
Finite Element Modelling of 2D Brittle
Fracture: The Phase-Field Approach

H.A.F.A. Santos and V.V. Silberschmidt

Abstract The prevention of fracture-induced failure is a major constraint in
engineering design, and numerical simulations of fracture processes often play a
key role in design decisions. Although huge efforts have been made to develop
novel and more accurate models of fracture and an enormous progress has been
achieved in the recent years, the development of an adequate scheme for the
numerical simulation of crack initiation and propagation is still a significant chal-
lenge for the scientific community. The goal of this paper is twofold: (i) to give an
overview of current numerical methods available in the literature for the analysis of
brittle fracture problems; (ii) to present a finite element phase-field scheme for the
analysis of brittle fracture problems. This scheme relies on recently developed
strategies for incorporating an additional phase-field to account for fracture. The
spatial finite element discretization is formulated by means of the classical Galerkin
method, whereas an implicit Euler method with adaptive time-stepping is adopted
for the temporal discretization. To demonstrate the capabilities of the model, some
numerical experiments are modelled.

1 Introduction

The development of an adequate scheme for the numerical simulation of crack
initiation and propagation is still a significant challenge for the Computational
Mechanics community. Huge efforts have already been made to develop novel
and accurate models for fracture and an enormous progress has been achieved.
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A particularly successful approach is provided by the Linear Elastic Fracture
Mechanics (LEFM) theory based on Griffith’s theory for brittle fracture, which
relates crack nucleation and propagation to a critical value of the energy release
rate.

The efforts to model brittle fracture focus essentially on two broad approaches:
(i) the discrete methods, such as the element deletion method [2], the embedded
finite element method [13] or the extended finite element method [23, 27], which
use the finite element method in conjunction with Griffith’s-type LEFM models to
incorporate discontinuities into the displacement field, and (ii) the continuum-
damage (CD) methods [12], which incorporate a damage parameter into the model
that describes the material’s deterioration and controls its strength. Some of these
methods are already available in commercial CAE software packages and can be
used for various design applications. However, it has long been recognized that,
while discrete methods are well suited mostly for static fracture and for a moderate
number of cracks, CD methods are not effective when modelling large dominant
cracks, since the damage zone tends to widen in a direction normal to the crack
initiation as the simulation proceeds. Another shortcoming of the CD methods is
that regularization algorithms are needed to overcome mesh dependency. Addi-
tionally, current methods for predicting crack propagation, in particular for dynamic
loading conditions and 3D problems, still lack accuracy and robustness, even when
applied to relatively simple benchmark tests [26]. Due to these reasons, several
efforts were made in the last decade for the development of alternative schemes.
Recently, a new method for the numerical simulation of fracture has emerged—the
Variational Phase-Field Method [14, 21].

Variational methods are a relatively new development in the field of Fracture
Mechanics. The underlying theory was introduced in [14] for quasi-static brittle
fracture, and is based on the idea that cracks should propagate along a path of least
energy. The goal of variational methods is to circumvent several weaknesses of the
classical LEFM theory of Griffith. As pointed out in [14], the inverse proportion-
ality of the critical stress to the square root of the initial crack length indicates that
the classical LEFM theory is unable to predict crack initiation. Indeed, for a solid
without an initial crack, the stress required for crack propagation becomes infinite.
Other important weaknesses of this theory are the inadequacy for predicting the
direction of crack propagation and its inability to handle crack jumps.

Later, Bourdin et al. [5, 6] carried out numerical tests based on this method, and
introduced a phase-field approximation of the energy functional in order to facilitate
the determination of the numerical solution of the variational method. The phase-
field was included in the energy functional in addition to the primary displacement
field in order to regularize the jumps of the displacement field representing the
cracks. The phase-field parameter models the continuous change in stiffness
between broken and undamaged parts of the material on a small lengthscale con-
trolled by a regularization parameter. This regularization allows for the treatment of
the global energy minimization as a standard variational problem, for which clas-
sical finite element methods are adequate. In the variational phase-field approach,
the evolution of fracture surfaces follows from the solution of a coupled system of
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partial differential equations. Due to this—and contrarily to many discrete methods
—its implementation does not require fracture surfaces to be tracked
algorithmically.

The variational phase-field approach has been recently applied in a dynamic
setting by Bourdin et al. [7] and Larsen et al. [19, 20].

Alternative phase-field models of fracture were proposed by Miehe et al. [21,
22]. An important addition to the existing theory was the modelling of anisotropic
degradation, which allows the analysis of tensile fracture, thus resolving the issue of
interpenetration encountered in [7] for crack branching simulations. This model has
been extended by Borden et al. [4] to the dynamic case.

In the phase-field approach to fracture, a crack is a small region in which damage
accumulates, as quantified by the order parameter. This description is conceptually
similar to the ones employed within the framework of continuum gradient theories
for damage [25], wherein the damage gradient is considered as an independent
constitutive variable. The phase-field approach to fracture may be viewed as a
continuum gradient theory for damage with an alternative derivation for the
equation governing damage evolution.

The goal of this paper is to give an overview of current numerical methods
proposed for analysis of brittle fracture problems and to present a finite element
phase-field model to deal with such problems. Additionally, some numerical
experiments are presented, which demonstrate that, unlike many of the current
numerical methods based on the classical theory of Griffith, the presented phase-
field fracture model is able to reproduce various complex phenomena, such as
deflection or branching of pre-existing cracks, as well as the nucleation of new
cracks in originally undamaged domains.

2 Literature Review

2.1 General Considerations

The prevention of fracture-induced failure is a major constraint in engineering
designs, and the numerical simulation of fracture processes often plays a key role in
design decisions. A successful model is provided by the LEFM theory based on
Griffith’s theory for brittle fracture. A general concept in this theory is that, upon the
attainment of a critical energy release rate, a fully opened crack is nucleated or
propagated. As a result, the process zone, i.e., the zone in which the material
changes from an undamaged state to a damaged one, is lumped into a single point at
the crack tip. In the dynamic setting, crack growth velocity is selected based on the
balance between the mechanical energy that flows within the process zone per unit
time and the dissipated energy within the process zone over the same period.
Although LEFM predictions agree well with observations for a sufficiently slow
crack growth, large discrepancies may be found at high loading speeds.
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Due to the complexity of fracture processes in engineering applications,
numerical methods play a crucial role in fracture analyses. Efforts to model crack
propagation were focused mainly on two broad approaches: (i) discrete methods,
which use the FEM in conjunction with Griffith’s-type LEFM models in order to
incorporate discontinuities into the displacement field, and (ii) continuum-damage
methods, which incorporate a damage parameter into the model that controls the
strength of the material.

Among the most commonly used methods in the first category are: the Element
Deletion Method (EDM) [2], the Interelement Separation Method (ISM) [9], the
Embedded Element Method (EFEM) [13], the Cohesive Zone Method (CZM) [24],
and the Extended Finite Element Method (XFEM) [23, 27]. All of these approaches
represent cracks as discrete discontinuities, either by inserting discontinuity lines by
means of remeshing strategies, or by enriching the displacement field with dis-
continuities using the partition of unity method. Continuum-Damage methods were
particularly adopted to model diffusive fracture processes [12].

Some of the aforementioned methods are already available in commercial CAE
software packages and can be used for various applications. However, it has long
been recognized that discrete methods are only well suited for static fracture, and
when a moderate number of cracks occurs. The EDM, for instance, suffers from
extreme mesh dependency and is not well suited for dynamics. In the case of the
ISM, cracks are only allowed to develop along existing interelement edges, which
also leads to strong mesh dependency. Also, the EFEM may be sensitive to the
orientation of the discontinuity surface. As for the XFEM, it requires an algorithm
to ensure crack path continuity, which is particularly challenging in 3D. Addi-
tionally, and unlike the EFEM, the enrichment parameters used in the XFEM
cannot be condensed at the element level, yielding computationally demanding
algorithms, mostly when dealing with an increasing number of cracks and crack
branches. Another important shortcoming of XFEM is that numerical integration
requires special attention, particularly around the crack tip when employing non-
polynomial enrichment functions, where several thousand Gauss-points may be
needed to reduce the integration error. These shortcomings, together with those for
CD methods mentioned in Sect. 1, resulted in many efforts, in particular in the last
decade, to develop novel, efficient, and accurate computational methods for brittle
dynamic fracture.

2.2 Extended Finite Element Method

Simulating the propagation of cracks using traditional finite element methods is
challenging since the topology of the domain changes continuously. XFEM has
been very successfully employed to model cracks, since the finite element mesh can
be created independently from the crack geometry, and, in particular, since the
domain does not have to be remeshed as the crack propagates. Remeshing is
particularly cumbersome in dynamic crack propagation problems. Indeed, as the
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crack advances over a large part of the mesh, remeshing needs to be performed
many times, leading unavoidably to computationally expensive simulations.

The basic idea behind the XFEM is to decompose the displacement field into
continuous and discontinuous parts. The continuous part is the standard finite
element interpolation, while the discontinuous, or enrichment, part is introduced
into the finite element interpolation by means of the local partition of unity method.
This enrichment is carried out with additional degrees of freedom introduced into
the discretization of the test and trial functions, which are multiplied by the so-
called enrichment shape functions incorporating the near tip asymptotic solutions
and allowing displacements to be discontinuous across the crack face.

Application of the XFEM to cracks began with Belytschko and Black in [1]. In
[23], the XFEM was used to create a technique for simulating crack propagation in
two dimensions without the need to remesh the domain. The extension to three
dimensions was initiated in [27].

However, the XFEM approach carries technical challenges: assembling the
stiffness matrix requires integration of singular/discontinuous functions, and
implementing enrichment requires resolving material connectivity (often using a
level set representation). As for the integration issue, as noted in [11], the use of
Gauss quadrature or Monte Carlo integration techniques is unstable. Indeed, since
the crack path through a given triangle is a priori unknown, the singularities can
move very close to quadrature points. Regarding the material connectivity issue, in
a region unambiguously separated into two pieces (i.e., away from the crack tip),
the enrichment is provided by a Heaviside function, defined to be 1 on one side of
the crack and −1 on the other side. This is easy for the case of a single straight
crack, but more challenging for more complex crack geometries.

The XFEM was mainly applied to problems involving the growth of a single
crack or a few cracks; there are only a few contributions dealing with fracture
problems that involve the growth of numerous (several hundreds of) cracks [8, 30].
The case of complex crack patterns such as branching and merging cracks was dealt
with in [11], with separate enrichments used for each crack, and an additional
enrichment function used to represent the junction itself. However, the formulation
becomes cumbersome with increasing number of cracks and crack branches.
Moreover, those methods suffer (in practice) from the absence of a reliable crack
branching criteria.

In the last few years, several implementations of the XFEM have been presented
in the literature. Bordas et al. in [3] developed object-oriented libraries for the
XFEM. The implementation of the XFEM within a general-purpose Fortran finite
element code was discussed in [28]. Wyart et al. in [29] proposed a substructuring
approach to decompose a cracked domain into a safe subdomain and a cracked
subdomain analyzed separately by FEM and XFEM codes, respectively. An
alternative approach was pursued in [15], where the XFEM was implemented in the
commercial finite element software Abaqus. Although Abaqus is a very general and
well known finite element software tool, its XFEM package can handle only static
analyses. Another important limitation of the XFEM in Abaqus is that only linear
continuum elements are allowed.
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2.3 Variational Approach: Phase-Field Models

Macroscopic continuum models for fracture can be classified into two main groups:
(i) sharp-crack models, where crack surfaces are zero-traction boundaries extending
to a sharp tip, and (ii) smeared-crack approaches, where the change in stiffness
between broken and undamaged parts of an elastic material is modelled continu-
ously with a damage parameter. The classical Griffith theory, as well as the vari-
ational approach to brittle fracture, belongs to the first group. In both theories the
evolution of cracks results from a competition between a release of elastic energy
and an increase of the surface energy. Thus, the energy release rate plays an
important role in the determination of crack propagation. A numerical treatment of
sharp-crack models is always faced with the difficulty of dealing with discontinuous
displacement fields across the cracks. Phase-field models avoid these difficulties by
introducing a continuous scalar field—the phase-field parameter—which smoothly
interpolates between undamaged and failed states.

The reasons for introduction of variational approaches as a means to overcome
limitations of LEFM were presented in Sect. 1 together with some models.

Standard approaches for dynamic crack propagation represent cracks as discrete
discontinuities, either by inserting discontinuity lines, by means of remeshing
techniques, or by enriching the displacement field with discontinuities using the
partition of unity method. Tracing the evolution of complex fracture surfaces has,
however, proven to be a tedious task, particularly in 3D. Contrarily, within the
framework of a variational approach, discontinuities are not introduced into the
solid. Instead, the fracture surface is approximated by a phase-field, which smoo-
thens the boundary of the crack over a small region. The evolution of fracture
surfaces follows from the solution of a coupled system of partial differential
equations. From an implementation point of view, it does not require the fracture
surfaces to be tracked algorithmically, which is particularly advantageous when
multiple branching and merging cracks are considered in 3D. The numerical
solution of the strong form of the equations of motion requires both spatial and
temporal discretizations. The spatial discretization was carried out by means of the
Galerkin method, either using the standard C0-continuous finite elements [21], or,
more recently, Non-Uniform Rational Basis Splines (NURBS) and T-Spline basis
functions used within the framework of the Isogeometric Analysis [4]. For the
temporal discretization, two different schemes were adopted: the monolithic
scheme, which requires to solve the coupled system of equations simultaneously,
and the staggered scheme, in which the displacements and the phase-field are
solved for separately [19, 20].

A challenge that emerges with the use of phase-field models for fracture is their
computational cost associated with mesh size requirements. Indeed, the use of a
mesh with a characteristic length that is not small enough compared to the crack
regularization parameter yields erroneous results with regard to the energy.

The variational approach is a robust technique for dealing with dynamic crack
propagation problems. Still, it might be anticipated that, combining the advantages
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of partition of discrete methods (such as XFEM) and the variational approach will
not be an easy task, although it could lead to a new efficient and reliable pathway to
model complex fracture patterns.

One of the simplest two-dimensional isoparametric C0-continuous finite ele-
ments is the four-node quadrilateral element, with three degrees of freedom per
node, i.e. two displacement degrees of freedom and one phase-field degree of
freedom per node. The discretization of arbitrarily shaped structures also requires an
approximation of the geometry. The isoparametric concept makes use of the same
shape functions to represent both the element geometries and the unknown dis-
placement fields.

The presence of the transient term in the phase-field evolution equation requires
the application of a time integration scheme in addition to the spatial discretization.
For the temporal discretization, two different schemes can be adopted: (i) the
monolithic scheme, based on the generalized-alpha method introduced in [10],
which requires to solve the coupled system of equations simultaneously using a
Newton-Raphson method, and (ii) the staggered scheme, in which the displacements
and the phase-field are solved for separately [19, 20]. In the staggered time inte-
gration scheme, the momentum equation is solved first, at a given time step, in order
to get the updated displacements. Using these updated displacements, the phase-field
equation is solved subsequently. In addition to reducing the problem of solving two
(possibly linear) systems, this scheme also allows greater flexibility in terms of how
the momentum equation is solved, i.e., either implicit or explicit schemes can be
used. This scheme can also be generalized to a predictor/multi-corrector format
where additional Newton-Raphson iterations can be performed within a time step.

To be physically consistent, phase-field fracture models have to enforce irre-
versibility of the fracture process. In other words, all cracks must only grow with
time. Different approaches were proposed in the literature to enforce irreversibility.
The approach suggested in [6] constrains a subset of the discrete phase-field control
variables that meet a minimum threshold value. This approach is easy to solve
numerically but it requires the selection of an additional numerical parameter. An
alternative approach, based on a strain-history functional was introduced in [21].
One advantage of this approach is its computational efficiency. The only compu-
tational cost is a floating point comparison, and it only requires storing one history
variable per integration point. Another advantage of this approach is that an initial
strain-history functional can be used to model initial cracks. Furthermore, the initial
cracks can be located anywhere in the domain without reference to the mesh, which
may prove highly advantageous in specifying complex surface cracks, in particular
in three-dimensional bodies.

The width of the transition zone, where the phase-field interpolates between 1
and 0, is controlled by a length scale parameter. In order to obtain reasonable
results, without overestimating the influence of the fractured zone, this length
parameter should be chosen sufficiently small compared to the global dimensions of
the considered sample. The mesh size has to be chosen sufficiently small in order to
accurately resolve steep gradients and high curvatures of the crack field in the
transition zones between cracked and uncracked areas. The accurate approximation

Finite Element Modelling of 2D Brittle Fracture … 7



of the crack field is important to capture the surface energy and, thus, the thresholds
and dynamics of crack propagation correctly. However, small values of the length
parameter require a high level of mesh refinement, which is numerically demanding
in terms of computation time and required memory. Several approaches were
proposed in the literature in order to meet the requirements for a sufficiently fine
resolution, on the one hand, and to keep the computation time within bounds, on the
other hand. In an effort to accomplish this, Kuhn and Muller [17, 18] introduced
specially engineered finite element shape functions of an exponential nature to
discretize the phase-field. These shape functions are parametrized by the ratio
between the element size and the phase-field regularization parameter. Their results
showed that, with these special shape functions, an accurate prediction of the
surface energy associated with the phase-field is possible with a much lower level
of refinement when compared to the standard finite element shape functions. The
drawback of this approach is that some information regarding crack orientation is
necessary for the proper construction of the exponential shape functions. Also, the
choice of a good quadrature method is crucial for the performance of this approach.

3 Griffith’s Theory of Brittle Fracture

Consider an arbitrary body X 2 R2 with external boundary @X and an internal
discontinuity boundary Γ. Let @X ¼ @XN [ @XD, with @XN and @XD being the
Neumann and Dirichlet boundaries, respectively, such that @XN \ @XD ¼ ;. The
displacement of a point x 2 X at time t is denoted by u(x, t). u may be a result of
either the applied body forces b, tractions �t, prescribed boundary displacements �u,
or a combination of these actions. The body is assumed linear elastic, homoge-
neous, and isotropic with Young’s modulus E, Poisson’s ratio ν and mass density ρ.

According to the Griffith’s theory of brittle fracture, the energy required to create
a unit area of fracture surface is equal to the critical energy release rate Gc.

The Lagrangian for the discrete fracture problem is

Lðu; _u;CÞ ¼ Pkð _uÞ �Ppðu;CÞ ð1Þ

where

Pk ¼
Z
X

1
2
q _u � _u

� �
dX ð2Þ

is the kinetic energy functional, and

Pp ¼
Z
X

WðeÞ dXþ
Z
C

Gc dC ð3Þ
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is the potential energy functional, with

e ¼ Du ð4aÞ

WðeÞ ¼ 1
2
eTCe ð4bÞ

r ¼ @W
@e

¼ Ce ð4cÞ

Here, W represents the strain energy density. ε and σ are the infinitesimal strain
vector and the Cauchy stress vector, respectively, represented in Voigt’s notation as
follows

r ¼
rxx
ryy
rxy

2
4

3
5; e ¼ exx

eyy
2exy

2
4

3
5 ð5Þ

In (4a, 4b, 4c), D is the compatibilty operator and C is the constitutive matrix,
defined as

D ¼
@
@x1

0
0 @

@x2
@
@x2

@
@x1

2
64

3
75 and C ¼ 1

E0

1 �m0 0
�m0 1 0
0 0 2ð1þ m0Þ

2
4

3
5

where E0 ¼ E; m0 ¼ m for plane-stress problems, and E0 ¼ E=ð1� m2Þ; m0 ¼ m=ð1�
mÞ for plane-strain problems.

The Euler-Lagrange equations of this functional determine the motion of the
body.

3.1 Phase-Field Approximation

In this approach, the fracture energy is approximated as

Z
C

Gc dC �
Z
X

Gc
ð1� cÞ2

4e
þ erc

 !
dX ð6Þ

where c is the phase-field, taking values from 0 to 1. c = 0 inside the crack and c = 1
away from the crack. ε is the regularization parameter that controls the width of the
smooth approximation of the crack.
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To model the loss of material stiffness in the failure zone, the strain energy
density is redefined as

Wðe; cÞ ¼ 1
2
ðc2 þ gÞeTCe ð7Þ

where η is the small dimensionless parameter 0\ g� 1 introduced to avoid
numerical difficulties where the material is broken (i.e., where c ¼ 0). The degra-
dation of stiffness in the broken phase is modelled by the factor ðc2 þ gÞ.

Substitution of the phase-field approximation for the fracture energy (6) and the
elastic energy density (7) into the Lagrange energy functional (1) yields

Lðu; _u; cÞ ¼
Z
X

1
2
q _u � _u� 1

2
ðc2 þ gÞeTCe

� �
dX�

Z
X

Gc
ð1� cÞ2

4�
þ �rc

 !
dX

ð8Þ

Note that, in order to conserve mass, the kinetic energy term is unaffected by the
phase-field approximation.

The Euler-Lagrange equations of the problem can be used to arrive at the fol-
lowing strong form of the equations of motion in a Cartesian reference system
ðx1; x2Þ to be solved in Ω

DTrþ b ¼ qu
:: ð9aÞ

_c ¼ �M ceTCe� Gc 2�Dcþ 1� c
2�

� �� �
ð9bÞ

with

r ¼ ðc2 þ gÞCe

Here, M is the mobility parameter, taken as constant and positive (classical
Ginzburg-Landau equation).

The equations of motion are coupled with the phase-field c. Since c varies
continuously, the singularity at the crack tip is replaced with a smooth region where
c varies rapidly from 1 to 0.

It should also be emphasized that, within the framework of this model, the
irreversibility condition CðtÞ � Cðt þ DtÞ needs to be enforced.

Additionally, the following sets of boundary conditions

u ¼ �u; on @XD

Nr ¼ �t; on @XN
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with

N ¼ n1 0 n2
0 n2 n1

� �

where nj are the components of the external unit normal n of @XN , and initial
conditions

uðx; 0Þ ¼ u0ðxÞ; x 2 X

_uðx; 0Þ ¼ v0ðxÞ; x 2 X

must hold, where u0 and v0 are the initial displacements and velocities, respectively.

4 Finite Element Formulation

An implementation of the initial boundary-value problem into a finite element
scheme is given in this section. The numerical solution of the initial boundary-value
problem requires both a spatial and temporal discretization. In this work, the spatial
discretization is formulated by means of the Galerkin method, whereas an implicit
Euler method is adopted for the temporal discretization. In particular, for the dis-
cretization in space, four-node quadrilateral (bilinear Lagrangian) elements with
three degrees of freedom per node, i.e., two displacement and one phase-field
degrees of freedom per node, and a 2 × 2 Gauss quadrature rule are adopted in this
work. The nonlinear coupled system of equations is solved using a Newton-
Raphson algorithm.

4.1 Weak Form of the BVP

The trial solution spaces are defined as

Uu ¼ fuðtÞ 2 ðH1ðXÞÞdju ¼ �u on @XDg ð10aÞ

Uc ¼ fcðtÞ 2 H1ðXÞg ð10bÞ

Similarly, the weighting function spaces are defined as

Vu ¼ fw 2 ðH1ðXÞÞd jw ¼ 0 on @XDg ð11aÞ

Vc ¼ fq 2 H1ðXÞg ð11bÞ
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Multiplying Eqs. 9a, 9b by the appropriate weighting functions and applying
integration by parts leads to the following weak formulation: given �u, �t, b, u0, v0
and c0 find uðtÞ 2 Uu and cðtÞ 2 Uc; t 2 ½0; T �, such that for all w 2 Vu and q 2 Vc,
the following conditions holdZ

X

ðrTDwþ qu
::TwÞ dX�

Z
X

bTw dX�
Z

@XN

t�Tw d@X ¼ 0 ð12aÞ

Z
X

ceTCe� Gc

�
ð1� cÞ

� �
q� _c

M
qþ nTrq

� �
dX ¼ 0 ð12bÞ

Z
X

qðuTð0Þ � uT0 Þw dX ¼ 0 ð12cÞ

Z
X

qðvTð0Þ � vT0 Þw dX ¼ 0 ð12dÞ

Z
X

qðcð0Þ � c0Þq dX ¼ 0 ð12eÞ

4.2 Discrete Weak Form

Following the Galerkin method, the finite-dimensional approximations to the
function spaces are assumed as Uh

u 2 Uu; Uh
c 2 Uc; Vh

u 2 Vu and Vh
c 2 Vc, leading

to the discrete form of the problem as: given �u, �t, b, u0, v0 and c0 find uhðtÞ 2 Uh
u

and chðtÞ 2 Uh
c ; t 2 ½0; T �, such that for all wh 2 Vh

u and qh 2 Vh
c , the following

conditions holdZ
X

ðrhTDwh þ qu
::hTwhÞ dX�

Z
X

bTwh dX�
Z

@XN

t�Twh d@X ¼ 0 ð13aÞ

Z
X

ceh
T
Ceh � Gc

�
ð1� chÞ

� �
qh � _ch

M
qh þ nh

Trqh
� �

dX ¼ 0 ð13bÞ

Z
X

qðuhT ð0Þ � uT0 Þwh dX ¼ 0 ð13cÞ
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Z
X

qðvhT ð0Þ � vT0 Þwh dX ¼ 0 ð13dÞ

Z
X

qðchð0Þ � c0Þqh dX ¼ 0 ð13eÞ

The explicit representations of the approximations for the displacement and
phase-field variables in terms of the basis functions and nodal variables are

uh ¼
X
I

NIuI ð14aÞ

ch ¼
X
I

NIcI ð14bÞ

with I ¼ 1; 2; 3; 4. Similarly, assuming that both the finite-dimensional trial solution
and weighting function spaces are defined by the same set of basis functions, the
approximations for the weighting functions are defined as

wh ¼
X
I

NIwI ð15aÞ

qh ¼
X
I

NIqI ð15bÞ

where the NI are the global basis functions and uI, cI, wI and qI are the nodal
degrees of freedom.

Making use of these approximations, eh and rch can be written as

eh ¼
X
I

Bu
I uI ð16aÞ

rch ¼
X
I

Bc
I cI ð16bÞ

with

Bu
I ¼

NI;x 0
0 NI;y

NI;y NI;x

2
4

3
5 and Bc

I ¼
NI;x

NI;y

� �

Finite Element Modelling of 2D Brittle Fracture … 13



4.3 Element Residuals and Their Derivatives

To solve the resulting coupled nonlinear system of equations, an incremental
iterative Newton-Raphson solution strategy based on a consistent linearization of
the governing equations is used. The element residuals can be written as

Ru
I ¼ �Fu

int;I þ Fu
ext;I ð17aÞ

Rc
I ¼ �Fc

int;I ð17bÞ

with

Fu
int;I ¼

Z
X

ðqNIu
::h þ BuT

I rhÞ dX ð18aÞ

Fu
ext;I ¼

Z
X

NIbh dXþ
Z
C

NI t�h dX ð18bÞ

Fc
int;I ¼

Z
X

NI
_ch

M
þ BcT

I nh þ NI cheh
T
Ceh � Gc

2�
ð1� chÞ

� �� �
dX ð18cÞ

where nh ¼ 2Gc�rch.
The derivatives of the element residuals with respect to the nodal degrees of

freedom come out as

Kuu
IJ ¼ @Ru

I

@uJ
¼
Z
X

BuT
I ðc2 þ gÞCBu

J dX ð19aÞ

Kuc
IJ ¼ @Ru

I

@cJ
¼ 2

Z
X

BuT
I cCeNJ dX ð19bÞ

Kcc
IJ ¼ @Rc

I

@cJ
¼
Z
X

2BcT
I Gc�Bc

J þ NIðeTCeþ Gc

2�
ÞNJ

� �
dX ð19cÞ

Dcc
IJ ¼ @Rc

I

@ _cJ
¼
Z
X

NI
1
M

NJ dX ð19dÞ

Muu
IJ ¼ @Ru

I

@u
::
J
¼
Z
X

NIqNJ dX ð19eÞ

14 H.A.F.A. Santos and V.V. Silberschmidt



4.4 Time Discretization: Quasi-static Regime—Implicit Euler
Method

The global residual vector that results from the assembly of the element residuals is
defined as

Rðd; _dÞ ¼ Fext � Fintðd; _dÞ :¼ 0 ð20Þ

Let dn and _dn denote the global vector of degrees of freedom for time step n and
its time derivative, respectively, defined as follows

d ¼
d1
d2
..
.

2
64

3
75; _d ¼

_d1
_d2
..
.

2
64

3
75 ð21Þ

with

dI ¼ uI
cI

� �
; _dI ¼ _uI

_cI

� �
ð22Þ

The implicit (or backward) Euler method is stated as follows: given ðdn; _dnÞ, find
ðdnþ1; _dnþ1Þ such that

Rðdnþ1; _dnþ1Þ ¼ 0 ð23Þ

with

_dnþ1 ¼ dnþ1 � dn
Dt

ð24Þ

where Dt is the time step. This problem can be redefined as

Rðdn; dnþ1Þ ¼ 0 ð25Þ

At each time step, the solution to this problem is obtained using a Newton-
Raphson method to solve the non-linear system of equations. Letting k be the k-th
Newton iteration step, the linearized system of equations that needs to be solved is

RðkÞ
nþ1 � TðkÞ

nþ1Dd
ðkÞ
nþ1 ¼ 0 ð26Þ

with T the global tangent matrix, formed by assembly of the element matrices given
by
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TIJ ¼ KIJ þ 1
Dtn

DIJ ð27Þ

with

KIJ ¼ Kuu
IJ Kuc

IJ

KucT
IJ Kcc

IJ

� �
ð28Þ

and

DIJ ¼ O O
O Dcc

IJ

� �
ð29Þ

being the element stiffness and damping matrices, respectively.
The problem is initialized with

dð0Þnþ1 ¼ dn ð30Þ

and the solution is computed iteratively using the update formula given by

dðkþ1Þ
nþ1 ¼ dðkÞnþ1 þ DdðkÞnþ1 ð31Þ

where the increment DdðkÞnþ1 is determined from the linearized system of Eq. 26. The
iteration procedure continues until convergence of the residual vector is achieved.

4.5 Irreversibility of Cracking

Perhaps the most significant drawback of variational phase-field models is that they
typically allow for crack healing. To rule out such unphysical behavior, Hakim and
Karma proposed constraining the time-rate of the phase field to be less than or equal
to zero at all points and times [16]. In simulations of quasi-static fracture processes
in anti-plane shear and plane strain, they observed that, while slightly larger loads
appear to be required when their irreversibility criterion is imposed, crack paths
were essentially unaffected. Alternatively, following the approach proposed in [5],
the irreversibility of cracking can be guaranteed by imposing homogeneous Di-
richlet boundary conditions on the phase-field once a crack as been detected. The
latter formulation is adopted in this work.
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5 Numerical Results

5.1 Square Plate Under Quasi-static Prescribed Displacement

The square plate under quasi-static prescribed displacement depicted in Fig. 1 was
considered. A uniform 64 × 64 mesh was adopted. The material parameters
(assumed to be dimensionally consistent) were set to E ¼ 106; m ¼ 0:3 and
Gc ¼ 0:01, and plane stress was assumed. The regularization, viscosity and mobility
parameters were chosen to be � ¼ 0:02; g ¼ 10�5 and M ¼ 109, respectively. The
prescribed displacement was set to �u ¼ 4:5� 10�4. The problem was solved in an
incremental-iterative fashion by resorting to the Newton-Raphson method. An
adaptive time-stepping scheme was used, for which the convergence tolerance was
set to 1:0� 10�9 and the optimal number of iterations to 4. For a larger number of
iterations, the adaptive scheme automatically decreases the time step size, whereas
for a smaller number of iterations the adaptive scheme increases it.

The obtained distributions of stresses and phase-field are shown in Fig. 2. Two
cracks initiate from the corners of the built-in edge at a displacement of
�u ¼ 2:9� 10�4. At �u ¼ 4:1� 10�4 the cracks start deviating from the vertical
edge. As expected, high stress gradients can be observed at the crack tips.

The undeformed and deformed configurations of the plate are plotted in Fig. 3.

5.2 Pre-notched Square Plate Under Quasi-static Prescribed
Displacement

The pre-notched square plate under quasi-static prescribed displacement depicted in
Fig. 4 is considered in this section. The same 64 × 64 mesh and material parameters
were employed. The regularization, viscosity and mobility parameters remained at

1

1

x

y

ū

Fig. 1 Square plate under
quasi-static tensile load:
problem definition
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the same level. The prescribed displacement in this case was set to �u ¼ 1:5� 10�4.
The problem was solved in an incremental-iterative fashion similar to the previous
example.

The obtained distributions of stresses and phase-field are shown in Fig. 5.
The obtained results indicate that the proposed phase-field fracture model is

capable to reproduce various complex phenomena, such as deflection or branching

σ
xx

σ
yy

σ
xy c

0

20

40

60

80

100

−10

0

10

20

30

0

0.1

0.2

0.3

0.4

−30

−20

−10

0

10

20

30

Fig. 2 Square plate under quasi-static prescribed displacement: stresses and phase-field obtained
on a 64 × 64 mesh for �u ¼ 4:5� 10�4

Fig. 3 Square plate under
quasi-static prescribed
displacement: deformed
(scaled) and undeformed
configurations of the plate
obtained for �u ¼ 4:5� 10�4
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of pre-existing cracks, as well as the nucleation of new cracks in originally
undamaged domains. However, a high resolution of the crack is needed, leading to
computationally expensive simulations.

1

1 x

y

ū

Fig. 4 Pre-notched square
plate under quasi-static
prescribed displacement:
problem definition
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Fig. 5 Pre-notched square plate under quasi-static prescribed displacement: stresses and phase-
field obtained on a 64 × 64 mesh for �u ¼ 1:5� 10�4
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6 Conclusions

The numerical simulation of brittle fracture is still a significant challenge for the
Computational Mechanics community. An overview of the main current numerical
methods available in the literature for the analysis of brittle fracture problems was
given. It can be concluded that discrete methods are well suited only for static
fracture and a moderate number of cracks. On the other hand, continuum damage
methods are not effective when modelling large dominant cracks. The recently
introduced variational approach circumvents the implementation of complex crack-
tracking algorithms and the need to describe the topology of the crack surface.

A finite element phase-field scheme relying on the variational approach to model
brittle fracture problems was presented and some numerical experiments were
implemented with this scheme. It was demonstrated that the presented model is
capable to reproduce various complex phenomena, although it requires a high
resolution of the crack, which may lead to computationally expensive simulations.
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