
Chapter 1
In Which We Give the Rules of This Calculus

Analysis
of the

Infinitely Small

First Part

On the Differential Calculus

Definition I. Those quantities are called variable which increase or decrease
continually, as opposed to constant quantities that remain the same while others
change. Thus in the parabola the ordinate and the abscissa are variable quantities, as
opposed to the parameter, which is a constant quantity.1

1In L’Hôpital (1696) the terms appliquée for ordinate and coupée for abscissa are used, literally
meaning “applied” and “cut.”
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2 1 The Rules of the Calculus

Fig. 1.1 Definition of the Differential

Definition II. [2] The infinitely small portion by which a variable quantity contin-
ually increases or decreases is called the Differential.2 For example, let AMB be an
arbitrary curved line (see Fig. 1.1) which has the line AC as its axis or diameter,3

and has PM as one of its ordinates. Let pm be another ordinate, infinitely close to
the first one. Given this, if we also draw MR parallel to AC, and the chords AM Am,
and describe the little circular arc MS of the circle with center A and radius AM,
then Pp is the differential of AP, Rm the differential of PM, Sm the differential of
AM, and Mm the differential of the arc AM. Furthermore, the little triangle MAm,
which has the arc Mm as its base is the differential of the segment AM, and the little
region MPpm is the differential of the region contained by the straight lines AP and
PM, and by the arc AM.

Corollary. (�1) It is evident that the differential of a constant quantity is null or
zero, or (what amounts to the same thing) that constant quantities do not have a
differential.

Note. In what follows, we will make use of the symbol d to denote the differential
of a variable quantity that is expressed by a single letter and, in order to avoid
confusion, the letter d will not be used in any other way in the following calculations.
If, for example, we denote AP by x, PM by y, AM by z, the arc AM by u, the
curvilinear region APM by s, and the segment AM by t, then dx denotes the value of
Pp, dy that of Rm, dz that of Sm, du that of the little arc Mm, ds that of the little region
MPpm, and dt that of the little curvilinear triangle MAm.

2In L’Hôpital (1696), the same word différence is used for both the differential and the difference
of ordinary subtraction. In this translation, it is consistently translated as “differential” when the
difference is infinitely small.
3In L’Hôpital (1696), these terms are used interchangeably for the x-axis. Technically, the term
diameter should only be used in the sense for a curve that is symmetric about the axis.



1 The Rules of the Calculus 3

Postulate I.4 (�2) We suppose that two quantities that differ by an infinitely small
quantity may be used interchangeably, or (what amounts to the same [3] thing) that a
quantity which is increased or decreased by another quantity that is infinitely smaller
than it is, may be considered as remaining the same. We suppose, for example,
that we may take Ap for AP, pm for PM, the region Apm for the region APM, the
little region MPpm for the little rectangle MPpR, the little sector AMm for the little
triangle AMS, the angle pAm for the angle PAM, and so forth.

Postulate II.5 (�3) We suppose that a curved line may be considered as an
assemblage of infinitely many straight lines, each one being infinitely small, or
(what amounts to the same thing) as a polygon with an infinite number of sides,
each being infinitely small, which determine the curvature of the line by the angles
formed amongst themselves. We suppose, for example, that the portion Mm of the
curve and the arc MS of the circle may be considered to be straight lines on account
of their infinite smallness, so that the little triangle mSM may be considered to be
rectilinear.

Note. In what follows, we will normally suppose that the final letters of the alphabet,
z, y, x, etc., denote variable quantities, and conversely, that the first letters a, b, c, etc.,
denote constant quantities, so that as x becomes x C dx, y, z, etc., become y C dy,
z C dz, etc., and a, b, c, etc. remain as a, b, c, etc. (see §1).

Proposition I.

Problem. (�4) To take the differential of several quantities added together or
subtracted from one another.6

Let aCxCy�z be the expression whose differential we are to take. If we suppose
that x is increased by an infinitely small quantity, i.e. that it becomes x C dx, then y

[4] becomes yCdy, and z becomes zCdz. As for the constant a, it remains a (see §1).
Thus, the given quantity aCx Cy �z becomes aCx CdxCy Cdy�z�dz, and the
differential, which is found by subtracting the former from the latter, is dxCdy�dz.
It is similar for other expressions, giving rise to the following rule.

Rule I. For quantities added or subtracted.

We take the differential of each term in the given quantity and, keeping the signs
the same, we add them together in a new quantity which is the differential that we
wish to find.

Proposition II.

Problem. (�5) To take the differential of a product composed of several quantities
multiplied together.

4Compare to Postulate 1 on p. 187.
5Compare to Postulate 2 on p. 187.
6Compare to the section “On the Addition and Subtraction of Differentials” on p. 187.



4 1 The Rules of the Calculus

1. The differential of xy is y dx C x dy. This is because y becomes y C dy while x

becomes x C dx, and consequently xy becomes xy C y dx C x dy C dx dy, which
is the product of x C dx and y C dy. The differential is y dx C x dy C dx dy,
that is to say (see §2) y dx C x dy. This is because the quantity dx dy is infinitely
small with respect to the other terms y dx and x dy: If we were to divide y dx,
for example, and dx dy by dx we would find, on the one hand y, and on the other
dy, which is the differential of the former, and is consequently infinitely smaller
than it. From this it follows that the differential of the product of two quantities is
equal to the product of the differential of the first of these two quantities with the
second, plus the product of the differential of the second quantity with the first.

2. The differential of xyz is yz dx C xz dy C xy dz. This is because in considering the
product xy as a single quantity, it is necessary, as we have just proven, to take
the product of its differential y dx C x dy with the second quantity z (which gives
yz dx C xz dy), plus the product of the differential dz [5] of the second quantity z
by the first xy (which gives xy dz). Consequently the differential of xyz is seen to
be yz dx C xz dy C xy dz.

3. The differential of xyzu is uyz dx C uxz dy C uxy dz C xyz du. This is proved as in
the previous case, by considering xyz as a single quantity. It is similar for other
cases to infinity,7 from which we form the following rule.

Rule II. For multiplied quantities.

The differential of a product of several quantities multiplied together is equal to the
sum of the products of the differential of each of the quantities multiplied by the
product of the others.8

Thus, the differential of ax is x 0Ca dx, that is a dx. The differential of 9 a C x �
b � y is b dx � y dx � a dy � x dy.

Proposition III.

Problem. (�6) To take the differential of any fraction.10

The differential of x
y

is y dx�x dy
yy . This is because, if suppose that x

y
D z, we have

x D yz. Because these two variable quantities x and yz must always be equal to one
another, whether increasing or decreasing, it follows that their differentials, that is
to say their increments or decrements, are equal to each other. It then follows (see
§5) that dx D y dz C z dy, and so

dz D dx � z dy

y
D y dx � x dy

yy
;

7In L’Hôpital (1696) the expression “to infinity” is frequently employed meaning roughly “of all
orders.”
8Compare this with the product rule as discussed on p. 189.
9In L’Hôpital (1696), the overline is used for grouping terms. We note, however, that a negative
sign does not seem to distribute through terms grouped under an overline; see §13 ff.
10Compare to the section “On the Differentials of Divided Quantities” on p. 189.
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substituting the value x
y

for z. This is what we wished to find, and we form the
following rule.

Rule III. For divided quantities, or fractions.

The differential of any fraction is equal to [6] the product of the differential
of the numerator by the denominator minus the product of the differential of the
denominator by the numerator all divided by the square of the denominator.

Thus, the differential of a
x

is �a dx
xx and the differential of x

aCx
is a dx

aaC2axCxx .

Proposition IV.

Problem. (�7) To take the differential of any power, whether perfect or imperfect,11

of a variable quantity.12

In order to give a general rule that applies to perfect and imperfect powers, it is
necessary to explain the analogy that we find among their exponents.

If we consider a geometric progression13 whose first term is unity and whose
second term is any quantity x, and if under each term we write its exponent, it is
clear that these exponents form an arithmetic progression.

Geom. prog.: 1, x, xx, x3, x4, x5, x6, x7, etc.
Arith. prog.: 0, 1, 2, 3, 4, 5, 6, 7, etc.

If we continue the geometric progression below unity and the arithmetic progres-
sion below zero, the terms of the one are the exponents of the corresponding terms
in the other. Thus, �1 is the exponent of 1

x
, �2 that of 1

xx , etc.

Geom. prog.: x, 1, 1
x

, 1
xx , 1

x3 , 1
x4 , etc.

Arith. prog.: 1, 0, �1, �2, �3, �4, etc.
If we introduce a new term in the geometric progression, we must introduce a

similar term in the arithmetic progression to be its exponent.
Thus,

p
x has 1

2
as its exponent, 3

p
x has 1

3
, 5

p
x4 has 5

4
, 1p

x3
has � 3

2
, 1

3p
x5

has

� 5
3
, 1p

x7
has � 7

2
, etc., so that the expressions [7]

p
x and x

1
2 , 3

p
x and x

1
3 , 5

p
x4 and

x
4
5 , 1p

x3
and x� 3

2 , etc., signify the same thing.

Geom. prog.: 1,
p

x, x.
Arith. prog.: 0, 1

2
, 1.

Geom. prog.: 1, 3
p

x, 3
p

xx, x.
Arith. prog.: 0, 1

3
, 2

3
, 1.

Geom. prog.: 1, 5
p

x, 5
p

xx, 5
p

x3, 5
p

x4, x.
Arith. prog.: 0, 1

5
, 2

5
, 3

5
, 4

5
, 1.

11As we will see on p. 6 (L’Hôpital 1696, p. 8), a “perfect” power is an integer and an “imperfect”
power is a fraction.
12Compare to the section “On the Differentials of Surd Quantities” on p. 190.
13Compare the discussion that follows with Bernoulli’s discussion of geometric and arithmetic
progressions on p. 190.
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Geom. prog.: 1
x

, 1p
x3

, 1
xx .

Arith. prog.: �1, � 3
2
, �2.

Geom. prog.: 1
x

, 1
3p

x4
, 1

3p
x5

, 1
xx .

Arith. prog.: �1, � 4
3
, � 5

3
, �2.

Geom. prog.: 1
x3 , 1p

x7
, 1

x4 .

Arith. prog.: �3, � 7
2
, �4.

From this we see that just as
p

x is the geometric mean between 1 and x, so also
is 1

2
the arithmetic mean between their exponents zero and 1, and just as 3

p
x is the

first of two means that are geometrically proportional between 1 and x, so also is 1
3

the first of two means that are arithmetically proportional between their exponents
zero and 1. It is the same for the others. Now, two things follow from the nature of
these two progressions:

1. That the sum of the exponents of any two terms of the geometric progression is
the exponent of the term that is their product. Thus, x4C3 or x7 is the product of
x3 by x4, x

1
2 C 1

3 or x
5
6 is the product of x

1
2 by x

1
3 , x� 1

3 C 1
5 or x� 2

15 is the product
of x� 1

3 by x
1
5 , etc. Similarly, x

1
3 C 1

3 or x
2
3 is the product of x

1
3 by itself, that is to

say its square, xC2C2C2 or x6 is the product of x2 by x2 by x2, that is to say its
cube, x� 1

3 � 1
3 � 1

3 � 1
3 or x� 4

3 is the fourth power of x� 1
3 , and so on for other powers.

From this it is clear that the double, triple, etc., of the exponent of any term in the
geometric progression is the exponent of the square, the cube, etc., of this term,
and consequently that the half, the third, etc., of the exponent of any term of the
geometric progression is the exponent of the square root, the cube root, etc., of
this term;

2. That the difference of the exponents of any two terms of the geometric progres-
sion is the exponent of [8] the quotient of the division of these terms. Thus,
x

1
2 � 1

3 D x
1
6 is the exponent of the quotient of the division of x

1
2 by x

1
3 , and

x� 1
3 � 1

4 D x� 7
12 is the exponent of the quotient of the division of x� 1

3 by x
1
4 ,

from which we see that multiplying x� 1
3 by x� 1

4 is the same thing as dividing
x� 1

3 by x
1
4 . It is the same for the others.

This being well understood, there are two cases that may arise.
The first case is that of a perfect power, that is to say when the exponent is a

whole number.14 The differential of xx is 2x dx, of x3 is 3xx dx, of x4 is 4x3 dx,
etc. Because the square of x is nothing but the product of x by x, its differential is
x dx C x dx (see §5), that is to say 2x dx. Similarly, the cube of x being nothing
but the product of x by x by x, its differential is xx dx C xx dx C xx dx (see §5),
that is to say 3xx dx. However, because it is thus for other powers up to infinity, it
follows that if we suppose that m indicates whatever whole number we might wish,
the differential of xm is mxm�1 dx.

14This case is proved by Bernoulli on p. 188, without using the Product Rule.
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If the exponent is negative, we find that the differential of x�m or of 1
xm is

�mxm�1 dx

x2m
D �mx�m�1 dx:

The second case is that of an imperfect power, that is to say when the exponent is
a fractional number. Suppose we are to take the differential of n

p
xm, or x

m
n , where

m
n

denotes any fractional number. We let x
m
n D z and, raising both sides to the power

n, we have xm D zn. Taking differentials as we have explained in the previous case,
we find that mxm�1 dx D nzn�1 dz, and so

d z D mxm�1 dx

nzn�1
D m

n
x

m
n �1 dx;

or m
n

dx n
p

xm�n, by substituting the value nxm� m
n in place of nzn�1. If the exponent

is negative, we find that the differential of x� m
n or 1

x
m
n

is

� m
n

x
m
n �1 dx

x
2m
n

D �m

n
x� m

n �1 dx:

[9] This gives us the following general rule.

Rule IV. For powers, both perfect and imperfect.

The differential of any power, whether perfect or imperfect, of a variable quantity is
equal to the product of the exponent of this power by the same quantity raised to a
power diminished by unity, and multiplied by its differential.

Thus, if we suppose that m denotes either a whole or fractional number, whether
positive or negative, and x denotes any variable quantity, the differential of xm is
always mxm�1 dx.

Examples. The differential of the cube of ay � xx, that is to say of ay � xx 3, is
3 � ay � xx 2 � a dy � 2x dx D 3a3yy dy � 6aaxxy dy C 3ax4 dy � 6aayyx dx C
12ayx3 dx � 6x5 dx.

The differential of
p

xy C yy, or of xy C yy
1
2 , is

1

2
� xy C yy � 1

2 � y dx C x dy C 2y dy;

or

y dx C x dy C 2y dy

2
p

xy C yy
:
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The differential of
p

a4 C axyy, or of a4 C axyy
1
2 , is

1

2
� a4 C axyy

� 1
2 � ayy dx C 2axy dy;

or

ayy dx C 2axy dy

2
p

a4 C axyy
:

The differential of15 3
p

ax C xx, or of ax C xx
1
3 , is

1

3
� ax C xx� 2

3 � a dx C 2x dx;

or

a dx C 2x dx

3 3
p

ax C xx
2
:

The differential of16
q

ax C xx C p
a4 C axyy, or of

ax C xx C
p

a4 C axyy
1
2

;

is

1

2
� ax C xx C

p
a4 C axyy

� 1
2 � a dx C 2x dx C ayy dx C 2axy dy

2
p

a4 C axyy
;

or

a dx C 2x dx

2

q
ax C xx C p

a4 C axyy
C ayy dx C 2axy dy

2
p

a4 C axyy � 2

q
ax C xx C p

a4 C axyy
:

[10] According to this rule and the rule of fractions (see §7 and 6), the
differential of17

3
p

ax C xxp
xy C yy

15Bernoulli gave this example on p. 192.
16Bernoulli gave a similar example on p. 192.
17Bernoulli gave this example on p. 192.
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is18

a dxC2x dx

3 3
p

axCxx
2 � p

xy C yy C �y dx�x dy�2y dy
2
p

xyCyy
� 3

p
ax C xx

xy C yy
:

Remark. (�8) It is appropriate to note carefully that in taking differentials, we
always suppose that, as one of the variables x increases, the others, y, z, etc., also
increase. That is to say, as x becomes x C dx, then y, z, etc., become y C dy, z C dz,
etc. This is why if it happens that some of them increase while others decrease, it
is necessary to regard the differentials as negative quantities with respect to those
others which we suppose are increasing, and consequently to change the signs of
the terms containing the differentials of those which are decreasing. Thus, if we
suppose that x increases and y and z decrease, that is to say that x becomes x C dx
and y and z become y � dy and z � dz, and if we wish to take the differential of
the product xyz, it is necessary in the differential xy dz C xz dy C yz dx already found
(see §5), to change the signs of the terms which contain dy and dz. This gives the
differential yz dx � xy dz � xz dy that we wished to find.

18In L’Hôpital (1696), the C sign separating the terms of the numerator was omitted.
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