Chapter 7
Use of the Differential Calculus for Finding
Caustics by Refraction

Definition. [120] If we imagine that an infinity of rays BA, BM, and BD (see
Fig.7.1), which emanate from the same radiant point B, are refracted! when
they encounter a curved line AMD, by approaching or moving away from its
perpendiculars MC, so that the sines CE of the angles CME of incidence are always
to the sines CG of the angles CMG of refraction in the same given ratio as m to n,
then the curved line> HFN (see Fig. 7.2) which touches all the refracted rays or their
prolongations AH, MF, and DN is called the Caustic by refraction.3

Corollary. (§8132) If we envelop* the caustic HFN beginning at the point A, we
describe the curve ALK so that the tangent LF plus the portion FH of the caustic is
continually equal to the same straight line AH. Moreover, if we imagine another
tangent Fml infinitely close to FML, with another incident ray Bm, and if we
describe the little arcs MO and MR with centers F and B, then we form two little
right triangles MRm and MOm, which are similar to two others MEC and MGC,
pair by pair, because if we remove the same angle EMm from the right angles RME
and CMm, then the remaining angles RMm and EMC are equal. Similarly, if we
remove the same angle GMm from the right angles GMO and CMm, the remaining
angles OMm and GMC are equal. This is why Rm : Om :: CE : CG :: m : n.
Now, because Rm is the differential of BM and Om is the differential of LM, it
follows (see §96) that BM — BA, the sum of all the differentials Rm in the portion

'In L’Hopital (1696) the term rompre is used, literally meaning “to break.”” We consistently
translate the term rayon rompu as “refracted ray.”

2In L’Hbpital (1696) the curved line was given as FHN, but corrected in the Errata.
3A caustic by refraction is sometimes called a “Dicaustic.”

“I.e., describe the involute in reserve order, see §110, Footnote 4.
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Fig. 7.1 Caustic by Refraction, Convex Case
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Fig. 7.2 Caustic by Refraction, Concave Case

AM of the curve, is to ML or AH — MF — FH, the sum of all the differentials
Om in the same portion [121] AM, as m is to n, and consequently the portion
FH = AH — MF + -BA — 7-BM.

There could be different cases, according to whether the incident ray BA is greater
or less than BM, and whether the refracted ray AH envelops or evolves the portion
HF. However, we will still prove, as we have just done, that the difference of the
incident rays is to the difference of the refracted rays (by joining to one of them the
portion of the caustic that it evolves before falling on the other) as m is to n. For
example (see Fig.7.2), BA—BM : AH—MF —FH :: m : n, from which we conclude
that FH = AH — MF + .- BM — --BA.

If we describe the circular arc AP with center B (see Fig.7.1), then it is clear that
PM is the difference of the incident rays BM and BA. Moreover, if we suppose that
the radiant point B becomes infinitely distant from the curve AMD, the incident rays
BA and BM become parallel and the arc AP becomes a straight line perpendicular to
these rays.

Proposition I.

General Problem. (§133) Given the nature of the curve AMD (see Fig.7.1), the
radiant point B, and the incident ray BM, we wish to find the point F on the
refracted ray MF, given in position, where it touches the caustic by refraction.
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Fig. 7.3 Intersection of the Refracted Ray with the Caustic

We find (see Ch.5) the length MC of the radius of the evolute at the given
point M. We take the infinitely small arc Mm, and draw the straight lines Bm, Cm,
and Fm. We describe the little arcs MR and MO with centers B and F, and we drop
the perpendiculars CE, Ce, CG, and Cg to the incident and refracted rays. We denote
the given quantities BM by y, ME by a, MG by b, and the little arc MR by dx.

Given this, the similar right triangles MEC and MRm, MGC and MOm, and
BMR and BQe give ME(a) : MG(b) = MR(dx) : MO = % and [122]
BM(y) : BQ or BE(y + a) :: MR(dx) : Qe = MX}M‘ Now, by the property
of the refraction Ce : Cg :: CE : CG :: m : n. Consequently, m : n 1 Ce —

CE or Qe (M) :Cg—CG or Sg= W. Thus, because of the similar

right triangles FMO and FSg, we have MO — Sg (%W) : MO (2%) =

MS or MG(b) : MF = bm_”b—m’_ This gives the following construction.
y—any—aan .

Let the angle ECH = GCM (see Fig.7.3) be constructed towards CM, and let
MK = ”y—“ be taken towards B. I say that if we make HK : HE :: MG : MF, then the
point F' is on the caustic by refraction.

Because of the similar triangles CGM and CEH, we have CG : CE :: n : m ::
MG(b) : EH = . From this we conclude that HE—ME or HM = "= HM—MK

n

or HK = bmy_“nﬂ, and consequently HK (w) : HE (22) : MG(b) :
y ny n
MF = bbmy

It is bcyi%a?nivh;?nif the value of HK is negative, the value of MF is also negative,
from which it follows that the point M falls between the points G and F, when the
point H is between the points K and E.

If the radiant point B falls on the side of the point E (see Fig.7.2),> or (what is
the same thing) if the curve AMD is concave on the side of the radiant point B, then

. . _ —bbmy
y changes from positive to negative, and consequently we have MF = oy Tany—aan
bbmy

r——_ The construction remains the same.
If we suppose that y becomes infinite, that is to say that the radiant point B is
infinitely distant from the curve AMD, then the incident rays are parallel to each

other, and we have MF = erTW because the term aan is null [123] with respect to

or

SIn L'Hopital (1696), the reference here was to figures 7.1 and 7.3.
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the other two, bmy and any, and because MK (‘;—“) therefore vanishes, we need only
make HM : HE :: MG : MF.

Corollary I. (§134) We demonstrate, in the same way as for the caustic by
reflection (see §114), that a curved line AMD has only one caustic by refraction,
given the ratio of m to n. This caustic is always geometric and rectifiable when the
given curve AMD is geometric.

Corollary II. (§135) If the point E falls on the other side of the perpendicular
MC with respect to the point G, and if CE is equal to CG, then it is clear
that the caustic by refraction changes to a caustic by reflection. Indeed, we have

bbmy _ ay _ .
MF (—bmy_myﬁu» = ¥ because m = n, and a changes from negative to

positive, and it also becomes equal to b. This agrees with what we proved in the
previous chapter.

If m is infinite with respect to n, then it is clear that the refracted ray MF falls
on the perpendicular CM, so that the Caustic by refraction becomes the Evolute.
Indeed, we have MF = b, which in this case becomes MC, that is to say that the
point F falls on the point C, which is on the evolute.

Corollary III. (§136) If the curve AMD is convex with radiant point B, and the

value of MF bmy_bab%) is positive, it is clear that we must take the point F on
the same side as the point G with respect to the point M, as we have supposed from
making the calculations. On the contrary, if it is negative, we must take it on the
opposite side. It is the same when the curve AMD is concave towards the point B,
however it should be noted that in this case [124] MF = bmy_b:% From this it
follows that infinitely close refracted rays are convergent when the value of MF is
positive in the first case, and negative in the second case, and, on the contrary, they
are divergent when the value of MF is negative in the first case, and positive in the

second. Given this, it is clear that:

1. If the curve AMD is convex towards the radiant point B, and m is less than n, or
if it is concave towards this point, and m is greater than n, then infinitely close
refracted rays are always divergent.

2. If the curve AMD is convex towards the radiant point B, and m is greater
than n, or if it is concave towards this point and m is less than n, then

infinitely close refracted rays are convergent, when MK (%) is less than

MH (22 —a or a — ), divergent when MK is greater, and parallel when it
is equal. Now, because MK = 0 when the incident rays are parallel, it follows

that in this case infinitely close refracted rays are always convergent.

Corollary IV. (§137) If the incident ray BM touches the curve AMD at the point
M, then we have ME(a) = 0, and consequently MF = b. This shows that the point
F therefore falls on the point G.

If the incident ray BM is perpendicular to the curve AMD, then the straight lines
ME(a) and MG(b) each become equal to the radius of the evolute CM, because they
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Fig. 7.4 Caustic of a Straight Line by Refraction

coincide with it. We therefore have MF =
incident rays are parallel to each other.

If the refracted ray MF touches the curve AMD at the point M, then we have
MG(b) = 0. From this we see that the caustic therefore touches the given curve at
the point M.

[125] If the radius of the evolute CM is null, then the straight lines ME(a) and
MG(b) are also equal to zero. Consequently, the terms aan and bbmy are null with
respect to the other terms bmy and any. From this it follows that MF = 0, and
therefore that the caustic has the point M in common with the given curve.

If the radius of the evolute CM is infinite, then the straight lines ME(a) and
MG(b) are also infinite. Consequently, the terms bmy and any are null with respect
to other terms aan and bbmy, so that we have MF = :bea'Zi; . Now (see §133), because
this quantity is negative when we suppose that the point F falls on the other side of
the point B, with respect to the line AMD, and on the contrary it is positive when
we suppose that it falls on the same side, it follows (see §136) that we must take the
point F on the same side of the point B, that is to say that infinitely close refracted
rays are divergent. It is clear that the little arc Mm thus becomes a straight line, and
that the preceding construction no longer holds. We may substitute the following
one for it, which can be used to determine the points of caustics by refraction when
the line AMD is straight.

Draw BO perpendicular to the incident ray BM (see Fig. 7.4), meeting the straight
line MC perpendicular to AD at O. If we draw OL perpendicular to the refracted ray
MG, and make the angle BOH equal to the angle LOM, then we have BM : BH ::
ML : MF. 1 say that the point F is on the caustic by refraction.

Because the right triangles MEC and MBO are similar and the right triangles
MGC and MLO are also similar, no matter what magnitude we suppose CM to
have, and consequently when it becomes infinite, we still have® ME(a) : MG(b) ::
BM(y) : ML = I%. Additionally, because the triangles OLM and OBH are similar,

__bmy__\which becomes 2" when the
my—ny¥bn m—n

In L'Hopital (1696) the connective between BM(y) and ML was missing.
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Fig. 7.5 Caustic of a Quarter Circle by Refraction, Convex Case

we also have’ OL : OB(n : m) :: ML (lg) : BH = %. From this we see that
BM(y) : BH (22) : ML (2) : MF (22).

Corollary V. [126] (§138) It is clear that given any two of the three points B, C,
and F, we can easily find the third one.

Example I. (§139) Let the curve AMD (see Fig.7.5) be a quarter of a circle that
has the point C as its center. Let the incident rays BA, BM, and BD be parallel to
each other and perpendicular to CD. Finally, let the ratio of m to n be as 3 is to 2,
which is the ratio for rays of light passing from air into glass. Because the evolute
of the circle AMD is the point C, which is its center, it follows that if we describe a
semi-circumference MEC, which has the radius CM as its diameter, and if we take
the chord CG = %CE, then the line MG is the refracted ray, on which we determine
the point F', as we demonstrated above (see §133).

To find the point H where the incident ray BA, perpendicular to AMD, touches
the caustic by refraction, we have (see §137) AH (-2) = 3b = 3CA.® Moreover,
if we describe a semi-circumference CND with the radius CD as its diameter, and
if we take the chord CN = %CD, then it is clear (see §137) that the point N is on
the caustic by refraction because the incident ray BD touches the circle AMD at the
point D.

If we draw AP parallel to CD, then it is clear (see §132) that the portion FH =
AH — MF — 2PM, so that the entire caustic HFN = 2CA — DN = %CA.

If the quarter circle AMD (see Fig. 7.6) is concave towards the incident rays BM,
and the ratio of m to n, is as 2 is to 3, we take the chord CG = %CE on the
semi-circumference CEM that has the radius CM as its diameter, and we draw the
refracted ray MG, on which we determine the point F by the general construction
of §133.

[127] We have (see §137) AH (-22-) = —2b, that is to say that AH is on the side
(see §136) of the convexity of the quarter circle AMD, and twice the radius AC. If we

"In L’'Hopital (1696) the parentheses around ’% were missing.

8In L’ Hopital (1696) the parentheses following AH were omitted.
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Fig. 7.6 Caustic of a Quarter Circle by Refraction, Concave Case

Fig. 7.7 Caustic of the Logarithmic Spiral by Refraction Spiral

suppose that CG or %CE is equal to CM, then it is manifest that the refracted ray MF
touches the circle AMD at M, because then the point G coincides with the point M .
From this it follows that if we take CE = %CD, the point M falls on the point N,
where the caustic HFN (see §137) touches the quarter circle AMD. However, when
CE is greater than %CD, the incident rays BM can no longer be refracted, that is to
say pass from glass into the air, because it is impossible for CG, perpendicular to
the refracted ray MG, to be greater than CM, so that all the rays that fall on the part
ND are reflected.

If we draw AP parallel to CD, then it is clear (see §132) that the portion FH =
AH — MF + %PM , so that if we draw NK parallel to CD, the entire caustic HFN =

2CA + 34K = 55 ca.

Example I1. (§140) Let the curve AMD (see Fig.7.7) be a logarithmic spiral, which
has the point A as its center, from which all the incident rays AM emanate.

It is clear (see §91) that the point E falls on the point A, that is to say thata = y.
Thus, if we substitute y in the place of a in bmy_bs%, the value (see §133) of MF
when the curve is concave on the side of the radiant point, then we have MF = b.
From this we see that the point F falls on the point G.

If we draw the straight line AG and the tangent M7, the angle AGO, supplemen-
tary to the angle AGM, is equal the angle AMT. This is because in the circle whose
diameter is the line CM, that passes through the points A and G, the angles AGO

and AMT each has as measure of half of the same arc AM. Therefore, it is clear that
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Fig. 7.9 Caustic by Refraction, Inverse Problem, Alternate Solution

the caustic AGN is the same [128] logarithmic spiral as the given AMD, and that it
only differs in its position.

Proposition II.

Problem. (§141) Given the caustic by refraction HF (see Fig.7.8) with its radiant
point B and the ratio of m to n, we wish to find an infinity of curves, such as AM,
for which HF is the caustic by refraction.

Take the point A at will on any tangent HA as one of the points on the curve AM.
Describe the circular arc AP with center B and interval BA, and another circular arc
with any other interval BM. Taking AE = .- PM, we describe a curved line EM by
enveloping the caustic HF, that cuts the circular arc described on the interval BM
in a point M, which is on the curve we wish to find. This is because (see §132),
PM : AE or ML ::m:n.

Alternate Solution. (§142) On any tangent FM, other than HA, we wish to find
the point M such that HF + FM + - BM = HA + ;-BA. This is why if we take
FK = 7-BA + AH — FH, and we find a point M on FK, such that MK = :-BM,
this (see §132) will be the point that we wish to find. Now, this can be done by
describing a curved line GM (see Fig. 7.9) such that when we draw the straight lines
MB and MK from any of its point M to the given points B and K, they are always
to each other in the same ratio as m is to n. It is therefore only a matter of finding
the nature of this place.’

To this end, let MR be drawn perpendicular to BK and denote the given BK by a,
and the indeterminates BR by x and RM by y. The right triangles BRM and KRM
give BM = /xx + yy and KM = \/aa — 2ax + xx + yy, [129] so that to satisfy the
condition of the problem, we must have \/xx + yy : v/aa —2ax + xx + yy :: m : n.

°Le., the place of the general point M of the curved line GM.
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Fig. 7.10 Caustic by Refraction, Inverse Problem, Radiant Point at Infinity

From this we conclude yy = 2amm—aamm _ yy \which is a place on the circle that we

construct as follows. e

Let us take BG = % and BQ = ;™. and let the semi-circumference GMQ be
described with diameter GQ; I say this is the required place. Because we have QR
or BO—BR = ;- — x and RG or BR — BG = x — ;7 the property of the circle,
which gives OR x RG = RM?, yields yy = W — xx in analytic terms.

If the incident rays BA and BM (see Fig. 7.10) are parallel to a straight line given
in position, the first solution will still hold, but this latter becomes useless, and we
may substitute it with the following.

Letus take FL = AH — HF, and draw LG parallel to AB and perpendicular to AP.
We take LO = %LG, and draw LP parallel to GO, and PM parallel to GL. It is clear
(see §132) that the point M is the one that we wish to find; because LO = %LG, SO
it follows that ML = - PM.

If the caustic by refraction FH meets in a point, then the curves AM become the

Ovals of Descartes, which have caused such a stir among Geometers.!?

Corollary I. (§143) We prove as we did for the caustics by reflection (see §130)
that the curves AM have different natures, and they are not geometric except when
the caustic by refraction HF is geometric and rectifiable.

Corollary II. (§144) Given a curved line AM (see Fig. 7.11) with the radiant point
B, and the ratio of m to n, we wish to find an [130] infinity of lines such as DN, so
that the refracted rays MN break again when they encounter these lines DN to meet
at a given point C.

If we imagine that the curved line HF is the caustic by refraction of the given
curve AM, formed by the radiant point B, then it is clear that this same line HF
must also be the caustic by refraction of the curve DN that we wish to find, having
the given point C as its radiant point. This is why (see §132)

10The Ovals of Descartes, or Cartesian Ovals, are a quartic curve (Lockwood 1971, p. 188).
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Fig. 7.11 Using the Inverse Construction to Focus Refracted Rays

ZBA+AH = “BM + MF + FH and
m m
n n
NF + FH — —NC = HD — —DC.
m m
Consequently
n n n
—BA 4+ AH = —BM + MN + HD — —NC,
m m m
and transposing as usual,
n n n n
—BA — —BM + —DC + AD = MN + —NC.
m m m m

This gives the following construction.

Take the point D at will on any refracted ray AH as one of the points of the curve
DN that we wish to find. On any other refracted ray MF we take the part MK =
%BA — %BM + %DC + AD, and find the point N, as above (see §142), such that
NK = %NC. It is then clear (see §132) that the point M will be on the curve DN.

General Corollary.

For the Three Precceding Chapters. (§145) It is manifest (see $§80, 85, 107, 108,
114, 115, 128, 129, 134, 143) that a curved line can have only one evolute, only one
caustic by reflection, and only one caustic by refraction, given the radiant point and
the ratio of sines. These lines are always geometric and rectifiable when the given
curve is geometric. On the other hand, the same curved line may be the evolute, or
one or the other caustic in the same ratio of sines, with the same position of the
radiant point, of an'! infinity of very different lines, which are only geometric when
the given curve is geometric and rectifiable.

"'Tn L'Hopital (1696), the indefinite article une was omitted, but this was corrected in the Errata.
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