have 
been linked to cell survival and death. Among the main classes of MAPKs, c-jun 
N-terminal kinase (JNK) has been shown to mediate cell stress responses associated 
with apoptosis.

In Vitro, hypoxia induced a significant increase in 661W cell death that paral-
leled increased activity of JNK and c-jun. 661W cells cultured in presence of the 
inhibitor of JNK (D-JNKi) were less sensitive to hypoxia-induced cell death.

In vivo, elevation in intraocular pressure (IOP) in the rat promoted cell death that 
correlated with modulation of JNK activation. In vivo inhibition of JNK activation 
with D-JNKi resulted in a significant and sustained decrease in apoptosis in the 
ganglion cell layer, the inner nuclear layer and the photoreceptor layer. These results 
highlight the protective effect of D-JNKi in ischemia/reperfusion induced cell death 
of the retina.
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90.1 Introduction

Neuronal cell death following excitotoxicity is a common feature of neurodegenera-
tive and ischemic diseases of the central nervous system and of a variety of ocular 
diseases, such as glaucoma. Glaucoma is characterized by a slowly progressive loss 
of retinal ganglion cells (RGC) and their axons and is often associated with elevated 
intraocular pressure (IOP). Retinal ischemia/reperfusion (I/R) induced by experi-
mental elevation of IOP leads to damage and cell death in the different layers of 
the retina.

Among the signaling events downstream of the excitotoxic cascade, the three 
main classes of mitogen-activated protein kinases (MAPKs), extracellular signal-
regulated kinase (ERK), p38 and the c-Jun N-terminal kinase (JNK) were reported 
to be increased after cerebral ischemia (Sugino et al. 2000; Wu et al. 2000) as well 
as in the retina (Peterson et al. 2000; Roth et al. 2003). The observation that JNK 
was activated in ischemic neurons highlighted its potential involvement in the apop-
totic process following cerebral ischemia (Borsello et al. 2003).MAPKs activation 
has also been investigated in retinas after ischemia. Zhang et al. first made the 
observation that both JNK and p38 activation could be attenuated by ischemic pre-
conditioning, suggesting that these two MAPKs were implicated in the deleterious 
effects induced by ischemia in the retina (Zhang et al. 2002).The use of D-JNKi pro-
vided a significant protection against neuronal loss after optic nerve crush in mice 
and in a model of retinopathy of prematurity (Tezel et al. 2004; Guma et al. 2009).

Here, we investigated the functional consequence of JNK activation in Vitro and 
In vivo and showed that JNK activity is a critical contributor to ischemic-induced 
retinal damages and that its inhibition resulted in the reduction of cell death.

90.2 Materials and Methods

90.2.1 Animal Handling and Surgery

All animal experiments were approved by the Veterinary Office of the State of Va-
lais. The procedure to induce transient ischemia followed by reperfusion has pre-
viously been described (Produit-Zengaffinen et al. 2009). Animals were divided 
into a control and an I/R group. In the control group, rats were sham-operated by 
inserting a needle into in the anterior chamber of the left eye without elevation of 
the IOP. In the I/R group, the needle was introduced in the left eye and the pressure 
was increased. Animals were divided into a control and an I/R group. In the control 
group, rats were sham-operated by inserting a needle into in the anterior chamber 
of the l after reperfusion, rats were euthanized as described previously (Produit-
Zengaffinen et al. 2009).
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90.2.2 Cell Culture

In order to evaluate the consequences of hypoxia on 661W survival, cells were cul-
tured in DMEM, 1 % FBS, 1 mM glucose and incubated for 48 h in normoxic (21 % 
O2) or hypoxic (3 % O2) incubators (Hypoxic Workstation Whitley H35).

90.2.3 ATPlite, LDH Assay, Western Blot Analysis

Cell survival, cell death and western blot analyses were performed as previously 
described. Anti-phospho JNK, anti-phospho cjun and anti-cjun were obtained from 
Cell Signaling Technology, anti-JNK was purchased from Santa Cruz Biotechnol-
ogy.

90.2.4 Immunohistology

Eyes were fixed as previously described. Detection of apoptosis was performed us-
ing an in situ cell death detection kit (Roche Diagnostics). TUNEL staining was per-
formed according to the manufacturer’s instructions and images were viewed under 
a fluorescence microscope equipped with a digital camera using appropriate filters.

90.2.5 Statistic

Results are presented as mean ± standard error of the mean (SEM) of the indicated 
number of independent experiments. Statistical analysis was performed using Stu-
dent’s t-test. Differences were considered significant at p values of 0.05 or less.

90.3 Results

90.3.1 Hypoxia Decreased 661W Viability in vitro

We first examined the effect of hypoxia on cell viability. 661W cells cultured in hy-
poxia for 48 h were compared to cells cultured in normoxic conditions for the same 
period of time. After 48 h, 661W cells cultured in hypoxia showed a 50 % decrease 
in cell viability as demonstrated by ATPlite measurements: 1 vs. 0.5 ± 0.04, p < 0.001. 
This reduced viability could be attributed to an elevation in cell death induced by 
hypoxia as shown by LDH release measurements: 1 vs. 4.94 ± 1.3, p <0.05.



N. Produit-Zengaffinen et al.680

90.3.2  661 W Cultured in Hypoxia Showed Increased JNK 
Activation

The effect of hypoxia on JNK activation was measured at the protein level by west-
ern blot. 661W cells cultured in hypoxic conditions for 48 h underwent a 2.5 fold 
increase in JNK activity (1 ± 0.2 vs. 2.59 ± 0.32, p < 0.005). The efficiency of JNK 
activity could be further visualized on c-jun phosphorylation, where hypoxia in-
duced a similar increase in c-jun activity (1 vs. 1.8 ± 0.33, p < 0.05).

90.3.3 D-JNKi Prevented Hypoxia Induced Cell Death

We assessed the physiological relevance of JNK activation in the initiation of dam-
ages induced by the hypoxic stress. As ATPlite assay was not sensitive enough to 
measure D-JNKi effect on cell viability, we quantified hypoxia induced cell death 
in presence or absence of D-JNKi in living cells nuclei stained with propidium iodie 
(PI) and Hoechst. Cell death was increased about 8 folds after 48 h in hypoxia (1 
vs. 7.7 ± 1.7, p < 0.05). A significant protective effect against cell death was obtained 
when cells were incubated in the presence of D-JNKi, ( p < 0.05) (2.67 ± 0.73 vs. 
7.7 ± 1.7 cell death in non-treated cells).

90.3.4  Retinal Ischemia Enhanced Apoptosis 24 h after 
Reperfusion

To evaluate whether this in vitro action was also effective In vivo, we analyzed the 
effect of I/R on retinal cell survival. In order to exclude any variation induced by 
the experimental method, we compared each measure to values obtained from anes-
thetized sham-operated rats. Twenty-four hours after reperfusion, TUNEL staining 
revealed a robust increase in the number of apoptotic cells in the innermost retinal 
layers, mainly in GCL and INL, and to a lower level, in the outer nuclear layer 
(ONL) (Fig. 90.1). Cells from the INL were the most sensitive to I/R (14.7 % in 
apoptosis ± 1.3), whereas 3.8 % ± 0.4 of GCL and 3.7 % ± 1.3 of the cells within the 
ONL were in apoptosis. No TUNEL positive cells could be observed in the sham-
operated retina. Increased apoptosis was paralleled with increased JNK phosphory-
lation (2.39 ± 0.18 vs. 1 ± 0.16, p < 0.05). This was confirmed by an increase activity 
of cjun visible by immunohistochemistry on retinal sections.

90.3.5 D-JNKi Reduced JNK Activation in Vivo

As increased apoptotic cells correlated with elevated pJNK, we further examined 
the significance of JNK activity on cell death induced by I/R. We injected serial 
concentrations of D-JNKi in the vitreous cavity of the eye, immediately after the 



90 JNK Inhibition Reduced Retinal Ganglion Cell Death … 681

1-h ischemic stress. D-JNKi was able to reduce JNK phosphorylation In vivo in a 
dose-dependent ability (1 ± 0.07 vs. 0.75 ± 0.18; 0.51 ± 0.15 and 0.52 ± 0.04 in non 
treated vs. D-JNKi 20 µdose-dependent ability (1 ± 0.07 vs. 0.75 ± 0.18; 0.51 ± 0.15 
andificant at 500 µ dose-dependent 20 μM, 100 μM and 500 μM, respectively).

90.3.6  D-JNKi Prevented Retinal Ischemia-Induced Apoptosis 
24 h after Reperfusion by Reducing the Activity of JNK

As shown in Fig. 90.2, the number of apoptotic cells within the INL was reduced 
by 33 % ( p < 0.05) independently of the concentration of D-JNKi used (14.7 ± 1.3 
vs. 7.9 ± 2.1; 10.1 ± 1.0 and 9.0 ± 1.1 in non treated eyes vs. D-JNKi 20 µ4.7 ± 1.3 
vs. 7.9 ± 2.1; 10.1). In GCL, the number of apoptotic cells was also reduced by al-
most 30 %, probably in a dose-dependent manner, but was only statistically signifi-
cant ( p <0.05) at the highest concentration of D-JNKi used (3.8 ± 0.4 vs. 2.3 ± 0.5; 
2.1 ± 0.7 and 1.3 ± 0.7 in non treated vs. D-JNKi 20 μM, 100 μM and 500 μM treated 
eyes, respectively).

Fig. 90.1   Cell death after retinal ischemia. Retinal ischemia enhanced apoptosis 24 h after I/R. a 
TUNEL staining from sham-operated retina on the left and from I/R retina on the right, showed a 
robust increase in apoptosis in the GCL and INL from ischemic retina. b Quantification of TUNEL 
positive cells in the different layers of the retina. Scale bar 100 µM
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90.4 Discussion

In the present study, D-JNKi, a specific inhibitor of JNK activation, was evaluated 
for its ability to reduce hypoxic cell death and neuronal degeneration induced by I/R 
in the retina. In these two models, induction of cell death was mediated through the 
activation of JNK. Our results indicated that treatment with D-JNKi significantly 
protected hypoxic 661W cells from apoptosis. This protection was also observed In 
vivo in rat retina when D-JNKi was injected intravitreoulsy at the end of a 1-h I/R 
stress.

We and others previously showed that cell death programs are induced after I/R 
(Buchi 1992; Zhang et al. 2002; Produit-Zengaffinen et al. 2009). Recent studies 
have shown that cell death induced by I/R in the retina occurs through apoptosis 
(Rosenbaum et al. 1998; Zheng et al. 2007), necrosis (Buchi 1992; Dvoriantchikova 
et al. 2010) and, more recently, through necroptosis, a caspase-independent form of 
apoptosis (Rosenbaum et al. 2010).

Our results showed that 661W cells cultured in hypoxia have a significantly re-
duced cell viability, that was, at least in part, the result of JNK activation. Inhibition 
of JNK activation with D-JNKi significantly improved cell viability in response to 
hypoxia in vitro. We also established that D-JNKi was effective in a model of retinal 

Fig. 90.2   D-JNKi effect on ischemia-induced cells death. The functional effect of D-JNKi was 
assessed by TUNEL staining on retinal section. Quantification of TUNEL positive cells vs. DAPI 
was performed in each retinal cell layer separately. Statistically significant neuroprotective effect 
of the inhibition of JNK activation was obtained in the INL ( p < 0.05) at each D-JNKi concentra-
tion tested and in the GCL ( p < 0.05) at 500 µM
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ischemia In vivo, decreasing apoptosis within GCL, INL. We also demonstrated 
that the mechanisms induced in vitro by hypoxia were similar to that observed In 
vivo, which bestow new perspectives to study the molecular mechanisms induced 
by retinal ischemia.
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Abstract Zebrafish can regenerate several organs such as the tail fin, heart, central 
nervous system, and photoreceptors. Very recently, a study has demonstrated the 
photoreceptor regeneration in the alkylating agent N-methyl-N-nitrosourea (MNU)-
induced retinal degeneration (RD) zebrafish model, in which whole photoreceptors 
are lost within a week after MNU treatment and then regenerated within a month. 
The research has also shown massive proliferation of Müller cells within a week. To 
address the question of whether proliferating Müller cells are the source of regener-
ating photoreceptors, which remains unknown in the MNU-induced zebrafish RD 
model, we employed a BrdU pulse-chase technique to label the proliferating cells 
within a week after MNU treatment. As a result of the BrdU pulse-chase technique, 
a number of BrdU+ cells were observed in the outer nuclear layer as well as the 
inner nuclear layer. This implies that regenerating photoreceptors are derived from 
proliferating Müller cells in the zebrafish MNU-induced RD model.
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91.1  Introduction

Retinal degeneration (RD) caused by photoreceptor cell death, including retinitis 
pigmentosa and age-related macular degeneration, is considered as a major cause 
for visual loss. It has been reported that at least 50 million individuals are suffer-
ing from these diseases (Lund et al. 2003), and the prevalence is increasing with 
the aging of society (Chakravarthy et al. 2010). In mammals, once photoreceptors 
are lost, they normally fail to regenerate. In contrast, fish show a tremendous re-
generative capacity to offset the loss of photoreceptors (Fischer and Bongini 2010; 
Nagashima et al. 2013). Very recently, a study has demonstrated a reproducible 
and uniform method to create an RD model in zebrafish, in which fish were treated 
with an alkylating agent, N-methyl-N-nitrosourea (MNU) (Tappeiner et al. 2013). 
In this model, a wide and uniform photoreceptor cell loss was observed within a 
week after MNU treatment followed by photoreceptor regeneration within a month. 
As with other zebrafish RD models (e.g., intense light injury and stab wound mod-
els), a massive proliferation of Müller cells was generally observed to produce new 
photoreceptors following MNU treatment. In this study, we attempt to show the cell 
fate of proliferating Müller cells after MNU treatment to address the question “Are 
proliferating Müller cells indeed the source of regenerating photoreceptors?” us-
ing the 5-bromo-2′-deoxyuridine (BrdU) pulse-chase technique with the zebrafish 
MNU-induced RD model.

91.2  Materials and Methods

91.2.1  Animals

All experiments described below were approved by the Committee on Animal Ex-
perimentation of Kanazawa University, and all attempts were made to minimize 
pain and the number of fish used. Adult zebrafish ( Danio rerio; 3–4 cm in body 
length, 6–12 months after birth, either sex) were used throughout this study. The 
fish were kept in water at 28 °C unless otherwise stated.

91.2.2  MNU Treatment

MNU treatment of zebrafish was performed as described previously (Tappeiner 
et al. 2013). In brief, fish were kept in water containing 10 mM phosphate buffer 
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(pH = 6.3) with a concentration of 150 mg/l of MNU (Toronto Research Chemicals 
Inc., North York, Canada) for 60 min. After exposure to MNU, fish were washed 
and kept in fresh water until appropriate time points.

91.2.3  Intraperitoneal Injection of BrdU

Fish were anesthetized by immersion in 0.033 % ethyl 3-aminobenzoate methanesul-
fonic acid (MS222; Sigma–Aldrich, MO, USA) in PBS, and intraperitoneally inject-
ed with 50 µl of 2.5 mg/ml BrdU (Sigma–Aldrich) at 0 (just after MNU treatment), 
2, 4, 6, and 8 days post-treatment (dpt), as described previously (Ogai et al. 2012).

91.2.4  Preparing Retinal Sections

At appropriate time points, fish were euthanized by an overdose (0.1 %) of MS-222 
for 10 min followed by fixation with 4 % paraformaldehyde in PBS overnight at 
4 °C. The cryosections of the retina were then prepared at 12-µm thickness as de-
scribed previously (Ogai et al. 2012).

91.2.5  Hematoxylin–Eosin (HE) Staining

HE staining was performed to observe the structure of the retina. Sections were 
stained with Mayer’s hematoxylin (Wako Pure Chemical Industries, Osaka, Japan) 
for 2 min followed by washing and counterstaining with 1 % eosin-Y (Wako Pure 
Chemical Industries) for 2 min. The cleared sections were then observed using a 
bright-field microscope (DS-Fi1c; Nikon Instech, Tokyo, Japan).

91.2.6  Immunohistochemistry

The localization of proliferating cells was visualized by immunohistochemistry 
(Ogai et al. 2012). In brief, antigen retrieval was performed in 10 mM citrate buf-
fer (pH = 6.0) for 5 min at 121 °C or 2 M HCl for 30 min at 37 °C for proliferating 
cell nuclear antigen (PCNA) or BrdU immunohistochemistry, respectively. Follow-
ing washing and blocking, the sections were incubated with anti-PCNA (1:500; 
Sigma–Aldrich) or anti-BrdU (1:500; Sigma–Aldrich) antibody at 4 °C overnight. 
Visualization was performed with Alexa Fluor 488-conjugated secondary antibody 
(1:500; Thermo Fisher Scientific, MA, USA) for 60 min at 23 °C. Nuclear stain-
ing was performed by 2 µg/ml 4′,6-diamidino-2-phenylindole (DAPI; Wako Pure 
Chemical Industries). The sections were then observed using a fluorescent micro-
scope (DS-Fi1c).
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91.2.7  Statistical Analyses

The data were presented as means ± standard error of the mean. The thickness of 
outer nuclear layer (ONL) and the number of PCNA+ cells were analyzed by one-
way analysis of variance followed by Tukey’s post hoc test using SigmaPlot (ver-
sion 12; Systat Software, Inc., CA, USA). A p value of < 0.05 was considered sta-
tistically significant.

91.3  Results

91.3.1  MNU Treatment Selectively Depleted Outer Nuclear 
Layer (ONL) in Zebrafish Retina

First, to confirm the effect of MNU on the zebrafish retina, we obtained retinal 
sections at 0 (control), 3, 5, 8, 16, 24, and 32 dpt and stained using the HE method. 
As a result of MNU treatment, the collapse of ONL was observed from 3 to 8 dpt 
followed by a regeneration of ONL by 32 dpt (Fig. 91.1) in the same manner as 
previously reported (Tappeiner et al. 2013).

Fig. 91.1   Changes in outer nuclear layer (ONL) thickness after N-methyl-N-nitrosourea (MNU) 
treatment in adult zebrafish. (a–c) Representative images of Hematoxylin -Eosin staining follow-
ing MNU treatment. At 8 days post-treatment (dpt), the thickness of ONL was significantly thinner 
(b) than control retina (a). The retinal structure at 32 dpt (c) was comparable to control retina (a). 
(d) Quantification of ONL thickness; n = 3 each, *p < 0.01, **p < 0.001. OPL outer plexiform layer, 
INL inner nuclear layer, inner plexiform layer, GCL ganglion cell layer. Scale bar in (a), 10 µm
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91.3.2  MNU Treatment Induced Cell Proliferation in the Inner 
Nuclear Layer (INL) in Zebrafish Retina

Next, to show cell proliferation after MNU treatment, we stained the sections for 
PCNA at the same time points as in HE staining. As a result of PCNA staining after 
the MNU treatment, we observed a massive cell proliferation in INL, putatively 
Müller cells, within a week that peaked at 5 dpt (Fig. 91.2).

91.3.3  Regenerating Photoreceptors were Derived from 
Proliferating Müller Cells After MNU Treatment

Given that a massive cell proliferation was observed within a week after MNU treat-
ment and photoreceptor regeneration took place from 10 to 30 dpt, we theorized that 
regenerating photoreceptors may originate from proliferating Müller cells. To test 
this theory, we injected BrdU at 0, 2, 4, 6, and 8 dpt ( pulse) to label proliferating 
cells within 8 days after MNU treatment when the massive Müller cell proliferation 
was observed (Fig. 91.2). This was followed by BrdU detection at 32 dpt ( chase; 
Fig. 91.3a) when ONL was reconstructed (Fig. 91.1). As a result of the BrdU pulse-
chase experiment, we could see a number of BrdU + cells in ONL, as well as INL at 
32 dpt (Figs. 91.3b, 91.3c).

Fig. 91.2   Cell proliferation in zebrafish retina following MNU treatment. (a, b) Representative 
images of proliferating cell nuclear antigen (PCNA) immunohistochemistry. In control retina, few 
PCNA+ cells were observed in INL (a), whereas a number of PCNA+ cells were observed at 5 dpt 
(b). (c) Quantification of PCNA+ cells after MNU treatment; n = 3 each, *p < 0.01, **p < 0.001. Scale 
bar in (a), 10 µm
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91.4  Discussion

Whether genetic or non-genetic (i.e., hereditary or acquired), RD can result in a 
serious visual loss, which damages the quality of life (Mitchell and Bradley 2006). 
By using a zebrafish RD model that is capable of regenerating lost photoreceptors, 
it may be possible to understand not only the degenerative but also the regenerative 
mechanisms underlying RD. Very recently, Tappeiner et al. (2013) proposed a novel 
RD model utilizing MNU in zebrafish. MNU has been widely used in RD research 
in rodents for more than a couple of decades (Smith et al. 1988; Koriyama et al. 
2014). MNU can selectively, uniformly, reproducibly, and at any time kill photo-
receptors in the retina, which makes it simpler to produce RD models than genetic 
and/or light-injury RD models (Fausett and Goldman 2006; Pennesi et al. 2012).

In this study, we showed that MNU could kill photoreceptors characterized by 
the reduction of ONL thickness and that a massive proliferation of Müller cells was 
observed after MNU treatment, which is consistent with the previous findings (Tap-
peiner et al. 2013), with a few exceptions. In a previous study, the cell count of ONL 

Fig. 91.3   Fate of proliferating cells following MNU treatment. (a) Experimental setup. At 0, 2, 4, 
6, and 8 dpt, 5-bromo-2′-deoxyuridine (BrdU) was intraperitoneally injected to label proliferating 
cells during this period. At 32 dpt when the retinal structure was restored (Fig. 91.1), immunohis-
tochemistry was performed against BrdU. (b, c) Representative images of BrdU immunohisto-
chemistry. A number of BrdU+  cells were observed in ONL as well as INL. Note that the retinal 
structure was comparable to control retina (Fig. 91.1a). Scale bar in (b), 10 µm
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significantly dropped only at 8 dpt, whereas in this study we observed a significant 
thinning of ONL from 3 to 15 dpt. This discrepancy may be explained by the differ-
ence in the method of ONL quantification. The previous study used the cell count of 
ONL, whereas in this study we used the thickness of ONL. Thinning of ONL occurs 
not only by cell loss, but also by the reduction of cell size and cell-to-cell distance. 
However, the cell size and the distance between cells after MNU treatment appeared 
comparable to that of the control retina (Figs. 91.1a–91.1c). Therefore, we can as-
sume that photoreceptors were indeed lost in this study.

Another difference with the previous study is in time course of cell prolifera-
tion. Tappeiner et al. (2013) reported that cell proliferation in INL peaked at 8 dpt, 
whereas in this study cell proliferation was most active at 5 dpt (Fig. 91.2). At this 
point, it is difficult to explain the lag in cell proliferation. It is however certain 
that considerable and rapid proliferation of Müller cells occurs within a week after 
MNU treatment.

This study further showed that proliferating Müller cells may be a source of 
regenerating photoreceptors, as a number of BrdU+ cells were observed in ONL 
as well as INL (Fig. 91.3). This implies that some of the proliferating Müller cells 
may migrate and differentiate into new photoreceptors (Nagashima et al. 2013), 
whereas others may remain Müller cells to maintain retinal stem-cell burden and 
retinal structure.

Notably, in mammalian MNU-induced RD models, Müller cell proliferation 
took place from 3 to 7 days after MNU treatment but showed no signs of photore-
ceptor regeneration (Taomoto et al. 1998). It is possible that the major difference in 
the ability of photoreceptor regeneration between fish and mammals may be laid in 
the ability of migration and/or differentiation into photoreceptors rather than Müller 
cell proliferation. Therefore, we hope that investigating such differences in the mi-
gration/differentiation abilities of Müller cells may add new insight into therapeutic 
advances in the treatment of RD in the future.
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Chapter 92
Polymodal Sensory Integration in Retinal 
Ganglion Cells

David Križaj

Abstract An animal’s ability to perceive the external world is conditioned by its 
capacity to extract and encode specific features of the visual image. The output of 
the vertebrate retina is not a simple representation of the 2D visual map generated 
by photon absorptions in the photoreceptor layer. Rather, spatial, temporal, direc-
tion selectivity and color “dimensions” of the original image are distributed in the 
form of parallel output channels mediated by distinct retinal ganglion cell (RGC) 
populations. We propose that visual information transmitted to the brain includes 
additional, light-independent, inputs that reflect the functional states of the retina, 
anterior eye and the body. These may include the local ion microenvironment, glial 
metabolism and systemic parameters such as intraocular pressure, temperature and 
immune activation which act on ion channels that are intrinsic to RGCs. We particu-
larly focus on light-independent mechanical inputs that are associated with physi-
cal impact, cell swelling and intraocular pressure as excessive mechanical stimuli 
lead to the counterintuitive experience of “pressure phosphenes” and/or debilitating 
blinding disease such as glaucoma and diabetic retinopathy. We point at recently 
discovered retinal mechanosensitive ion channels as examples through which 
molecular physiology brings together Greek phenomenology, modern neuroscience 
and medicine. Thus, RGC output represents a unified picture of the embodied con-
text within which vision takes place.

Keywords Vision · Mechanosensation · Greek philosophy · Calcium · TRPV4 · 
Glaucoma · Phosphenes
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92.1  Introduction

Life took advantage of light early on in the evolutionary process as photons were 
harnessed to drive the cells’ energy metabolism through early photosystems and an-
tenna complexes (Land and Nilsson 2012). Because light is also the fastest possible 
way of transmitting information about the physical environment, in many, perhaps 
most, vertebrate species, vision emerged as a dominant sensory modality that is es-
sential for orientation within, and communication with, the outside world. The com-
petitive advantages of vision sparked numerous designs of light-detecting pigments, 
cells and organs, culminating in the arthropod compound eye and the camera-styled 
eyes and layered retinas of jawed vertebrates (Gehring 2004). The success of the 
vertebrate retinal design owes much to modular organization of retinal circuits and 
their adaptability to the demands posed by the variety of ecological niches. At each 
stage of visual signal transmission, information percolating through retinal circuits 
appears in the form of increasingly refined aspects of the primary photoreceptor ‘bit-
map’ associated with the space, time, color, direction and movement “dimensions” of 
the visual stimulus (Masland 2005). However, every level of visual processing might 
also be impacted by signals that are independent of light. RGCs, for example, may 
acquire additional inputs from circadian feedback, intraocular pressure (IOP), car-
diovascular function and the immune system but may also directly respond to light 
(Anderson et al. 2010; Xue et al. 2011; He et al. 2012; Della Santina et al. 2013). 
I thus propose that vision represents an embodied sensory process that integrates 
information about ambient photons within the complex Gestalt of the entire body.

92.2  Intraocular Pressure, Mechanical Overstimulation 
and Glaucoma

Every cell is impacted by mechanical stimuli that are inherent in tissue development 
and/or are contributed by its environment (Nagatomi 2011; Tyler 2012). The response 
to mechanical forces is conditioned by the types of (compressive, tensile, shear 
flow) forces and by (cell type-specific) molecular sensors and signaling pathways. 
Chronic force stimulation can compromise both function and survival of retinal 
tissue which is softer from tissues that surround it and consequently stretches more 
when exposed to mechanical strain (e.g., Krizaj et al. 2014). Thus, firing properties 
and viability of RGCs are impacted by tensile stretch associated with elevations 
in IOP (Della Santina et al. 2013; El Danaf et al. 2015). If sustained, elevated IOP 
increases the risk of neurodegeneration and blindness due to developing glaucoma 
(Bonomi et al. 2001) whereas excessive swelling can compromise RGC viability 
in diabetic retinopathy and glaucoma (Reichenbach and Bringmann 2010; Pinar-
Sueiro et al. 2011). Because other retinal neurons appear to be less susceptible to 
mechanical stress, RGCs must selectively express pressure-sensitive mechanism(s) 
the identification of which has been one of the great challenges of contemporary 
vision research. Interestingly, these very features inherent in the biology of RGCs  
might have inspired the first known theories of vision.
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92.3  Early Theories of Vision are Based on Mechanically 
Induced Percepts of Light

The phenomenological experience of visual percepts triggered by mechanical in-
dentation of the eye may have inspired the earliest forms of human art (Lewis-
Williams and Dowson 1988) and laid the foundation for the earliest known the-
ories of vision and physiology/medicine (Theophrast 1964; Grüsser and Hagner 
1990; Gross 1999; Waterfield 2000). The physiologos (writer on nature) Alcmaeon 
of Croton (~ 450 B.C.) described the optic nerves, proposed they represented the 
“light-bearing paths” to the brain, identified the brain as the central sensory organ 
and the seat of understanding, and suggested that sensation allows humans to make 
reasonable judgments about the external world (tekmairesthai) (Celesia 2001; Huff-
man 2008). Alcmaeon was the first to report that application of physical pressure 
to the eye induces perception of light, and used the experience of mechanically 
induced visual phenomena (“pressure phosphenes”) to conclude that vision is based 
on the transmission of light (fire) within the eye (Beare 1906). [Phosphenes, also 
called “the prisoner’s cinema”, are often perceived by people deprived of visible 
light for prolonged periods of time, meditators, patients with migraine headaches 
and are used to diagnose the inflamed optic nerve (optic neuritis) (Tyler 1978). 
Their molecular mechanism is not understood].

As eloquently described in the review by Grüsser and Hagner (1990), anoth-
er Pythagorean, Empedocles (419–430 B.C.), hypothesized that light is reflected 
into the eye from objects in the external world and that the eye has two channels 
that conduct dark and pale impressions towards the brain (i.e., phenomenological 
analogs of retinal ON and OFF channels). The visual extramission theory was re-
fined by Plato (427−347 B.C.), whose theory, involving complicated interactions 
between external light and projected light, dominated Western views on vision well 
into the eighteenth century (Waterfield 2000). Morgagni and Helmholtz suggested 
that mechanical stimulation of the eye gives rise to visual rather than other (tactile) 
sensations because of the hard-wired connections to the brain (Gross 1999; Grüsser 
and Hagner 1990), however the physiological mechanism that drives phosphene 
generation has never been elucidated. Is it possible that mechanotransducers that 
subserves phosphene generation corresponds to the pressure-sensitive mechanisms 
that compromise the viability of RGCs in glaucoma?

92.4  Mechanical Stimuli Drive RGC Physiology Through 
Mechanosensitive Channels

Mechanosensing ion channels can detect the effects of gravity, sound waves, muscle 
stretch, acceleration, shear flow, swelling and blood pressure (Kung 2005; Tyler 
2012). Sensory stimuli transduced by some of the 28 vertebrate homologs of the 
Drosophila light-transducing TRP (transient receptor potential) channel include os-
motic gradients, mechanical touch, taste, pain, temperature and certain aspects of 
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hearing/vestibular function (Kung 2005; Sachs 2009). One isoform, TRPV4, is also 
the closest vertebrate homolog of Inactive and Nanchung—mechanosensitive TRPs 
that are essential for hearing in Drosophila and is expressed in mechanosensitive 
neurons that include cochlear hair cells, Merkel cells and sensory ganglia (Ever-
aerts et al. 2010). Accordingly, TRPV4-/- mice exhibit mechanical hyperalgesia 
and behavioral reduction in response to noxious mechanical stimuli and increased 
mechanosensory thresholds of serosal and mesenteric afferent fibers whereas gain-
of-function mutations result in severe dysplasias and neuropathies (Liedtke et al. 
2003; Loukin et al. 2010; Zimon et al. 2010). TRPV4 is important for the develop-
ment of the eye (Wang et al. 2007) and is expressed in both anterior and posterior 
ocular tissues. Interestingly, TRPV4 expression in the retina is confined to RGCs 
and glial cells (Krizaj et al. 2014; Ryskamp et al. 2014a; 2015). Either mechanical 
stimulation or exposure to TRPV4 agonists elicited > 100-fold increase in RGC 
excitability but, when in excess, induced RGC apoptosis and astrogliosis. Consis-
tent with the etiology of glaucoma, genetic ablation of the channel strongly attenu-
ated the RGC response to mechanical stimulation whereas TRPV4 overstimula-
tion spared photoreceptors, bipolar cells and amacrine cells (Ryskamp et al. 2011, 
2014a). Thus, by acting as sensors for mechanical stress, TRPV4 channels impel 
upon retinal output an intrinsic sensitivity to mechanical forces (Krizaj et al. 2014, 
Ryskamp et al. 2015). In addition to force, TRPV4 is polymodally activated by 
temperature, endocannabinoids and cell swelling (Everaerts et al. 2010), suggest-
ing that RGCs are likely to use these channels to sense and respond to a wide array 
of thermal, chemical and mechanical stimuli. The overall picture is complicated 
by the fact that the RGCs express many different types of TRP channels, which 
are likely to intercept further facets of the sensory world. For example, canonical 
TRPC6/7 channels transduce light in ipRGCs (Xue et al. 2011) whereas activation 
of the TRPV1 nociceptor by endocannabinoids may regulate RGC excitability, in-
teractions with G protein-coupled cannabinoid receptors and calcium homeostasis. 
(Ryskamp et al. 2014b).

92.5  Conclusion: What is “Seeing?”

In what was one the first connectomics attempts, Sidney Brenner and his colleagues 
in 1980s heroically reconstructed the nervous system of the nematode Caenorhab-
ditis elegans with the expectation that the collage of several thousands of serial EMs 
will help explain the behavior of the humble worm (White et al. 1986). It turned 
out that the painstaking work failed to illuminate the biology of C. elegans behav-
ior, which is dependent on higher-order interactions between neuronal circuits that 
mediate sensation, appetitive behavior, locomotion etc. Similar questions plague 
the modern proponents of connectomics (Seung 2012). We argue that vertebrate vi-
sion involves complex physiological operations that deconstruct the original visual 
map and merge light-induced signals with systemic information. In consequence, 
the RGC signal, which represents an integration of time-dependent primary and 
modulatory information, will show itself as a distorted (or rather, informationally 
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enhanced) output that is likely to frustrate attempts at computational clarity. In any 
case, the significance of non-visual inputs for daily visual function in diurnal ver-
tebrates remains an exciting challenge for further research. Are they epiphenomena 
such as pressure phosphenes? Does mechanotransduction contribute to perception? 
The vertebrate retina is not a camera that translates images into 2D negatives, nor 
is it Adobe Photoshop that can perform a myriad filtering operations regardless 
of the machine that powers. Rather, I propose that the retina integrates electrical/
cellular signals induced by the absorption of photons with a myriad of intrinsic cel-
lular processes that reflect the circadian, metabolic, age-dependent etc. state of the 
organism. Because the perceiver’s access to visual data streams depends on specific 
context-dependent circumstances that may include the time of day and bodily state. 
Perhaps we should view vision as an emergent process that rapidly defeats simplis-
tic quests for mathematic tractability—one that is possessed of an intrinsic sensitiv-
ity to the present moment inhabited by the entire organism.
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Chapter 93
Pigment Epithelium-Derived Factor, 
a Protective Factor for Photoreceptors in Vivo

Federica Polato and S. Patricia Becerra

Abstract Pigment epithelium-derived factor (PEDF) is a natural protein of the 
retina with demonstrable neurotrophic properties, found in the interphotoreceptor 
matrix in intimate contact with photoreceptors. This review summarizes the effects 
of PEDF on photoreceptors in several animal models of retinal degeneration.

Keywords PEDF · Retinal degeneration · Neuroprotection · Photoreceptor · 
Animal models

93.1  Introduction

Pathological photoreceptor cell death leads to visual loss. Therefore natural inhibi-
tors of cell death can prevent this pathology. PEDF is a natural ocular protein, se-
creted by the retinal pigment epithelium (RPE). The RPE expresses the SERPINF1 
gene at higher levels compared to the other tissues in the eye, and releases the gene 
product in a directional fashion into the interphotoreceptor matrix (Becerra et al. 
2004). In this extracellular matrix, the protein associates with glycosaminoglycans 
and becomes available to interact with receptors on the surface of the photorecep-
tors. PEDF is a member of the serpin superfamily formed by a group of proteins 
that share common conformation. Although most of the serpin members are serine 
protease inhibitors, PEDF is grouped with non-inhibitory serpins (Becerra 2006). 
Its homologous reactive center loop peptide, located towards its carboxy-end, is not 
used to block protease activity. However, a peptide region from its amino terminal 
sequence is responsible for neurotrophic effects, which in the 3D structure is distinct 
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from the homologous serpin reactive loop. The neurotrophic effects of PEDF are 
independent of its capacity to inhibit serine proteases and depend on interactions 
with cell-surface receptors. PEDF-R is a cytoprotective receptor for PEDF encoded 
by the PNPLA2 gene (patatin like phospholipase A2 family member) that is ex-
pressed in the retina and distributed in the inner segments of photoreceptors (Notari 
et al. 2006; Becerra and Notario 2013; Subramanian et al. 2013). Interactions with 
PEDF-R are likely to mediate the cytoprotective effects of PEDF in photoreceptors. 
The efficacy of PEDF in protecting photoreceptor cells against degeneration and 
apoptosis in vivo is reviewed here.

93.2  Biological Function

The PEDF protein exhibits neurotrophic activity and acts on photoreceptor mor-
phogenesis, retinal neuroprotection and neurite outgrowth (Barnstable and Tom-
bran-Tink 2004). The capacity of PEDF to delay photoreceptor cell degeneration 
and apoptosis is demonstrated in genetic and light-induced damage animal models. 
PEDF can protect cells of the inner retina and retinal ganglion cell layer from death 
induced by ischemia and cytotoxic agents. It is also protective of CNS neurons, 
such as motoneurons, cerebellar granule cells, hippocampal neurons, and cortical 
neurons, and has demonstrable neurite-outgrowth activities. Here we summarize 
the effects of PEDF on photoreceptor cells in vivo (see also Table 93.1).

93.2.1   The rd1/rd1 Mouse

The rd1 mouse is an animal model for one variant of recessive human Retinitis Pig-
mentosa (RP) that carries a homozygous loss of function mutation of the gene en-
coding the β-subunit of rod photoreceptor cGMP phosphodiesterase 6 (PDE6). The 
mutation induces cell death of rod photoreceptors, which starts around postnatal day 
10 (P10), peaks at P14, and ends almost completely by P21. Cone photoreceptor 
death starts around P15, with complete degeneration within 6 months (Sancho-Pel-
luz et al. 2008). Cayouette et al. (1999) evaluated the effects of human recombinant 
PEDF (rPEDF) in this animal model. rd1 mice were intravitreally injected with 
1 µg rPEDF in one eye at P14. Their contralateral eyes were similarly injected with 
rβ-galactosidase (1 µg) or left uninjected and used as controls. Photoreceptor de-
generation was evaluated 3 or 9 days after administration. At 3 days post-injection 
(p.i.), the effect of a single PEDF injection on the outer nuclear layer (ONL) height 
was significant at 120–161 % that of controls. However, the authors did not observe 
an effect at 9 days p.i. They found that biotin-conjugated PEDF injected in the vitre-
ous of wild type mice cleared from the eye within 24 h, suggesting a transient effect 
of the injected protein to maintain photoreceptor morphology in rd1 mice.
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93.2.2   The rds/rds Mouse

The antiapoptotic effects of rPEDF on photoreceptors were tested in another model 
for RP, the rds mouse, which carries a null mutation in the Prph2 (peripherin 2) 
gene (Sancho-Pelluz et al. 2008). In rds homozygous mutant mice, retinal degen-
eration starts at P7 and peaks 3 weeks after birth. Photoreceptors degenerate slowly 
as compared to rd1 mice and retinal rod and cone cells are completely lost by 12 
months of age (Sanyal et al. 1980). Rds mice were intravitreally injected in one eye 
with human rPEDF (1 µg) at P17 while the contralateral eye, used as a control, was 
left untreated or administered with rβ-galactosidase (1 µg). The eyes were then col-
lected 3 days p.i. ( i.e., P20) to evaluate apoptosis in the ONL. The protective effect 
of PEDF on photoreceptor apoptosis was significant, with less TUNEL-positive nu-
clei in the ONL, between 61.5–79.8 % of control eyes, confirming the antiapoptotic 
activity of PEDF on photoreceptors in vivo (Cayouette et al. 1999).

93.2.3  The DKO rd8 Mouse

The Ccl2/Cx3cr1 double knockout mouse on Crb1rd8 background (DKO rd8) rep-
resents a model for progressive focal retinal degeneration, recapitulating some of 
the features of age-related macular degeneration (AMD), such as RPE alteration, 
photoreceptor degeneration, immune activation and A2E elevation in the RPE. The 
mouse was generated by knocking out genes for a chemokine ( Ccl2) and a chemo-
kine receptor ( Cx3cr1) created on the C57BL/6N background carrying the Crb1rd8 
mutation (Chu et al. 2013). By 6 weeks of age, all DKO mice show AMD-like retinal 
lesions, including RPE alteration and photoreceptor degeneration (Chu et al. 2013). 
Wang et al. (2013) reported that the concentration of PEDF secreted in the condi-
tioned media of primary DKO rd8 RPE was 84 % decreased relative to wild type 
(WT). Recombinant human PEDF protein (1 µg) was exogenously administered to 
6 week-old DKO rd8 by intravitreous injection in the right eye, with a subsequent 
subconjuctival rPEDF (3 µg) injection 4 weeks later. Contralateral eyes were left 
untreated and used as controls. Four weeks after the last injection, PEDF-mediated 
protection was observed in the ONL with more than 2-fold reduction of the number 
of TUNEL-positive nuclei along with increased ONL thickness and significantly 
lower levels of A2E in the retina in the rPEDF-treated compared to the contralateral 
eye. The authors also reported reduction in the expression of pro-apoptotic factors 
such as FasL and Bax, and increased expression of the anti-apoptotic factor Bcl-2 in 
the retina (Wang et al. 2013).

93.2.4  The RCS Rat

The Royal College of Surgeons (RCS) rat is the first known model of inherited reti-
nal degeneration. Similar to the human disease (Gal et al. 2000), the cause of retinal 
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degeneration in the RCS rats is a mutation in the receptor tyrosine kinase Mertk, 
(D’Cruz et al. 2000), a gene that is expressed in the RPE. The mutation leads to 
defective RPE phagocytosis of photoreceptor outer segments followed by progres-
sive loss of photoreceptor cells, which degenerate between P20 and P60 (Mullen 
and LaVail 1976). Miyazaki et al. (2003) evaluated the effects of PEDF in the retina 
of RCS rats. Exogenous PEDF was delivered by gene transfer, via subretinal injec-
tion of the simian lentiviral vector (SIV) containing the human SERPINF1 gene in 
3-week-old RCS rats. Control animals were left untreated or injected with either 
SIV-LacZ or vehicle solution. The expression of transduced genes was observed 
in the RPE at 4 weeks p.i. and persisted at later time points (8, 12, 24 weeks p.i.). 
Similarly, the number of photoreceptors was preserved in the PEDF-injected eyes, 
only 4 weeks after gene transduction. The protection was significant compared to 
control eyes at 8 and 12 weeks. However, the ONL regions furthest from the PEDF 
injection sites displayed the least protection. The antiapoptotic effect of PEDF is 
likely responsible for protection from photoreceptor loss in this model, as evidenced 
by diminished numbers of TUNEL positive nuclei in the ONL of PEDF-transduced 
eyes relative to controls. PEDF-mediated rescue of the photoreceptors was evalu-
ated by TUNEL assay 4 weeks after the injection, showing that PEDF-treated eyes 
had reduced numbers of apoptotic photoreceptors compared to controls. Retinal 
function was also assayed by ERG at 4 and 8 weeks p.i. The authors showed that 
8 week-old RCS rats had almost no ERG response; however, PEDF treatment sig-
nificantly improved the retinal functionality at 4 and 8 weeks after the injection. In 
conclusion, the gene transfer of human SERPINF1 in the RPE via lentiviral vectors 
results in the protection of photoreceptors from death and delayed degeneration in 
RCS rats (Miyazaki et al. 2003).

The same group (Murakami et al. 2008) showed that the lentivirus-mediated 
retinal gene transfer of PEDF in RCS rats prevented the nuclear translocation of 
apoptosis-inducing factor (AIF), resulting in reduced apoptotic loss of their pho-
toreceptors and up-regulated Bcl-2 expression. They claimed that inhibiting the 
nuclear translocation of AIF is an essential mechanism of the protective activity of 
PEDF in this rat model.

The preventive effect of PEDF from photoreceptor degeneration in the RCS rats 
was also assayed by intravitreal injection of nanoparticles (NP) carrying 2.5 µg 
of the human protein (PEDF-NP) in the right eye of P21 rats. To evaluate the ef-
fects of PEDF-NP on photoreceptor survival, 2 additional groups of 3-week old 
RCS rats were injected in the right eye with 2.5 μg of PEDF protein or empty NP. 
Contralateral eyes were either left untreated or injected with phosphate buffered 
saline (PBS). The protective effect of each treatment was evaluated 4 and 8 weeks 
p.i. Eyes treated with PEDF-NP had a significant increase in ONL column height 
and in the number of photoreceptors but reduced TUNEL-positive cells compared 
to PEDF, empty NP and contralateral eyes. Moreover, PEDF-NP contributed to the 
preservation of rod-opsin levels and a- and b-wave amplitudes in ERG studies at 8 
weeks p.i. (Akiyama et al. 2012).
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93.2.5  Light-Induced Damage of Photoreceptors

Constant white light can induce retinal degeneration and is used in established 
rodentl models to degenerate photoreceptors. In Sprague-Dawley albino rats, ex-
posure to white light (1200–1500 lux) continuously for 7 days reduces the ONL 
thickness to 12.5–30 % of that of unexposed eyes and eliminates the ERG response. 
Cao et al. (1999) tested the PEDF-mediated protective effect on photoreceptors 
damaged with light by intravitreally injecting human PEDF (2 µg) in one eye, using 
the PBS-injected contralateral eye as a control in rats of 2–5 month old. Injections 
were at 1 or 2 days pre-light exposure, or 0, 1 or 2 days after constant light (CL) 
exposure. ERG and histopathology analysis after 14 days of recovery showed that 
PEDF injected 1 or 2 days before light-induced damage protected photoreceptors 
from degeneration. When injected 2 days before light-induced damage, PEDF at-
tenuated the reduction in ONL thickness and improved ERG response in eyes ex-
posed to constant light for 3-10 days relative to controls. However, no protection 
by PEDF was observed after 14 days of CL exposure. Slightly enhanced protective 
effects have been reported when the eyes were pre-treated with PEDF combined 
with basic fibroblast growth factor (bFGF) (1 µg each).

Imai et al. (2005) have also assessed PEDF photoreceptor protection from dam-
age induced by constant white light exposure using Lewis albino rats (females of 
4–8 weeks). Progressive retinal degeneration, determined as the reduction of ONL 
thickness and cell number, was observed at 24, 96 and 168 h of continuous light 
exposure (2500 lux) in untreated rats. PEDF was delivered 3 days before light dam-
age by intravitreal injection of adenoviral vector (AdPEDF.11), which promotes the 
expression of the gene under the regulation of the CMV promoter. Photoreceptor 
morphology was evaluated after 96 h of CL exposure and compared among animals 
injected with AdPEDF.11, untreated or injected with the empty AdNull.11 vector. 
PEDF rescued ONL thickness and number of photoreceptors as compared to con-
trols. However, the empty vector itself had some protective effect when compared 
to the uninjected ones. Similarly, PEDF lowered the number of TUNEL-positive 
nuclei in the ONL (after 12 h of CL exposure) and improved the ERG response 
(after 48 h of exposure and 7–28 days of recovery after light damage). Animals 
injected with the empty vector again exhibited significant protection compared to 
untreated mice. The authors suggested that PEDF induced protection from apopto-
sis and loss of functionality in photoreceptors damaged by light exposure.

In summary, exogenous administration of the PEDF protein and the SERPINF1 
gene transfer via viral vectors are beneficial in protecting photoreceptors against 
degeneration and death caused by genetic and/or environmental factors. The mecha-
nisms by which PEDF acts on photoreceptors are beginning to emerge. Overall the 
data from several groups point to PEDF as an antiapoptotic factor that targets sig-
naling pathways of the Bcl2 family and AIF in degenerating photoreceptors, likely 
mediated by interactions with PEDF-R (Subramanian et al. 2013) The findings also 
point to the applicability of the human PEDF sequence in rodent models of retinal 
degenerations. PEDF holds promise to clinical neuroprotection therapy, and in par-
ticular in ocular diseases.
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Chapter 94
The mTOR Kinase Inhibitor INK128 Blunts 
Migration of Cultured Retinal Pigment 
Epithelial Cells

Melissa A. Calton and Douglas Vollrath

Abstract Retinal pigment epithelium (RPE) cell migration in response to disease 
has been reported for age-related macular degeneration, proliferative vitreoretinop-
athy, and proliferative diabetic retinopathy. The complex molecular process of RPE 
cell migration is regulated in part by growth factors and cytokines, and activation 
of the PI3/AKT/mTOR signaling pathway. Rapamycin, an allosteric mTOR inhibi-
tor, has been shown to block only one of the primary downstream mTOR effectors, 
p70 S6 kinase 1, in many cell types. INK128, a selective mTOR ATP binding site 
competitor, blocks both p70 S6 kinase 1 and a second primary downstream effector, 
4E-BP1. We performed scratch assays using differentiated ARPE-19 and primary 
porcine RPE cells to assess the effect of mTOR inhibition on cell migration. We 
found that INK128-mediated blocking of both p70 S6 kinase 1 and 4E-BP1 was 
much more effective at preventing RPE cell migration than rapamycin-mediated 
inhibition of p70 S6 kinase 1 alone.

Keywords Retinal pigment epithelium · MTOR · Migration · Proliferative 
vitreoretinopathy · Age-related macular degeneration · ARPE-19 · Rapamycin · 
INK128

94.1  Introduction

RPE cell migration in response to disease has been reported for age-related mac-
ular degeneration (Ho et al. 2011), in addition to proliferative vitreoretinopathy 
( Campochiaro 1997; Cardillo et al. 1997; Charteris et al. 2002; Chan et al. 2013) 
and proliferative diabetic retinopathy (de Silva et al. 2008). During disease, RPE 
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cells can migrate into the subretinal space (Zhao et al. 2011) and to a damaged area 
(Kim et al. 2009; Chan et al. 2010). The complex molecular process of RPE migra-
tion is regulated in part by growth factors and cytokines (Chan et al. 2013). In a 
cell culture model, RPE cell migration was induced by nerve growth factor (NGF) 
and treatment with rapamycin, an allosteric mTOR inhibitor, blocked migration 
(Cao et al. 2011). In an in vivo mouse model of OXPHOS deficiency, rapamycin 
slowed mTOR mediated RPE dedifferentiation and hypertrophy while maintaining 
RPE viability, but was ineffective at preventing RPE cell migration (Zhao et al. 
2011). Rapamycin has been shown to block only one of two primary downstream 
mTOR effectors, p70 S6 kinase 1, in many cell types (Hsieh et al. 2012). In con-
trast, INK128, a selective mTOR ATP binding site competitor, is able to inhibit 
the mTOR pathway by blocking two of the primary downstream effectors, p70 
S6 kinase 1 and 4E-BP1 (Hsieh et al. 2012). The inhibition of phosphorylation of 
4E-BP1 by INK128 has previously been shown to regulate translation of mRNAs 
involved in pro-invasion/migration in prostate cancer (Hsieh et al. 2012). This sug-
gested that phosphorylation of 4E-BP1 may regulate migration of RPE cells and 
warranted further investigation.

94.2  Materials and Methods

94.2.1  Cell Culture

Undifferentiated human retinal pigment epithelial cells (ARPE-19 cell line) were 
cultured as described (Dunn et al. 1996). ARPE-19 cells were differentiated on 
Matrigel (BD Biosciences) coated plates in DMEM/F12 medium with 15 mM 
HEPES and L-glutamine (Invitrogen), 1 % FBS, antibiotic/antimycotic (Invitro-
gen), 1 ng/mL bFGF (Invitrogen), 10−8 M retinoic acid (Sigma-Aldrich), 10 ng/
mL hydrocortisone (Sigma-Aldrich), 0.5X of transferrin insulin selenium supple-
ment (Invitrogen) for 4–6 weeks at 37 °C with 10 % CO2. Medium was changed 
three times a week. Porcine eyes were purchased from Animal Technologies Inc. 
The anterior segment, vitreous, and neural retina were removed and the resulting 
posterior eyecup was incubated in 0.25 % trypsin at 37 °C for 1 h. RPE cells were 
removed from the choroid/sclera by manual pipetting and collected in a centrifuge 
tube with DMEM-low glucose culture medium (Invitrogen), 10 % FBS, and antibi-
otic/antimycotic (Invitrogen). To obtain a pure RPE population, the cell suspension 
was placed on top of a 40 % Percoll cushion (in PBS) and centrifuged for 10 min 
at 300 xg. The purified RPE cells were resuspended in culture medium and plated. 
Cultures were incubated at 37 °C with 5 % CO2 and medium was changed 2–3 times 
a week.
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94.2.2  Reagents and Antibodies

INK128 (Active BioChem) and rapamycin (LC Laboratories) were used at the stat-
ed concentrations. Aphidicolin (Sigma-Aldrich) was used at 2 µg/ml to block cell 
proliferation.

The primary antibodies used include anti-PHOSPHO-S6 (Ser 235/236) (Cell 
Signaling Technology), anti-S6 (Cell Signaling Technology), anti-4E-BP1 (Cell 
Signaling Technology), and anti-γ-TUBULIN (Sigma-Aldrich). The secondary 
antibodies used were goat anti-mouse and goat anti-rabbit (Jackson Immuno Re-
search).

94.2.3  Immunoblot

Protein lysates were prepared as described previously (Strick et al. 2009). Total pro-
tein for each sample was quantified with a BCA kit (Pierce Biotechnology) and an 
equal amount of protein from each sample was separated by 4–15 % gradient SDS-
PAGE. Protein transfer and chemiluminescence detection were done as described 
previously (Liu and Vollrath 2004).

94.2.4  Scratch Assay

In vitro scratch assays were performed as previously described (Liang et al. 2007). 
Briefly, RPE cells were plated on coated plates to create a confluent monolayer. 
Prior to the scratch and during image acquisition, the area was marked to establish 
reference points for capturing multiple images of the same field over a time course. 
Monolayers were scratched with a p200 pipet tip and changed to scratch assay me-
dium containing 1 % FBS and aphidicolin, with or without rapamycin or INK128. 
The scratch assay medium was changed every 24 h. The area of the scratch at each 
time point was determined using ImageJ and compared to the original 0 h scratch 
time point to determine the percent of scratch closure.

94.3  Results

94.3.1  INK128 Inhibits mTORC1 Activity in Cultured RPE 
Cells

To determine if INK128 can inhibit mTORC1 activity in RPE cells, we per-
formed a dose response assay in undifferentiated and differentiated ARPE-19 
cells, a spontaneously immortalized adult human RPE cell line (Dunn et al. 1996). 
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 Immunoblot analysis demonstrates that INK128 is able to inhibit mTORC1 activ-
ity by blocking two of the primary downstream effectors, p70 S6 kinase 1 (mea-
sured by phosphorylation of S6) and phosphorylation of 4E-BP1 (Fig. 94.1a, b). 
Rapamycin has been shown to block only one of the primary downstream mTOR 
effectors, p70 S6 kinase 1, in many cell types (Hsieh et al. 2012) and inhibits 
PHOSPHO-S6, but not 4E-BP1 phosphorylation in undifferentiated ARPE-19 
cells (Fig. 94.1c).

94.3.2  Inhibition of Both mTOR Effectors p70 S6 Kinase 1 and 
4E-BP1 in Cultured RPE Cells Correlates with Reduced 
Cell Migration

In order to determine if mTOR inhibition can limit the migration of RPE cells in 
vitro, we performed a scratch assay and measured percent scratch closure as an indi-
cator of migration. With rapamycin treatment, differentiated APRE-19 cells exhibit 
similar scratch closure to a medium-only control: 91 % closure for rapamycin vs 
94 % for medium-only after 72 h (Fig. 94.2a). In contrast, after INK128 treatment 
the RPE cells do not migrate as efficiently and only have 4 % scratch closure in 
differentiated ARPE-19 cells after 72 h (Fig. 94.2a). We also assessed the ability 
of mTOR inhibition to alter RPE cell migration using cultures of primary porcine 

Fig. 94.1   Difference in mTOR effectors inhibited by INK128 or rapamycin in cultured RPE cells. 
a Undifferentiated, and b differentiated ARPE-19 cells were treated with INK128 for 24 h, c 
Undifferentiated ARPE-19 cells were treated with rapamycin for 24 h. Markers of mTOR activ-
ity P-S6 and 4E-BP1 (antibody detects total protein, independent of phosphorylation) showed a 
significant reduction in phosphorylated S6 and 4E-BP1 (slower mobility bands) at all doses of 
INK128, compared to the controls of total S6 protein and a γ-tubulin loading control, respectively. 
In contrast, rapamycin treatment only reduced S6 phosphorylation.
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RPE (Fig. 94.2b). Similar to our results for ARPE-19, rapamycin treatment does 
not impede porcine RPE cell scratch closure compared to medium-only after 72 h, 
whereas treatment with INK128 severly limits the ability of porcine RPE cells to 

Fig. 94.2   INK128 treatment prevents the migration of RPE cells. A scratch assay was performed 
in a differentiated ARPE-19, and b primary porcine RPE cells under medium-only, rapamycin, or 
INK128 treatment for 72 h. The insets indicate the percentage of scratch closure (compared to 0 h 
scratch area), which is a measure of migration under the culture conditions used.
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migrate at both doses tested (Fig. 94.2b). In the porcine RPE cell model, rapamycin 
treatment appeared to slightly slow migration at 48 h (64 % rapamycin vs 73 % 
medium-only), but did not prevent scratch closure. In all conditions tested, the cells 
were also treated with aphidicolin to block proliferation. Therefore, the scratch clo-
sure observed is due to migration of RPE cells. These results suggest that blocking 
both the mTOR downstream targets 4E-BP1 and p70 S6 kinase 1, but not p70 S6 
kinase 1 alone, prevents the migration of RPE cells.

94.4  Discussion

In a previous study, the ablation of OXPHOS in the RPE of mice caused dedif-
ferentiation of the RPE arising from activation of the PI3/AKT/mTOR signaling 
pathway. The mTOR inhibitor rapamycin slowed dedifferentiation and growth 
while maintaining RPE viability, but the drug was inadequate in prevention of 
RPE cell migration (Zhao et al. 2011). In this current study, rapamycin was also 
ineffective at disrupting RPE migration. In another cell culture study, rapamycin 
blocked NGF-induced RPE cell migration (Cao et al. 2011). The disparity between 
the two cell culture studies may result from differences in experimental design. 
We used a lower dose of rapamycin. We studied monolayers of primary porcine 
cultures and differentiated ARPE-19 cells, whereas Cao et al. used undifferenti-
ated ARPE-19. Finally, cell migration in our study resulted from a wound made 
under normal culture conditions, rather than in response to acute administration 
of a growth factor.

In contrast to rapamycin, we found that INK128 blocks both p70 S6 kinase 1 and 
4E-BP1 and prevents the migration of RPE cells in an in vitro wound assay. Our 
results suggest that the migration of RPE cells during disease could be regulated by 
activation of 4E-BP1. 4E-BP1 is a negative regulator of the key rate-limiting initia-
tion factor for cap-dependent translation, eIF4E.

mTOR phosphorylates 4E-BP1 causing its dissociation from eIF4E, which 
allows translation initiation complex formation at the 5′ end of mRNAs (Gingras 
et al. 2001). eIF4E has been shown to bind preferentially to 5′ terminal oligo-
pyrimidine tract (5′ TOP) containing mRNAs (Thoreen et al. 2012). In prostate 
cancer cells, INK128 treatment revealed specific messages involved in pro-in-
vasion and migration that are not inhibited by rapamycin (Hsieh et al. 2012). 
This mechanism of translational control may also mediate RPE migration. If so, 
it will be of great value to identify specific genes regulated by 4E-BP1 in the 
RPE and investigate their possible roles in regulating RPE migration. INK128 
is orally available and currently in eight clinical trials (http://www.cancer.gov/
clinicaltrials/search/results?protocolsearchid=9529537). It remains to be deter-
mined if this drug can inhibit RPE cell migration in an animal model, as it does 
in our culture model. Our results may provide insight into retinal degenerative 
diseases involving RPE cell migration and suggest a new rationale for therapy 
of these disorders.

http://www.cancer.gov/clinicaltrials/search/results?protocolsearchid=9529537
http://www.cancer.gov/clinicaltrials/search/results?protocolsearchid=9529537
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Chapter 95
Live Imaging of LysoTracker-Labelled 
Phagolysosomes Tracks Diurnal Phagocytosis of 
Photoreceptor Outer Segment Fragments in Rat 
RPE Tissue Ex Vivo

Yingyu Mao and Silvia C. Finnemann

Abstract Renewal of rod photoreceptor outer segments in the mammalian eye 
involves synchronized diurnal shedding after light onset of spent distal outer seg-
ment fragments (POS) linked to swift clearance of shed POS from the subretinal 
space by the adjacent retinal pigment epithelium (RPE). Engulfed POS phagosomes 
in RPE cells mature to acidified phagolysosomes, which accomplish enzymatic 
degradation of POS macromolecules. Here, we used an acidophilic fluorophore 
LysoTracker to label acidic organelles in freshly dissected, live rat RPE tissue 
flat mounts. We observed that all RPE cells imaged contained numerous acidified 
POS phagolysosomes whose abundance per cell was dramatically increased 2 h 
after light onset as compared to either 1 h before or 4 h after light onset. Lack of 
organelles of similar diameter (of 1–2 μm) in phagocytosis-defective mutant RCS 
rat RPE confirmed that LysoTracker live imaging detected POS phagolysosomes. 
Lack of increase in lysosomal membrane protein LAMP-1 in RPE/choroid during 
the diurnal phagocytic burst suggests that formation of POS phagolysosomes in 
RPE in situ may not involve extra lysosome membrane biogenesis. Taken together, 
we report a new imaging approach that directly detects POS phagosome acidifica-
tion and allows rapid tracking and quantification of POS phagocytosis by live RPE 
 tissue ex situ.

Keywords Acidification · LAMP-1 · Lysosomes · LysoTracker · Phagolysosomes · 
Phagosomes · Phagocytosis · Photoreceptor outer segments · RCS · RPE

Abbreviations

POS Photoreceptor outer segment fragments
RPE Retinal pigment epithelium
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95.1  Introduction

Diurnal shedding and clearance of photoreceptor outer segment fragments (POS) by 
the retinal pigment epithelium (RPE) promotes continuous outer segment renewal 
that is important for long-term viability and function of vertebrate photoreceptors 
(Young 1967; Young and Bok 1969). In the mammalian eye, POS shedding and en-
gulfment are precisely synchronized by light and circadian regulation to take place 
immediately after light onset (LaVail 1976). As a result, numbers of phagosome 
organelles containing engulfed POS in the RPE in situ of wild-type mice and rats 
reach a daily peak 1–2 h after light onset (LaVail 1976; Nandrot et al. 2004; Nandrot 
et al. 2007).

The steep decline of detectable POS phagosomes in the RPE after the daily 
burst of POS uptake implies that phagosomes rapidly mature to acidified phagoly-
sosomes, in which digestive hydrolases efficiently degrade POS components. The 
daily maturation process of POS phagosomes to phagolysosomes remains incom-
pletely understood. Fusion as well as “kiss-and-run” connections with bona fide 
lysosomes likely both contribute to the acidification of phagolysosomes, which 
carry the lysosomal membrane marker protein LAMP-1 (Bosch et al. 1993). We 
hypothesized that digestive organelles of the RPE in situ may differ at times of 
active POS clearance as compared to other times with respect to size, distribu-
tion, abundance, or extent of acidification to accomplish timely POS degradation. 
Labeling with LysoTracker biosensor acidified organelles in live rat RPE tissue in 
freshly dissected flat mounted eyecups, we observed acidified POS phagosomes 
in wild-type (but not phagocytosis-defective RCS) rat RPE that dramatically 
increased in abundance 2 h after light onset. This formation of acidified POS 
phagolysosomes in wild-type RPE did not correlate with a detectable increase in 
LAMP-1.

95.2  Materials and Methods

95.2.1  Animals

All procedures involving animals were performed following the ARVO statement 
for the “Use of Animals in Ophthalmic and Vision Research”, and reviewed and 
approved by the Fordham University Institutional Animal Care and Use Com-
mittee. Sprague-Dawley and pink-eyed, tan-hooded RCS rats were raised and 
housed in 12-h light:12-h dark light conditions and fed ad libitum. 28–35-day-old 
rats were sacrificed by CO2 asphyxiation following updated AVMA guidelines 
followed by immediate dissection of posterior eyecups and removal of neural 
retina.
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95.2.2  LysoTracker Live Staining and Imaging

Freshly dissected eyecups were incubated in FluoroBrite™ DMEM with 
0.4 μM LysoTracker Green DND-26 and 5 μM DAPI nuclei stain (all Life 
Technologies) at 37 °C for 15 min, flat-mounted and imaged on a Leica TSP5 
confocal microcopy system. Images were compiled and processed using Adobe 
Photoshop CS4.

95.2.3  Immunoblotting Protein Quantification

Posterior eyecups containing RPE and choroid (R/Ch) and neural retinas (NR) were 
lysed in 50 mM HEPES, pH 7.4, 150 mM NaCl, 10 % glycerol, 1.5 mM MgCl2, 
1 % Triton X-100 supplemented with protease and phosphatase inhibitor cocktails. 
 Lysates were analyzed by SDS-PAGE and immunoblotting for LAMP-1, PSD95 
(both Cell Signaling), and RPE65 (Genetex). Bands were quantified by densitom-
etry using GE ImageQuant TL 7.0.

95.3  Results

95.3.1  Live Imaging of LysoTracker Reveals POS 
Phagolysosomes and their Diurnal Peak in 
Abundance After Light Onset in Wild-type But Not 
Phagocytosis-Defective RCS Rat RPE in Eyecups Ex 
Vivo

To examine acidified cytoplasmic organelles in the RPE, we used a fluores-
cent acidophilic biosensor, LysoTracker, to stain and image live RPE tissue in 
freshly dissected, flat mounted eyecups from rats sacrificed 1 h before, 2 or 4 h 
after the onset of light. At all time points, we observed that the brightest Lyso-
Tracker positive compartments shared a diameter of 1–1.6 μm (Fig. 95.1a–c), 
which is similar to the size of early phagocytosed POS, suggesting that they are 
POS phagolysosomes. These acidified compartments were by far most abundant 
2 h after light onset matching the diurnal burst of POS engulfment. In con-
trast, phagocytosis-defective RCS RPE contained almost no phagosomes but 
numerous small-size acidic compartments that are likely bona fide lysosomes 
(Fig. 95.1d)
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95.3.2   Levels of Mature LAMP-1 in RPE/Choroid Do Not 
Change with Light Onset

LAMP-1 is a heavily glycosylated membrane protein that is primarily targeted to 
lysosomal membranes (Carlsson et al. 1988; Harter and Mellman 1992). The mo-
lecular size of rat LAMP-1 polypeptide is ~ 49 kDa. N- and O- glycosylation in the 
Golgi apparatus yields numerous forms of mouse LAMP-1 of 92–140 kDa (Andre-
jewski et al. 1999). In immunoblots, we detected 95–125 kDa forms in RPE/choroid 
and 75–95 kDa forms as well as a 49 kDa form (likely the immature precursor) 

Fig.  95.1   Live imaging reveals diurnal increase of abundance of acidified phagolysosomes in 
live wild-type but not phagocytosis-defective RCS mutant rat RPE ex vivo. LysoTracker ( green) 
and nuclei ( pink) live staining of wild-type (wt) RPE in eyecup flat-mounts harvested at times as 
indicated, 1 h before (a), 2 h (b), or 4 h (c), after light onset or of RCS RPE 2 h after light onset (d). 
Representative fields of three independent experiments are shown. Images are maximum projec-
tions of z-stacks obtained using identical imaging parameters. Scale bar: 10 μm
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in neural retina (Fig. 95.2a). Levels of glycosylated LAMP-1 are similar in RPE/
choroid samples collected before and after light onset (Fig. 95.2b, c), suggesting 
that POS phagolysosome formation is unlikely to involve a burst of lysosome mem-
brane formation.

95.4  Discussion

In this study, we use LysoTracker biosensor to detect acidified phagosomes in live 
rat RPE in freshly dissected posterior eyecup flat mounts. To our knowledge, we 
report the first experimental approach that allows observing acidified phagolyso-
somes in live RPE tissue. It provides a rapid, simple, and direct assessment of the 
RPE’s phagocytic load that is an ideal complement to established methods analyz-
ing POS phagosomes in RPE tissue after fixation and processing (Young and Bok 
1969; Gibbs et al. 2003; Sethna and Finnemann 2013).

Fig.  95.2   Levels of lysosomal marker protein LAMP-1 do not change after light onset in rat 
posterior eyecups containing RPE and choroid. a Immunoblotting detects LAMP-1 in both RPE/
choroid (RPE/Ch) and neural retina (NR) but higher molecular weight bands differ in size indicat-
ing differential glycosylation. Open bracket indicates glycosylated LAMP-1 in RPE lysate; close 
bracket indicates glycosylated LAMP-1 in retina lysate. Arrow indicates unglycosylated LAMP-1. 
RPE65 and PSD95 were detected on the same blot membrane to indicate enrichment of RPE and 
neural retina in rat eye fractions, respectively. b and c Levels of glycosylated LAMP-1 in RPE/
choroid do not differ between 1 h before (− 1 h), 2 or 4 h after (+ 2 h, + 4 h) light onset. RPE65 
detection of the same membrane is shown as loading control. Bars indicate relative level of all 
forms of glycosylated LAMP-1 normalized to RPE65. Blots show representative results (a and b). 
Bars show mean ± SD, of three independent experiments (c).
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We classify the LysoTracker-labelled compartments we observe in wild-type rat 
RPE as POS phagolysosomes based on (1) their similarity in size to POS phago-
somes (Bosch et al. 1993); (2) their increased abundance at the time POS phago-
somes peak in the RPE (LaVail 1976; Nandrot et al. 2004); and (3) their absence in 
phagocytosis-defective RCS RPE (Bok and Hall 1971; Mullen and LaVail 1976). 
Co-staining of these LysoTracker-positive phagosomes with antibodies specific to 
either opsin N- or C-terminus, known to differ in stability to RPE lysosomal pro-
cessing (Esteve-Rudd et al. 2014; Wavre-Shapton et al. 2014), will allow in the 
future further specification of the content of acidified phagolysosomes and the POS 
digestion process of the RPE in situ.

We found that levels of glycosylated LAMP-1 in tissue extracts enriched in RPE 
do not increase at the diurnal peak in POS phagosome content in the RPE. Only gly-
cosylated LAMP-1 reaches lysosomes. Thus, levels of glycosylated LAMP-1 are an 
indirect indicator of the overall quantity of intracellular membranes of lysosomal 
origin (assuming constant LAMP-1 membrane concentration). Further experiments 
are ongoing to confirm the preliminary implication of this finding that POS pha-
golysosomal membranes form largely at the expense of free lysosomal membranes.
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Chapter 96
Cre Recombinase: You Can’t Live with It, 
and You Can’t Live Without It

Yun-Zheng Le, Meili Zhu and Robert E. Anderson

Abstract The development of conditional gene targeting has greatly advanced our 
knowledge of human retinal diseases, but issues have arisen related to the use of 
some Cre-expressing mouse lines. In this article, we discuss potential problems 
associated with transgenic Cre expression-induced degeneration and alteration of 
rod photoreceptors and retinal pigment epithelium (RPE). Our strategy for circum-
venting RPE degeneration by induced transient Cre expression uses a single intravit-
real doxycycline injection in a tetracycline-inducible RPE-specific Cre mouse line, 
which results in productive Cre-mediated recombination efficiently in the RPE. As 
constitutive expression of Cre in the RPE alters RPE biology, this inducible Cre/lox 
system provides an opportunity for conditional gene targeting in the RPE, a tissue 
that is closely related to photoreceptor degeneration, age-related macular degenera-
tion, and diabetic retinopathy.

Keywords Cre/lox · Tetracycline-inducible · Photoreceptor · RPE · Degeneration
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96.1  Introduction

Cre/lox technology has become a method of choice for conditional gene target-
ing, at least for ocular tissues. While this technology has been successfully used 
to address many questions in ocular biology and diseases, issues have arisen from 
the use of Cre-drive lines that have not been discussed sufficiently and which, to 
some extent, have prevented the effective use of the resources currently avail-
able. We will discuss these problems first and then summarize our strategy in 
circumventing constitutive Cre expression-induced RPE degeneration by transient 
Cre expression in a tetracycline-inducible RPE-specific Cre mouse line (Fu et al. 
2014; Le et al. 2008).

96.2  Problems Associated with Transgenic Cre 
Expression

Most available Cre-drive lines were generated with the traditional transgenic ap-
proach. As a result, these Cre-drive lines exhibited common problems associated 
with this strategy, including positional and copy number effect (Festenstein et al. 
1996; Montavon et al. 2012) that may result in the variation in expression pattern 
and level among individual animals in transgenic mice. In other cases, transgene 
insertion affects gene expression in the insertion site, which may produce un-
wanted phenotypic consequence that interfere with the intended goal of a study 
(Sundermeier et al. 2014). Cre overexpression directed by rhodopsin promoter 
has been shown to cause rod photoreceptor degeneration (Jimeno et al. 2006). In 
our hands, we used short (0.2-kb) and long (4.1-kb) mouse opsin promoters and 
generated Cre-drive lines, named Short Mouse Opsin Promoter-Cre (SMOPC) 
line and Long Mouse Opsin Promoter-Cre (LMOPC) lines (Le et al. 2006). All 
Cre-drive lines, SMOPC1, LMOPC1, and LMOPC2, were capable of carrying 
out productive Cre-mediated recombination in rods ranging from 42 % (Le et al. 
2006) to near 100 % (in LMOPC2 line, data not shown). While the SMOPC1 line 
and LMOPC1 line did not show any apparent loss of functional and morpho-
logical integrity in rod photoreceptors, LMOPC2, which demonstrated a much 
stronger Cre expression in its retinal extracts (Fig. 96.1), showed a significant 
loss of photoreceptor outer nuclear layer (ONL) thickness after 10 months of 
age (Fig. 96.1). As expression of a non-toxic fusion protein, human rhodopsin-
green florescent protein (GFP), causes progressive rod photoreceptor degenera-
tion (Chan et al. 2004), perhaps one can argue that rhodopsin promoter-directed 
Cre overexpression in rods may be a consequence of a negative effect on the 
host protein transcription/translation/maturation systems conferred by the opsin 
promoter, which is responsible for the expression of approximately 10 % of total 
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retinal proteins. Therefore, the common Cre toxicity may not completely account 
for photoreceptor degeneration in rod-specific Cre mice. This argument is sup-
ported by the observation that there was no apparent cone degeneration in high 
levels of transgenic Cre expression directed by the promoter of human red/green 
pigment (Le et al. 2004). Nevertheless, Cre is a site-specific DNA recombinase 
and Cre overexpression has been shown to cause chromosomal rearrangements in 
mammals (Loonstra et al. 2001; Schmidt et al. 2000), probably at cryptic recom-
bination sites. This problem may be associated with Cre overexpression induced 
toxicity in the RPE. Constitutive Cre expression, directed by the promoters of 
tyrosinase-related protein-1 (TRP1) or human vitelliform macular dystrophy-2 
(VMD2), causes RPE dysfunction and concomitant disorganization of RPE layer 
morphology, large areas of RPE atrophy, photoreceptor dysfunction, and microg-
lial cell activation in the affected areas in an age and Cre dosage dependent man-
ner (He et al. 2014; Thanos et al. 2012).

Cre overexpression induced retinal alteration and degeneration make it very 
difficult to interpret the data in retinal degeneration studies that utilize “toxic Cre 
animals” for cell-specific gene deletion. Due to inherent problems associated with 
transgenic mice, there is a significant difference in the expression level among 
individual animals within the same Cre transgenic line (Festenstein et al. 1996; 
Montavon et al. 2012), which makes it almost impossible to distinguish a retinal 
degeneration phenotype caused by Cre or a target gene, unless the same eye/retina 
is subjected to analysis for Cre expression and degeneration phenotypes simulta-
neously. This presents a huge, sometimes impossible challenge, in experimental 
design. Therefore, conclusions of previous degeneration studies that utilize “toxic 
Cre mice” may need to be re-validated if Cre-toxicity tests were not met with great 
stringency. Looking ahead, a better approach for conditional gene targeting will 
be to use inducible technologies that allow a brief and transient expression of a 
 sufficient level of Cre to be effective and turns its expression off after Cre mediated 
recombination.

Fig. 96.1   Cre overexpression in rods caused a significant loss of outer nuclear layer ( ONL) thick-
ness, modified from Le et al. (2006) with permission of the publisher. a Western blot analysis 
showing LMOPC2 mice produced a significantly high level of Cre. b Representative haematoxy-
lin eosin (H&E) stained retinal sections from 10-month-old Cre mice and WT controls. Scale bar: 
50 µm
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96.3  Inducible RPE-Specific Cre Mice

To circumvent the potential toxicity derived from constitutive Cre expression in 
the RPE, we developed an inducible RPE-specific Cre mouse line with tetracycline 
inducible gene expression technology (Le et al. 2008). To increase the reproduc-
ibility of Cre-mediated recombination, we recently re-examined the inducible con-
ditions with intravitreal delivery of doxycycline (Dox), a tetracycline derivative 
( Fu et al. 2014), at a concentration (4 µg in 1 µl) that does not cause retinal degener-
ation (Chang et al. 2000). Intravitreal injection raised the retinal Dox concentration 
to ~ 250-fold that of the maximal level in the bloodstream delivered by feeding or 
intraperitoneal (IP) injection (assuming that the diameter of a mouse eye is 3 mm) 
(Ruz et al. 2004). As feeding or IP injection depends on the blood circulation to 
deliver Dox to the eye, the relative retinal Dox concentration delivered by intravit-
real Dox injection is likely much higher than that from feeding or IP injection. As 
a result, intravitreal Dox injection resulted in a burst of Cre expression in the RPE 
extracts, compared with that induced by feeding (Fig. 96.2). However, Cre protein 
was diminished quickly with time, and did not cause any apparent alteration in reti-
nal morphology and function (Fu et al. 2014). Since Cre-mediated recombination 
is permanent in vivo, such a brief Cre-expression resulted in approximately 60 % of 
the RPE cells undergoing productive Cre-mediated recombination, with patch areas 
reaching 100 % forever (Fig. 96.3). Therefore, intravitreal Dox delivery with this 
inducible RPE-specific Cre mouse line provides a new opportunity for conditional 
gene targeting in the RPE, a tissue that is closely related to photoreceptor degenera-
tion, age-related macular degeneration, and diabetic retinopathy.
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Fig. 96.2  Western blot analy-
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was significantly reduced in 
inducible RPE-specific Cre 
mice 60 days (60D) post-
intravitreal Dox induction 
(ind.), modified from Fu et al. 
(2014) with permission of 
the publisher. Error bar: SD; 
n = 3. *: p < 0.01.
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Chapter 97
Efficiency of Membrane Protein Expression 
Following Infection with Recombinant 
Adenovirus of Polarized Non-Transformed 
Human Retinal Pigment Epithelial Cells

Claudia Müller, Timothy A. Blenkinsop, Jeffrey H. Stern  
and Silvia C. Finnemann

Abstract Transient expression of exogenous proteins facilitates studies of molecu-
lar mechanisms and utility for transplantation of retinal pigment epithelial (RPE) 
cells in culture. Here, we compared expression of the membrane protein β5 inte-
grin-GFP (β5-GFP) in two recently established models of differentiated human 
RPE, adult RPE stem cell-derived RPE and primary fetal RPE, upon infection with 
recombinant adenovirus or transfection with DNA in liposomes. We varied viral 
titer and duration of virus incubation and examined β5-GFP and the tight junction 
marker ZO-1 in manipulated cells by confocal microscopy. Fewer than 5 % of cells 
expressed β5-GFP after liposome-mediated transfection. The percentage of cells 
with detectable β5-GFP exceeded 90 % after adenovirus infection for as little as 1 h. 
Decreasing virus titer two-fold did not alter the fraction of cells expressing β5-GFP 
but increased variability of β5-GFP level among cells. In cells with low expression 
levels, β5-GFP localized mostly to the apical plasma membrane like endogenous 



732 C. Müller et al.

αvβ5 integrin. In cells with high expression levels, β5-GFP localized to the cyto-
plasm in addition to the apical surface suggesting accumulation in trafficking com-
partments. Altogether, adenovirus delivery yields efficient exogenous membrane 
protein expression of correct polarity in differentiated human RPE cells in culture.

Keywords β5 integrin-GFP · Infectivity · Primary human fetal RPE · Protein 
expression · Recombinant adenovirus · RPE · RPESC-RPE

Abbreviations

β5-GFP β5 integrin-GFP
hfRPE Primary human fetal RPE
RPE Retinal pigment epithelium
RPESC-RPE Adult retinal pigment epithelium stem cell-derived-RPE
vp Virus particles

97.1  Introduction

Post-mitotic retinal pigment epithelial (RPE) cells form a polarized monolayer epi-
thelium that fulfills numerous functions each one of which supports photorecep-
tor long-term function and viability. These include light absorption, transepithelial 
transport, re-isomerization of all-trans retinal, polarized secretion of growth factors, 
retinal adhesion and the diurnal clearance phagocytosis of shed photoreceptor outer 
segment tips (Strauss 2005). Impaired RPE-photoreceptor interactions cause retinal 
dysfunction or retinal degeneration in experimental animal models and contribute to 
inherited human retinal diseases and age-related macular degeneration.

The availability of RPE cells in culture facilitates studies of RPE functionality 
and molecular mechanisms otherwise limited by lack of access and sufficient yield 
to RPE tissue (Mazzoni et al. 2014). Over the past decades several groups have 
reported protocols to establish and grow polarized non-transformed human RPE 
cells that retain many characteristics of the RPE in the human eye (Sonoda et al. 
2009; Hu and Bok 2010). Among these, adult retinal pigment epithelial stem cell-
derived-RPE cells (RPESC-RPE) and primary human fetal RPE cells (hfRPE) are 
established using stringent, published protocols and seeded for studies at passage 
1 or 2 followed by differentiation over several weeks, during which post-confluent 
monolayers generate pigment, polarize and acquire RPE specific marker proteins 
(Maminishkis et al. 2006; Blenkinsop et al. 2013).

Mechanistic studies of these novel high quality RPE models greatly benefit from 
efficient genetic manipulation. Adenovirus vectors are known to infect RPE cells 
without significant cytotoxicity and recombinant adenovirus-mediated gene trans-
fer has long been used to manipulate gene expression of RPE cells in vivo and in 
culture (Trapani et al. 2014). Utility of virus transduced cells for functional studies 
requires (1) a large fraction of cells expressing exogenous protein, (2) low variabil-
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ity in exogenous protein expression level among transduced cells, and (3) correct 
subcellular localization of the exogenous protein. Here, we assess these parameters 
for differentiated, polarized RPESC-RPE and hfRPE cells infected with recombi-
nant adenovirus encoding the transmembrane protein β5 integrin-GFP (β5-GFP).

97.2  Materials and Methods

97.2.1  Human RPE Cell Cultures

RPESC-RPE cells (Salero et al. 2012) were seeded at passage-2 on 6.5-mm Tran-
swell® filters with 0.4 μm pore size (Corning Costar) (Blenkinsop et al. 2013). 
RPESC-RPE cells were maintained according to published procedures for 6–7 
weeks before being used for experiments.

HfRPE cells at passage-0 were provided by Dr. Sheldon Miller (National Eye In-
stitute, National Institutes of Health, Bethesda, MD) and maintained and re-seeded 
according to published protocols (Maminishkis et al. 2006). HfRPE cells of pas-
sage-2 were maintained on glass cover slips in 96-well plates for 4 weeks before 
being used for experiments.

97.2.2  Adenovirus-Mediated Transduction

Generation of replication-defective, recombinant adenovirus encoding GFP-tagged 
human β5 integrin was described previously (Nandrot et al. 2012). Adenovirus stock 
was diluted to 5, 2.5, or 1.25 × 1010 virus particles (vp)/mL in serum-free DMEM 
and applied to cells for 1 or 15 h followed by incubation in complete medium for 23 
or 9 h, respectively, before fixation.

97.2.3  Liposome-Mediated Transfection

pEGFP-N2 expression plasmid encoding β5-GFP was described previously (Nan-
drot et al. 2012). Cells were transfected with plasmid DNA in the presence of Lipo-
fectamine 2000 as suggested by the manufacturer (Life Technologies). Cells were 
fixed 24 h after transfection.

97.2.4  Immunofluorescence Staining and Microscopy

RPE cells were fixed with ice-cold methanol for 5 min. Tight junctions were la-
beled with ZO-1 antibodies and AlexaFluor594-conjugated secondary antibodies 
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(Life Technologies). Nuclei were counterstained with DAPI. X-y image stacks were 
acquired on a Leica TSP5 laser-scanning confocal microscopy system) and were 
compiled using Adobe Photoshop CS4.

97.3  Results

97.3.1  Infectivity of RPESC-RPE Cells

To optimize efficiency of exogenous protein expression following infection with 
adenovirus in RPESC-RPE cells were exposed to adenovirus particles at differ-
ent concentrations and for different durations. We used a recombinant, replication 
defective adenovirus encoding human β5 integrin with a C-terminal GFP tag (β5-
GFP). We previously found that this adenovirus promotes expression of β5-GFP 
protein that forms heterodimeric receptors with endogenous human or rat αv in-
tegrin subunits that localize to the cell surface in fibroblasts, RPE cell lines and 
primary rat and mouse RPE in culture (Nandrot et al. 2012). Moreover, β5-GFP 
expression rescues the POS recognition deficiency of primary RPE derived from 
ITGB5−/− mice indicating that αvβ5-GFP receptors function like αvβ5 integrin 
(Nandrot et al. 2004; Nandrot et al. 2012). Importantly, β5-GFP shows robust green 
fluorescence that is largely maintained even after cell fixation and indirect immu-
nofluorescence staining procedures.

We first exposed RPESC-RPE cells for 15 h to adenovirus at different concen-
trations and used confocal microscopy to assess GFP fluorescence in cells fixed 
24 h after the start of infection. Figure 97.1a–c illustrates that most RPESC-RPE 
cells expressed β5-GFP regardless of virus titer. In comparison, delivery of β5-
GFP expression plasmid via liposomes was very inefficient (Fig. 97.1d). Quanti-
fication of the fraction of RPESC-RPE cells with detectable β5-GFP fluorescence 
revealed that exposure to 5 × 1010 or 2.5 × 1010 vp/mL resulted in β5-GFP expres-
sion by 97 % of RPESC-RPE cells (Fig. 97.1e). Exposure to 1.25 × 1010 vp/mL was 
slightly less efficient yielding 90 % of RPESC-RPE cells with visible GFP fluores-
cence (Fig. 97.1e). However, in cells transduced with adenovirus at 2.5 × 1010 or 
5 × 1010 vp/mL fluorescent cells showed uniformly high levels of integrin β5-GFP. 
Display of x-z confocal sections revealed that β5-GFP in these brightly fluorescent 
cells localized to sites in the cytoplasm and to the apical surface (Fig. 97.1a and 
b, x-z displays). In contrast, cells transduced with adenovirus at 1.25 × 1010 vp/mL 
resulted in a heterogeneous pattern with fluorescence varying significantly among 
β5-GFP-positive RPESC-RPE cells. Notably, in cells with low or moderate levels 
of fluorescence, most β5-GFP appeared to localize to the cells’ apical surface, while 
highly fluorescent cells showed cytoplasmic β5-GFP like cells transduced with ad-
enovirus at higher concentration (Fig. 97.1c, x-z display).

We next tested if exposure to adenovirus for a shorter time period would de-
crease efficiency of transduction of RPESC-RPE cells. Limiting adenovirus expo-
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Fig. 97.1   β5-GFP expression by RPESC-RPE cells following adenovirus infection or liposome-
mediated plasmid transfection. a-d: Images show fluorescence microscopy of β5-GFP ( green), 
ZO-1 ( red), and cell nuclei ( blue) in RPESC-RPE cells after adenovirus infection (adv) or lipo-
some-mediated transfection (lipo). a–c β5-GFP in RPESC-RPE cells after adenovirus infection 
(adv) for 15 h at 5 ×  1010 vp/mL (a) 2.5 × 1010 vp/mL (b) or 1.25 × 1010 vp/mL (c), or 24 h after 
liposome-mediated transfection (d). The top of each panel shows a maximum projection of a rep-
resentative image stack, the bottom of each panel shows a select x-z plane. Microscopy settings 
were adjusted to optimize the dynamic range for each image. Scale bar: 20 µm. e: Quantification 
of RPESC-RPE expressing β5-GFP at any detectable level after exposure to adenovirus for 1 
hour (white bars) or 15 hours (black bars) or after liposome-mediated transfection (black bar), as 
indicated. Bars show mean ± SD, n = 3. f: Relative intensity of fluorescence of single cells after 
infection or transfection as in e and as indicated. 
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sure to only 1 h did not significantly reduce the percentage of RPESC-RPE cells 
expressing β5-GFP regardless of virus titer (Fig. 97.1d).

97.3.2  Infectivity of hfRPE Cells

Finally, we tested if highly differentiated, non-transformed hfRPE cells share the 
high infectivity of RPESC-RPE. Indeed, 93 % of hfRPE cells were fluorescent fol-
lowing 15-h exposure to 1.25 × 1010 vp/mL and most cells were brightly fluorescent 
(Fig. 97.2a, and c). In contrast, only 3.5 % of hfRPE cells were β5-GFP-positive 
after liposome-mediated transfection and their fluorescence was uniformly dim 
(Fig. 97.2b and c).

97.4  Discussion

Our experiments reveal that the two distinct post-confluent, highly differentiated, 
non-transformed human RPE cell strains we studied, RPESC-RPE and hfRPE, are 
highly susceptible to adenovirus infection. The finding that exposure to adenovirus 
for 1 h was as efficient in transducing cells as exposure for 15 h was unexpected. 
An earlier study found that transduction of confluent human primary RPE cells 
increased in a linear fashion with infection times of 16–70 h and was negligible if 
adenovirus was added for only 4 h (da Cruz et al. 1996). It is possible that adeno-
virus enters RPE cells more efficiently after extended periods of differentiation and 
polarization as induced in the two model systems we studied.

Fig. 97.2   β5-GFP expression by hfRPE cells following adenovirus infection or liposome-mediated 
plasmid transfection. Images show fluorescence microscopy of β5-GFP (green), ZO-1 (red), and 
cell nuclei ( blue) in hfRPE cells after infection for 15 h with adenovirus at 1.25 × 1010 vp/mL (a) 
or liposome-mediated transfection (b). Maximum projections of representative image stacks are 
shown. Microscopy settings were adjusted to optimize the dynamic range for each image. Scale bar: 
20 µm. c Quantification of hfRPE expressing β5-GFP at any detectable level after exposure to ade-
novirus for 15 h (adv) or after liposome-mediated transfection (lipo). Bars show mean ± SD, n = 3.
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Chapter 98
Contribution of Ion Channels in Calcium 
Signaling Regulating Phagocytosis: MaxiK, 
Cav1.3 and Bestrophin-1

Olaf Strauß, Nadine Reichhart, Nestor Mas Gomez and Claudia Müller

Abstract Mutations in the BEST1 gene lead to a variety of retinal degenerations 
including Best’s vitelliforme macular degeneration. The BEST1 gene product, 
bestrophin-1, is expressed in the retinal pigment epithelium (RPE). It is likely that 
mutant bestrophin-1 impairs functions of the RPE which support photoreceptor func-
tion and will thus lead to retinal degeneration. However, the RPE function which 
is influenced by bestrophin-1 is so far not identified. Previously we showed that 
bestrophin-1 interacts with L-type Ca2 + channels of the CaV1.3 subtype and that the 
endogenously expressed bestrophin-1 is required for intracellular Ca2 + regulation. A 
hallmark of Best’s disease is the fast lipofuscin accumulation occurring already at 
young ages. Therefore, we addressed the hypothesis that bestrophin-1 might influ-
ence phagocytosis of photoreceptor outer segments (POS) by the RPE. Here, siRNA 
knock-down of bestrophin-1 expression as well as inhibition of L-type Ca2 + chan-
nel activity modulated the POS phagocytosis in vitro. In vivo CaV1.3 expression 
appeared to be diurnal regulated with a higher expression rate in the afternoon. 
Compared to wild-type littermates, CaV1.3−/− mice showed a shift in the circadian 
POS phagocytosis with an increased activity in the afternoon. Thus we suggest that 
mutant bestrophin-1 leads to an impaired regulation of the POS phagocytosis by the 
RPE which would explain the fast lipofuscin accumulation in Best patients.
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98.1  Introduction

Bestrophin-1, the product of the BEST1 gene. Mutations in the BEST1 gene were 
identified to cause different types of retinal degenerations. The most common type 
is Best’s vitelliforme macular dystrophy (Marquardt et al. 1998; Petrukhin et al. 
1998; Marmorstein and Kinnick 2007; Boon et al. 2009). The BEST1 gene product, 
bestrophin-1, is expressed by the retinal pigment epithelium (RPE) (Marmorstein 
and Kinnick 2007; Hartzell et al. 2008) which interacts with the photoreceptors of 
the retina and is essential for visual function (Strauss 2005). Therefore, it is likely 
that mutant bestrophin-1 impairs RPE function which in turn leads to photoreceptor 
degeneration.

98.2  Influence of Bestrophin-1 on RPE Cell Function

The RPE maintains the photoreceptor function by diurnal phagocytosis of shed 
photoreceptor outer segments, transepithelial transport, re-isomerization of all-trans 
retinal, spatial buffering of ions in the subretinal space, secretion of neurotrophic 
factors and by light absorption (Strauss 2005).

Several functional properties of bestrophin-1 might be essential for the RPE. 
Bestrophin-1 was identified as a Ca2+-dependent Cl channel (Marmorstein and Kin-
nick 2007; Hartzell et al. 2008) which appears endogenously expressed mainly in 
membranes of ER Ca2 + stores (Barro-Soria et al. 2010; Neussert et al. 2010; Strauss 
et al. 2012; Gomez et al. 2013). However, this localization might not be exclu-
sive. Furthermore, bestrophin-1 influences intracellular Ca2 + signaling in the RPE. 
On one hand bestrophin-1 interacts with L-type Ca2+ channels of the CaV1.3 sub-
type regulating their surface expression and conductance (Rosenthal et al. 2006; 
Yu et al. 2008; Reichhart et al. 2010; Milenkovic et al. 2011b). On the other hand 
bestrophin-1 acts as an intracellular Cl channel which helps to accumulate into or 
to release Ca2+ from cytosolic Ca2+ stores by conducting Cl as negatively charged 
counter-ion for the transmembranal transport of the positively charged Ca2+ ions 
(Gomez et al. 2013).

Best patients show a fast accumulation of lipofuscin (Boon et al. 2009). Since a 
considerable body of evidence indicate that lipofuscin accumulation cause loss of 
RPE cells in many types of macular degeneration it is likely that also in Best’s dis-
ease lipofuscin represents an important risk factor for retinal degeneration (Sparrow 
et al. 2012). Altered photoreceptor outer segment (POS) phagocytosis can cause li-
pofuscin accumulation. Furthermore Ca2 + signaling involving L-type Ca2+ channels 
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controls RPE phagocytosis (Karl et al. 2008). Thus an impairment of Ca2+ signaling 
by mutant bestrophin-1 causes altered regulation of phagocytosis, and therefore 
lipofuscin accumulation.

98.3  Impact of L-type Ca2 + Channels and Bestrophin-1 on 
POS Phagocytosis of the RPE

Data about the impact of ion channels in the phagocytosis regulation further sup-
port this hypothesis (Muller et al. 2014). Using a porcine RPE cell culture model 
the POS phagocytosis was investigated under the influence of ion channel mod-
ulation. After siRNA knock-down of bestrophin-1 the POS uptake is increased, 
which indicates an influence of bestrophin-1 on POS phagocytosis (Fig. 98.1a, b). 
Here bestrophin-1 is an inhibitor of phagocytic activity. This effect might be ei-
ther due to inhibitory modulation of L-type channel activity or due to decreased 
activation of store-operated Ca2 +  entry (Heth and Marescalchi 1994; Gomez et al. 
2013). However, after siRNA knock-down of Orai-1 Ca2 +  channels which permits 
the store-operated Ca2 +  entry, phagocytic activity remains unchanged. Using the 
dihydropyridine derivative BayK8644 the L-type channel activity can be specifi-
cally modulated. The application of L-type channel inhibitor (+)BayK8644 led to 
a reduced phagocytic activity whereas the application of L-type channel activator 
(-)BayK8644 had no further effect on POS phagocytosis (Fig. 98.1c). The phago-
cytosis reduction after L-type channel inhibition shows that L-type channels are 
required for POS phagocytosis activation. The siRNA knock-down of the L-type 
channel inhibitor bestrophin-1 would result in increased L-type channel activity 
and therefore in increased POS phagocytosis. That the L-type channel opener (-)
BayK8644 has no effect can be explained by the fact that the substance has also 

β

a b c

Fig.  98.1  Modulation of POS phagocytosis in cultured porcine RPE. a Western-Blot showing 
the reduction of bestrophin-1 expression after siRNA knock-down. b Phagocytosis rates of RPE 
cells either treated with non-targeting siRNA (scrambled) or bestrophin-1 targeted siRNA. c Effect 
of L-type channel inhibition ((+))BayK8644) or activation ((−)BayK8644 on phagocytosis rate. 
(mean ± SEM of 3 experiments with n = 13–25 samples; *** = p-value < 0.001; modified from 
Muller et al. 2014)
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an impact on the voltage-dependence of L-type channels. A possible activation of 
L-type channels would be due to increased tyrosine phosphorylation following in-
tegrin receptor ligation after POS binding As we showed previously that L-type 
channels are activated by increased tyrosine phosphorylation after integrin receptor 
ligation, mechanistically channel activation can follow POS binding to αvβ5 integ-
rin surface receptor during phagocytosis. (Karl et al. 2008).

The data discussed so far were obtained in cultured cells. RPE phagocytosis is 
a rhythmical regulated process and ion channel expression might vary at different 
day times. In vitro experiments lack that impact. In order to substantiate the above 
discussed model in vivo phagocytosis was investigated in two knock-out mouse 
animal models deficient for ion channels. Phagocytosis was measured in retinal 
sections established at different time points during the day. Immunohistological 
staining against rhodopsin enables the detection of early phagosomes in the RPE. 
CaV1.3 knock-out mice showed compared to wild-type littermates lower phagocytic 
activity at phagocytosis peak in the morning but a higher remaining activity in the 
afternoon, indicating a bad termination of the process (Fig. 98.2a, 98.2b). Further-
more, CaV1.3 channels expression rate was higher in the afternoon compared to the 
morning (Fig. 98.2c). In maxiK knock-out mice the phagocytic activity rises earlier 
at its peak in the morning but decreases stronger in the afternoon compared to wild-
type littermates. In older mice the higher phagocytic activity in the morning results 
in shorter photoreceptor outer segments. Thus the in vivo phagocytosis analysis 
verified that ion channels play a role in the regulation of phagocytosis but mainly in 
the regulation of its diurnal activity and probably not in the direct regulation of the 
process. Since bestrophin-1 is a regulator of the CaV1.3 channel activity it is likely 
that bestrophin-1 plays an important role in the diurnal regulation of phagocytosis.

Given that bestrophin-1/L-type channel interaction is involved in the regulation 
of phagocytosis mutant bestrophin-1 probably disturbs phagocytosis regulation ul-
timately leading to lipofuscin accumulation. A comparable effect was found in the 

a b c

Fig. 98.2   In vivo analysis of POS phagocytosis in the CaV1.3 knock-out mouse. a Representative 
retinal sections prepared from CaV1.3 knock-out and wild-type mice at different time points of the 
day; phagosomes in the RPE can be detected by rhodopsin staining (scale bar = 10 µm). b Phago-
cytic activity given in phagosome number at different time points of the day. c CaV1.3 in the RPE 
at different day times. (mean ± SEM; 30–48 sections from 5 mice per timepoint; * = p-value < 0.05, 
*** = p-value <  0.001; modified from Muller et al. 2014)
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5-integrin knock-out mouse model, which shows a loss of circadian phagocytosis 
rhythm leading to a subsequent strong accumulation of lipofuscin and retinal de-
generation (Nandrot et al. 2004). Here it should be mentioned that L-type channels 
in the RPE are also activated by POS-dependent stimulation of integrin-receptors. 
Considering the fact that mutant bestrophin-1 is unable to traffic to its physiological 
important subcellular localization (Milenkovic et al. 2011a) than also in patients 
a loss of bestrophin-1 function can be considered. As in vitro the siRNA knock-
down of bestrophin-1 results in a higher phagocytic activity it can be assumed that 
also in Best patients the loss of function of mutant bestrophin-1 results in higher 
POS phagocytic activity which might explain the fast lipofuscin accumulation. The 
investigation of the Best1W93/W93C knock in mice seems to support this conclusion 
(Zhang et al. 2010). Here at the electron microscopy level irregularities of photore-
ceptor outer segments and a lipofuscin accumulation were detected which can re-
sult from impaired phagocytosis regulation. However, the Best1−/− mouse shows no 
signs of retinal degeneration. Thus the significance of data from mouse models for 
the human disease, especially for macular degenerations, should be taken with care.

In summary the ion channels CaV1.3, bestrophin-1 and maxiK were identified 
as novel players in the regulation of POS phagocytosis by the RPE in vitro and in 
vivo. They are not directly involved in the phagocytosis process. Rather ion chan-
nels have an indirect effect by involvement in regulation of the circadian rhythm of 
the phagocytosis. Mutant bestrophin-1 might disturb this rhythmic activity and lead 
to lipofuscin accumulation which likely represents an important pathologic event.
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Chapter 99
Lysosomal Trafficking Regulator (LYST)

Xiaojie Ji, Bo Chang, Jürgen K. Naggert and Patsy M. Nishina

Abstract Regulation of vesicle trafficking to lysosomes and lysosome-related 
organelles (LROs) as well as regulation of the size of these organelles are critical to 
maintain their functions. Disruption of the lysosomal trafficking regulator (LYST) 
results in Chediak-Higashi syndrome (CHS), a rare autosomal recessive disorder 
characterized by oculocutaneous albinism, prolonged bleeding, severe immuno-
deficiency, recurrent bacterial infection, neurologic dysfunction and hemophago-
cytic lympohistiocytosis (HLH). The classic diagnostic feature of the syndrome is 
enlarged LROs in all cell types, including lysosomes, melanosomes, cytolytic gran-
ules and platelet dense bodies. The most striking CHS ocular pathology observed 
is an enlargement of melanosomes in the retinal pigment epithelium (RPE), which 
leads to aberrant distribution of eye pigmentation, and results in photophobia and 
decreased visual acuity. Understanding the molecular function of LYST and iden-
tification of its interacting partners may provide therapeutic targets for CHS and 
other diseases associated with the regulation of LRO size and/or vesicle trafficking, 
such as asthma, urticaria and Leishmania amazonensis infections.

Keywords Lysosomal trafficking regulator (LYST) · Chediak-Higashi syndrome · 
Lysosome · Lysosome-related organelles · Melanosome · Vesicle trafficking · Retinal 
Pigment Epithelium (RPE)
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99.1  Introduction

The gene affected in patients with Chediak-Higashi syndrome, initially identified 
by positional cloning and YAC complementation almost 20 years ago, was named 
Lysosomal Trafficking Regulator (LYST) (Barbosa et al. 1996; Nagle et al. 1996; 
Perou et al. 1996). The LYST gene, also referred to as CHS/CHS1/Beige, encodes 
a large cytoplasmic protein of approximately 430 kDa, whose function remains 
poorly understood (Ward et al. 2003; Kaplan et al. 2008; Cullinane et al. 2013; 
Kypri et al. 2013). Structural analysis of LYST does not reveal motifs of definitive 
function, however, several N-terminal ARM/HEAT repeats, a Pleckstrin homology 
(PH) domain, a BEACH domain and WD40 repeats near the C-terminus have been 
predicted (Nagle et al. 1996; Ward et al. 2003; Kaplan et al. 2008; Cullinane et al. 
2013).

LYST, a member of the BEACH (named after “Beige and Chediak-Higashi”) 
family of proteins present in all eukaryotes, shares extensive identity among all 
mammalian species (Nagle et al. 1996). An 88 % sequence homology is observed 
between the human and mouse LYST genes with 82 % of amino acid residues being 
identical (Ward et al. 2000). LYST is widely expressed in most tissues (Perou et al. 
1997) and loss-of-function mutations lead to enlarged lysosomes and lysosome-re-
lated organelles (LROs) in all cell types (White and Clawson 1979; Burkhardt et al. 
1993; Zhao et al. 1994; Introne et al. 1999; Ward et al. 2002; Kaplan et al. 2008). 
In addition, this organelle enlargement is accompanied with defective protein sort-
ing and plasma membrane repair due to impaired intracellular vesicle trafficking 
(Huynh et al. 2004; Shiflett et al. 2004; Kaplan et al. 2008).

99.2  Associated Disorders of LYST Mutations

The first case of Chediak-Higashi syndrome (CHS) was reported in 1943 (Lozano 
et al. 2014). The disease is very rare, with less than 500 cases reported worldwide 
in the past 20 years (Kaplan et al. 2008). Most patients with CHS (85 – 90 %) are 
diagnosed in early childhood with severe clinical manifestations, including vari-
able degrees of oculocutaneous albinism and recurrent fatal pyogenic infections 
(Kaplan et al. 2008; Lozano et al. 2014). Hair color may be blond, gray, or white, 
often with a distinguishing silvery or metallic sheen (Lozano et al. 2014). CHS 
patients frequently show aberrantly dispersed eye pigmentation as well, resulting 
in photophobia and decreased visual acuity (BenEzra et al. 1980; Valenzuela and 
Morningstar 1981; Kaplan et al. 2008). In addition, other ocular manifestations such 
as nystagmus and strabismus have also been reported (Lozano et al. 2014). The re-
current bacterial infections due to the dysfunction of polymorphonuclear leukocytes 
predominantly occur in the respiratory tract, skin and mucous membranes (Padgett 
et al. 1968; Blume and Wolff 1972; Kaplan et al. 2008; Lozano et al. 2014). Patients 
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with CHS have platelet defects, which manifest as bruising and mucosal bleeding. 
Finally, patients also present with progressive neurologic dysfunction, including 
motor and sensory neuropathies, ataxia, and progressive neurodegeneration. In ad-
vanced stages, CHS can also lead to parkinsonism and dementia (Sung and Stadlan 
1968; Sung et al. 1969; Hirano et al. 1971; Misra et al. 1991; Tardieu et al. 2005; 
Kaplan et al. 2008; Lozano et al. 2014).

The majority of children affected by CHS progress to the most life-threatening 
lymphoproliferative accelerated phase characterized by massive hemophagocytic 
lympohistiocytosis (HLH), a hallmark of the “childhood” form of CHS. HLH often 
follows initial exposure to Epstein-Barr virus (EBV) and is characterized by diverse 
clinical manifestations including fever, lymphadenopathy and liver dysfunction 
(Lozano et al. 2014). Lymphohistiocytic infiltration of major organs may also be 
observed. While this condition affects multiple organs and systems, death is gener-
ally caused by infection, bleeding or development of HLH, unless treated by bone 
marrow transplantation (Karim et al. 2002; Kaplan et al. 2008; Lozano et al. 2014). 
A smaller proportion, 10–15 % of patients with CHS, present much milder clini-
cal features, termed the ‘adolescent’ and ‘adult’ forms (Karim et al. 2002; Lozano 
et al. 2014). These forms of CHS manifest as subtle alterations of pigmentation, a 
lower frequency of infections, mild bleeding tendencies and no accelerated phase. 
These patients can survive until adulthood but they develop neurologic dysfunc-
tions including intellectual deficits, peripheral neuropathy, balance abnormalities, 
tremors, parkinsonism and dementia (Sung and Stadlan 1968; Sung et al. 1969; 
Hirano et al. 1971; Misra et al. 1991; Tardieu et al. 2005; Kaplan et al. 2008; Lozano  
et al. 2014).

Patients with CHS are prophylactically administered antibiotics to prevent 
opportunistic infections by pathogens and to control recurrent infections. An ef-
fective treatment for hematologic and immunologic complications of the disease 
has been hematopoietic stem cell transplantation (HSCT) following by prophy-
lactic antibiotics administration. However, to date, there is no clinical evidence 
that HSCT can prevent the progressive neurologic problems or hypopigmenta-
tion associated with the disease (Kaplan et al. 2008; Cullinane et al. 2013; Lozano  
et al. 2014).

Mutations of Lyst or disruption of LYST interacting proteins have also been sug-
gested to be potential factors that contribute to exfoliation syndrome (XFS), a com-
mon age-related disease characterized by iris defects, fibrillar accumulations, and 
aberrantly dispersed pigment throughout the anterior chamber of the eye (Trantow 
et al. 2009). A body of evidence suggests that the pathologic accumulation of exfo-
liative material within the iridocorneal angle elevates intraocular pressure (IOP) and 
leads to glaucoma (Trantow et al. 2009; Trantow et al. 2010). XFS is the most com-
monly identified cause of secondary open-angle glaucoma. Although, both CHS 
and XFS are linked to LYST, they share few common pathological features. This 
may be due in part to the fact that, unlike CHS that is only caused by mutations in 
LYST, XFS can be caused by mutations in multiple genes. Alternatively, there may 
be allele specific phenotypes associated with different LYST disease alleles.
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99.3  Proposed Functions of LYST

The enlarged lysosomes and LROs in all cell types are the hallmark of the subcel-
lular morphology associated with CHS (White and Clawson 1979; Burkhardt et al. 
1993; Zhao et al. 1994; Introne et al. 1999; Ward et al. 2002; Kaplan et al. 2008). 
The mechanism underlying this classic diagnostic feature remains largely elusive 
and the molecular investigation of the cellular function of LYST and its orthologs 
are currently underway. These functional studies have initially led to two distinct 
models for LYST function in the regulation of LRO size (Falkenstein and De Lo-
zanne 2014).

One model suggests that LYST restricts homotypic lysosome fusion. This is sup-
ported by many studies suggesting interaction of LYST with fusion regulators in hu-
man (Tchernev et al. 2002), mice (Hammel et al. 2010), Drosophila (Rahman et al. 
2012) and Dictyostelium (Harris et al. 2002; Kypri et al. 2007; Kypri et al. 2013). 
The other model suggests that LYST may contribute to lysosomal membrane fission 
instead of fusion events. The fission model was first suggested by the observation 
that Lyst overexpression in mice causes a reduction in lysosome size (Perou et al. 
1997). Subsequent studies in both mice (Durchfort et al. 2012) and Dictyostelium 
(Charette and Cosson 2007, 2008) support this model by showing that LYST is a 
positive regulator of post-lysosome fission and abnormal LYST causes reduced rate 
of lysosome fission.

In a recent paper (Falkenstein and De Lozanne 2014), Falkenstein and De Lo-
zanne proposed that LYST function is likely to be far more complex than either 
the simple function of lysosomal fusion or fission, and postulated that LYST may 
regulate fusion through fission mediated recycling of fusion machinery during ly-
sosomal maturation.

Studies in Saccharomyces cerevisiae suggest that the LYST homolog, Bph1p, is 
involved in protein sorting and cell wall formation, but unlike LYST, Bph1p does 
not affect vacuolar/lysosomal size (Shiflett et al. 2004). Bph1p is also suggested to 
be involved in vesicular trafficking and defects can lead to altered protein traffick-
ing and thereby, abnormal cell wall formation (Shiflett et al. 2004; Kaplan et al. 
2008).

In summary, LYST and its homologs have been predicted to regulate the intracel-
lular LRO size through mechanisms that have yet to be elucidated but are likely to 
involve lysosomal fusion and fission, as well as vesicular trafficking.

99.4  Significance of Functional Study of LYST

To date, the molecular function of LYST still remains unclear. The function of 
LYST has been studied in many model systems but each has its own limitation. The 
beige ( bg) mouse, first identified in 1967 (Lutzner et al. 1967), is the best studied 
animal model for CHS and successfully recapitulates most defects in human CHS, 
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including the distinctive coat color described as beige and abnormal size and dis-
tribution of LROs but not HLH (Burkhardt et al. 1993; Kaplan et al. 2008). Even 
with differences in clinical severity, the animal models will provide essential insight 
into mechanistic understanding of CHS in terms of vesicle trafficking and LRO 
formation in vivo. RPE cells, essential for normal visual function, and significantly 
affected in CHS, will serve as a good cell type for functional studies of LYST.

Understanding the function of LYST will be important for creating effective 
therapies, not only for CHS but also diseases associated with LRO size and/or ve-
sicular trafficking, e.g. diseases such as asthma and urticaria due to abnormal local 
degranulation by leukocytes and mast cells, and Leishmania amazonensis infections 
(Tchernev et al. 2002; Wilson et al. 2008). Manipulating the expression/activity 
level of LYST or its interacting partners to regulate lysosomal size would be an at-
tractive strategy to ameliorate or delay the pathological effects of these disorders.
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Chapter 100
Live-Cell Imaging of Phagosome Motility 
in Primary Mouse RPE Cells

Roni Hazim, Mei Jiang, Julian Esteve-Rudd, Tanja Diemer, Vanda S. Lopes 
and David S. Williams

Abstract The retinal pigment epithelium (RPE) is a post-mitotic epithelial mono-
layer situated between the light-sensitive photoreceptors and the choriocapillaris. 
Given its vital functions for healthy vision, the RPE is a primary target for insults 
that result in blinding diseases, including age-related macular degeneration (AMD). 
One such function is the phagocytosis and digestion of shed photoreceptor outer 
segments. In the present study, we examined the process of trafficking of outer 
segment disk membranes in live cultures of primary mouse RPE, using high speed 
spinning disk confocal microscopy. This approach has enabled us to track phago-
somes, and determine parameters of their motility, which are important for their 
efficient degradation.

Keywords Live-cell imaging · Retinal pigment epithelium · Intracellular trafficking ·  
Photoreceptor outer segment · Phagocytosis

100.1  Introduction

The retinal pigment epithelium (RPE) is a post-mitotic epithelial monolayer of 
cuboidal cells situated between the light-sensitive photoreceptors and the chorio-
capillaris (Bok 1993). The RPE performs numerous functions vital to the health 
of photoreceptors and thus to healthy vision. These functions include recycling of 
retinoids during the visual cycle, transport of nutrients from the blood to the pho-
toreceptors, and secretion of growth factors, such as vascular endothelial growth 
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factor (VEGF) and pigment epithelial-derived factor (PEDF) (Strauss 2005). One 
of the most critical functions performed by the RPE is the phagocytosis of photore-
ceptor outer segment (POS) tips (Young and Bok 1969), an event that occurs on a 
daily cycle (LaVail 1976).

The RPE is a professional phagocyte, internalizing and degrading approximately 
10 % of each photoreceptor outer segment on a daily basis. Phagosomes contain-
ing POS membranes move from the apical region of the RPE towards the basal 
region (Herman and Steinberg 1982; Gibbs et al. 2003), fusing with degradative 
organelles such as endosomes and lysosomes along the way (Wavre-Shapton et al. 
2014; Bosch et al. 1993). By-products that are not completely degraded tend to 
form constituents of aggregates, such as lipofuscin or sub-RPE deposits, common 
features associated with macular degeneration (Brunk and Terman 2002). Given 
the movement of phagosomes from the apical region, their motility is closely re-
lated with their degradation. In an early study, it was shown that colchicine, which 
disrupts microtubules, inhibited the translocation of phagosomes from the apical 
region (Herman and Steinberg 1982). More recently, the importance of actin-based 
motility was demonstrated in mice lacking MYO7A, an unconventional myosin. In 
those mice, phagosomes were retained longer in the apical region of the RPE, and 
were degraded more slowly (Gibbs et al. 2003). In the present report, we describe 
the use of live-cell imaging, using spinning disk confocal microscopy, to study the 
intracellular trafficking of POS-containing phagosomes within primary mouse RPE 
cells.

100.2  Isolation and Culture of Primary Mouse RPE

Primary mouse RPE were isolated as previously described (Gibbs et al. 2003). 
Intact eyes were enucleated from P10-P15 mice and washed 3–4 times by inver-
sion with growth medium (Dulbecco’s modified Eagle’s medium (DMEM) with 
4.5 g/L glucose, L-glutamine, and sodium pyruvate). The eyes were then incubated 
in a 2 % dispase solution for 45 min at 37° C. Following removal of the enzyme 
solution, the eyes were washed 3 times with growth medium containing 10 % fetal 
bovine serum (FBS) and 20 mM HEPES. The eyes were dissected into eyecups 
by making an incision along the ora serrata to remove the cornea, iris, lens, and 
ciliary body. Eyecups were then incubated in growth medium for 20 min at 37° C, 
as this facilitates the separation of the RPE from the retina and Bruch’s mem-
brane. Sheets of RPE were gently scraped from Bruch’s membrane and collected 
in growth medium with 10 % FBS. The sheets were then washed 3 times with 
growth medium and twice with calcium- and magnesium-free Hank’s Balanced 
Salt Solution (HBSS). The cells were then briefly and gently triturated and plated 
on Lab-Tek chambered coverglass. Live-cell imaging experiments were carried out 
on 3–7 day old cultures.



753100 Live-Cell Imaging of Phagosome Motility in Primary Mouse RPE Cells

100.3  Isolation and Labeling of Mouse POSs

Mouse POSs were isolated as previously described (Gibbs et al. 2003). Mouse 
retinas were collected under dim red light and homogenized in Ringer’s solution 
(130 mM NaCl, 3.6 mM KCl, 2.4 mM MgCl2, 1.2 mM CaCl2, 10 mM HEPES, 
and 0.02 mM EDTA). The homogenate was cleared by centrifugation for 30 s at 
100 g, and then the supernatant was layered on top of a discontinuous Optiprep 
8 %-10 %-15 % step gradient in Ringer’s solution and spun at 12,000 g for 20 min 
at 4° C. POSs were collected at the 10 %/15 % interface and diluted 3 times with 
Ringer’s solution. POSs were then pelleted by spinning the solution at 10,300 g for 
10 min at 4° C. The POSs were then labeled by incubation with 0.1 mg Texas Red-
X, succinimidyl ester or 5 % (v/v) Alexa Fluor 488 carboxylic acid, succinimidyl 
ester, mixed isomers in 1 mL 0.1 M NaHCO3, pH 8.3 for 1 h at 4° C. POSs were then 
washed with Ringer’s solution, resuspended in RPE growth medium, and counted 
using a haemocytometer to determine the yield.

100.4  Live Imaging Using Spinning Disk Confocal 
Microscopy

Figure 100.1a depicts a schematic diagram of the protocol used for live-cell imag-
ing. We used C57BL/6J mice for both the RPE cells and the POSs. Cultured RPE 
cells were incubated with 1–5 × 106 fluorescently-labeled POSs in growth medium 
with 10 mM HEPES for 20 min at 37° C, washed extensively with growth medium, 
and then immediately imaged for a maximum of 1 h, using an Ultraview Spinning 
Disk Confocal Microscope system with a Zeiss Axiovert photomicroscope, includ-
ing an environment chamber. Movies were acquired at 3 frames per second with 
the Volocity software (PerkinElmer), using a 63x oil immersion objective and a 
Hamamatsu EM-CCD camera (see supplementary video). Trajectories of phago-
somes were analyzed using the Volocity software (Fig. 100.1b).

Not all phagosomes were moving at a given time, however, the paths of those 
that were moving typically followed relatively straight lines, with back and forth 
movements along these lines. This motility is consistent with movements along 
microtubules, as cargos of plus- and minus-end directed microtubule motors. The 
paths can be analyzed to assess a variety of phagosome motility parameters. Speed 
and distance traveled represent two basic parameters. From analysis of the paths of 
phagosomes that traveled at least 3 μm in a 24-second interval, we found a mean 
speed of 1.2 ± 0.1 μm/s and a mean total distance traveled of 11.3 ± 1.9 μm, dur-
ing the 24-sec interval. This speed is typical of transport by microtubule motors 
(Okada et al. 1995). Transport along actin filaments by myosins is typically many 
fold slower (Boal 2012), suggesting that the observed motility was dominated by 
the microtubule motors, kinesin and dynein.



754 R. Hazim et al.

100.5  Conclusions

Fluorescently-labeled POS phagosomes can be monitored in live RPE cells, using 
spinning disk confocal microscopy. Their motility can be determined by tracking 
their trajectories, thus providing a sensitive, real-time measurement of a critical 
parameter of RPE health—one, which we are finding in other studies, feeds directly 
into the efficiency of phagosome degradation, and the propensity for the accumula-
tion of debris and consequent activation of downstream events, such as inflamma-
tion and oxidative stress.
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Chapter 101
RPE Cell and Sheet Properties in Normal 
and Diseased Eyes

Alia Rashid, Shagun K. Bhatia, Karina I. Mazzitello, Micah A. Chrenek, 
Qing Zhang, Jeffrey H. Boatright, Hans E. Grossniklaus, Yi Jiang  
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Abstract Previous studies of human retinal pigment epithelium (RPE) morphology 
found spatial differences in density: a high density of cells in the macula, decreas-
ing peripherally. Because the RPE sheet is not perfectly regular, we anticipate that 
there will be differences between conditions and when and where damage is most 
likely to begin. The purpose of this study is to establish relationships among RPE 
morphometrics in age, cell location, and disease of normal human and AMD eyes 
that highlight irregularities reflecting damage. Cadaveric eyes from 11 normal and 
3 age-related macular degeneration (AMD) human donors ranging from 29 to 82 
years of age were used. Borders of RPE cells were identified with phalloidin. RPE 
segmentation and analysis were conducted with CellProfiler. Exploration of spa-
tial point patterns was conducted using the “spatstat” package of R. In the nor-
mal human eye, with increasing age, cell size increased, and cells lost their regular 
hexagonal shape. Cell density was higher in the macula versus periphery. AMD 
resulted in greater variability in size and shape of the RPE cell. Spatial point analy-
sis revealed an ordered distribution of cells in normal and high spatial disorder in 
AMD eyes. Morphometrics of the RPE cell readily discriminate among young vs. 
old and normal vs. diseased in the human eye. The normal RPE sheet is organized 
in a regular array of cells, but AMD exhibited strong spatial irregularity. These 
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findings reflect on the robust recovery of the RPE sheet after wounding and the 
circumstances under which it cannot recover.

Keywords Retinal pigmented epithelium (RPE) · Flatmount · En face · Spatial 
point patterns · Age related macular degeneration (AMD) · Cadaveric eyes · 
Spatstat · CellProfiler · Macula · Periphery · Nearest neighbor distance

101.1  Introduction

The retinal pigment epithelium (RPE) layer is located between the neurosensory 
retina and the choroid. Its main functions are to supply the highly metabolically 
active retina with nutrients and remove waste products from the photosensory pro-
cesses of the cones and rods. To correctly function, the RPE layer must remain 
intact without any holes in the cell layer (Rizzolo 2014). The RPE layer robustly 
compensates for some damage or death of RPE cells until a certain point (Negi and 
Marmor 1984; Kalnins et al. 1995; Nagai and Kalnins 1996), but in the advanced 
stages of some retinal and macular diseases, the RPE layer can break down, leav-
ing empty spaces (Ambati and Fowler 2012; Bhutto and Lutty 2012; van Lookeren 
et al. 2014). Toxic products are generated near the RPE layer in many eye diseases, 
such as age-related macular degeneration (AMD) and Stargardt’s Disease. As RPE 
cells age, toxic metabolites continue to accumulate, causing the RPE cells to die 
(Liang and Godley 2003). With extensive RPE cell death, the epithelial sheet loses 
its overall stability (Chrenek et al. 2012; Jiang et al. 2013; Jiang et al. 2014), which 
leads to RPE dysfunction and impaired functioning and damage to the retina, such 
as that seen in AMD. Epithelial sheets are in general resilient and resistant to dam-
age (Roider et al. 1992), and they maintain barrier function by tiling across the sheet 
(Jiang et al. 2013). In this study, we hypothesized increased variability in the shape 
and size of RPE cells and increased spatial irregularity by: (1) region-, (2) age-, and 
(3) disease.

To test this hypothesis, we analyzed RPE cell shape and size from human ca-
daveric eyes. Here we report the initial findings from both normal (undiseased) and 
AMD eyes across a broad age range. We found that RPE cell properties vary fairly 
consistently according to the region in the eye, age at death, and disease status.

101.2  Methods

Cadaveric human donor eyes ( n = 14) harvested < 7 h postmortem were dissected 
to obtain a strip of RPE from the optic nerve through the macula to the ora. We ad-
hered to ARVO guidelines, and the Emory IRB approved the study.

The RPE was flatmounted, stained with AF635-phalloidin, and then imaged 
using confocal microscopy (Chrenek et al. 2012; Jiang et al. 2013; Jiang et al. 
2014). Images (typically 200–400 images, each image with hundreds of cells) were 
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photomerged using Autopano Pro v2.5 (Kolor, Montmélian, France). RPE seg-
mentation and analysis were amassed with CellProfiler (Lamprecht et al. 2007). 
Exploration of spatial point patterns was conducted using the "Spatstat" package 
(Baddeley and Turner 2005) of R.

101.3  Results

101.3.1  Preliminary Findings

In the normal eye, cell density was higher at the macula compared to the far periph-
ery. All parameters showed trends toward more variability in size and shape from 
macula to periphery. By region, irrespective of age, the macula and mid-periphery 
exhibited an isometric, small RPE cell, while the far periphery had a less uniform 
and larger RPE cell.

101.3.2  Aging in the Normal RPE

There was a transition at about 60 years old (yo), when the normal RPE sheet be-
gan to deteriorate. The deterioration was location specific. The macula and the far 
periphery showed significant changes. However, the mid-periphery exhibited no 
major changes between the younger vs., older eyes (data not shown). In the macula, 
there was more variability in sidedness (comparing  < 60 yo to > 60 yo), reflected 
by a reduced percentage of hexagonal cells (43.5 vs. 38.0 % respectively, p = 0.01).

101.3.3  The AMD Eye

In cadaveric eyes from AMD patients, the disrupted RPE showed great variability 
in both the size and shape of cells. In the macula of AMD eyes, the RPE exhibited 
patches of very large cells (Fig. 101.1). Where the RPE was atrophic, the surround-
ing RPE cells had an aberrant elevated rim. When soft drusen were present, adjacent 
RPE cells were often larger and stretched.

101.3.4  Regularity in AMD and Normal RPE Sheets

Regularity in spacing was clearly evident in the RPE sheet, with much more uni-
formity in the normal RPE sheet than in the macula of the AMD patient. Images of 
each RPE sheet are illustrated in Fig. 101.1. In Fig. 101.2, the cumulative distribu-
tion function of the nearest-neighbor distance (the G-function) is compared among 
the RPE pattern of an AMD eye (red), normal eye (green), and the control: the 
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hexagonal cell lattice with the averaged cell size in the normal eye (blue). We also 
randomized the normal and the hexagonal lattice (dashed lines) to show the broad-
ening of the distribution function. The plot indicated that the normal RPE pattern is 
remarkably similar to a hexagonal lattice of cells with a narrow distribution (tight 

Fig. 101.1   Normal and AMD representative images of the RPE sheet. a An image from an AMD 
eye (AMD1) in the macula. b A partially processed image from the macula of a normal individual. 
The cell borders are now outlined and transformed so that CellProfiler can process the image. c 
Spatial point patterns from the AMD eye in a. d Spatial point pattern from the normal eye in b. 
Sizes of the circles in c and d represent the size of each cell
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size range within 8–12 µ), while the AMD pattern shows a much broader distribu-
tion and a strong shift to the right. The latter indicates that the AMD RPE pattern 
has a larger minimum size, and a much reduced regularity.

101.4  Discussion

101.4.1  The Context of Our findings

The fraction of hexagonal cells on a surface is an indication of the mechanical sta-
bility of a tissue: Hexagonal tiling is the most efficient way to cover a plane with 
a monolayer of cells of equal area with the least total perimeter per cell (Thomp-
son 1942). Sharp deviations from this tiling pattern indicate mechanical stress or a 
dynamic environment not near equilibrium. Cell death, cell division, and regional 
differences can affect the regular tiling and these defects compromise the strength 
and durability of the RPE sheet, and make these spots more vulnerable to neovascu-
larization or the initiation of atrophic lesions (Shirinifard et al. 2012). Tiling defects 
occur in age-related loss of RPE cells (Watzke et al. 1993), inherited mouse retinal 
diseases (Jiang et al. 2013), and regional differences (foveal RPE versus equatorial) 
(Gao and Hollyfield 1992). We have initiated computer simulations of RPE cell 
death. The simulations seem to reveal testable hypotheses on loss of regularity in 
spatial point patterns according to a loss of inhibition in cell growth required to fill 
in holes in the RPE sheet.

101.4.2  The Normal Eye and Aging

The regular shape of RPE cells in the macula implies small and balanced exter-
nal forces that pull or tug on each cell. The far-peripheral RPE cells were more 

Fig. 101.2   Spatial point anal-
ysis by cumulative nearest 
neighbor distance distribution 
function. The key point is 
that G(r) for normal RPE is 
markedly different from that 
of AMD RPE, suggesting that 
the spatial patterns are more 
regular in normal eyes and 
become irregular in AMD 
RPE sheets
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irregular, suggesting forces causing uneven tension. The far periphery may be sub-
jected to different amounts of strain due to the nearby ciliary body and the non-
uniform, intermittent stress from the ciliary muscles. Alternatively, the RPE cells in 
the far periphery may be different from those in the macula or mid-periphery (Burke 
and Hjelmeland 2005). RPE in the macula and far-periphery showed changes in 
both shape and size with age while the mid-periphery did not. Drusen and basal 
laminar deposits tend to occur in the macula and far periphery. These are signs of 
RPE stress; we hypothesize there is more RPE stress in the macula and far periphery 
than mid-periphery. These models need to be tested that consider differences (e.g., 
metabolic demands of overlying photoreceptor cells and incidences of hard drusen) 
among these three locations versus other models of inherently different classes of 
RPE cells (Burke and Hjelmeland 2005) in these three locations.

101.4.3  The AMD Eye

Understanding normal RPE morphology helps to better understand RPE pathol-
ogy by discriminating between the effects of age (the most important risk factor of 
AMD) versus other risk factors (genetics, smoking, type of drusen, and environ-
mental factors). Our preliminary evaluations here may imply that clustered outliers 
in size and shape of RPE cells are risks for or may initiate progression of AMD. Our 
studies may help to identify breakdown in the RPE at an earlier stage allowing for 
more prompt evaluation and treatment.

101.4.4  Spatial Point Patterning

We have found regularity in the spatial patterning of RPE cells that may reflect 
intercellular interactions. Future studies will help delineate when this regularity oc-
curs/develops, and how it is lost in AMD, including the impact of druse, which 
distort the pattern in the RPE sheet.

101.4.5  Future Directions

In the near future, we will report full quantitative analysis of changes (per cell and 
in organization) in RPE with age, region, and disease state. We will correlate en-
face metrics with histopathology of the same location cut in cross sections. These 
analyses should provide insight into the basic biology underlying transition from 
isometric cells to those that vary widely in shape, size, and function.
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Chapter 102
Valproic Acid Induced Human Retinal Pigment 
Epithelial Cell Death as Well as its Survival 
after Hydrogen Peroxide Damage is Mediated 
by P38 Kinase

Piyush C Kothary, Benjamin Rossi and Monte A Del Monte

Abstract Age-related macular degeneration (AMD) is a leading cause of legal 
blindness in developed countries. Several new drugs are now available to reduce 
the sight threatening complications of this disease, however, all are useful in only 
a small fraction of patients and none of them prevents disease development. An 
understanding of the pathogenesis of the retinal and macular degeneration is the 
first step in developing preventive and fully effective treatment options for this 
condition. Lifelong oxidative stress seems to be an etiologic factor. In this study, 
we used cultured human retinal pigment epithelial cells to study the mechanism of 
cell death and survival in cells exposed to oxidative stress. Our studies demonstrate 
that valproic acid (VPA), an epigenetic factor, reduces apoptosis in hRPE cells that 
were subjected to hydrogen peroxide-induced oxidative injury by alteration in P38 
kinase activity. Since VPA has been shown to have therapeutic use in other neuronal 
diseases, better understanding of the mechanism of this VPA anti-apoptotic activity 
may enhance its development as a therapeutic agent.

102.1  Introduction

Age-related macular degeneration (AMD) is a leading cause of blindness in the 
industrial world. Lifelong oxidative stress of human retinal pigment epithelium 
(hRPE) has been implicated in the pathogenesis of AMD (Kothary et al. 2014) by 
production of reactive oxygen species (ROS), which can result in damage to hRPE.
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The hRPE form a single layer of mitotically inactive cells that lie between the 
choroid and the neural retina. Pigment epithelial cells transport and store toxic nu-
trients for the photoreceptors and remove waste products such as shed photorecep-
tor segments. Damage to the RPE can affect the functioning of neurosensory retina.

Valproic acid (VPA), an epigenetic factor, is a drug that is widely used to treat 
patients with epilepsy (Monti et al. 2009 and it also inhibits growth of some cancer 
cells. In addition, VPA has been shown to reduce cell death in ARPE19 cells that 
were subjected to oxidative injury. It is postulated that a cascade of signaling mol-
ecules may be involved in beneficial effect of VPA in the treatment of epilepsy and 
reduced cell death in ARPE 19 cells during oxidative stress.

MAP kinases are involved in cell proliferation and apoptosis (Wang et al. 1998; 
Kothary et al. 2008). Previous studies have shown that extracellular signal-regu-
lated kinase (ERK) is involved in proliferation where as P38 and STAT 3 (Kothary 
et al. 2004) are involved in cell death and cell survival (Gutierrez-Uzquiza et al. 
2012). In the present study, we have used hydrogen peroxide to induce oxidative 
stress in hRPE cells and investigated the effect of VPA on hRPE cell viability and 
P38 production, to determine if these factors may be involved in the molecular 
mechanisms related to cell survival.

102.2  Materials and Methods

102.2.1  Establishment and Maintenance of hRPE Cell 
Cultures

hRPE cells were collected from donor human eyes obtained from the Michigan Eye 
Bank, and differentiated primary cultures were established as described previously 
(Weng et al. 2009). In brief, cells were grown in an incubator at 37 °C in Ham’s F12 
nutrient media until confluent, and then trypsinized and plated. The media in the 
cultured plates was changed every 3 days until experimental reagents were added.

102.2.2  Trypan Blue Exclusion Method

The procedure described in previous publication (Kothary et al. 2006). Briefly, cell 
media was aspirated and cells were washed twice with F12. 3.0 mL Experimental 
reagents were added to each well. Plates were incubated at 37 °C for 48 h, and then 
media was aspirated. Cells were washed with 1 mL PBS and 1 mL Hank’s Buffer, 
and then 750 μL trypsin was added and mixed. After incubating 37 °C for 10 min, 
cell detachment was verified under a microscope and 10 uL trypan blue dye was 
added and mixed. Samples of cell mixture from each well were placed on a slide 
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and transferred to a hemocytometer, where unstained and stained cells were counted 
in four different fields.

102.2.3  14 C-Methionine Assay

The procedure described in previous publication (Kothary et al. 2010). Briefly, cell 
media was aspirated and cells were washed twice with F12. Experimental reagents 
were added, 0.5 mL to each well. After incubating at 37 °C for 1 h, 50 μL 14 C-
methionine was added. Plates were incubated at 37°C for 24 h, then media was 
aspirated and cells were washed with 0.5 mL PBS and 200 μL Zwitteragent in 0.2 % 
BSA. Upon mixing, cells in Zwitteragent were transferred to microfuge tubes and 
10 μL anti-P38 was added. Plates were refrigerated for 24 h, then 10 μL Protein A 
was added. After 1 h, tubes were centrifuged at 14,000 rpm for 5 min at 4 °C. The 
supernatant fluid was discarded, and 0.5 mL NaOH was added. Cells in NaOH were 
transferred to scintillation vials, and 10 mL Ecolite was added. After 1 h, 14 C-
methionine incorporation was counted by a scintillation counter.

102.2.4  Nuclear Staining

Nuclear staining of hRPE cells after H2O2 and VPA treatment was performed 
by method described previously described by Weng et al 2009. Nuclear staining 
showed that H2O2 and VPA decreased the hRPE cell number (data not shown).

102.3  Results

102.3.1  Effect of FBS on hRPE Cell Viability

Figure 102.1 shows hRPE cell proliferation is stimulated by increasing concentra-
tions of FBS in a dose dependent manner.

102.3.2  Effect of H2O2 and VPA on hRPE Cell Viability

Figure 102.2a shows increasing concentrations of H2O2 decrease hRPE cell viabil-
ity and proliferation to a limited extent.

Figure 102.2b shows increasing concentrations of VPA decrease hRPE cell pro-
liferation.
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102.3.3  Effect of VPA in Presence of H2O2 on hRPE Cell 
Viability

Figure 102.3 shows VPA (1 mM) eliminates the H2O2 (1 mM) reduction in hRPE 
cell proliferation.

102.3.4  Effect of VPA in 14 C-P38 Production

Figure 102.4 shows increasing concentrations of VPA increase 14 C-P38 synthesis 
in hRPE cells.

102.3.5  Effect of VPA in Presence of H2O2 on P38 Production

Figure 102.5 shows VPA (1 mM) eliminates the H2O2 (1 mM) induced increased 
14 C-P38 synthesis in hRPE cells back to baseline.

102.4  Discussion

AMD affects millions of older people in the industrial world resulting in loss of 
central reading vision often to legal blindness. AMD is associated with progressive 
deterioration of the retinal pigment epithelium and lifelong oxidative stress seems 
to play a role. Therapeutically, invasive surgery e.g. laser photocoagulation of neo-

Fig. 102.1   Effect of FBS on hRPE cell viability
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vascular membranes, macular translocation surgery and recently discovered anti-
VEGF medications have been used to treat these patients for stabilization of vision 
loss, but no successful preventive or fully restorative treatment has been discovered. 
Additional investigation of the molecular mechanism of this disease is required to 
develop better treatments. Therefore, our study aimed at understanding the role of 
the signaling molecule P38 MAPK in the survival of hRPE may aid in the develop-
ment of pharmacological treatments for macular degeneration.

We have examined the nature of hydrogen peroxide induced oxidative stress in 
hRPE cells. Our goal was to determine the molecular expression of P38 in hRPE 
cells in presence and absence of hydrogen peroxide induced acute oxidative stress 

a

b

Fig. 102.2   a Effect of H2O2 on hRPE cell viability, b Effect of VPA on hRPE cell viability
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Fig. 102.5   Effect of VPA on 14 C-P38 synthesis in H2O2 treated hRPE cells

 

Fig. 102.4   Effect of VPA on 14 C-P38 synthesis in hRPE cells

 

Fig. 102.3   Effect of VPA on H2O2 treated hRPE cell viability

 



102 Valproic Acid Induced Human Retinal Pigment Epithelial Cell … 771

and the effect of adding VPA, a known inhibitor of oxidative damage, on P38 ex-
pression. We have shown that hRPE cells treated with H2O2 and VPA separately 
decreases hRPE cell proliferation and viability and increases P38 production. Xie 
et al. (2010) has shown that VPA increases P38 synthesis in microglia and that VPA 
induced microgia cell death is mediate by P38. Previously, we have shown that VPA 
treatment also increases caspase-3, a marker for apoptosis in hRPE cells.

We found that VPA reduces P38 synthesis and decreases cell death caused by 
H2O2 oxidative stress in cultured differentiated hRPE cells. Our data is in agree-
ment with Gutierrez-Uzquiza et al. (2012) who showed P38 alpha mediates cell 
survival in response to oxidative stress. Others have shown that P38 activation may 
be linked mTOR inhibition (Chen et al. 2010; Pocrnich et al. 2009). Further inves-
tigation of effect of VPA and H2O2 on mTOR expression may clarify the role of 
mTOR in P38 signaling. P38 may also be up regulating antioxidant gene expres-
sion, Gutierrez-Uzquiza et al. 2012).

We conclude that VPA has a pro-survival function in H2O2 induced hRPE cell 
death because of its ability to down regulate P38. VPA is commonly used in the 
treatment of epilepsy, bipolar disease and cancers. These studies suggest that VPA 
may also have therapeutic value in the prevention or treatment of AMD as well.
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Chapter 103
Blockade of MerTK Activation by AMPK 
Inhibits RPE Cell Phagocytosis

Suofu Qin

Abstract Timely removal of shed photoreceptor outer segments by retinal pig-
ment epithelial cells (RPE) plays a key role in biological renewal of these highly 
peroxidizable structures and in maintenance of retina health. How environmental 
stress cause RPE cell dysfunction is undefined however. AMP-activated protein 
kinase (AMPK), a heterotrimer of a catalytic α subunit and regulatory β and γ sub-
units, maintains energy homeostasis by limiting energy utilization and/or promoting 
energy production when energy supply is compromised. Intriguingly, AMPK has 
been shown to be important in functions of RPE cells. In this mini-review, the role 
and mechanisms of AMPK in controlling RPE cell phagocytosis are discussed.

Keywords AICAR · AMPK · MerTK · Phagocytosis · RPE

103.1  Introduction

The retinal pigment epithelium (RPE) is a monolayer of cuboidal cells where its 
basal membrane is in contact with Bruch’s membrane and apical membrane is as-
sociated with the outer segments of retinal photoreceptor cells. The major func-
tion of RPE cells is to support the survival and normal functioning of photorecep-
tors by phagocytizing shed photoreceptor outer segment (POS) membrane discs 
for photoreceptor renewal (Nguyen-Legros and Hicks 2000). Efficient disposal of 
shed POS by RPE is essential to prevent RPE and photoreceptor cells from the 
damaging effects of POS build-up. Phagocytosis of POS by RPE cells occurs by 
a complex process that includes binding, uptake, and degradation. POS first bind 
to the vitronectin receptor αvβ5 at the apical membrane of the RPE and initiates a 
downstream cytoplasmic signaling cascade that results in the reorganization of the 
RPE plasma membrane and engulfment of POS (Finnemann et al. 1997; Nandrot 
et al. 2004). POS binding activates and recruits focal adhesion kinase (FAK) to 
the apical surface of RPE cells (Finnemann 2003). In the meantime, POS binding 
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relocates MER tyrosine kinase (MerTK) to the sites of internalized POS (Feng et al. 
2002; Finnemann 2003) whereas MerTK is activated by FAK (Finnemann 2003). 
Activated MerTK mediates RPE engulfment of POS (Feng et al. 2002). Engulfed 
POS are degraded in RPE lysosomes (Deguchi et al. 1994).

Age-related macular degeneration (AMD) is an idiopathic retinal degenerative 
disease that predominates in the elderly in the Western world as a cause of irre-
versible, profound vision loss (Evans 2001; Qin and Rodrigues 2008). Growing 
evidence indicates that oxidative stress injury of RPE plays an important role in the 
etiology of AMD. The RPE is at high risk for oxidative injury due to its location in 
a highly oxygenated environment, its high levels of light exposure, and generation 
of reactive oxygen species during POS phagocytosis (Kindzelskii et al. 2004; Yu 
and Cringle 2005). In the early stage of AMD development, oxidative insult induces 
a set of profound physiological responses in RPE, leading to dysfunction without 
initiation of cell death (Honda et al. 2001). Although not much data are available re-
garding dysregulation of RPE cell phagocytosis by sub-lethal oxidative injury, AMP 
activated protein kinase (AMPK), a metabolic-sensing Ser/Thr kinase consisting of 
a catalytic α subunit and regulatory β and γ subunits (Carling 2004), has emerged as 
an important player in regulating RPE cell functions (Qin 2012). AMPK has been 
demonstrated to play roles in regulating various RPE cell processes such as survival 
(Li et al. 2013; Qin and Rodrigues 2010; Yao et al. 2013), immune responses (Qin 
et al. 2008), migration (Liu et al. 2012), phagocytosis (Qin and De Vries 2008) and 
permeability (Qin and Rodrigues 2010; Villarroel et al. 2011). In this review, pos-
sible mechanisms by which AMPK regulates RPE phagocytosis are discussed.

103.2  Inhibition of RPE Cell Phagocytosis by AMPK 
Activation

Activation of AMPK by oxidative stress is associated with inhibition of RPE cell 
phagocytosis (Qin and De Vries 2008). To demonstrate a causal-effect relationship 
between AMPK activation and phagocytosis inhibition, effects of 5-aminoimid-
azole-4-carboxamide riboside (AICAR), an AMPK activator that mimics AMP to 
activate AMPK after its phosphorylation by adenosine kinase, on RPE cell phago-
cytosis were investigated. AICAR treatment activates AMPK signaling in ARPE19 
cells as revealed by increased Thr172 phosphorylation of AMPKα and Ser79 phos-
phorylation of acetyl-CoA carboxylase (ACC), an AMPK substrate (Fig. 103.1a). 
Phosphorylation of AICAR by an adenosine kinase is essential for its activation 
of AMPKas adenosine kinase inhibitor 5-iodotubercidin completely abrogated ac-
tivation of AMPK (Fig. 103.1b), revealing that AICAR activates AMPK in RPE 
cells via directly mimicking AMP effect. Incubation with AICAR inhibits RPE 
cell phagocytosis by 50 % and this inhibition is completely restored by inhibiting 
AMPK (Fig. 103.1c). Activation of AMPK is therefore directly linked to the inhibi-
tion of RPE cell phagocytosis.



775103 Blockade of MerTK Activation by AMPK Inhibits RPE Cell Phagocytosis

103.3  Abrogation of MerTK Activation by AICAR

FAK and MerTK are two important tyrosine kinases in mediating RPE cell phago-
cytosis with Fak upstream of MerTK (Finnemann 2003). Phagocytic challenge 
activates both FAK and MerTK in ARPE19 cells in a time-dependent manner 
(Fig. 103.2) (Qin and Rodrigues 2012). To address how AMPK regulates RPE 
cell phagocytic machinery, cells were treated with AICAR before POS addition. 
AICAR treatment does not alter basal activity of FAK and MerTK. However, 
AICAR selectively abolishes POS-induced activation of MerTK with no effect on 
FAK (Fig. 103.2). This observation indicates that activated AMPK limits RPE cell 
phagocytic activity by abolishing POS-induced activation of MerTK.

Fig. 103.1   Inhibition of RPE cell phagocytosis by AMPK. a AMPK activation by AICAR. Conflu-
ent ARPE19 cells were treated with 2 mM AICAR for 30 min. AMPK activation was assessed by 
immunoblotting with anti-pThr172 AMPKα and anti-pS79 ACC (Acetyl-CoA carboxylase, AMPK 
substrate). b Inhibition of AMPK activation by IODO. Confluent cells were treated with 0.5 μM 
iodotubercidin (IODO) for 30 min and then stimulated with 2 mM AICAR for 30 min. c Inhibitory 
effect of AICAR on phagocytosis. Confluent ARPE19 cells in 24-well plate were pre-incubated 
with 0.5 μM IODO for 30 min prior exposure to 2 mM AICAR for 1h followed by 4 h incubation 
with 5 × 106 POS particles in 300 μL growth medium in the presence of AICAR. Phagocytosis was 
determined by flow cytometer
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103.4  Regulation of RPE Cell Phagocytosis by AMPK

RPE cells maintain survival and functions of photoreceptors via phagocytizing shed 
POS. Knockdown of AMPKα2 reduces the ability of RPE cells to phagocytize POS 
by 40 % whereas there is no effect with knockdown of AMPKα1 (Qin and De Vries 
2008). Under stress conditions, sub-lethal oxidative stress-activated AMPKα2 but 
not AMPKα1 inhibits RPE cell phagocytosis. It is unclear why oxidative stress-
induced inhibition of RPE cell phagocytosis is selectively regulated by AMPKα2, 
however, AMPKα2 rather than AMPKα1 knock-out causes a dramatic decrease in 
oxidative stress-induced AMPK signaling (Qin and De Vries 2008). Continued RPE 
phagocytosis of POS may add more insult to the already stressed RPE cells. Thus, 
reduction of RPE cell phagocytosis by AMPKα2 activation likely protects RPE cells 
from further photo-toxic damage caused by the oxidized POS. How does AMPK in-
hibit RPE cell phagocytosis? As proposed in Fig. 103.3, POS binding recruits FAK/
MerTK to the membrane and initiates FAK-MerTK signaling cascade, triggering 
engulfment of POS and subsequent degradation in lysosome. Selective inhibition of 
POS-induced activation of MerTK by AMPKα2 suggests that AMPKα2 terminates 
FAK-MerTK signaling cascade by blocking signal relay at MerTK. This isoform-
specific role of AMPKα in regulating RPE cell phagocytosis may provide novel 
therapeutic tools for retinal diseases by developing isoform-selective inhibitors of 
AMPK. Furthermore, sub-lethal oxidative stress can also inactivate basal and POS-
induced activation of FAK and slow down RPE cell capability of phagocytizing 
POS (Qin and Rodrigues 2012), showing that oxidative stress can regulate phago-
cytic activity of RPE cells in more than one mechanism.

Fig. 103.2   Inhibition of 
POS-induced MerTK activa-
tion by AICAR. Confluent 
RPE cells were pre-incubated 
with 2 mM AICAR for 
1 h. Cells were incubated 
with 5 × 106 POS in 300 μL 
complete medium for various 
lengths of times with pres-
ence of AICAR. Activation 
of FAK and MerTK was 
determined by activation-
specific anti-pY397 FAK a 
and anti-pY729/753/754 MerTK 
antibody b respectively
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Chapter 104
Modulation of V-ATPase by βA3/A1-Crystallin 
in Retinal Pigment Epithelial Cells

Mallika Valapala, Yuri Sergeev, Eric Wawrousek, Stacey Hose, J Samuel 
Zigler and Debasish Sinha

Abstract We have previously demonstrated that βA3/A1-crystallin, a member of 
the β/γ-crystallin superfamily, is expressed in the astrocytes and retinal pigment 
epithelial (RPE) cells of the eye. In order to understand the physiological func-
tions of βA3/A1-crystallin in RPE cells, we generated conditional knockout (cKO) 
mice where Cryba1, the gene encoding βA3/A1-crystallin, is deleted specifically 
from the RPE using the Cre-loxP system. By utilizing the cKO model, we have 
shown that this protein is required by RPE cells for proper lysosomal degradation 
of photoreceptor outer segments (OS) that have been internalized in phagosomes 
and also for the proper functioning of the autophagy process. We also reported that 
βA3/A1-crystallin is trafficked to lysosomes, where it regulates endolysosomal 
acidification by modulating the activity of the lysosomal V-ATPase complex. Our 
results show that the V-ATPase activity in cKO RPE is significantly lower than 
WT RPE. Since, V-ATPase is important for regulating lysosomal pH, we noticed 
that endolysosomal pH was higher in the cKO cells compared to the WT cells. 
Increased lysosomal pH in cKO RPE is also associated with reduced Cathepsin D 
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activity. Cathepsin D is a major lysosomal aspartic protease involved in the degra-
dation of the OS and hence we believe that reduced proteolytic activity contributes 
to impaired degradation of OS in the cKO RPE. Reduced lysosomal activity in the 
cKO RPE also contributes to the incomplete degradation of the autophagosomes. 
Our results also suggest that βA3/A1-crystallin regulates V-ATPase activity by 
binding to the V0 subunit of the V-ATPase complex. Taken together, these results 
suggest a novel mechanism by which βA3/A1-crystallin regulates lysosomal func-
tion by modulating the activity of V-ATPase.

Keywords Retinal pigment epithelial cells · Phagocytosis · Autophagy · Lysosomes ·  
βA3/A1-crystallin

104.1 Introduction

The Retinal Pigmented Epithelium (RPE) is a single layer of pigmented and po-
larized cells, with the apical surface facing the photoreceptors and the basal side 
facing Bruch’s membrane. It serves many physiological roles that are crucial for 
maintaining homeostasis of the retina (Strauss 2005). The RPE cells are among the 
most active phagocytic cell types in the body, phagocytosing 10 % of total photore-
ceptor volume daily (Kevany and Palczewski 2010). With advancing age, senescent 
RPE cells accumulate metabolic debris from remnants of incomplete degradation of 
ingested photoreceptors. This leads to accumulation of lipofuscin, an undegradable 
byproduct of OS metabolism (Sparrow et al. 2010). Knowledge of the mechanisms 
that lead to the clearance of cellular material by RPE cells can help us develop 
strategies that lead to the restoration of the clearance functions in the RPE cells. 
Autophagy, a process by which cellular constituents are degraded and recycled as 
part of normal cellular remodeling, is likely to be of particular importance in post-
mitotic cells with high metabolic demand, such as the RPE. This process begins 
with the formation of autophagosomes containing engulfed cytoplasmic organelles 
and protein complexes. The autophagosomes later fuse with the lysosomes to form 
autophagolysosomes and their contents are degraded by the acid hydrolases present 
in the lysosomes (Glick et al. 2010; Tong et al. 2010). A disruption of autophagy in 
postmitototic cells like the RPE, would result in the accumulation of undigested or 
partially digested cellular aggregates, leading to degenerative cell death of the RPE 
(Kaarniranta et al. 2013). Therefore, proper functioning of the RPE requires that 
both phagocytosis and autophagy processes be in balance.
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104.2  Importance of Lysosomes in Clearance  
Functions in the RPE

Lysosomes, which are acidic subcellular organelles, are involved in the terminal 
events of both autophagy and phagocytosis (Luzio et al. 2007). Although autopha-
gy and phagocytosis are regarded as two separate biological processes, they share 
many morphological and topological similarities. The termination events in the 
processing of the phagosome and autophagosome are essentially similar (Deretic 
2008). Once formed, both phagosomes and autophagosomes fuse with lysosomes to 
from mature, acidified degradative organelles, called phagolysosomes and autopha-
golysosomes, respectively (Deretic 2008). Since lysosomes are a common element 
in both the processes, impaired lysosomal function is expected to result in dys-
regulated clearance of both phagosomes and autophagosomes. In a phagocytically 
active cell like the RPE, the degradative capacity of the lysosomes is indispensable 
for the proper clearance of ingested outer segments and cellular debri (Kaarniranta 
et al. 2010). Previous studies have suggested that mutations affecting the activity 
of lysosomal proteases lead to accumulation of lipofuscin-like material in the RPE. 
These reports suggest the importance of proper functioning of lysosomal enzymes 
in the maintenance of physiological functions in the RPE (Siakotos et al. 1978 and 
Elner 2002). Most lysosomal enzymes in the RPE are known to function in a narrow 
pH range in the acidic environment of the lysosomal lumen (Liu et al. 2008). The 
lysosomal endopeptidases, Cathepsin B, D and E are known to be highly important 
in protein degradation and turnover in a majority of cell types (Luzio et al. 2007). 
In the RPE cells, cathepsin D is the major protease involved in the lysosomal deg-
radation of the outer segments. The activity of cathepsin D is tightly regulated by 
lysosomal pH, a rise in pH to 5.0 is known to reduce the activity of Cathepsin D by 
80 % (Hayasaka et al. 1975) Studies have suggested that chronic use of drugs like 
chloroquine that alter lysosomal pH induce pathological changes in the RPE. Ani-
mals chronically exposed to chloroquine showed increased lysosomal pH and ac-
cumulation of phagosomes containing ingested outer segments. Undigested phago-
somes and their contents are known to accumulate between Bruch’s membrane in 
RPE in chloroquine-treated animals (Mahon et al. 2004; Peters et al. 2006). These 
studies suggest a stringent requirement of lysosomal pH for the proper functioning 
of lysosomal clearance functions in the RPE.

104.3 Mechanisms of Lysosomal Acidification

Lysosomes are acidic organelles involved in the degradation of macromolecules and 
play important roles in cellular maintenance7. The acidity of the lysosomes is gener-
ated and maintained by the lysosomal proton pump, vacuolar ATP-ase (V-ATPase). 
V-ATPase pumps protons into the lysosomal lumen against the electrochemical 
gradient by utilizing the free energy derived from ATP hydrolysis (Mindell 2012).  
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V-ATPases are multi-subunit complexes, composed of a cytosolic V1 domain that 
catalyzes ATP hydrolysis and an integral V0 domain that translocates protons from 
the cytoplasm to the lysosomal lumen. The V1 domain is composed of eight subunits 
(A-H) and the V0 domain is composed of five subunits (a, d, c, c’ and c”). In mam-
mals, the ‘a’ subunit of the V0 domain is composed of multiple isoforms that have 
been shown to target V-ATPase to distinct cellular compartments (Mindell 2012).

104.4   Involvement of βA3/A1-Crystallin in the Maintenance 
of Lysosomal Function in the RPE

We recently reported that βA3/A1-crystallin, a lens structural protein, is expressed 
in RPE cells and trafficked to lysosomes, where it is involved in degradation of in-
gested OS and also in autophagy (Valapala et al. 2014). We have recently generated 
a conditional knockout (cKO) mouse where βA3/A1-crystallin has been deleted 
specifically from the RPE. In our initial characterization of these animals, we found 
that while OS discs are ingested, the RPE cells are unable to degrade them and 
consequently accumulate ingested phagosomes. These mice also show impaired 
clearance of autophagosomes, hyper-vacuolation and loss of retinal function. These 
cellular abnormalities in the cKO RPE are also accompanied by an increase in ly-
sosomal pH and a reduction in the activity of lysosomal proteases like cathepsin D. 
Our studies also suggested that loss of βA3/A1-crystallin inhibits the activity of the 
lysosomal V-ATPase in the cKO RPE. In order to investigate the mechanisms by 
which βA3/A1-crystallin modulates the activity of V-ATPase, we performed sub-
cellular fractionation of lysosomes, extracted the lysosomal lumen and membrane 
fractions. Later, immunoprecipitation was performed using a polyclonal antibody 
to βA3/A1-crystallin and we immunoprecipitated the V-ATPase subunit ATP6V0A1 
from the lysosomal membrane fractions in the Cryba1 floxed ( Cryba1fl/fl) RPE 
cells (Fig. 104.1a). Since, the V0 subunit of the V-ATPase complex regulates its 
catalytic function; we believe that βA3/A1-crystallin modulates the catalytic effi-
ciency of this complex (Valapala et al. 2014). The exact mechanism by which βA3/
A1-crystallin regulates this process is currently under investigation. Furthermore, 
molecular modeling studies have shown that the molecular surface of the βA3/
A1-crystallin complex possesses a distinct binding site for the ATP6V0A1 subunit 
(Fig. 104.1b). Since, the major function of V-ATPase is to generate a pH gradient in 
the lysosomal compartments, loss of its function significantly alters and lysosomal 
pH and the activity of the lysosomal proteases in the cKO RPE. Our results show 
that dysregulated lysosomal degradation in the cKO RPE leads to incomplete deg-
radation and accumulation of autophagosomes (Valapala et al. 2014). In summary, 
our studies suggest that βA3/A1-crystallin has critical function in the lysosome-
mediated processing during both phagocytosis and autophagy in the RPE.
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Chapter 105
Proteomic Profiling of Cigarette Smoke Induced 
Changes in Retinal Pigment Epithelium Cells

Juliane Merl-Pham, Fabian Gruhn and Stefanie M Hauck

Abstract Age-related macular degeneration (AMD) is a medical condition usually 
affecting older adults and resulting in a loss of vision in the macula, the center of 
the visual field. The dry form of this disease presents with atrophy of the retinal 
pigment epithelium, resulting in the detachment of the retina and loss of photore-
ceptors. Cigarette smoke is one main risk factor for dry AMD and increases the risk 
of developing the disease by three times. In order to understand the influence of 
cigarette smoke on retinal pigment epithelial cells, cultured human ARPE-19 cells 
were treated with cigarette smoke extract for 24 h. Using quantitative mass spec-
trometry more than 3000 proteins were identified and their respective abundances 
were compared between cigarette smoke-treated and untreated cells. Altogether 
1932 proteins were quantified with at least two unique peptides, with 686 proteins 
found to be significantly differentially abundant with p > 0.05. Of these proteins the 
abundance of 64 proteins was at least 2-fold down-regulated after cigarette smoke 
treatment while 120 proteins were 2-fold up-regulated. The analysis of associated 
biological processes revealed an alteration of proteins involved in RNA processing 
and transport as well as extracellular matrix remodelling in response to cigarette 
smoke treatment.

Keywords Age-related macular degeneration · Quantitative mass spectrometry · 
Cell fractionation · Cigarette smoke · Retinal pigment epithelium
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105.1  Introduction

Age-related macular degeneration (AMD) is one of the main causes for a loss of 
vision among the elderly populations in western countries. The prevalence of devel-
oping a form of AMD is ∼ 1.5 % among the US population 40 years and older, and 
increases to  ∼ 12 % for people older than 80 years (Friedman et al. 2004). Hallmark 
pathology of the dry form of the disease (85–90 % of cases) is the formation of 
deposits between the retinal pigment epithelium (RPE) and the Bruch’s membrane 
and atrophy of the RPE, resulting in the detachment of the retina and loss of pho-
toreceptors. The neovascular form of AMD is mainly characterized by destruction 
of the RPE and the retina by abnormal choroidal neovascularization (Bhutto and 
Lutty 2012).

Apart from age, cigarette smoke is one of the main environmental risk factors 
for AMD and increases the risk of developing the disease by about three times (Lois 
et al. 2008). It is known that cigarette smoke leads to oxidative stress, antioxidant 
depletion and complement activation in the affected tissue (Woodell and Rohrer 
2014), resulting in atrophy of RPE cells.

In order to improve our so far limited understanding of the tobacco smoke-
induced molecular mechanisms underlying this RPE destruction in the context of 
AMD, we performed quantitative proteomic profiling of cigarette smoke extract 
(CSE) treated ARPE19 cells in comparison to untreated controls. We identified dis-
tinct up- and down-regulated proteins and pathway enrichment analyses revealed 
significantly altered biological processes in RPE cells in response to CSE treatment.

105.2  Materials and Methods

105.2.1  Cultivation of ARPE19 Cells

Human ARPE19 cells (ATCC) were grown in DMEM medium supplemented with 
10 % fetal bovine serum on ∅ 10 cm cell culture dishes (Nunc) at 37 °C in a humidi-
fied atmosphere containing 5 % CO2. Before fractionation the cells were grown to 
70–80 % confluence, washed with PBS and starved for 24 h using smoked or non-
smoked medium without FBS.

105.2.2  Preparation of Cigarette Smoke Extracts (CSE)

Stocks of cigarette smoke extract (CSE) for treatment of ARPE19 were prepared as 
described previously (van Rijt et al. 2012). 100 % CSE was sterile filtered through 
a 0.20-μm filter (Minisart; Sartorius Stedim Biotech), separated into aliquots, and 
stored at − 20 °C for future use. For cell treatment CSE stock was thawed and di-
luted with DMEM media without FBS to the given concentrations of CSE.
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105.2.3  Fractionation of ARPE19 Cells

The cell culture supernatant containing the secreted proteins was removed, ster-
ile filtered through a 0.22-μm filter and subjected to tryptic digest as described in 
Sect. 105.2.4.

The glycosylated proteins on the ARPE19 surface were biotinylated as described 
(Wollscheid et al. 2009). Cells were washed and lysed in low-salt lysis buffer and 
nuclei were separated by centrifugation. Nuclei were step-wise resuspended in 
high-salt buffer without or with 1 % Triton X-100. Extracted nuclear proteins were 
subjected to tryptic digest.

The supernatant of the centrifugation containing soluble proteins was diluted 
and biotinylated proteins were bound to equilibrated strep-tactin superflow beads 
(IBA) at 4 °C for 2 h. The supernatant containing unbound cytoplasmic proteins was 
subjected to tryptic digest. The beads were washed with buffers containing differ-
ent detergents prior to protein reduction and carbamidomethylation. After washing, 
bound proteins were subjected to tryptic digest directly on the affinity matrix (see 
Sect. 105.2.4).

105.2.4  Sample Preparation for Mass Spectrometric Analysis and 
Proteomic Profiling

Each 10 µg of secreted, nuclear and cytoplasmic proteins were digested in 100 µl 
using a modified FASP procedure (Wiśniewski et al. 2009). Samples were collected 
by centrifugation, acidified with 0.5 % trifluoroacetic acid (TFA) and analyzed on 
an OrbitrapXL.

The purified surface proteins were digested on the affinity matrix. Tryptic pep-
tides were collected by centrifugation. Beads were washed and glycopeptides were 
eluted using 500 Units PNGaseF (New England Biolabs). Glycopeptides were also 
collected by centrifugation. Eluates were pooled, acidified with TFA and analyzed 
on the OrbitrapXL.

The digested peptides were measured by LC-MS/MS as described previously 
(Merl et al. 2012). The acquired spectra were loaded to Progenesis LC-MS soft-
ware (version 2.5, Nonlinear) for label free quantification and analyzed as previ-
ously described (Hauck et al. 2010), except all features were exported as Mascot 
generic file (mgf) and used for peptide identification with Mascot (version 2.4) in 
the Ensembl Human protein database (Version: 2.5, 100607 sequences). A Mascot-
integrated decoy database search calculated an average false discovery of < 1 %. 
The Mascot Percolator algorithm was used for the discrimination between correct 
and incorrect spectrum identifications (Brosch et al. 2009), with a maximum q 
value of 0.01. Peptides with a minimum percolator score of 15 were re-imported 
into the software. The different fractions were first analyzed separately and then 
combined.
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105.2.5  Pathway Enrichment Analysis

For network generation, the 184 significantly differentially abundant proteins 
identified with at least two unique peptides were fed into the Genomatix Gener-
anker tool for investigation of significantly overrepresented biological processes 
( p < 0.01) and the TOP10 hits were exported.

105.3  Results

105.3.1  Viability of ARPE19 Cells after 24 h Treatment 
with Cigarette Smoke Extract

In order to investigate viability and morphology of retinal pigment epithelial cells 
after treatment with CSE, confluent ARPE19 cells were treated with serum free 
medium containing different concentrations of CSE for 24 h. Viability and shape 
of the cells was then monitored under the microscope, with a clear decrease in cell 
count and viability after treatment with ≥ 30 % CSE (Fig. 105.1). For subsequent 
proteomic studies a concentration of 20 % CSE was chosen, a dosage below induc-
tion of apoptosis in the chosen timeframe.

105.3.2  Proteomic Alterations in ARPE19 Cells in Response to 
CSE Treatment

Three replicates of ARPE19 cells were treated with serum-free 20 % CSE for 24 h 
and compared to three replicates of untreated control cells by label-free quantitative 
LC-MS/MS. As typical mass spectrometric analyses allow for the identification of 
only up to 1500 proteins in a complex biological sample, we chose to establish a 
prefractionation workflow based on intra- and extracellular localisation of proteins 

Fig.  105.1   Effect of cigarette smoke treatment on cell viability of ARPE19 cells. Confluent 
ARPE19 cells were treated with serum free medium containing the given percentage of cigarette 
smoke extract (CSE) for 24 h. Viability of the cells was then monitored, with a clear decrease in 
cell count after treatment with≥ 30 % CSE. For subsequent proteomic studies a concentration of 
20 % CSE was chosen
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in our cell system of choice, the human ARPE19 cell line. With this setup, more 
than 3000 proteins could be identified, with 1932 proteins quantified with at least 2 
peptides. A coefficient of variation of only 23 % (data not shown) indicated a high 
reproducibility of the workflow and therefore robust quantification of alterations in 
protein abundances in response to cigarette smoke treatment.

We found altogether 184 proteins 2-fold changed with a significance cut-off 
of p < 0.05. Of these, 64 proteins were found to be down-regulated after cigarette 
smoke treatment in comparison to 120 up-regulated proteins.

105.3.3  Pathway Enrichment Analysis

In order to identify significantly affected biological processes in the RPE cells in 
response to CSE treatment, we analysed these 184 altered proteins using the Gen-
eranker pathway enrichment analysis tool. We found altogether 345 affected bio-
logical processes with p > 0.01; the TOP10 GO-Terms are given in Fig. 105.2 with 
respective significance values below 0.00001 indicating very high significance. 
CSE treatment in RPE cells specifically led to alterations of proteins involved in 
RNA processing and transport (like e.g. SF3B2, HNRNPU and SRRM2) as well as 
extracellular matrix remodelling (e.g. LTBP3, CTGF and THBS1).

Fig. 105.2   Genomatix Generanker analysis of significantly altered biological processes after 24 h 
CSE treatment. The significantly altered proteins were fed in the Genomatix Generanker tool, in 
order to analyse altered biological processes after cigarette smoke treatment. The –log10 of the 
p-value is plotted for the TOP10 significantly altered biological processes
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105.4  Discussion

To gain a better understanding of the influence of cigarette smoke treatment on RPE 
destruction in the context of AMD, we performed proteomic profiling of ARPE19 
cells after cigarette smoke exposure in comparison to untreated controls by label-
free LC-MS/MS.

We could see a clear dose-dependency looking at the viability and cell-shape 
of cultivated ARPE19 cells, as described previously (Bertram et al. 2009; Yu et al. 
2012), with a clear decrease of cell and cell layer integrity at doses above 30 % CSE. 
As our aim was to quantify differences in protein abundances in affected but still vi-
able cells, we chose a concentration of 20 % CSE for subsequent proteomic analysis.

We found approximately 22 % of the identified 3000 proteins significantly al-
tered between CSE-treated and untreated cells. Among those proteins we found 
some, which were already described to be affected by cigarette smoke treatment, 
like e.g. connective tissue growth factor (Yu et al. 2012), which was 4-fold up-
regulated and heme oxygenase 1 (Bertram et al. 2009), an indicator for oxidative 
stress which was 8-fold upregulated. Other proteins were clearly more abundant 
after CSE treatment without showing significance, like vascular endothelial growth 
factor (5-fold upregulated) and fibronectin (5-fold upregulated) in agreement with 
previous results (Bertram et al. 2009; Yu et al. 2012; Chu et al. 2013).

Activation of the complement cascade seems to be a general problem in AMD 
(Woodell and Rohrer 2014), underlined by the fact, that several complement factor 
genes were described as AMD risk genes in the past (Gorin 2012). We also found 
several complement factors upregulated after CSE treatment: CFH was 3-fold up-
regulated, C2S 2-fold and C1R also 2-fold, but all three were not significantly al-
tered, due to a too high variation between the three replicates. Therefore the com-
plement cascade was not found in the pathway enrichment analysis performed.

The pathway enrichment analysis revealed alterations of proteins involved in 
RNA processing and transport as well as extracellular matrix (ECM) remodelling 
in response to cigarette smoke treatment. While it has been shown before that the 
ECM undergoes severe changes during the different stages of AMD (Nita et al. 
2014), including degradation or accumulation of structural components like e.g. fi-
bronectin, little has been described so far on changes in RNA processing and trans-
port in the context of AMD and/or cigarette smoke treatment of RPE cells. A recent 
study described different splicing patterns in the macula in comparison to peripheral 
regions of the retina (Li et al. 2014), indicating specific requirements of mRNA 
splicing and transport in the region primarily affected in AMD. Furthermore, it is 
speculated that different splicing isoforms of VEGF might influence retinal neo-
vascularization (Carter et al. 2011). In our proteomic screen, we found several het-
erogeneous nuclear ribonucleoproteins (hnRNPs, e.g. HNRNPA2, HNRNPC) and 
mRNA splicing factors (e.g. U2AF2, SNRNP70) significantly upregulated after 
CSE treatment. Interestingly, also several proteins involved in ribosome synthesis 
and rRNA processing were found altered, like GAR1, NOP58 and DKC1. Recently, 
association of neurodegeneration and aging with nucleolar stress was described in 
Parkinson’s disease and other neurodegenerative disorders (Parlato and Liss 2014).
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We conclude that the described alterations triggered by cigarette smoke treat-
ment might closely reflect AMD-like phenotypes and could lead to a better under-
standing of disease mechanisms in the future.
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Chapter 106
Reduced Metabolic Capacity in Aged Primary 
Retinal Pigment Epithelium (RPE) is Correlated 
with Increased Susceptibility to Oxidative Stress

Bärbel Rohrer, Mausumi Bandyopadhyay and Craig Beeson

Abstract One of the affected tissues in age-related macular degeneration (AMD) 
is the retinal pigment epithelium (RPE), a tissue that consists of terminally differ-
entiated cells and that accumulates damage over time. In all tissues, mitochondria 
(mt), which play an essential role in both cell health (energy) and death (initiator 
of apoptosis), undergo an aging process through the accumulation of mtDNA dam-
age, changes in mitochondrial dynamics, a reduction in biogenesis, and mitophagy, 
leading to an overall reduction in mitochondrial energy production and other non-
energy-related functions. Here we have compared energy metabolism in primary 
human RPE cells isolated from aborted fetus or aged donor eyes and grown as 
stable monolayers. H2O2 treatment resulted in the generation of reactive oxygen 
species and superoxide, an effect that was significantly augmented by age. Mito-
chondrial metabolism, as analyzed by Seahorse respirometry, revealed reduced 
mitochondrial oxygen consumption (ATP production) at baseline and a complete 
loss of reserve capacity in aged cells. Likewise, glycolysis was blunted in aged cells. 
Taken together, these studies showed that RPE cells derived from aged donor eyes 
are more susceptible to oxidative stress, and exhibit a loss in mitochondrial respira-
tory reserve capacity and a reduction in glycolysis. These data suggest that while 
old cells may have sufficient energy at rest, they cannot mount a stress response 
requiring additional ATP and reducing agents. In summary, these data support the 
hypothesis that mitochondria or energy metabolism is a valid target for therapy in 
AMD.
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106.1 Introduction

AMD is a slowly progressing multifactorial disease involving genetic abnormali-
ties and environmental insults. Inflammation, oxidative stress and single nucleotide 
polymorphisms (SNPs) in genes in the complement cascade increase the risk for 
AMD. RPE cells are affected early and in all forms of AMD. The RPE is composed 
of a single layer of hexagonal highly pigmented cells, located between the retina 
and the choroid, forming part of the blood-retina barrier. Its many functions [re-
viewed by (Strauss 2005)] include: transport of molecules between the subretinal 
space and the choroidal blood supply; spatial ion buffering; secretion of growth fac-
tors, proteases, etc., that control the stability of photoreceptors, Bruch’s membrane 
(BrM) and the choroid; and finally, modulation of the immune response, since the 
RPE participates in control of immune privilege in the healthy eye or mounting of 
an immune response in the diseased eye.

The unique phagocytotic function of the RPE, and the need to efficiently recycle 
the polyunsaturated fatty acid-rich (PUFA) shed outer segments, exposes the RPE 
to high levels of oxidative stress [reviewed by (Cai et al. 2000)]. Oxidation of PUFA 
initiates a chain reaction producing many reactive oxygen species (ROS). Further-
more, RPE cells contain many photosensitizers, and exposure to intense visible 
light induces generation of ROS. To cope with these toxic oxygen intermediates, 
the RPE has evolved effective defenses against oxidative damage; it is particularly 
rich in anti-oxidants. Due to this specialization, the RPE can withstand oxidative 
stress at levels that would typically kill cells. For example, our own work and that 
published by others has shown that RPE cells grown as monolayers with stable 
resistance, are resistant to oxidative stress, withstanding H2O2 treatment up to a 
concentration of 1 mM (Bailey et al. 2004; Thurman et al. 2009). However, with 
increasing age, the RPE antioxidative capability appears to be reduced (Cai et al. 
2000). Likewise, old RPE cells appear to exhibit mitochondrial decay, such as mito-
chondrial fission and loss of mitochondrial morphology, bioenergetic deficiencies, 
and weakened antioxidant defenses (He and Tombran-Tink 2010), and the aging 
process overall is coupled to an increase in mitochondrial DNA mutations and mito-
chondrial disorganization (Miquel et al. 1980). Thus, it is likely that aged RPE cells 
are more susceptible to oxidative stress (Zarbin 2004). In support of this notion, the 
NEI-sponsored AREDS study demonstrated that subjects at risk for AMD and those 
with early AMD benefited from supplements containing high levels of antioxidants 
and zinc (Bartlett and Eperjesi 2003). While cellular bioenergetics (i.e., ATP pro-
duction) have been assessed at baseline in human RPE cells (He and Tombran-Tink 
2010), little is known about cellular bioenergetics under stress conditions.
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106.2 Results

106.2.1  Oxidative Stress is Increased in Cells from Aged 
Donors

Primary human embryonic RPE cells as well as those isolated from donors (ages 
68–72) were grown on Transwell plates as published previously (Bandyopadhyay 
and Rohrer 2012). Monolayer formation was monitored using transepithelial resis-
tance (TER) measurements to ensure that monolayers of equal levels of differentia-
tion were used (200–300 Ω/cm2, obtained within 2–3 weeks of reaching conflu-
ence). At the time of the experiment, fetal bovine serum was removed from the 
growth media, which had no effect on the TER of established monolayers (Thurman 
et al. 2009). Monolayers could then be treated with apical application of 0.5 mM 
H2O2 to induce oxidative stress. Oxidative stress was analyzed by quantifying cy-
tosolic reactive oxygen species (ROS) generation and super oxide production (O2

−) 
with dichlorofluorescein diacetate and dihydroethedium, respectively (Fig. 106.1).

At baseline, in untreated cells, aged RPE cells appear to be under significant 
oxidative stress since ROS levels were significantly elevated by ~ 6-fold when com-
pared to embryonic cells. Similarly, O2

− are higher by ~ 4-fold. Interestingly, while 
in embryonic RPE cells, ROS levels increased significantly by ~ 3.5-fold in the 
H2O2-treated monolayers, no further increase over baseline levels could be observed 
in the aged RPE cells. In contrast, O2

− levels did not change in cells of either age 
upon H2O2-treated exposure. Lack of cytotoxic effect was confirmed by monolayer 
morphology and lack of effect on TER [see (Bandyopadhyay and Rohrer 2012) for 
embryonic cells; data not shown for aged cells].

Fig. 106.1   Oxidative stress is increased in aged RPE cells. Cytosolic a reactive oxygen species 
(ROS) and b superoxide (O2−) levels was measured using dichlorofluorescein diacetate dye and 
dihydroethidium, respectively. Both were significantly elevated in aged cells under control condi-
tion. Only in embryonic cells could ROS production be increased after exposure to oxidative stress 
(0.5 mM H2O2). Data are expressed as mean ± SEM ( n  = 3–4 per condition)
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106.2.2  Aged RPE Cells have Reduced Mitochondrial  
and Glycolytic Metabolic Capacity

Cells take up substrates such as oxygen, glucose, fatty acids, etc., and convert them 
into energy stored as adenosine-triphosphate (ATP). ATP production requires a 
number of oxidation/reduction reactions involved in glycolysis (converts glucose 
into pyruvate), the tricarboxylic acid (TCA) cycle (oxidizes pyruvate-derived ace-
tyl-CoA to generate ATP and reducing agents), and oxidative phosphorylation (uti-
lizes NADH and succinate generated in the TCA cycle to establish a proton gradient 
to power the ATP synthase). As byproducts, heat, lactic acid and CO2 are released 
into the extracellular environment. We have published previously on the usefulness 
of the Seahorse Biosciences XF analyzer (Seahorse Bioscience, Billerica, MD) to 
track real-time changes in cellular metabolism (Perron et al. 2012). This system 
uses fluorometric sensors to measure oxygen consumption rates (OCR) and extra-
cellular acidification rates (ECAR) for a single cell layer on the bottom of multi-
well plates (Ferrick et al. 2008). Cells were plated in 96-well custom plates and 
grown in parallel to cells on Transwell plates to determine the time point at which 
they differentiate and form a monolayer.

Rates were assessed at four stages, basal rate after 15 min of equilibration in 
the XF instrument, maximal respiratory capacity and mitochondrial oxygen con-
sumption. The latter two parameters were assessed using the following inhibitors: 
Carbonyl cyanide-4-(trifluoromethoxy)phenylhydrazone (FCCP), a protonophore 
or an uncoupling agent, since it disrupts ATP synthesis by preventing the buildup 
of the proton gradient required as the energy source for oxidative phosphorylation; 
and, sodium azide, a potent inhibitor of mitochondrial respiration that blocks cy-
tochrome c oxidase (complex IV). The normalized OCR (Fig. 106.2a) and ECAR 
(Fig. 106.2b) values are presented for statistical analysis.

Fig. 106.2  Metabolism in RPE cells. Metabolism was assessed using Seahorse Extracellular Flux 
assays. Basal rate, maximal respiration (FCCP) and mitochondrial oxygen consumption ( azide) 
were assessed in embryonic and aged RPE monolayers. Data are expressed as mean ± SEM ( n  
= 3–5 per condition). a Summary for oxygen consumption rate (OCR); and b extracellular acidifi-
cation rates (ECAR). Basal mitochondrial metabolism is reduced, but maximal capacity is almost 
abolished in aged RPE cells, while mitochondrial-dependent O2 consumption was unaffected. 
ECAR was significantly reduced in aged cells for all three measures; with both age groups exhibit-
ing an increase in glycolysis when mitochondrial respiration was reduced
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RPE cells derived from embryonic donor eyes showed a typical behavior in the 
OCR analysis (Fig. 106.2a), with oxygen consumption rates being maximally stim-
ulated by FCCP (1.7-fold increase when compared to baseline) and significantly 
inhibited by azide. In comparison, OCR rates in RPE cells derived from aged donor 
eyes were only slightly inhibited by azide, and maximal respiratory capacity was 
completely abolished. On average, basal OCR rates of aged RPE cells were within 
30 % of those exhibited by embryonic cells, but the maximal respiratory capacity, 
the additional ATP that can be produced under stress condition, can only be elicited 
from young but not aged donor cells.

RPE cells, irrespective of the donor age, showed a typical behavior in the ECAR 
analysis (Fig. 106.2b), in that the glycolytic capacity of the cells increased in re-
sponse to the agents that interfered with oxidative phosphorylation. In both age-
groups, ECAR increased by 60–67 % after FCCP and by 118–128 % after azide 
application. However, overall, glycolytic capacity was reduced in aged cells by 
~ 75 %.

Finally, it was tested whether OCR and ECAR rates are affected by oxidative 
stress. Basal respiration was significantly decreased in young RPE cells after H2O2-
treatment (45 ± 2.8, P < 0.001), while rates were not affected in aged RPE cells when 
compared to untreated cells (13 ± 17.0, P = 0.6). Likewise, only the embryonic cells 
exhibited a drop in ECAR after H2O2-exposure (47 ± 7.7, P < 0.01), while the rates 
of aged RPE cells remained unchanged (basal: 8.0 ± 14.0, P = 0.5).

106.3 Discussion

Overall, the study was designed to determine the bioenergetics and antioxidant de-
fenses in aged RPE cells. The overall conclusions from this analysis can be summa-
rized as follows: (1) RPE cells from aged donors experience significant oxidative 
stress at baseline, which cannot be increased after exposure to H2O2; and concomi-
tantly, (2) these aged cells have reduced mitochondrial and glycolytic metabolic 
capacity that cannot be further reduced by oxidative stress. Taken together, these 
bioenergetic deficiencies coupled with weakened antioxidant defenses may signifi-
cantly reduce RPE function and contribute to age-related retinal anomalies.

The OCR and ECAR for a given cell type was correlated with the cells require-
ment for, or its ability to generate, energy and reducing agents. Here, we analyzed 
RPE cells in an artificial environment in which most of the normal tissue functions 
(i.e., retinoid metabolism, phagocytosis of rod outer segments, etc.) were eliminated. 
Stress was induced artificially by exposure of cells to H2O2 at a concentration known 
not to cause damage (Bandyopadhyay and Rohrer 2012). H2O2 has been shown previ-
ously to reduce state 3 respiration and reduce activity of TCA cycle enzymes (Nulton-
Persson and Szweda 2001).

Embryonic RPE cells were found to exhibit a robust increase in oxygen con-
sumption, demonstrating a significant mitochondrial respiratory capacity should 
additional energy be required. Likewise, embryonic cells appear to consume large 
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amounts of glucose, based on the ECAR levels, which can be elevated under mito-
chondrial stress conditions. Overall, between glycolysis and the pentose phosphate 
pathway (generation of reducing equivalents in the form of NADPH; not analyzed 
here), the embryonic cells appear to have sufficient reducing agents to maintain a 
non-oxidized environment. Exposure to H2O2 reduced mitochondrial respiration as 
well as glycolytic capacity, and concomitantly increased the amount of ROS present 
in the cells. In contrast, old RPE cells have reduced mitochondrial respiration and 
glycolytic capacity at baseline when compared to embryonic cells, which results in 
a highly oxidized cellular environment with elevated levels of ROS and O2

−. This 
level of oxidative stress did not reduce mitochondrial respiration or alter the already 
elevated levels of increased amounts of ROS and O2

− present in the cells; it did, 
however, further decrease the glycolytic capacity of the cell.

In future experiments, we wish to examine the possibility of ameliorating these 
bioenergetic deficiencies to increase energy production and bolster the cell’s anti-
oxidant defenses to improve RPE cell function and reduce its susceptibility to age-
related changes and risk factors of age-related macular degeneration.
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