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Translators’ Preface

Analyse des infiniment petits, pour l’intelligence des lignes courbes was the first
textbook of the differential calculus. The title translates as Analysis of the infinitely
small, for the understanding of curved lines. It was published anonymously in
Paris in 1696, although members of the French mathematical community were well
aware that the author was Guillaume François Antoine de l’Hôpital,1 the Marquis
of Saint-Mesme (1661–1704). The textbook was successful, as evidenced by the
appearance of a posthumous second edition (L’Hôpital 1716), which identified
the author.2 Pierre Varignon (1646–1722), who was professor of mathematics at
Collège des Quatre-Nations in Paris and a friend of l’Hôpital, created a collection
of clarifications and additions to the Analyse. These were published posthumously
(Varignon 1725), a few years after the 1716 edition of the Analyse. Later editions of
the Analyse included similar commentary and continued to appear throughout the
18th century (L’Hôpital 1768, 1781).

Differential and integral calculus are generally considered to have their origins
in the works of Sir Isaac Newton (1642–1727) and Wilhelm Gottfried von Leibniz
(1646–1716)3 in the late 17th century, although the roots of the subject reach far
back into that century and, arguably, even into antiquity. Leibniz first described his
new calculus in a cryptic article more than a decade before the publication of the
Analyse (Leibniz 1684). For all practical purposes, Leibniz’ early papers were not

1L’Hôpital spelled his name “Hospital” and this was the spelling used in the posthumous second
edition of the text in 1715/1716. Fontenelle used the spelling “Hôpital,” which is the standard
modern spelling of the name, in his Eulogy (p. 295). There is no consensus among English-
language authors of the early 21st century as to which spelling ought to be used.
2Technically, this was the third edition, despite the words “Seconde Edition” on the title page.
There was a “Seconde Edition” one year earlier (L’Hôpital 1715), with many typographical errors,
of which the 1716 edition is a corrected version (Bernoulli 1955, pp. 499–500).
3For more on the priority dispute over the discovery of the calculus, which is not a matter of interest
for this volume, see Hall (1980).

v



vi Translators’ Preface

understood, until Jakob Bernoulli (1654–1705) and his younger brother Johann4

(1667–1748) began studying them in about 1687 and making discoveries of their
own using his techniques.

Bernard de Fontenelle (1657–1757) became the secretary of the Académie des
Sciences in Paris in 1697 and wrote the eulogy of l’Hôpital for the academy’s
journal. He said that in 1696,

. . . the Geometry of the Infinitely small was still nothing but a kind of Mystery, and, so to
speak, a Cabalistic Science shared among five or six people. They often gave their Solutions
in the Journals without revealing the Method that produced them, and even when one could
discover it, it was only a few feeble rays of this Science that had escaped, and the clouds
immediately closed again.5 (Fontenelle 1708, pp. 133–134)

Later on, Jean Etienne Montucla (1725–1799) went one step further and listed
the only people that he believed understood Leibniz’ calculus before 1696: Leibniz
himself, Jakob and Johann Bernoulli, Pierre Varignon and l’Hôpital (Montucla
1799, p. 397). L’Hôpital’s Analyse changed all of this and for much of the 18th
century, his book served aspiring French mathematicians as their first introduction
to the new calculus.

For all that the Analyse was a popular and successful introduction to the
differential calculus, it’s remarkable that there is no account of the integral calculus
in the book. In his Preface, l’Hôpital explained why

In all of this there is only the first part of Mr. Leibniz’ calculus, . . . The other part, which we
call integral Calculus, consists in going back from these infinitely small quantities to the
magnitudes or the wholes of which they are the differences, that is to say in finding their
sums. I had also intended to present this. However, Mr. Leibniz, having written me that he
is working on a Treatise titled De Scientiâ infiniti, I took care not to deprive the public of
such a beautiful Work . . . [p. liii].

Unfortunately, Leibniz never completed this book On the Science of the Infinite.
The Analyse consists of ten chapters, which L’Hôpital called “sections.” We

consider it to have three parts. The first part, an introduction to the differential
calculus, consists of the first four chapters:

1. In which we give the Rules of this calculus.
2. Use of the differential calculus for finding the Tangents of all kinds of curved

lines.
3. Use of the differential calculus for finding the greatest and the least ordinates, to

which are reduced questions De maximis & minimis.
4. Use of the differential calculus for finding inflection points and cusps.

Taken together, these chapters provide a thorough introduction to the differential
calculus in about 70 pages. The next five chapters are devoted to what can only
be described as an advanced text on differential geometry, motivated in part by
what were then cutting-edge research problems in optics and other fields. The final

4Often referred to as Johann (I) Bernoulli to distinguish him from his son Johann and grandson
Johann, who were also successful mathematicians.
5This quotation from p. 299 of this text.
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chapter is mildly polemical, demonstrating the superiority of Leibniz’ new calculus,
when compared to the methods of René Descartes (1596–1660) and Johann van
Waveren Hudde (1628–1704).

The Role of Johann Bernoulli

Most biographical information known about the Marquis de l’Hôpital comes from
Fontenelle’s eulogy (Fontenelle 1708, pp. 116–146), a translation of which is
included in Chapter 13 of this volume. However, Fontenelle knew little or nothing at
the time of l’Hôpital’s death about the role of Johann Bernoulli in the composition
of the Analyse. L’Hôpital himself acknowledged a debt to Johann Bernoulli in his
preface:

I acknowledge having received much from the illuminations of Messrs. Bernoulli, particu-
larly those of the younger, presently Professor at Groningen. I have made plain use of their
discoveries and those of Mr. Leibniz. This is why I grant that they may claim as much of
this as they may wish, being content with that which they are willing to leave for me [p. liv].

In light of this, it seems somewhat strange that Montucla would write “We may
only find fault in that Mr. de l’Hôpital did not make well enough known the debt he
owed to Mr. Bernoulli” (Montucla 1799, p. 397), but the record shows that Johann
Bernoulli’s influence on the structure and content of the Analyse was much more
significant than these words of recognition would suggest.

Among the few details known about l’Hôpital’s early life, Fontenelle recounted
that he solved one of Pascal’s problems involving the cycloid at the age of 15. The
Marquis became a cavalry officer, but had only attained the rank of captain when
he resigned his commission due to poor eyesight. He devoted all of his energy to
mathematics from that point onward. Some time around 1690, he joined Nicolas
Malebranche’s (1638–1715) circle, which was engaged, among other things, in the
study of higher mathematics. It was there in November 1691 that he met the 24-year-
old Johann Bernoulli, who was visiting Paris and had been invited by Malebranche
to present his construction of the catenary at the salon. Although Fontenelle made
no mention of this meeting, it is documented by Spiess in his introduction to
the Bernoulli-l’Hôpital correspondence, which contains what may be considered
a definitive biography of the Marquis de l’Hôpital (Bernoulli 1955, pp. 123–130).

There is no contemporary account of this meeting. Bernoulli wrote of the
encounter in his autobiography, which he composed in 1741, but Spiess considers
an earlier account that he gave in a letter to Pierre Rémond de Montmort (1678–
1719) to be more reliable; see Bernoulli (1955, p. 135–137). In May 21, 1718,
Bernoulli told Montmort that upon meeting the Marquis, he soon found him to
be a good enough mathematician with regard to ordinary mathematics, but that he
knew nothing of the differential calculus, other than its name, and had not even
heard of the integral calculus. L’Hôpital had apparently mastered Fermat’s method
of finding maxima and minima and told Bernoulli that he had used it to invent a
rule for determining the radius of curvature for arbitrary curves. The method was
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unwieldy and actually could only be used at local extrema of algebraic curves.
Bernoulli showed him the formula for the radius of curvature that he had developed
with his brother Jakob, which employed second-order differentials. Apparently, this
so impressed the Marquis that he visited Bernoulli the very next day and engaged
him as his tutor in the differential and integral calculus.

The Marquis de L’Hôpital (1661–1704) – portrait in walnut by Susan Petry, 2014, 25 � 19 � 3
cm.; photograph by the artist
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Bernoulli tutored the Marquis in his Paris apartment four times a week from late
1691 through the end of July 1692. We are fortunate that l’Hôpital insisted that
Bernoulli commit his lessons to paper. Bernoulli typically composed each lesson,
which he wrote in Latin, the night before he gave them to the Marquis. Fortunately,
his friend and later colleague at the University of Basel, Johann Heinrich von

Johann Bernoulli (1667–1748) – portrait in cherry by Susan Petry, 2014, 26 � 19 � 4 cm.;
photograph by the artist
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Stähelin (1668–1721), was rooming with him in Paris. Stähelin made copies of the
lessons before Bernoulli handed them over to the Marquis.

In the summer of 1692, Bernoulli accompanied the Marquis to his estate in
Oucques, near the French city of Blois, where he continued giving him tutorials
until some time in October. Bernoulli’s lessons from this period have not survived,
although he told Montmort that the Marquis’ valet made copies of some of them,
one of which appears to have survived (Bernoulli 1955, p. 137). It is also possible
that some of the Bernoulli’s lessons on the integral calculus, which he later reported
to have been given in Paris, were actually given at Oucques.

In any case, Bernoulli kept copies of his lessons to the Marquis throughout
his long and productive career. The first part, on the differential calculus, was
incorporated by l’Hôpital into the first four chapters of the Analyse. Bernoulli
himself published the much larger second part, concerning the integral calculus, in
his collected works (Bernoulli 1742, pp. 385–558). Titled Lectiones mathematicae
de methodo integralium, (Mathematical Lectures Concerning the Method of Integra-
tion), this treatise bears the subtitle “written for the use of the Illustrious Marquis
de l’Hôpital while the author spent time in Paris in the years 1691 & 1692.” The
first sentence of this work makes reference to what was seen “in the preceding.” A
footnote explained that Bernoulli meant the lectures in differential calculus, which
had preceded this but which he had omitted, because all of it had appeared in the
Analyse, “which is in everyone’s hands.” (Bernoulli 1742, p. 387) That is, he left out
the portion of his Paris lessons that l’Hôpital had incorporated into his introductory
chapters. Because Bernoulli chose not to publish this part, it was impossible in the
18th century to say how closely l’Hôpital’s textbook coincided with Bernoulli’s
lessons.

A comparison finally became possible when Paul Schafheitlin discovered a
manuscript copy of the full set of lessons, on both the differential and integral
calculus, in the library of the University of Basel in 1921. Schafheitlin published the
first portion as Lectiones de calculo differentialum (Schafheitlin 1922) and argued in
his introduction that the manuscript was a copy made in 1705 by Bernoulli’s nephew
Nikolaus (1687–1759), who had been living with him in Groningen. Because the
latter part was a near-perfect match to what Bernoulli had published in 1741, he
could be quite certain that the first part was essentially the same set of lessons
l’Hôpital had used when composing the Analyse.

In this volume, we have brought together both l’Hôpital’s Analyse and
Bernoulli’s Lectiones for the first time, in English translation. We have cross-
referenced the texts in order to facilitate a comparison of Bernoulli’s original
contributions with l’Hôpital’s final version. Since the appearance of the Lectiones,
various authors have characterized the Analyse as having essentially been written
by Bernoulli. Indeed, Bernoulli himself, in an angry letter to Varignon of February
26, 1707, said that “to speak frankly, Mr. de l’Hôpital had no other part in the
production of this book than to have translated into French the material that I gave
him, for the most part, in Latin . . . ” (Bernoulli 1992, p. 215). The truth is much
more nuanced. The superstructure of l’Hôpital’s first four chapters is certainly due
to Bernoulli and many of the details are essentially the same in both texts. However,
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l’Hôpital added much, in both quantity and quality. For one thing, Bernoulli’s
Lectiones occupied 37 manuscript pages, compared to 70 typeset pages for the first
four chapters of the Analyse, but the Marquis added much more than mere verbiage
to Bernoulli’s lesson. He was a very talented pedagogue. He organized his material
very well, extracting general propositions where Bernoulli gave examples, and
explained matters clearly and in some detail. Furthermore, he frequently included
many illustrative examples, gradually increasing in difficulty, generally providing
an appropriate level of detail, but always leaving some things for readers to work
out for themselves.

To the best of our knowledge, our English translation of the Lectiones is
the first to be published. Strictly speaking, our translation of the Analyse is the
second to appear. L’Hôpital published only one other book, a posthumous textbook
on conic sections (L’Hôpital 1707), which also went through multiple editions.
Edmund Stone (ca. 1700–1768) published an English translation of this more
elementary text (Stone 1723). The son of a gardener of the Duke of Argyll and a
self-taught mathematician, Stone subsequently published an English translation of
L’Hôpital (1696). However, it was a re-writing of l’Hôpital’s book in the sense that
Stone translated every statement about differentials into the language of Newton’s
fluxions. This translation made up the first part of his calculus textbook (Stone
1730), which concluded with an original text on the integral calculus.

The L’Hôpital-Bernoulli Correspondence

Bernoulli departed Oucques and returned to Basel in the fall of 1692. He began
a correspondence with l’Hôpital in November 1692, which continued until 1702.
He completed a doctorate in medicine, for which the thesis was really a work of
applied mathematics, in 1694 and ascended to the Chair of Mathematics at the
University of Groningen in Holland late in 1695. He returned to Basel in 1705 and
took over the Chair of Mathematics at the University of Basel, which had been
occupied by his brother Jakob until his death the same year. As father of Daniel
Bernoulli (1700–1782) and mentor to Leonhard Euler (1707–1783), his influence
on Continental mathematics was even more significant than his impressive list of
publications would suggest.

Bernoulli’s estate contained 60 letters from the Marquis, two from his wife,
the Marquise de l’Hôpital, and copies Bernoulli had made of 25 of his letters
to the Marquis. Spiess infers that Bernoulli wrote at least 28 other letters to
the Marquis. None of Bernoulli’s original letters are known to have survived.
In fact, all of l’Hôpital’s grandchildren died childless and none of the Marquis’
mathematical papers seem to have been preserved. Bernoulli’s papers, including the
correspondence with the Marquis, went to his son and subsequently to his grandson
Johann (III) Bernoulli (1744–1807), who found them a home in the archives of the
Royal Swedish Academy of Sciences. The letters remained essentially unknown
until they were rediscovered by Gustav Eneström (1852–1923) in 1879. Although
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Eneström and others published bits and pieces in the late 19th and early 20th
centuries, e.g. Eneström (1894), it was not until much later that a critical edition
of the entire correspondence was eventually published (Bernoulli 1955) as part of
the Bernoulli Edition.

We have included significant excerpts from this correspondence in Chapter 12
of this volume. The editors of the Bernoulli Edition numbered the letters in Johann
Bernoulli’s correspondence and we have used their numbering system to refer to
the letters here. Numbers were only assigned to letters that are actually in the
archives. For example, l’Hôpital’s letters of December 8, 1692 and January 2,
1693 were numbered 6 and 7, respectively. In letter 7, l’Hôpital makes mention
of Bernoulli’s letter of December 18, and the symbol .6; 1/ was assigned to this
lost letter. In this volume, when we skip from letter 7 to letter 11, for example,
you will know that we have skipped over three extant letters, which can be found
in Bernoulli (1955), and that there are possibly some missing letters in between as
well. The letters themselves were written in French, with occasional Latin phrases,
and Spiess’ accompanying modern editorial information in Bernoulli (1955) was
written German.

We have included translations of some of the letters in their entirety, for some
others we have only included certain portions, and many others have been omitted.
The entire correspondence is quite large (about 225 pages in Bernoulli 1955), so we
have needed to be selective. Some of the discussion in the correspondence has little
or no relevance to the Analyse and its composition. The portions that we have chosen
to include are generally either relevant to the contents of the book, or they shed light
on some aspect of the personal or professional relationship between l’Hôpital and
Bernoulli. We have also chosen to include letter 5, from l’Hôpital to Malebranche,
which shows that the Marquis was writing about the “Arithmetic of the Infinities”
before he met Bernoulli.

Between Bernoulli’s first letter .6; 1/ of November 1692 and his letter .15; 1/ of
late September 1693, letters between the two men were written in almost perfect
alternation. Then a number of l’Hôpital’s letters went unanswered. Bernoulli was
apparently unhappy that l’Hôpital had published one of the results that he had given
him in his lessons. L’Hôpital’s paper,6 which gave the solution to a problem that
had originally been proposed by Florimund de Beaune, was published under the
pseudonym “Mr. G***,” but Bernoulli would undoubtedly have recognized his own
work. Bernoulli resumed writing on January 26, 1694. That letter is lost, but Spiess
infers that Bernoulli had requested that the Marquis provide him an honorarium for
the services he was rendering him through their correspondence (Bernoulli 1955,
p. 201). We do not know how much l’Hôpital paid Bernoulli for his lessons in 1691–
92, but it appears to have been enough to support him during his year or so in
Paris and Oucques and perhaps for some time afterwards in Basel. In January 1694,
Bernoulli was newly engaged to be married and not gainfully employed while he

6Journal des Sçavans, 34, p. 401–403.
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was completing his doctorate of medicine. In his response, on March 17, 1694, the
Marquis wrote

I will happily to give you a pension of three hundred pounds, which will begin the first of
January of this present year, . . . I promise you to increase this stipend shortly, which I well
understand to be very modest, and it will be as soon as my affairs are somewhat straightened
out . . . I am not so unreasonable as to demand all of your time for this, but I will ask you at
intervals to give me a few hours of your time, to work on what I will ask you and also to
communicate your discoveries to me, while asking you at the same time not to share any of
them with others. I even ask you not to send here to Mr. Varignon, nor to others, any copies
of the writings you have left with me; if they should become public I would not be at all
pleased [p. 246].

Bernoulli’s letter .20; 1/ of late March is lost to posterity, but he clearly accepted
the terms of what we will refer to here as “The Contract.” A few words are in
order. First of all, the French word pension here does not have the same sense as
the modern English “pension,” although the terms are related. L’Hôpital is offering
an annual honorarium or retainer, but not necessarily in perpetuity. In fact, the
duration of the Contract was a little over two years. L’Hôpital sent Bernoulli his last
installment of 300 £7 in June 1696, shortly after the Analyse appeared and some
eight months after Bernoulli had taken up his position at Groningen. Bernoullii
received a total of 800 £, owing to a slightly larger payment of 200 £ in July
of 1695. For context, 300 £ has been described as half of the annual salary of
a professor, but it was in fact only 21% of the salary that Bernoulli would earn
at Groningen. Not a great fortune, but undoubtedly welcome to Bernoulli in his
circumstances, with no other income and a new family to support (his first child was
born in February 1695).

We note that it was only after agreeing to the terms of The Contract that
Bernoulli began making copies of his letters to l’Hôpital. The first of these was
letter 22, of April 22, 1694. From this point onwards, Bernoulli made copies of
his communications to the Marquis, except in a few cases where there was no
mathematical content in his letters.

We must also note that l’Hôpital was paying for more than just instruction and
advice, he was essentially acquiring the rights to publish Bernoulli’s discoveries.
This became a bone of contention in early 1695. L’Hôpital sent Bernoulli his
solution to a challenge problem that had appeared in Acta Eruditorum, asking him
to translate it into Latin and send it to the journal. Bernoulli could not resist adding
some remarks of his own, that greatly simplified the Marquis’ solution. Not only
did this have the effect of making the Marquis look bad in print, but it was also a
violation of The Contract, to have sent his discovery concerning a matter of their
discussion to a third party. In letter 41, Bernoulli reassured the Marquis that he
would adhere strictly to The Contract in the future, offering as evidence that he
had declined Leibniz’ request that he submit material for his prospective book de
Scientiâ infiniti (p. 272).

7This is the symbol used for French livres or pounds, as transcribed in Bernoulli (1955).
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The best known of the results that l’Hôpital “purchased” from Bernoulli by
means of The Contract is the rule that became known as L’Hôpital’s Rule, after
its appearance in the Analyse. Bernoulli had evidently worked out the simplest case
of L’Hôpital’s Rule, the case of the indeterminate form 0

0
for a finite value of x, in

June 1693 or perhaps earlier. In letter 11, l’Hôpital mentioned that he had learned
that Varignon had been challenged by Bernoulli to evaluate

p
2a3x � x4 � a 3

p
a2x

a � 4
p

ax3
D y

when x D a (p. 239). We note that they did not speak of limits, but rather
they considered y to actually take on the value the we would call the limit as
x approaches a. Modern examples involving L’Hôpital’s Rule frequently involve
transcendental functions, but Leibniz’ calculus at this time was only a calculus of
algebraic expressions. Bernoulli’s 0

0
Challenge involved an algebraic function, but

the problem could not be easily solved by factoring (as with x2�a2
x�a , for example),

making it an excellent vehicle for demonstrating the power of L’Hôpital’s Rule. In
letter 11, l’Hôpital incorrectly gave the answer as x D 2a. Bernoulli apparently told
him that he was wrong in .11; 1/, but did not reveal his method. Between that point
and The Contract, l’Hôpital asked Bernoulli for the solution on three occasions,
but to no avail. Once Bernoulli had entered into The Contract, however, he had no
choice but to reveal his Rule, which he did in letter 28 (p. 267). L’Hôpital presented
the rule in §163 of the Analyse (p. 151), followed immediately by its application to
Bernoulli’s 0

0
Challenge.

The correspondence remained very active for the next year or so. Bernoulli
clarified many issues for l’Hôpital, concerning topics that appeared in the Analyse
and many others as well. There was also much non-mathematical discussion,
including births and deaths and other family matters, and the payment of Bernoulli’s
stipend. In letter 47 of March 12, 1695, l’Hôpital announced that ‘I hope to be able
to procure you a chair of mathematics in Holland” (p. 273). He was referring to
the position at the University of Groningen that Bernoulli would take up later in
the same year. In this letter and subsequently, l’Hôpital gives the impression that
he is primarily responsible for securing the position for Bernoulli. It was Christiaan
Huygens (1629–1695), in fact, who recommended Bernoulli for the position, but
apparently only after asking l’Hôpital for a letter of recommendation. For the
next few months, the position at Groningen and the rumored death of Huygens8

dominated the non-mathematical portion of the correspondence.
In letter 56, of August 22, 1695, l’Hôpital first mentioned the Analyse (p.285).

What he actually said was that he planned to print his treatise on conic sections
very soon, a book on which he had apparently been working for some time, but as it
was still unfinished upon his death in 1704, only appeared posthumously (L’Hôpital

8Huygens died on July 8, but on June 10, l’Hôpital heard a rumor that he had died. There was some
confusion over this in the letters that followed.
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1707). “I will add to it,” he continued, “a small treatise on the differential calculus,
in which I will give you all credit that you deserve.” Bernoulli was by this time
preoccupied with his move to Groningen and did not respond until after he was
settled, on November 8. He made no copy of that letter, but presumably gave his
blessing for the proposed treatise. However, some time around the end of the year,
l’Hôpital became very ill and after a long silence, his wife wrote to Bernoulli on
February 1, 1696, to explain why the Marquis had not written for so long. L’Hôpital
returned to Paris on or about the beginning of March and completed the publication
process of the Analyse. In letter 63 of June 15, 1696, he wrote to Bernoulli that his
book would “appear any day now” (p. 288), but that his illness had kept him from
including his work on the conic sections, as he had originally planned. As for the
Analyse itself, he assured Bernoulli that “you will see that I give you the credit you
deserve.”

Bernoulli’s response is included in this volume for at least three reasons.
Bernoulli congratulated the Marquis on the publication of the Analyse, which he had
not yet received himself, but about which he had heard from other correspondents.
He also acknowledged the receipt of 300 £, which was to be his last payment
under the terms of The Contract. Also of interest is that Bernoulli described the
Brachistochrone Problem to the Marquis in some detail (p. 289, 296). This challenge
problem occupies a place of great significance in the history of mathematics and
especially in the development of the Calculus of Variations; see Bernoulli (1988,
pp. 329–334) for more on l’Hôpital’s solution of the problem and Katz (2009,
pp. 586–588) for a general introduction to the Brachistochrone Problem.

It was many months before Bernoulli finally received the Analyse. In February
1697, he wrote

I have finally received a copy of your book and I thank you most humbly for it. You have
done me too great an honor in speaking so highly of me in the preface. When I compose
something in my turn I will not fail to give you the same in return. You explain things
most intelligibly; I also find a beautiful order there and the propositions well organized;
everything is admirably well done, and a thousand times better than I could have done.
Finally, I desire nothing more than that you had put your name on the cover of the book,
which would have given a much greater glory, and lent more Authority to our new method.
[p. 220]

L’Hôpital and Bernoulli continued in frequent correspondence until the end of
1697. They wrote less frequently over the next six years and the final letter of their
correspondence was written by l’Hôpital on September 15, 1702, in response to a
lost letter from Bernoulli four months earlier. L’Hôpital died on February 2, 1704.

In the years immediately following the publication of the Analyse, Bernoulli
seems to have been content with his largely unacknowledged role in its composition.
However, shortly after the Marquis’ death, he became unsatisfied with the general
mention he received in the preface and began making priority claims on the Analyse,
especially with regard to L’Hôpital’s Rule. Eneström, in analyzing Bernoulli’s
correspondence (Eneström 1894), found that his dissatisfaction had its first major
expression in a letter he wrote to Varignon on July 18, 1705 (Bernoulli 1992,
pp. 167–174). By quoting from the Marquis’ many letters involving his 0

0
Challenge,

he tried to convince Varignon that the discovery of L’Hôpital’s Rule was far beyond
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the Marquis’ ability in the mid-1690s. Bernoulli became increasingly quarrelsome
during his long career and his priority claims, made both publicly and in private
correspondence, eventually became fodder for historians of mathematics. Montucla,
for example, accepted Bernoulli’s word and stated plainly that the Marquis did not
give him due credit (Montucla 1799, p. 397), whereas Bossut argued vociferously
for rejecting Bernoulli’s claims of priority (Bossut 1810, pp. 49–52). With the
fullness of time, both Bernoulli’s Lectiones and his correspondence have come to
light and modern scholars are now in a position to make their own assessment of
the matter. We believe that readers will find that Bernoulli was indeed shortchanged
in credit for the Analyse, but at the same time, we see the book as a very successful
collaboration between a brilliant researcher and a talented expositor.

The Contents of the Analyse

The Preface

The Analyse opens with a Preface that traces the history of the “Analysis of the
Infinitely Small” back to Archimedes and through the 17th century. It has been
suggested that Fontenelle actually wrote the Preface, or at least this historical survey,
which makes up the largest part of it. Costabel argues convincingly against this
thesis (Bernoulli 1992, pp. 13–14). The suggestion that Fontenelle was the author
appears to have originated with Fontenelle himself in the 1730s and then became
widely known after his death through his eulogy. It seems that Fontenelle did indeed
assist l’Hôpital in the process of getting his book published following his illness in
early 1696, but Costabel makes a strong case against the possibility that he wrote
the Preface.

Chapter 1: Notation and the Rules of Calculus

In Chapter 1, l’Hôpital gives the rules for differential calculus. Modern readers
should not expect anything that looks like a calculus book of our time. Leibniz’
calculus concerns equations and differentials, not functions and derivatives. Even
the graphs and terminology will take a little getting used to. There is no x-y
coordinate system. Following Descartes’ analytic geometry, there is one axis, which
we will refer to as the x-axis, even if the independent variable is not x. The axis
is usually horizontal, but sometimes it is drawn vertically. The x-coordinates are
usually referred to as abscissas, literally meaning that they are “cut off” on the
axis at some distance x from the origin. In the place of a y-coordinate, there is an
ordinate that is “applied” to the axis at the point corresponding to the abscissa x.
This is a line segment that is usually perpendicular to the axis, although oblique
ordinates were occasionally arranged at a different angle to the axis. Even the
familiar parabola looks unfamiliar in the late 17th century. It is written as ax D yy.
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As a typographical convention, squares were usually written by repeating the letter
representing the variable, but higher powers were written with superscripts. Thus,
the second cubical parabola was usually written axx D y3.

Leibniz’ calculus works by translating geometric problems into the language of
algebraic expressions, performing operations on those expressions (taking differen-
tials and integrals) and extracting solutions from the results. This is still largely
true of calculus as it is practiced now, if one understands by algebraic expressions
those functions that are composed of algebraic expressions involving both variables
and a number of transcendental functions. Geometry has a very long history, having
already reached a high degree of sophistication by the time of Euclid, Archimedes
and Apollonius, whereas analytic geometry was less than half a century old when
Leibniz discovered his calculus. Not surprisingly, then, the Analyse describes a
calculus that has a much more geometrical flavor than the calculus of later centuries.
For example, the parabola could be considered as a relationship between two-
dimensional figures: given an abscissa x and a parameter a (this name for the
constant goes back to Apollonius), one seeks a square with the same area as the
rectangle with sides of length a and x. The equation ax D yy expresses a relation
between “planar numbers” representing two-dimensional areas, so it would not have
been written as x D cyy, which would seem to violate the rules of geometry by
comparing a one-dimensional length to a three-dimensional volume. Descartes had
taught that it was not necessary to write equations in such a homogeneous form,
involving only terms of the same dimension, but even in the 1690s l’Hôpital, and
especially Bernoulli, usually did write them in this manner.

Leibniz’ differential calculus tells us how to find the relations among infinitely
small increments dx, dy, etc., among the variables x, y, etc., in an equation.
L’Hôpital gives the definition on p. 2: “The infinitely small portion by which a
variable quantity continually increases or decreases is called the Differential.” This
cryptic definition might be made somewhat clearer by considering his Figure 1.
AMB is a curve, presumably a parabola, with axis AC and origin A. AD is not the
y-axis, but the parameter for the parabola. The abscissa is AP, denoted x and the

Fig. 1 Definition of the Differential
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ordinate is PM, denoted y. We imagine that p is infinitely close to P and pm is the
ordinate that is infinitely close to PM. Then Pp is the differential dx and Rm, where
MR ? pm, is the differential dy.

At this stage, we still don’t know what “infinitely small” means, but perhaps
Postulate I can clarify this. Bernoulli’s first postulate is “Quantities that decrease
or increase by an infinitely small quantity neither decrease nor increase.” L’Hôpital
is a little more comprehensible: “We suppose that two quantities that differ by an
infinitely small quantity may be used interchangeably, or (what amounts to the same
thing) that a quantity which is increased or decreased by another quantity that is
infinitely smaller than it is, may be considered as remaining the same.” Although
this still does not give us much to go on, things become clearer when they begin
to perform calculations. What one does is to replace the variables x, y, etc., in an
equation with x C dx, y C dy, etc., and then cancel the original equation, much as
finite differences are calculated. Then, because of Postulate I, terms involving two
or more differentials multiplied together may be omitted, giving a relation among
the variables and their differentials, such as a dx D 2y dy in the case of the parabola.

L’Hôpital then gives the rules for the differential calculus:

• Constant Rule: The differential of a constant is 0.
• Sum and Difference Rule: the differential of x ˙ y is dx ˙ dy.
• Product Rule: The differential of xy is y dx C x dy.
• Quotient Rule: The differential of x

y
is y dx�x dy

yy

• Power Rule: The differential of xn is nxn�1 for any rational n.

We note that neither l’Hôpital nor Bernoulli used these names for their rules; we use
them here because modern readers are familiar with these names and this will help
them to see the correspondence between modern calculus and Leibniz’ calculus.
We also note that this is the ordering of the rules given by l’Hôpital. We find his
exposition of the rules of calculus to be more elegant and satisfying that Bernoulli’s
and this is an example of a place where l’Hôpital has added value to Bernoulli’s
Lectiones. Finally, we note that there is no need for the Chain Rule in this calculus,
because it is not restricted to functions. Variables may be freely introduced and
when they are, the above rules are all that is needed. For example, if y D p

ax � x2,
then we may let u D ax � x2. Then the above rules give dy D 1

2
u� 1

2 du and du D
a dx � 2x dx, so

dy D a dx � 2x dx

2
p

ax � x2 :

With a little thought, modern readers can see that whenever y D f .x/ for some
algebraic function f , these rules will give dy D f 0.x/ dy, which explains the origin
of our notation dy

dx for the derivative f 0.x/. We stress that functions and derivatives
are nowhere to be found in the Analyse or the Lectiones. However, the calculations
on equations that take place in their pages are reminiscent of calculations in modern
Related Rates and Implicit Differentiation problems.
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L’Hôpital and Bernoulli both made extensive use of proportions, another legacy
of classical Greek mathematics. The proportional relation a W b WW x W y means “as
a is to b, so x is to y.” To modern readers, this is just the relation

a

b
D x

y
;

which may be solved to give y D b
a
x, but to the ancient Greeks, there was a

distinction made between the number a
b

and the proportion a W b. There was a
large set of rules for manipulating proportions, which l’Hôpital’s readers would
have learned from Book V of Euclid’s Elements. We note that Bernoulli wrote
proportional relations in the form a � b WW x � y and l’Hôpital wrote them in the
form a : b WW x : y; we will write them in the form a W b WW x W y in both treatises.

Chapter 2: Finding Tangents

Bernoulli’s Postulate II is “Any Curved line consists of infinitely many straight lines,
each of which is infinitely small.” L’Hôpital’s is much the same, explained a little
more fully and with illustrations. This postulate is used for the first time to find
tangents. This was not a question of calculating a slope, but rather the geometric
question of how to draw the tangent at M . This reduces to the question of finding
the point T where the tangent line intersects the axis and joining it to M . The line
segment TP is called the subtangent so the problem is reduced to finding t D TP.
By Postulate II, when p is infinitely close to P , then Pp is a straight line and by
similar triangles, we have mR W RM WW MP W PT (see Fig. 3). Bernoulli expresses this
in the form dy W dx WW y W t , a relation that he repeats many times in the Lectiones. In
his Proposition I on p. 11, L’Hôpital gives it in the form

mR.dy/ W RM.dx/ WW MP.y/ W PT D y dx

dy
:

Fig. 2 Postulate II
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Fig. 3 The Differential Triangle

This is typical of the way that l’Hôpital uses proportional relations: The relation
a W b WW c W d can always be used to solve for d when a, b, and c are known,
so l’Hôpital puts the corresponding values of the first three terms in parentheses
and solves for the fourth term at the end of the expression. In this case, he has
found a general formula for the length of the subtangent that can be used freely
throughout the remainder of the Analyse. Modern readers will note that in the case
where y D f .x/, this is equivalent to saying the length of the subtangent at .x0; y0/
is y0

f 0.x0/
.

In both the Analyse and the Lectiones, what follows is the calculation of tangents
for a large collection of curves that were known to mathematicians in the 1690s.
The collection is especially extensive in the Analyse and is sort of a catalog of the
curves that were known to mathematicians of that time. Some of these curves were
already known to the ancient Greeks. L’Hôpital and Bernoulli presented almost
all of them geometrically, rather than algebraically. Admittedly, in many cases,
algebraic expressions are not possible without the use of transcendental functions.

Conic Sections

The conic sections – Ellipse, Hyperbola, and Parabola – were known to the ancient
Greeks and were still the object of intense study in the 17th century. In fact, l’Hôpital
originally conceived of the Analyse as a chapter to be included as a part of a larger
treatise on conic sections; see letter 56 on p. 285. L’Hôpital’s treatise on conic
sections did not appear until after his death (L’Hôpital 1707).

We assume that the reader is familiar with the conic sections as they are now
treated in analytic geometry. Of course, they were defined by the ancient Greeks
as sections of a double-napped cone, but this treatment is not given in the Analyse.
Instead, l’Hôpital gives them through equations in x and y that may be unfamiliar
to modern readers. The first mention of the ellipse is in §12 (see p. 13), where it is
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given by the equation

ayy

b
D ax � xx: (1)

Rearranging terms and completing the square, this may be written as

�
x � a

2

�2

�
a
2

�2 C y2

�p
ab
2

�2 D 1;

which modern readers will recognize as an ellipse with center
�
a
2
; 0
�
, horizontal

axis a and vertical axis
p

ab. Thus, the origin is at the left end of the horizontal
axis, rather than the center of the ellipse. When b D a, this is the equation of a
circle of diameter a, with the origin on the circumference of the circle. Equation (1)
reduces in this case to yy D ax � xx, i.e. y2 D x.a � x/, an equation that is used
freely throughout the Analyse.

Specifying an ellipse with a given center requires two parameters: in the modern
treatment, those parameters are the horizontal and vertical semi-axes, whereas in
l’Hôpital’s treatment, the horizontal axis a is clearly a natural choice for one
parameter. The other parameter, b, is also a natural choice for someone steeped
in the classical theory of proportions. An ellipse is a curve in which the ratio
of the rectangle on x and a � x to the square on y is always the same, or
x.a � x/ W y2 WW a W b, for some magnitude b. Because the magnitude a is the
length of a line segment, the classical theory of proportions demands that b be a
magnitude of the same kind. Thus in Figure 1.4 on page 14, a and b are the lengths
of the segments AB and AD. As in Figure 1 on page xvii for the case of the parabola,
AD is not the y-axis, but simply a representation of the second parameter of the
ellipse.

Equation (1) generalizes naturally to higher order: in the last paragraph of §12,
l’Hôpital gives

aymCn

b
D xm.a � x/n (2)

as “the general equation of all ellipses up to infinity.” L’Hôpital writes the term
.a�x/n as a � x n, because the overline is his way of grouping terms. In analogy to
the classical case, the quantities xm.a � x/n and ymCn here are always in the same
proportion as a is to b. In §13, l’Hôpital gives

aymCn

b
D xm.aC x/n (3)

as the generalized equation of hyperbolas. Similarly to the ellipse, the quantities
xm.a C x/n and ymCn here are always in the same proportion as a is to b. In the
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classical case, where m D n D 1, we may rearrange terms and complete the square
to obtain:

�
x C a

2

�2

�
a
2

�2 � y2

�p
ab
2

�2 D 1;

which is a hyperbola with center at
�� a

2
; 0
�
, so that the origin is once again a

point on the curve, in this case the vertex of the right-hand branch. In analogy to
the ellipse, a represents the major or transverse axis of the hyperbola, while the
conjugate axis (called the conjugate diameter in the last paragraph of §13) is the
quantity

p
ab. The major axis of a hyperbola is the distance between its vertices. If

one erects a perpendicular to the major axis at a vertex, then the conjugate axis is the
segment of that line contained between the points where it intersects the asymptotes
of the hyperbola. In Figure 6 on page 15, only the upper half of the right-hand branch
of the hyperbola is given, but nevertheless the point B is the vertex of the left-hand
branch and a is the length of the line segment AB. The second parameter, b, is the
length of the line segment AD, not to be confused with AE the semi-conjugate axis.

L’Hôpital treats parabolas in §11 on page 13. The classical case is ax D yy, which
may strike a modern reader as strange, since it does not express y as a function of x,
but is actually quite natural in that the axis of symmetry of the parabola is the same
as the x-axis. This parabola has only one parameter, a line segment of length a so
that the square on y is always equal to the rectangle on a and x.

In the third part of §11, l’Hôpital gives the equation of the generalized parabola
as ym D x when m denotes a positive rational number. We note that the parameter
is suppressed in this expression, but in the particular example of m D 3

2
, l’Hôpital

writes the equation as y3 D axx. Bernoulli writes this semi-cubical or second cubic
parabola the same way in his Problem I on page 193, and gives the first cubical
parabola as aax D y3. Similarly, Bernoulli give the biquadratic parabolas as a3x D
y4, aaxx D y4 and ax3 D y4. In all of these equations, the parameter has the
appropriate order so that the equations are all homogenous; that is, they involve
terms all of the same total degree.

In §11 l’Hôpital also considers the case where ym D x andm denotes a negative
rational number. These are the hyperbolas “between the asymptotes”; i.e. hyperbolas
where the asymptotes are the axis and its perpendicular. The cases aa D xy and
a3 D xyy are both mentioned in this article.

Construction of Conic Sections

In Proposition IV on page 19, l’Hôpital gives a general construction of a new
curve from two given curves that intersect. This is a generalization of a method
for constructing the conic sections as the geometric means of the ordinates of two
straight lines. In Figure 8, the given curves are AQC and BCN, which intersect at the
point C . The ordinates PM of the new curve MC, denoted by y, are defined through
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Fig. 8 Conic Sections and Related Examples

an equation relating them to the ordinates PQ of AQC and PN of BCN, denoted,
respectively, by x and z. In the particular case where AQC and BCN are straight lines
and the equation is yy D xz, then the new curve MC is a conic section, depending on
the relationship between the lines and their point of intersection. L’Hôpital presents
a generalization of this construction in §21. We will use modern ideas and notation
to explain the construction.

We take the point A as the origin of the abscissas, which we denote by u, and
determine x and z as linear functions of u. The first case, which is more or less
illustrated in Figure 8, is the case where the ordinate DC of the point C meets the
axis between A and B . Let the coordinates of C be denoted .d; c/ and the distance
AB be a, then we have

x D c

d
u and z D c

a � d .a � u/:

If ymCn D xmzn, we then have

dm.a � d/n
cmCn ymCn D um.a � u/n;

which has the form of equation (2) with horizontal axis a and parameter

b D acmCn

dm.a � d/n :

Thus, the curve MC is a generalized ellipse and in the classical case ofm D n D 1,
the ordinate PM can be constructed with a compass and straightedge, because y Dp

xz is the geometric mean of the ordinates PQ and PN.
In the second case considered by l’Hôpital, the ordinate DC meets the axis

outside of the line segment AB. Without loss of generality,Amay still be considered
as the origin and the point B is to its left. In this case we have the generalized
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Fig. 12 Hyperbola and Related Examples

hyperbola, because

x D c

d
u and z D c

aC d
.aC u/;

so that ymCn D xmzn yields

dm.aC d/n

cmCn ymCn D um.aC u/n;

which has the form of equation (3) with major axis a and parameter

b D acmCn

dm.aC d/n
:

Finally, we consider the case where one of the straight lines is parallel to the axis.
Without loss of generality, the line BC is replaced by the horizontal line passing

through the point C . Thus x D c

d
u and z D c, so that ymCn D anxm, which is a

generalized parabola with parameter

a D c1Cm
n

d
m
n

:

Alternate Construction of the Hyperbola

In Proposition VII on page 23, l’Hôpital gives a general method for constructing a
new curve by sliding a given curve MRA along the axis. In figure 12, the line FP
rotates about a fixed point F below the axis. As the line FP rotates, the curve MRA
moves rigidly in such a way as to keep the length of the segment PA fixed. The new
curve CMD is then the locus of all points M where the line FP meets the curve
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MRA. In the particular case where the curve MRA is actually the straight line MH,
then CMD is a hyperbola. L’Hôpital mentions that his hyperbola has the axis ET as
one of its asymptotes, but gives no further details.

We give here a derivation of the equation of this hyperbola using modern methods
and notation. We suppose ET to be the x-axis and the perpendicular from the fixed
point F to the axis to be the y-axis. Let b denote the distance from F to ET , so that
F has coordinates .0;�b/. If we let .z; 0/ be the coordinates of the point P , then
H has coordinates .0; z C a/ for a fixed a. We suppose that the line MH has slope
v, where v may be positive, negative, or infinite (i.e., the line MH may be vertical).
There is no need to consider the case v D 0, i.e. the case where MH is horizontal,
because in this case the curve CMD coincides with the line MH.

Using this notation, the lines MH and FP have equations

y D vx � v.z C a/ and y D b

z
x � b;

respectively. The point M is found by solving these equations simultaneously,
giving

x D v.z C a/ � b
vz � b z and y D abv

vz � b :

We eliminate the parameter z by solving the second equation to get

z D ab

y
C b

v
; so that x D .y C b/

�
a

y
C 1

v

�
:

If the line MH is vertical, so that
1

v
D 0, we have y D ab

x � a , which gives a

hyperbola with asymptotes y D 0 and x D a. Otherwise, we have

x D y2 C .av C b/y C abv

vy
;

which is a second degree equation in x and y, whose general form is

�vxy C y2 C .av C b/y C abv D 0:

The discriminant of this equation is v2 > 0, so the curve is a hyperbola. It is a
rotated, skewed hyperbola whose equation can be written as

�v
2

4
x2 C

�
�v
2
x C

�
y C av C b

2

��2
D �v.av C b/

2
x C .av � b/2

4
:

From this form, we can determine that the asymptotes are y D 0 and y D vx.
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Fig. 23 Conic Sections Defined by Focus and Directrix

Focus-Directrix Construction of the Conic Sections

In Proposition X on page 29, l’Hôpital considers curves that are defined by means of
two or more foci. This is a generalization of the conic section, because ellipses and
hyperbolas may be defined by means of two foci: the ellipse is the locus of all points
such that the sum of their distances to two given foci is constant, whereas for the
hyperbola, it is the difference of the distances that is constant. Furthermore, in this
portion of the text that is more than six pages long, l’Hôpital extends to the notion
of focus to include both the case of a straight line and that of a curved line. When
the focus is a straight line, then we understand the distance between a point and the
focus to mean the perpendicular distance from the point to the line. Such a focus is
usually called a directrix. When the focus is a curved line, then we understand the
distance to mean the length of the portion of the tangent from the focal curve to the
point on the curve being constructed; see Figure 2.20 on page 33.

In §34 on page 35, l’Hôpital considers curves defined by means of two foci,
one being a point and one being a directrix. Modern readers are probably familiar
with the focus-directrix definition of the parabola, but l’Hôpital uses the focus and
directrix to construct all of the conic sections. In Figure 23, F is the focus, and
the line marked simply as G is the directrix. For a point M on the curve being
defined, we require that MF W MG WW a W b for two positive constants a and b.
L’Hôpital asserts that the curve is a parabola if a D b, a hyperbola if a > b, and an
ellipse if a < b. To verify this, we set up a coordinate system as follows. We drop
a perpendicular from F to the directrix G and make that line the y-axis. The vertex
V of the curve is the point where the y-axis intersects the curve. We take V to be
the origin and draw the x-axis parallel to G. Because V is one of the points M on
the curve, we have VF W VG WW a W b, so without loss of generality, we may take
the coordinates of F and G to be .0; a/ and .0;�b/, respectively. The proportional
relation MF W MG WW a W b then becomes

p
x2 C .y � a/2
y C b

D a

b
;
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so that

b2
�
x2 C .y � a/2� D a2.y C b/2:

Simplifying, we have

b2x2 C .b2 � a2/y2 D 2ab.aC b/y:

If a D b, this reduces to x2 D 4ay, the parabola with focal distance a. Otherwise,
we have

x2

kc2
C .y � c/2

c2
D 1;

where

k D 1 � a2

b2
and c D ab

b � a :

This is indeed an ellipse if a < b, so that k > 0, whereas if a > b, the coefficient
of x2 is negative and the curve is hyperbola.

Cycloid

The cycloid is given parametrically in modern textbooks by

x D b� � a sin � (4)

y D b � a cos �;

where a and b are positive constants. When a D b, the cycloid is called simple. The
curve can be generated by rolling a circle of radius b along the x-axis and tracing
out the path of the point on its circumference that is at the origin when � D 0. If
b > a, the cycloid is called curtate and the curve is traced out by an interior point
of the circle that is in the interval .0; b/ on the y-axis when � D 0. The cycloid is
prolate if b < a, in which case the tracing point is outside the circle, on the negative
y-axis, when � D 0.

The cycloid is an example of a roulette, a very general construction of a curve that
is produced by rolling one curve, called the mobile curve, along a different, fixed
curve. In the case of the cycloid, the mobile curve is a circle and the fixed curve is a
line. If one rolls a circle around inside another circle, a point on the circumference
of the mobile circle traces out a hypocycloid. If the mobile circle rolls around the
outside of the fixed circle, an epicycloid is traced out.

In later chapters of the Analyse, l’Hôpital considers cycloids, hypocycloids,
and epicycloids as roulettes, which he usually calls “half-roulettes” because he is
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Fig. 7 The Cycloid

frequently only interested in a half-turn of the mobile circle, which in the case of
the parametric definition of the cycloid means 0 � � � � .

However, in Chapter 2, l’Hôpital does not define the cycloid as a roulette. Rather,
in Proposition II on p. 17 he takes the axis to be a curved line APB (see fig. 7) and
the abscissas s to be given by the arc length on this curve, originating at A. The
ordinates t , which are perpendicular to the line segment AB, are applied to the curve
APB. When APB is a semi-circle and the ordinates are determined by the equation
s D at

b
(l’Hôpital uses x and y, respectively, where we use s and t ), then the curve

AMC a cycloid, simple when b D a, curtate when b > a and otherwise prolate. To
see that these two definitions are equivalent, first consider the simple cycloid, the
case a D b. Let CB be the x-axis, using ordinary Cartesian coordinates, and let the
origin be at the point C . The diameter AB has length b and is on the vertical line
x D �b. The parametric equations (4) can then be derived by letting � parameterize
the angle, in radians, along the semi-circle APB, with � D 0 corresponding to the
point B and � D � to the point A. For the other cases, the semicircle has radius
a, but the center of the diameter AB is still at the point .�b; b/. In this case, the
segment CB is parallel to the x-axis, lying above the in the curtate case, or below in
the prolate case.

Bernoulli also treated the cycloid (p. 198). However, he only considered the case
of the simple cycloid and did not use curvilinear coordinates as l’Hôpital did. Given
l’Hôpital’s reported interest in the cycloid at the age of 15, it is not surprising that
he devoted relatively more of his work to this curve than Bernoulli did.

The cycloid has many fascinating properties, including the fact that it gives the
solution to the Brachistochrone Problem. It was also studied by Huygens in his work
on the pendulum clock (Huygens 1673). For more on the cycloid, see Lockwood
(1971, pp. 80–89). For roulettes, see Lockwood (1971, pp. 138–151).
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Fig. 10 The Spiral of Archimedes

Spiral of Archimedes

In modern textbooks the Spiral of Archimedes (or Archimedean Spiral) is usually
given in polar coordinates as the function r D �0 C k� , for r � 0, with constants �0
and k. Thus, the distance from the origin to a point on this spiral is proportional to
its angle, measured as the offset from the initial angle �0. L’Hôpital first mentions
this spiral in §23 on page 21, as an example illustrating his Proposition V.

There are no polar coordinates in the Analyse, although the variable y, represent-
ing the length of the line segment FM (see fig. 10) is a polar ordinate, roughly
equivalent to the variable r in polar coordinates. Such polar ordinates are used
extensively in Chapter 5. In place of an angular coordinate � , l’Hôpital uses a
circular arc APB as a reference curve; it is essentially a curved axis, as the semi-
circle APB was in the case of the cycloid. The arc APB is a portion of the circle
of radius a and center at F , possibly a complete circle. To define the Spiral of
Archimedes FMD, we let x be the length of the arc AP and b the length of the arc
AB. Then the ordinate y is given by the proportion b W x WW a W y. In the Lectiones
(see page 204), Bernoulli describes this proportional relation in words: “That curve
is called the Spiral of Archimedes, which is described from a point, which is moved
from the center to the circumference of a circle, the radius rotating uniformly in
equal durations of time as the point is moved from the center to the circumference.”

If we let � and ˛ be the radian measures of the arcs AP and AB, respectively, then
we have x D a� and b D a˛, so that

y D a

b
x D a

˛
�:

Because l’Hôpital oriented the arc APB clockwise, this is essentially equivalent to
r D �0 C k� , where k D � a

˛
and �0 is the angle between the radius FA and

the positive x-axis. We note that whereas in the modern treatment, the Spiral of
Archimedes is an unbounded curve with arbitrarily large radii, this construction in
the Analyse describes a bounded portion, which terminates at the point B on the arc
APB.
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Fig. 11 The Conchoid of Nicomedes

Conchoid of Nicomedes

The word conchoid derives from the Ancient Greek word for mussel. The Conchoid
of Nicomedes is the curve CMD in figure 11 of the Analyse. It is defined by means
of the straight line HP, sometimes called the directrix, and a point F not on that
line, called the pole. For every point P on the directrix, the line FP is drawn and the
point M is marked off at a fixed distance a > 0 from the point P . The Conchoid
of Nicomedes is the locus of all such points M . In the modern definition of this
curve, there are two points corresponding to each point P on the directrix, one on
the opposite side from F and one on the same side. L’Hôpital considers only the
curve that consists of the points M on the opposite side from F . The branch that
l’Hôpital does not consider exhibits interesting properties: it has a cusp at the origin
when a D b and a double point when a > b, but when a < b it has the same general
shape as the as curve CMD.

A modern equation for the Conchoid of Nicomedes is most conveniently given
in polar coordinates. If we choose the coordinate system so that the origin is at the
pole F and the directrix is the horizontal line y D b, then the branches are given
simultaneously by the polar equation

r D b csc � ˙ aI 0 < � < �;

where l’Hôpital’s curve is the branch corresponding to Ca and the second branch
is given by �a. This can be transformed into Cartesian coordinates as a2y2 D .b �
y/2.x2 C y2/. The line y D b is an asymptote and there is a maximum on the
illustrated branch at the point .0; bCa/. The Conchoid of Nicomedes was of interest
to the Ancient Greeks because it could be used to trisect an angle; see Lockwood
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(1971, p. 127) for details, although there is no mention of this in the Analyse. As an
application of higher differentials, l’Hôpital determines the inflection points of this
curve in Chapter 4.

Cissoid of Diocles

The word cissoid derives from the Ancient Greek word for ivy. In modern sources,
the Cissoid of Diocles is defined by considering a circle, a tangent line at some point
B on its circumference and the pole F diametrically opposite toB . In figure 14, only
the semi-circle FNB is given, with the tangent line Bb. From the pole F , a straight
line FN is drawn through the circle atN to the tangent line, and the pointM is taken
so that FM D Nb. The Cissoid of Diocles is then the curve FMA, which is the locus
of all such pointsM . Because l’Hôpital only considers the semi-circle with diameter
FB, he only gets the upper half of the curve that is usually called the Cissoid of
Diocles. L’Hôpital gives a different but equivalent construction on page 25, dropping
the perpendicular EN from the point N to the diameter, considering the abscissa FL
to be equal to BE and determining the ordinate LM so that FL W LM WW FE W EN.
Taking the diameter FB as the axis, with the origin at F and the positive direction
being from F to B , we denote the length of FB as 2a. With the coordinate system
defined in this way, and using the equation y2 D 2ax � xx for the circle, l’Hôpital
derives the equation y2.2a � x/ D x3, which appears in the implicit differentiation
section of many modern calculus books.

The Cissoid of Diocles may be used to solve the classical problem of the
duplication of the cube. In particular, the curve may be used to find the first of two
mean proportionals between a and an arbitrary magnitude b, that is 3

p
a2b, which is

the cube root of b when a has unit length. For more on this, see Lockwood (1971,
p. 131).

Fig. 14 The Cissoid of Diocles
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Fig. 16 The Quadratrix or Dinostratus

The Quadratrix of Dinostratus

L’Hôpital calls this curve the Quadratrix of Dinostratus, but it is sometimes called
the Quadratrix of Hippias. Both Dinostratus and Hippias were Ancient Greek
mathematicians. Apparently Hippias first proposed the curve for the purposes angle
trisection, but it was Dinostratus who proved that it could be used to square the
circle. For more on Hippias, Dionostratus, and the Quadratrix, see Burton (2007,
pp. 132–136).

The Quadratrix of Dinostratus is the curve AMG, illustrated in both Figure 16
and Figure 17 of the Analyse, in which the curve ANB is a quarter circle of radius
a. In §30 on page 27, l’Hôpital describes the curve in the following way: We draw
any radius FN in the quarter-circle and locate the point P on the radius FA so that
as the arc AN is to the line segment AP, so the quarter-circumference ANB (which
is denoted b) is to the radius AF. We erect a perpendicular at P and the point M
is where this meets the radius FN. The Quadratrix of Dinostratus is the locus of all

Fig. 17 The Quadratrix or Dinostratus
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such points M . If we denote the length of FP by u and the measure of the angle
AFN by  , then the proportional relation gives

a 

a � u
D �

2
so that  D �

2
� �u

2a
:

If we denote the complimentary angle BFN by � and the length of PM by v, then
we have

� D �u

2a
and v D u cot � D u cot

��u

2a

�
:

This relationship between u and v explains why modern references use the function

f .x/ D x cot
��x
2a

�

to define the Quadratrix of Dinostratus.

In §31, l’Hôpital determines the length of the segment FG to be
aa

b
, which is

2a

�
.

A modern reader would apply l’Hôpital’s rule to f .x/, which has the indeterminate
form 0 � 1 when x D 0. Instead, l’Hôpital uses an elementary argument involving
the radius Fb in figure 17, which is infinitely close to FB. L’Hôpital’s Rule is not
mentioned until §163 in Chapter 9, but even if that rule had been available to him
at this point in the text, l’Hôpital still lacked a calculus of trigonometric functions,
which only developed over the course of the next century.

To square the quarter circle ABF one needs to construct a square of the same area,

namely
�a2

4
. To do this, first erect perpendiculars to FB at G and B , see figure 17.

On the first of these, mark off C so that GC has length a. Now join FC and let D
be the point where this line meets the perpendicular at B . Then by similar triangles,

BD has length
�a

2
, so that if we bisect BD at L, then the rectangle on BL and BF

has the required area. Finally, the construction of a square with the same area as a
rectangle is a standard procedure, described in Proposition 14 of Book II of Euclid’s
Elements.

The Logarithmic Spiral

The Logarithmic Spiral is also called the Equiangular Spiral. It was studied
extensively by Johann Bernoulli, who had it engraved on his tombstone. It has
many fascinating properties, including the fact that at any point on the curve, the
line joining that point to the center always makes the same angle with the tangent
at that point. In §42 on page 40, l’Hôpital considers the curve LM that is defined
with reference to a circle BN with center A and radius c, and a hyperbola FQ; see
Figure 27. When he requires that the circular sector ANB have an area equal to half
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Fig. 27 The Logarithmic Spiral and Related Examples

of the area EGQF under the hyperbola, he is able to conclude that the curve has this
equiangular property, so that it must be the logarithmic spiral.

In modern texts, the logarithmic spiral is given in polar coordinates by the
equation r D r0e

k� , where k is the cotangent of the constant angle between the
line AM and the tangent MT . In l’Hôpital’s description, the reference circle BN
plays the role of the coordinate � , because the area of the sector ABN, which is c2

2
� ,

is proportional to the angle � . The radius r (which l’Hôpital denotes by y) is the

length of the segment AG and the ordinate GQ is given by f 2

r
, for a constant f . If

we let r0 denote the length of the initial segment AE, then we have r D r0e
k� with

k D c2

f 2
. For more on the logarithmic spiral, see Lockwood (1971, pp. 99–109).

Chapter 3: Maximum and Minimum Ordinates

One of the most important applications of the differential calculus is to finding
maximum and minimum values of a function. Because the notion of function did
not exist at the time when l’Hôpital wrote the Analyse, this problem was stated in
terms of finding the maximum or minimum ordinates in the graph of an equation.
In Problem XII of the Lectiones, Bernoulli taught l’Hôpital that such problems
were solved by finding ordinates where the tangent is parallel to the axis, that is
where dy D 0 with respect to the corresponding dx; see page 205. Modern readers
will recognize this as the equivalent of solving f 0.x/ D 0. However, this does
not include the case of an extremum being located at a cusp where the tangent
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is horizontal. In letter 22, written shortly after he had entered into the Contract
with l’Hôpital, Bernoulli wrote tell him of this case, where the dy is infinite with
respect to dx; see page 251. Thus, when l’Hôpital states his General Proposition in
Chapter 3, he includes both of these cases in his discussion, with further elaboration
in his Remark in §47 on page 251.

Chapter 3 includes 13 examples in which the least or greatest ordinate is found.
Most involve the case where dy D 0 with respect to dx, but the second example, in
§49 on page 48, is the curve whose equation is y � a D a1=3.a� x/2=3, which has a
vertical tangent when x D a. Other notable examples include the largest cone that
can be inscribed in a sphere (§53), the parallelepiped of a given volume with the
least surface area (§54 and §55) and three applied problems, all of which appear in
some form in the Lectiones.

The first of these, Example XI on page 54, is the problem of minimizing the time
that it takes a traveler to go from a point in one region, in which he travels at a
given speed, to a point in a second region, where he travels with a different speed.
L’Hôpital solves the problem in two ways, first using a principle equivalent to Snell’s
Law, which follows from a more general result derived in Example IX on page 52,
and then by a more direct method, using right triangle geometry and the differential
calculus. In both cases, the problem reduces to solving a quartic equation.

The second application, Example XII on page 56, is sometimes called the Pulley
Problem and has been discussed in a number of modern articles, e.g. (Hahn 1998).
The final example in Chapter 3 is an astronomical problem, the problem of the
shortest twilight, or crepuscule, on page 57, which presupposes a familiarity with
celestial geometry.

Chapter 4: Inflection Points and Cusps

In order to find inflection points and cusps, l’Hôpital first needs to define the second
differential, which he also calls the differential of the differential. He does so in the
first article of Chapter 4 on page 62, and also defines the third and higher order
differentials. He denotes these by ddy, dddy, and so on, and is careful to distinguish
ddy from dy2 (i.e., .dy/2), dddy from dy3 and so on. In considering the differential
triangle, which has sides dx, dy, and hypotenuse du (the side that is an infinitely
small portion of the curve, and which is usually called ds in modern textbooks),
all that matters in calculating higher differentials is the ratios among these three
quantities. For that reason, l’Hôpital notes that we may consider any one of the
increments as being constant; for example, the length of dx may be considered to be
the same at every abscissa x, in which case ddx D 0, because it is the differential
of a constant quantity. L’Hôpital observes that we are free to choose any one of the
cases ddx D 0, ddy D 0, or ddu D 0 in order to simplify calculations, but in most

cases his choice is ddx D 0. This assumption explains the modern use of d2y

dx2
for

the second derivative: if y D f .x/, then by the rules of Chapter 1 we clearly have
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dy D f 0.x/ dx, so by product rule, ddy D .f 00.x/ dx/dxCf 0.x/ ddx, which is equal
to f 00.x/dx2 because ddx is assumed to be zero.

L’Hôpital also defines higher order differentials in the case where the ordinates
emanate from a single point, which we sometimes call polar ordinates in our
commentary. He distinguishes this from the usual case, which we think of as
Cartesian coordinates, by referring to that case as being “when the ordinates are
parallel to one another.” L’Hôpital then defines inflection points and cusps and shows
that in the case of parallel ordinates, ddy D 0 or ddy is infinite at such points,
whereas for polar ordinates, it is the quantity dx2 C dy2 � y ddy that must be equal
to zero or to infinity.

This chapter concludes with 7 examples of curves exhibiting inflection points or
cusps, including the prolate cycloid and the Conchoid of Nicomedes. In the case of
the Conchoid of Nicomedes, l’Hôpital finds the inflection point using both parallel
ordinates and polar ordinates. Example I on page 71 is the curve with equation
axx D xxy C aay, which was also given in the Lectiones on page 218 and is
essentially the equation of the curve now called the “Witch of Agnesi.” This latter
curve is the graph of the function

f .x/ D a3

x2 C a2
;

but because y D a � f .x/ is equivalent to the equation given by Bernoulli and
l’Hôpital, their curve is the Witch of Agnes reflected in the line y D a

2
.

Example VI on page 76, which was given in the Lectiones on page 230, is the
parabolic spiral, which is closely related to the Spiral of Fermat. The modern
equation for this curve is given in polar coordinates as .a � r/2 D c2� . The curve
considered by l’Hôpital in Example VI is the branch of this curve corresponding to
the positive value of r , with a the radius of the given circle AED and c D p

ab for
a given magnitude b. The Spiral of Fermat has the equation r2 D a2� ; for more on
these spirals, see Lockwood (1971, p. 175). L’Hôpital reduces the problem of finding
the inflection point in the parabolic spiral to that of solving a quintic equation.

Chapter 5: Evolutes and Involutes

From Chapter 5 onwards, the Analyse no longer mirrors the structure of Bernoulli’s
Lectiones. However, Bernoulli’s influence is still to be found in many places;
Speiss has made a careful cross-reference of places in chapters 5 through 10 where
l’Hôpital has drawn on material provided to him in Bernoulli’s letters or in his
lessons on the integral calculus; see Bernoulli (1955, p. 151).

Suppose that BDF in figure 65 models a thin, rigid wire in the shape of a curve
that does not change concavity and that a thread ABDF is laid over the convex side
of the curve and fixed at the point F . In this initial position, the portion AB that
extends beyond the end of the wire is in a straight line that is tangential to the curve
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Fig. 65 Definition of Involute and Evolute

at B . If we peel the thread away while holding it taut, the endpoint of the thread
initially at A describes the curve AHK by this motion. The curve AHK is called an
involute of the curve BDF and, reciprocally, the curve BDF is called the evolute of
AHK. In figure 65, three stages of this process of evolution are illustrated: the initial
stage, with the end the thread at A, an intermediate stage, where the thread still lies
on the portion FD of the curve and the portion DH is in a straight line tangential to
BDF at D, and the line FK is the thread in its final potion.

The central problem of Chapter 5 of the Analyse is to determine the evolute of a
given curve. It is clear that the line DH is normal to the curve AHK, so the problem
reduces to following: given a curve AHK and a normal at any of its pointsH , to find
the length of HD so that the pointD lies on the evolute. In modern terminology, the
length HD is called the radius of curvature of AHK atH , but l’Hôpital uses the term
“radius of the evolute” for this length. In §78 on page 84, he derives the expression

dx2 C dy2
p

dx2 C dy2

�dx ddy
; i.e.

�
dx2 C dy2

� 3
2

�dx d2y

for the radius of the evolute in the case of rectangular coordinates, which he
describes as being when “the ordinates are perpendicular.” In the case of polar
ordinates, the formula is

y dx2 C y dy2
p

dx2 C dy2

dx3 C dx dy2 � ydx ddy
; i.e.

y
�
dx2 C dy2

� 3
2

dx3 C dx dy2 � ydx d2y
:

Chapter 5, the longest chapter in the Analyse, includes 9 examples in which
the evolutes of various curves are found, including many of the curves that were
encountered in Chapter 2. These include the conics sections, the logarithmic and
various spirals. L’Hôpital also shows that the evolute of the cycloid is a congruent
cycloid of the opposite orientation, a result originally due to Huygens (1673). The
final example is the epicycloid, a curve generated by the motion of one circle rolling
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on another circle; see Lockwood (1971, p.142) for a modern description of the
epicycloid.

This chapter concludes with an extended remark concerning cusps of the second
kind, beginning on page 110. The discovery of this type of cusp, which is also
called ramphoid, seems to have been due to l’Hôpital, although he was assisted by
Bernoulli in letters 23 and 24 in clarifying its nature. This cusp became a matter of
some interest in the 1740s, when Jean Paul de Gua de Malves (1713–1785) believed
he had proved that no such cusp could exist. Leonhard Euler and Jean d’Alembert
(1717–1783) independently showed that algebraic curves of low order could in fact
be endowed with such a cusp; see Bradley (2006) for more on this curious matter.

Chapters 6–8: Envelopes of Lines and Curves

An envelope is a curve that is tangent to every member of some family of lines or
curves. Chapters 6 through 8 of the Analyse all concern envelopes of various types.

A caustic by reflection or catacaustic is the envelope of a family of lines that
are reflected in a given curve. The study of these curves has its origin in optics.
The reflecting curve represents a mirror and the lines that are reflected represent
light rays. L’Hôpital studies caustics by reflection in Chapter 6. In most cases the
family of rays emanate from a single point B , called the radiant point. However if
the radiant point is at a great distance, as it would be in the case of the sun, then
the incident rays are considered to be parallel lines. L’Hôpital reduces the problem
of finding the envelope of the reflected rays to that of finding the point on each ray
where that ray meets the caustic. Having solved this problem, l’Hôpital considers
the catacaustics of various conic sections, including the circle, with the radiant point
at various locations. He also considers caustics of the cycloid, epicycloid, and
logarithmic spiral.

A caustic by refraction or dicaustic is the envelope of a family of lines that
are refracted in a given curve. As with the caustic by reflection, the lines that are
refracted represent light rays, but here the curve represents a lens, which refracts
the light according to a “given ratio of sines”; that is, the sine of the angle that the
incident ray makes with the curve always has a given ratio to the sine of the angle
of the refracted ray. L’Hôpital studies caustics by refraction in Chapter 7. Again,
the central problem is that of finding the point on each refracted ray where that
ray meets the caustic. L’Hôpital finds the caustics by refraction for only a small
number of curves: the straight line, the quarter circle, and the logarithmic spiral.
This chapter concludes, as does the previous one, with of the solution of the inverse
problem: given a caustic, to find the curve that gave rise to it, whether by reflection
in Chapter 6 or by refraction in Chapter 7.

Chapter 7 ends with a General Corollary for Chapters 5 through 7: the observa-
tion that a given curve has only one evolute, one caustic by reflection and one caustic
by refraction, given a ratio of sines. On the converse, however, the same curve may
be the evolute of infinitely many lines, and likewise for the caustics, even given the
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position of the radiant point and the ratio of sines. In the case of involution, we are
free to choose the length of the straight line segment (AB in figure 4.1) at will. In
the case of the caustics, we are free to choose any reflected or refracted ray we may
wish, and to choose a point on that ray to be a point of the reflecting or refracting
curve. That is, each of these inverse processes involves one arbitrary choice, but
becomes fully determined once that choice is made.

Chapter 8 of the Analyse concerns the problem of finding envelopes of various
families of lines and curves. There are 6 propositions, each dealing with a different
kind of problem. Most of the problems deal with envelopes of various families of
straight lines, but the problem in Proposition I on page 140 is that of finding the
envelope of a family of parabolas, all of which pass through the origin. The vertices
of the parabolas in this family are the points on a given curve. L’Hôpital gives the
general solution for this problem and then finds the envelope explicitly in the case
where the indexing curve is also a parabola.

On the surface, Problem II does not seem to be about envelopes. In this problem,
a curve and an axis are given. One seeks a second curve, whose normal from any
point on the axis is equal to the ordinate of the given curve from the same point.
What makes this a problem about envelopes is that l’Hôpital solves it by considering
the family of circles that have the normals of the curve that we seek as their radii.
The envelopes of these circles is then the curve that we wish to find.

Taken together, these three chapters on envelopes are only slightly longer than
Chapter 5 or Chapter 2. However, these topics seem to have been of particular
interest to l’Hôpital and it is worth noting that he published an article 1693, before
he had entered into The Contract with Bernoulli, describing an “easy method” for
finding the points on the caustic by refraction (L’Hôpital 1693). Bernoulli had
published his method for finding these points earlier the same year in the Acta
Eruditorum, and l’Hôpital wrote this article to clarify that method. Already in 1693,
we see the partnership between the researcher and the expositor beginning to take
shape.

Chapter 9: L’Hôpital’s Rule and Other Problems

Chapter 9 contains “the solution of various problems that depend upon the previous
Methods.” The first of these is the celebrated rule that we now call L’Hôpital’s Rule.
The rule is Bernoulli’s discovery and, as we have already seen, l’Hôpital became
acquainted with it because of Bernoulli’s 0

0
Challenge Problem, see page xiv.

L’Hôpital’s treatment of this Proposition closely follows the solution that Bernoulli
gave him in Letter 28 on p. 267. In Figure 130, which is probably the most famous
illustration in the Analyse, the curves ANB and COB represent functions that both
take the value zero when x corresponds to the abscissa AB, while AMD is the
curve that represents the quotient of these two quantities. Modern readers will
understandably think that COB represents negative values of y, because the graph
is below the x-axis, but this is not necessarily the case. Here, as well as many other
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places as in the Analyse, graphs that contain more than one curve often have the
curves represented above and below the axis, simply in order to make the graph
easier to understand, rather than to represent opposite signs of the ordinates in
question.

There are 5 propositions in Chapter 9. Although Proposition II is a general
proposition concerning drawing tangents to curves that are defined by means of
evolutes and involutes, it is in fact applied to the case of the epicycloid. The
remaining three propositions also concern the epicycloid. Of particular note is the
final proposition, on page 162, in which l’Hôpital finds the quadrature of regions
bounded by the epicycloid. Strictly speaking, this is a problem of the integral
calculus, but l’Hôpital is able to present what little he needs of the integral calculus
in a self-contained manner. Spiess’ table (Bernoulli 1955, p. 151) cross-references
the portion of Bernoulli’s lessons on integral calculus that l’Hôpital needed for this
proposition.

Chapter 10: The Method of Descartes and Hudde

When l’Hôpital left military service and took up the academic life, he studied the
work of Descartes as a member of Malebranche’s intellectual circle. Evidently, he
had mastered much of the mathematics of Descartes, and of those who followed
him, by the time he met Bernoulli in November 1691. Descartes had shown
how to use analytic geometry to find the osculating circle of an algebraic curve,
although his method is cumbersome and generally leads to solving an equation
that has double the order of the original equation. Because this gives the normal
to the curve at that point, the method can be used to find tangents. In the years
following the publication of Descartes’ Géometrie (Descartes 1954), various other

Fig. 130 L’Hôpital ’s Rule
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mathematicians, particularly Johannes Hudde (1628–1704), elaborated on and
simplified Descartes’ methods.

In his final chapter of the Analyse, l’Hôpital demonstrates how all of the
methods of Descartes and Hudde may be easily derived and justified using Leibniz’
differential calculus. Because Leibniz’ calculus can handle transcendental curves
as well as algebraic ones (which l’Hôpital calls “geometric,” following Descartes),
and does not require removing roots in the case of algebraic curves, he concludes
on the final page of the Analyse that the new calculus is vastly superior to the older
methods.

There is no need here to describe the methods of Descartes and Hudde, because
l’Hôpital’s exposition of them is very clear and lucid. For a modern exposition of
the work of Hudde, see Suzuki (2005).

General Remarks

The core of this book consists of the translated text of the Analyse and the Lectiones,
both made available in English for the first time and cross-referenced so that modern
readers may judge for themselves the extent to which l’Hôpital’s work is based on
Bernoulli’s and the extent to which l’Hôpital adds original content. To add further
context to this mathematical issue, as well as to give insight into the personalities
of these two men and the nature of their relationship, we have included translations
of a significant portion of their correspondence in Chapter 12. It must be noted that,
although the material here fills almost sixty pages, the full correspondence included
in Bernoulli (1955) is 225 pages long. We have been selective, concentrating on
places in the correspondence where Bernoulli provides l’Hôpital with material that
will appear in the Analyse, as well as on anything of a personal or professional
nature that illuminates the complex friendship between these two mathematicians.

This volume concludes with a translation of Fontenelle’s Eulogy of l’Hôpital,
which he wrote in 1704. Much of what we know about l’Hôpital’s life comes from
this document. Indeed, it was virtually the only source of biographical material on
the Marquis until Spiess’ research appeared (Bernoulli 1955).

We have attempted to provide accurate translations of all of these primary
sources, but that does not always mean literal translations. In the Analyse, we have
taken a few liberties that we believe make the text more readable, without in any way
compromising either the mathematical content or l’Hôpital’s expository prowess.
Specifically, we have used the present tense in his mathematical exposition, whereas
l’Hôpital generally used the future tense, as was traditional at the time and continued
to be so well into the 19th century. Also, we have tried to simplify l’Hôpital’s
complex sentence structure in places, including breaking long sentences into smaller
pieces.

In translating the Lectiones, the correspondence, and Fontenelle’s eulogy, we
have generally been much more literal.
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The Analyse was richly illustrated with 156 figures, which are now in the public
domain. These were printed on 11 plates, which were printed with extremely wide
left margins, so that when they were bound into the book, they could be folded out.
In this way, they extended to the right of the text pages, and could be followed along
with the text. We have instead included the illustrations within the body of the pages,
as is the custom in modern textbooks. At the time of this writing, many copies of
the French editions of the Analyse are available as free downloads on the internet.
Readers may wish to get copies of the original plates from one of these sources to
duplicate the experience of 17th century readers with regard to the illustrations. We
have added captions to the figures in this edition, but these were composed by us
– there are no captions at all in any of the French editions. In the French editions,
the figures were numbered consecutively from 1 to 156. We have used the same
numbering in this preface. In our translation of the Analyse, we have adopted the
following convention: Figure 3.7, for example, is the seventh figure in Chapter 3.
The original figure numbers can still be seen within the figures themselves. Our
figures have been reproduced from a copy of the 1768 edition that belongs to our
friend and colleague V. Frederick Rickey. He obtained this book many years ago
as a gift from Philip S. Jones (1912–2002), one of the founding members of the
International Study Group on the Relations Between the History and Pedagogy of
Mathematics.

Other illustrations from the Analyse, including the frontispiece, are from a copy
of the 1696 edition that has generously been made available by Google Books.

The illustrations in the Lectiones originally appeared in Schafheitlin (1922). The
numbering of these figures is due to Schafheitlin, not Bernoulli. They are also in the
public domain. We retrieved our figures from a copy of the journal that was made
available on the internet by the Biodiversity Heritage Library (BHL). The original
volume of the journal was in the collection of the Marine Biological Library of the
Woods Hole Oceanographic Institute. We are grateful to the BHL and to Diane M.
Rielinger, Director of Library Services at the Marine Biological Library.

The illustrations we have included in the correspondence chapter originally
appeared in Bernoulli (1955). They are reproductions of drawings included by
l’Hôpital and Bernoulli in their letters. We have assigned consecutive figure
numbers to them, but these were not numbered in the originals. We are grateful
to Springer Science+Business Media for their kind permission to reproduce these
line drawings from the letters of l’Hôpital and Bernoulli.

A number in square brackets in our translation of the Analyse denotes the place
in L’Hôpital (1696) where the page with that number began. We have not cross-
referenced pages with any other edition, although we note that the second edition of
1715/1716 had identical pagination to the 1696 edition. In the French editions, all
articles were numbered consecutively from 1 to 209 and these were used in internal
citations. We have reproduced the original article numbers in parentheses, such as
(�22). Numbers in square brackets in the Lectiones are page numbers of the original
manuscript of ca. 1705; these numbers were provided in Schafheitlin (1922).

Garden City, NY, USA Robert E. Bradley
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L’Hôpital’s Preface

The analysis that we explain in this work assumes common analysis, but it is
very different. Ordinary analysis considers only finite magnitudes. This analysis
reaches all the way to infinity itself. It compares infinitely small differences of
finite magnitudes; it uncovers the ratios among these differences; and in this way
it makes known the ratios among finite magnitudes, which are as though infinite
when compared to the infinitely small. We could even say that this analysis extends
beyond the infinite, because it is not limited only to infinitely small differences, but
it uncovers the ratios among the differences of these [ii] differences, and also the
third and fourth differences, and so on, without ever finding a term that could end
it. In this way, it not only includes the infinite, but the infinity of the infinite, or an
infinity of infinities.

Only an analysis of this kind could lead us to the true principles of curved lines.
This is because curves are nothing but polygons with infinitely many sides and
differ from each other only in the differences in the angles that these infinitely small
sides make among themselves. It is only the analysis of the infinitely small that can
determine the positions of these sides to find the curvatures that they form, that is

xlix



l L’Hôpital’s Preface

to say, the tangents to these curves, their perpendiculars, their inflection points or
cusps, the rays that they reflect or refract, etc.

Polygons inscribed in or circumscribed on curves, which by the infinite multipli-
cation of their sides finally conform with them, have always been taken to be the
curves themselves. However, we had to remain there; it is only since the discovery
of the analysis with which we are concerned here that we have [iii] well understood
the extent and the fertility of this idea.

What we have from the Ancients on these matters, principally from Archimedes,1

is surely worthy of admiration. However, in addition to the fact that they touched
upon very few curves, which they touched only lightly upon, almost all of what we
have from them are particular propositions, without order, in which we cannot see
any regular and coherent method. However, it would not be fair to reproach them for
this; they needed the strength of great genius2 to penetrate such darkness and to be
the first to enter entirely unknown lands. Even if they did not go far, and even if they
took circuitous paths, at least, according to Viète,3 they were not just wandering, and
the more difficult and thorny their paths were, the more admirable it is that they did
not get lost. In a word, it does not seem that the Ancients could have done more in
their times. They did what our best minds would have done in their place, and if they
were in our place, we should believe that they would have the same insights as we
do. All this [iv] follows from the natural equality of spirits and from the necessary
succession of discoveries.

Thus, it is not surprising that the Ancients did not go any further. However, we
cannot be so surprised that great men, no doubt men as great as the Ancients, should
have remained there for so long, and that by an almost superstitious admiration of
their works, satisfied themselves by reading and commenting on those works, with-
out allowing themselves any other use of their insights except what was necessary
to follow them, and without daring to commit the crimes of sometimes thinking
for themselves and taking their ideas beyond what the Ancients had discovered.
Many people worked in this way. They wrote, the books multiplied, and nevertheless
nothing advanced. All the works of several centuries accomplished nothing but to fill
the world with respectful commentaries and repetitious translations of the originals,
themselves so frequently contemptible.

Such was the state of mathematics, and above all of philosophy, until Mr.
Descartes.4 Propelled by his genius and by the superiority that he felt, this great

1Archimedes of Syracuse (ca. 287 BCE-212 BCE).
2In (L’Hôpital 1696), the following Latin quote was given: Though I have two or three times read
Archimedes’ Treatise of Spirals with the utmost Attention, to comprehend the Art employed in his
subtle Demonstrations relating to the Tangents of Spirals, yet I could never rise from him without
some suspicion that I had not taken the whole Force of the Demonstration, etc. I. Bulliadlus, from
the Preface of the de Lioneis Spiralibus.
3Françoos Viète (1540–1603). In (L’Hôpital 1696), the following Latin quote was given: If
Archimedes is truth, Euclid infers falsely. Vietae Supplementum geometriae.
4René Descartes (1596–1650).
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man abandoned the Ancients to follow none other than the same [v] reason that
the Ancients had followed, and this fortunate audacity, which was treated as a
revolt, that brought to us an infinity of new ideas that were so useful in Physics
and Geometry. So we opened our eyes and dared to think.

Speaking only of the mathematics, which is all that we consider here, Mr.
Descartes started where the Ancients had stopped, and he began with the solution
of a problem that Pappus5 said6 had entirely confounded everyone. We know to
what point he brought Analysis and Geometry, and how the alliance he made of
them simplifies the solution of infinitely many problems which seemed previously
impenetrable before him. However, because he applied himself mostly to the
solution of equations, he did not pay much attention to curves, other than those
that he could use for finding roots. These being sufficient for ordinary analysis, it
never occurred to him to seek others. Nevertheless, he was able to make good use of
these in his research on Tangents, and the Method that he discovered for this seemed
so beautiful to him that he had no difficulty in saying7 that this Problem is the most
useful [vi] and most general not only that he knew, but even that he could ever have
desired to know in Geometry.8

Because the Geometry of Mr. Descartes put the construction of Problems by
solution of equations strongly into fashion, and because he made some great first
steps in this, most Geometers applied themselves to it and also made new discoveries
which increase and are perfected with every passing day.

Mr. Pascal9 set his sights in an entirely different direction. He examined the
curves both in and of themselves, and in the form of polygons. He researched the
lengths of several of these, the spaces that they enclose, the solids that these spaces
describe, the centers of gravity of these, etc. Solely by the consideration of their
elements, that is to say of the infinitely small, he discovered Methods so general and
especially so surprising, that it seemed that he could only reach them by strength of
mind alone and without analysis.

Shortly after the publication of Mr. Descartes’ Method of tangents, Mr. de
Fermat10 also discovered a method, which Mr. Descartes himself finally admitted11

to be [vii] simpler in many cases than his own. It is furthermore true that this was not
as simple as what Mr. Barrow12 gave, after a closer consideration of the nature of
polygons, which naturally present themselves to the mind as a little triangle made
up of a particle of the curve, contained between two infinitely close ordinates, of

5Pappus of Alexandria (ca. 290 CE-ca. 350 CE).
6Reference given in L’Hôpital (1696): Collect. Mathem. Lib. 7. initio.
7Reference given in L’Hôpital (1696): Gèom. liv. 2.
8The italicized passage is a paraphrase of a quotation in Descartes (1954, p. 95).
9Blaise Pascal (1623–1662). In L’Hôpital (1696) the spelling was given as “Paschal.”
10Pierre de Fermat (1601–1665).
11Reference given in L’Hôpital (1696): Lett. 71. Tom. 3.
12Isaac Barrow (1630–1677).



lii L’Hôpital’s Preface

the difference of these two ordinates, and of the difference of the corresponding
abscissas. This triangle is similar to the one that is formed by the tangent, the
ordinate and the subtangent, so that by a simple analogy, this last method saves
all the calculation previously required by the method of Mr. Descartes and by the
method of Mr. de Fermat.

Mr. Barrow13 did not stop there. He also invented a type of calculus suitable
for this method but, like the method of Mr. Descartes, his method required him to
remove fractions and to make radical signs vanish, in order to make use of it.

The defects of this calculus were overcome by that of the celebrated Mr.
Leibniz,14 and this Learned Geometer began where Mr. Barrow and the others
left off. His calculus brought him to [viii] previously unknown lands, and he
made discoveries that astonished the most able Mathematicians of Europe. Messrs.
Bernoulli15 were the first to have perceived the beauty of this calculus. They brought
it to a point that put them in a state to overcome difficulties that one would never
previously have dared to challenge.

The scope of this calculus is immense. It applies to mechanical curves as well
as to geometric curves;16 it handles radical signs and often even conveniently so;
it extends to as many indeterminates as we wish; and it easily compares infinitely
small quantities of all orders equally well. Furthermore, this gives rise to an infinity
of surprising discoveries with respect to Tangents, whether curved or straight, as
well as to questions De maximis & minimis,17 to inflection points and cusps of
curves, to Evolutes, to Caustics by reflection and by refraction, etc., as we will see
in this work.

I divide it into ten chapters.18 The first contains the principles of the Calculus of
differentials. The second reveals the way in which we should make use of this to
find Tangents [ix] to all kinds of curves, however many indeterminates there may be
in the equation that expresses it, although Mr. Craig19 did not believe that it could
be extended to mechanical or transcendental curves. The third chapter shows how
it is used to resolve all questions De maximis & minimis. The fourth shows how it

13Reference given in L’Hôpital (1696): Lect. geomet. p. 80.
14Gottfried Wilhelm von Leibniz (1646–1716). In L’Hôpital (1696), the spelling was given as
“Leibnis.” Additionally, the following reference was given in L’Hôpital (1696): Acta Erud. Lips.
an. 1684, p. 467.
15Jakob (Jacques) Bernoulli (1654–1705) and Johann Bernoulli (1667–1748).
16 This distinction is essentially due to Descartes, who called a curve “geometric” if it could be
described by a polynomial equation in two variables (Descartes 1954, p. 48). Thus, a geometric
curve is what would be called “algebraic” in modern terminology. A curve that is not geometrical
was called “mechanical” by Descartes and is called “transcendental” in modern usage.
17This Latin term was used in L’Hôpital (1696).
18We translate (L’Hôpital 1696) word Séctions as “chapters.”
19John Craig (1663–1731). In (L’Hôpital 1696), the spelling was given as “Craige.” Additionally,
the following reference was given in (L’Hôpital 1696): De figurarum curvilinearum quadraturis,
part. 2.
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gives inflection points and cusps of curves. The fifth uncovers its use for finding the
Evolutes of Mr. Huygens20 in all kinds of curves. The sixth and seventh show how
they give the Caustics, both by reflection and by refraction, of which the illustrious
Mr. Tschirnhaus21 is the inventor, for all kinds of curves. The eighth shows the
further use for finding the points of curved lines that touch an infinity of lines given
in position, whether straight or curved. The ninth contains the solution to several
Problems that depend on the preceding discoveries. Finally, the tenth consists of a
new method for using the Calculus of differentials on geometric curves, from which
we deduce the Method of Messrs. Descartes and Hudde,22 which applies only to
these kinds of curves.

[x] We note that in chapters 2, 3, 4, 5, 6, 7, and 8, there are only a very few
Propositions, but they are entirely general and because with such Methods, it is easy
to apply them to as many particular propositions as one might wish, I have done it for
only a few well-chosen examples. I am persuaded that with regard to mathematics
the great benefit is in the methods, and that books that consist of nothing but detail or
particular propositions are good for nothing but to waste the time of those who write
them and those who read them. Also, I have only added the Problems of the ninth
chapter because they appear quite curious and are very universal. Likewise, the tenth
Chapter contains only what the Methods of the Calculus of differentials gives to the
procedures of Messrs. Descartes and Hudde. If they are so limited, we see by all that
precedes it that this is not a defect of the calculus but of the Cartesian Method to
which it is subject. On the contrary, nothing better proves the immense usefulness
of this calculus than this great variety of methods, and for the little attention that
we pay to it, we see that it draws all that can be drawn from [xi] the method of
Messrs. Descartes and Hudde. The universal proof that it gives to the use that we
have made of arithmetic progressions leaves nothing to be wished for, concerning
the infallibility of this latter Method.

I had originally intended to add yet another chapter to this, to also make known
the marvellous use of this calculus in Physics, to the degree of precision that it
can bring, and how much utility Mechanics may draw from it. However, an illness
prevented me from doing this; yet, the public will lose nothing because of this, as
they will eventually have it someday.

In all of this there is only the first part of Mr. Leibniz’ calculus, the one that
consists in descending from whole magnitudes to their infinitely small differences,
and of comparing these infinitely small quantities, of whatever order they may be,
to each other – this is what we call differential Calculus. The other part, which we
call integral Calculus, consists in going back from these infinitely small quantities
to the magnitudes or the wholes of which they are the differences, that is to say
in finding their sums. I had also intended to present this. However, Mr. Leibniz,
having written me that he is working on a Treatise titled De Scientiâ infiniti, [xii] I

20Christiaan Huygens (1629–1695). In (L’Hôpital 1696), the spelling was given as “Hugens.”
21Ehrenfried Walter von Tschirnhaus (1651–1708).
22Johann van Waveren Hudde (1628–1704).
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took care not to deprive the public of such a beautiful Work, which must include all
that is most interesting about the inverse Method of Tangents, the Rectification of
curves, the Quadrature of the spaces they enclose, that of the surfaces of the bodies
they describe, the size of these bodies, the discovery of the centers of gravity, etc.
I would not even have published this work, except that he asked me to do so in his
letters and because I believe it to be necessary to prepare the minds to understand
all that we may yet discover on those matters.

Furthermore, I acknowledge having received much from the illuminations of
Messrs. Bernoulli, particularly those of the younger, presently Professor at Gronin-
gen. I have made plain use of their discoveries and those of Mr. Leibniz. This is why
I grant that they may claim as much of this as they may wish, being content with
that which they are willing to leave for me.

In fairness, there is also credit due to the learned Mr. Newton,23 which Mr.
Leibniz himself rendered24 him: that he also discovered something similar to the
differential Calculus, [xiii] which appeared in the excellent book titled Philosophia
naturalis principia Mathematica, which he gave us in 1687, which is almost all of
this calculus. However, the Notation of Mr. Leibniz makes his calculus much easier
and more expeditious, as well as providing marvelous assistance in many situations.

As we were printing the last page of this Treatise, the Book of Mr. Nieuwentijt25

fell into my hands. Its title, Analysis infinitorum, gave me the curiosity to look it
over. However, I found that it is quite different from this one, because in addition
to the fact that this author does not use the Notation of Mr. Leibniz, he absolutely
rejects second differentials, third differentials, etc. Because I have based the best
part of this Work on this foundation I would have believed myself to be obliged
to respond to his objections and to show how fragile they are, had Mr. Leibniz not
already done so to complete satisfaction in the Acts of Leipzig.26 What’s more, the
two postulates that I have made at the beginning of this Treatise and upon which it
solely rests, seem to me so clear, that I do not believe that they can leave any [xiv]
doubt in the minds of attentive Readers. I could even easily have proven them in
the manner of the Ancients had I not intended to be brief on things that are already
known, and to concentrate principally on those that are new.

23Sir Isaac Newton (1643–1727).
24Reference given in (L’Hôpital 1696): Journal des Sçavans du 30 Aoust 1694.
25Bernard Nieuwentijt (1654–1718). In L’Hôpital (1696), the spelling was given as Nieuwentiit.
26Reference given in (L’Hôpital 1696): Acta Erud. an. 1695, pp. 310 & 369. In L’Hôpital (1696),
the spelling was given as Leypsick.



Chapter 1
In Which We Give the Rules of This Calculus

Analysis
of the

Infinitely Small

First Part

On the Differential Calculus

Definition I. Those quantities are called variable which increase or decrease
continually, as opposed to constant quantities that remain the same while others
change. Thus in the parabola the ordinate and the abscissa are variable quantities, as
opposed to the parameter, which is a constant quantity.1

1In L’Hôpital (1696) the terms appliquée for ordinate and coupée for abscissa are used, literally
meaning “applied” and “cut.”

© Springer International Publishing Switzerland 2015
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2 1 The Rules of the Calculus

Fig. 1.1 Definition of the Differential

Definition II. [2] The infinitely small portion by which a variable quantity contin-
ually increases or decreases is called the Differential.2 For example, let AMB be an
arbitrary curved line (see Fig. 1.1) which has the line AC as its axis or diameter,3

and has PM as one of its ordinates. Let pm be another ordinate, infinitely close to
the first one. Given this, if we also draw MR parallel to AC, and the chords AM Am,
and describe the little circular arc MS of the circle with center A and radius AM,
then Pp is the differential of AP, Rm the differential of PM, Sm the differential of
AM, and Mm the differential of the arc AM. Furthermore, the little triangle MAm,
which has the arc Mm as its base is the differential of the segment AM, and the little
region MPpm is the differential of the region contained by the straight lines AP and
PM, and by the arc AM.

Corollary. (�1) It is evident that the differential of a constant quantity is null or
zero, or (what amounts to the same thing) that constant quantities do not have a
differential.

Note. In what follows, we will make use of the symbol d to denote the differential
of a variable quantity that is expressed by a single letter and, in order to avoid
confusion, the letter d will not be used in any other way in the following calculations.
If, for example, we denote AP by x, PM by y, AM by z, the arc AM by u, the
curvilinear region APM by s, and the segment AM by t, then dx denotes the value of
Pp, dy that of Rm, dz that of Sm, du that of the little arc Mm, ds that of the little region
MPpm, and dt that of the little curvilinear triangle MAm.

2In L’Hôpital (1696), the same word différence is used for both the differential and the difference
of ordinary subtraction. In this translation, it is consistently translated as “differential” when the
difference is infinitely small.
3In L’Hôpital (1696), these terms are used interchangeably for the x-axis. Technically, the term
diameter should only be used in the sense for a curve that is symmetric about the axis.
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Postulate I.4 (�2) We suppose that two quantities that differ by an infinitely small
quantity may be used interchangeably, or (what amounts to the same [3] thing) that a
quantity which is increased or decreased by another quantity that is infinitely smaller
than it is, may be considered as remaining the same. We suppose, for example,
that we may take Ap for AP, pm for PM, the region Apm for the region APM, the
little region MPpm for the little rectangle MPpR, the little sector AMm for the little
triangle AMS, the angle pAm for the angle PAM, and so forth.

Postulate II.5 (�3) We suppose that a curved line may be considered as an
assemblage of infinitely many straight lines, each one being infinitely small, or
(what amounts to the same thing) as a polygon with an infinite number of sides,
each being infinitely small, which determine the curvature of the line by the angles
formed amongst themselves. We suppose, for example, that the portion Mm of the
curve and the arc MS of the circle may be considered to be straight lines on account
of their infinite smallness, so that the little triangle mSM may be considered to be
rectilinear.

Note. In what follows, we will normally suppose that the final letters of the alphabet,
z, y, x, etc., denote variable quantities, and conversely, that the first letters a, b, c, etc.,
denote constant quantities, so that as x becomes x C dx, y, z, etc., become y C dy,
z C dz, etc., and a, b, c, etc. remain as a, b, c, etc. (see §1).

Proposition I.

Problem. (�4) To take the differential of several quantities added together or
subtracted from one another.6

Let aCxCy�z be the expression whose differential we are to take. If we suppose
that x is increased by an infinitely small quantity, i.e. that it becomes xC dx, then y
[4] becomes yCdy, and z becomes zCdz. As for the constant a, it remains a (see §1).
Thus, the given quantity aCxCy�z becomes aCxCdxCyCdy�z�dz, and the
differential, which is found by subtracting the former from the latter, is dxCdy�dz.
It is similar for other expressions, giving rise to the following rule.

Rule I. For quantities added or subtracted.

We take the differential of each term in the given quantity and, keeping the signs
the same, we add them together in a new quantity which is the differential that we
wish to find.

Proposition II.

Problem. (�5) To take the differential of a product composed of several quantities
multiplied together.

4Compare to Postulate 1 on p. 187.
5Compare to Postulate 2 on p. 187.
6Compare to the section “On the Addition and Subtraction of Differentials” on p. 187.
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1. The differential of xy is y dx C x dy. This is because y becomes y C dy while x
becomes xC dx, and consequently xy becomes xy C y dx C x dy C dx dy, which
is the product of x C dx and y C dy. The differential is y dx C x dy C dx dy,
that is to say (see §2) y dx C x dy. This is because the quantity dx dy is infinitely
small with respect to the other terms y dx and x dy: If we were to divide y dx,
for example, and dx dy by dx we would find, on the one hand y, and on the other
dy, which is the differential of the former, and is consequently infinitely smaller
than it. From this it follows that the differential of the product of two quantities is
equal to the product of the differential of the first of these two quantities with the
second, plus the product of the differential of the second quantity with the first.

2. The differential of xyz is yz dx C xz dy C xy dz. This is because in considering the
product xy as a single quantity, it is necessary, as we have just proven, to take
the product of its differential y dx Cx dy with the second quantity z (which gives
yz dx C xz dy), plus the product of the differential dz [5] of the second quantity z
by the first xy (which gives xy dz). Consequently the differential of xyz is seen to
be yz dx C xz dy C xy dz.

3. The differential of xyzu is uyz dx C uxz dy C uxy dz C xyz du. This is proved as in
the previous case, by considering xyz as a single quantity. It is similar for other
cases to infinity,7 from which we form the following rule.

Rule II. For multiplied quantities.

The differential of a product of several quantities multiplied together is equal to the
sum of the products of the differential of each of the quantities multiplied by the
product of the others.8

Thus, the differential of ax is x 0Ca dx, that is a dx. The differential of 9 aC x�
b � y is b dx � y dx � a dy � x dy.

Proposition III.

Problem. (�6) To take the differential of any fraction.10

The differential of x
y

is y dx�x dy
yy . This is because, if suppose that x

y
D z, we have

x D yz. Because these two variable quantities x and yz must always be equal to one
another, whether increasing or decreasing, it follows that their differentials, that is
to say their increments or decrements, are equal to each other. It then follows (see
§5) that dx D y dz C z dy, and so

dz D dx � z dy

y
D y dx � x dy

yy
;

7In L’Hôpital (1696) the expression “to infinity” is frequently employed meaning roughly “of all
orders.”
8Compare this with the product rule as discussed on p. 189.
9In L’Hôpital (1696), the overline is used for grouping terms. We note, however, that a negative
sign does not seem to distribute through terms grouped under an overline; see §13 ff.
10Compare to the section “On the Differentials of Divided Quantities” on p. 189.
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substituting the value x
y

for z. This is what we wished to find, and we form the
following rule.

Rule III. For divided quantities, or fractions.

The differential of any fraction is equal to [6] the product of the differential
of the numerator by the denominator minus the product of the differential of the
denominator by the numerator all divided by the square of the denominator.

Thus, the differential of a
x

is �a dx
xx and the differential of x

aCx is a dx
aaC2axCxx .

Proposition IV.

Problem. (�7) To take the differential of any power, whether perfect or imperfect,11

of a variable quantity.12

In order to give a general rule that applies to perfect and imperfect powers, it is
necessary to explain the analogy that we find among their exponents.

If we consider a geometric progression13 whose first term is unity and whose
second term is any quantity x, and if under each term we write its exponent, it is
clear that these exponents form an arithmetic progression.

Geom. prog.: 1, x, xx, x3, x4, x5, x6, x7, etc.
Arith. prog.: 0, 1, 2, 3, 4, 5, 6, 7, etc.

If we continue the geometric progression below unity and the arithmetic progres-
sion below zero, the terms of the one are the exponents of the corresponding terms
in the other. Thus, �1 is the exponent of 1

x
, �2 that of 1

xx , etc.

Geom. prog.: x, 1, 1
x

, 1
xx , 1

x3
, 1

x4
, etc.

Arith. prog.: 1, 0, �1, �2, �3, �4, etc.
If we introduce a new term in the geometric progression, we must introduce a

similar term in the arithmetic progression to be its exponent.
Thus,

p
x has 1

2
as its exponent, 3

p
x has 1

3
, 5

p
x4 has 5

4
, 1p

x3
has � 3

2
, 1

3p
x5

has

� 5
3
, 1p

x7
has � 7

2
, etc., so that the expressions [7]

p
x and x

1
2 , 3

p
x and x

1
3 , 5

p
x4 and

x
4
5 , 1p

x3
and x� 3

2 , etc., signify the same thing.

Geom. prog.: 1,
p
x, x.

Arith. prog.: 0, 1
2
, 1.

Geom. prog.: 1, 3
p
x, 3

p
xx, x.

Arith. prog.: 0, 1
3
, 2

3
, 1.

Geom. prog.: 1, 5
p
x, 5

p
xx, 5

p
x3, 5

p
x4, x.

Arith. prog.: 0, 1
5
, 2

5
, 3

5
, 4

5
, 1.

11As we will see on p. 6 (L’Hôpital 1696, p. 8), a “perfect” power is an integer and an “imperfect”
power is a fraction.
12Compare to the section “On the Differentials of Surd Quantities” on p. 190.
13Compare the discussion that follows with Bernoulli’s discussion of geometric and arithmetic
progressions on p. 190.
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Geom. prog.: 1
x

, 1p
x3

, 1
xx .

Arith. prog.: �1, � 3
2
, �2.

Geom. prog.: 1
x

, 1
3p
x4

, 1
3p
x5

, 1
xx .

Arith. prog.: �1, � 4
3
, � 5

3
, �2.

Geom. prog.: 1
x3

, 1p
x7

, 1
x4

.

Arith. prog.: �3, � 7
2
, �4.

From this we see that just as
p
x is the geometric mean between 1 and x, so also

is 1
2

the arithmetic mean between their exponents zero and 1, and just as 3
p
x is the

first of two means that are geometrically proportional between 1 and x, so also is 1
3

the first of two means that are arithmetically proportional between their exponents
zero and 1. It is the same for the others. Now, two things follow from the nature of
these two progressions:

1. That the sum of the exponents of any two terms of the geometric progression is
the exponent of the term that is their product. Thus, x4C3 or x7 is the product of
x3 by x4, x

1
2C 1

3 or x
5
6 is the product of x

1
2 by x

1
3 , x� 1

3C 1
5 or x� 2

15 is the product
of x� 1

3 by x
1
5 , etc. Similarly, x

1
3C 1

3 or x
2
3 is the product of x

1
3 by itself, that is to

say its square, xC2C2C2 or x6 is the product of x2 by x2 by x2, that is to say its
cube, x� 1

3� 1
3� 1

3� 1
3 or x� 4

3 is the fourth power of x� 1
3 , and so on for other powers.

From this it is clear that the double, triple, etc., of the exponent of any term in the
geometric progression is the exponent of the square, the cube, etc., of this term,
and consequently that the half, the third, etc., of the exponent of any term of the
geometric progression is the exponent of the square root, the cube root, etc., of
this term;

2. That the difference of the exponents of any two terms of the geometric progres-
sion is the exponent of [8] the quotient of the division of these terms. Thus,
x
1
2� 1

3 D x
1
6 is the exponent of the quotient of the division of x

1
2 by x

1
3 , and

x� 1
3� 1

4 D x� 7
12 is the exponent of the quotient of the division of x� 1

3 by x
1
4 ,

from which we see that multiplying x� 1
3 by x� 1

4 is the same thing as dividing
x� 1

3 by x
1
4 . It is the same for the others.

This being well understood, there are two cases that may arise.
The first case is that of a perfect power, that is to say when the exponent is a

whole number.14 The differential of xx is 2x dx, of x3 is 3xx dx, of x4 is 4x3 dx,
etc. Because the square of x is nothing but the product of x by x, its differential is
x dx C x dx (see §5), that is to say 2x dx. Similarly, the cube of x being nothing
but the product of x by x by x, its differential is xx dx C xx dx C xx dx (see §5),
that is to say 3xx dx. However, because it is thus for other powers up to infinity, it
follows that if we suppose that m indicates whatever whole number we might wish,
the differential of xm is mxm�1 dx.

14This case is proved by Bernoulli on p. 188, without using the Product Rule.
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If the exponent is negative, we find that the differential of x�m or of 1
xm

is

�mxm�1 dx

x2m
D �mx�m�1 dx:

The second case is that of an imperfect power, that is to say when the exponent is
a fractional number. Suppose we are to take the differential of n

p
xm, or x

m
n , where

m
n

denotes any fractional number. We let x
m
n D z and, raising both sides to the power

n, we have xm D zn. Taking differentials as we have explained in the previous case,
we find that mxm�1 dx D nzn�1 dz, and so

d z D mxm�1 dx

nzn�1 D m

n
x
m
n �1 dx;

or m
n
dx n

p
xm�n, by substituting the value nxm�m

n in place of nzn�1. If the exponent
is negative, we find that the differential of x�m

n or 1

x
m
n

is

�m
n
x
m
n �1 dx

x
2m
n

D �m
n
x�m

n �1 dx:

[9] This gives us the following general rule.

Rule IV. For powers, both perfect and imperfect.

The differential of any power, whether perfect or imperfect, of a variable quantity is
equal to the product of the exponent of this power by the same quantity raised to a
power diminished by unity, and multiplied by its differential.

Thus, if we suppose that m denotes either a whole or fractional number, whether
positive or negative, and x denotes any variable quantity, the differential of xm is
always mxm�1 dx.

Examples. The differential of the cube of ay � xx, that is to say of ay � xx 3, is
3 � ay � xx 2 � a dy � 2x dx D 3a3yy dy � 6aaxxy dy C 3ax4 dy � 6aayyx dx C
12ayx3 dx � 6x5 dx.

The differential of
p

xy C yy, or of xy C yy
1
2 , is

1

2
� xy C yy � 1

2 � y dx C x dy C 2y dy;

or

y dx C x dy C 2y dy

2
p

xy C yy
:
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The differential of
p
a4 C axyy, or of a4 C axyy

1
2 , is

1

2
� a4 C axyy

� 1
2 � ayy dx C 2axy dy;

or

ayy dx C 2axy dy

2
p
a4 C axyy

:

The differential of15 3
p

ax C xx, or of ax C xx
1
3 , is

1

3
� ax C xx� 2

3 � a dx C 2x dx;

or

a dx C 2x dx

3 3
p

ax C xx
2
:

The differential of16
q

ax C xx Cp
a4 C axyy, or of

ax C xx C
p
a4 C axyy

1
2

;

is

1

2
� ax C xx C

p
a4 C axyy

� 1
2 � a dx C 2x dx C ayy dx C 2axy dy

2
p
a4 C axyy

;

or

a dx C 2x dx

2

q
ax C xx Cp

a4 C axyy
C ayy dx C 2axy dy

2
p
a4 C axyy � 2

q
ax C xx Cp

a4 C axyy
:

[10] According to this rule and the rule of fractions (see §7 and 6), the
differential of17

3
p

ax C xxp
xy C yy

15Bernoulli gave this example on p. 192.
16Bernoulli gave a similar example on p. 192.
17Bernoulli gave this example on p. 192.
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is18

a dxC2x dx

3 3
p

axCxx
2 � p

xy C yy C �y dx�x dy�2y dy
2
p

xyCyy
� 3

p
ax C xx

xy C yy
:

Remark. (�8) It is appropriate to note carefully that in taking differentials, we
always suppose that, as one of the variables x increases, the others, y, z, etc., also
increase. That is to say, as x becomes xC dx, then y, z, etc., become yC dy, z C dz,
etc. This is why if it happens that some of them increase while others decrease, it
is necessary to regard the differentials as negative quantities with respect to those
others which we suppose are increasing, and consequently to change the signs of
the terms containing the differentials of those which are decreasing. Thus, if we
suppose that x increases and y and z decrease, that is to say that x becomes x C dx
and y and z become y � dy and z � dz, and if we wish to take the differential of
the product xyz, it is necessary in the differential xy dz C xz dy C yz dx already found
(see §5), to change the signs of the terms which contain dy and dz. This gives the
differential yz dx � xy dz � xz dy that we wished to find.

18In L’Hôpital (1696), the C sign separating the terms of the numerator was omitted.



Chapter 2
Use of the Differential Calculus for Finding
the Tangents of All Kinds of Curved Lines

Definition. [11] If we prolong one of the little sides Mm (see Fig. 2.1) of the
polygon that makes up a curved line (see §3), this little side, thus prolonged, is
called the Tangent to the curve at the point M or m.

Proposition I.

Problem. (�9) Let AM be a curved line (see Fig. 2.2), where the relationship
between the abscissa AP and the ordinate PM is expressed by any equation. At
a given point M on this curve, we wish to draw the tangent MT.

We draw the ordinate MP and suppose that the straight line MT that meets the
diameter at the point T is the tangent we wish to find. We imagine another ordinate
mp infinitely close to the first one, with a little straight line MR parallel to AP. Now
denoting the given quantities AP by x and PM by y (so that Pp or MR D dx and
Rm D dy), the similar triangles mRM and MPT give1 mR.dy/ W RM.dx/ WW MP.y/ W
PT D y dx

dy . Now, by means of the differential of the given equation, we find a value
for dx in terms that are multiplied by dy. This (being multiplied by y and divided
by dy) will give the value of the subtangent PT in terms that are entirely known and
free of differentials, which can be used to draw the tangent that we wish to find.

Remark. (�10) When the point T falls on the opposite side of the point A, the origin
of the x’s, it is clear that as x increases, y decreases (see Fig. 2.3). [12] Consequently
(see §8) we must change the signs of all the terms containing dy in the differential
of the given equation, otherwise the value of dx over dy would be negative and

therefore also the sign of PT
�
y dx
dy

�
. However, in order not to get muddled, it is

better always to take the differential of the given equation by the prescribed rules

1In L’Hôpital (1696) the notation a : b WW c : d was used to express equal proportions; we write this
instead as a W b WW c W d . We note further that in L’Hôpital (1696) the right parenthesis following
dx was omitted.

© Springer International Publishing Switzerland 2015
R.E. Bradley et al., L’Hopital’s Analyse des infiniments petits, Science
Networks. Historical Studies 50, DOI 10.1007/978-3-319-17115-9_2
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Fig. 2.1 Definition of the Tangent

Fig. 2.2 Tangent to a Curve: First Case

Fig. 2.3 Tangent to a Curve: Second Case

(see Ch. 1) without any changes. Then if it turns out at the end of the operation that
the sign of PT is positive, it follows that we must take the point T on the same
side as A, the origin of the x’s, as we had supposed in making the calculation. On
the other hand, if it is negative, we must take it on the opposite side. This will be
clarified by the following examples.
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Example I. (�11) Examples:

1. If we let ax D yy express the relationship of AP to PM, the curve AM (see
Fig. 2.2) is a parabola2 that has the given straight line a as parameter. If we take

differentials of both sides, we have a dx D 2y dy, dx D 2y dy
a

and PT
�
y dx
dy

�
D

2yy
a

D 2x, substituting the value ax for yy. From this it follows that if we take
PT to be twice AP and if we draw the straight line MT , it will be tangent at the
point M . This is what we wish to find.

2. Let the equation be aa D xy, which expresses the nature of a hyperbola3 between
the asymptotes (see Fig. 2.3). Taking differentials, we have x dy C y dx D 0

and thus PT
�
y dx
dy

�
D �x. From this it follows that if we take PT D PA on

the opposite side from the point A and we draw the straight line MT , it will be
tangent to M .

3. Let the general equation4 be ym D x, which expresses the nature of all parabolas
to infinity, when the exponent m denotes a whole or fractional positive number,
and of all hyperbolas when it denotes a negative number. Taking differentials, we

have mym�1 dy D dx and thus PT
�
y dx
dy

�
D mym D mx, substituting the value x

for ym.

[13] If m D 3
2
, the equation is y3 D axx, which expresses the nature of one

of the cubic parabolas, and the subtangent PT D 3
2
x. If m D �2, the equation

is a3 D xyy, which expresses the nature of one of the cubic hyperbolas and the
subtangent PT D �2x. It is similar for the others.

To draw the tangent to parabolas at the point A, the origin of the x’s, it is
necessary to find what the ratio of dx to dy should be at that point, for it is evident
that if this ratio were known, the angle that the tangent makes with the axis or
diameter would also be determined. In this example, we have dx W dy WW mym�1 W 1.
From this we see that because y is zero atA, the ratio of dy to dx should be infinitely
large if m is greater than 1 and infinitely small if it is less than 1. That is to say, the
tangent at A should be parallel to the ordinates in the first case and it coincides with
the diameter in the second case.

Example II. (�12) Let AMB be a curved line5 (see Fig. 2.4) such that AP � PB.x �
a � x/ W PM

2
.yy/ WW AB.a/ W AD.b/. Thus ayy

b
D ax � xx and taking differentials,

we have 2ay dy
b

D a dx � 2x dx. From this we get PT
�
y dx
dy

�
D 2ayy

ab�2bx D 2ax�2xx
a�2x ,

substituting the value ax � xx for ayy
b

. Thus PT � AP or AT D ax
a�2x .

2Compare this to Bernoulli’s Problem I on p. 192.
3Compare this to Bernoulli’s Problem III on p. 195.
4Compare this to the treatment of higher order parabolas beginning on p. 193.
5AMB is an ellipse with center

�
a
2
; 0
�
, horizontal axis a, and vertical axis

p
ab. Compare this to

Bernoulli’s discussion on p. 194.
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Fig. 2.4 Tangent to an Ellipse

Supposing for the moment that AP
3 � PB

2
.x3 �a � x 2/ W PM

5
.y5/ WW AB.a/ W

AD.b/, we have ay5

b
D x3 � a � x 2. Taking differentials,6

5ay4dy

b
D 3xx dx � a � x 2 � 2a dx C 2x dx � x3;

from which we conclude7

y dx

dy
D 5x3 � a � x 2
3xx � a � x 2 � 2aC 2x � x3

D 5x � a � x
3a � 3x � 2x

D 5ax � 5xx

3a � 5x
and AT D 2ax

3a � 5x :

[14] Generally,8 if we let m denote the exponent of the power of AP and n the

exponent of the power of PB, we have aymCn

b
D xm � a � x n, which is the general

equation of all ellipses up to infinity, the differential of which is

mC n aymCn�1 dy

b
D mxm�1 dx � a � x n � n a � x n�1 dx � xm;

6The term �2a dx C 2x dx � x3 in what follows would be written today as .�2a dx C 2x dx/x3.
Thus, the negative sign before the grouping of expressions under the overline symbol is not meant
to obey the distributive law. This does not affect the validity of the computed value for AT .
7In the numerator of the second line below, the expression 5x � a � x seems to mean 5x.a � x/.
Thus, the use of the symbol � appears to imply a grouping of expressions.
8See p. xxi for a discussion of generalized ellipses.
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Fig. 2.5 Generalized Hyperbolas

from which we conclude (substituting the value xm � a � x n for aymCn

b
)

PT

�
y dx

dy

�
D mC n xm � a � x n
mxm�1 � a � x n � n a � x n�1 � xm

D mC n x � a � x
ma � x � nx

or

PT D mC n � ax � xx

ma �m � n x and AT D nax

ma �m � n x :

Example III. (�13) With the same assumptions as in the previous example, except
that here we suppose that the point B falls on the other side of the point A with

respect to P (see Fig. 2.5), we have the equation aymCn

b
D xm � aC x

n, which
expresses the nature of all hyperbolas considered with respect to their diameters.
From this we conclude, as above, that9

PT D mC n � ax C xx

ma CmC n x
and AT D nax

ma CmC n x
:

If we now suppose that AP is infinitely large, the tangent TM will only meet the
curve at an infinite distance, that is to say it will become the asymptote CE and in
this case we have

AT

�
nax

ma CmC n x

�
D n

mC n
a D AC;

because since a is infinitely smaller than x, the term ma is zero with respect to
mC n x. For the same reason, in this case the equation of the curve becomes

9In L’Hôpital (1696) the equal sign following AT was omitted.
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aymCn D bxmCn. Thus, abbreviating m C n D p and extracting the pth root from
both sides, we have y p

p
a D x

p
p
b, the differential of which is dy p

p
a D dx p

p
b,

so that by drawing AE parallel to the ordinates and imagining a little triangle at the
point where the asymptote CE meets the curve, we form the following proportion:10

dx W dy or p
p
a W p

p
b WW AC

�
n
p
a
�

W AE D n
p

p
p
bap�1. Now the [15] values of CA and

of AE being thusly determined, we may draw the indefinite straight line CE, which
is the asymptote that we wish to find.

If m D 1 and n D 1, the curve is the ordinary hyperbola and we have AC D 1
2
a

and AE D 1
2

p
ab, that is to say half of the conjugate diameter,11 as we know from

elsewhere to be true.

Example IV. (�14) Let the nature of the curve AM be given by the equation12 y3 �
x3 D axy, where AP D x, PM D y and a is a given straight line (see Fig. 2.5). The
differential is 3yy dy � 3xx dx D ax dy C ay dx. Thus

y dx

dy
D 3y3 � axy

3xx C ay

and

AT

�
ydx

dy
� x

�
D 3y3 � 3x3 � 2axy

3xx C ay
D axy

3xx C ay
;

substituting the value 3axy for 3y3 � 3x3.
If we now suppose that AP and PM are both infinitely large, the tangent TM

becomes the asymptote CE and the straight lines AT and AS become AC and AE,
which determine the position of the asymptote. Now we denote AT by t D axy

3xxCay ,

from which we conclude that y D 3txx
ax�at D 3tx

a
when AT becomes AC, because then

at is null with respect to ax. Thus, substituting this value 3tx
a

for y in y3 �x3 D axy,
we have 27t3x3 � a3x3 D 3a3txx, from which we conclude that AC .t/ D 1

3
a by

deleting the term 3a3txx, which is zero with respect to the two others 27t3x3 and

a3x3, because x is infinite. Furthermore, we denote AS
�
y � x dy

dx

�
by s D axy

3yy�ax ,

from which we conclude that x D 3syy
ayCas D 3sy

a
, because y is infinite with respect to

s, so the term as is zero with respect to the term ay. Substituting this value into the
equation of the curve, we find that AE .s/ D 1

3
a. From this it follows that if we take

the lines AC and AE both equal to 1
3
a and we draw the indefinite straight line CE, it

is the asymptote to the curve AM.
[16] We use these two last examples to guide ourselves in finding asymptotes to

other curved lines.

10In L’Hôpital (1696) the last term was written as n
p

p
p
bap�1.

11Also called the conjugate axis. See p. xxi for a discussion of generalized hyperbolas.
12This is the Folium of Descartes reflected in the x-axis.



2 Finding Tangents 17

Proposition II.

Problem. (�15) If we suppose in the previous proposition that the abscissas AP are
the portions of a curved line for which we know how to draw the tangents PT (see
Fig. 2.6), then from a given point M on the curve AM, we wish to draw the tangent
MT.13

Having drawn the ordinate MP with tangent PT , suppose that the straight line MT
that meets it in T is the desired tangent. We imagine another ordinate mp infinitely
close to the first one and a little straight line MR parallel to PT . Denoting the given
quantities AP by x and PM by y we have, as before, Pp or MR D dx and Rm D
dy. The similar triangles mRM and MPT give mR .dy/ W RM .dx/ WW MP .y/ W
PT D y dx

dy . We complete the solution by means of the equation that expresses the
relationship of the abscissas AP .x/ to the ordinates PM .y/, as we have seen in the
previous examples, and as we will further see in the ones that follow.

Example I. (�16) Let yy
x

D x
p

aaCyy
a

, the differential of which is

2xy dy � yy dx

xx
D dx

p
aa C yy

a
C xy dy

a
p

aa C yy
:

Reducing this to a single proportion, we have

dy W dx .MP W PT/ WW
p

aa C yy

a
C yy

xx
W 2xy

xx
� xy

a
p

aa C yy
:

Fig. 2.6 The Cycloid and Related Examples

13See p. xxvii for a discussion of this construction.



18 2 Finding Tangents

From this, the ratio of the given MP to the subtangent PT that we wish to find
is expressed entirely by known quantities, without differentials. This is what was
proposed.

Example II. [17] (�17) Let x D ay
b

, the differential of which is dx D a dy
b

. We have

PT

�
y dx

dy

�
D ay

b
D x:

If we suppose that the curved line APB is a semi-circle and that the ordinates MP,
being prolonged to Q, are perpendicular to the diameter AB, the curve AMC is the
half-roulette,14 or cycloid15 – simple when b D a, curtate16 when b is greater and
prolate17 when it is smaller.

Corollary. (�18) If the roulette is simple18 and we draw the chord AP, then I say it is
parallel to the tangent MT. This is because the triangle MPT is therefore isosceles,
so the external angle TPQ is twice the internal opposite angle TMQ. Now the angle
APQ is equal to the angle APT, because both have as measure half the arc AP, and
thus it is half of the angle TPQ. The angles TMQ and APQ are therefore equal to
each other and consequently the lines MT and AP are parallel.

Proposition III.

Problem. (�19) Let AP be any curved line that has the straight line KNAQ
as diameter (see Fig. 2.6) and for which we know how to draw tangents PK.
Furthermore, let AM be another curve such that, if we draw at will the ordinate
MQ which cuts the first curve at the point P , the relationship of the arc AP to the
ordinate MQ is expressed by any equation. We wish to draw the tangent MN from
any given point M .

If we denote the given quantities PK by t , KQ by s, the arc AP by x and MQ by
y, we have (imagining another ordinate mq infinitely close to MQ and drawing PO
and MS parallel to AQ) Pp D dx and mS D dy. Because of the similar triangles KPQ
and PpO we have [18] PK.t/ W KQ.s/ WW Pp.dx/ W PO or MS D s dx

t
. Also, because

of the similar triangles mSM and MQN, ms.dy/ W SM
�
s dx
t

� WW MQ.y/ W QN D sy dx
t dy .

Now, by means of the differential of the given equation we find a value of dx in
terms that are all multiplied by dy. Consequently, if we substitute this value in place
of dx in sy dx

t dy , the dy cancels and the value of the subtangent QN that we wish to find
is expressed entirely in known terms. This is what we were required to find.

14The five terms defined here were not italicized in L’Hôpital (1696).
15See p.xxvii for a discussion of this construction of the cycloid.
16In L’Hôpital (1696) the term allongée (elongated) was used; “curtate” is the standard modern
term.
17In L’Hôpital (1696) the term accourcie (shortened) was used; “prolate” is the standard modern
term.
18Compare this to Bernoulli’s Problem VI on p. 198.
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Proposition IV.

Problem. (�20) Let AQC and BCN be two curved lines (see Fig. 2.7) that have the
straight line TEABF as diameter and such that we know how to draw the tangents
QE and NF. Furthermore, let MC be another curved line such that the relationship
of the ordinates MP, QP, and NP is expressed by any equation. From a given point
M on this last curve we wish to draw the tangent MT.

Imagine the little triangles QOq, MRm, and NSn at the points Q, M , and N .
Denote the given quantities PE by s, PF by t , PQ by x, PM by y, and PN by z,
so that Oq = dx, Rm = dy, and Sn = �dz (see §8), because as x and y increase,
z decreases. Because the triangles QPE and qOQ are similar, we have QP .x/ W
PE .s/ WW qO .dx/ W OQ or MR or SN D s dx

x
. Because the triangles NPF and nSN

are similar, we have NP .z/ W PF .t/ WW nS .�dz/ W SN D �t dz
z D s dx

x
(from which

we conclude that dz D �szdx
tx ). Because the triangles MPT and mRM are similar, we

have mR .dy/ W RM
�
s dx
x

� WW MP .y/ W PT D sy dx
x dy . If in the given equation, we

substitute the value � sz dx
tx in place of the differential dz, then we find the value of dx

in terms of dy. When this is substituted in sy dx
x dy , the dy cancels and the value of the

subtangent PT is expressed entirely in known terms.

Example. [19] (�21) Let yy = xz, the differential of which is 2y dy D z dx C x

dz D tz dx�sz dx
t

, substituting the negative value � sz dx
tx for dz. From this we conclude

that dx D 2ty dy
tz�sz , and consequently PT

�
sy dx
x dy

�
D 2styy

txz�sxz D 2st
t�s , substituting the value

xz for yy.

Now let the general equation be ymCn = xmzn, the differential of which is

mC nymCn�1 dy D mznxm�1 dx C nxmzn�1 dz D m tznxm�1 dx � nsznxm�1 dx

t
;

Fig. 2.7 Conic Sections and Related Examples
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substituting the value � sz dx
tx for dz. From this we conclude that

PT

�
sy dx

x dy

�
D mst C nst ymCn

mtznxm � nsznxm
D mst C nst

mt � ns
;

substituting the value xmzn for ymCn.
We may note that if the curves AQC and BCN become straight lines, the curve

MC would then be one of the conic sections19 to infinity: namely, an Ellipse if
the ordinate CD, which emanates from the intersection point C , falls between the
extremities A and B , a Hyperbola if it falls on one side or the other, and finally a
Parabola if either of the extremities A or B is infinitely distant from the other, that
is to say when one of the straight lines CA or CB is parallel to the diameter AB.

Proposition V.

Problem. (�22) Let APB be a curved line (see Fig. 2.8) which has a fixed and
invariable beginning at the point A, such that we know how to draw the tangents
PH. Now let F be another fixed point not on this line and let CMD be another
curved line such that when we draw any straight line FMP, the relationship of the
part FM to the portion of the curve AP is expressed by whatever equation we wish.
We wish to draw the tangent MT from the given point M .

We erect the perpendicular FH on FP, which meets [20] the given tangent PH
at the point H and the MT that we wish to find at the point T . We imagine the
straight line FRmOp, which makes an infinitely small angle with FP and describe
the little circular arcs PO and MR with center F . The little triangle pOP is similar to
the right triangle PFH, because the angles HPF and HpF are equal (see §2), since
they differ from each other only by the angle PFp, which we suppose to be infinitely
small. Furthermore, the angle pOP is right, because the tangent at O (which is none
other than the continuation of the little arc PO which is taken to be a straight line) is
perpendicular to the ray FO. For the same reasons the triangles mRM and MFT are
similar. Now it is clear that the little triangles or sectors FPO and FMR are similar.

Fig. 2.8 The Spiral of Archimedes and Related Examples

19See p. xxiii for a discussion of this construction of the conic sections.
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Fig. 2.9 The Spiral of Archimedes

Therefore, if we denote the known quantities PH by t , HF by s, FM by y, FP by z,
and the arc AP by x, then we will have that

PH .t/ W HF .s/ WW Pp .dx/ W PO D s dx
t
;

FP .z/ W FM .y/ WW PO
�
s dx
t

� W MR D ys dx
tz ; and

mR .dy/ W RM
�

sy dx
tz

�
WW FM .y/ W FT D syy dx

tz dy :

We complete the solution by means of the differential of the given equation.

Example. (�23)20 If we wish the curve APB (see Fig. 2.9) to be a circle that has its
center at the fixed point F , then it is clear that the tangent PH becomes parallel and
equal to the subtangent FH, because HP is also perpendicular to PF. Thus, in this
case we have FT D yy dx

z dy D yy dx
a dy , denoting the straight line FP.z/ by a, because it

is constant and no longer variable. Given this, if we denote the entire circumference
by b, or some determined portion of it, and we make b W x WW a W y, then the curve
CMD, or in this case FMD, is the Spiral of Archimedes21 and we have y D ax

b
, the

differential of which is dy D a dx
b

. From this we conclude that y dx = by dy
a

= x dy,

substituting the value ax
b

for y, and consequently FT
�

yy dx
a dy

�
= xy

a
. This gives us the

following construction.

[21] Let the circular arc MQ be described with center F and radius FM, which
is terminated at Q by the radius FA that joins the fixed points A and F . Let FT be

20Compare this to Problem XI on p. 204.
21See p. xxix for a discussion of this construction of the Spiral of Archimedes.
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Fig. 2.10 The Conchoid of Nicomedes and Related Examples

taken equal to the arc MQ. I say that the straight line MT is tangent at M . This is
because the sectors FPA and FMQ are similar, so we have FP.a/ W FM.y/ WW AP.x/ W
MQ D yx

a
D FT .

More generally, if we make b W x WW am W ym (where the exponent m denotes
whatever whole or fractional number we wish), then the curve FMD is one of the
spirals to infinity and we have ym = amx

b
, the differential of which is mym�1 dy =

am dx
b

, from which we conclude that y dx = mbym dy
am

= mx dy, substituting the value
amx
b

for ym. Consequently, FT
�

yy dx
a dy

�
D m � MQ.

Proposition VI.

Problem. (�24) Let APB be a curved line (see Fig. 2.10) such that we know how
to draw the tangents PH and let F be a fixed point not on this line. Let CMD be
another curved line such that when we draw any straight line FPM we wish, the
relationship of FP to FM is expressed by any equation. We wish to draw the tangent
MT from the given point M .

If we erect a perpendicular FHT on FM and imagine, as in the previous
proposition, the little triangles POp and MRm similar to the triangles HFP and TFM,
we denote the known quantities FH by s, FP by x, and FM by y, then we have

PF.x/ W FH.s/ WW pO.dx/ W OP D s dx
x
;

FP.x/ W FM.y/ WW OP
�
s dx
x

� W RM D sy dx
xx ; and

mR.dy/ W RM
�

sy dx
xx

�
WW FM.y/ W FT D syy dx

xx dy :

We then complete the solution by means of the differential of the given equation.

Example. [22] (�25) If we wish that the curve APB be the straight line PH and the
relationship between FP and FM be expressed by the equation y � x D a, that is to
say, that PM is always equal to the same given straight line a, then the differential

is dy D dx, and hence FT
�

syy dx
xx dy

�
D syy

xx . This gives the following construction.
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Fig. 2.11 Hyperbola, Conchoid, and Related Examples

Let ME be drawn parallel to PH and MT parallel to PE; I say that MT is tangent
at M .

This is because FP.x/ W FH.s/ WW FM.y/ W FE D sy
x

and FP.x/ W FE
� sy
x

� WW
FM.y/ W FT D syy

xx . It is clear that the curve CMD is the Conchoid22 of Nicomedes,23

for which the asymptote is the straight line PH and the pole is the fixed point F .

Proposition VII.

Problem. (�26) Let ARM be a curved line (see Fig. 2.11) such that we know how
to draw the tangents MH, and which has the straight line EPAHT as diameter. Let
F be a point not on this diameter, from which emanates an indefinite straight line
FPSM that cuts the diameter at P and the curve at M . If we now imagine that
the straight line FPM revolves around the point F , making the plane PAM move in
a manner always parallel to itself along the immobile and indefinite straight line
ET so that the distance PA always remains the same. It is clear that the continual
intersection M of the lines FM and AM describes the motion of a curved line
CMD.24 We wish to draw the tangent MT to this curve from the given point M .

If we imagine that the plane PAM is brought to the infinitely close position pam
and we draw the line mRS parallel to AP, it is clear by the generating process that
Pp D Aa D Rm and consequently RS D Sm�Pp. Now denote the known quantities
FP or Fp by x, FM or Fm by y, PH by s, MH by t , and [23] the differential
Pp by dz. The similar triangles FPp and FSm give Fp.x/ W Fm.y/ WW Pp.dz/ W
Sm D y dz

x

�
therefore SR D y dz�x dz

x

�
. Also, the similar triangles MPH and MSR

22See p. xxx for a discussion of this construction of the Conchoid of Nichomedes. Compare this to
Bernoulli’s Problem VII on p. 199.
23Nicomedes (ca. 280 BCE-ca. 210 BCE).
24That is, in this construction, the curve ARM moves rigidly along the axis ET as the line FPM
revolves around F and that each point on CMD is the intersection of the rotated line FPM and the
translated curve ARM.
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Fig. 2.12 The Cissoid and Related Examples

give PH.s/ W HM.t/ WW SR
�
y dz�x dz

x

�
W RM D ty dz�tx dz

sx . Finally, the similar triangles

MHT and MRm give MR
�

ty dz�tx dz
sx

�
W Rm.dz/ WW MH.t/ W HT D sx

y�x . Therefore, if

we draw FE to be parallel to MH and we take HT D PE, then the line MT is the
tangent we wish to find.

If the line AM were a straight line, then the curve CMD would be a hyperbola
that has the line ET as one of its asymptotes.25 If it were a circle that has its center
at the point P , then the curve CMD would be the Conchoid of Nicomedes, which
has the line ET as its asymptote and the point F as its pole. However, if it were a
parabola, then the curve CMD is the companion of the Paraboloid of Descartes,26

which is also described below the straight line ET by the intersection of FP with the
other half of the parabola.

Proposition VIII.

Problem. (�27) Let AN be a curved line (see Fig. 2.12) that has the straight line AP
as its diameter, with a fixed point F not on these lines. Let CMD be another curved
line such that, if we draw the straight line FMPN as we may wish, the relationship
among its parts FN, FP, and FM is expressed by any equation. We wish to draw the
tangent MT at the given point M .

Let HK be the perpendicular erected to the line FN at the point F , which meets
the diameter AP atK and the given tangent NH atH . Let the little circular arcs NQ,
PO, and MR be described with center F and radii FN, FP, and FM, terminated by
the straight line Fn, which we imagine making an infinitely small angle with FN.

Given this, if we denote the known quantities FK by s, FH by t , FP by x, FM by
y, and FN by z, then the similar triangles PFK and pOP [24] give PF.x/ W FK.s/ WW
pO.dx/ W OP D s dx

x
. Also, the similar triangles FMR, FPO, and FNQ give FP.x/ W

25See p. xxiv for a discussion of this construction of the hyperbola.
26In L’Hôpital (1696) this is footnoted as “Géométrie, Book 3.” The “Paraboloid of Descartes” is
usually called the Trident of Descartes or the Parabola of Descartes. It is a cubic curve with two
branches, one of which resembles a parabola. The “companion” is the other branch.
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FM.y/ WW PO
�
s dx
x

� W MR D sy dx
xx and FP.x/ W FN.z/ WW PO

�
s dx
x

� W NQ D sz dx
xx . Also,

the similar triangles HFN and NQn give HF.t/ W FN.z/ WW NQ
�

sz dx
xx

� W Qn.�dz/ D
szz dx

txx . Finally, the similar triangles mRM and MFT give mR.dy/ W RM
�

sy dx
xx

�
WW

FM.y/ W FT D syy dx
xx dy . Now by means of the differential of the given equation we

find the value of dy in terms of dx and dz, in which we substitute the negative value
�szz dx

txx in place of dz, because as x increases, z decreases. All the terms are multiplied
by dx, so when this value is substituted into syy dx

xx dy , the dx will cancel. Consequently,
the value of FT is expressed in known terms and free of differentials.

If we supposed that the straight line AP were a curved line and that we drew the
tangent PK, we would still find the same value for FT , and the reasoning would
remain the same.

Example. (�28) Suppose that the curved line AN (see Fig. 2.13) is a circle that
passes through the point F (situated with respect to the diameter AP so that the
line FB, perpendicular to this diameter, passes through the center G of this circle)
and that PM is always equal to PN. It is clear that the curve CMD, which is in
this case becomes FMA, is the Cissoid27 of Diocles28 and that we have the equation
z C y D 2x, the differential of which is

dy D 2 dx � dz D 2txx dx C szz dx

txx
;

substituting the value � szz dx
txx , which we found above (see §27), for dz. Consequently,

FT
�

syy dx
xx dy

�
D styy

2txxCszz .

If the given point M falls on the point A, then the lines FM, FN, and FP are all
equal to FA, as are also [25] the straight lines FK and FH. Consequently we would
have in this case FT D x4

3x3
D 1

3
x, that is to say that if we take FT D 1

3
AF, and draw

the line AT it will be tangent at A.
We may also find the tangents of the Cissoid by means of the first Proposition,

by drawing the perpendiculars NE and ML on the diameter FB, and seeking the
equation that expresses the ratio of the abscissa FL to the ordinate LM, which is
done as follows. Denoting the known quantities FB by 2a, FL or BE by x, and
LM by y, the similar triangles FEN and FLM, and the property of the circle, give

27See p. xxxi for a discussion of this construction of the Cissoid of Diocles. Compare this to
Bernoulli’s Problem VIII on p. 201.
28Diocles of Carystus (ca. 240 BCE-ca. 180 BCE).
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Fig. 2.13 The Cissoid of Diocles

FL.x/ W LM.y/ WW FE W EN WW EN
�p

2ax � xx
�

W EB.x/. From this we conclude

yy D x3

2a�x , the differential of which is

2y dy D 6axx dx � 2x3 dx

2a � x2
:

Consequently29 (see §9)

LO

�
y dx

dy

�
D yy � 2a � x2

3axx � x3 D 2ax � xx

3a � x ;

substituting the value x3

2a�x for yy.

Proposition IX.

Problem. (�29) Let ANB and CPD be two curved lines (see Fig. 2.14) and FKT be
a straight line, on these lines the fixed pointsA, C , and F are marked. Furthermore,
let EMG be another curved line, such that if we draw the straight line FMN from
any of its points M and draw MP parallel to FK, then the relationship of the arc
AN to the arc CP is expressed by any equation. We wish to draw the tangent MT at
a given point M on the curve EG.

29In L’Hôpital (1696) the numerator of the second term in the equation that follows was given as
yy � 2a � x2.
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Fig. 2.14 The Quadratrix and Related Examples

We draw the line TH through the point T that we wish to find, parallel to FM, and
the straight lines MRK and MOH through the given pointM , parallel to the tangents
at P and N . We now draw FmOn infinitely close to FMN and mRp parallel to MP.

Given this, we denote the known quantities FM by s, FN by t , MK by u, CP by x,
and AN by y (thus Pp or MR D dx;Nn D dy). The similar triangles FNn and FMO
give FN.t/ W FM.s/ WW Nn.dy/ W MO D s dy

t
. [26] Also, the similar triangles MOm

and MHT , and the similar triangles MRm and MKT give MR.dx/ W MO
�
s dy
t

�
WW

MK.u/ W MH D su dy
t dx . Now, by using the differential of the given equation, we will

have a value for dy in terms that are all multiplied by dx. When this is substituted
into su dy

t dx , the dx will cancel. Consequently the value of MH is expressed in entirely
known quantities. This gives the following construction.

Let MH be drawn parallel to the tangent at N and equal to the value we have just
found. Let HT be drawn parallel to FM, which meets the straight line FK at T , from
which and through the given point M the tangent MT that we wish to find is drawn.

Example. (�30) If we wish that the curve ANB be the quarter circle (see Fig. 2.15)
that has the fixed point F as its center, and that the curve CPD be the radius APF,
which is perpendicular to the straight line FKGQTB , and that the arc AN.y/ is
always to the straight line AP.x/ as the quarter circle ANB .b/ is to the radius AF.a/,
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Fig. 2.15 The Quadratrix of Dinostratus

then the curve EMG is the Quadratrix30 of Dinostratus31 AMG, and we will have

MH
�

su dy
t dx

�
D as dy�sx dy

a dx , because FP or MK.u/ D a � x and FN.t/ D a. However,

the proportional relationship that we supposed gives ay D bx and so a dy D b dx.
Thus, substituting the values ay

b
and b dx

a
in place of x and dy in MH, we find that

MH D bs�ys
a

. This gives the following construction.
Let MH be drawn perpendicular to FM and equal to the arc MQ described with

center F , and let HT be drawn parallel to FM. I say that the line MT is tangent
at M . This is because the similar sectors FNB and FMQ give FN.a/ W FM.s/ WW
NB.b � y/ W MQ D bs�sy

a
.

Corollary. (�31) If we wish to determine the point G where the quadratrix AMG
meets the radius32 FB (see Fig. 2.16), then we imagine another radius Fgb infinitely
close to FGB. Drawing gf parallel to FB, the property of the quadratrix [27] and
the similar triangles FBb and gfF, with right angles at B and f , give AB W AF WW
Bb W Ff WW FB or AF W gf or FG. From this we see that if we take a third proportional

30See p. xxxii for a discussion of this construction of the Quadratrix of Dinostratus. Compare this
to Bernoulli’s Problem IX on p. 202.
31Dinostratus (ca. 390 BCE-ca. 320 BCE). Dinostratus was a Greek mathematician who discovered
the quadratrix and supposedly used it to solve the problem of squaring the circle.
32Compare this to Bernoulli’s Problem X on p. 204.
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Fig. 2.16 The Quadratrix of Dinostratus

to the quarter circle AB and the radius AF,33 it is equal to FG, that is to say that
FG D aa

b
. This gives rise to the shortening of the construction of tangents.34

If we draw TE parallel to MH (see Fig. 2.15), then the similar triangles FMK

and FTE give MK.a � x/ W MF.s/ WW ET or MH
�

bs�sy
a

�
W FT D bss�yss

aa�ax D bss
aa ,

by substituting the value ay
b

for x and then dividing numerator and denominator by
b � y. From this it is clear that the line FT is the third proportional to FG and FM.

Proposition X.

Problem. (�32) Let AMB be a curved line (see Fig. 2.17) such that if we draw the
straight lines MF, MG, MH, etc., from any one of its points M to the foci35 F , G,
H , etc., their relationship is expressed by any equation. We wish to draw MP, which
is perpendicular to the tangent at the given point M .

Let Mm be an infinitely small arc taken on the curve AB and let the straight lines
FRm, GmS, and HmO be drawn. Describe the little circular arcs MR, MS, and MO
with centers F , G, and H . Next, with center M and any interval we also describe
the circle CDE, which cuts the straight lines MF, MG, and MH at the points C , D,
and E, from which we drop the perpendiculars CL, DK, and EI to MP. With this
preparation done, I remark that:

1. The right triangles MRm and MLC are similar, because if we remove the common
angle LMR from the right angles LMm and RMC, the remainders RMm and LMC
are equal, and furthermore the angles at R and L are right. Similarly, we prove

33The third proportional to a and b is the value of x such that a W b WW b W x.
34See p. xxxiii for a discussion of how the Quadratrix may be used to construct � and to solve the
problem of squaring the circle.
35In L’Hôpital (1696), the term foyer is used in optics to mean focus. The curves discussed in §32
are in some sense a generalization of the conic sections.
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Fig. 2.17 Generalized Conic Sections, Defined via Multiple Foci

that the right triangles MSm and MKD are similar, and that the right triangles
MOm and MIE are similar. Hence, because the hypotenuse Mm is common to the
little triangles MRm, MSm, and MOm and the [28] hypotenuses MC, MD, and
ME of the triangles MLC, MKD, and MIE are equal to one another, it follows
that the perpendiculars CL, DK, and EI have the same ratios among themselves
as the differentials Rm, Sm, and Om.

2. The lines that emanate from the foci situated on the same side of the perpen-
dicular MP increase while the others decrease, or vice versa. For example, in
figure 2.17, FM increases by its differential Rm, while the others, GM and HM,
decrease by their differentials Sm and Om.

We suppose for the moment, to illustrate these ideas, that the equation that
expresses the relationship of the straight lines FM .x/, GM .y/ and HM .z/ is
ax C xy � zz D 0, whose differential is a dx C y dx C x dy � 2z dz D 0. It is
clear that the tangent at M (which is nothing more than the continuation of the
little side Mm of the polygon, that we conceive of (see §3) as composing the curve
AMB) must be placed so that if we draw from any one of its points m the lines
mR, mS, and mO parallel to the straight lines FM, GM, and HM, terminated at R,
S , and O by MR, MS, and MO, perpendiculars to the same straight lines, then we
still have the equation aC y � Rm C x � Sm � 2z � Om D 0. By substituting
for Rm, Sm, and Om their proportional values CL, DK, and EI, this amounts to
the same thing as that the perpendicular MP to the curve must be placed so that
aC y � CL C x � DK � 2z � EI D 0. This gives the following construction.

We imagine that the point C (see Figs. 2.17, 2.18) is loaded with a weight aC y

that multiplies the differential dx of the straight line FM on which it is situated.
Similarly, the point D is loaded with a weight x and the point E, taken on the
other side of M with respect to the focus H (because the term �2z dz is negative)
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Fig. 2.18 Generalized Conic Sections, Case II

is loaded with the weight 2z. I say that the straight line MP that passes through the
common center of gravity of the weights that we suppose to be at C , D, and E is
the required perpendicular. For it is clear from the principles of Mechanics that any
straight line which passes through the center of gravity of several weights separates
them so that the weights on one side multiplied by their distances from the line are
precisely equal to the weights [29] on the other side, each one also multiplied by its
distance to the same straight line. Thus, considering the case that as x increases, y
and z also increase, (see Fig. 2.18) that is to say that the foci F , G, and H lie on
the same side of MP, as we always suppose in taking the differential of the given
equation according to the prescribed rules, it follows from this that the line MP has
the weights at C andD on one side and the weight at E on the other. Therefore, we
have36 aC y�CLCx�DK �2z�EI D 0, which is the equation to be constructed.

I say now that because the construction is correct in this case it will also be
correct in all the others. For if we suppose, for example, that the point M changes
position on the curve so that as x increases, y and z decrease (see Fig. 2.17), that is
to say that the foci G and H move to the other side of MP, it follows that:

1. We must change (see §8) the signs of the terms multiplied by dy and dz, or by
their proportionals DK and EI, in the differential of the given equation, so that the
equation to be constructed in this new case is aC y�CL�x�DK C2z�EI D 0.

2. The weights D and E change sides with respect to MP and therefore we have,
by the property of the center of gravity, aC y � CL � x � DK C 2z � EI D 0,
which is the equation to be constructed.

Because this always happens in every possible case it follows, etc.

36In L’Hôpital (1696) the overline grouping of aC y was omitted here and in the next occurrence,
but not in the third occurrence. They have been added for consistency.
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It is clear that the same arguments always remain valid for any number of foci
and for any given equation, so that we may therefore state the general construction.

Let the differential of the equation be taken so that I suppose that one side is
equal to zero and let a circle CDE be described as we may wish with center M ,
which cuts the straight lines MF, MG, and MH at the points C , D, and E, at which
we imagine weights that have the same ratios among themselves as the quantities
that multiply the differentials of the lines on which they are situated. I say that the
line MP that passes through their common center of gravity is the perpendicular that
we wish to find. We should remark that if one of these [30] weights is negative in
the differential of the given equation, we must then imagine it on the other side of
the point M with respect to its focus.

If we wish that the foci F , G, and H be straight or curved lines, which the
straight lines MF, MG, and MH (see Fig. 2.19) meet at right angles, the same
construction still holds. For let the point m be taken infinitely close to M and drop
the perpendiculars mf , mg, and mh to the foci and drop the little perpendiculars
MR, MS, and MO from the point M to these lines. It is then clear that Rm is the
differential of MF because the straight lines MF and Rf are perpendicular between
the parallel lines Ff and MR, and so they are equal. Similarly, Sm is the differential
of MG and Om is the differential of MH, and we then prove the rest as above.

We may also imagine that some or all the foci F , G, and H (see Fig. 2.20)
are curved lines that have fixed and invariable origins at the points F , G, and H .
Furthermore, suppose that the curved line AMB is such that, when we draw, for
example, the tangents MV and MX and the straight line MG from any of its points
M , the relationship among the curvilinear lines FVM and HXM and the straight line
GM is expressed by any equation. If we take the tangent mu from a point m that
is infinitely close to M , it is clear that it will meet the other tangent at the point

Fig. 2.19 Generalized Conic Sections – Foci as Straight or Curved Lines
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Fig. 2.20 Generalized Conic Sections – Curved Foci Joined by Tangents

V (because it is nothing other than the continuation of the little arc Vu considered
to be a little straight line). Consequently, if we describe the little circular arc MR
with center V , Rm is the differential of the curvilinear line FVM, which becomes
FV uRm. All the rest is demonstrated as before.

Mr. Tschirnhaus was the first to have given the idea for this problem in his
book on la Medecine de l’esprit.37 Mr. Fatio38 then discovered a very ingenious
solution which he had inserted in the Journaux D’Hollande.39 However, in the way
they conceived it, it is only a particular case of the general construction that I have
just given.

Example I. [31] (�33) Let axx C byy C czz � f 3 D 0 (the lines a, b, c, and f are
given), the differential of which is ax dx C by dy C cz dz D 0. For this reason we
imagine the weight ax at C (see Fig. 2.21), the weight by at D, and the weight cz
at E, that is to say that these weights are to one another as these rectangles.40 The
line MP that passes through their common center of gravity is perpendicular to the
curve at the point M .

However, if we draw FO parallel to CL and we take the radius MC to be the
unit, then the similar triangles MCL and MFO give FO D x � CL. Similarly, if we
draw GR parallel to DK and HS parallel to EI, we find that GR D y � DK and
HS D z � EI, so that if we imagine the weights a, b, and c at the foci F , G, and
H , then the line MP that passes through the center of gravity of the weights ax, by,

37Medicina mentis [1687].
38Nicolas Fatio de Duillier (1664–1753).
39Journal des sçavans, March 1687.
40The quantities ax, by, and cz are products of two lines and are therefore referred to as “rectangles,”
following the Euclidean tradition.
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Fig. 2.21 Curve Defined by Three Focal Points

and cz, which we suppose to be at C , D, and E, also passes through the center of
gravity of these new weights. Now, this center is a fixed point, because the weights
at F , G, and H , namely a, b, and c, are constant straight lines that always remain
the same in whatever place the pointM is found. From this it follows that the curve
AMB must be such that all its perpendiculars meet at the same point, that is to say,
it is a circle that has this point as its center. Here, therefore is a very remarkable
property of the circle that can be stated as follows.41

Suppose we have as many weights a, b, c, etc., as we may wish, situated on the
same plane at F , G, H , etc., and we describe from their common center of gravity
a circle AMB. I say that if we draw the straight lines MF, MG, MH, etc., from any
of its points M , then the sum of their squares, each multiplied by the weight that
corresponds to it, will always be equal to the same amount.

Example II. (�34) Let AMB be a curve (see Fig. 2.22) and letM be any of its points.
[32] If we draw the straight line MF to the focus F , which is a fixed point, and drop
a perpendicular MG to the focus G, which is a straight line, then the ratio of MF to
MG is always the same as the ratio of the given a to the given b.

If we denote the quantities FM by x and MG by y, then we have42 x W y WW a W b
and consequently ay D bx, the differential of which is a dy � b dx D 0. This is why,
if we imagine the weight b at C taken on the other side of M with respect to F and

41This was first proved by Huygens and is given in Part IV, Proposition 12 of Horologium
Oscillatorium sive de motu pendulorum (Huygens 1673, p. 124).
42In L’Hôpital (1696) there was a comma between a and b in the proportional relation that follows.
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Fig. 2.22 Conic Sections Defined by Focus and Directrix

the weight a at D (the same distance from M ), and draw the line MP through their
common center of gravity, MP is the desired perpendicular.

Clearly, by the law of the lever, if we divide the chord CD at P so that CP W
DP WW a W b, then the point P is the common center of gravity of the weights that we
supposed to be at C and D.

The curve AMB is a conic section,43 namely a Parabola if a D b, a Hyperbola
if a is greater b, and finally an Ellipse when a is less than b.

Example III. (�35) Attach the extremities of a thread FZVMGMXYH at F and
H (see Fig. 2.23) and affix a small pin at G. We stretch this thread evenly by the
means of a pen placed at M , so that the parts FZV and HYX are wound around
curves that have their origins at F and H and the part MG is doubled, that is to say
that it is folded back at G. With these things remaining in this state, we move the
pen M ; it is clear that it describes a curve AMB. We wish to erect the perpendicular
MP on this curve from a given point M , where the position of the thread which is
used to describe it is given at that point.

I note that the straight parts MV and MX of the thread are always tangent at V
andX . If we denote the curvilinear linesFZVM by x andHTXM by z, the straight
line MG by y, and a straight line taken equal to the length of the thread by a, then
we always have xC2yCz D a. From this I know that the curve AMB is included in
the general construction. For this reason, we take the differential dx C2 dy Cdz D 0

and imagining the weight 1 at C , the weight 2 at D, and the weight 1 [33] at E, I
say that the line MP, which passes through the common center of gravity of these
weights, is the perpendicular that we wish to find.

Proposition XI.

Problem. (�36)44 Let APB and EQF be any two lines (see Fig. 2.24), on which we
know how to draw the tangents PG and QH and let PQ be a straight line on which
a point M is marked. If we imagine the extremities P and Q of this straight line
sliding along the lines AB and EF, then it is clear that the point M describes a

43See p. xxvi for a discussion of this construction of the conic sections.
44Compare this to Bernoulli’s Letter 28 p. 267.
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Fig. 2.23 Thread and Pen Example

Fig. 2.24 Moving Straight Line Segment

curved line CD by this motion. We wish to draw the tangent MT to this curve at the
given point M .

If we imagine that the mobile straight line PMQ is brought to the infinitely close
position pmq, we draw the little straight lines PO, MR, and QS perpendicular to PQ,
which form the little right triangles pOP, mRM, and qSQ. Taking PK equal to MQ,
we draw the straight line HKG perpendicular to PQ, and we extend OP to T , where
I suppose that it meets the tangent MT that we wish to find. Given this, it is clear
that the little straight lines Op, Rm, and Sq are equal to one another, because by the
construction, PM and MQ are everywhere the same.

We denote the known quantities PM or KQ by a, MQ or PK by b, KG by f , and
KH by g and the little straight line Op, Rm, or Sq by dy. The similar triangles PKG
and pOP give PK.b/ W KG.f / WW pO.dy/ W OP D f dy

b
. Additionally, the similar

triangles QKH and qSQ give QK.a/ W KH.g/ WW qS.dy/ W SQ D g dy
a

. Now, we know
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by common Geometry45 that

MR D OP � MQ C QS � PM

PQ
D f dy C g dy

aC b
:

Thus, the similar triangles mRM and MPT give46

mR.dy/ W RM

�
f dy C g dy

aC b

�
WW MP.a/ W PT D af C ag

aC b
:

This is what we were required to find.

Proposition XII.

Problem. [34] (�37) Let BN and FQ be any two lines (see Fig. 2.25) having the
straight lines BC and ED as axes, which intersect each other at right angles at
the point A. Let LM be a curved line and draw the straight lines MGQ and MPN
parallel to AB and AE from any of its pointM . If the pointE is a given fixed point on
the straight line AE and the line EF is parallel to AC, then the relationship among
the spaces EGQF and APND, and the straight lines AP, PM, PN, and GQ is
expressed by any equation. We wish to draw the tangent MT from a given point M
on the curve LM.

Fig. 2.25 The Logarithmic and Related Examples

45This follows by similar triangles that LR W OL WW VS W DV .
46In L’Hôpital (1696) the expression for RM did not have parentheses. They were added for
consistency.
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We denote the given and the variable quantities AP or GM by x, PM or AG by
y, PN by u, GQ by z, the space EGQF by s, the space APND by t , and the given
subtangents PH by a and GK by b. We have Pp or NS or MR D dx, Gg or Rm
or OQ D �dy, and Sn D �du D u dx

a
, because of the similar triangles HPN and

NSn. Also, Oq D dz D � z dy
b

, NPpn D dt D u dx, and QGgq D ds D �z dy,
where we should note that the values of Rm and Sn are negative because as AP.x/
increases, PM.y/ and PN.u/ decrease. Given this, we take the differential of the
given equation, in which we substitute the values u dx, �z dy, � u dx

a
and � z dy

b
for dt,

ds, du, and dz, which gives a new equation that expresses the ratio of dy to dx or of
MP to PT , that we wish to find.

Example I. (�38) Let sC zz D t C ux; taking the differential we have ds C 2z dz D
dtCu dxCx du. Substituting the values for ds, dt, dz, and du, we find �z dy� 2zz dy

b
D

2u dx � ux dx
a

, from which we conclude

PT

�
y dx

dy

�
D 2ayzz C aybz

bux � 2abu
:

Example II. [35] (�39) Let s D t ; therefore, ds D dt. That is to say, �z dy D u dx

and hence PT
�
y dx
dy

�
D � yz

u . Now, because this quantity is negative, it follows (see

§10) that we must take the point T on the opposite side of the point A, the origin of
x’s. If we suppose that the line FQ is a hyperbola that has that straight lines AC and
AE as its asymptotes, so that GQ.z/ D cc

y
, and that the straight line BND is parallel

to AB, so that PN.u/ is always equal to the given straight line c, then it is clear
that the curve LM has the straight line AB as an asymptote and that its subtangent
PT

�� yz
u

� D �c, that is to say, that it always remains the same.

In this case, the curve LM is called Logarithmic.47

Proposition XIII.

Problem. (�40) Let BN and FQ be any two lines (see Fig. 2.26) with the same axis
BA on which two fixed points A and E are marked. Let LM be a third curved line
such that if we draw the straight line AN through any of its points M , describe the
circular arc MG with centerA, and draw GQ parallel to EF, which is perpendicular
to AB, then the relationship among the spaces EGQF.s/ and ANB.t/ and the
straight lines AM or AG.y/, AN.z/, and GQ.u/ is expressed by any equation. We
wish to draw the tangent MT to the given point M on the curve LM.

47In Problem V on p. 198, Bernoulli shows that the curve with constant subtangent is the curve
“whose ordinates make a Geometric progression and abscissas an Arithmetic”; that is, this curve is
an exponential curve. L’Hôpital uses that fact here, without proof, to identify this curve. The result
had been published in Leibniz (1684). An exponential curve was called logarithmic at this time,
because the logarithm of an ordinate is the corresponding abscissa. In Figure 2.25, the x-axis is
vertical and the y-axis is horizontal, and curve LM has the equation y D y0e

�x=c , if we take the
length of the segment AE to be y0.
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Fig. 2.26 The Logarithmic Spiral and Related Examples

After erecting the perpendicular ATH on AMN, let another straight line Amn
be imagined, which is infinitely close to AMN, and another arc mg, another
perpendicular gq, and the little circular arc NS with center A. We denote the
given subtangents AH by a and GK by b, and we have Rm or Gg D dy and
Sn D dz. The similar triangles HAN and NSn, and KGQ [36] and QOq also
give SN D a dz

z , Oq D �du D u dy
b

, GQqg D �ds D u dy, and ANn or
AN � 1

2
NS D �dt D 1

2
a dz. We substitute all these values in the differential

of the given equation, and form a new equation, from which we get a value for
dz in terms of dy. Now, because of the similar sectors ANS and ARM, we find

AN.z/ W AM.y/ WW NS
�
a dz

z

�
W MR D ay dz

zz . Also, because of the similar triangles

mRM and MAT , we find mR.dy/ W RM
�

ay dz
zz

�
WW AM.y/ W AT D ayy dz

zz dy . Therefore, if

we substitute for dz in this formula its value in terms of dy, then the differentials will
cancel, and the value of the subtangent AT that we wish to find will be expressed in
completely known terms. This is what we were required to find.

Example I. (�41) Let uy�s D zz� t , the differential of which is u dyCy du�ds D
2z dz � dt, which gives (after making the substitution)

dz D 4bu dy � 2uy dy

4bz C ab

and substituting this value in ayy dz
zz dy we find that

AT D 4abuyy � 2auy3

4bz3 C abzz
:
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Fig. 2.27 Generalized Roulette

Example II. (�42) Let s D 2t ; therefore, ds D 2 dt, that is to say, �u dy D �a dz or

dz D u dy
a

, and consequently AT
�

ayy dz
zz dy

�
D uyy

zz .

If the line BN is a circle that has the point A as its center, and radius AB D AN D
c and if FQ is a hyperbola such that GQ.u/ D ff

y
, then it is clear that curve ML

makes an infinity of revolutions around the center A before it arrives there (because
the space FEGQ becomes infinite when the point G falls on A) and that AT D ffy

cc .
From this, we see that the ratio of AM to AT is constant, and consequently that the
angle AMT is everywhere the same.

In this case, the curve LM is called the Logarithmic Spiral.48

Proposition XIV.

Theorem. [37] (�43) Let AMB and BMC (see Fig. 2.27) be any two curves on the
same plane that touch each other at a point M and let L be a fixed point in the
region49 of the curve BMC. If we imagine for the moment that the curve BMC rolls
on the curve AMD continually applying itself so that the revolved parts AM and BM
are always equal to each other, it is clear that as the region BMC carries the point
L, this point describes a kind of roulette ILK by this motion. Given this, I say that if
we draw the straight line LM from each different positions on the curve BMC (from
the describing point L to the point of contact M ) it is perpendicular to the curve
ILK.

If we imagine two infinitely little and equal parts Mm and Mm on the two curves
AMD and BMC, then we may consider them (see §3) as two little straight lines
that makes an infinitely small angle at the pointM . Now, as the little side Mm of the
curve or polygon BMC falls on the little side Mm of the polygon AMD, it must be the
case that the pointL describes a little arc Ll with the point of contactM as the center.
Therefore, it is evident that this little arc is a part of the curve ILK and consequently
that the straight line ML, which is perpendicular to it, is also perpendicular to the
curve ILK at the point L. This is what we were required to prove.

48See p. xxxiii for a discussion of the Logarithmic Spiral.
49In L’Hôpital (1696) the same word (plan) is used for both the plane that contains the two curves
and the region of the plane bounded on the convex side of the curve BMC. Here and in the next
sentence we translate this latter meaning by “region.”
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Fig. 2.28 Moving Rectilinear Angle

Proposition XV.

Problem. (�44) Let MLN be any rectilinear angle (see Fig. 2.28), whose sides LM
and LN touch any two curves AM and BN. If we make these sides slide around
these curves, so that they continually touch them, then it is clear that the vertex L
describes a curve ILK by this motion. We wish to draw a perpendicular LC to this
curve, given the position of the angle MLN.

[38] Let a circle be described that passes through the vertex L and through the
points of the contact M and N . Let the straight line CL be drawn from the center of
this circle. I say that it is perpendicular to the curve ILK.

Consider the curves AM and BN as polygons with an infinity of sides, such as
Mm and Nn. If we suppose that the sides LM and LN of the rectilinear angle MLN
always remain the same, then it is evident that if we make them slide around the
points M and N (we consider the tangents LM and LN as the continuation of
the little sides Mf and Ng) until the side LM of the angle falls on the little side
Mm of the polygon AM and the other side LN falls on the little side Nn of the
polygon BN, then the vertex L describes a little part Ll of arc of the circle MLN,
because by the construction, this arc contains the given angle MLN. This little part Ll
therefore coincides with the curve ILK and consequently the straight line CL which
is perpendicular to it is also perpendicular to this curve at the point L. This is what
we were required to show.

Proposition XVI.

Problem. (�45)50 Let ABCD be a perfectly flexible rope (see Fig. 2.29), to which
different weights A, B , C , etc. are attached, having whatever intervals AB, BC, etc.,

50Compare this to Bernoulli’s Letter 28 p. 265.
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Fig. 2.29 The Tractrix

between them that we might wish. If we drag this rope in a horizontal plane by the
extremityD, along a given curve DP, then it is clear that these weights will position
themselves so that they stretch the rope and that they thereby describe the curves
AM, BN, CO, etc. We wish to find the method for drawing the tangents given the
position ABCD of the rope and the magnitude of the weights.

In the first instant that the extremity D moves towards P , the weights A, B , and
C describe or tend to describe the same number of little sides Aa, Bb, and Cc of the
polygons that compose the curves AM, BN, and CO. Consequently, in order to draw
the tangents AB, BG, and CK we need to only determine the [39] directions of the
weights A, B , and C in this first instant, that is to say the position of the straight
lines that they tend to describe. In order to find these I remark that:

1. In this first instant, the weightA is drawn in the direction AB, and because there is
no obstacle that opposes this direction, since it does not drag any weights behind
it, it must follow this direction. Consequently, the straight line AB is tangent to
the curve AM at A.
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2. The weight B is drawn in the direction BC, however, because it drags the weight
A, which is not in this direction, behind it, and this must consequently bring some
change to it, the weight B does not go in the direction BC, but follows another
straight line BG whose position we must find. I do that as follows.

I describe the rectangle EF with BC as its diagonal, the side BF of which is
prolonged from AB. Supposing that the force with which the weight B is drawn
towards BC is expressed by BC, it is clear by the rules of Mechanics that this
force BC may be divided up into two other forces, BE and BF, that is that the
weightB , being pulled in the direction of BC by the force of BC is the same thing
as if it were drawn by the force of BE in the direction of BE and by the force BF
in the direction BF, both at the same time. Now, the weight A does not oppose
the direction BE, because it is perpendicular to it, and consequently, the force BE
in this direction remains entirely whole, but A opposes the direction BF with all
of its weight. Therefore, insofar as the weight B with its force BF overcomes the
resistance of the weight A, it is necessary that this force is distributed between
these weights in proportion to the their masses or magnitudes. This is why, if we
divide EC at the point G, so that CG is to GE as the weight A is to B , it is clear
that EG expresses the remaining force with which the weight B tends to move in
the direction of BF after overcoming the resistance of the weight A. Therefore,
it is clear that the weight B is drawn at the same time by the force BE in the
direction BE and by the force EG in the direction [40] BF or EC. Thus, it will
tend to go along BG with the force BG, that is to say that BG will be its direction
and consequently the tangent to the curve BN at B .

3. To find the tangent CK, I form the rectangle HI with CD as its diagonal, the side
CI of which is prolonged from BC. I see that the weight B does not resist the
force CH for which the weightC is drawn in the direction CH, but rather it resists
the force CI with which it is drawn in the direction CI and furthermore that the
weight A also resists this force. To know by how much, I draw the perpendicular
AL on CB, extended on the side of B , and I remark that if AB expresses the force
with which the weight A is drawn in the direction of AB, then BL expresses the
force with which the same weight A is drawn in the direction BC, so that the
weight C , with force CI, must overcome the entire weight B and, furthermore,
a part of the weight A that is to the weight A as BL is to BA, or as BF is to BC.
Therefore, if we make B C A�BF

BC W C WW DK W KH, then it is clear that CK is the
direction of the weight C , and consequently the tangent to the third curve CO
at C .

If the number of curves were greater, then we would find the tangent of the fourth,
fifth, etc., in the same manner. Finally, if we wished to have the tangents to the
curves described at the points between the weights, then we would find them by
means of §36.



Chapter 3
Use of the Differential Calculus for Finding
the Greatest And the Least Ordinates, to Which
Are Reduced Questions De Maximis & Minimis

Definition I. [41] Let MDM be a curved line, for which the ordinates PM, ED,
and PM are parallel to one another, and are such that as the abscissa AP increases
continually the ordinate PM also increases up to a certain point E, after which it
decreases (see Figs. 3.1, 3.4), or, on the contrary, that it decreases up to a certain
point E, after which it increases (see Figs. 3.2, 3.3). Given this, the line ED is called
the greatest or the least ordinate.

Definition II. If we consider a quantity such as PM, which is composed of one or
several indeterminates such as AP, so that as AP continually increases, this quantity
PM also increases up to a certain point E, after which it decreases, or on the
contrary. Suppose also that we wish to find a value AE for AP such that the quantity
ED, of which it is composed, is greater or less than all other quantities PM similarly
formed from AP. This is called a question De maximis & minimis.1

General Proposition. (�46) Given the nature of the curved line MDM, we wish to
find a value AE of AP such that the ordinate ED is the greatest or the least of its
similar ordinates PM .

If, while AP increases, PM also increases, then it is evident (see §8, 10) that the
differential Rm is positive with respect to the differential of AP. On the contrary,
when PM decreases while the abscissa AP still increases [42], the differential is
negative. Now any quantity that continually increases or decreases may not change
from positive to negative without passing through infinity or through zero,2 namely
through zero when it proceeds by decreasing, and through infinity when it proceeds
by increasing. From this it follows that the differential of a quantity that expresses a

1In L’Hôpital (1696) this italicized Latin expression meaning “of maximums and minimums” was
used within the French text. See Problem XII on p. 205 for the treatment of these types of problems.
2This is an implicit use of the Intermediate Value Theorem; the author clearly considers this to be
self-evident.
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Fig. 3.1 Definition of Greatest Ordinate

Fig. 3.2 Definition of Least Ordinate

Fig. 3.3 Least Ordinate

greatest or a least must be equal to zero or to infinity. Now, given the nature of the
curve MDM, we find (see Ch. 1 or 2) a value for Rm, first equal to zero, and then
equal to infinity, which we will use to find the values of AE that we wish to find,
under one or the other of these assumptions.

Remark. (�47) The tangent at D is parallel to the axis AB when the differential Rm
becomes zero at this point (see Figs. 3.1, 3.2). However, when it becomes infinite,
then the tangent coincides with the ordinate ED (see Figs. 3.3, 3.4). From this
we see that the ratio of mR to RM, which expresses the ratio of the ordinate to
the subtangent, is null or infinite at the point D.3

3The case of an extremum at a cusp was omitted from the Lectiones. Bernoulli alerted L’Hôpital
to this case in Letter 22 (p. 251).
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Fig. 3.4 Greatest Ordinate

Fig. 3.5 The Folium of Descartes

We easily understand that a quantity that continually decreases cannot go from
positive to negative without passing through zero, but we do not see with the same
clarity that when it increases, it must pass through infinity. This is why, to aid the
imagination, we consider the tangents at the pointsM ,D, andM (see Figs. 3.1, 3.2).
It is clear that in curves for which the tangent at D is parallel to the axis AB,
the subtangent PT increases continually as long as the points M and P approach
the points D and E and that when the point M falls on D, it becomes infinite.
Therefore, when AP becomes greater than AE, the subtangent PT becomes (see §10)
negative, from the positive that it had been, or vice versa.

Example I. (�48) Suppose that x3 C y3 D axy (AP D x, PM D y and AB D a)
expresses the nature of the curve MDM (see Fig. 3.5). Taking differentials, we have
3xx dx C 3yy dy D ax dy C ay dx [43] and

dy D ay dx � 3xx dx

3yy � ax
D 0

when the point P coincides with the point E that we wish to find, from which
we conclude that y D 3xx

a
. Substituting this value in place of y in the equation
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Fig. 3.6 Prolate Cycloid

x3 C y3 D axy, we find a value of x D 1
3
a

3
p
2 for AE so that the ordinate ED is

greater than all similar ordinates PM.4

Example II. (�49) Let y � a D a1=3 � a � x2=3 be the equation that expresses
the nature of the curve MDM (see Fig. 3.3). Taking differentials, we have

dy D � 2 dx 3
p
a

3 3
p
a � x , which I first equate to zero. However, because this assumption

gives me �2 dx 3
p
a D 0, which cannot give the value of AE, I then equate

�2 dx 3
p
a

3 3
p
a � x

to infinity, which gives me 3 3
p
a � x D 0, from which we conclude that x D a,

which is the value of AE that we wish to find.

Example III. (�50) Let AMF be a prolate half-roulette (see Fig. 3.6), for which the
base BF is less than the semi-circumference ANB of the generating circle that has
the point C as its center. We wish to determine the point E on the diameter AB, so
that the ordinate ED is the greatest possible.

We draw the ordinate PM at will, which cuts the semi-circle at N , and imagine
as usual the little triangles MRm and NSn at the points M and N . Denoting the
indeterminates AP by x, PN by z, and the arc AN by u, and the given quantities
ANB by a, BF by b and CA or CN by c, then by the property of the roulette,
ANB .a/ W BF .b/ WW AN .u/ W NM D bu

a
. Thus, PM D z C bu

a
and its differential

Rm D a dzCb du
a

D 0 when the point P falls on the point E that we wish to find.
Now the right triangles NSn and NPC are similar, for if we remove the common
angle CNS from the right angles CNn and PNS, the remainders SNn and PNC are
equal. Consequently, [44] CN .c/ W CP .c � x/ WW Nn .du/ W Sn .dz/ D c du�x du

c
.

Thus, substituting this value in place of dz in a dz C b du D 0, we find that

4We note that the case where dy is infinite is not considered, presumably because this does not
correspond to a greatest or least ordinate.
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Fig. 3.7 General Problem, m D 2 and n D �1

ac du�ax duCbc du
c

D 0, from which we conclude that x (which is AE in this case)
D c C bc

a
.

It is therefore clear that if we take CE on the side of B to be the fourth
porportional5 of the semi-circumference ANB to the base BF and to the radius CB,
the point E is the one we wish to find.

Example IV. (�51) To cut the given line AB at a point E so that the product of the
square of one of the parts AE by the other part EB is the greatest among all the other
products formed in the same way (see Fig. 3.5).

If we denote the unknown AE by x and the given quantity AB by a, then we

have AE
2 � EB D axx � x3, which must be a maximum.6 This is why we imagine a

curved line MDM, such that the relationship of the ordinate MP .y/ to the abscissa
AP .x/ is expressed by the equation y D axx�x3

aa , and we wish to find a point E
such that the ordinate ED is the greatest of all similar ordinates PM. This gives

dy D 2ax dx � 3xx dx

aa
D 0, from which we conclude that AE .x/ D 2

3
a.

If we wish, in general, that xm�a � x n is a maximum (wherem and nmay denote
whatever numbers we might wish), it is necessary that the differential of this product
be equal to zero or to infinity. This gives mxm�1 dx�a � x n�n a � x n�1 dx�xm D
0, from which, dividing by xm�1�a � x n�1 dx, we conclude that am�mx�nx D 0

and AE .x/ D m
mCna.

If m D 2 and n D �1, we have AE D 2a and it is therefore necessary to express
the problem as follows:

Extend the given line AB on the side of B to a point E (see Fig. 3.7), so that the

quantity AE
2

BE is a minimum7 and not a maximum, because the equation of the curve

5In other words, we wish that ANB W BF WW CB W CE.
6This is the first of many places in L’Hôpital (1696) where the expression un plus grand (a greatest)
is used, with the last two words italicized. We translate this as “a maximum,” preserving the
emphasis. The words “maximum” or “minimum” are not used in this chapter after Definition II.
7The is the first of many places in L’Hôpital (1696) where un moindre (a least) is used, with both
words italicized. We translate this as “a minimum.”
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Fig. 3.8 General Problem, m D 1 and n D �2

Fig. 3.9 Dividing a Given Line to Minimize a Proportion

MDM is [45] xx
x�a D y. In this, if we suppose that x D a, the ordinate PM, which

becomes BC, is aa
0

, that is to say, infinity. Supposing x to be infinite, we have y D x,
that is to say, that the ordinate is also infinite.

If m D 1 and n D �2, we have AE D �a. From this, it follows that we must
therefore express the problem as follows:

Extend the given straight line AB on the side of A to a point E (see Fig. 3.8), so

that the quantity AE�AB
2

BE
2 is greater than any other similar quantity AP�AB

2

BP
2 .

Example V. (�52) If the straight line AB is divided into three parts AC, CF, and FB
(see Fig. 3.9), we wish to cut the middle part CF at the point E, so that the ratio
of the rectangle AE � EB to the rectangle CE � EF is smaller than all other ratios
formed in the same way.

Denoting the given quantities AC by a, CF by b, and CB by c, and the unknown
CE by x, we have AE D aCx, EB D c�x, EF D b�x, and consequently, the ratio

of AE�EB to CE�EF is
ac C cx � ax � xx

bx � xx
, which must be a minimum. This is why,

if we imagine a curved line MDM such that the relationship of the ordinate PM (y)

to the abscissa CP (x) is expressed by the equation y D aac C acx � aax � axx

bx � xx
,

then the question reduces to finding a value CE for x so that the ordinate ED is the
least of all similar ordinates PM. Therefore, taking differentials and then dividing
by a dx, we form the equation cxx � axx � bxx C 2acx � abc D 0, one of the roots
of which resolves the question.

If c D aC b, then we have x D 1
2
b.
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Fig. 3.10 Cones Inscribed in a Sphere

Example VI. (�53) Among all the Cones that may be inscribed [46] in a sphere, we
wish to determine the one that has the largest convex surface.8

The question reduces to determining the point E on the diameter AB of the semi-
circle AFB (see Fig. 3.10) such that, if we draw the perpendicular EF and join AF,
the rectangle AF � FE is the greatest of all similar rectangles AN � NP. For if we
imagine that the semi-circle AFB makes a full revolution around the diameter AB, it
is clear that it describes a sphere and that the right triangles AEF and APN describe
cones inscribed in this sphere, such that the convex surfaces described by the chords
AE and AN are to each other as the rectangles AF � FE and AN � NP.

Therefore let the unknown AE D x and the given quantity AB D a, then by
the property of the circle we have AF D p

ax, EF D p
ax � xx and consequently

AF � FE D p
aaxx � ax3, which must be a maximum. This is why we imagine a

curved line MDM such that the relationship of the ordinate PM (y) to the abscissa

AP (x) is expressed by the equation
p

aaxx�ax3
a

D y. We wish to find the point E,
so that the ordinate ED is the greatest among all similar ordinates PM. Taking the

differential, we therefore have
2ax dx � 3xx dx

2
p

aaxx � ax3
D 0, from which we conclude that

AE (x) D 2
3
a.

Example VII. (�54) Among all the Parallelepipeds equal to a given cube a3 and
having a given straight line b as one of their sides, we wish to find the one with the
least surface area.

Denoting one of the sides that we wish to find by x, the other is a3

bx . Taking

the alternate planes of the three sides b, x and a3

bx of the parallelepiped, their sum,

namely bx C a3

x
C a3

b
is half of its surface area, which must be a minimum. This is

why we imagine, as usual, a curved line that has bx
a

C aa
x

C aa
b

D y as its equation.
[47] Taking the differential, we find b dx

a
� aa dx

xx D 0, from which we conclude that

8I.e., surface area not including the base.
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xx D a3

b
and x D

q
a3

b
, so that the three sides of the parallelepiped that satisfy the

question are first b, second
q

a3

b
, and third

q
a3

b
. From this, we see that the two sides

we wish to find are equal to each other.

Example VIII. (�55) Now we wish to find among all the Parallelepipeds that are
equal to a given cube a3, the one with the least surface area.

Denoting one of the unknown sides by x, it is clear from the preceding example

that the other two sides are each
q

a3

x
. Consequently, the sum of the alternate planes,

which is half of the surface area, is a3

x
C 2

p
a3x, which must be a minimum. This

is why its differential �a
3 dx

xx
C a3 dxp

a3x
D 0, from which we conclude that x D a.

Consequently, the two other sides are also D a, so that the given cube itself satisfies
the question.

Example IX. (�56) Suppose the line AEB is given in position on a plane with two
fixed points C and F (see Fig. 3.11) and we have drawn from any of its points P
two straight lines CP (u) and PF (z). Let there be given a quantity composed of these
indeterminates u and z and as many other given straight lines a, b, etc., as we may
wish. We ask what must be the position of the straight lines CE and EF in order
that the given quantity that is composed from them is greater or less than this same
quantity, when it is composed of the straight lines CP and PF.

Suppose that the lines CE and EF have the required position and, having
joined CF, we imagine a curved line DM such that when we draw an arbitrary
perpendicular PQM on CF, the ordinate QM expresses the given quantity. It is clear
[48] that when the point P falls on the point E, the ordinate QM, which becomes
OD, must be the least or the greatest of all its similar ordinates. It is therefore
necessary that the differential thus be equal to zero or to infinity. This is why, for

Fig. 3.11 Lines From a Curve to Two Given Points on Opposite Sides
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Fig. 3.12 Lines From a Curve to Two Given Points on the Same Side

example, if the given quantity is auCzz, we have a duC2z dz D 0 and consequently
du W �dz WW 2z W a. From this, we already see that dz must be negative with respect
to du, that is to say that the position of the straight lines CE and EF must be such
that as u increases, z decreases.

Suppose we now draw EG perpendicular to the line AEB and from any of its
pointsG we draw the perpendiculars GL and GI on CE and EF. Now from the point
e, taken infinitely close to E, we draw the straight lines CKe and FeH, and with
centers C and F , we draw the little circular arcs EK and EH. We form similar right
triangles ELG and EKe and similar right triangles EIG and EHe. For if we remove
the same angle LEe from the right angles GEe and LEK, then the remainders LEG
and KEe are equal. We prove similarly that the angles IEG and HEe are equal.
Therefore, we have that GL W GI WW Ke .du/ W He .�dz/ WW 2z W a. From this it
follows that the position of the straight lines CE and EF must be such that when
the perpendicular EG is drawn on the line AEB, the sine GL of the angle GEC is
to the sine GI of the angle GEF as the quantities that multiply dz are to those that
multiply du. This is what we were required to find.

Corollary. (�57) If we now wish that the straight line CE is given in position and
magnitude, and that the straight line EF is given in magnitude only, and that it is
required to find its position, then it is clear that if the angle GEC is given, its sine
GL is given as well, and consequently the sine GI of the angle GEF that we wish
to find is also given. Thus, if we describe the circle with diameter EG and we apply
the value of GI onto its circumference from G to I , the straight line EF that passes
through the point I has the required position.

Let auCbz be the given quantity. We find that GI D a � GL

b
, from which we see

that whatever length we give [49] to EC and EF, the position of this latter is always
the same, because they do not enter into the value of GI, which consequently does
not change. If a D b, it is clear that the position of EF must be on CE, extended on
the side of E, because GL D GI when the points C and F fall on opposite sides
of the line AEB. However, when they fall on the same side, the angle FEG must be
taken equal to the angle CEG (see Fig. 3.12).



54 3 Questions of Maxima and Minima

Fig. 3.13 Passing From One Region to Another, With Different Speeds

Example X. (�58) If the circle AEB is given in position with the points C and F
outside of the circle (see Fig. 3.12), we wish to find the pointE on the circumference
such that the sum of the straight lines CE and EF is as small as possible.

Supposing that the point E is the one that we wish to find and that we draw the
line OEG from the center O , it is clear that it is perpendicular to the circumference
AEB and therefore (see §57) that the angles FEG and CEG are equal to each other.
If we then draw EH so that the angle EHO is equal to the angle CEO, and similarly,
we draw EK so that the angle EKO is equal to the angle FEO, and draw the parallels
ED and EL to OF and OC, then we form the similar triangles OCE and OEH, OFE
and OEK, and finally HDE and KLE. Denoting the given quantities OE, OA or OB
by a, OC by b and OF by c, and the unknowns OD or LE by x and DE or OL by y,
we have OH D aa

b
, OK D aa

c
, and HD .x � aa

b
/ W DE .y/ WW KL .y � aa

c
/ W LE .x/.

Thus xx � aax
b

D yy � aay
c

, which is the equation of a hyperbola that we can easily
construct and which will cut the circle at the point E that we wish to find.

Example XI. (�59)9 A traveler departing from the location C to go to the location F
(see Fig. 3.13) must pass through two regions10 separated by the straight line AEB.
We suppose that in the region on the side of C , he covers the distance a in the time
c and that in the other, [50] on the side of F , he covers the distance b in the same
time c. We wish to find the point E on the straight line AEB through which he must
pass in order to take the least time possible to make his way from C to F . If we let
a W CE .u/ WW c W cu

a
and b W EF .z/ WW c W cz

b
, it is clear that cu

a
expresses the time

that the traveler takes to traverse the straight line CE, and similarly that cz
b

expresses
the time he takes to traverse EF, so that cu

a
C cz

b
must be a minimum. From this it

follows (see §56) that if we draw EG perpendicular to the line AB, the sine of the
angle GEC must be to the sine of the angle GEF as a is to b.

9Compare to Problem XVI on p. 207.
10In L’Hôpital (1696) the word campagnes was used, which could mean “countries,” or simply
“fields.”
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Given this, suppose that we describe the circle CGH with center at the point E
that we wish to find and with radius EC, and that we drop the perpendiculars CA,
HD and FB to the straight line AEB, and the perpendiculars GL and GI to CE and
EF, then a W b WW GL W GI. Now GL D AE and GI D ED, because the right triangles
GEL and ECA are equal and similar, and the right triangles GEI and EHD are equal
and similar, which is easy to prove. This is why, if we denote the unknown AE by
x, we find that ED D bx

a
. Denoting the given quantities AB by f , AC by g and BF

by h, the similar triangles EBF and EDH give EB .f � x/ W BF .h/ WW ED . bx
a
/ W

DH D bhx
af �ax . However, because of the right triangles EDH and EAC, which have

equal hypotenuses EH and EC, we have ED
2 C DH

2 D EA
2 C AC

2
. In analytic

terms, that is to say

bbxx

aa
C bbhhxx

aaff � 2aafx C aaxx
D xx C gg:

Thus, by removing the fractions and rearranging the equation, we have11

aax4 �2aafx3 C aaffxx �2aafggx Caaffgg D 0:

�bb C2bbf C aagg
� bbff
� bbhh

We may also find this equation in the following manner, without having recourse
to Example IX.

[51] Denoting, as before, the given quantities AB by f , AC by g and BF by h

and the unknown AE by x, we make a W CE .
p

gg C xx/ WW c W c
p

ggCxx
a

, where
the last term is equal to the time taken by the traveler in traversing the straight line

CE. Similarly, b W EF
�p

ff � 2fx C xx C hh
� WW c W c

p
ff �2fxCxxChh

b
, where the last

term is equal to the time taken by the traveler in traversing the straight line EF. This
makes

c
p

gg C xx

a
C c

p
ff � 2fx C xx C hh

b

equal to a minimum, and consequently its differential

cx dx

a
p

gg C xx
C cx dx � cf dx

b
p

ff � 2fx C xx C hh
D 0:

11This is the notation used in L’Hôpital (1696) for .a2 � b2/x4 C .�2a2f C 2b2f /x3 C
.a2f Ca2g2 � b2f 2 � b2h2/x2 � 2a2fg2x C a2f 2g2 D 0.
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Fig. 3.14 The Pulley Problem

Dividing this latter by c dx and removing the incommensurables,12 we derive the
same equation as above, the roots of which provide the desired value for AE.

Example XII. (�60)13 Let F be a pulley that hangs freely at the end of a rope CF
attached at C (see Fig. 3.14), with a weight D suspended by the cord DFB, which
passes over the pulley F and which is attached at B , so that the points C and B are
situated on the same horizontal line CB. We suppose that the pulley and the cords
have no weight and we wish to find the location at which the weightD or the pulley
F comes to rest.

It is clear by the principles of Mechanics that the weightD descends as far down
as possible below the horizontal CB, from which it follows that the plumb line DFE
should be a maximum. This is why, if we denote the given quantities CF by a,
DFB by b and CB by c, and the unknown CE by x, we have EF D p

aa � xx,
FB D p

aa C cc � 2cx, and DFE D b � p
aa C cc � 2cx C p

aa � xx, which must
be a maximum. Consequently, its differential

c dxp
aa C cc � 2cx

� x dxp
aa � xx

D 0;

12Two quantities are incommensurable if their ratio is irrational; “removing the incommensurables”
means rationalizing the equation.
13Compare to Problem XIX on p. 210. For a modern discussion of this problem, see Hahn (1998).
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from which we conclude that 2cx3 � 2ccxx � aaxx C aacc D 0. [52] Dividing by
x � c, we have 2cxx � aax � aac D 0, the roots of which give a value for CE such
that the perpendicular ED passes through the pulley F and the weight D when they
are at rest.

We may also solve this question by a different method than the above.
Denoting EF by y and BF by z, we have b � z C y equal to a maximum, and

hence dy D dz. Now it is clear that the pulley F describes the circle CFA about the
point C as its center. Consequently if we take f infinitely close to F and draw fR
from this parallel to CB and fS perpendicular to BF, then we have FR D dy and
FS D dz. They are therefore equal to each other and consequently the little right
triangles FRf and FSf , which also have the common hypotenuse Ff , are equal and
similar. From this we see that the angle RFf is equal to the angle SFf , that is to say
that the point F must be so situated on the circumference FA that the angles made
by the straight lines EF and FB on the tangents at F are equal to each other, or rather
(what amounts to the same thing), that the angles BFC and DFC are equal.

Given this, if we draw FH so that the angle FHC is equal to the angle CFB
or CFD, the triangles CBF and CFH are similar. The right triangles ECF and
EFH are also similar, because the angle CFE is equal to the angle FHE, being
supplementary14 to two equal angles FHC and CFD. Consequently, we have CH D
aa
c

and HE .x � aa
c
/ W EF .y/ WW EF .y/ W EC .x/. Thus, xx � aax

c
D yy D aa � xx,

by the property of the circle, from which we derive the same equation as before.

Example XIII. (�61)15 Given the elevation of the pole, we wish to find the day with
the smallest crepuscule.16

Let C be the center of the sphere; APTOBHQ the meridian; HDdO the horizon;
QEeT the crepuscular circle parallel [53] to the horizon; AMNB the equator; FEDG
the portion of the parallel to the equator (see Fig. 3.15), which the sun describes
on the day of the smallest crepuscule, enclosed between the planes of the horizon
and the crepuscular circle; P the south pole; PEM and PDN, the quarters of the
circles of declination. The arc HQ or OT of the meridian included between the
horizon and the crepuscular circle, and the arc OP of the elevation of the pole are
given, and consequently their right sines CI or FL or QX, and OV . We wish to find
the sine CK of the arc EM or DN of the declination of the sun while it describes the
parallel ED.

We imagine another portion fedg of a parallel to the equator, infinitely close to
FEDG, with the quarter circles Pem and Pdn. It is clear that if the time that the sun
takes in traversing the arc ED is to be a minimum, then the differential of the arc

14In L’Hôpital (1696), this literally says “the complements within two right angles.” We consis-
tently translate this construction as supplementary.
15Compare to Problem XX on p. 212.
16I.e., the shortest twilight. Evening twilight is defined as the length of time from sunset until the
time that the center of the sun is 18ı below the horizon. Morning twilight is defined similarly for
the period before sunrise.
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Fig. 3.15 The Celestial Sphere

MN that measures it, and which becomes mn when ED becomes ed, must be null.
From this it follows that the little arcs Mm and Nn must be equal, and consequently
also the little arcs Re and Sd, are equal to each other. Now the arcs RE and SD,
being enclosed between the same parallels ED and ed, are also equal, and the angles
at S and R are right angles. Hence the little right triangles ERe and DSd (which we
consider to be rectilinear (see §3) because of the infinite smallness of their sides)17

are equal and similar, and consequently the hypotenuses Ee and Dd are also equal
to each other.

Given this, the straight lines DG, EF, dg and ef , common sections of the planes
FEDG and fedg, parallel to the equator, with the horizon and the crepuscular
circle, are perpendicular to the diameters HO and QT , because the planes of all
of these circles are each perpendicular to the plane of the meridian. Additionally,
the little straight lines Gg ad Ff are equal to each other, because the straight lines

FG and fg are parallel. Thus,
q

Dd
2 � Gg

2
or DG � dg is equal to

q
Ee

2 � Ff
2

or fe � FE. Now it is clear, because we have proved it in §50, that if we draw
any two infinitely close ordinates in a semi-circle, the little arc that they enclose is
[54] to their differential as the radius is to the abscissa, measured from the center.
Here (because of the circles HDO and QET) this gives CO W CG WW Dd or Ee W
DG�dg or fe�FE WW IQ W IF WW COCIQ or OX W CGCIF or GL. However, because
of the similar right triangles CVO, CKG and FLG, we have CO W CG WW OV W GK
and GK W GL WW CK W FL or QX. Thus OV W CK WW OX W XQ WW XQ W XH, by
the property of the circle. That is to say, if we take QX as the radius or total sine18

in the right triangle QXH, whose angle HQX is of 9 degrees, because Astronomers

17This right parenthesis was missing in L’Hôpital (1696).
18The term “total sine” is a synonym for the radius.
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make the arc HQ to be of 18 degrees, then we will have that as the total sine is to
the tangent of 9 degrees, so the sine of the elevation of the pole is to the sine of the
southern declination of the sun in the time of the smallest crepuscule. From this, it
follows that if we subtract 0.8002875 from the logarithm of the sine of the elevation
of the pole, the remainder will be the logarithm of the sine that we wish to find. This
is what we were required to find.



Chapter 4
Use of the Differential Calculus for Finding
Inflection Points and Cusps

[55] Because we will be making use in what follows of second, third, etc.,
differentials, it is necessary to give an idea of them before going any further.

Definition I. The infinitely small portion by which the differential of a variable
quantity continually increases or decreases is called the differential of the differential
of this quantity, or else its second differential. Thus, if we imagine a third ordinate
nq infinitely close to the second ordinate mp (see Fig. 4.1) and we draw mS parallel
to AB and mH parallel to RS, we call Hn the differential of the differential Rm, or
else the second differential of PM.

Similarly, if we imagine a fourth ordinate of infinitely close to the third ordinate
nq and we draw nT parallel to AB and nL parallel to ST , we call the difference of
the little straight lines Hn and Lo the differential of the second differential, or else
the third differential of PM. And so forth for the others.

Note. In what follows, we denote each differential by a number of d’s that expresses
the order or the type. For example, we denote by dd the second differential or the
differential of the second order, by ddd the third differential or the differential of the
third order, by dddd the fourth differential or the differential of the fourth order, and
similarly for the others. Thus, ddy denotes Hn, dddy denotes Lo � Hn, etc.

As for the powers of these differentials, we denote them with numerals placed
above and following, as we ordinarily do with powers of whole magnitudes.1 For
example, the square or the cube of dy is dy2 or dy3, the square or the cube of ddy
is ddy2 or [56] ddy3, that of dddy is dddy2 or dddy3, that of ddddy is ddddy2 or
ddddy3, etc.

1In (L’Hôpital 1696) the term grandeurs entières is used, literally “whole magnitudes,” yet even
though the comparison seems to be to the use of exponents with finite quantities.
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Fig. 4.1 Definition of Higher Order Differentials

Fig. 4.2 Higher Order Differentials – Ordinates from a Fixed Point

Corollary I. (�62) If we denote each of the abscissas AP, Ap, Aq, and Af by x,
each of the ordinates PM, pm, qn, and fo by y, and each of the curved portions AM,
Am, An, and Ao by u, it is clear that dx denotes the differentials Pp, pq and qf of
the abscissas, dy denotes the differentials Rm, Sn, and To of the ordinates, and du
denotes the differentials Mm, mn, and no of the portions of the curve AMD. Now
in order to take, for example, the second differential Hn of the variable PM, we
must imagine two little parts Pp and pq on the axis and two others, Mm and mn,
on the curve, in order to have the two differentials Rm and Sn. Consequently, if we
suppose that the two little parts Pp and pq are equal to each other, it is clear that
dx is constant with respect to dy and to du, because Pp, which becomes pq, remains
the same while Rm, which becomes Sn, and Mm, which becomes mn, vary. We might
suppose that the little parts Mm and mn of the curve are equal to each other and
therefore that du is constant with respect to dx and dy. Finally, if we suppose that Rm
and Sn are equal, then dy is constant with respect to dx and du and its differential
HN (ddy) is null.

Similarly, to take the third differential of PM, or the differential of the second
differential Hn, we must imagine three little parts Pp, pq, and qf on the axis, three
others, Mm, mn, and no on the curve, and also three others, Rm, Sn, and To, on
their ordinates. We then have dx or du or dy as constant, according to whether we
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suppose that either Pp, pq and qf , or Mm, mn and no, or Rm, Sn and To are equal to
one another. It is similar for the fourth differentials, the fifth, and so on.

All of this should also include curves AMD, whose ordinates BM, Bm and Bn
all emanate from a fixed point B (see Fig. 4.2), because to have, for example, the
second differential of BM, we must imagine two other ordinates Bm and Bn, which
make infinitely small angles MBm and mBn. Then, describing the small circular arcs
MR and mS, with centerB , the difference [57] of the little straight lines Rm and Sn is
the second differential of BM. We may take the little arcs MR and mS to be constant,
or the little portions Mm and mn of the curve, or finally the little straight lines Rm
and Sn. It is similar for third differentials of the ordinate BM, the fourth, and so on.

Remark. .�63/ We must carefully remark that:

1. There are different orders of the infinitely small: Rm, for example (see Fig. 4.1),
is infinitely small with respect to PM and infinitely large with respect to Hn.
Similarly the region MPpm is infinitely small with respect to the region APM
and infinitely large with respect to the triangle MRm.

2. The entire differential Pf is also infinitely small with respect to AP, because all
quantities that are the sum of a finite number of quantities, such as Pp, pq, and qf ,
that are infinitely small with respect to some other quantity AP, always remain
infinitely small with respect to that same quantity. In order for it to become of the
same order, it is necessary that the number of quantities of the lower order that
composed it be infinite.

Corollary II. (�64) We may indicate all possible cases of second order differentials
in the following way.

1. In curves in which the ordinates mR and nS are parallel to each other (see
Figs. 4.3, 4.4), we prolong the little straight line Mm to H , where it meets the
ordinate Sn. We describe the arc nk with center m and radius mn and we draw
the little straight lines nl, li and kcg, parallel to mS and to Sn. Given this, if we
wish dx to be constant, that is to say that MR be equal to mS, then it is clear
that the triangle mSH is similar and equal to the triangle MRm and, furthermore,
that Hn is ddy, that is to say, the difference of Rm and Sn, and that Hk D ddu.

Fig. 4.3 Parallel Ordinates – First Case
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Fig. 4.4 Parallel Ordinates – Second Case

Fig. 4.5 Ordinates from a Fixed Point – First Case

However, if we suppose that du is constant, that is to say that Mm D mn or D mk,
it is then clear that the triangle mgk is similar and equal to the triangle MRm, and
thus that kc D ddy and [58] Sg or cn D ddx. Finally, if we take dy as constant,
that is to say that mR D nS, it follows that the triangle mil is equal and similar to
the triangle MRm, and therefore that iS or nl D ddx and that lk D ddu.

2. In curves in which the ordinates BM, Bm and Bn emanate from the same point
B (see Figs. 4.5, 4.6), we describe the arcs MR and mS from the center B , which
we regard (see §3) as little straight lines, perpendicular to Bm and Bn. If we now
prolong Mm to E and describe the little arc nkE with center m and radius mn,
we make the angle EmH D mBn. We draw the little straight lines nl, li and kcg
parallel to mS and Sn. Given this, because the angle at S in the triangle BSm
is right, the angle BmS C mBn or CEmH makes a right angle. Consequently,
the angle BmE is equal to a right angle CSmH, which is also equal to the right
angle MRm CRMm, because it is external to the triangle RMm. Thus, the angle
SmH D RMm.
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Fig. 4.6 Ordinates from a Fixed Point – Second Case

It follows from this that:

1. If we wish dx to be constant, that is that the little arcs MR and mS are equal to
each other, the triangle SmH is similar and equal to the triangle RMm and hence
HN D ddy and Hk D ddu.

2. If we take du as constant, the triangle gmk is similar and equal to the triangle
RMm and hence kc expresses ddy and Sg or cn expresses ddx.

3. Finally, if we take dy as constant, the triangles iml and RMm are equal and similar
and thus iS or ln D ddx and lk D ddu.

Proposition I.

Problem. .�65/ To take the differential of a quantity composed of any differentials.

We take whatever differential we may wish as constant and treat the others as
variable quantities, making use of the rules prescribed in the first chapter.

The differential of y dy
dx is dy2Cy ddy

dx , taking dx as constant, and dx dy2�y dy ddx
dx2

, taking
dy as constant.

[59] The differential of z
p

dx2Cdy2

dx , taking dx as constant, is dz
p

dx2 C dy2 C
z dy ddyp
dx2Cdy2

, all divided by dx, that is to say,

dz dx2 C dz dy2 C z dy ddy

dx
p

dx2 C dy2
:

Taking dy as constant, it is dz dx
p

dx2 C dy2 C z dx2 ddxp
dx2Cdy2

� z ddx
p

dx2 C dy2, all

divided by dx2, that is to say,

dz dx3 C dz dx dy2 � z dy2 ddx

dx2
p

dx2 C dy2
:



66 4 Inflection Points and Cusps

The differential of y dyp
dx2Cdy2

, taking dx as constant, is dy2 C y ddy
p

dx2 C dy2 �
y dy2 ddyp

dx2Cdy2
, all divided by dx2 C dy2, that is to say,

dx2 dy2 C dy4 C y dx2 ddy

dx2 C dy2
p

dx2 C dy2
:

Taking dy as constant, it is

dx2 dy2 C dy4 � y dy dx ddx

dx2 C dy2
p

dx2 C dy2
:

The differential of dx2Cdy2
p

dx2Cdy2

�dx ddy , or dx2Cdy2
3
2

�dx ddy , taking dx as constant, is

�3 dx dy ddy2 dx2 C dy2
1
2 C dx dddy dx2 C dy2

3
2

dx2 ddy2
:

However, we must observe that in this last case, we are not free to take
dy as constant, because under this assumption, the differential ddy is null and,
consequently, it must not be present in the given quantity.

Definition II. When a curved line AFK is in part concave and in part convex
towards a straight line AB (see Figs. 4.7, 4.8) or towards a fixed point B (see
Figs. 4.9, 4.10), the point F that separates the concave part from the convex part
and, consequently, is the end of one and the beginning of the other, is called an

Fig. 4.7 Inflection Point
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Fig. 4.8 Cusp

Fig. 4.9 Cusp

Fig. 4.10 Inflection Point

inflection point2 when the curve, having arrived at F , continues along its path in the
same direction, and a cusp3 when it turns back on its path on the side of its origin.

2Compare this to the definition presented in Problem XXI on p. 217.
3Following Bernoulli [letter 22], L’Hôpital used the term “point de rebroussement,” literally a
“point of turning back.” The mathematical term “turning point” has a different meaning from this,
so we use the term “cusp,” which is the standard English term for this type of point.
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Proposition II.

General Problem. [60] .�66/When the nature of the curved line AFK is given, we
wish to determine the inflection point or the cusp F .

In the first case, suppose that the curved line AFK has a straight line AB as its
diameter and that its ordinates PM, EF, etc., are all parallel to one another (see
Figs. 4.7, 4.8). If we draw an ordinate FE with the tangent FL from a point F , as
well as an ordinate MP with a tangent MT from any point M on the portion AF,
then it is clear that:

1. In curves that have an inflection point, that as the abscissa AP increases
continually, the portion AT of the diameter, intercepted between the origin of
the x’s and the point where it meets the tangent, also increases up to when the
point P coincides with E, after which it decreases. From this we see that AT ,
when applied to the point P , must become a maximum AL when the point P
coincides with the point E that we wish to find.

2. In curves that have a cusp, as the portion AT increases continually, the abscissa
AP also increases up to when the point where T coincides with L, after which it
decreases. From this we see that AP, when applied to the point T , must become
a maximum AE when the point T coincides with L.

Now if we denote AE by x and EF by y, then we have AL D y dx
dy � x, the

differential of which is dy2 dx�y dx ddy
dy2

�dx (assuming that dx is constant) which, being
divided by dx, the differential of AE, must be null or infinity (see §47). This gives
� y ddy

dy2
D 0 or is equal to infinity. Multiplying by dy2 and dividing by �y we have

ddy D 0 or is equal to infinity, which we make use of in what follows as the general
formula for finding the inflection point or the cusp F . Given the nature of the curve
AFK, we have the value of dy in terms of dx and taking the differential of this value,
supposing that dx [61] is constant, we will find the value of ddy in terms of dx2.
When this is first set equal to zero and then to infinity, we may use one or the other
of these assumptions to find a value of AE such that the ordinate EF cuts the curve
AFK in either an inflection point or a cusp F .

The origin A of the x’s may be situated so that AL D x � y dx
dy , instead of

y dx
dy � x, and such that AL or AE is a minimum instead of a maximum. However,

as the consequence of this is still the same and because this causes no difficulty, I
will not dwell on this case.

The same thing may also be found in a different way. It is clear that if we take dx
as constant and we assume that the ordinate y increases, then Sn is smaller than SH
or than Rm in the concave part (see Figs. 4.3, 4.4), and greater in the convex part.
From this we see that the values of Hn (ddy) must go from positive to negative at the
inflection point or cusp F . Consequently, it must be either null or infinity (see §47).
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In the second case, suppose that the curve AFK has as its ordinates the
straight lines BM, BF, and BM,4 which all emanate from the same point B (see
Figs. 4.9, 4.10). We draw any ordinate BM we may wish, with a tangent MT that
meets BT , which is perpendicular to BM, at the point T (see Figs. 4.11, 4.12). Now
take the pointm to be infinitely close toM and draw the ordinate Bm, the tangent mt
and the perpendicular Bt on Bm, which meets MT at O . Assuming that the ordinate
BM increases as it becomes Bm, it is clear that in the concave part, Bt is greater
than BO and, on the contrary, it is smaller in the convex part, so that at the inflection
point or cusp F , the value of Ot must go from positive to negative.

Given this, if we describe the little circular arcs MR and TH with center B (see
Fig. 4.11), we make similar triangles mRM, MBT , and THO and similar little sectors
BMR and BTH. Denoting BM by y and MR by dx, we have mR .dy/ W RM .dx/ WW
BM .y/ W BT D y dx

dy WW MR .dx/ W TH D dx2

dy WW TH
�

dx2

dy

�
W HO D dx3

dy2
. Now if we

take the differential of BT [62]
�
y dx
dy

�
, assuming dx as constant, we have Bt � BT or

Ht D dx dy2 � y dx ddy

dy2
. Consequently, OH CHt or Ot D dx3 C dx dy2 � y dx ddy

dy2
,

from which it follows, multiplying by dy2 and dividing by dx, that the value of
dx2 C dy2 �y ddy is null or infinity at the inflection point or cusp F . Now, given the
nature of the curve AFK (see Figs. 4.9, 4.10), we have the values of dy in terms of
dx and of ddy in terms of dx2. When substituted into dx2 C dy2 � y ddy, these give

Fig. 4.11 Ordinates from a Fixed Point – Concave

Fig. 4.12 Ordinates from a Fixed Point – Convex

4In figures 4.9 and 4.10, the author makes use of the same letter M for two different points.
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a quantity which, when set first to zero and then to infinity, is used to find a value
of BF such that, when we describe a circle with center B and this radius, we cut the
curve AFK at the inflection point or cusp F . This is what was proposed.

To find the same thing by another method, we must consider that in the concave
part, the angle BmE is greater than the angle Bmn (see Figs. 4.5, 4.6), while on the
other hand, in the convex part it is smaller. Consequently, the angle BmE � Bmn
or Emn, that is to say the arc En that measures it, goes from positive to negative
at the point F that we wish to find. Now, taking dx as constant, the similar right
triangles HmS and Hnk give Hm .du/ W mS .dx/ WW Hn .�ddy/ W nk D � dx ddy

du , where
we should observe that the value of Hn is negative, because as BM (y) increases,
Rm (dy) decreases. However, because the sectors BmS and mEk are similar, we
have Bm .y/ W mS .dx/ WW mE .du/ W Ek D dx du

y
. Consequently, Ek C kn or

En D dx du2 � y dx ddy

y du
. From this it follows, in multiplying by y du and dividing

by dx that du2 � y ddy or dx2 C dy2 � y ddy must go from positive to negative at the
point F (see Figs. 4.9, 4.10) that we wish to find.

If we suppose that y becomes infinite, then the terms dx2 and dy2 are null with
respect to the term y ddy. Consequently, the formula dx2 C dy2 � y ddy D 0 or
infinity becomes the formula �y ddy D 0 or infinity. That is to say, dividing by �y,
that ddy D 0 or infinity, which is the formula in the first case. This must also happen
because [63] the ordinates BM, BF, and BM thereby become parallel.

Corollary. (�67) When ddy D 0, it is clear that the differential of AL must be null
with respect to that of AE (see Fig. 4.7) and consequently that the two infinitely close
tangents FL and fL must coincide with each other, making only a single straight line
fFL. However, when ddy D infinity (see Fig. 4.8), the differential of AL must be
infinitely large with respect to that of AE, or (what is the same thing) the differential
of AE is infinitely small with respect to that of AL. Consequently, we may draw two
tangents FL and Fl from the same point F , which make and infinitely small angle
LFl between themselves.

Likewise, when dx2 C dy2 � y ddy D 0, it is clear that Ot must become infinitely
small with respect to MR (see Figs. 4.11, 4.12). Thus, the two infinitely close
tangents MT and mt must coincide with each other, when the point M becomes
an inflection point or a cusp. However, on the contrary, when dx2 C dy2 � y ddy D
infinity, Ot must be infinite with respect to MR, or (what is the same thing) MR is
infinitely small with respect to Ot. Consequently, the point m must fall on the point
M , that is to say that we may draw two tangents from the same point M that make
an infinitely small angle between themselves, when this point becomes an inflection
point or a cusp.

It is clear that the tangent to an inflection point or a cusp F , when prolonged,
touches and cuts the curve AFK at the same point.
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Fig. 4.13 A Curve Related to the “Witch of Agnesi”

Example I. .�68/5 Let AFK be a curved line that has the straight line AB as diameter
(see Fig. 4.13), and is such that the relationship of the abscissa AE (x) to the ordinate
EF (y) is expressed by the equation6 axx D xxy C aay. We wish to find a value of
AE such that the ordinate EF meets the curve AFK at an inflection point F .

[64] The equation of the curve is y D axx
xxCaa and consequently dy D 2a3x dx

xxCaa
2 .

Taking the differential of this quantity, supposing dx to be constant, then setting it
equal to zero, we find

2a3 dx2 � xx C aa2 � 8a3xx dx2 � xx C aa

xx C aa4
D 0:

Multiplying this by xx C aa4 and dividing by 2a3 dx2�xx C aa gives xxCaa�4xx D
0, from which we conclude that AE (x) D a

q
1
3
.

If we substitute the value 1
3
aa for xx in the equation of the curve y D axx

xxCaa , we
find that EF (y) D 1

4
a, so that we may determine the inflection point F without

supposing that the curve AFK is described.
If we draw AC parallel to the ordinate EF equal to the given straight line a and

we draw CG parallel to AB, it is asymptotic to the curve AFK. This is because if we
suppose x to be infinite, we may take xx for xx C aa and consequently the equation
of the curve y D axx

xxCaa becomes y D a.

Example II. .�69/ Let y � a D x � a 3
5 . Thus dy D 3

5
x � a� 2

5 and

ddy D � 6

25
x � a� 7

5 dx2 D �6 dx2

25 5
p
x � a 7

;

5Compare this to the example on p. 218.
6This is essentially the curve that later became known as the “Witch of Agnesi.” This curve
considered here is that curve reflected in the line y D a

2
; see p. xxxvi for more about this curve.
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Fig. 4.14 Prolate Cycloid

taking dx as constant. Now, if we assume this fraction is equal to zero, we find that
�6 dx2 D 0, which can never happen. We must assume that it is infinitely large, and
consequently its denominator 25 5

p
x � a 7 is infinitely small or zero. From this, the

unknown AE (x) D a.

Example III. .�70/ Consider a prolate half-roulette AFK (see Fig. 4.14), whose
base BK is greater than the semi-circumference ADB of the generating circle with
center C . We wish to determine [65] the point E on the diameter AB, such that the
ordinate EF meets the cycloid at the inflection point F .

Denoting the given quantities ADB by a, BK by b and AB by 2c and the
unknowns AE by x, ED by z, the arc AD by u and EF by y, then by the property
of the roulette, we have y D z C bu

a
and consequently dy D dz C b du

a
. Now

by the property of the circle, we have z D p
2cx � xx, dz D c dx�x dxp

2cx�xx
and

du.
p

dx2 C dy2/ D c dxp
2cx�xx

. Thus, substituting the values of dz and du, we find

dy D ac dx � ax dx C bc dx

a
p
2cx � xx

;

whose differential (taking dx as constant) gives

bcx � acc � bcc � dx2

2cx � xx � p
2cx � xx

D 0;

from which we conclude that AE (x) D c C ac
b

and CE D ac
b

.
It is clear that in order for there to be an inflection point F , b must be greater

than a, because if it were less than a, then CE would be greater than CB.

Example IV. .�71/7 We wish to find the inflection point F of the Conchoid AFK of
Nicomedes (see Fig. 4.15), which has the point P as pole and the straight line BC
as asymptote. Its property is such that if we draw the straight line PF, from the pole
P to any of its points F , which meets the asymptote BC at D, then the part DF is
always equal to the same given straight line a.

7Compare this to the example given on p. 72.
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Fig. 4.15 Conchoid of Nicomedes

If we draw PA perpendicular to BC and FE parallel to BC, then we denote the
given quantities AB or FD by a and BP by b, and the unknowns BE by x and
EF by y. If we draw DL parallel to BA, the similar triangles DLF and PEF give

DL .x/ W LF
p

aa � xx WW PE .bC x/ W EF .y/ D bCxp
aa�xx
x

, whose differential is8

dy D x3 dxCaab dx
xx

p
aa�xx

. If we then take the differential of this quantity and set it equal to
zero, we form the equation

2a4b � aax3 � 3aabxx � dx2

aax3 � x5 � p
aa � xx

D 0;

[66] which reduces to x3 C 3bxx � 2aab D 0, one of the roots of which gives the
value of BE that we wish to find.

If a D b, the previous equation changes to x3 C 3axx � 2a3 D 0, which, when
divided by xC a, gives xx C 2ax � 2aa D 0. Consequently BE .x/ D �aC p

3aa.

In Another Way. We take the lines PF that emanate from the pole P as the ordinates
and use the formula (see §66) yddy D dx2 C dy2, in which dx is assumed to be
constant. We imagine another ordinate Pf that makes an infinitely small angle FPf
with PF and we describe the little arcs FG and DH with center P . If we denote the
given quantities AB by a and BP by b, and the unknowns PF by y and PD by z, then
we have y D z C a from the property of the conchoid, which gives dy D dz. Now,

8If one applies the rules of the differential calculus, the value of dy would be the negative of the
given value. However, the coordinates in this problem are set up so that as y increases, x decreases,
so the author adjusts the sign of dy as described earlier (see §8). In any case, the value of ddy that
follows has the correct sign.
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because DBP is a right triangle, we have DB D p
zz � bb. Because of the similar

triangles DBP and dHD, we have DB .
p

zz � bb/ W BP .b/ WW dH .dz/ W HD D
b dxp
zz�bb

. Also, because of the similar triangles PDH and PFG, we have PD .z/ W
PF .z C a/ WW HD

�
b dzp
zz�bb

�
W FG .dx/ D bx dzCab dz

z
p

zz�bb
. From this, we conclude dz or

dy D z dx
p

zz�bb
bzCab , the differential of which (supposing dx to be constant) is

ddy D bz3 C 2abzz � ab3 � dz dx

bz C ab
2p

zz � bb

D bz4 C 2abz3 � ab3z � dx2

bz C ab
3

;

substituting the value of dz. Thus, if we substitute z C a in place of y in the general
formula (see §66) y ddy D dx2 C dy2, as well as the values that we have just found
in terms of dx and dx2 for dy and ddy, we form the following equation

z4 C 2az3 � abbz � dx2

bz C ab
2

D z4 C 2abbz C aabb � dx2

bz C ab
2

;

which reduces to 2z3 � 3bbz � abb D 0, one of the roots of which, when added to
a, gives the value of the unknown PF.

If a D b, then we have 2z3 � 3aaz �a3 D 0, which when divided by z Ca, gives

zz � az � aa
2

D 0, whose solution gives PF .z C a/ D 3
2
aC 1

2
a
p
3 D 3aCap

3
2

.

Example V. [67] .�72/9 Let AFK (see Fig. 4.15) be another kind of conchoid, such
that if we draw the straight line PF from any of its points F to the pole P , which
meets the asymptote BC at D, then the rectangle PD � DF is always equal to the
same rectangle PB � BA. We wish to find the inflection point F .

If we denote the unknowns BE by x and EF by y and the given quantities AB
by a and BP by b, then we have PD � DF D ab. The parallels BD and EF give

PD � DF .ab/ W PB � BE .bx/ WW PF
2
.bb C 2bx C xx C yy/ W PE

2
.bb C 2bx C xx/.

Thus bbx C 2bxx C x3 C yyx D abb C 2abx C axx, or

yy D abb C 2abx C axx � bbx � 2bxx � x3
x

9Compare this to the example given on p. 223.
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and

y D b C x

r
a � x
x

D p
ax � xx C b

r
a � x
x

;

the differential of which gives10

dy D �ax dx C 2xx dx C ab dx

2x
p

ax � xx
:

Taking the differential again, we form the equation11

3aab � aax � 4abx � dx2

4axx � 4x3pax � x2 D 0;

which reduces to x D 3ab
aC4b , the value of the unknown BE.

If we set the value of dy, �ax dxC2xx dxCab dx
2x

p
ax�xx

equal to zero, we have xx � 1
2
ax C

1
2
ab D 0, the two roots of which are aCp

aa�8ab
4

and a�p
aa�8ab
4

. When a is greater
than 8b, these give two values of BH and BL (see Fig. 4.16), such that the ordinate
HM is less than its neighbors and the ordinate LN is greater. That is to say, the
tangents at M and N are parallel to the axis AB and thus the point E falls between
the points H and L.

However, if a D 8b, the lines BH, BE, and BL are all equal to 1
4
a and thus the

tangent at the inflection point F is parallel to the axis AB (see Fig. 4.17). Finally, if

Fig. 4.16 Conchoid with Two Extrema

10As in Example IV, in this chapter, this value of dy has its sign adjusted.
11In (L’Hôpital 1696), the denominator contained 4ax � 4x3, with a note in the Errata to replace
�4x3 with �4xx. In fact, that term �4x3 is correct, whereas for 4ax should have been replaced
with 4axx.
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Fig. 4.17 Conchoid with Tangent Parallel to the Axis at the Inflection Point

Fig. 4.18 Parabolic Spiral

a is less than 8b, the two roots are imaginary and consequently there are no tangents
that can be parallel to the axis.

[68] We may also resolve this question by taking the lines PF and Pf that emanate
from the pole P as ordinates (see Fig. 4.15) and making use of the formula y ddy D
dx2 C dy2, as we have done in the previous example.

Example VI. .�73/12 Let AED be a circle with the point B as its center (see
Fig. 4.18), with a curved line AFK, such that if we draw the radius BFE at will,
the square on FE is equal to the rectangle of the arc AE with a given straight line
b.13 We wish to determine the inflection point F of this curve.

Denoting the arc AE by z, the radius BA or BE by a and the ordinate BF by y,
we have bz D aa � 2ay C yy and (taking differentials) 2y dy�2a dy

b
D dz D Ee.

Now, because of the similar sectors BEe and BFG, we have BE .a/ W BF .y/ WW
Ee

�
2y dy�2a dy

b

�
W FG .dx/ D 2yy dy�2ay dy

ab , whose differential, taking dx as constant,

gives 4y dy2�2a dy2C2yy ddy�2ay ddy D 0, and consequently y ddy D a dy2�2y dy2

y�a .

12Compare this to the example given on p. 230.
13I.e., the product of the lengths of the arc AE and the line b.
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Fig. 4.19 Example of a Cusp

Thus, if we substitute the values of dx2 and y ddy in terms of dy2 in the general
formula y ddy D dx2 C dy2 (see §66), we form the equation

a dy2 � 2y dy2

y � a D 4y2 dy2 � 8ay3 dy2 C 4aayy dy2 C aabb dy2

aabb
:

This reduces to 4y5 � 12ay4 C 12aay3 � 4a3yy C 3aabby � 2a3bb D 0, the solution
of which gives the value of BF that we wish to find.

It is clear that the curve AFK, which we may call a parabolic Spiral,14 must
have an inflection point F . Because the circumference AED does not initially differ
noticeably from the tangent at A, it follows from the nature of the parabola that
it must initially be concave towards this tangent and that subsequently, when the
curvature of the circumference about its center becomes noticeable, it must become
concave towards this center.

Example VII. [69] .�74/ Let AFK be a curved line that has the straight line AB (see
Fig. 4.19) as its axis with the following property: if we draw any tangent FB that
meets AB in the point B , the intercepted part AB is always to the tangent BF in a
given ratio of m to n. We wish to determine the cusp F .

If we denote the unknown and variable quantities AE by x and EF by y, we have

EB D � y dx
dy (because as x increases, y decreases) and FB D y

p
dx2Cdy2

dy . Now, by

the property of the curve, AE C EB or AB
�
x dy�y dx

dy

�
W BF

�
y
p

dx2Cdy2

dy

�
WW m W n.

Therefore, m
p

dx2 C dy2 D nx dy
y

� n dx and its differential gives

m dy ddy
p

dx2 C dy2
D �ny dx dy C nxy ddy � nx dy2

yy
;

taking dx as constant and negative, from which we conclude

ddy D �ny dx dy � nx dy2
p

dx2 C dy2

myy dy � nxy
p

dx2 C dy2
:

14This curve is closely related to Spiral of Fermat. See p. xxxvi for further discussion of this curve.
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If we now set this fraction equal to zero, we find that �y dx � x dy D 0, which tells
us nothing. This is why we must suppose that this fraction is equal to infinity, that is
to say its denominator is equal to zero. This gives

p
dx2 C dy2 D my dy

nx D nx dy�ny dx
my ,

because of the equation of the curve. From this we conclude that dx D nnxx dy�mmyy dy
nnxy .

Now squaring both sides of the equation my dy D nx
p

dx2 C dy2 we also find that

dx D dy
p

mmyy�nnxx
nx D nnxx dy�mmyy dy

nnxy . Finally, we conclude that y
p

mm � nn D nx,
which gives the following construction.

Let a semi-circle AID be described with diameter AD D m. If we take the chord
DI D n and extend AI indefinitely, then I say that it meets the curve AFK in the
cusp F .

[70] This is because, if we draw IH perpendicular to AB, the similar right
triangles DIA, IHA, and FEA give DI .n/ W IA.

p
mm � nn/ WW IH W HA WW FE .y/ W

EA .x/. Consequently, y
p

mm � nn D nx, which is the location to be constructed.
It is clear that BF is parallel to DI because AB W BF WW AD .m/ W DI .n/, from

which it follows that the angle AFB is a right angle. Consequently, the lines AB, BF,
and BE are in continued proportion.15

We may find this same property without any calculation if we imagine (see §67)
two tangents FB and Fb drawn from the same cusp F , which make an infinitely
small angle BFb between themselves. This is because if we describe the little arc
BL with center F , we have m W n WW Ab W bF WW AB W BF WW Ab � AB or Bb W
bF � BF or bL WW BF W BE, because of the similar right triangles BbL and FBE.
Therefore, etc.

If m D n, it is clear that the straight line AF is evidently perpendicular to the
axis AB and thus the tangent FB is parallel to this axis. This is what we already
knew must happen, because in this case the curve AF must be a semi-circle which
has its diameter perpendicular to the axis AB. However, if m is less than n, it is
clear that there is no cusp, because then the equation y

p
mm � nn D nx contains a

contradiction.

15I.e., BE is the third proportional to AB and BF, or AB W BF WW BF W BE.



Chapter 5
Use of the Differential Calculus
for Finding Evolutes

Definition. [71] We imagine any curved line BDF (see Fig. 5.1), which is concave
towards the same side, and is covered or wrapped by a thread ABDF , one
of the extremities of which is fixed at F and the other of which is pulled along
the tangent BA. If we make the extremity A move by always holding the thread taut
and by continually evolving1 the curve BDF, it is clear that the extremity A of this
thread describes a curved line AHK by this motion.

Given this, the curve BDF is called the Evolute of the curve2 AHK.
The straight parts AB, HD, and KF of the thread ABDF are called the radii of

the evolute.3

Corollary I. (�75) As long as the length of the thread ABDF always remains the
same, it follows that the portion BD of the curve is equal to the difference of the
radii DH and BA, which emanate from its extremities. Furthermore, the portion DF
is equal to the difference of the radii FK and DH, and the entire curve BDF is equal
to the difference of the radii FK and BA. From this, we see that if the radius BA of
the curve were null, that is to say that if the extremity A of the thread fell on the
origin B of the curve BDF, then the radii DH and FK of the evolute would be equal
to the portions BD and BDF of the curve BDF.

Corollary II. (�76) If we consider the curve BDF to be a polygon BCDEF with
an infinity of sides, then it is clear that the extremity A of the thread ABCDEF

1In L’Hôpital (1696) the verb déveloper is used to describe the peeling away of the thread from
the curve BDF. We translate this as “evolving.” Conversely, the term enveloper is used, e.g. §110,
Footnote 4, to describe the inverse process of laying the thread back onto the curve BDF.
2In L’Hôpital (1696) the term Dévelopée is used for the curve AHK. We translate this with the
standard modern term “evolute” (Huygens 1673, p. 74).
3The modern term for this is “radii of curvature,” but L’Hôpital (1696) makes no mention of
curvature here, referring instead to rayons de la dévelopée.

© Springer International Publishing Switzerland 2015
R.E. Bradley et al., L’Hopital’s Analyse des infiniments petits, Science
Networks. Historical Studies 50, DOI 10.1007/978-3-319-17115-9_5
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Fig. 5.1 Definition of Involute and Evolute

describes the little arc AG, which has [72] the point C for its center, right up
until the radius CG makes a straight line with the little side CD neighboring CB.
Furthermore, it describes the little arc GH, which has the pointD as its center, right
up until the radius DH makes a straight line with the little side DE, and so on, until
the curve BCDEF is entirely evolved. The curve AHK may therefore be considered
as an assemblage of an infinity of little circular arcs AG, GH, HI, IK, etc., which
have the points C , D, E, F , etc., as centers. From this it follows that:

1. The radii of the evolute touch the curve continually as DH at D, KF at F , etc.,
and they are all perpendicular to the curve AHK that they describe, as DH at H ,
FK at K, etc. This is because DH, for example, is perpendicular to the little arc
GH and to the little arc HI, because it passes through their centers D and E.
From this we see that:4

(a) The evolute BDF (see Fig. 5.1) bounds the space where all the perpendiculars
to the curve AHK fall.

(b) If we prolong any radius HD that cuts the radius AB at R until it meets any
other radius KF at S , we may always draw two perpendiculars to the curve
AHK from all of the points of the part RS, except from the point of tangency
D, from which we may only draw one, namely DH. For it is clear that the
intersection R of the radii AB and DH traverses all the points of the part RS
while the radius AB describes, by its extremity A, the line AHK to which it
is continually perpendicular and that the radii AB and HD do not coincide,
except when the intersection R falls on the point of tangency D.

2. If we prolong (see Fig. 5.2) the little arcs HG to l , IH tom, KI to n, etc., towards
the origin A of the evolution, each little arc such as IH will touch outside its

4Rather than using letters (a) and (b), the author numbered the following two points 1ı and 2ı,
embedded within a paragraph already numbered 1. We have chosen to use letters instead for
clarity.
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Fig. 5.2 Evolute as a Polygonal Curve

neighbor HG, because the radii CA, DG, EH, and FI always increase, as long
as the little arcs that make up the curve AHK move away from the point A.
For the same reasons, if we prolong the little arcs AG to o, GH to p, [73] and
HI to q in the direction opposite to the point A, each little arc such as HI will
touch inside its neighbor IK. Now, because the pointsH and I , as well asD and
E, may be considered as falling on each other, owing to the infinite smallness
of both the arc HI and the side DE, it follows that if we describe a circle mHp
with any point D in the middle of the evolute BDF as its center and with DH as
its radius, it touches outside the part HA, which falls entirely within the circle,
and touches inside the other part HK, which falls entirely outside the same circle.
That is to say, it both touches and cuts the curve AHK at the same pointH , in the
same way as the tangent at an inflection point cuts the curve at the same point.

3. The radius HD of the little arc HG differs from the radius CG and EH of the
neighboring arcs GA and HI by only the infinitely small quantity CD or DE.
From this it follows that no matter how little we decrease the radius DH, it will
be less than CG and therefore that its circle touches inside the part HA and, on the
other hand, no matter how little we increase it, it will exceed HE and therefore its
circle touches outside the part HK. Consequently, the circle mHp is the smallest
of all those that touch outside of the part HA and, on the other hand, is the largest
of all those that touch inside the part HK. That is to say, we cannot put another
circle between this one and the curve.5

4. Because the curvature of circles increases proportionately as their radii decrease,
it follows that the curvature of the little arc HI is to the curvature of the little arc
AG reciprocally as the radius BA or CA of the latter is to the radius DH or EH.
That is to say, the curvature of the curve AHK atH is to the curvature at A as the
radius BA is to the radius DH. Similarly, the curvature at K is to the curvature

5This is an implicit reference to the osculating circle, which will be mentioned in Chapter 10.
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Fig. 5.3 Construction of the Radius of the Evolute – Perpendicular Ordinates

at H as the radius DH is to the radius FK. From this we see that the curvature
of the line AHK continually decreases as the line BDF is evolved, so that at the
point A, where the evolution begins, it is as large as possible [74] and at the point
K where I suppose that it ceases, it is the smallest.

5. The points of the evolute are nothing more than the meeting points of the
perpendiculars drawn from the extremities of the little arcs that make up
the curve AHK. For example, the point D or E is the intersection point of
the perpendiculars HD and IE of the little arc HI. Therefore, if the curve AHK is
given, along with the position of one of its perpendiculars HD, then to find the
point D or E, where it touches the evolute, we need to only find the point of
intersection of the infinitely close perpendiculars HD and IE. We will show how
to do this in the Problem that follows.

Proposition I.

General Problem. .�77/ Given the nature of the curved line AMD (see Fig. 5.3)
with any one of its perpendiculars MC, we wish to find the length of the radius MC
of its evolute. That is to say, we wish to find the intersection of the infinitely close
perpendiculars MC and mC.

Suppose, in the first place, that the curved line AMD has the straight line AB as
axis, on which the ordinates PM are perpendicular. We imagine another ordinate
mp, which is infinitely close to MP, because we suppose the point m to be infinitely
close to M . From the point of intersection C , we draw CE parallel to the axis AB,
which meets the ordinates MP and mp in the points E and e. Finally, drawing MR
parallel to AB, we form right triangles MRm and MEC, which are similar because
the angles EMR and CMm are right angles and the angle CMR is common to them,
so the angle EMC is equal to the angle RMm.

Therefore, if we denote the given quantities AP by x and PM by y, and the
unknown ME by z, we have Ee or Pp or MR D dx, Rm D dy D dz, Mm D
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Fig. 5.4 Construction of the Radius of the Evolute – Polar Ordinates

p
dx2 C dy2 and MR .dx/ W Mm .

p
dx2 C dy2/ WW ME .z/ W MC D z

p
dx2Cdy2

dx . Now
because the point C is the center of the little arc Mm, its radius CM, which becomes
Cm when [75] EM increases by its differential Rm, remains the same. Its differential
is therefore null, which gives

dz dx2 C dz dy2 C z dy ddy

dx
p

dx2 C dy2
D 0

(supposing that dx is constant). From this we conclude that

ME .z/ D dz dx2 C dz dy2

�dy ddy
D dx2 C dy2

�ddy
;

substituting the value dy for dz.
Suppose, in the second place, that the ordinates BM and Bm (see Fig. 5.4)

all emanate from the same point B . If, from the point C that we wish to find,
we drop the perpendiculars CE and Ce to these ordinates, which I suppose to
be infinitely close, and describe the little arc MR with center B , then we form
the similar right triangles RMm and EMC, and the similar triangles BMR, BEG,
and CeG. If we denote BM by y, ME by z, and MR by dx, then we have Rm D dy,

Mm D
p

dx2 C dy2, CE or Ce D z dy
dx and MC D z

p
dx2Cdy2

dx . Next we find, as in the
first case, that

z D dz dx2 C dz dy2

�dy ddy
:
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Now

BM .y/ W CE

�
z dy

dx

�
WW MR .dx/ W Ge D z dy

y
;

and

me � ME or Rm � Ge D dz D y dy � z dy

y
:

Thus, substituting this value in place of dz, we have

ME .z/ D y dx2 C y dy2

dx2 C dy2 � y ddy
:

If we suppose that y is infinite, the terms dx2 and dy2 are null with respect to
y ddy and consequently this last formula changes to the one in the preceding case.
This must also happen, because then the ordinates become parallel to each other,
and the arc MR becomes a straight line perpendicular to these ordinates.

If the nature of the curve AMD is now given, we find the values of dy2 and ddy
in terms of dx2, or of dx2 and ddy in terms of dy2, which, when substituted into
the preceding formulas, give a value for ME freed of all differentials and entirely
known. If we draw EC perpendicular to ME, it cuts the perpendicular to the curve
MC at the point C that we wish to find. This is what was proposed.

Corollary I. [76] .�78/ Because of the similar right triangles MRm and MEC (see
Figs. 5.3, 5.4), we have

MC D dx2 C dy2
p

dx2 C dy2

�dx ddy

in the first case and

MC D y dx2 C y dy2
p

dx2 C dy2

dx3 C dx dy2 � ydx ddy

in the second case.

Remark. .�79/ There are several other ways to find the radii of the evolute. I will
include some of them here, in order to give different approaches to those who have
not yet mastered this calculus.

The first case, for curves whose ordinates are perpendicular to the axis.

First Method. Let MR (see Fig. 5.3) be prolonged to G, where it meets the per-

pendicular mC. The right angles MRm and MmG give RG D dy2

dx and consequently
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MG D dx2Cdy2

dx . Now because the triangles MRm and MPQ are similar (where the
points Q and q are the intersections of the infinitely close perpendiculars MC

and mC with the axis AB), it follows that MQ D y
p

dx2Cdy2

dx and PQ D y dy
dx .

Consequently AQ D x C y dy
dx , the differential of which is Qq D dx C dy2Cy ddy

dx
(taking dx to be constant). Because the triangles CMG and CQq are similar, we have

MG � Qq
��y ddy

dx

�
W MG

�
dx2Cdy2

dx

�
WW MQ

�
y
p

dx2Cdy2

dx

�
W MC D dx2Cdy2

p
dx2Cdy2

�dx ddy :

Second Method. If we describe the little arc QO with center C , then the little
right triangles QOq and MRm are similar, because Mm and QO are parallel and MR
and Qq are parallel. Consequently

Mm
�p

dx2 C dy2
�

W MR .dx/ WW Qq
�

dx2Cdy2Cy ddy
dx

�
W QO D dx2Cdy2Cy ddyp

dx2Cdy2
:

Now the similar sectors CMm [77] and CQO give

Mm � QO

�
�y ddyp
dx2Cdy2

�
W Mm

�p
dx2 C dy2

�
WW MQ

�
y
p

dx2Cdy2

dx

�
W MC D dx2Cdy2

p
dx2Cdy2

�dx ddy :

Third Method. If we draw the infinitely close tangents MT and mt, we have PT �
AP or AT D y dx

dy � x, the differential of which gives Tt D � y dx ddy
dy2

. If we describe
the little arc TH with center m, we form the right triangle HTt, which is similar to
RmM, because the angles HtT and RMm, or PTM, are equal, since they differ from
each other only by the angle Tmt, which is infinitely small. This gives

Mm
�p

dx2 C dy2
�

W mR .dy/ WW Tt
�
� y dx ddy

dy2

�
W TH D �y dx ddy

dy
p

dx2Cdy2
:

Now the sectors TmH and MCm are similar, because the angle Tmt C MmC is right
and the angle MmC C MCm is also right, because of the triangle CMm, considered
to be a right triangle at M . Thus,

TH

�
� y dx ddy

dy
p

dx2Cdy2

�
W Mm

�p
dx2 C dy2

�
WW Tm or TH

�
y

p
dx2Cdy2

dy

�
W MC D dx2Cdy2

p
dx2Cdy2

�dx ddy :

Fourth Method. We consider (see §64) the second differentials, taking
dx to be constant. The similar triangles (see Fig. 5.5) HmS and Hnk give

Hm or Mm
�p

dx2 C dy2
�

W mS or MR .dx/ WW Hn .�ddy/ W nk D � dx ddyp
dx2Cdy2

.

Now the angle kmn is equal to the angle that the tangents at the points M and m
make between themselves and consequently, as we have just proven, is equal to the
angle MCm, from which it follows that sectors nmk and MCm are similar. Therefore
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Fig. 5.5 Second Differential of the Radius of the Evolute – Perpendicular Ordinates

nk

�
� dx ddyp

dx2Cdy2

�
W mk or Mm (see §2)

�p
dx2 C dy2

�
WW Mm

�p
dx2 C dy2

�
W

MC D dx2Cdy2
p

dx2Cdy2

�dx ddy . We take mH or Mm for mk, because they differ from
each other by only the little straight line Hk, which is infinitely smaller than them.
Similarly, Hn is infinitely smaller than Rm or Sn.

The second case, for curves whose ordinates emanate from the same fixed point.

[78] First Method. From the fixed point B (see Fig. 5.4), drop perpendiculars
BF and Bf to the infinitely close radii CM and Cm. The right triangles mMR and
BMF, which are similar (because when we add the same angle FMR to the angles
mMR and BMF they each make a right angle), give MF or MH D y dxp

dx2Cdy2
and

BF D y dyp
dx2Cdy2

, the differential of which (taking dx to be constant) is6

Bf � BF or Hf D dx2 dy2 C dy4 C y dx2 ddy

dx2 C dy2 �
p

dx2 C dy2
:

Now, because the sectors CMm and CHf are similar, we form the proportion Mm �
Hf W Mm WW MH W MC and consequently

MC D y dx2 C y dy2
p

dx2 C dy2

dx3 C dx dy2 � y dx ddy
:

6In L’Hôpital (1696) the overline in the denominator of the following fraction extended to cover
the multiplication symbol.
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Fig. 5.6 Second Differential of the Radius of the Evolute – Polar Ordinates

Second Method. We consider (see §64) the second differentials, supposing dx to
be constant. The similar sectors (see Fig. 5.6) BmS and mEk give

Bm .y/ W mS .dx/ WW mE

�q
dx2 C dy2

�
W Ek D dx

p
dx2 C dy2

y
:

Now because the right triangles HmS and Hnk are similar, we have

Hm or Mm

�q
dx2 C dy2

�
W mS or MR .dx/ WW Hn .�ddy/ W nk D � dx ddy

p
dx2 C dy2

:

Consequently

En D dx3 C dx dy2 � y dx ddy

y
p

dx2 C dy2

and, taking a third proportional to En and Em or Mm, the similar sectors Emn and
MCm give the same value as before for MC.

If we denote Mm
�p

dx2 C dy2
�

by du and if we take dy as constant in place

of dx, we find in the first case that MC D du3

dy ddx and in the second case that MC D
y du3

dx du2Cy dy ddx
. Finally, if we take du as constant, it follows in the first case MC D

dx du
�ddy or dy du

ddx , because the differential of dx2Cdy2 D du2 is [79] dx ddxCdy ddy D 0

and hence that dx
�ddy D dy

ddx . It follows in the second case that MC D y dx du
dx2�y ddy

or
y dy du

dx dyCy ddx .

Corollary II. .�80/ Because we find but a single value for ME or MC (see Fig. 5.8),
it follows that a curved line AMD may have only one evolute BCG.
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Corollary III. .�81/ If the value of ME (see Figs. 5.3, 5.4)
�

dx2Cdy2

�ddy

�
or

�
y dx2Cy dy2

dx2Cdy2�y ddy

�
is positive, we must take the point E on the same side of the

axis or of the point B , as we have supposed in making our calculations. From this
we see that the curve is therefore concave towards this axis or this point. However,
if the value of ME is negative, we must take the point E on the opposite side, from
which we see that the curve is therefore convex. Hence, at an inflection point or
cusp that separates the convex part from the concave part, the value of ME must
go from positive to negative and consequently the infinitely close or contiguous
perpendiculars must go from convergent to divergent. Now this can only happen in
two ways: either they must increase as long as they approach the inflection point
or cusp, and it must be the case that they become parallel, that is to say that the
radius of the evolute is infinite, or else they decrease, and it must necessarily be the
case that they coincide with each other, that is to say that the radius of the evolute
is zero. All of this is in perfect accord with what we have demonstrated in the
previous chapter.

Remark. .�82/ Because up until now we have believed that the radius of the evolute
is always infinitely large at an inflection point, [80] this is the proper place to show
that there is, so to speak, an infinity of kinds of curves that all have the radius of
the evolute at their inflection point equal to zero, whereas there is only one kind in
which this radius is infinite.

Let BAC (see Fig. 5.7) be one of the curves that has an infinite radius of the
evolute at its inflection point A. If we evolve the parts BA and AC beginning from
the pointA, then it is clear that we form a curved line DAE that also has an inflection
point at the same point A, whose radius of the evolute at that point is equal to zero.
Moreover, if we were to form, in the same way, a third curve by the evolution of the
second curve DAE and a fourth curve by the evolution of the third one, and so on to
infinity, it is clear that the radius of the evolute at the inflection point A in all these
curves is always equal to zero. Thus, etc.

Fig. 5.7 Evolute at an Inflection Point
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Fig. 5.8 Finding the Origin of the Evolute

Proposition II.

Problem. .�83/ In curves AMD (see Fig. 5.8), for which the axis AB makes a right
angle with the tangent at A, we wish to find the point B where this axis touches the
evolute BCG.

If we suppose that the pointM becomes infinitely close to the vertexA, it is clear
that the perpendicular MQ meets the axis at the point B that we wish to find. From

this it follows that, if we find the general value of7 PQ
�
y dy
dx

�
in terms of x or of y

and if we then make x or y D 0, we will make the point P fall on the point A and
the pointQ fall on the point B that we wish to find. That is to say, PQ will therefore
become equal to the AB that we wish to find. This will be clarified by the following
examples.

Example I. .�84/ Let the curve AMD (see Fig. 5.8) be a Parabola which has the
given straight line a as its [81] parameter. The equation of the parabola is ax D yy,
whose differential gives dy D a dx

2y
D a dx

2
p

ax
. Taking the differential of this latter

equation, supposing that dx is constant, we find that ddy D �a dx2

4x
p

ax
. Finally,

substituting these values in place of dy and ddy in the formula dx2Cdy2

�ddy , we have
(see §77)

ME D aC 4x
p

ax

a
D p

ax C 4x
p

ax

a
:

This gives the following construction.

7The expression that follows is the first time the ratio dy
dx appears in L’Hôpital (1696).
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Let T be the point where the tangent MT meets the axis and let the line TE be
drawn parallel to MC. I say that it meets the prolonged MP at the point E that we
wish to find. Because the angles MPT and MTE are right, we have

MP .
p

ax/ W PT .2x/ WW PT .2x/ W PE D 4xxp
ax

D 4x
p

ax

a

and consequently MP C PE D p
ax C 4x

p
ax

a
.

Furthermore, because of the [similar] right triangles8 MPQ and MEC, we have

PM .
p

ax/ W PQ

�
1

2
a

�
WW ME

�p
ax C 4x

p
ax

a

�
W EC or PK D 1

2
aC 2x

and consequently QK D 2x. This gives us the following new construction.
Let QK be taken to be the double of AP or (what amounts to the same thing)

let PK be taken equal to TQ and let KC be drawn parallel to PM. It will meet the
perpendicular MC at the point C , which is on the evolute BCG.

Alternate Method. yy D ax and 2y dy D a dx, whose differential (supposing dx

to be constant) gives 2dy2 C 2y ddy D 0, from which we conclude �ddy D dy2

y
.

Substituting this value into the formula dx2Cdy2

�ddy (see §77), we find ME D y dy2Cy dx2

dy2

and consequently EC or PK D y dy2Cy dx2

dy dx D y dy
dx C y dx

dy D PQ C PT or TQ. This

gives the same constructions as above, because MP W PT WW dy W dx WW PT
�
y dx
dy

�
W

PE D y dx2

dy2
D 4x

p
ax

a
.

[82] Now, we desire to find the point B where the axis AB touches the evolute

BCG. We have PQ
�
y dy
dx

�
D 1

2
a. However, because this quantity is constant, it

always remains the same, no matter what the location of the point M . Hence, when
it falls on the vertex A, we still have the same PQ, which in this case becomes
AB D 1

2
a.

To find the nature of the evolute BCG in the manner of Descartes.9 We denote
the abscissa BK by u and the ordinate KC or PE by t . From this we have

CK .t/ D 4x
p

ax
a

and AP C PK � AB .u/ D 3x. Thus, substituting its value 1
3
u

for x in the equation t D 4x
p

ax
a

, we have the new equation 27att D 16u3, which
expresses the relationship of BK to KC. From this we see that the evolute BCG of

8In L’Hôpital (1696) the similarity of these triangles is never mentioned, although it is used the
proportional relation that follows.
9The phrase “in the manner of Descartes” simply means to give an equation for the curve; evolutes
are not discussed by Descartes.
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Fig. 5.9 Evolute of the Parabola

the ordinary parabola is a semi-cubical parabola,10 whose parameter is equal to 27
16

of the parameter of the given parabola.
It is clear that the evolute CBC (see Fig. 5.9) of the common entire parabola MAM

has two parts, CB and BC, which have their convexities opposite to each other, so
that they form a cusp at the point B .

Note. By geometric curves, we understand curves such as AMD and BCG (see
Fig. 5.8), for which the relationship between the abscissas AP and BK and the
ordinates PM and KC may be expressed by an equation in which there are no
differentials.11 By geometric, we understand all that may be done by means of such
lines. Here, we suppose that the abscissas and ordinates are straight lines.

Corollary. .�85/ When the given curve AMD is geometric, it is clear that we may
always find (as in this example) an equation to express the nature of [83] its evolute
BCG and that therefore this evolute is also geometric. Furthermore, I say that it is
rectifiable,12 that is that we may geometrically find straight lines equal to any one of
its portions BC. For it is evident (see §75) that, with the assistance of the line AMD,
which is geometric, we may determine a point M on the tangent CM to the portion
BC, such that CM differs from the portion BC only by the given straight line AB.

Example II. .�86/ Let the given curve MDM (see Fig. 5.10) be a hyperbola between
its asymptotes, that has the equation aa D xy.

We have aa
y

D x and �aa dy
yy D dx. Supposing dx to be constant, we have (see §1)

�aayy ddy C 2aay dy2

y4
D 0;

10In L’Hôpital (1696) this is called the une seconde Parabole cubique, literally “a second cubical
parabola,” but we use the traditional English term for this curve.
11As noted in the Preface, “geometric” was used by Descartest in the same way we use “algebraic”
in modern terminology.
12In modern usage, a curve is said to be rectifiable if it has a finite arc length. The meaning here is
somewhat different: that we may determine the arc length of any portion of a curve geometrically
in the sense of Descartes. This will be further clarified in §108.
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Fig. 5.10 Evolute of the Hyperbola

from which we conclude ddy D 2 dy2

y
. Substituting this value in dx2Cdy2

�ddy , it follows

(see §77) that13 ME D y dx2Cy dy2

�2dy2
, so that EC or PK D � y dy

2 dx � y dx
2 dy . This gives the

following constructions.
From the point T , where the tangent MT meets the asymptote AB, draw the line

TS parallel to MC, which meets the prolonged MP at S . Let ME be taken equal to
half of MS on the other side of the asymptote (which we consider here to be the
axis), because the value of ME is negative. Alternately, let PK be taken equal to
half of TQ on the same side as the point T . I say that if we draw EC parallel or KC
perpendicular to the axis, they will cut the straight line MC at the required point C .

For it is clear that MS D y dx2Cy dy2

dy2
and that TQ D y dy

dx C y dx
dy .

If we pay some attention to the figure of the hyperbola MD, we will see that the
evolute CLC must have a cusp L, as did the evolute of the parabola. To find it, I note
that the radius DL of the evolute is smaller than any other radius [84] MC. From this
it follows that the differential of its expression (see §78)

dx2 C dy2
p

dx2 C dy2

�dx ddy
or

dx2 C dy2
3
2

�dx ddy

13In L’Hôpital (1696), the equal sign was missing from this expression.
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is zero or infinite (see Ch. 3). Taking dx to be constant, as usual, this gives

�3dx dy ddy2 dx2 C dy2
1
2 C dx dddy dx2 C dy2

3
2

dx2 ddy2
D 0 or 1:

Dividing this by dx2 C dy2
1
2

and then multiplying by dx2 ddy2, we derive the
equation dx2 dddy C dy2 dddy � 3dy ddy2 D 0 or 1, which allows us to find
a value AH for x such that, when we draw the ordinate HD and the radius of the
evolute DL, the point L will be the desired cusp.

In this example, we have y D aa
x

, dy D �aa dx
xx , ddy D 2aa dx2

x3
and dddy D

�6aa dx3

x4
. Therefore, when we substitute these values in the preceding equation, we

find that AH .x/ D a. From this it follows that the point D is the vertex of the
hyperbola and that the lines AD and DL form the same straight line AL, which is
the axis of the hyperbola.

Example III. .�87/ Let the general equation be ym D x (see Figs. 5.8, 5.10), which
expresses the nature of all of the Parabolas to infinity when the exponent m denotes
either a whole or a fractional positive number and all of the Hyperbolas when it
denotes a negative number.

We have mym�1 dy D dx, whose differential, taking dx to be constant, gives
mm � myym�1 dy2 C mym�1 ddy D 0. Dividing this by mym�1, it follows that

�ddy D m�1 dy2

y
. Substituting this value in dx2Cdy2

�ddy we conclude (see §77) that

ME D y dx2Cy dy2

m�1 dy2
and consequently that EC or PK D y dy

m�1 dx
C y dx

m�1 dy
. This gives

the following general constructions.
From the point T where the tangent MT meets the axis AP, draw the line TS

parallel to MC, which meets [85] the prolonged MP at the point S . Let ME D
1

m�1MS or else PK D 1
m�1TQ be taken. It is clear that if we draw a parallel to the

axis through the point E, or a perpendicular to the axis through the point K, they
meet MC at the point C that we wish to find.

If m is negative, as occurs in hyperbolas (see Fig. 5.10), the value of ME is
negative and consequently they are convex towards their axis, which is therefore an
asymptote. However, for the parabolas, where m is positive, two cases may occur.
Either m is less than 1 (see Fig. 5.11) and thus they are convex on the side of their
axis, which is a tangent to the vertex, or m is greater than 1 (see Fig. 5.8) and thus
they are concave towards their axis, which is perpendicular to the vertex.

In this last case, to find the point B where the axis AB touches the evolute. We

have PQ
�
y dy
dx

�
D y2�m

m
, which gives three different cases. For either m D 2,

which only occurs in the ordinary parabola, and hence because the exponent of y
is zero, this unknown vanishes, and consequently AB D 1

2
, that is to say half of

the parameter. Alternately, if m is less than 2, then because the exponent of y is
positive, it is found in the numerator, which makes it (setting it equal (see §83) to
zero) the null fraction, that is to say the point B falls on the point A (see Fig. 5.12)
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Fig. 5.11 Evolute of the Parabola, m < 1

Fig. 5.12 The Semi-cubical Parabola

in this case, as in the semi-cubical parabola axx D y3. Finally, if m is greater than
2, then because the exponent of y is negative, it is in the denominator, which makes
it (when it becomes zero) the infinite fraction, that is to say the point B is infinitely
far from the point A, or (what is the same thing) that the axis AB is an asymptote to
the evolute, as in the cubical parabola14 aax D y3 (see Fig. 5.13). We may remark
in this last case that the evolute CLO of the half-parabola ADM has a cusp L, so that
by the evolution of the part LO, continued to infinity, the point D describes only
the determinate portion DA, [86] whereas by the evolution of the other part LC, also
continued to infinity, it describes the infinite portion DM.

We determine the point L in the same way as for the hyperbola. For example,
if we let aax D y3 or y D x

1
3 , we have dy D 1

3
x� 2

3 dx, ddy D � 2
9
x� 5

3 dx2 and

dddy D 10
27
x� 8

3 dx3. When we substitute these values in the equation dx2 dddy C
dy2 dddy � 3dy ddy2 D 0, we find (see §86) AH .x/ D 4

q
1

91125
. It is similar for the

others.

Remark. .�88/ If we suppose that m is greater than 1, so that the parabolas are
always concave on the side of their axes, there are different cases that may arise. For
if the numerator of the fraction denoted by m is even and the denominator odd, all
such parabolas fall on one side and the other of their axes (see Fig. 5.9) in a position

14In L’Hôpital (1696) this is called la premiere parabole cubique, literally “the first cubical
parabola.”
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Fig. 5.13 Evolute of the Parabola, m > 2

Fig. 5.14 The Hyperbola

similar to that of the ordinary parabola. However, if the numerator and denominator
are each odd, they have a reversed position on one side and the other of their axes,
so that their vertex A is an inflection point, as in the cubic parabola (see Fig. 5.13)
x D y

3
1 or aax D y3. Finally, if the numerator is odd and the denominator is even,

they have a reversed position on the same side of their axes, so that the vertex A is
a cusp, as in the semi-cubical parabola (see Fig. 5.12) x D y

3
2 or axx D y3. All

of this follows from the fact that an even power may never have a negative value.
Given this, it is evident that

1. For an inflection point A (see Fig. 5.13), the radius of the evolute may be
infinitely large, as in aax D y3 or infinitely small, as in aax3 D y5.

2. For a cuspA (see Fig. 5.12), the radius of the evolute may be infinite, as in a3xx D
y5 or zero, as in axx D y3.

3. [87] It does not follow that if the radius of the evolute is either infinite or zero, the
curves therefore have an inflection point or a cusp. For in a3x D y4 it is infinite,
and in ax3 D y4 it is null, but nevertheless these parabolas fall on one side and
the other of their axes, in a position similar to that of the ordinary parabola.

Example IV. .�89/ Let the curve AMD be a Hyperbola or an Ellipse (see
Figs. 5.14, 5.15) that has AH .a/ as its axis and AF .b/ as its parameter.
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Fig. 5.15 The Ellipse

By the property of these lines, we have

y D
p

abx � bxxp
a

;

dy D ab dx � 2bx dx

2
p
aabx � abxx

and

ddy D �a3bb dx2

4aabx � 4abxx
p

aabx � abxx
:

If we then put these values in dx2Cdy2
p

dx2Cdy2

�dx ddy , the general expression for MC (see
§78), we find that in these two curves,

MC D aabb � 4abbx C 4bbxx C 4aabx � 4abxx
p

aabb � 4abbx C 4bbxx C 4aabx � 4abxx

2a3bb

D 4MQ3

bb
;

because, in both cases

MQ

 
y
p

dx2 C dy2

dx

!

D
p

aabb � 4abbx C 4bbxx C 4aabx � 4abxx

2a
:

This gives the following construction, which also works for the Parabola.
Let MC be taken as four times the fourth continued proportional15 of the

parameter AF to the perpendicular MQ, terminated by the axis. Then the point C is
on the evolute.

15The fourth continued proportion to a and b is the value of y such that a W b WW b W x WW x W y.
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Fig. 5.16 The “Logarithmic” or Exponential Curve

If we let x D 0, we have (see §83) AB D 1
2
b. Also, if for the Ellipse we let

x D 1
2
a, we find that DG D a

p
ab

2b
, that is to say equal to half the parameter of the

minor axis. From this we see that in the ellipse, the evolute BCG terminates at a
point G on the minor axis DO, where it makes a cusp, whereas in parabola and the
hyperbola it extends to infinity.

[88] If a D b in the Ellipse, we have that16 MC D 1
2
a, from which it follows that

all the radii of the evolute are equal to one another and consequently that it is a single
point. That is to say, in this case the ellipse becomes a circle, which has its center as
its evolute. We already knew this to be true from elsewhere.

Example V. .�90/ Let the curve AMD be an ordinary logarithmic (see Fig. 5.16),
whose nature is such that if we drop the perpendicular MP from any of its pointsM
to the asymptote17 KP and draw the tangent MT , then the subtangent PT is always
equal to the same given straight line a.

We therefore have PT
�
y dx
dy

�
D a, from which we conclude that dy D y dx

a
,

whose differential, taking dx to be constant, is ddy D dy dx
a

D y dx2

aa . Substituting

these values in dx2Cdy2

�ddy we find (see §77) that ME D �aa�yy
y

and consequently that
EC or PK D �aa�yy

a
. This gives the following construction.

Let PK be taken equal to TQ on the same side as T , because its value is negative,
and let KC be drawn parallel to PM. I say that it meets the perpendicular MC in the
point C that we wish to find, because TQ D aaCyy

a
.

If we wish that point M is the one with the greatest curvature, we make use of
the formula dx2 dddy C dy2 dddy � 3dy ddy2 D 0, which we found (see §86) in the

16In L’Hôpital (1696) the equal sign was missing in the next expression.
17In L’Hôpital (1696) the asymptote was given as BF, but the correction KP was noted in the
Errata.
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Fig. 5.17 The Logarithmic Spiral

second example. Substituting for dy, ddy, and dddy their values y dx
a

, y dx2

aa , and y dx3

a3
,

we find that PM .y/ D a

q
1
2
.

If we take dx to be constant, it is clear that the ordinates y are to one another as
their differentials dy or y dx

a
, from which it follows that they also make a geometric

progression. For if we imagine that the asymptote or the axis PK is divided into an
infinite number of little equal parts Pp or MR, pf or mS, fg or nH, etc., contained
between the [89] ordinates PM, pm, fn, go, etc., we have PM W pm WW Rm W Sn WW
PM C Rm or pm W pm C Sn or Fn. Similarly, we prove that pm W fn WW fn W go, and so
on. The ordinates PM, pm, fn, go, etc., are therefore in a geometric progression.

Example VI. .�91/ Let the curve AMD be a logarithmic spiral (see Fig. 5.17), whose
nature is such that when we draw the straight line MA from any of its points M to a
fixed point A, which is its center, and the tangent MT , the angle AMT is always the
same.

Because the angle AMT or AmM is constant, the ratio of mR .dy/ to RM .dx/ is
also constant. Therefore we must have that the differential of dy

dx is null, which gives
ddy D 0, supposing that dx is constant. This is why in erasing the term y ddy in the

general expression y dx2Cy dy2

dx2Cdy2�y ddy
for ME in the case where the ordinates all emanate

from the same point, we find that ME D y, that is to say ME D AM. This gives
the following construction.

Let AC be drawn perpendicular to AM, which meets the straight line MC
perpendicular to the curve at the point C . The point C is on the evolute18 ACG.

The angles AMT and ACM are equal, because when we add the same angle AMC
to both of them, they make a right angle. The evolute ACG is therefore the same
logarithmic spiral as the given AMD, and it differs only in its position.

18In L’Hôpital (1696), this was given as ACB, but there is no B in figure 5.17.
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Fig. 5.18 The Spiral of Archimedes

If we suppose that, given the point C on the evolute ACG, it is required to
determine the length CM of the radius of the evolute at this point, which (see §75)
is equal to the portion AC that makes an infinity of revolutions before reaching A, it
is clear that we need to only draw AM perpendicular to AC. Therefore, if we draw
AT perpendicular to [90] AM, the tangent MT is also equal to the portion AM of the
given logarithmic spiral AMD. If we imagine an infinite number of ordinates AM,
Am, An, Ao, etc., that make infinitely small and equal angles amongst themselves,
it is clear that the triangles MAm, mAn, nAo, etc., are similar, because the angles
at A are equal. By the property of the logarithmic, the angles at m, n, o, etc., are
also equal. Consequently, AM W Am WW Am W An. Also, Am W An WW An W Ao, and
so on. From this we see that the ordinates AM, Am, An, Ao, etc., make a geometric
progression when the angles they make amongst themselves are equal.

Example VII. .�92/ Let the curve AMD be one of the spirals (see Fig. 5.18) up to
infinity, formed in the sector BAD with the property that if we draw any radius AMP
and denote the entire arc BPD by b, its part BP by z, the radius AB or AP by a and
its part AM by y, we have this proportion19 b W z WW am W ym.

The equation of the spiral is ym D amz

b
, whose differential gives mym�1 dy D

am dz
b

. Because the sectors AMR and APp are similar, we have AM .y/ W AP .a/ WW
MR .dx/ W Pp .dz/ D a dx

y
. Hence, substituting this value in place of dz in the

equation we have just found, we have mym dy D amC1 dx
b

, whose differential (taking
dx as constant) is mmym�1 dy2 C mym ddy D 0. Dividing by mym�1, we conclude
that �y ddy D m dy2 and consequently (see §77)

ME

�
y dx2 C y dy2

dx2 C dy2 � y ddy

�
D y dx2 C y dy2

dx2 CmC 1 dy2
:

This gives the following construction.

19When m D 1, this is the Spiral of Archimedes. When m D 2, this is the Spiral of Fermat.
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Fig. 5.19 Evolute of the simple Half-Roulette (Half-Cycloid)

Let the straight line TAQ be drawn through the center A perpendicular to AM,
which meets the tangent MT at T and the perpendicular MQ at Q. Let [91] TA C
mC 1AQ W TQ WW MA W ME. I say that if we draw EC parallel to TQ, it will meet
MQ at a point C , which is on the evolute.

This is so, because MRG and TAQ are parallel, so that we have MR .dx/ C
mC 1RG

�
dy2

dx

�
W MG

�
dx C dy2

dx

�
WW TA C mC 1AQ W TQ WW AM .y/ W ME D

y dx2Cy dy2

dx2CmC1 dy2
.

Example VIII. .�93/ Let AMD be a simple half-roulette (see Fig. 5.19) whose base
BD is equal to the semi-circumference BEA of the generating circle.

Denoting AP by x, PM by y, the arc AE by u and the diameter AB by 2a, we
have, by the property of the circle PE D p

2ax � xx and by that of the roulette
y D u C p

2ax � xx, the differential of which gives

dy D du C a dx � x dxp
2ax � xx

D 2a dx � x dxp
2ax � xx

or dx

r
2a � x
x

;

substituting for du its value a dxp
2ax�xx

. Supposing dx to be constant, we have

ddy D �a dx2

x
p
2ax � xx

and substituting these values in dx2Cdy2
p

dx2Cdy2

�dx ddy , it follows (see §78) that MC D
2
p
4aa � 2ax, that is to say 2BE or 2MG.
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If we let x D 0, we have AN D 4a for the radius of the evolute at the vertex A.
However, if we let x D 2a, we find that the radius of the evolute at the point D
becomes null or zero, from which we see that the evolute has its origin atD and that
it ends at N in such a way that BN D BA.

To understand the nature of this evolute, we need only complete the rectangle
BS, describe the semi-circle DIS that has diameter DS and draw DI parallel to MC
or to BE. With this done, it is clear that the angle BDI is equal to the angle EBD
and consequently that the arcs DI and BE are equal to each other, from which it
follows that their chords DI, and BE or GC, are [92] also equal. Thus, if we join
IC, it will be equal and parallel to DG, which by the generation of the roulette is
equal to the arc BE or DI. Consequently the evolute DCN is a half-roulette that has
as its base the straight line NS, which is equal to the semi-circumference DIS of
its generating circle. That is to say it is the same half-roulette AMDB placed in a
reversed position.

Corollary. .�94/ It is clear (see §75) that the portion DC of the roulette is the
double of its tangent CG, or of the corresponding chord DI. Also, the half-roulette
DCN is double the diameter BN or DS of its generating circle.

Alternate Solution. .�95/ We may also find the length of the radius MC without
any calculus, in the following way. If we imagine another perpendicular mC
infinitely close to the first one, another parallel me, another chord Be and we describe
the little arcs GH and EF with centers C and B , then we form the right triangles
GHg and EFe, which are equal and similar. For Cg D Ee, because BG or ME is
equal to the arc AE and similarly, Bg or me is equal to the arc Ae. Furthermore, Hg
or mg � MG D Fe or Be � BE and hence GH is equal to EF. Now because the
perpendiculars MC and mC are parallel to the chords EB and eB, the angle MCm is
equal to the angle EBe. Hence, because the arcs GH and EF, which measure these
angles, are equal, it follows that their radii CG and BE are also equal. Consequently,
MC should be taken to be the double of MG or of BE.20

Lemma. .�96/ If there is any number of quantities a, b, c, d , e, etc., either finite
or infinite, then whether these quantities are lines, surfaces, or solids, then the sum
a� bC b � cC c � d C d � e, etc., of all of their differences is equal to the largest
a, minus the smallest [93] e, or simply the largest, when the smallest is zero. This is
evident.

Corollary I. .�97/ Because the sectors CMm and CGH are similar, it is clear that
Mm is twice GH or EF, which is equal to it, and because this always happens in
whatever location we suppose the point M to be, it follows that the sum of all the
little arcs Mm, that is the portion Am of the half-roulette AMD, is double the sum of
all the little arcs EF. Now the little arc EF is part of the chord AE, perpendicular
to BE, and is the difference of the chords AE and Ae, because the little straight line

20§94 and §95 give solutions to Pascal’s problems on the cycloid. It is conceivable that §95 is the
solution that Fontenelle attributes to L’Hôpital and age 15, see p. 295.



102 5 Evolutes and Involutes

eF, which is perpendicular to AE, may be considered as a little arc described with
center A. Consequently, the sum of all the little arcs EF in the arc AZE is the sum
of the differences of all the chords AE, Ae, etc., in this arc. That is to say by the
Lemma, it is equal to the arc AE. Therefore it is clear that the portion AM of the
half-roulette AMD is the double of the corresponding chord AE.

Corollary II. .�98/ The space MGgm or (see §2) the trapezoid MGHm D
1
2
Mm C 1

2
GH � MG D 3

2
EF � BE, that is to say, it is the triple of the triangle EBF

or EBe. From this it follows that the space MGBA – the sum of all the trapezoids –
is the triple of the circular space BEZA – the sum of all these triangles.

Corollary III. .�99/ If we denote BP by z, the arc AZE or EM or BG by u and
the radius KA by a, we have the parallelogram MGBE D uz. Now the region of
the roulette MGBA D 3BEZA D 3EKB C 3

2
au and consequently the space AMEB

enclosed by the portion of the roulette AM, the parallel ME, the chord BE and
the diameter AB is D 3EKB C 3

2
au � uz. From this it follows that if we take [94]

BP .z/ D 3
2
a, the space AMEB is the triple of the corresponding triangle EKB and

consequently we have its quadrature, independent of that of the circle. Mr. Huygens
was the first to note this. Here is another kind of space that has the same property.

If we cut the segment BEZA out of the space AMEB, there remains the space
AZEM D 2EKB C au � uz. From this we see that if the point P falls on the center
K, the space AZEM is equal to the square of the radius. It is clear that among all
the spaces AMEB and AZEM, only the two that we have just determined have their
absolute quadrature independent of that of the circle.

Example IX. .�100/ Let the half-roulette21 AMD (see Fig. 5.20) be described by the
revolution of the semi-circle AEB about another immobile circle BGD. We wish

Fig. 5.20 The Epicycloid

21In L’Hôpital (1696) the term demi-roulette is used here, as in §15 and in the previous example.
Unlike those cases the curve being described here is not a cycloid but rather an epicycloid.
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to determine the point on a perpendicular MG given in position that touches the
evolute.

In order to use the general formulas, we must use straight lines perpendicular
to the axis OA as the ordinates of the curve AMD and then seek an equation that
expresses the relationship between the abscissas and their ordinates, or of their
differentials. However, because these calculations would be quite laborious, it would
be much better in these sorts of situations to attempt a solution by making use of the
generation itself.

When the semi-circle AEB is brought to the position MGB in which it touches the
base22 BD at G and the describing point A falls on the point M of the half-roulette
AMD, it is clear that

1. The arc GM is equal to the arc GD, because the arc GB on the mobile circle is
equal to the arc GB of the immobile circle.

2. MG is perpendicular (see §43) to the curve, for if we consider the semi-
circumference MGB or AEB and the base BGD as an assemblage of an infinity of
equal little straight lines [95] each one in correspondence, it is manifest that the
half-roulette AMD is an assemblage of an infinity of little arcs that have as their
centers successively all the points touching G and that are each described from
the same point M or A.

3. If we describe the concentric arc ME from the center O of the immobile circle,
then the arcs MG and EB of the mobile circle are equal to each other, as well
as their chords MG and EB and the angles OGM and OBE. This is because the
straight lines OK and OK that join the centers of these two circles are equal,
because they pass through the points of contact B and G. For this reason, if we
draw the radii OM, OE, and KE, we form the triangles OKM and OKE, which are
equal and similar. Because the angle OKM is therefore equal to the angle OKE,
the arcs MG and BE of the equal semi-circles MGB and BEA, which measure
these angles, are equal, as also are their chords MG and BE. From this it follows
that the angles OGM and OBE are also equal.

Given this, let it be understood that there is another perpendicular mC (see
Fig. 5.21) infinitely close to the first one, another concentric arc me and another
chord Be. Let the little arcs GH and EF be described from centers C and B . The
right triangles GHg and EFe are equal and similar, because Gg or Dg � DG D Ee or
to the arc Be � the arc BE and also Hg or mg � MG D Fe or to Be � BE. The little
arc GH is therefore equal to the little arc EF, from which it follows that the angle
GCH is to the angle EBF as BE is to CG. Therefore all of the difficulty is reduced
to finding the ratio of these angles. This is done in the following way.

If we draw the radii OG, Og, KE, and Ke and denote OG or OB by b and KE or
KB or KA by a, it is clear that the angle EBe D OBe � OBE D Ogm � OGM D
(drawing GL and GV parallel to Cm and Og) LGM � OGV D GCH � Gog. Thus

22In this and subsequent articles, the immobile circle is sometimes referred to as “the base.”
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Fig. 5.21 The Epicycloid and its Differentials

Fig. 5.22 The Epicycloid – Construction of its Evolute

we have the angle GCH D GOg C EBF. Now because the arcs Gg and Ee are equal
we also have GOg W EKe or 2EBF WW KE .a/ W OG .b/ and consequently the angle
GOg D 2a

b
EBF and GCH D 2aCb

b
EBF. Thus GCH W EBF or BE W CG WW 2aCb

b
W 1

and consequently the [96] unknown CG D b
2aCbBE or MG. This gives the following

construction.
If we make OA .2aC b/ W OB .b/ WW MG W GC (see Fig. 5.22), then point C is on

the evolute. It is clear that

1. This evolute begins at the point D and that it touches the base BGD, because the
arc GM becomes infinitely small at this point.

2. It terminates at the point N , so that OA W OB WW AB W BN WW OA � AB or OB W
OB � BN or ON. That is to say OA, OB, and ON are in continued proportion.

3. If we now describe the circle NSQ with center O , I say that the evolute DCN
is formed by the revolution of the mobile circle GCS, which has GS or BN as



5 Evolutes and Involutes 105

its diameter, around the immobile circle NSQ. That is to say, it is a half-roulette
similar to the given one, or of the same kind (because the diameters AB and BN
of the mobile circles are in the same ratio as the radii OB and ON of the immobile
circles) and positioned in an opposite situation so that its vertex is atD. To prove
this, suppose that the diameters of the mobile circles are found on the straight
line OT , drawn at will from the center O . It passes through the points of contact
S and G and if we make AB or TG W BN or GS WW MG W GC, the point C is
on the evolute and furthermore on the circumference of the circle GCS. This is
because the angle GMT is right, so that the angle GCS is also right. Now because
the angles MGT and CGS are equal, the arc TM or GB is to the arc CS as the
diameter GT is to the diameter GS WW OG W OS WW GB W NS and consequently the
arcs CS and SN are equal. Hence, etc.

Corollary I. .�101/ It is clear (see §75) that the portion DC of the roulette is equal
to the straight line CM and consequently that DC is to its tangent CG WW AB C BN W
BN WW OBCON W ON, that is to say as the sum of the diameters of the two generating
circles, or of the mobile and immobile circles, is to the radius of the immobile circle.
This truth is also discovered by the [97] method that follows. Because the triangles
CMm and CGH are similar, we have Mm W GH or EF WW MC W GC WW OA C OB
.2aCb/ W OB .b/. From this it follows (as in §97) that the portion AM of the roulette
is to the corresponding chord AE as the sum of the diameters of the generating circle
and of the base is to the radius of the base.

Corollary II. .�102/ The trapezoid (see Fig. 5.21) MGHm D 1
2
GH C 1

2
Mm �

MG. Now

CG

�
b

2aC b
MG

�
W CM

�
2aC 2b

2aC b
MG

�
WW GH W Mm D 2aC 2b

b
GH:

Therefore, because GH D EF and MG D EB, we have MGHm D 2aC3b
2b

EF � EB,
that is to say the trapezoid MGHm is always to the corresponding triangle EBF WW
2aC 3b W b.

From this it follows that the space MGBA enclosed by the perpendiculars MG
and AB of the roulette, by the arc BG and by the portion MA of the roulette is to the
corresponding segment of the circle BEZA WW 2aC 3b W b.

Corollary III. .�103/ It is clear that the indefinite quadrature of the roulette (see
Fig. 5.23) depends on the quadrature of the circle. However, if we take OQ to the
mean proportional between OK and OA and if we describe the arc QEM from this
radius, I say that the space ABEM enclosed by the diameter AB, the chord BE, the
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Fig. 5.23 The Epicycloid – Quadrature

arc EM and by the portion AM of the roulette, is to the triangle EKB WW 2aC 3b W b.
This is because, if we denote the arc AE or GB by u and the radius OQ by z, we have
OB .b/ W OQ .z/ WW GB .u/ W RQ or ME D uz

b
and consequently the space RGBQ

or MGBE, that is to say

1

2
GB C 1

2
RQ � BQ D zzu � bbu

2b
:

Now (see §102) the space of the roulette

MGBA D 2aC 3b

b
� BEZA D 2aC 3b

b
� EKB C 2aC 3b

b
� KEZA

�au

2

�
:

Therefore, if we remove this space from the previous one, what remains is

ABEM D 2aau C 3abu C bbu � zzu

2b
C 2aC 3b

b
� EKB D 2aC 3b

b
EKB;

[98] because zz D 2aa C 3ab C bb by the construction. From this we see that the
quadrature of this space is independent of the quadrature of the circle and it is the
only one among all similar spaces.

Here is another space that has the same property. If we remove the segment
BEZA

�
1
2
au C EKB

�
from the space ABEM, what remains is the space

AZEM D 2aau C 2abu C bbu � zzu

2b
C 2aC 2b

b
EKB D 2aC 2b

b
EKB;
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Fig. 5.24 The Hypocycloid

making zz D 2aa C 2ab C bb. That is to say, if we divide the semi-circumference
equally into two parts at the pointE, the space AZEM is to the double of the triangle
EKB, that is to say to the square of the radius WW OK .aC b/ W OB .b/.

Corollary IV. .�104/ If the mobile circle AEB (see Fig. 5.24) rolls inside the
immobile circle BGD, its diameter AB becomes negative, from the positive it had
previously been, and thus we must change the sign of the terms where it has an odd
dimension. From this it follows that:

1. If we draw the perpendicular MG at will on the roulette and we make OA .b �
2a/ W OB .b/ WW MG W GC, the point C is (see §100) on the evolute
DCN described by the revolution of the circle with diameter BN, inside the
circumference NS, concentric with BD.

2. If we describe the arc ME with center O , the portion AM of the roulette is (see
§101) to the chord AE WW 2b � 2a W b.

3. The space MGBA is (see §102) to the segment BEZA D 3b � 2a W b.
4. If we take OQ D p

2aa � 3ab C bb, that is to say the mean proportional between
OK and OA, then the space ABEM enclosed by the portion AM of the roulette,
the arc ME, the chord EB and the diameter AB is (see §103) to the triangle EKB WW
3b � 2a W b. However, if we make OQ or OE D p

2aa � 2ab C bb, that is to
say the arc AE is a quarter of the circumference, then the space AZEM enclosed
by the portion AM of the roulette and the arcs ME and AE is (see §103) to the
triangle EKB, which in this case is half the square of the radius, WW 2b � 2a W b.

Corollary V. [99] .�105/ If we imagine that the radius OB of the immobile circle
(see Figs. 5.22, 5.24) becomes infinite, the arc BGD becomes a straight line and the
curve AMD becomes the ordinary roulette. Now because in this case the diameter
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AB of the mobile circle is null with respect to that of the immobile circle, it follows
that:

1. MG W GC WW b W b, because b ˙ 2a D b, that is to say that MG D GC.
Therefore, if we take BN D AB and we draw the straight line NS parallel to BD,
the evolute DCN is formed by the revolution of the circle, which has diameter
BN, on the base NS.

2. The portion of the roulette AM (see Figs. 5.21, 5.24) is to the corresponding chord
AE WW 2b W b.

3. The space MGBA is to the segment BEZA WW 3b W b.
4. Because BQ or ˙OQ � OB, (see Figs. 5.23, 5.24) which I denote by x,

is D �b ˙ p
2aa ˙ 3ab C bb, from which we conclude (by removing the

incommensurables) that xx ˙ 2bx D 2aa ˙ 3ab. We have x D 3
2
a by erasing

the terms in which b does not appear, because they are null with respect to the
others. That is to say that if we take BP D 3

4
AB (see Fig. 5.19) in the ordinary

roulette and we draw the straight line PEM parallel to the base BD, the space
AMEB is the triple of the triangle EKB. Operating in the same way, we find that
if the point P falls on the centerK, the space AZEM enclosed by the portion AM
of the roulette, the straight line ME, and the arc AE, is equal to the square of the
radius. This is what we have already demonstrated above in §99.

Remark. .�106/ Because the arcs DG and GM (see Fig. 5.20) are always equal to
each other, it follows that the angle DOG is always to the angle GKM WW GK W
OG. This is why if the origin D of the roulette DMA, the radii OG and GK of the
generating circles, and the point of contact G are given, and if, in this position, we
wish to determine the point M that describes the roulette, we need to only [100]
draw the radius KM so that the angle GKM is to the given angle DOG WW OG W
GK. I say now that this can always be done geometrically, when the ratio of these
radii may be expressed by numbers, and consequently the roulette DMA is therefore
geometric.

Suppose, for example, that OG W GK WW 13 W 5. It is clear that the angle MKG
must contain twice the given angle DOG and another 3

5
of this angle. All difficulties

therefore reduce to dividing the angle DOG into five equal parts. Now this is
something that is known among the Geometers, that we can always divide a given
angle or arc into as many equal parts as we may wish, because we always end up
with some equation that involves only straight lines. Thus, etc.

I say furthermore that the roulette DMA is mechanical or, what is the same thing,
that we cannot determine its points M geometrically when the ratio of OG to KG
cannot be expressed by numbers, that is to say when it is a surd.23

For every line, be it mechanical or geometrical, either returns to itself or extends
to infinity, (see Fig. 5.25) because we may always continue its generation. Thus,

23Although in modern usage the term “surd” is the irrational root of an integer, in the seventeenth
century it was synonymous with an irrational number.
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Fig. 5.25 Epicycloid – Irrational Case

if the mobile circle ABC describes the roulette ADE by its point A in the first
revolution, this roulette is not yet finished, and in continuing to roll, it will describe
a second revolution EFG, then a third one GHI, and so on, until the describing
point A once again falls, after many revolutions, on the same point from which it
departed. And from there, if we begin to roll the mobile circle ABC again, it will
describe the same curved line once again, so that all of these roulettes taken together
make up but a single curve ADEFGHI, etc. Now if the radii of these generating
circles are incommensurable, their circumferences are also and consequently the
describing point A of the mobile circle ABC can never fall again on the point A
of the immobile circle, from which it had departed, no matter how great [101] the
number of revolutions may be. Thus, there is an infinity of roulettes that nevertheless
form but a single curved line ADEFGHI, etc. If we now draw an indefinite straight
line across the immobile circle, it is clear that it will cut the curve, continued to
infinity, in an infinite number of points. Now, because the equation that expresses the
nature of a geometric line must have at least as many dimensions as the number of
different points in which a straight line may cut this line, it follows that the equation
that expresses the nature of this curve has an infinity of dimensions. Because this
cannot be, we evidently see that the curve must be mechanical or transcendental.

Proposition III.

Problem. .�107/ Given the curved line BFC (see Fig. 5.26), to find an infinity of
lines AM, BN, EFO, of which it is the common evolute.

If we evolve the curve BFC beginning at the point A, it is clear that all the points
A, B , F , of the thread ABFC describe in this motion the curved lines AM, BN,
FO, which all have the given curve BFC as their common evolute. However, we
must observe that because the line FO only has the part FC as its evolute, its origin
is not F and, in order to find it, it is necessary to evolve the remaining part BF
beginning at the point F so as to describe the portion EF of the curve EFO, whose
origin is at E, and whose evolute is the entire curve BFC.



110 5 Evolutes and Involutes

Fig. 5.26 Finding Multiple Involutes

If we wish to find the points M , N , and O without making use of the thread
ABFC , we need to only take, on any tangent CM other than BA, the parts CM, CN,
and CO equal to ABFC, BFC, and FC.

Corollary. [102] .�108/ It is clear that

1. The curves AM, BN, and EFO have quite different natures from one another,
because the curve AM has a radius of the evolute equal to AB at its vertex A,
unlike that of the curve BN, which is null. It is also evident from the figure itself
of the curve EFO that it is quite different from the curves AM and BN.

2. The curves AM, BN and EFO are only geometric when the given BFC is
geometric and also rectifiable. For if it were not geometric, then by taking BK as
the abscissa, we would not find the ordinate KC to be geometric. Furthermore,
if it were not rectifiable, then if we draw the tangent CM, we would not be able
to determine geometrically the points M , N , and O on the curves AM, BN, and
EFO, because we would not be able to find straight lines equal to the curved line
BFC and to its parts BF and FC geometrically.

Remark. .�109/ If we evolve a curved line BAC (Fig. 5.27) that has an inflection
point at A, beginning at a point D other than the inflection point, we form the part
DEF by the evolution of the part BAD and the remaining part DG by the evolution
of the part DC, so that FEDG is the entire curve formed by the evolution of BAC.
Now it is clear that this curve turns back on itself at the points D and E, with the
difference that at the cusp D, the parts DE and DG have their convexity opposed to
each other, whereas at the point E, the parts DE and EF are concave towards the
same side. In the previous chapter, we showed how to find cusps such as D. It is
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Fig. 5.27 Cusps of the First and Second Kind

now a matter of determining the points E, which we may call cusps of the second
kind,24 and which nobody, as far as I know, has yet considered.

To arrive at this goal, we erect [103] two perpendiculars MN and mn at will on
the part DE, terminated by the involute at the points N and n, on which we erect
two other perpendiculars NH and nH on the former lines NM and nm. These form
two little sectors MNm and NHn, which are similar because the angles MNm and
NHn are equal. Therefore, we have Nn W Mm WW NH W NM. Now at the inflection
point A, the radius NH becomes (see §81) infinite or zero and the radius MN, which
becomes AE, remains of finite magnitude. Thus, at a cusp E of the second kind, it
must be the case that the ratio of the differential Nn of the radius MN of the evolute
to the differential Mm of the curve becomes either infinitely large or infinitely small.
Consequently, because (see §86)

Nn D �3 dx ddy2 dy2 dx2 C dy2
1
2 C dx dddy dx2 C dy2

3
2

dx2 ddy2

and Mm D
p

dx2 C dy2, we have

dx2 dddy C dy2 dddy � 3 dy ddy2

dx ddy2
D 0 or 1:

24Cusps of this kind are sometimes called ramphoid, meaning beak-like, as opposed to cusps of
the first kind, such as D, which are called keratoid, meaning horn-like.
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Fig. 5.28 Cusp of the Second Kind

Fig. 5.29 Cusp of the Second Kind

Multiplying this by dx ddy2, we find the formula

dx2 dddy C dy2 dddy � 3 dy ddy2 D 0 or 1;

which we may use to determine cusps of the second kind.
We may also conceive of curves DEF or HDEFG (see Figs. 5.28, 5.29) that turn

back in the shape of a cusp of the second kind, which have as evolute another curve
BAC that turns back in the shape of a cusp of the second kind, such that its cusp A
corresponds to the cusp E, that is to say it is situated on the radius of the evolute
that corresponds to the point E. Now it is clear that under this assumption, the
radius EA of the evolute is always a maximum or a minimum and consequently that

the differential of the general expression dx2Cdy2
3
2

�dx ddy of the radius of the evolute (see
§78) must be either null or infinite at the point E that we wish to find. This gives
the same formula as before, so that it is the general formula for finding cusps of the
second kind.



Chapter 6
Use of the Differential Calculus for Finding
Caustics by Reflection

Definition I. [104] If we imagine that an infinity of rays BA, BM, and BD (see
Figs. 6.1, 6.2), which emanate from a radiant point1 B , are reflected when they
encounter a curved line AMD, so that the angles of reflection are equal to the
angles of incidence, then the line HFN, which touches the reflected rays or their
prolongations AH, MF, and DN, is called the Caustic by reflection.2

Corollary I. .�110/ If we prolong HA to I (see Fig. 6.1), so that AI D AB, and if
we evolve3 the caustic HFN beginning at the point I , we describe the curve ILK so
that the tangent FL is continually (see §75) equal to the portion FH of the caustic
plus the straight line HI. Moreover, if we imagine two incident and reflected rays
Bm and mF, infinitely close to BM and MF, and if we prolong Fm to l and describe
the little arcs MO and MR with centers F and B , then we form the little right
triangles MOm and MRm, which are similar and equal. This is because the angles
OmM D FmD D RmM, and furthermore the hypotenuse Mm is common, and so the
little sides Om and Rm are equal to each other. Now, because Om is the differential
of LM, and Rm is the differential of BM, and because this always happens no matter
where we take the pointM , it follows that ML � IA or AH C HF � MF, the sum (see
§96) of all the differentials Om in the portion AM of the curve, is D BM � BA, the
sum (see §96) of the of all the differentials Rm in the same portion AM. Therefore,
the portion HF of the caustic HFN is equal to BM � BA C MF � AH.

1In L’Hôpital (1696) the term point lumineux was used, literally meaning “luminous point.” We
adopt the modern term “radiant point,” e.g. Lockwood (1971, pp. 183–185).
2A caustic by reflection is sometimes called a “Catacaustic.”
3I.e., describe the involute of HFN; see Chapter 5.
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Fig. 6.1 Caustic by Reflection, Concave Case

Fig. 6.2 Caustic by Reflection, Convex Case

There could be different cases, according to whether the incident ray BA is greater
or less than BM, and whether the [105] reflected ray AH evolves or envelops4 the
portion HF to arrive at MF. However, we will still prove, as we have just done, that
the difference of the incident rays is equal to the difference of the reflective rays,
by joining to one of them the portion of the caustic that it evolves before falling on
the other. For example (see Fig. 6.2), BM � BA D MF C FH � AH; from which we
conclude that FH D BM � BA C AH � MF.

If we describe the circular arc of AP with center B (see Figs. 6.1, 6.2), then it
is clear that PM is the difference of the incident rays BM and BA. Moreover, if we
suppose that the radiant point B becomes infinitely distant from the curve AMD, the
incident rays BA and BM (see Fig. 6.3) become parallel and the arc AP becomes a
straight line perpendicular to these rays.

4In L’Hôpital (1696) the verb enveloper is used to mean the reverse of the process of describing the
involute. For example, in Fig. 6.2, the tangential thread HA is laid on the curve HFN as one moves
from the tangent HA to the tangent FN, instead of being peeled away in the usual evolution.
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Fig. 6.3 Caustic by Reflection, Infinitely Distant Radiant Point

Corollary II. .�111/ If we imagine that the figure BAMD (see Fig. 6.1) is reflected
in the same plane, so that the point B falls on the point I , and that therefore the
tangent atA to the curve AMD in its first position, still touches it in this new position,
and if we make the curve aMd roll on the curve AMD, that is to say on itself, so that
the portions aM and AM are always equal, then I say that the point B describes by
this motion a kind of roulette ILK whose evolute is the caustic HFN.

This is because it follows from the generation that:

1. The line LM drawn from the describing point L to the point of contact M is (see
§43) perpendicular to the curve ILK.

2. La or IA D BA, and LM D BM.
3. The angles made by the straight lines ML and BM on the common tangent at M

are equal, and consequently if we prolong LM to F , the ray MF is the reflected
ray of the incident ray BM.

From this we see that the perpendicular LF touches the caustic HFN, and because
this always happens whenever we take the point L, it follows that the curve ILK is
formed by the evolution of the caustic HFN, plus the straight line HI.

It follows from this that the portion FH or FL�HI D BMCMF�BA�AH. [106]
This is what we have just demonstrated in another way in the preceding Corollary.

Corollary III. .�112/ If the tangent DN becomes infinitely close to the tangent FM,
it is clear that the point of contact N , and the point of intersection V will coincide
with the other point of contact F . Thus, to find the point F where the reflected
ray MF touches the caustic HFN, we need only find the point of intersection of
the infinitely close reflected rays MF and mF. Indeed, if we imagine an infinity
of incidence rays infinitely close to one another, we will see a polygon with an
infinity of sides, the assemblage of which makes up the caustic HFN born of the
intersections of the reflected rays.

Proposition I.

General Problem. .�113/ Given the nature of the curve AMD (see Fig. 6.4), the
radiant pointB , and the incident ray BM, we wish to find the point F on the reflected
ray MF, given in position, where it touches the caustic.
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Fig. 6.4 Intersection of Reflected Ray with the Caustic

By the previous chapter, we find the length MC of the radius of the evolute at the
point M . We take the infinitely small arc Mm, and draw the straight lines Bm, Cm,
and Fm. We describe the little arcs MR and MO with centers B and F , and we drop
the perpendiculars CE, Ce, CG, and Cg on the incident and reflected rays. We then
denote the given quantities BM by y, and ME or MG by a.

Given this, we prove, as in the first Corollary (see §110), that the triangles MRm
and MOm are similar and equal, and thus MR D MO. Now, because of the equality
of the angles of incidence and reflection, we also have CE D CG and Ce D Cg, and
consequently CE � Ce or EQ D CG � Cg or SG. Therefore, because of the similar
triangles BMR and BEQ, and FMO and FGS, we have [107] BM C BE.2y � a/ W
BM.y/ WW MR C EQ or MO C GS W MR or MO WW MG.a/ W MF D ay

2y�a .
If the radiant point B falls on the other side of the point E with respect to the

pointM , or (what is the same thing) if the curve AMD is convex towards the radiant
point B , then y changes from positive to negative, and consequently we have MF D

�ay
�2y�a or ay

2yCa .
If we suppose that y becomes infinite (see Fig. 6.3), that is to say that the point

B is infinitely distant from the curve AMD, the incident rays are parallel to one
another, and we have MF D 1

2
a, because a is null with respect to 2y.

Corollary I. .�114/ Because we have found only one value for MF (see
Figs. 6.1, 6.2) along the radius of the evolute, it follows that a curved line AMD may
have but a single caustic HFN by reflection, because (see §80) it has but a single
evolute.

Corollary II. .�115/ When AMD is geometric (see Fig. 6.4), it is clear (see §85)
that its evolute is also geometric, that is to say that we find all of its points C
geometrically. From this it follows that all pointsF of its caustic are also determined
geometrically (see Figs. 6.1, 6.2), that is to say that the caustic HFN is geometric.
However, I say furthermore, that this caustic is always rectifiable, because it is
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clear (see §110) that we may find straight lines equal to any of its portions with
the assistance of the curve AMD, which we assume to be geometric.

Corollary III. .�116/ If the curve AMD (see Fig. 6.4) is convex towards the radiant

point B , then the value of MF
�

ay
2yCa

�
is always positive, and consequently we must

take the point F on [108] the same side as the point C with respect to the point
M , as we have assumed in making the calculations. From this we see that infinitely
close reflected rays are divergent.

However, if the curve AMD is concave towards the radiant point B , the value of

MF
�

ay
2y�a

�
is positive when y is greater than 1

2
a, negative when it is less than, and

infinite when it is equal. From this it follows that if we describe a circle that has half
of the radius of the evolute MC as its diameter, then the infinitely close reflecting
rays are convergent when the radiant point B falls outside of its circumference, they
are divergent when falls inside, and finally they are parallel when it falls on the
circumference.

Corollary IV. .�117/ If the incident ray BM touches the curve AMD at the point
M , we have ME.a/ D 0, and consequently MF D 0. Because the reflected ray is
therefore in the direction of the incident ray, and because the nature of the caustic
consists of touching all reflected rays, it follows that it will also touch the incident
ray BM at the point M . That is to say that the caustic and the given curve have the
same tangent at the point M , which is common to them.

If the radius MC of the evolute is null, we also have ME.a/ D 0, and
consequently MF D 0. From this we see that the given curve and the caustic make
an angle equal to the angle of incidence between them at their common point M .

If the radius CM of the evolute is infinite, then the little arc Mm becomes a
straight line, and we have MF D �y, because when ME.a/ is infinite, y is null
with respect to a. Now, because this value is negative when the point B falls on
the same side as the point C with respect to the line AMD, and positive when it
falls on the opposite side, it follows that the infinitely close reflected rays are always
divergent when the line AMD is straight.

Corollary V. [109] .�118/ It is clear that given any two of the three points B , C ,
and F , we easily find the third.

1. Let the curve AMD (see Fig. 6.5) be a Parabola, which has the radiant point B
as its focus. It is clear by the elements of the conic sections, that all reflected
rays are parallel to the axis, and consequently MF is always infinite wherever we
suppose the point M to be. Therefore, we have a D 2y. From this it follows
that if we take ME to be twice MB, and if we draw the perpendicular EC, it cuts
MC perpendicular to the curve AMD at a point C , which is on the evolute of this
curve.

2. Let the curve AMD (see Fig. 6.6) be an Ellipse, which has the radiant point B
as one of its foci. Again, it is clear that all reflected rays MF meet in the same
point F , which is the other focus. If we denote MF by z, we have (see §113)
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z D ay
2y�a , from which we find the quantity that we wish to find, ME.a/ D 2yz

yCz .
However, if the curve AMD (see Fig. 6.7) is a Hyperbola, the focus F falls on the
other side, and consequently MF.z/ becomes negative. From this it follows that
we therefore have ME.a/ D �2yz

y�z or 2yz
z�y . This gives the following construction,

which also serves for the Ellipse.

Let ME (see Figs. 6.6, 6.7) be taken as the fourth proportional to the transverse
semi-axis,5 the incident ray, and the reflected ray. Let EC be drawn perpendicular;
it cuts the line MC, which is perpendicular to the conic section, at a point C that is
on the evolute.

Example I. .�119/ Let the curve AMD (see Fig. 6.8) be a Parabola, whose incident
rays PM are perpendicular to its axis AP. We wish to find the points F on the
reflected rays MF where they touch the caustic AFK.

[110] It is clear that if we draw the radius MC of the evolute, and drop the
perpendicular CG to the reflected ray MF, we must (see §113) take MF equal to
half of MG. However, this construction can be shortened, considering that if we
draw MN parallel to the axis AP, and draw the straight line ML to the focus L,
then the angles LMP and FMN are equal, because by the property of the parabola
LMQ D QMN, and by assumption PMQ D QMF. If we now add the same angle
PMF to both sides, the angle LMF is equal to the angle PMN, that is to say a right
angle. Now, we have just demonstrated (see §118, no. 1) that the perpendicular LH
on ML meets the radius MC of the evolute at its midpoint H . Therefore, if we draw
MF parallel and equal to LH, it is one of the reflected rays and it touches the caustic
AFK at F . This is what we were required to find.

If we suppose that the reflected ray MF is parallel to the axis AP, it is clear that
the point F of the caustic will be the furthest possible from the axis AP, because the
tangent at this point is parallel to the axis. Thus, in order to determine this point on
all caustics, such as AFK, formed by incident rays perpendicular to the axis of the
given curve, we need to only consider that MP is equal to PQ. This gives dy D dx.

Fig. 6.5 Caustic of the Parabola by Reflection

5The transverse axis of an ellipse is the horizontal axis. The transverse of a hyperbola is the line
segment joining the vertices. The transverse semi-axis is half the length of the transverse axis.
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Fig. 6.6 Caustic of the Ellipse by Reflection

Fig. 6.7 Caustic of the Hyperbola by Reflection

Fig. 6.8 Caustic of the Parabola by Reflection, Incident Rays Perpendicular to the Axis

Let ax D yy; we have dy D a dx
2
p
ax

D dx, from which we conclude AP.x/ D 1
4
a,

that is to say if the point P falls on the focus L, the reflected ray MF is parallel to
the axis. What is also clear is that because in this case MP coincides with LM, MF
must also coincide with MN, and LH with LQ. From this we see that MF is therefore
equal to ML, and consequently that if we draw FR perpendicular to the axis, we have
AR or AL C MF D 3

4
a. We also see that the portion AF of the caustic is equal, in

this case, to the parameter, because it is always (see §110) equal to PM C MF.
To determine the pointK where the caustic AFK meets the axis AP, we must find

the value MO, and [111] make it equal to MF, because it is clear that if the point F
falls on K, the lines MF and MO become equal to each other. Therefore, denoting
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the unknown MO by t , the angle PMO cut equally in two by MQ, perpendicular

to the curve, gives MP.y/ W MO.t/ WW PQ
�
y dy
dx

�
W OQ D t dy

dx , and consequently

OP D t dyCy dy
dx D p

tt � yy, because of the right triangle MPO. Dividing both sides

by t C y, we find dy
dx D

q
t�y
tCy , from which we conclude MO.t/ D y dx2Cy dy2

dx2�dy2
D

MF
�
1
2
a
� D dx2Cdy2

�2ddy , because (see §77) ME.a/ D dx2Cdy2

�ddy . This gives dy2�2y ddy D
dx2, which is used to find the point P such that if we draw the incident ray PM and
the reflected ray MF, this latter touches the caustic AFK at the point K where it
meets the axis AP.

For the parabola y D x
1
2 , we have dy D 1

2
x� 1

2 dx and ddy D � 1
4
x� 3

2 dx2, and
substituting these values in the preceding equation, we find 1

4
x�1 dx2 C 1

2
x�1 dx2 D

dx2, from which we conclude AP.x/ D 3
4

of the parameter.
To find the nature of the caustic AFK in the manner of Descartes,6 we must find

an equation that expresses the relationship of the abscissa AR.u/ to the ordinate

RF.z/, which is done in the following way. Because MO.t/ D y dx2Cy dy2

dx2�dy2
, we have

PO
�
t dyCy dy

dx

�
D 2y dx dy

dx2�dy2
, and because of the similar triangles MPO and MSF, we

form the following proportions: MO
�
y dx2Cy dy2

dx2�dy2

�
: MF

�
dx2Cdy2

�2ddy

�
or �2y ddy W dx2�

dy2 WW MP.y/ W MS.y�z/ D dx2�dy2

�2ddy WW PO
�
2y dx dy
dx2�dy2

�
W SF or PR.u�x/ D dx dy

�ddy . We

therefore have the following two [112] equations z D yC dy2�dx2

�2ddy and u D xC dx dy
�ddy ,

which can be used with the equation of the given curve to form a new equation where
x and y are no longer present, and which consequently expresses the relationship of
AR.u/ to FR.z/.

When the curve AMD is a parabola, as we have assumed in this example, we find
z D 3

2
x
1
2 � 2x

3
2 , or (by squaring each side) 9

4
x � 6xx C 4x3 D zz and u D 3x,

from which we derive the equation we wish to find, azz D 4
27

u3 � 2
3
auu C 3

4
aau,

which expresses the nature of the caustic AFK. We may remark that PR is always
twice AP, because AR.u/ D 3x. This again gives us a new method for determining
the point F that we wish to find on the reflected ray MF.

Example II. .�120/ Let the curve AMD (see Fig. 6.9) be a semi-circle that has the
line AD as its diameter and its center at the point C . Let the incident rays PM be
perpendicular to AD.

Because the evolute of the circle is a single point which is its center, it follows
(see §113) that if we cut the radius CM equally in two at the point H , and we drop
the perpendicular HF to the reflected ray MF, then it cuts this ray at a point F where
it touches the caustic AFK. It is clear that the reflected ray MF is equal to half the
incident ray PM. From this it follows that:

1. If the point P falls on C , then the point F falls on the midpoint of CB at K.

6I.e., to give an equation for the curve.
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2. The portion AF is three times MF, and the caustic AFK is three times BK.

We also see that if we make the angle AMC half of a right angle, the reflected ray
MF is parallel to AC, and consequently the point F is higher above the diameter AD
than any other point of the caustic.

The circle with diameter MH passes through the point F , because the angle HFM
is a right angle. If we describe the circle KHG with [113] center C and radius CK
or CH, half of CM, then the arc HF is equal to the arc HK. This is because the angle
CMF is equal to7 CMP or HCK, so the arcs 1

2
HF and HK, which measure these

angles in the circles MFH and KHG, are to each other as 1
2
MH is to HC, the radii

of these circles. From this we see that the Caustic AFK is a Roulette formed by the
revolution of the mobile circle MFH around the immobile circle KHG, whose origin
is at K, and whose vertex is at A.

Example III. .�121/ Let the curve AMD (see Fig. 6.10) be a circle with the line
AD as diameter and the point C as center. Let the radiant point, from which all the
incident rays AM emanate, be A, one of the extremities of this diameter.

If we drop the perpendicular CE from the center C to the incident ray AM, it
is clear by the property of the circle, that the point E cuts the chord AM into two

equal parts, and thus that ME.a/ D 1
2
y. We therefore have MF

�
ay

2y�a
�

D 1
3
y, that

is to say we must take the reflected ray MF equal to one-third of the incident ray

Fig. 6.9 Caustic of the Semi-circle by Reflection, Incident Rays Perpendicular to the Diameter

Fig. 6.10 Caustic of the Circle by Reflection, Radiant Point on the Circumference

7In L’Hôpital (1696) this was written as CPM, but corrected to CMP in the Errata.
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Fig. 6.11 Caustic of the Half-Cycloid by Reflection, Incident Rays Parallel to the Axis

AM. From this we see that DK D 1
3
AD, CK D 1

3
CD, and that (see §110) the caustic

AFK D 4
3
AD, as well as that its portion AF D 4

3
AM. If we take AM D AC, the

reflected ray MF is parallel to the diameter AD, and consequently the point F is the
highest possible above this diameter.

If we take CH D 1
3
CM, and we draw HF perpendicular to MF, the point F

is on the caustic, for if we draw HL perpendicular to AM, it is clear that ML D
2
3
ME D 1

3
AM, because MH D 2

3
CM. The circle with diameter MH therefore passes

through the point F of the caustic, and if we describe another circle KHG with
center C and with radius CK or CH, it will be equal to it, and the arc HK [114] will
be equal to the arc HF, because in the isosceles triangle CMA, the external angle
KCH D 2CMA D AMF. Consequently the arcs HK and HF, the measures in the
equal circles, are also equal. From this it follows that the Caustic AFK is again a
Roulette described by the revolution of the mobile circle MFH around the immobile
circle KHG, whose origin is at K, and whose vertex is at A.

We might also prove this by the following other method. If we describe a roulette
by the revolution of a circle equal to the circle AMD around that circle, starting at
the point A, we demonstrated in the second corollary (see §111) that its evolute is
the caustic AFK. Now (see §100), this evolute is a roulette of the same kind, that is
to say that the diameters of the generating circles are equal, and we determine the
pointK by taking CK as the third proportional to CD C DA and to CD, that is to say
equal to 1

3
CD. Therefore, etc.

Example IV. .�122/ Let the curve AMD (see Fig. 6.11) be an ordinary half-roulette
described by the revolution of the semi-circle NGM on the straight line BD, whose
vertex is at A, and whose origin at D. Let the incident rays KM be parallel to the
axis AB.

Because (see §95) MG is equal to half the radius of the evolute, it follows (see
§113) that if we draw GF perpendicular to the reflected ray MF, the point F will be
on the caustic DFB. From this we see that MF must be taken equal to KM.

If we draw the radii HG and HM from the center H of the generating circle
MGN to the point of contact G and to the describing point M , then it is clear that
HG is perpendicular to BD, and that the angle GMH D MGH D GMK, from which
we see that the reflected ray MF passes through the center H . Now, the circle with
diameter GH also passes through the point F , because the angle GFH is a right
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Fig. 6.12 Caustic of the Half-Cycloid by Reflection, Incident Rays Parallel to the Base

angle. Therefore, the arcs GN and 1
2
GF, which measure the same angle GHN, are to

each other as the MN is to GH, the diameters [115] of their circles, and consequently
the arc GF D GN D GB. It is therefore clear that the Caustic DFB is a Roulette
described by an entire revolution of the circle GFH on the straight line BD.

Example V. .�123/ Let the curve AMD (see Fig. 6.12) again be an ordinary half-
roulette, whose base BD is equal to the semi-circumference ANB of the generating
circle. Additionally, let the incident rays PM now be parallel to the base BD.

If we draw GQ perpendicular to PM, the right triangles GQM and BPN are equal
and similar, and therefore MQ D PN. From this we see (see §95, 113) that we must
take MF equal to the corresponding ordinate PN in the generating semi-circle ANB.

In order that the point F is the furthest possible from the axis AB, it is necessary
that the tangent MF at this point be parallel to this axis. The angle PMF is therefore
a right angle, its half PMG or PNB is half a right angle, and consequently the point
P falls on the center of the circle8 ANB.

It is worth remarking, that if the point P then continually approaches the
extremity B , the point F also moves closer the axis AB up to a certain point K,
after which it moves away to D, so that the caustic AFKFD has a cusp at K .

To determine this, I remark (see §110, 111) that the portion AF D PM C MF,
the portion AFK D HL C LK, and the portion KF of the part KFD is D HL C LK �
PM � MF, from which we see that HL C LK must be the greatest. That is why if we
denote AH by x, HI by y, and the arc AI by u, we have HL C LK D u C 2y, whose
differential gives du C 2 dy D 0 and a dx

y
C 2 dy D 0 by substituting the value a dx

y

8In L’Hôpital (1696) this was written as AND.
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Fig. 6.13 Caustic of an Epicycloid by Reflection

for du. From this we derive a dx D �2y dy D 2x dx � 2a dx because of the circle,
and consequently AH.x/ D 3

2
a.

Corollary. [116] .�124/ The space AFM or AFKFM enclosed by the portions of
the curves AF or AFKF, AM, and by the reflected rays MF, is equal to half of the
circular space APN. This is because its differential, which is the sector FMO, is
equal to half of the rectangle PpSN, the differential of the space APN, because the
right triangles MOm and MRm are equal and similar, so MO is equal to MR or NS
or Pp, and furthermore MF D PN.

Example VI. .�125/ Let the curve AMD (see Fig. 6.13) be the half-roulette formed
by the revolution of the circle MGN around an equal circle AGK, whose origin is
at A, and whose vertex is at D. Let the incident rays be AM, which all emanate
from the point A. The line BH that joins the centers of these two generating circles
continually passes through the point of contact G, and the arcs GM and GA, as
well as their chords, are always equal. So the angle HGM D BGA and the angle
GMA D GAM. Now, the angle HGM C BGA D GMA C GAM, because if we add
the same angle AGM to both sides, we form two right angles. Thus, the angle HGM
is always equal to the angle GMA, and consequently also to the angle of reflection
GMF. From this it follows that MF is always passes through the center H of the
mobile circle.

If we now drop the perpendiculars CE and GO on the incident ray AM, it is clear
that MO D OA, and that OE D 1

3
OM, because (see §100) since the point C is on

the evolute GC D 1
3
GM. We therefore have ME D 2

3
AM, that is to say a D 2

3
y, and

consequently MF
�

ay
2y�a

�
D 1

2
y. From this we see that if we draw GF perpendicular

to MF, the point F is on the caustic AFK.
The circle with diameter GH passes through the point F , and the arcs GM and

1
2
GF, which measure the same angle GHM, being [117] to each other as MH is

to GH, the diameters of their circles, the arc GF is equal to the arc GM, and
consequently to the arc GA. From this it is clear that the Caustic AFK is a Roulette
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Fig. 6.14 Caustic of the Logarithmic Spiral by Reflection

described by the revolution of the mobile circle HFG around the immobile circle
AGK.

Corollary. (�126) If we describe a circle with center at the point B , and whose
radius is a straight line equal to BH or AK, that has an infinity of straight lines
parallel to BD that fall on its circumference, it is clear (see §120) that by reflection
the rays form the same caustic AFK.

Example VII. .�127/ Let the curve AMD (see Fig. 6.14) be a logarithmic spiral,
with incident rays AM that all of emanate from the center A.

If we draw the straight line CA from the extremity C of the radius of the evolute
perpendicular to the incident ray AM, it meets it (see §91) at the center A. This is

why AM.y/ D a, and consequently MF
�

ay
2y�a

�
D y. The triangle AMF is therefore

isosceles, and because the angles of incidence and reflection, AMT and FMS, are
equal to each other, it follows that the angle AFM is equal to the angle AMT . From
this it is clear that caustic AFT is a logarithmic spiral which differs from the given
AMD only in its position.

Proposition II.

Problem. .�128/ Given the caustic by reflection HF (see Fig. 6.15) with its radiant
point B , we wish to find an infinity of curves, such as AM, of which it is the caustic
by reflection.

Take the point A at will on any tangent HA to be one of the points on the curve
AM that we wish to find. [118] We describe the circular arc AP with center B and
interval BA, and with any other interval BM, we describe another circular arc. If we
take AH C HE D BM � BA or PM, we evolve the caustic HF beginning at the point
E, and we describe by this motion the curved line EM that cuts the arc of the circle
described from the radius BM at a pointM that is (see §110) on the curve AM. This
is because by the construction, PM C MF D AH C HF.

Alternately, if we attach a thread BMF by its extremities at B and to F , then we
make this thread tight by means of a stylus placed at M , and we make it move so
that we envelop the caustic HF with the part MF of this thread, it is clear that by
this motion the stylus describes the curve MA that we wish to find.
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Fig. 6.15 The Inverse Problem: Finding the Original Curve from its Caustic

Fig. 6.16 The Inverse Problem: Radiant Point at Infinity

Alternate Solution. .�129/ If we draw at will a tangent FM, other than HA, we
wish to find a point M on it, such that BM C MF D BA C AH C HF. This is done
in the following manner.

Let FK be taken D BA C AH C HF, and if we divide BK in the middle at G, then
let the perpendicular GM be drawn; it meets the tangent FM at the point M that we
wish to find. This is because BM D MK.

If the point B is infinitely far from the curve AM (see Fig. 6.16), that is to say
that the incident rays BA and BM are parallel to a straight line given in position, the
first construction will still hold, by considering that the circular arcs described from
the center B become straight lines perpendicular to the incident rays. However, this
latter construction becomes useless, which is why we must substitute it with the
following.

Let FK be taken D AH C HF. If we find the point M , so that MP is parallel to
AB and perpendicular to AP, and is equal to MK, it is clear (see §110) that this point
is on the curve AM that we wish to find, because PM C MF D AH C HF. Now, this
is done as follows.

Let KG be drawn perpendicular to AP. If we take KO D KG, let KP be drawn
parallel to OG and PM parallel to GK, I say that the point M is the one we wish
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Fig. 6.17 An Application of the Inverse Problem: Constructing a Focus

to find. [119] This is because GKO and PMK are similar triangles, so that we have
PM D MK, because GK D KO.

If the caustic HF is a single point, the curve AM becomes a conic section .

Corollary I. .�130/ It is clear that the curve that passes through all the pointsK is
formed by the evolution of the curve HF beginning at A, and that its nature changes
as the point A changes its position on the tangent AH. Thus, because the curves
AM are all born from these curves by the same construction, which is geometric, it
follows (see §108) that they are of a different nature from each other, and that they
are geometric only when the caustic HF is geometric and rectifiable.

Corollary II. .�131/ Given a curved line DN (see Fig. 6.17) with a radiant point
C , we wish to find an infinity of lines, such as AM, so that the reflected rays DA and
NM meet at a given point B , after being reflected again upon meeting any such line
AM.

If we imagine that the curve HF is the caustic of the given curve DN, formed by
the radiant point C , it is clear that this line HF must also be the caustic of the curve
AM having the given point B as its radiant point, so that FK D BA C AH C HF,
and NK D BA C AH C HF C FN D BA C AD C DC � CN, because (see §118)
HD C DC D HF C FN C NC. This gives the following construction.

If we take the point A at will on any reflected ray to be one of the points on the
curve AM that we wish to find and, on any other reflected ray NM that we wish, we
take the part NK D BA C AD C DC � CN, then we find the point M that we wish
as above in §129.



Chapter 7
Use of the Differential Calculus for Finding
Caustics by Refraction

Definition. [120] If we imagine that an infinity of rays BA, BM, and BD (see
Fig. 7.1), which emanate from the same radiant point B , are refracted1 when
they encounter a curved line AMD, by approaching or moving away from its
perpendiculars MC, so that the sines CE of the angles CME of incidence are always
to the sines CG of the angles CMG of refraction in the same given ratio as m to n,
then the curved line2 HFN (see Fig. 7.2) which touches all the refracted rays or their
prolongations AH, MF, and DN is called the Caustic by refraction.3

Corollary. .�132/ If we envelop4 the caustic HFN beginning at the point A, we
describe the curve ALK so that the tangent LF plus the portion FH of the caustic is
continually equal to the same straight line AH. Moreover, if we imagine another
tangent Fml infinitely close to FML, with another incident ray Bm, and if we
describe the little arcs MO and MR with centers F and B , then we form two little
right triangles MRm and MOm, which are similar to two others MEC and MGC,
pair by pair, because if we remove the same angle EMm from the right angles RME
and CMm, then the remaining angles RMm and EMC are equal. Similarly, if we
remove the same angle GMm from the right angles GMO and CMm, the remaining
angles OMm and GMC are equal. This is why Rm W Om WW CE W CG WW m W n.
Now, because Rm is the differential of BM and Om is the differential of LM, it
follows (see §96) that BM � BA, the sum of all the differentials Rm in the portion

1In L’Hôpital (1696) the term rompre is used, literally meaning “to break.” We consistently
translate the term rayon rompu as “refracted ray.”
2In L’Hôpital (1696) the curved line was given as FHN, but corrected in the Errata.
3A caustic by refraction is sometimes called a “Dicaustic.”
4I.e., describe the involute in reserve order, see §110, Footnote 4.
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Fig. 7.1 Caustic by Refraction, Convex Case

Fig. 7.2 Caustic by Refraction, Concave Case

AM of the curve, is to ML or AH � MF � FH, the sum of all the differentials
Om in the same portion [121] AM, as m is to n, and consequently the portion
FH D AH � MF C n

m
BA � n

m
BM.

There could be different cases, according to whether the incident ray BA is greater
or less than BM, and whether the refracted ray AH envelops or evolves the portion
HF. However, we will still prove, as we have just done, that the difference of the
incident rays is to the difference of the refracted rays (by joining to one of them the
portion of the caustic that it evolves before falling on the other) as m is to n. For
example (see Fig. 7.2), BA�BM W AH �MF �FH WW m W n, from which we conclude
that FH D AH � MF C n

m
BM � n

m
BA.

If we describe the circular arc AP with center B (see Fig. 7.1), then it is clear that
PM is the difference of the incident rays BM and BA. Moreover, if we suppose that
the radiant pointB becomes infinitely distant from the curve AMD, the incident rays
BA and BM become parallel and the arc AP becomes a straight line perpendicular to
these rays.

Proposition I.

General Problem. .�133/ Given the nature of the curve AMD (see Fig. 7.1), the
radiant point B , and the incident ray BM, we wish to find the point F on the
refracted ray MF, given in position, where it touches the caustic by refraction.
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Fig. 7.3 Intersection of the Refracted Ray with the Caustic

We find (see Ch. 5) the length MC of the radius of the evolute at the given
point M . We take the infinitely small arc Mm, and draw the straight lines Bm, Cm,
and Fm. We describe the little arcs MR and MO with centers B and F , and we drop
the perpendiculars CE, Ce, CG, and Cg to the incident and refracted rays. We denote
the given quantities BM by y, ME by a, MG by b, and the little arc MR by dx.

Given this, the similar right triangles MEC and MRm, MGC and MOm, and
BMR and BQe give ME.a/ W MG.b/ WW MR.dx/ W MO D b dx

a
and [122]

BM.y/ W BQ or BE.y C a/ WW MR.dx/ W Qe D a dxCy dx
y

. Now, by the property
of the refraction Ce W Cg WW CE W CG WW m W n. Consequently, m W n WW Ce �
CE or Qe

�
a dxCy dx

y

�
W Cg�CG or Sg D an dxCny dx

my . Thus, because of the similar

right triangles FMO and FSg, we have MO � Sg
�

bmy dx�any dx�aan dx
amy

�
W MO

�
b dx
a

� WW
MS or MG.b/ W MF D bbmy

bmy�any�aan . This gives the following construction.
Let the angle ECH D GCM (see Fig. 7.3) be constructed towards CM, and let

MK D aa
y

be taken towards B . I say that if we make HK W HE WW MG W MF, then the
point F is on the caustic by refraction.

Because of the similar triangles CGM and CEH, we have CG W CE WW n W m WW
MG.b/ W EH D bm

n
. From this we conclude that HE�ME or HM D bm�an

n
, HM�MK

or HK D bmy�any�aan
ny , and consequently HK

�
bmy�any�aan

ny

�
W HE

�
bm
n

� WW MG.b/ W
MF D bbmy

bmy�any�aan .
It is clear that if the value of HK is negative, the value of MF is also negative,

from which it follows that the point M falls between the points G and F , when the
point H is between the points K and E.

If the radiant point B falls on the side of the point E (see Fig. 7.2),5 or (what is
the same thing) if the curve AMD is concave on the side of the radiant point B , then
y changes from positive to negative, and consequently we have MF D �bbmy

�bmyCany�aan

or bbmy
bmy�anyCaan . The construction remains the same.
If we suppose that y becomes infinite, that is to say that the radiant point B is

infinitely distant from the curve AMD, then the incident rays are parallel to each
other, and we have MF D bbm

bm�an , because the term aan is null [123] with respect to

5In L’Hôpital (1696), the reference here was to figures 7.1 and 7.3.
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the other two, bmy and any, and because MK
�

aa
y

�
therefore vanishes, we need only

make HM W HE WW MG W MF.

Corollary I. .�134/ We demonstrate, in the same way as for the caustic by
reflection (see §114), that a curved line AMD has only one caustic by refraction,
given the ratio of m to n. This caustic is always geometric and rectifiable when the
given curve AMD is geometric.

Corollary II. .�135/ If the point E falls on the other side of the perpendicular
MC with respect to the point G, and if CE is equal to CG, then it is clear
that the caustic by refraction changes to a caustic by reflection. Indeed, we have

MF
�

bbmy
bmy�any�aan

�
D ay

2y�a , because m D n, and a changes from negative to

positive, and it also becomes equal to b. This agrees with what we proved in the
previous chapter.

If m is infinite with respect to n, then it is clear that the refracted ray MF falls
on the perpendicular CM, so that the Caustic by refraction becomes the Evolute.
Indeed, we have MF D b, which in this case becomes MC, that is to say that the
point F falls on the point C , which is on the evolute.

Corollary III. .�136/ If the curve AMD is convex with radiant point B , and the

value of MF
�

bbmy
bmy�any�aan

�
is positive, it is clear that we must take the point F on

the same side as the point G with respect to the pointM , as we have supposed from
making the calculations. On the contrary, if it is negative, we must take it on the
opposite side. It is the same when the curve AMD is concave towards the point B ,
however it should be noted that in this case [124] MF D bbmy

bmy�anyCaan . From this it
follows that infinitely close refracted rays are convergent when the value of MF is
positive in the first case, and negative in the second case, and, on the contrary, they
are divergent when the value of MF is negative in the first case, and positive in the
second. Given this, it is clear that:

1. If the curve AMD is convex towards the radiant point B , and m is less than n, or
if it is concave towards this point, and m is greater than n, then infinitely close
refracted rays are always divergent.

2. If the curve AMD is convex towards the radiant point B , and m is greater
than n, or if it is concave towards this point and m is less than n, then

infinitely close refracted rays are convergent, when MK
�

aa
y

�
is less than

MH
�

bm
n

� a or a � bm
n

�
, divergent when MK is greater, and parallel when it

is equal. Now, because MK D 0 when the incident rays are parallel, it follows
that in this case infinitely close refracted rays are always convergent.

Corollary IV. .�137/ If the incident ray BM touches the curve AMD at the point
M , then we have ME.a/ D 0, and consequently MF D b. This shows that the point
F therefore falls on the point G.

If the incident ray BM is perpendicular to the curve AMD, then the straight lines
ME.a/ and MG.b/ each become equal to the radius of the evolute CM, because they



7 Caustics by Refraction 133

Fig. 7.4 Caustic of a Straight Line by Refraction

coincide with it. We therefore have MF D bmy
my�ny�bn , which becomes bm

m�n when the
incident rays are parallel to each other.

If the refracted ray MF touches the curve AMD at the point M , then we have
MG.b/ D 0. From this we see that the caustic therefore touches the given curve at
the point M .

[125] If the radius of the evolute CM is null, then the straight lines ME.a/ and
MG.b/ are also equal to zero. Consequently, the terms aan and bbmy are null with
respect to the other terms bmy and any. From this it follows that MF D 0, and
therefore that the caustic has the point M in common with the given curve.

If the radius of the evolute CM is infinite, then the straight lines ME.a/ and
MG.b/ are also infinite. Consequently, the terms bmy and any are null with respect
to other terms aan and bbmy, so that we have MF D bbmy

�aan . Now (see §133), because
this quantity is negative when we suppose that the point F falls on the other side of
the point B , with respect to the line AMD, and on the contrary it is positive when
we suppose that it falls on the same side, it follows (see §136) that we must take the
point F on the same side of the point B , that is to say that infinitely close refracted
rays are divergent. It is clear that the little arc Mm thus becomes a straight line, and
that the preceding construction no longer holds. We may substitute the following
one for it, which can be used to determine the points of caustics by refraction when
the line AMD is straight.

Draw BO perpendicular to the incident ray BM (see Fig. 7.4), meeting the straight
line MC perpendicular to AD atO . If we draw OL perpendicular to the refracted ray
MG, and make the angle BOH equal to the angle LOM, then we have BM W BH WW
ML W MF. I say that the point F is on the caustic by refraction.

Because the right triangles MEC and MBO are similar and the right triangles
MGC and MLO are also similar, no matter what magnitude we suppose CM to
have, and consequently when it becomes infinite, we still have6 ME.a/ W MG.b/ WW
BM.y/ W ML D by

a
. Additionally, because the triangles OLM and OBH are similar,

6In L’Hôpital (1696) the connective between BM.y/ and ML was missing.
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Fig. 7.5 Caustic of a Quarter Circle by Refraction, Convex Case

we also have7 OL W OB.n W m/ WW ML
�

by
a

�
W BH D bmy

an . From this we see that

BM.y/ W BH
�

bmy
an

�
WW ML

�
by
a

�
W MF

�
bbmy
aan

�
.

Corollary V. [126] .�138/ It is clear that given any two of the three points B , C ,
and F , we can easily find the third one.

Example I. .�139/ Let the curve AMD (see Fig. 7.5) be a quarter of a circle that
has the point C as its center. Let the incident rays BA, BM, and BD be parallel to
each other and perpendicular to CD. Finally, let the ratio of m to n be as 3 is to 2,
which is the ratio for rays of light passing from air into glass. Because the evolute
of the circle AMD is the point C , which is its center, it follows that if we describe a
semi-circumference MEC, which has the radius CM as its diameter, and if we take
the chord CG D 2

3
CE, then the line MG is the refracted ray, on which we determine

the point F , as we demonstrated above (see §133).

To find the point H where the incident ray BA, perpendicular to AMD, touches
the caustic by refraction, we have (see §137) AH

�
bm
m�n

� D 3b D 3CA.8 Moreover,
if we describe a semi-circumference CND with the radius CD as its diameter, and
if we take the chord CN D 2

3
CD, then it is clear (see §137) that the point N is on

the caustic by refraction because the incident ray BD touches the circle AMD at the
point D.

If we draw AP parallel to CD, then it is clear (see §132) that the portion FH D
AH � MF � 2

3
PM, so that the entire caustic HFN D 7

3
CA � DN D 7�p

5
3

CA.
If the quarter circle AMD (see Fig. 7.6) is concave towards the incident rays BM,

and the ratio of m to n, is as 2 is to 3, we take the chord CG D 3
2
CE on the

semi-circumference CEM that has the radius CM as its diameter, and we draw the
refracted ray MG, on which we determine the point F by the general construction
of §133.

[127] We have (see §137) AH
�

bm
m�n

� D �2b, that is to say that AH is on the side
(see §136) of the convexity of the quarter circle AMD, and twice the radius AC. If we

7In L’Hôpital (1696) the parentheses around by

a
were missing.

8In L’Hôpital (1696) the parentheses following AH were omitted.
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Fig. 7.6 Caustic of a Quarter Circle by Refraction, Concave Case

Fig. 7.7 Caustic of the Logarithmic Spiral by Refraction Spiral

suppose that CG or 3
2
CE is equal to CM, then it is manifest that the refracted ray MF

touches the circle AMD atM , because then the point G coincides with the pointM .
From this it follows that if we take CE D 2

3
CD, the point M falls on the point N ,

where the caustic HFN (see §137) touches the quarter circle AMD. However, when
CE is greater than 2

3
CD, the incident rays BM can no longer be refracted, that is to

say pass from glass into the air, because it is impossible for CG, perpendicular to
the refracted ray MG, to be greater than CM, so that all the rays that fall on the part
ND are reflected.

If we draw AP parallel to CD, then it is clear (see §132) that the portion FH D
AH � MF C 3

2
PM, so that if we draw NK parallel to CD, the entire caustic HFN D

2CAC 3
2
AK D 7�p

5
2

CA.

Example II. .�140/ Let the curve AMD (see Fig. 7.7) be a logarithmic spiral, which
has the point A as its center, from which all the incident rays AM emanate.

It is clear (see §91) that the point E falls on the point A, that is to say that a D y.
Thus, if we substitute y in the place of a in bbmy

bmy�anyCaan , the value (see §133) of MF
when the curve is concave on the side of the radiant point, then we have MF D b.
From this we see that the point F falls on the point G.

If we draw the straight line AG and the tangent MT , the angle AGO, supplemen-
tary to the angle AGM, is equal the angle AMT . This is because in the circle whose
diameter is the line CM, that passes through the points A and G, the angles AGO
and AMT each has as measure of half of the same arc AM. Therefore, it is clear that
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Fig. 7.8 Caustic by Refraction, Inverse Problem

Fig. 7.9 Caustic by Refraction, Inverse Problem, Alternate Solution

the caustic AGN is the same [128] logarithmic spiral as the given AMD, and that it
only differs in its position.

Proposition II.

Problem. .�141/ Given the caustic by refraction HF (see Fig. 7.8) with its radiant
point B and the ratio of m to n, we wish to find an infinity of curves, such as AM,
for which HF is the caustic by refraction.

Take the point A at will on any tangent HA as one of the points on the curve AM.
Describe the circular arc AP with center B and interval BA, and another circular arc
with any other interval BM. Taking AE D n

m
PM, we describe a curved line EM by

enveloping the caustic HF, that cuts the circular arc described on the interval BM
in a point M , which is on the curve we wish to find. This is because (see §132),
PM W AE or ML WW m W n.

Alternate Solution. .�142/ On any tangent FM, other than HA, we wish to find
the point M such that HF C FM C n

m
BM D HA C n

m
BA. This is why if we take

FK D n
m

BA C AH � FH, and we find a point M on FK, such that MK D n
m

BM,
this (see §132) will be the point that we wish to find. Now, this can be done by
describing a curved line GM (see Fig. 7.9) such that when we draw the straight lines
MB and MK from any of its point M to the given points B and K, they are always
to each other in the same ratio as m is to n. It is therefore only a matter of finding
the nature of this place.9

To this end, let MR be drawn perpendicular to BK and denote the given BK by a,
and the indeterminates BR by x and RM by y. The right triangles BRM and KRM
give BM D p

xx C yy and KM D p
aa � 2ax C xx C yy, [129] so that to satisfy the

condition of the problem, we must have
p

xx C yy W p
aa � 2ax C xx C yy WW m W n.

9I.e., the place of the general point M of the curved line GM.
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Fig. 7.10 Caustic by Refraction, Inverse Problem, Radiant Point at Infinity

From this we conclude yy D 2ammx�aamm
mm�nn � xx, which is a place on the circle that we

construct as follows.
Let us take BG D am

mCn and BQ D am
m�n , and let the semi-circumference GMQ be

described with diameter GQ; I say this is the required place. Because we have QR
or BQ � BR D am

m�n � x and RG or BR � BG D x � am
mCn , the property of the circle,

which gives QR � RG D RM2, yields yy D 2ammx�aamm
mm�nn � xx in analytic terms.

If the incident rays BA and BM (see Fig. 7.10) are parallel to a straight line given
in position, the first solution will still hold, but this latter becomes useless, and we
may substitute it with the following.

Let us take FL D AH �HF, and draw LG parallel to AB and perpendicular to AP.
We take LO D n

m
LG, and draw LP parallel to GO, and PM parallel to GL. It is clear

(see §132) that the point M is the one that we wish to find; because LO D n
m

LG, so
it follows that ML D n

m
PM.

If the caustic by refraction FH meets in a point, then the curves AM become the
Ovals of Descartes, which have caused such a stir among Geometers.10

Corollary I. .�143/ We prove as we did for the caustics by reflection (see §130)
that the curves AM have different natures, and they are not geometric except when
the caustic by refraction HF is geometric and rectifiable.

Corollary II. .�144/ Given a curved line AM (see Fig. 7.11) with the radiant point
B , and the ratio of m to n, we wish to find an [130] infinity of lines such as DN, so
that the refracted rays MN break again when they encounter these lines DN to meet
at a given point C .

If we imagine that the curved line HF is the caustic by refraction of the given
curve AM, formed by the radiant point B , then it is clear that this same line HF
must also be the caustic by refraction of the curve DN that we wish to find, having
the given point C as its radiant point. This is why (see §132)

10The Ovals of Descartes, or Cartesian Ovals, are a quartic curve (Lockwood 1971, p. 188).
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Fig. 7.11 Using the Inverse Construction to Focus Refracted Rays

n

m
BA C AH D n

m
BM C MF C FH and

NF C FH � n

m
NC D HD � n

m
DC:

Consequently

n

m
BA C AH D n

m
BM C MN C HD � n

m
NC;

and transposing as usual,

n

m
BA � n

m
BM C n

m
DC C AD D MN C n

m
NC:

This gives the following construction.
Take the pointD at will on any refracted ray AH as one of the points of the curve

DN that we wish to find. On any other refracted ray MF we take the part MK D
n
m

BA � n
m

BM C n
m

DC C AD, and find the point N , as above (see §142), such that
NK D n

m
NC. It is then clear (see §132) that the point M will be on the curve DN.

General Corollary.

For the Three Precceding Chapters. .�145/ It is manifest (see §80, 85, 107, 108,
114, 115, 128, 129, 134, 143) that a curved line can have only one evolute, only one
caustic by reflection, and only one caustic by refraction, given the radiant point and
the ratio of sines. These lines are always geometric and rectifiable when the given
curve is geometric. On the other hand, the same curved line may be the evolute, or
one or the other caustic in the same ratio of sines, with the same position of the
radiant point, of an11 infinity of very different lines, which are only geometric when
the given curve is geometric and rectifiable.

11In L’Hôpital (1696), the indefinite article une was omitted, but this was corrected in the Errata.



Chapter 8
Use of the Differential Calculus for Finding
the Points of Curved Lines That Touch
An Infinity of Lines Given in Position,
Whether Straight or Curved

Proposition I.

Problem. [131] .�146/ Let any line AMB (see Fig. 8.1) be given, which has the
straight line AP as its axis. Let it be understood that there is an infinity of parabolas
AMC and AmC, which all pass through the point A, and which have as their axes
the ordinates PM and pm. We wish to find the curved line that touches all of these
parabolas.1

It is clear that the point of contact of each parabola AMC is the intersection
point C where the infinitely close parabola AmC cuts it. Given this, we draw CK
parallel to MP, and denote the given quantities AP by x and PM by y, and the

unknowns AK by u and KC by z. By the property of the parabola, we have AP
2
.xx/ W

PK
2
.uu � 2ux C xx/ WW MP.y/ W MP � CK.y � z/. This gives zxx D 2uxy � uuy,

which is the equation common to all the parabolas such as AMC. Now, I remark that
the unknowns AK.u/ and KC.z/ remain the same, while the given quantities AP.x/
and PM.y/ vary by becoming Ap and pm, and KC.z/ remains the same only when
the point C is the intersection point. This is because it is clear that in every other
place the straight line KC cuts the two parabolas AMC and AmC at two different
points, and consequently there would be two values that would correspond to the
same AK. This is why if we treat u and z as constants, and take the differential of the
equation that we have just found, we determine the point C to be the intersection
point. Therefore, we have 2zx dx D 2ux dy C 2uy dx � uu dy. From this we find the
unknown [132] AK.u/ D 2xx dy�2yx dx

x dy�2y dx by substituting the value 2uxy�uuy
xx for z. If the

nature of the curve AMB is given, then we find a value for dy in terms of dx, which
is substituted into the value of AK, so that this unknown will finally be expressed in
entirely known terms and freed of differentials. This is what was proposed.

1The modern term for such a curve is the envelope of this family of parabolas.
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Fig. 8.1 The Envelope of a Family of Parabolas

If instead of parabolas AMC, we were to propose other straight or curved lines,
the positions of which are determined, we would always solve the Problem in much
the same way, as we will see in the following Propositions.

Example. .�147/ Let the equation xx D 4ay � 4yy express the nature of the curve
AMB, which is a half-ellipse that has the straight line AB D a as its minor axis,
perpendicular to AP, the major axis of which is double the minor axis.

We find that x dx D 2a dy�4y dy and consequently AK
�
2xx dy�2xy dx
x dy�2y dx

�
D ax

y
D u.

From this it follows that if we take AK to be the fourth proportional to MP, PA, and
AB, and if we draw KC perpendicular to AK, it will cut the parabola AMC at the
point C that we wish to find.

To find the nature of the curve that touches all the parabolas, or that passes
through all the points C found in this way, we find the equation that expresses
the relationship of AK.u/ to KC.z/ in the following way. Substituting the value ax

y

in place of u in zxx D 2uxy � uuy, we conclude that y D aa
2a�z and consequently

x or uy
a

D au
2a�z . Therefore, if we substitute these values in place of x and y in

xx D 4ay � 4yy, we form the equation uu D 4aa � 4az, in which x and y are no
longer found and which expresses the relationship of AK to KC. From this we see
that the curve that we wish to find is a parabola that has the line BA as its axis, the
point B as its vertex, the point A as its focus, and whose parameter is consequently
four times AB.

[133] We have just found that y D aa
2a�z , from which we conclude that KC.z/ D

2ay�aa
y

. Now, because this value is positive when 2y is greater than a, negative when
it is less than a, and null when it is equal to a, it follows that the point of contact C
falls above AP in the first case, as we had assumed in doing the calculation, below
it in the second case, and finally on AP in the third case.

If we draw the straight line AC, that cuts MP atG, then I say that MG D BQ, and
that the point G is the focus of the parabola AMC. This is because
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Fig. 8.2 The Envelope of a Family of Circles

1. AK
�

ax
y

�
W KC

�
2ay�aa
y

�
WW AP.x/ W PG D 2y � a and consequently MG D

a � y D BQ.
2. The parameter of the parabola AMC is D 4a � 4y, by substituting the value
4ay � 4yy for xx. Consequently, MG.a � y/ is one-fourth of the parameter, from
which we see that the point G is the focus of the parabola, and therefore that the
angle BAC must be divided equally into two by the tangent at A.

It follows from the fact that the parameter of the parabola AMC is four times BQ,
that when the vertex M falls on A the parameter is four times AB, and therefore
the parabola that has the point A as its vertex is asymptotic to the one that passes
through all the points C .

Because the parabola BC touches all parabolas such as AMC, it is clear that all
these parabolas cut the determined line AC at points that are closer to the point
A than the point C . Now, we demonstrate in Ballistics (supposing that AK is
horizontal) that all parabolas such as AMC mark the path described in the air by
Bombs which are launched by a Mortar placed at A, at all possible elevations with
the same force. From this it follows that if we draw a straight line that divides the
angle BAC in the middle, it will mark the position that the mortar should have so
that the bomb that it launches falls in the plane AC, given in position, at a point C
more distant from the mortar than with any other elevation.

Proposition II.

Problem. [134] .�148/ Let any curve AM be given (see Fig. 8.2), which has the
straight line AP as its axis. We wish to find another curve BC such that if we draw
the ordinate PM at will, and the perpendicular PC to this curve, the two lines PM
and PC are always equal to each other.

If we imagine an infinity of circles described with centers P and p, and radii PC
and pC, equal to PM and pm, then it is clear that the curve BC that we wish to find
must touch all of these circle, and that the point of contact C of each circle is the
intersection point where the circle that is infinitely close to it touches it. Given this,
let CK be drawn perpendicular to AP, and denote the given and variable quantities
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Fig. 8.3 Envelope of a Family of Straight Lines

AP by x and PM or PC by y, and the unknown and constant quantities AK by u and

KC by z. By the property of the circle we have PC
2 D PK

2CKC
2
, in analytic terms

that is to say yy D xx � 2ux C uu C zz, which is the equation common to all of these
circles, the differential of which is 2y dy D 2x dx � 2u dx. From this we conclude2

PK.x � u/ D y dy
dx , which gives the following general construction.

Let MQ be drawn perpendicular to the curve AM, and taking PK D PQ, let KC
be drawn parallel to PM. I say that it will meet the circle described with center point
P and radius PC D PM at the point C , where it touches the curve BC that we wish
to find. This is clear, because PQ D y dy

dx .
We may also find the value of PK in this alternate manner.
If we draw PO perpendicular to Cp, the right triangles pOP and PKC are similar

and consequently Pp.dx/ W Op.dy/ WW PC.y/ W PK D y dy
dx .

When PQ D PM, it is clear that the circle described with radius PC touches KC
at the point K, so that the point [135] of contact C will coincide with the point K,
and consequently will fall on the axis.

However, when PQ is greater than PM, the circle described with radius PC
cannot touch the curve BC, because it can never meet the straight line KC at any
point.

Example. .�149/ Let the given curve AM (see Fig. 8.2) be a parabola that has its
equation as ax D yy. We have PQ or PK.x�u/ D 1

2
a, and consequently x D 1

2
aCu

and yy D 1
4
aa C zz, because of the right triangle PKC. Now, if we substitute these

values in ax D yy, we form the equation 1
2
aa C au D 1

4
aa C zz or 1

4
aa C au D zz,

which expresses the nature of the curve BC. From this it is clear that this curve is
the same parabola as AM, because they both have the same parameter a, and that its
vertex B is at a distance of BA D 1

4
a from the vertex A.

2In L’Hôpital (1696), the right parenthesis was missing.
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Proposition III.

Problem. .�150/ Let any curved line AM (see Fig. 8.3) be given that has the line
AP as its diameter and whose ordinates PM and pm are parallel to the straight line
AQ given in position. We draw MQ and mq parallel to AP, and then the straight
lines PQC and pqC. We wish to find the curve AC that has all these straight lines as
tangents or, what amounts to the same thing, to determine the point of contact C on
each straight line PQC.

If we imagine another tangent pqC infinitely close to PQC, and draw CK parallel
to AQ, we denote the given and variable quantities AP by x and PM or AQ by y, and
the unknown and constant quantities AK by u and KC by z. The similar triangles
PAQ and PKC then give AP.x/ W AQ.y/ WW PK.x C u/ W KC.z/ D y C uy

x
, which

is the equation [136] common to all the straight lines such as3 KC. Its differential
is dy C ux dy�uy dx

xx D 0, from which we conclude AK.u/ D xx dy
y dx�x dy . This gives the

following general construction.
Let the tangent MT be drawn, and let AK be taken to be the third proportional to

AT and AP. I say that if we draw KC parallel to AQ it will cut the straight line PQC
at the point C that we wish to find.

This is because4 AT
�
y dx�x dy

dy

�
W AP.x/ WW AP.x/ W AK D xx dy

y dx�x dy .

Example I. .�151/ Let the given curve AM (see Fig. 8.3) be a parabola whose
equation is ax D yy. We have AT D AP, from which it follows that AK.u/ D x, that
is to say that the point K falls on the point T . If we now wish to have an equation
which expresses the relationship of AK.u/ to KC.z/, then we find that KC.z/ D 2y,
because we have just found that PK is twice AP. Thus, substituting for x and y their
values u and 1

2
z in ax D yy, we have 4au D zz. From this, we see that the curve

AC is a parabola whose vertex is the point A and whose parameter is a line which is
four times the parameter of the parabola AM.

Example II. .�152/ Let the given curve AM (see Fig. 8.4) be a quarter of the circle
BMD which has the point A as its center, and the line AB or AD as its radius, which
I call a. It is clear that PQ is always equal to the radius AM or AB, that is to say that
they are everywhere the same, so that we may imagine that its extremities P and
Q slide along the sides BA and AD of the right angle BAD. We have AK.u/ D x3

aa ,

because AT D aa
x

, and the parallels KC and AQ give AP.x/ W PQ.a/ WW AK
�
x3

aa

�
W

QC D xx
a

. From this we see that in order to find the point of contact C , we need to

3In L’Hôpital (1696), PC was written in place of KC, but corrected in the Errata.
4In L’Hôpital (1696), AK was preceded by the symbol :: instead of a colon.
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Fig. 8.4 Envelope of a Family of Straight Lines Generated by a Quarter Circle

only take QC to be the third [137] proportional to PQ and AP. If wish to find the
equation which expresses the nature of the curve BCD, then we find the following:5

u6 � 3aau4 C 3a4uu � a6 D 0:

C 3zz C 21aazz C 3a4zz
C 3z4 � 3aaz4

C z6

Corollary I. .�153/ If we wish to find the ratio of the portion DC of the curve
BCD to its tangent CP, then we imagine another tangent cp infinitely close to CP,
and describe the small arc PO with center C . We will then have cp � CP or Op �
Cc D � 2x dx

a
, as the differential of CP D aa�xx

a
, from which we conclude that Cc D

Op C 2x dx
a

. Now, because of the similar right triangles QPA and PpO, we have
PQ.a/ W AP.x/ WW Pp.dx/ W Op D x dx

a
and consequently Cc D 3x dx

a
D DC � Dc.

It is then manifest that in whatever location we take the point C , we always have
DC � Dc

�
3x dx
a

� W CP � cp
�
2x dx
a

� WW 3 W 2. From this it follows that the sum of all the
differentials DC � Dc which correspond to the straight line PD, that is to say (see
§96) the portion DC of the curve BCD, is to the sum of all the differentials CP � cp
which correspond to the same straight line PD, that is to say (see §96) to the tangent
CP WW 3 W 2. Similarly, the entire curve BCD is to its tangent BA WW 3 W 2.

Corollary II. .�154/ If we evolve the curve BCD, starting at the point D, then we
form the curved line DNF such that CN W CP WW 3 W 2, because CN is always equal
to the portion DC of the curve BCD. From this it follows that the similar sectors

5In the equation that follows, the factor u4 is understood in the first term of the second line and the
factor uu is understood in the next term, as well as the first term of the third line.
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Fig. 8.5 The Envelope of a Family of Perpendiculars

CNn and CPO are to each other as WW 9 W 4, and thus that the space DCN contained
by the curves DC and DN, and by the straight line CN which is tangent at C and
perpendicular at [138] N , is to the space DCP contained by the curve DC and the
two tangents DP and CP, as 9 is to 4.

Corollary III. .�155/ The center of gravity of the sector CNn must be situated on
the arc PO, because CP D 2

3
CN. In addition, because this arc is infinitely small,

it follows that this center must be on the straight line AD and consequently that
the center of gravity of the spaces DCN and BDF, which are composed all these
sectors, must be on this straight line AD, so that if we describe a figure exactly like
BDF on the other side of BF, then the center of gravity of the whole figure would be
at the point A.

Corollary IV. .�156/ Because of the similar right triangles PQA and pPO, we

have PQ.a/ W AQ or PM
�p

aa � xx
� WW Pp.dx/ W PO D dx

p
aa�xx
a

. In addition,
because of the similar sectors CPO and CNn we also have CP W CN or 2 W
3 WW PO

�
dx

p
aa�xx
a

�
W Nn D 3 dx

p
aa�xx
2a

. Now, the rectangle MP � Pp, that is to

say (see §2) the little circular space MPpm D dx
p

aa � xx. Therefore, we have
AB � Nn D 3

2
MPpm, from which it follows that the portion ND of the curve DNF,

when multiplied by the radius AB, is three-halves of the circular segment DMP, and
that the entire curve DNF is equal to three quarters of BMD, which is one fourth of
the circumference of the circle.

Proposition IV.

Problem. .�157/ Let any curve AM (see Fig. 8.5) be given that has the straight
line AP as its axis, and let an infinity of perpendiculars MC and mC to this curve be
understood. We wish to find the curve [139] that has all of these perpendiculars as
tangents or, what amounts to the same thing, we wish to find the point of contact C
on every perpendicular MC.

We imagine another perpendicular mC infinitely close to MC with ordinate MP,
and from the point of intersection C , we draw the straight line CK perpendicular to
the axis and the straight line CE parallel to the axis. If we then denote the given and
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Fig. 8.6 The Envelope of a Sliding Line Segment, or Glissette

variable quantities AP by x and PM by y and the unknown and constant quantities
AK by u and KC by z, then we have PQ D y dy

dx , PK or CE D u�x, and ME D yCz.

The similar right triangles MPQ and MEC give MP.y/ W PQ
�
y dy
dx

�
WW ME.y C z/ W

EC.u � x/ D y dyCz dy
dx , which is the equation common to all the perpendiculars

such as MC, and whose differential (supposing dx to be constant) gives �dx D
y ddyCdy2Cz ddy

dx , from which we conclude that ME.z C y/ D dx2Cdy2

�ddy . Now, if the

nature of the curve AM is given, we have the values of dy2 and ddy in terms of dx2,

which being substituted in dx2Cdy2

�ddy , gives a value for ME entirely known and free of
differentials. This is what was proposed.

It is clear that the curve that goes through all the points C is the Evolute of
the curve AM, and because we have specifically treated them in Chapter 5, it is
unnecessary to give new examples here.

Proposition V.

Problem. .�158/ Let any two lines AM and BN be given (see Fig. 8.6) with a
straight line MN that always remains the same. We suppose that the extremities
M and N of this line slide continually along the two others. We wish to find the
curve that it always touches in this motion.

Draw the tangents MT and NT , and imagine [140] another straight line mn
infinitely close to MN, which consequently cuts it at the point C where it touches
the curve whose points we wish to determine. It is clear that, in order to reach mn,
the extremities of the straight line MN traveled along the little portions Mm and Nn
of the lines AM and BN, which coincide with the tangents TM and TN, on account
of their infinite smallness. In this way, we may imagine that in order to arrive at the
infinitely close position mn, the line MN slides along the straight lines TM and TN
given in position.

With this understood, let the perpendiculars MP and CK be dropped to NT .
We denote the given and variable quantities TP by x and PM by y, and the
unknown and constant quantities TK by u and KC by z, and the given MN that
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Fig. 8.7 The Envelope to a Family of Cords

always remains the same by a. The right triangle MPN gives PN D p
aa � yy

and because of the similar triangles NPM and NKC we have NP
�p

aa � yy
� W

PM.y/ WW NK
�
u � x � p

aa � yy
� W KC.z/ D uy�xyp

aa�yy � y, whose differential gives

aau dy � aax dy � aay dx C y3 dx D aa dy � yy dy
p

aa � yy. Using
p

aa � yy D m

to abbreviate, we conclude from this that PK.u � x/ D m3 dyCmmy dx
aa dy D m3Cmmx

aa ,
substituting the value x dy for y dx, because of the similar triangles mRM and MPT .
Consequently, MC D mmCmx

a
, which gives the following construction.

Let TE be drawn perpendicular to MN, and take MC D NE. I say that the point
C is the one we wish to find. Because of the similar right triangles MNP and TNE,
we have MN.a/ W NP.m/ WW NT.mC x/ W NE or MC D mmCmx

a
.

Alternate method. Draw TE perpendicular to MN, and describe the little arcs MS
and NO with center C . Denote the given quantities NE by r , ET by s, and MN by a,
and the unknown CM by t . We have Sm or On D dt, and the similar right triangles
[141] MET and mSM give ME.r � a/ W ET.s/ WW mS.dt/ W SM D s dt

r�a . Additionally,
the similar right triangles NET and nON give NE.r/ W ET.s/ WW nO.dt/ W ON D s dt

r
.

Finally, the similar right triangles CMS and CNO give MS�NO
�

as dt
rr�ar

� W MS
�
s dt
r�a

� WW
MN.a/ W MC.t/ D r . This gives the same construction as above.

If we suppose that the lines AM and BN are straight lines that form a right angle,
then it is clear that the curve that we wish to find is the same as that of §152.

Proposition VI.

Problem. .�159/ Let any three lines L, M , and N be given (see Fig. 8.7), and let
it be understood that from each of the points L and l of the line L there are two
tangents LM and LN, and lm and ln, to the two curves M and N , one to each. We
wish to find the fourth curve C , which has as its tangents all the straight lines MN
and mn, that join the points of contact M and N of the curves.



148 8 Envelopes

We draw the tangent LE and, from any of its pointsE, we drop the perpendiculars
EF and EG to the other two tangents ML and NL. We imagine that the point
l is infinitely close to the point L and draw the little straight lines LH and LK
perpendicular to ml and nl. We also erect the perpendiculars MP, mP, NQ, and nQ
on the tangents ML, ml, NL, and nl; these perpendiculars intersect each other at the
points P and Q. All of this forms the similar right triangles EFL and LHl, and EGL
and LKl. We also form the right triangles LMH and MPm, and LnK and NQn, with
right angles at H and M , and at K and N , which are similar to each other, because
the angles LMH and MPm make right angles when we add the angle PMm to each
of them. Similarly, we prove that the angles LnK and NQn are equal to each other.

Given this, we denote the little side Mm of the polygon which composes the curve
M by du, and the given quantities EF by m, EG by n, MN or mn by a, ML or ml by
b, NL or nl by c, MP or [142] mP by f , NQ or nQ by g (here I take the straight lines
MP and NQ as given, because we may always find them (see §78) from the nature
of the curves M and N , which are given by hypothesis). We have:

1. MP.f / W ML.b/ WW Mm.du/ W LH D b du
f

.

2. EF.m/ W EG.n/ WW LH
�
b du
f

�
W LK D bn du

mf .

3. LN or Ln.c/ W nQ.g/ WW LK
�

bn du
mf

�
W nN D bgn du

cfm .

4. (Drawing MR parallel to NL or nl) ml.b/ W ln.c/ WW mM.du/ W MR D c du
b

.

5. MR C Nn
�
c du
b

C bgn du
cfm

�
W MR

�
c du
b

� WW MN.a/ W MC D accfm
ccfmCbbgn .

This is what we were required to find.
If the tangent EL falls on the tangent ML, it is clear that EF .m/ becomes null

or zero, and consequently the point C that we wish to find falls on the point M .
Similarly, if the tangent EL coincides with the tangent LN, then EG .n/ becomes
null, and consequently we have MC D a, from which we see that the point C
that we wish to find also falls on the point N . Finally, in the case that the tangent
EL falls inside the angle GLI, EG .n/ becomes negative, which therefore gives
MC D accfm

ccfm�bbgn and the point C that we wish to find does not fall between the
points M and N , but on one side or the other.

Example I. .�160/ Suppose that the curves M and N (see Fig. 8.8) are the same
circle. It is clear that in this case b D c and f D g, which gives MC D am

mCn , from
which we see that we need to only cut the straight line MN in the given ratio of m
to n to find the point C that we wish to find, that is to say so that MC W NC WW m W n.

Example II. .�161/ Suppose that the curvesM andN form [143] any conic section.
The general construction can be changed to this other one, which is much simpler, if
we pay attention to a property of conic sections, which we find proven in books that
treat them. That is, if from each of the pointsL and l on the straight line EL we draw
two tangents LM and LN, and lm and ln, to the conic section, then all the straight
lines MN and mn, which join the points of contact, cut each other at the same point
C , through which the diameter AC passes, the ordinates to which are parallel to the
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Fig. 8.8 Envelope of a Family of Chords in a Conic Section

straight line EL. Hence, it follows from this that to find the point C we need to only
draw a diameter that has its ordinates parallel to the tangent EL.

It is clear that in the circle, the diameter should be perpendicular to the tangent
EL, that is to say that if we drop a perpendicular AB from the centerA to this tangent,
it will cut through the straight line MN at the point C that we wish to find.

Remark. .�162/By means of this Problem (see Fig. 8.7) we may solve the following
problem, which depends on the Method of Tangents.

Given three curves C , M , and N , we make a straight line MN roll around the
curve C , so that it touches it continually. From the points M and N , where it cuts
the curves M and N , we draw the tangents ML and NL, which intersect at the point
L, which describes by this motion a fourth curve Ll. We wish to draw the tangent
LE to this curve, given the position of the straight lines MN, ML, and NL, along with
the point of contact C .

It is clear that this problem is the inverse of the previous one, and that here MC is
given. What we wish to find is the ratio of EF to EG, which determines the position
of the tangent EL. This is why, if we denote the given MC by h, then we have

accfm
ccfmCbbgn D h. From this we conclude that m D bbghn

accf �ccfh , and consequently that the
tangent LE must be so situated in the given angle MLG, that if we drop [144] the
perpendiculars EF and EG from any of its points E to the sides of this angle, they
always have the given ratio of bbgh to accf � ccfh to each other. Now, this is done

by drawing MD parallel to NL, and equal to b3gh
accf �ccfh .

It is clear (see §161) that if the two curves M and N (see Fig. 8.8) form a conic
section, then we need to only draw the tangent LE parallel to the ordinates of the
diameter that passes through the point C .



Chapter 9
The Solution of Several Problems That Depend
upon the Previous Methods

Proposition I.

Problem. [145] .�163/ Let AMD (see Fig. 9.1) be a curved line (AP D x, PM D y,
and AB D a) such that the value of the ordinate y is expressed by a fraction, in
which the numerator and the denominator each becomes zero when x D a, that is
to say, when the point P falls on the given point B . We ask what the value of the
ordinate BD ought to be.1

Let it be understood that there are two curved lines ANB and COB that have
the line AB as a common axis, and which are such that the ordinate PN expresses
the numerator, and the ordinate PO the denominator of the general fraction that
corresponds to all of the ordinates PM, so that PM D AB�PN

PO . It is clear that these two
curves meet at the point B because, by the assumption, PN and PO each becomes
zero when the point P falls on B . Given this, if we imagine an ordinate bd infinitely
close to BD, which meets the curved lines ANB and COB at f and g, then we will
have bd D AB�bf

bg , which (see §2) does not differ from BD. It is therefore only a
question of finding the ratio of bg to bf . Now, it is clear that as the abscissa AP
becomes AB, the ordinates PN and PO become null, and that as AP becomes Ab,
they become bf and bg. From this, it follows that these ordinates themselves, bf and
bg, are the differentials of the ordinates at B and b with respect to the curves ANB
and COB. Consequently, if we take the differential of the numerator and we divide
it by the differential of the denominator, after [146] having let x D a D Ab or AB,
we will have the value that we wish to find for the ordinate bd or BD. This is what
we were required to find.

1This is the rule known as l’Hôpital ’s Rule. Compare this to Bernoulli’s Letter 28 on p. 267.
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Fig. 9.1 L’Hôpital ’s Rule

Example I. .�164/ Let2

y D
p
2a3x � x4 � a 3

p
aax

a � 4
p

ax3
:

It is clear that when x D a, then the numerator and denominator of the fraction both
become equal to zero. This is why we take the differential of the numerator

a3 dx � 2x3 dxp
2a3x � x4 � aa dx

3 3
p

axx

and we divide it by the differential of the denominator

� 3a dx

4
4

p
a3x

;

after having let x D a. That is to say, we divide � 4
3
a dx by � 3

4
dx, which gives 16

9
a

as the value of BD that we wish to find.

Example II. .�165/ Let3

y D aa � ax

a � p
ax
:

2This example is Bernoulli’s 0
0

Challenge Problem, which appears frequently in l’Hôpital ’s
correspondences with Bernoulli. It first appeared in Bernoulli’s Letter 11 on p. 239.
3In his letter 28, of July 22, 1694, Bernoulli gave the similar example y D a

p

ax�xx
a�

p

ax
, and found

that y D 3a when x D a.
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Fig. 9.2 The Rolling Tangent Lemma

We find y D 2a when x D a.

We might have solved this example without the need of the calculus of
differentials in the following way.

Having removed the incommensurables, we will have aaxx C 2aaxy � axyy �
2a3x C a4 C aayy � 2a3y D 0, which being divided by x � a, reduces to aax �
a3 C 2aay � ayy D 0, and substituting a for x, it follows as before that4 y D 2a.

Lemma I. .�166/ Let BCG be any curved line (see Fig. 9.2), with a straight line AE
that touches it at the point B , and on which two fixed points A and E are marked at
will. If we make this straight line roll along the curve, so that it continually touches
it, it is clear that the fixed points A and E describe two curves AMD and ENH by
this motion. We now draw DL parallel to AB. The angle KDL, which DL makes with
DK (on which I suppose the straight line AE to be when it [147] touches the curve
BCG at G) is equal to the angle AOD made by the tangents at B and G. We also
describe at will the arc KFL with center D.

I say that DK W KFL WW AE W AMD ˙ ENH, namely C when the point of contact
always falls between the describing points and � when they always remain on the
same side.5

Suppose that the straight line AE, while rolling along the curve BCG, is brought
to the positions MCN and mCn, infinitely close to each other, and that we draw the
radii DF and Df parallel to CM and Cm. It is clear that the sectors DFf , CMm, and
CNn are similar, and thus that DF W Ff WW CM W Mm WW CN W Nn WW CM ˙ CN or AE W
Mm ˙ Nn. Now, because this always holds no matter where the point of contact C
is found, it follows that the radius DK is to the arc KFL, which is the sum of all the

4There is no mention here that y D 0 is also a root of the equation 2aay � ayy D 0, which is the
result of substituting a for x. Bernoulli’s example in letter 28 has the spurious root y D �a.
5The pointE appears twice in Fig. 9.2. In the case of the point E on the right, we use AMDCENH
in the proportion. In the case of the point E on the left, we use AMD � ENH in the proportion.
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little arcs Ff WW AE W AMD ˙ ENH, which is the sum of all the little arcs Mm ˙ Nn.
This is what we were required to show.

Corollary I. .�167/ It is clear that the curves AMD and ENH are formed by
the involution of the same curve BCG and that therefore the straight line AE is
everywhere perpendicular to these two curves in any position where it is found,
so that their distance is always the same, which is the property of parallel lines.
From this we see that when the curved line AMD is given, we can find an infinity
of points of the curve ENH without needing its evolute BCG, by drawing as many
perpendiculars as we wish to this curve, and taking them all equal to the straight
line AE.

Corollary II. .�168/ If the curve BCG has its two halves BC and CG entirely
similar and equal, and if we take the straight lines BA and GH equal to each other,
then it is clear that the curves AMD and ENH are similar and equal, so that [148]
they differ only in their position. From this it follows that the curve AMD is to the
circular arc KFL WW 1

2
AE W DK, that is to say, in the given ratio.

Proposition II.

Problem. .�169/ Let AEV and BCG be any two curves (see Fig. 9.3) with a third
one AMD, such that when we describe a portion of the curve EM by the evolution
of the curve BCG, the relationship among the curved portions AE and EM, and the

Fig. 9.3 Tangent to a Curve Defined from Two Other Curves by Evolution
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radii of the evolutes EC and MG are expressed by any given equation. We wish to
draw the tangent MT to the curve AMD at the given point M .

We imagine another portion of a curve em infinitely close to EM and the radii of
the evolutes CeF and GmR.

1. Let CH be perpendicular to CE, which meets the tangent EH to the curve AEV
at H .

2. Let ML be parallel to CE, which meets the arc GL described by the centerM and
radius MG at L.

3. Let GT be perpendicular to MG, which meets the tangent MT that we wish to
find at T .

We denote the given quantities AE by x, EM by y, CE by u, GM by z, CH by s,
EH by t , and the arc GL by r . From this we have Ee D dx, Fe or Rm D du D dz, and
the similar right triangles eFE and ECH give CE.u/ W CH.s/ WW Fe.dz/ W FE D s dz

u .
Also, CE.u/ W EH.t/ WW Fe.dz/ W Ee.dx/ D t dz

u . Now, by the Lemma (see §166) RF�
me D r dz

z , and consequently RM
�
RF � me C me � ME C ME � MF

� D r dz
z C

dy C s dz
u . Thus, because of the similar right triangles mRM and MGT , we have

mR.dz/ W RM
�
r dz

z C s dz
u C dy

�
WW MG.z/ W GT D r C sz

u C z dy
dz . However, if we

substitute the values dz and t dz
u in place of du and dx in the differential of the given

equation, we then find the value of dy in terms of dz which being [149] substituted
in z dy

dz gives a value entirely known and free of differentials for the subtangent GT
that we wish to find. This is what was proposed.

If we suppose that the curve BCG is reduced to a point O (see Fig. 9.4), it is
clear that the portion of the curve ME.y/ becomes an arc of a circle equal to the
arc GL.r/, and that the radii CE.u/ and GM.z/ of the evolute become equal to each
other, so that GT , which in this case becomes OT , is found to be equal to yCsC z dy

dz .

Example. .�170/ Let y D xz
a

(see Fig. 9.4), the differential of which gives
dy D z dx�x dy

a
(we take �x dz in place of Cx dz (see §8), because as x and y

increase, z decreases) D t dz�x dz
a

, substituting the value t dz
z for dx. Consequently,

OT
�
y C s C z dy

dz

�
D y C s C tz�xz

a
D asCtz

a
, substituting the value xz

a
for y.

Remark. .�171/ If the pointO falls on the axis AB (see Fig. 9.5), and the curve AEV
is a semi-circle, then the curve AMD will be a half-roulette, formed by the revolution
of a semi-circle BSN around an equal arc BGN of a circle described with center O
such that the generating point A falls outside, inside, or on the circumference of the
mobile semi-circle BSN, depending on whether the given a is greater than, less than,
or equal to OV . We wish to prove this and at the same time determine the point B .

I assume that which is in question, namely that the curve AMD is a half-roulette,
formed by the revolution of the semi-circle BSN – which has as its center the point
K, which is the center of the semi-circle AEV – around the arc BGN described from
the center O . Imagining that this semi-circle BSN stops at the position BGN such
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Fig. 9.4 Degenerate Case of the Construction in Figure 9.3

Fig. 9.5 Special Case of Figure 9.3: The Half-Roulette

that the describing point A falls [150] on the point M , I draw the straight line OK
through the centers of the generating circles, which consequently passes through the
point of contact G. Drawing KSE, I observe that the triangles OKE and OKM are
equal and similar, because their three sides are equal one to another. From this it
follows that:

1. The extreme angles MOK and EOK are equal, and therefore that the angles EOM
and GOB are also equal, which gives GB W ME WW OB W OE.
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2. The angles MKO and EKO are also equal, and thus that the arcs GN and
BS, which measure them, are also equal. The same thing can be said of their
supplements GB and SN, because they belong to equal circles. Now, by the
generation of the roulette, the arc GB of the mobile circle is equal to the arc
GB of the immobile circle. Therefore, I have SN W ME WW OB W OE.

Given this, I denote the given quantities OV by b, KV or KA by c, and the
unknown KB by u. I have OB D b C c � u, and the similar sectors KEA and KSN
give me KE.c/ W KS.u/ WW AE.x/ W SN D ux

c
. Consequently,

OB.b C c � u/ W OE.z/ WW SN
�ux

c

�
W EM.y/ D uxz

bc C cc � cu
D xz

a
:

From this I conclude KB.u/ D bcCcc
aCc . It is therefore clear that if we take KB D bcCcc

aCc ,
and we describe the semi-circle BSN and the arc BGN from the centers K and O ,
the curve AMD is a half-roulette described by the revolution of the semi-circle BSN
around the arc BGN, for which the describing point A falls outside, inside, or on the
circumference of this circle depending on whether KV.c/ is greater than, less than,
or equal to KB

�
bcCcc
aCc

�
, that is to say depending on whether a is greater than, less

than, or equal to OV.b/.

Corollary I. .�172/ It is clear that EM.y/ W AE.x/ WW KB � OE.uz/ W OB �
KV .bc C cc � uc/. Now, if we suppose that OB becomes infinite, then the straight
line OE will also be infinite and will become parallel to OB, because it will never
meet it. The [151] concentric arcs BGN and EM become straight lines parallel to
each other, and perpendicular to OB and OE. Therefore, the straight line EM is to
the arc AE WW KB W KV, because the infinite straight lines OE and OB, which differ
from each other only by a finite magnitude, must be regarded as equal.

Corollary II. .�173/ Because the angles MKO and EKO are equal, it follows that
the triangles MKG and EKB are equal and similar. Therefore, the straight lines MG
and EB are equal to each other. From this we see (see §43) that in order to draw the
perpendicular MG from any given pointM on the roulette, we need to only describe
the arc ME with center O , and from the center M with radius EB, we describe a
circular arc that cuts the base BGN at a point G. Through this and the given point
M we draw the perpendicular that we wish to find.

Corollary III. .�174/ Given a point G on the circumference of the mobile semi-
circle BGN, if we wish to find the point M on the roulette on which the describing
point A falls when the given point G touches the base, we need to only take the arc
SN equal to the arc BG and draw the radius KS to meet the circumference AEV
at E. We then describe the arc EM with center O . It is clear that this arc cuts the
roulette at the point M that we wish to find.
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Fig. 9.6 Greatest Ordinate of a Roulette with respect to an Axis – External Describing Point

Fig. 9.7 Greatest Ordinate of a Roulette with respect to an Axis – Internal Describing Point

Proposition III.

Problem. .�175/ Let AMD be a half-roulette (see Figs. 9.6, 9.7) described by the
revolution of the semi-circle BGN around an equal arc BGN of another circle, so
that the revolved parts BG and BG are always equal to each other. Let the describing
pointM be taken on the diameter BN either outside, inside, or on the circumference
of the mobile circle BGN. We wish to find the point M on the half-roulette with the
greatest magnitude with respect to its axis OA.

Assuming that the point M is the one that we wish to find, it [152] is clear (see
§47) that the tangent atM must be parallel to the axis OA, and thus the perpendicular
MG to the roulette must also be perpendicular to the axis, which it meets at P .
Given this, if we draw OK through the centers of the generating circles, then it
passes through the point of contact G, and if we draw KL perpendicular to MG,
we make the equal angles GKL and GOB. Consequently, the arc IG, which is twice
the measure of the angle GKL, is to the arc GB, which is the measure of the angle
GOB, as the diameter BN is to the radius OB. From this it follows that to determine
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Fig. 9.8 Triangle with Infinitely Small Angles

the point G on the semi-circle BGN, where it touches the arc that serves as its base
when the describing point M falls on the point of greatest magnitude, we must cut
the semi-circle BGN at a point G such that when we draw the chord IG through
the given point M , then the arc IG is to the arc BG in the given ratio of BN to
OB. The question therefore reduces to a problem of common geometry, which may
always be solved geometrically when the given ratio is of a number to a number.
However, when the ratio is composed to some other power,6 it maybe solved with
the assistance of lines whose equation is raised to the same power.

If we suppose that the radius OB becomes infinite, as happens when the base
BGN becomes a straight line, it follows that the arc IG is infinitely small with respect
to the arc GB. From this we see that the secant MIG therefore becomes the tangent
MT , when the describing point M falls outside of the mobile circle and that there
cannot be a point of the greatest magnitude when it falls inside.

When the point M falls on the circumference at N , we need to only divide the
semi-circumference BGN in the given ratio of BN to OB at the point G. This is
because the point G thereby found is the one where the mobile circle BGN touches
the base, when the describing point falls on the point that we wish to find.

Lemma II. [153] .�176/ In any triangle BAC (see Fig. 9.8), such that the angles
ABC, ACB, and CAD, the supplement to the obtuse angle BAC, are infinitely small,
I say that these angles have the same ratios to one another as the sides AC, AB, and
BC, to which they are opposite.

If we circumscribe a circle around the triangle BAC, then the arcs AC, AB,
and BAC, which measure the doubles of these angles, are infinitely small and
consequently do not differ (see §3) from their chords or subtenses.7

If the sides AC, AB, and BC of the triangle BAC are not infinitely small, but have
a finite magnitude, then it follows that the circumscribed circle must be infinitely
large, because the arcs AC, AB, and BAC which have a finite magnitude must be
infinitely small with respect to this circle, being the measures of infinitely small
angles.

6I.e., involving 3rd, 4th, etc., proportionals.
7Some seventeenth century authors used the term subtense synonymously with the term chord,
e.g., Cohen (1999, p. 130).
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Proposition IV.

Problem. .�177/ The same things being given (see Figs. 9.6, 9.7), we wish to
determine the point C on each perpendicular MG where it touches the evolute of
the roulette.

We imagine another perpendicular mg infinitely close to MG, which conse-
quently cuts it at the point C that we wish to find, and we draw the straight line
Gm. Taking the little arc Gg on the circumference of the mobile circle equal to the
arc Gg on the immobile circle, we draw the straight lines Mg, Ig, Kg, and Og. Given
this, if we consider the little arcs Gg and Gg as little straight lines perpendicular to
the radii Kg and Og, then it is clear that when the little arc Gg of the mobile circle
falls on Gg of the immobile circle, then the describing point M falls on m, so that
the triangle GMg coincides with the triangle Gmg. From this we see that the angle
MGm is equal to the angle gGg D GKg C GOg, because when adding to both sides
the same angles KGg and OGg, we make up two right angles.

Now, denoting the given quantities OG by b, KG by a, GM or Gm by m, and
[154] GI or Ig by n, we find that:

1. OG W GK WW GKg W GOg and OG.b/ W OG C GK or OK.b C a/ WW GKg W
GKg C GOg or MGm D aCb

a
GKg.

2. (see §176) Ig W MI WW GMg W MgI and Ig ˙ MI or MG.m/ W Ig.n/ WW GMg ˙
MgI or GIg or 1

2
GKg W GMg or Gmg D n

2m
GKg.

3. (see §176) The angle MCm or MGm � Gmg
�
aCb
b

� n
2m

GKg
�

W Gmg
�
n
2m

Gkg
� WW

Gm.m/ W GC D bmn
2amC2bm�bn .

Consequently, the radius MC of the evolute that we wish to find is D 2ammC2bmm
2amC2bm�bn .

If we suppose that the radius OG.b/ of the immobile circle becomes infinite,
then its circumference becomes a straight line. Thus, erasing the terms 2amm and
2am, because they are null with respect to the others 2bmm and 2bm � bn, we have
MC D 2mm

2m�n .

Corollary I. .�178/ Because the angle MGm D aCb
b

GKg, and because the arcs
of the different circles are to each other in the ratio composed of the radii and the
angles that they measure, it follows that Gg W Mm WW KG � GKg W MG � aCb

b
GKg.

Consequently, we also have that KG�Mm D aCb
b

MG�Gg, or (what amounts to the
same thing) that KG � Mm W MG � Gg WW OK.a C b/ W OG.b/, which is a constant
ratio. From this we see that the magnitude of the portion AM of the half-roulette
AMD depends on the sum of the MG � Gg in the arc GB. This is what Mr. Pascal
has shown with respect to roulettes whose bases are straight lines.

Mr. Varignon8 came across the same property by a very different path from this.

8Pierre Varignon (1654–1722).
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Corollary II. .�179/ When the describing point M (see Fig. 9.6) falls outside of
[155] the circumference of the mobile circle, then necessarily one of the following
three cases holds. If we draw the tangent MT, the point of contact G falls:

1. On the arc TB, as we have supposed in the figure when doing the calculation,
and hence MC

�
2ammC2bmm
2amC2bm�bn

�
is always greater than MG.m/.

2. On the point T of tangency, and we therefore have MC
�
2ammC2bmm
2amC2bm�bn

� D m,
because IG.n/ disappears.

3. On the arc TN, and hence the value of GI.n/ goes from positive to negative, and
we have MC D 2ammC2bmm

2amC2bm�bn , so that MC is less than MG.m/, and still positive.

From this it is clear that in all of these cases, the value of the radius MC of the
evolute is always positive.

Corollary III. .�180/ When the describing point M falls inside the circumference
of the mobile circle (see Fig. 9.7), we still have MC D 2ammC2bmm

2amC2bm�bn and it may happen
that bn is greater than 2amC2bm, and thus that the value of the radius of MC of the
evolute is negative. From this we see that when it ceases to be positive in order to
become negative, as occurs (see §81) when the pointM becomes an inflection point,
it must therefore necessarily be the case that bn D 2am C 2bm and consequently
that MI � MG.mn � mm/ D 2ammCbmm

b
. Now, if we denote the given KM by c, then

by the property of the circle we have MI � MG
�
2ammCbmm

b

� D BM � MN.aa � cc/,

which gives the unknown MG.m/ D
q

aab�bcc
2aCb . Therefore, if we describe a circle

with the given point M as center, and radius MG D
q

aab�bcc
2aCb , it cuts the mobile

circle at the point G, where it touches the immobile circle that serves as its base,
when the describing point M falls on the inflection point F .

[156] If we draw MR perpendicular to BN, then it is clear that this

MG
�q

aab�bcc
2aCb

�
is less than MR

�p
aa � cc

�
and that it must be equal to it if b

becomes infinite, that is to say when the base of the roulette becomes a straight line.
It should be noted that, in order that the circle described with radius MG cuts the

mobile circle, it is necessary that MG is greater than MN, that is to say that
q

aab�bcc
2aCb

is greater than a�c, and thus KM.c/ is greater than aa
aCb . From this it is clear that in

order that there be an inflection point in the roulette AMD, it is necessary that KM
be less than KN and greater than aa

aCb .

Lemma III. .�181/ Let ABb and CDd (see Fig. 9.9) be two triangles, each of which
has one of their sides Bb and Dd infinitely small with respect to the others. I say that
the triangle ABb is to the triangle CDd in a ratio composed of the of the angle BAb
to the angle DCd, and of the square of the side AB or Ab to the square of the side
CD or Cd.

If we describe the circular arcs BE and DF with centers A and C , and radii AB
and CD, then it is clear (see §2) that the triangles ABb and CDd do not differ from
the sectors ABE and CDF. Therefore, etc.
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If the sides AB and CD are equal, then the triangles ABb and CDd are to each
other as their angles BAb and DCd.

Proposition V.

Problem. .�182/ The same things still being given, we wish to find the quadrature
of the space MGBA (see Fig. 9.6), enclosed by the perpendiculars MG and BA to the
roulette, by the arc GB, and by the portion AM of the half-roulette AMD, assuming
the quadrature of the circle.

The angle GMg
�
n
2m

GKg
�

is to the angle MGm
�
aCb
b

GKg
�
, [157] as (see §181)

the little triangle MGg, which has as its base the arc Gg of the mobile circle, to the
little triangle or sector GMm. Consequently, the sector

GMm D 2m

n
MGg � aC b

b
D 2aC 2b

b
MGg C 2ap C 2bp

bn
MGg;

denoting MI by p and substituting the value p C n for m. Now (see §181), the
little triangle or sector KGg is to the little triangle MGg, in a ratio composed of the
square of KG to the square MG, and of the angle GKg to the angle GMg, that is to
say WW aa�GKg W mm� n

2m
GKg, and consequently the little triangle MGg D mn

2aa KGg.

Thus, substituting this value in place of the triangle MGg in 2apC2bp
bn MGg, we have

that the sector

GMm D 2aC 2b

b
MGg C aC b � pm

aab
KGg:

However, because of the circle, GM � MI.pm/ D BM � MN.cc � aa/, which is
a constant quantity, and always remains the same in whatever place we find the
describing point M . Consequently, GMm C MGg or mGg, that is to say the little
space of the roulette

GMmg D 2aC 3b

b
MGg C aC b � cc � aa

aab
KGg:

Fig. 9.9 Triangles with an Infinitely Small Side
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Fig. 9.10 Quadrature of the Roulette

Thus, because GMmg is the differential of the space of the roulette MGBA and MGg
is the differential of the circular space MGB, enclosed by the straight lines MG and
MB, and by the arc GB, and because also the little sector KGg is the differential of
the sector KGB, it follows (see §96) that the space of the roulette

MGBA D 2aC 3b

b
MGB C aC b � cc � aa

aab
KGB:

This is what we were required to find.
When the describing point M (see Fig. 9.10) falls outside the circumference of

the mobile circle BGN, and when the point of contact G falls on the arc NT , then it
is clear (see §180) that the perpendiculars MG and mg intersect each other at a point
C , and that we therefore have m D p � n. From this it follows that from the little
sector

GMm D �2a � 2b
b

MGg C 2ap C 2bp

bn
MGg

D �2a � 2b
b

MGg C amp C bmp

aab
KGg;

substituting as before [158] the value mn
2aa KGg for the little triangle MGg. Conse-

quently, GMm � MGg or mGg, that is to say

MCm � GCg D �2a � 3b
b

MGg C aC b � cc � aa

aab
KGg;

substituting the value cc � aa for pm. Now, supposing that TH is the position of the
tangent TM on the mobile circle, when the point T touches the base at the point T ,
it is clear that MCm � GCg D MGTH � mgTH, that is to say the differential of the
space MGTH, and that MGg is the differential of MGT , and similarly that KGg is
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the differential of KGT . Therefore (see §96), the space

MGTH D �2a � 3b
b

MGT C aC b � cc � aa

aab
KGT:

However, as we have just shown the space

HTBA D 2aC 3b

b
MTB C aC b � cc � aa

aab
KTB:

Consequently, in all cases, we will always have that the space

MGBA .MGTH C HTBA/ D 2aC 3b

b
MTB � MGT or MGB

CaC b � cc � aa

aab
KGT C KTB or KGB:

Therefore, the entire space DNBA (see Fig. 9.6) enclosed by the two perpendicu-
lars DN and BA to the roulette, by the arc of the circle BGN, and by the half-roulette
AMD is

D 2aC 3b

b
C aC b � cc � aa

aab
� KNGB;

because the sector KGB and the circular space MGB each become the semi-circle
KNGB, when the point of contact G falls on N .

When the describing point M falls inside the mobile circle (see Fig. 9.7), we
must put aa � cc in the place of cc � aa in the preceding formulas, because then
BM � MN D aa � cc.

If we let c D a, then we will have the quadrature of roulettes that have their
describing point on the circumference of the mobile circle and if we suppose b to
be infinite, we will have the quadrature of roulettes that have straight lines as their
bases.

Alternate Solution. .�183/ We describe the arc DV (see Fig. 9.11) with radius OD
and the semi-circles AEV and BSN with diameters AV and BN. We describe [159]
at will the arc EM with center O contained between the semi-circle AEV and the
half-roulette AMD, and we draw the ordinate EP. We wish to find the quadrature of
the space AEM contained between the arcs AE and EM and the portion AM of the
half-roulette AMD.

To do this, let em be another arc concentric with and infinitely close to EM, and
let ep be another ordinate, and let Oe meet the arc ME prolonged (if necessary)
to the point F . Denote the variables OE by z, VP by u, and the arc AE by x, and
as before, the constants OB by b, KB or KN by a, and KV or KA by c. We have

Fe D dz, Pp D du, OP D a C b � c C u, PE
2 D 2cu � uu, and the arc (see §172)
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Fig. 9.11 Quadrature of the Roulette, Alternate Solution

EM D axz
bc . Consequently, the rectangle made on the arc EM by the little straight

line Fe, that is to say (see §2) the little space EMme D ax dz
bc . Now, because OPE is a

right triangle, zz D aa C 2ab C bb � 2ac � 2bc C cc C 2au C 2bu, the differential
of which gives z dz D a du C b du. Therefore, substituting the value axz dz

bc in place
of z dz, we have the little space

EMme D aax du C abx du

bc
:

If we now describe the half-roulette AHT by the revolution of the semi-circle
AEV on the straight line VT perpendicular to VA, and if we prolong the ordinates
PE and pe until they meet AHT in the points H and h, then it is clear (see §172)
that EH � Pp, that is to say that the little space EHhe D x du, and thus that

EMme

�
aax du C abx du

bc

�
W EHhe.x du/ WW aa C ab W bc;

which is a constant ratio. Now, because this always happens no matter where the
arc EM is found, it follows that the sum of all the little spaces EMme, that is to
say the space AEM, is to the sum of all the little spaces EHhe, that is to say the
space AEH WW aa C ab W bc. However (see §99), we have the quadrature space AEH
depending on that of the circle, and consequently also the quadrature of the space
AEM, which we wish to find.

This may also be shown without any calculus, as I have shown in the Acts of
Leipzig for the month of August of the year 1695.

[160] We may also find the quadrature of the space AEH without recourse to §99.
If we complete the rectangles PQ and pq, then we will have Qq or HR W Pp or Rh WW
EP W PA or HQ, because (see §18) the tangent at H is parallel to the chord AE.
Thus, HQ � Qq D EP � Pp, that is to say that the little spaces HQqh and EPpe are
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always equal to each other. From this it follows that the space AHQ contained by
the perpendiculars AQ and QH and by the portion AH of the half-roulette AHT is
equal to the space APE contained by the perpendiculars AP and PE and by the arc
AE. The space AEH is therefore equal to the rectangle PQ minus twice the circular
space APE, that is to say the rectangle made on PE by KA plus or minus the rectangle
made on KP by the arc AE, depending on whether the point P falls below or above
the center. Consequently, the required space

AEM D aa C ab

bc
PE � KA ˙ KP � AE:

Corollary I. .�184/When the point P falls onK, the rectangle KP � AE vanishes,
and the rectangle PE�KA becomes equal to the square on KA. From this we see that
the space AEM is therefore D aacCabc

b
, and consequently is absolutely quadrable

and independent of the quadrature of the circle.

Corollary II. .�185/ If we add the sector AKE to the space AEM, then the space
AKEM contained by the radii AK and KE, by the arc EM, and by the portion AM of
the half-roulette AMD is found (when the point P falls above the center K)

D bcc C 2aac C 2abc � 2aau � 2abu

abc
AE C aa C ab

bc
PE � KA:

Consequently, if we take9

VP.u/ D 2aac C 2abc C bcc

2aa C 2ab

(which makes the value of

bcc C 2aac C 2abc � 2aau � 2abu

2bc
AE

null), we have [161] the space AKEM D aaCab
bc PE � KA. From this we see that its

quadrature is also independent of that of the circle.

It is clear that among all the spaces AEM and AKEM, the only ones whose
quadratures are absolute are the two that we have just considered.

Note. Everything that has just been shown with regard to exterior roulettes should
also be understood for interior roulettes, that is to say of those whose mobile circles
roll inside the immobile circle, observing that the radii KB.a/ and KV.c/ change
from positive to negative. For this reason, we must change the signs of the terms in
the preceding formulas, where a and c are found with an odd power.

9In L’Hôpital (1696), the equal sign after VP.u/ was omitted.



9 Applications 167

Fig. 9.12 Curve Described by z D xx�aa
p

2xx�aa

Remark. .�186/ There are certain curves that appear to have an inflection point,
but nevertheless do not have one. I believe it is appropriate to explain this with an
example, because this matter could cause some difficulty.

Let the curve NDN (see Fig. 9.12) be geometric, whose nature is expressed by
the equation z D xx�aap

2xx�aa
(AP D x and PN D z), in which it is clear:

1. That when x is equal to a, PN.z/ vanishes.
2. That when x is greater than a the value of z is positive and on the contrary when
x is less than a, z is negative.

3. When x D
q

1
2
aa, the value of PN is infinite.

From this we see that the curve NDN passes from one side to the other of its axis in
cutting it at a pointD, such that AD D a and that it has the perpendicular BG drawn

from the point B such that AB D
q

1
2
aa as its asymptote.

We now describe another curve EDF, such that when we draw at will the
perpendicular MPN, the rectangle made from the ordinate PM by the constant
AD [162] is always equal to the corresponding space DPN. It is clear that if we
denote PM by y and take differentials, we have AD � Rm .a dy/ D NPpn or

NP � Pp

�
xx dx � aa dxp
2xx � aa

�
and consequently Rm .dy/ W Pp or RM .dx/ WW PN W AD.

From this it follows that the curve EDF touches the asymptote BG prolonged on
the other side of B at a point E and touches the axis AP at the point D, and thus
it ought to have an inflection point at D. Nevertheless, we find (see §78) � x3

2aa for
the value of the radius of its evolute, which is always negative and becomes equal to
� 1
2
a when the point M falls on D. From this we ought to conclude (see §81) that

the curve that passes through all the pointsM is always convex towards the axis AP
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Fig. 9.13 Curve Described by y4 D x4 C aaxx � b4

Fig. 9.14 Curve Described by y4 D x4 C aaxx

and that it does not have an inflection point at D. Then how are we to reconcile all
of this? Here is the dénouëment.

If we take PM on the same side as PN, then we form another curve GDH, which
is exactly the same as EDF and which should be a part of it because its construction
is the same. That being so, we should consider the parts that compose the whole
curve are not EDF and GDH as we had imagined, but rather EDH and GDF, which
touch each other at the point D, because everything reconciles perfectly under this
last assumption. This is further confirmed by the following example.

Let DMG be the curve (see Fig. 9.13), which has as its equation y4 D x4 C
aaxx �b4 (AP D x and PM D y). It follows from this equation that the entire curve
has two parts EDH and GDF, opposed to one other as in the usual hyperbola, so

that their distance DD or 2AD D
p

�2aa C 2
p
a4 C 4b4.

If we suppose that b vanishes, the distance DD (see Fig. 9.14) also vanishes, and
consequently the two parts EDH and GDF touch each other at the point D, so that
we might now think at first that this curve has an inflection point or cusp at D,
depending on whether we imagine that its parts [163] are EDF and GHD or EDG
and HDF. However, we easily disabuse ourselves of this by finding the radius of the
evolute, because we would find that it is always positive and that it becomes equal
to 1

2
a at the point D.

We may remark in passing that the quadrature space DPN (see Fig. 9.12) depends
on that of the hyperbola or (what amounts to the same thing) on the rectification of
the parabola.



Chapter 10
A New Method for Using the Differential
Calculus with Geometric Curves, from Which
We Deduce the Method of Messrs. Descartes
and Hudde

Definition I. [164] Let ADB (see Figs. 10.1, 10.2, 10.3) be a curved line, such that
the parallels KMN to its diameter AB meet it in two points M and N , and let it
be understood that the intersected part MN or PQ becomes infinitely small. It is
therefore called the Differential of the abscissa AP or KM.

Corollary I. .�187/ When the part MN or PQ becomes infinitely small, it is clear
that the abscissas AP and AQ both become equal to AE, and that the points M and
N meet at the point D, so that the ordinate ED is the greatest or least of all the
similar ordinates PM and NQ.

Corollary II. .�188/ It is clear that among all the abscissas AP it is only AE that
has a differential, because it is only in this case that PQ becomes infinitely small.

Corollary III. .�189/ If we denote the indeterminates AP or KM by x, and PM or
AK by y, it is clear that if AK.y/ remains the same, then it must have two different
values of x, namely KM and KN, or AP and AQ. This is why the equation that
expresses the nature of the curve ADB must be cleared of incommensurables, so
that the same unknown x that denotes the roots (because we consider y as known)
may have different values. This is what we must observe in the following.

Proposition I.

Problem. [165] .�190/ If the nature of the geometric curve ADB is given, we wish
to determine the greatest or least of its ordinates ED.

If we take the differential of the equation that expresses the nature of the curve,
treating y as constant, and x as variable, then it is clear (see §188) that we form a
new equation that will have a value AE for one of its roots x, such that the ordinate
ED is the greatest or the least of all the similar ordinates.

© Springer International Publishing Switzerland 2015
R.E. Bradley et al., L’Hopital’s Analyse des infiniments petits, Science
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Fig. 10.1 Greatest Ordinate – Perpendicular Case

Fig. 10.2 Greatest Ordinate – Tangential Case

Fig. 10.3 Greatest Ordinate – Oblique Cusp

For example, let x3 C y3 D axy, whose differential, treating x as variable and
y as constant, gives 3xx dx D ay dx, and consequently y D 3xx

a
. If we substitute this

value in place of y in the equation of the curve x3Cy3 D axy, then we have a value
of AE D 1

3
a

3
p
2 for x, such that the ordinate ED is the greatest of all the similar

ordinates, as we have already found in §48.
It is clear that in a similar way we determine not only the points D, where the

ordinates ED are perpendicular or tangent to the curve ADB, but also when it is
oblique to the curve, that is to say when the points D are cusps of the first or
second kind. From this we see that this new method of considering differentials
in geometric curves is simpler and less troubling in many instances than the first
method (see Ch. 3).

Remark. .�191/ We may remark that in curves with cusps (see Fig. 10.3), the
ordinates PM parallel to AK meet them in two points M and O , in the same way
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that the parallel lines KM to AP meet them M and N , so that if AP .x/ remains
the same, then y has two [166] different values PM and PO. This is why we may
treat x as constant and y as variable, in taking the differential of the equation that
expresses the nature of this curve. From this we see that if we treat x and y as
variables, and take this differential, it must be the case that all the terms multiplied
by dx, on the one hand, and all those multiplied by dy, on the other hand, are equal to
zero. However, we must take great care that dx and dy here denote the differentials
of two ordinates emanating from the same point, and not (as above in Chapter 3) the
differential of two infinitely close ordinates.1

Corollary. .�192/ If, after ordering the equation that expresses the nature of the
curve, in which only the unknown x is considered variable, we take the differential,
then it is clear that:

1. We do nothing other than to multiply each term by the exponent of the power of
x and by the differential dx, and then divide it by x.

2. This division by x, as well as the multiplication by dx, can be neglected, because
it is the same for all the terms.

3. The exponents of the powers of x make an arithmetic progression, the first term
of which is the exponent of highest power, and the last of which is zero, because
we assume that we have marked with an asterisk the terms that may be missing
from the equation.2

For example, let x3 � �ayx C y3 D 0. If we multiply each term by those of the
arithmetic progression 3, 2, 1, 0, then we form the new equation 3x3 � ayx D 0.

x3 � �ayx Cy3 D 0:

3; 2; 1; 0:

3x3 � �ayx � D 0:

From this we conclude y D 3xx
a

, the same as we would have found by taking the
differential in the accustomed manner.

Given this, I say that instead of the arithmetic progression [167] 3, 2, 1, 0, we may
use whatever other arithmetic progression that we may wish: mC 3, mC 2, mC 1,
mC 0 orm (we denote bym any number, whole or fractional, positive or negative).
Because when we multiply x3 � �ayx C y3 D 0 by xm, we have xmC3�, etc. D 0,
whose terms must be multiplied by the progression mC 3, mC 2, mC 1, m, each
one by its corresponding term to find the differential.

1See the discussion in Letters 25 and 26 on p. 258 and p. 263.
2Descartes used an asterisk to denote the absence of a term in a complete polynomial, see, e.g.,
Descartes (1954, pp. 162ff).
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xmC3 � �ayxmC1 Cy3xm D 0:

mC 3; mC 2; mC 1; m:

mC 3xmC3 � �mC 1ayxmC1 Cmy3xm D 0:

This gives mC 3 xmC3 � mC 1 ayxmC1 C my3xm D 0, and dividing by xm, it
becomes mC 3 x3 �mC 1 ayx C my3 D 0, as we would have found right away by
simply multiplying the given equation by the progression mC 3, mC 2, mC 1, m.

If m D �3, the progression is 0, �1, �2, �3, and the equation would be 2ayx �
3y3 D 0. If m D �1, the progression is 2, 1, 0, �1, and the equation would be
2x3 � y3 D 0.

We may change the signs of all the terms of the progression, that is to say instead
of 0, �1, �2, �3, and 2, 1, 0, �1, we may take 0, 1, 2, 3, and �2, �1, 0, 1, because
this does nothing but to change the signs of all the terms in the new equation, which
must be equal to zero. Indeed, instead of 2ayx � 3y3 D 0 and 2x3 � y3 D 0, we
would have �2ayx C 3y3 D 0 and �2x3 C y3 D 0, which is the same thing.

Now, it is clear that what we have just shown with regard to this example can
be applied in the same way to all others. From this it follows that if, after ordering
an equation that must have two roots equal to each other, we multiply the terms
by those of an arbitrary arithmetic progression, we form a new equation which
contains among its roots one of the two equal roots of the first equation. By the
same reasoning, if this new equation must still have two equal roots, and if we
multiply it by an arithmetic progression [168], we form a third equation from it,
which has among its roots one of the two equal roots of the second equation, and so
on. In this way, if we multiply an equation which must have three equal roots by the
product of two arithmetic progressions, then we form a new equation from it, which
has among its roots one of the three equal roots from the first equation. Similarly, if
the equation must have four equal roots, we must multiply it by the product of three
arithmetic progressions. If five, the product of four, etc.

This is precisely what constitutes the Method of Mr. Hudde.3

Proposition II.

Problem. .�193/ Let the given point T be on the diameter AB (see Fig. 10.4), or
the given point H be on AH parallel to the ordinates. We wish to draw the tangent
THM.

Draw the ordinate MP from the point of contact M , and denote AT by s, and AH
by t , of which one or the other is given, and the unknowns AP by x, and PM by y.
The similar triangles TAH and TPM give y D stCtx

s
and x D sy�st

t
. Substituting

these values in place of y or x in the given equation, which expresses the nature of
the curve AMD, we form a new equation in which y or x is no longer present.

3For a recent exposition on the work of Hudde, see Suzuki (2005).
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Fig. 10.4 Finding a Tangent Through a Given Point

If we now draw a straight line TD that cuts the straight line AH atG, and the curve
AMD at two points N and D, from which we drop the ordinates NQ and DB, then
it is clear that if t expresses AG in the preceding equation, x or y will have the two
values AQ and AB, or NQ and DB. These become equal to each other, namely to the
AP or PM that we wish to find, when t expresses AH, that is to say when the secant
TDN becomes the tangent TM. From this it follows that this equation must have
two equal roots. This is why we multiply it by an arbitrary arithmetic progression,
which is repeated, if it [169] is necessary, by multiplying this very equation again
by any other arithmetic progression, so that through a comparison of the equations
that result, we may find one that contains only the unknown x or y, with the given
s or t . The example that follows gives sufficient clarification of this Method.

Example.4 .�194/ Let ax D yy be the equation that expresses the nature of the curve
AMD. If we substitute the value sy�st

t
in the place of x, we have tyy, etc., which must

have two equal roots.

tyy �asy Cast D 0:

1; 0; �1:
tyy � �ast D 0:

This is why if we multiply these terms in order by those of the arithmetic progression
1, 0, �1, we find that as D yy D ax, and consequently AP .x/ D s. From this we
see by taking AP D AT , and drawing the ordinate PM, the line TM is tangent at M .
However, if AH .t/ is given instead of AT .s/, then we multiply the same equation
tyy, etc., by this other progression 0, 1, 2, and we have the desired PM .y/ D 2t .

We would have found the same construction by substituting the value stCtx
s

for
y in ax D yy. Because it becomes ttxx, etc., whose terms, when multiplied by 1, 0,
�1, give xx D ss, and consequently AP .x/ D s.

Corollary. .�195/ If we now wish that the point of contactM be given, and that we
wish to find the point T or H , at which the tangent MT meets the diameter AB or
the parallel AH to the ordinates, we need only look at the previous equation, which

4In chapter 10 of L’Hôpital (1696) examples were not given numbers.
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Fig. 10.5 Using the Method of Hudde to Find an Inflection Point

expresses the value of the unknown x or y with respect to the given s or t , and
consider the latter as the unknown, and x or y as known.

Proposition III.

Problem. [170] .�196/ Let the nature of the geometric curve AFD (see Fig. 10.5)
be given. We wish to determine its inflection point F .

We draw the ordinate FE with the tangent FL from the point F that we wish to
find, and AK parallel to the ordinates from the point A (the origin of the x’s). We
denote the unknowns LA by s, AK by t , AE by x, and EF by y. The similar triangles
LAK and LEF once again give y D stCtx

s
and x D sy�st

t
, so that if we substitute

these values in place of y or x in the equation of the curve, we form a new equation
in which y or x is no longer present, as in the previous proposition.

If we now draw a straight line TD that cuts the straight line AK at H , which
touches the curve AFD at M , and cuts it at D, from which we drop the ordinates
MP and DB, it is clear that:

1. If s expresses AT and t expresses AH, the equation that we have just found must
have two equal roots, that is to say, namely (see §193) one at either AP or PM,
depending on whether we make y or x vanish, and the other at AB or BD.

2. If s expresses AL and t expresses AK, the point of contact M coincides
with the point of intersection D at the point F that we wish to find, because
(see §67) the tangent LF must touch and cut the curve at the inflection point F ,
and thus the values of x, AP and AB, or the values of y, PM and BD, become
equal to each other, namely one or the other of the values AE or EF that we wish
to find.

From this it follows that this equation must have three equal roots. That is why
we multiply it by the product of two arbitrary arithmetic progressions, which we
repeat, if necessary, in multiplying it in the same way by the product of any two
arithmetic progressions, so that by comparing the equations that result, we can make
the unknowns s and t vanish.
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Fig. 10.6 Inflection Point as a Meeting of Two Tangents – First Case

Fig. 10.7 Inflection Point as a Meeting of Two Tangents – Second Case

Example. [171] .�197/ Let the equation ayy D xyy C aax express the nature of the
curve AFD. If we substitute the value sy�st

t
for x, we form the equation sy3 � styy �

atyy, etc.,5

sy3 �styy Caasy �aast D 0:

�at
1; 0; �1; �2:
3; 2; 1; 0:

3sy3 � �aasy � D 0:

which when multiplied by 3, 0, �1, 0, the product of the two arithmetic progressions
1, 0, �1, �2, and 3, 2, 1, 0, gives yy D 1

3
aa. Substituting this value into the equation

of the curve, we find the unknown AE.x/ D 1
4
a. This is what we found in §68.

Alternate Solution. .�198/ We may also solve this problem (see Figs. 10.6, 10.7)
by noting that from the same point L or K we may only draw a single tangent LF
or KF, because it touches outside the concave part AF, and inside the convex part
FD, unlike any other point T or H , taken on AL or AK between A and L, or A and

5In the calculation that follows, the term on the second row represents �atyy, a second term of
the second order, even though the yy is suppressed and only the coefficient �at is written. Similar
conventions are used in the remainder of this chapter.
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Fig. 10.8 Finding the Normal to a Curve Using Descartes’ Construction

K, from which we can draw two tangents TM and TD,6 or HM and HD,7 one from
the concave part, and the other from the convex part. In this way we may consider
the inflection point F as the meeting of the two points of contact M and D. If we
therefore suppose that AT.s/ or AH.t/ is given, and we wish to find (see §194) the
value of x or y with respect to s or t , we would have an equation that has two roots
AP and AB, or PM and BD, which each become equal to the AE or EF that we wish
find, when s expresses AL and t expresses AK. This is why we multiply this equation
by an arbitrary arithmetic progression, etc.

Example. [172] .�199/ As above, let ayy D xyy C aax. We still have sy3 � styy �
atyy C aasy � aast D 0, which when multiplied by the arithmetic progression 1, 0,
�1, �2, gives y3 � �aay � 2aat D 0, in which s is no longer present, and which
has two unequal roots, namely PM and BD, when t expresses AH, and two equal
roots, each equal to the EF that we wish to find, when t expresses AK. This is why
when we multiply this latter equation again by the arithmetic progression 3, 2, 1, 0,

we have 3yy � aa D 0, and consequently EF .y/ D
q

1
3
aa. This is what we were

required to find.

Proposition IV.

Problem. .�200/ From a point C not on a curved line AMD (see Fig. 10.8), we
wish to draw the perpendicular CM to this curve.8

We draw the perpendiculars MP and CK on the diameter AB, and describe a
circle with center C and interval CM. It is clear that it touches the curve AMD
at the point M . Next, we denote the unknowns AP by x, PM by y, and CM by
r , and the known quantities AK by s and KC by t . We have PK or CE D s � x,
ME D yCt and, because of the right triangle MEC, y D �tCp

rr � ss C 2sx � xx,

6As in Fig. 10.6.
7As in Fig. 10.7.
8See Descartes (1954, pp. 94ff) for this construction when the point C lies on the axis.
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Fig. 10.9 Normal to the Parabola from a Point on the Axis

and x D s � p
rr � tt � 2ty � yy, so that when we substitute these values in place

of y or x in the equation of the curve, we form a new equation where y or x is no
longer present.

If we now describe another circle from the same center C that cuts the curve
at two points N and D, from which we drop the perpendiculars NQ and DB, it is
clear that if r expresses the radius CN or CD in the preceding equation, then x or y
has the two values AQ and AB, or NQ and DB, which become equal to each other,
namely to the AP or PM that we wish to find, when r expresses the radius CM. From
this it follows that this equation must have two equal roots. That is why we multiply
it, etc.

Example. [173] .�201/ Let the equation ax D yy express the nature of the curve
AMD, in which when we substitute the value s� p

rr � tt � 2ty � yy for x, we have
as � yy D a

p
rr � tt � 2ty � yy, so that when we square both sides, and then order

the equation, we have y4, etc., which must have two equal roots when y expresses
the PM that we wish to find.

y4 � �2asyy C2aaty Caass D 0:

Caa �aarr
Caatt

4; 3; 2; 1; 0:

4y4 � �4asyy C2aaty � D 0:

C2aa

This is why we multiply it by the arithmetic progression 4, 3, 2, 1, 0, which gives
4y3 �4asy C2aay C2aat D 0, whose solution provides for y the value PM that we
wish to find.

If the given point C falls on the diameter AB (see Fig. 10.9), we therefore have
t D 0, and consequently it is necessary to erase all the terms in which t is found.
This gives 4as � 2aa D 4yy D 4ax, where we substitute the value ax for yy. From
this we conclude x D s � 1

2
a, that is to say that if we take CP equal to half of the

parameter, and if we draw the ordinate PM perpendicular to AB, the straight line
CM is drawn perpendicular to the curve AMD.
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Fig. 10.10 The Osculating Circle

Corollary. .�202/ If we now want the point M to be given (see Fig. 10.9), and the
point C is the one we wish to find, then in the previous equation that expresses the
value of AC .s/ with respect to AP .x/ or PM .y/, we must consider the latter as
known quantities, and former as the unknown.

Definition II. [174] If we describe a circle on any radius of the evolute, it is called
the osculating circle.9

The point where this circle touches or kisses the curve is called the osculating
point.

Proposition V.

Problem. .�203/10 Given the nature of the curve AMD (see Fig. 10.10) and one of
its pointsM , we wish to find the center C of the circle that kisses it at this pointM .

We draw the perpendiculars MP and CK on the axis, and denote the lines by the
same letters as in the previous Problem. We arrive at the same equation, in which it
must be noted that the letter x or y, which we regarded there as the unknown, here
denotes a given magnitude. On the contrary, s and t , which we regarded there as
known, are in fact here the unknowns, as well as r .

Given this, it is clear that:

1. The pointC that we wish to find is situated on the perpendicular MG to the curve.
2. We may always describe a circle that touches the curve at M , and that cuts it

in at least two points (of which I assume that the closest is D, from which we

9In L’Hôpital (1696), the French term baisant, literally “kissing,” is used for both the circle and the
point. We have translated it as “osculating” because this Latin term is the standard one in English.
10Descartes (1954, pp. 100ff).
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drop the perpendicular DB), because we can always find a circle that cuts any
curved line, other than a circle, in at least four points, and the point of contactM
is equivalent to only two intersections.11

3. The more the center G of this circle approaches the point C that we wish to find,
the more the point of intersection D approaches the point of contact M , so that
when the point G falls on the point C , the point D meets the point M , because
(see §76) the circle described with radius CM must touch and cut the curve at the
same point M .

From this we see that if s expresses AF and t expresses FG, the equation must have
two equal roots, namely (see §200) one at AP or PM, depending on whether [175]
we made y or x vanish, and another at AB or BD, which also becomes equal to AP
or PM when s and t express the AK and KC that we wish to find. Thus, this equation
must have three equal roots.

Example. .�204/ Let the equation ax D yy express the nature of the curve AMD,
and we find (see §201) y4, etc., which being multiplied by 8, 3, 0, �1, 0, the product
of two arithmetic progressions 4, 3, 2, 1, 0 and 2, 1, 0, �1, �2, gives 8y4 D 2aaty:

y4 � �2asyy C2aaty Caass D 0:

Caa �aarr
Caatt

4; 3; 2; 1; 0:

2; 1; 0; �1; �2:
8y4 � � �2aaty � D 0:

From this we conclude that the desired KC or PE .t/ D 4y3

aa .

If we want to have the equation that expresses the nature of the curve that passes
through all the points C , we again multiply y4, etc., by 0, 3, 4, 3, 0, the product
of two progressions 4, 3, 2, 1, 0, and 0, 1, 2, 3, 4, and we find that 8asy � 4aay D
6aat. Hence, letting s � 1

2
a D u to abbreviate, we conclude that y D 3at

4u and

4y3 D 27a3t3

16u3
D aat, and consequently 16u3 D 27att. From this it follows that the

curve that passes through all the points C is a semi-cubical parabola, of which the
parameter is 27a

16
, and whose vertex is at a distance of 1

2
a from the vertex of the given

parabola, because u D s � 1
2
a.

When the position of the parts of the curve, neighboring the given point M ,
is entirely similar on both sides of this point, as happens when the curvature is
greatest or least, it follows that one of the intersections of the touching circle cannot
join with the point of contact, except when the other one joins it [176] at the

11The result known as Bézout’s Theorem implies that a circle (of degree 2) and a curve of degree
n � 2, generically intersect in 2n points. Although Etienne Bézout (1730–1783) lived much later,
the result was widely accepted in the late seventeenth century.
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same time, so that the equation must therefore have four equal roots. Indeed, if we
multiply y4, etc., by 24, 6, 0, 0, 0, the product of the three arithmetic progressions
4; 3; 2; 1; 0, and 3; 2; 1; 0;�1, and 2; 1; 0;�1, �2, we have 24y4 D 0. This shows us
that the point M must fall on the vertex A of the parabola, in order that the position
of the neighboring parts of the curve be similar on both sides.

Alternate Solution. .�205/ We can also solve this Problem (see Fig. 10.11) by
remembering that we have shown in §76 that we can only draw one perpendicular
CM from the point C that we wish to find to the curve AMD, whereas there is an
infinity of other points G on this perpendicular MC, from which we may draw two
perpendiculars MG and GD to the curve. Therefore, if we assume that the point G
is given, and that we wish to find (see §200) the value of x or y in terms of the
given quantities s and t , then it is clear that this equation must have two unequal
roots, namely AP and AB, or PM and BD, which become equal to each other when
the point G falls on the point C that we wish to find. This is why we multiply the
equation by any arithmetic progression, etc.

Example. .�206/ Let ax D yy as above, and we have (see §201) 4y3, etc.

4y3 � �4asy C2aat D 0:

C2aa
2; 1; 0; �1:
8y3 � � �2aat D 0:

When multiplied by the arithmetic progression 2; 1; 0;�1, this gives t D 4y3

aa , as
before (see §204).

Fig. 10.11 Radius of the Osculating Circle from a Property of the Evolute
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Corollary. [177] .�207/ It is clear that we may consider the osculating point
(see Figs. 10.10, 10.11) as (see §203) the uniting of a point of contact with a point
of intersection of the same circle, or else as (see §205) the uniting of two points of
contact of two different and concentric circles. Similarly, the inflection point may be
regarded as (see §196) the uniting of a point of contact with a point of intersection
on the same straight line, or (see §198) as the uniting of two points of contact on
two different straight lines that emanate from the same point.

Proposition VI.

Problem. .�208/ We wish to find an equation that expresses the nature of the
caustic AFGK (see Fig. 10.12), formed by the quarter circle CAMNB, by reflected
rays MH, NL, etc., whose incident rays PM, QN, etc., are parallel to CB.

I remark that:

1. If we extend the reflected rays MF and NG, which touch the caustic at F and G,
until they meet the radius CB at the pointsH and L, then we will have MH equal
to CH, and NL equal to CL. This is because the angle CMH D CMP D MCH,
and similarly the angle CNL D CNQ D NCL.

2. From a given point F on the caustic AFK, we can only draw one straight line
MH that is equal to CH, whereas from a given point D between the quarter
circle AMB and the caustic AFK, we may draw two lines MH and NL, such that
MH D CH and NL D CL. This is because we may draw only a single tangent
MH at the point F , whereas from the point D, we may draw two tangents ML
and NL.

Given all this, we propose to draw the straight line MH through the given point
D, such that it is equal to the part CH, which it determines on the radius CB.

Fig. 10.12 Caustic by Reflection – Parallel Incident Rays
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We draw MP and DO parallel to CB, and MS parallel to CA. We denote the given
quantities CO or RS by u, OD by z, and AC [178] or CB by a, and the unknowns
CP or MS by x, PM or CS by y, and CH or MH by r . The right triangle MSH gives
rr D rr � 2ry C yy C xx, from which we conclude CH.r/ D xxCyy

2y
. Furthermore,

the similar triangles MRD and MSH give MR.x � u/ W MS.x/ WW RD.z � y/ W SH D
zx�xy
x�u , and consequently CS C SH or CH D zx�uy

x�u D xxCyy
2y

D aa
2y

, substituting
the value aa for xx C yy. From this we form (by cross multiplication) the equation
aax�aau D 2zxy�2uyy, and substituting the value aa�xx for yy, it becomes 2zxy D
aax C aau � 2uxx. We then square both sides to remove the incommensurables, and
again substitute the value aa � xx for yy, and we finally have:

4uux4 �4aaux3 �4aauuxx C2a4ux Ca4uu D 0:

4zz �4aazz
Ca4

Now, it is clear that if u expresses CO and z expresses OD, this equation must have
two unequal roots, namely CP and CQ, and on the contrary if u expresses CE and
z expresses EF, CQ becomes equal to CP, so that this time it has two equal roots.
This is why if we multiply the terms by those of two arithmetic progressions 4, 3, 2,
1, 0, and 0, 1, 2, 3, 4, we form two new equalities by means of which we find, after
having eliminated the unknown x, this equation

64z6 �48aaz4 C12a4zz �a6 D 0;

C192uu �96aauu �15a4uu
C192u4 �48aau4

C64u6

which expresses the relationship of the abscissa CE.u/ to the ordinate EF.z/. This is
what we were required to find.

We may determine the point of contact F by using the Method explained in
Chapter 8. For if we imagine another incident ray pm infinitely close to PM, it is
clear that the reflected ray mh cuts MH at the point F that we wish to find, from
which we draw FE parallel [179] to PM. We denote CE by u, EF by z, CP by x, PM
by y, and CM by a, and we find as above

aax C aau � 2uxx

xy
D 2z:

Now, it is clear that CM, CE, and EF remain the same while CP and PM vary. That
is why we take the differential of this equation by treating a, u, and z as constants,
and x and y as variables, which gives 2uyxx dx C aauy dx � aaxx dy C 2ux3 dy D 0.
In this we substitute the value � y dy

x
for dx (which we find by taking the differential
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of yy D aa � xx), then we substitute the value aa � xx for yy, and we finally have

CE.u/ D x3

aa
.

If we suppose that the curve AMB is no longer a quarter circle, but any other
curve that has the straight line MC as the radius of the evolute at the point M , then
it is clear (see §76) that its little part Mm may be considered as an arc of the circle
described with center C . From this it follows that if we draw the perpendicular CP

from this center to the incident ray PM, and take CE D x3

aa
(CP D x and CM D a),

and we draw EF parallel to PM, it will cut the reflected ray MH at the point F ,
where it touches the caustic AFK.

Suppose that from all the points M and m of any curved line AMB, we draw
the straight lines MC and mC to a fixed point C on its axis AC, and other straight
lines MH and mh terminated by the perpendicular CB to the axis, so that the angles
CMH D MCH and Cmh D mCh. We wish to find the point F on each MH where
it touches the curve AFK formed by the continual intersection of the straight lines
MH and mh. We find as before

CH D xx C yy

2y
D zx � uy

x � u
;

from which we conclude

x3 C uyy C xyy � uxx

xy
D 2z;

whose differential (treating u and z as constants and x and y as variables) gives
2x3y dx�uxxy dx�x4 dyCux3 dyCxxyy dyCuxyy dy�uy3 dx D 0, and consequently
the desired [180]

CE.u/ D 2x3y dx � x4 dy C xxyy dy

xxy dx � x3 dy C y3 dx � xyy dy
:

Now, given the nature of the line AMB, we have the value for dy in terms of dx, which
when substituted in the expression of CE, gives an expression freed of differentials
and entirely known.

Proposition VII.

Problem. .�209/ Let AO be an indefinite straight line (see Fig. 10.13), which has
a fixed origin at A. Let an infinity of parabolas BFD and CDG be understood
which have the straight line AO as common axis, and the straight lines AB and
AC intercepted between the fixed point A and their vertices B and C as their
parameters. We wish to find the nature of the line AFG that touches all of these
parabolas.
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Fig. 10.13 Envelope of a Family of Parabolas with a Common Axis

First, I remark that any two of these parabolas BFD and CDG cut each other at
a point D situated between the line AFG and the axis AO, and that as AC becomes
equal to AB, the point of intersection D falls on the point of contact F .

Given all this, we propose to draw from the given pointD a parabola that has the
property we have noted. If we draw the ordinate DO, and denote the given quantities
AO by u and OD by z, and the unknown AB by x, the property of the parabola gives

AB � BO.ux �xx/ D DO
2
.zz/, and ordering the equation, we have xx �ux C zz D 0.

Now, it is clear that if u expresses AO and z expresses OD, this equality has two
unequal roots, namely AB and CA, and on the contrary, if u expresses AE and z
expresses EF, then AC becomes equal to AB, that is to say it now has two equal
roots. This is why we multiply it by the arithmetic progression 1, 0, �1, which gives
x D z, and substituting this value in place of x, it becomes the equation u D 2z,
which should express the nature of the line AFG. From this we see that AFG is a
straight line making the angle FAO with AO so that AE is twice EF.

[181] If we want to solve this question in general, where the parabolas BFD
and CDG may be of any degree, we make use of the Method explained in
Chapter 8, in the following manner. Denoting AE by u, EF by z, and AB by x, we
have u � x m � xn D zmCn, which expresses the general nature of the parabola
BF, whose differential gives (treating u and z as constants, and x as variable)
�m�u � x m�1 dx�xnCnxn�1 dx�u � x m D 0. Dividing by u � x m�1 dx�xn�1,
it becomes �mx C nu � nx D 0, from which we conclude that x D n

mCnu, and
consequently u � x D m

mCnu. Therefore, substituting these values in place of u � x

and x in the general equation, and making (to abbreviate) m
mCn D p, n

mCn D q,
and mC n D r , we have z D u r

p
pmqn. From this we see that the line AFG is still

straight, no matter how the parabolas might be composed, where only the ratio of
AE to EF changes.

We clearly see from what we have just explained in this chapter, the way in which
one should use the Method of Messrs. Descartes and Hudde to solve these kinds
of questions when the Curves are Geometric. However, we also see at the same
time that it is not comparable to that of Mr. Leibniz, which I have tried to explain
thoroughly in this Treatise, because this latter gives general solutions, where the
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other gives only particular ones, that it extends to Transcendental lines, and that it
is not necessary to remove incommensurables, which is very often impractical.

THE END.



Chapter 11
Bernoulli’s Lectiones de Calculo Differentialis

On the Differential Calculus

[1]1 Postulates2

1. Quantities that decrease or increase by an infinitely small quantity neither
decrease nor increase.

2. Any Curved line consists of infinitely many straight lines, each of which is
infinitely small.

3. The figure contained within two ordinates applied to different abscissas and the
infinitely small portion of the Curve is considered to be a Parallelogram.

On the Addition and Subtraction of Differential3

Rule 1. The differential of the addition of quantities is the sum of the differentials of
each of the quantities, taken separately and then added together.

E.g. The differential of the quantity x C y is dx C dy. Indeed, let e D dx D
the differential of the indeterminate x and f D dy D the differential of the

1Numbers in [square brackets] indicate page numbers in the original manuscript, which were given
in the same form in Schafheitlin (1922).
2Compare Postulates I and II to §2 and §3 on p. 3. Postulate 3 is used for the integral calculus and
is not needed in the Lectiones de Calculo Differentialis.
3Compare to §4 on p. 3.
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indeterminate y. Add the larger xCe and the larger yCf . The sum is xCyCeCf ,
from which, if we subtract the smaller sum x C y, the result is the differential
e C f D dx C dy. Q.E.D.

The differential of the quantity aC x is dx if a denotes a certain and determined
quantity, as we will suppose it to be here and in what follows.4 Indeed, adding aC0

and xCe, the sum is aCxCe. Of course, subtract the smaller aCx. The remainder
is Ce D dx. Q.E.D.

As it is with added Quantities, the necessary changes having been made, so in
turn with subtracted quantities Rule 1 can be applied.

[2] On the Differentials of Composed Quantities

The differential of the quantity ax is a dx, which is proved as follows5:
multipl. x C e supposing that e D dx

with aC 0 it is a plus nothing, because a is
prod. ax C ae a determined quantity, which has

from which subtr. ax no differential
leaving ae D a dx q.e.d.

The differential of the quantity xx is 2x dx, which is demonstrated as follows:
Multiply x C e by x C e. The product is xx C 2ex C ee. Subtract xx. The remainder
is 2ex C ee, which by the first postulate is D 2ex D 2x dx. Q.E.D.

The different. of x3 is D 3xx dx. Multiply x C e, x C e, x C e. The product is
x3 C 3exx C 3eex C e3. Subtr. x3. The remainder is 3exx C 3eex C e3 D by the
first postul. 3exx D 3xx dx. By the same reasoning we prove that of the quant. x4

the different. D 4x3 dx and of x5 the different. D 5x4 dx and of x6 the different. is
6x5 dx and similarly for the others.

From which the following General Rule can be stated:
Rule 2.6 The differential of an indeterminate quantity, whatever dimension the

quantity has, is the product of that same quantity raised to that same dimension
diminished by unity, in its own differential, taken as many times as the dimension
that the indeterminate quantity has. Or if the character of the rule is expressed in a
more helpful way: the differential of xp is D pxp�1dx.

4The manuscript employs the abbreviation “et in seqq.” here. Where possible, we will translate
abbreviated Latin words with similarly abbreviated English words.
5 The proof that follows is formatted like a sequence of calculations, with justifications in the right-
hand column. It is perhaps easier to read the proof in this form: “multipl. x C e, supposing that
e D dx, with a C 0, which is a plus nothing, because a is a determined quantity, which has no
differential. The prod. is ax C ae, from which subtr. ax, leaving ae D a dx q.e.d.”
6This case of the Power Rule is given on p. 6, using the Product Rule.
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[3] The differential of the quantity7 xy is x dy C y dx. Multipl. x C e by y C f

(supposing e D dx and f D dy). Prod. xy C ey C fx C ef . Subtract xy. What
remains ey C fx C ef = by Postul. 1 ey C fx D y dx C x dy q. e. d. Different. of
xyz is D xy dz C zx dy C zy dx. Multipl. x C e, y C f , z C g supposing g D dz.
Product xyz C zye C zxf C xyg C zef C yeg C xfg C gef . subtr. zxy what remains
zye C zxf C xyg C zef C yeg C xfg C gef D by postulate 1 zye C zxf C xyg D
zy dx C zx dy C xy dz. In a similar way it is demonstrated that the differential of xyzu
is D xyz du C xyu dz C xzu dy C yzu dx. And so it is for the other cases, which gives
the following.

Rule 3. The differential of the product of many quantities with each other is equal
to the sum of the products of each of these differentials into the product of the others.

On the Differentials of Divided Quantities8

Of the quantity 1
x

the different. D �dx
xx . It is proved as followed: Subtract 1

x
from

1C0
xCe . The remainder will be �e

xxCex D by postul. 1 �e
xx D �dx

xx . Q. E. D.
Or otherwise. Suppose 1

x
D z then 1 D xz and taking the differential of both

sides (because the determinate 1 has a null differential) 0 D xdz C zdx and dz D
�zdx
x

D �dx
xx . Q. e. d.

Of xx
a

the different. D 2xdx
a

. The demonstration of the preceding is similar to
the different. of x

y
being ydx�xdy

yy . Subtr. x
y

from xCe
yCf . The remainder is ey�fx

yyCfy D
by postul. 1 ey�fx

yy D ydx�xdy
yy . Q. E. D. Otherwise supp. x

y
D z then x D yz and

dx D ydz C zdy D ydz C x
y

dy and dx � x
y

dy D ydz and ydx�xdy
yy D dz. Q. e. d.

Œ4� Again, a Rule is formed from these:
Rule 4. The differential of any fraction is the product of the Denominator by the

differential of the Numerator, minus of the product Numerator by the differential of
the Denominator, divided by the square of the Denominator.

So that of x
aCx the different. D adx

aaC2axCxx . Thus the differential of the quantity
xyCyz
uCt is D9

Cux dy C uy dx � xy du
Cuz dy C ty dx � yz du
Ctx dy C uy dz � xy dt
Ctz dy C ty dz � yz dt

uu C 2ut C tt

7Compare to §5 on p. 4.
8Compare to §6 on p. 4.
9In the expression that follows, the numerator consists of all twelve terms in the first four lines.
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and the different. of x�y
u�t

D Cu dx � t dx � u dy C t dy � x du C y du C x dt � y dt

uu � 2ut C xx

On the Differentials of Surd Quantities10

The differential of certain quantities contained under radical signs are found as
follows: e.g. let the given quantity be

p
ax C xx, which I call D z then ax C xx D zz

and a dx C 2x dx D 2z dz D 2 dz
p

ax C xx. Therefore,
a dx C 2x dx

2
p

ax C xx
D dz D the

differential of
p

ax C xx.

In the same way the differential of 3
p

ax C xx, is found, which is11 a dx C 2x dx

3� 3
p

ax C xx
.

In a like manner also the differential of12 4
p

yx C xx is D y dx C x dy C 2x dx

4C 4
p

yx C xx
. In

the same way, the different. of 5
p

ayx C x3 C zyx is13

ay dx C 3xx dx C yz dx C ax dy C zx dy C xy dz

5QQ 5
p

ayx C x3 C zyx
:

Œ5� In fact, these same Differentials are found in another way from the generation
of series, where they are quantities in geometrical Proportion and the Powers are in
Arithmetic Proportion.14

x.4 E.g. To find the differential of
p

ax C xx,
x.3 consider the quantity ax C xx as x raised to
x.2 the power 1

2

x.1 which is the mean proportional between x.1 and x.0 D 1.
x.0 D 1 And using Rule 2 its differential is

x.�1 D 1

x
1
2
; ax C xx.�

1
2 ; a dx C 2x dx D a dx C 2x dx

2
p

ax C xx
.15 So it is for x

10Compare to §7 on p. 5.
11The symbol � is used to denote the square of the term that follows it.
12The symbol C is used to denote the cube of the term that follows it.
13The symbol QQ is used to denote the fourth power of the term that follows it.
14Compare the discussion that follows with L’Hôpital’s discussion of geometric and arithmetic
progressions on p. 5. In this paragraph, Bernoulli denotes exponents with a left parenthesis in the
superscript, perhaps as a form of emphasis. This notation is rarely used elsewhere in the Lectiones.
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x.�2 D 1

xx
raised to the power � 1

2
, which is the mean proportional

x.�3 D 1

x3
between x.0 D 1 and x.�1 D 1

x
. For that reason, x.� 1

2 D 1p
x

.

x.�4 D 1

x4
Therefore, together, ax C xx.�

1
2 D 1p

ax C xx
. The half of

which multiplied by a dx C 2x dx makes
a dx C 2x dx

2
p

ax C xx
. That is the differential of

p
ax C xx. The differential of 3

p
ax C yy is found in the same way, considering it to

be 3
p
x D x.

1
3 , which is the first of two proportional means between x.0 D 1 and

x.1, and I find the differential of it by Rule 2

1

3
; ax C yy.�

2
3 ; a dx C 2y dy D a dx C 2y dy

3� 3
p

ax C yy
:

In addition, we find the differential of surd quantities by Analogy with the others.
E.g. different. 3

p
x3 is dx, which can be found by dividing the differential 3xx dx of

the Cube x3, by 3xx, three times the � of the root. Also of
p

xx differ. D dx, which
can be found by dividing the differential 2x dx of the Square xx by 2x, double the
root.
Œ6� Different. 4

p
x4 is D dx, which may be found by dividing the differential

4x3 dx by 4x3, four times the cube of the root. Thus, of 5
p
x5 differ. D dx, which

has the division of the different. 5x4 dx by 5x4, five times the Square-Square of the
Root. And so on for the others.

Accordingly, therefore, the basis of the rules to have the differentials of surds can
be found. So, e.g., one can likewise find the differential of 5

p
x, namely by dividing

the differential dx of x by five times the square-square of 5
p
x, which will be dx

5
5p
x4

.

In the same way, of 4
p
x different. D dx

4
4p
x3

and of 3
p
x the differential D dx

3 3
p

xx
and

of
p
x different. D dx

2
p
x

.
The following Rule can be deduced from the foregoing to find the differential of

any surd quantity, to wit:
Rule 5. For any surd quantity raised to any number of dimensions, diminish by

unity that which is contained within the radical sign and taking so many as the same
number of dimensions contained within the radical sign, divide the differential by
all of this; the quotient is the differential that we wish to find.

In characters, the rule can be expressed as:

p
p
x differ. D dx

p
p
p
xp�1 :

15Here and in the following the comma represents multiplication. In addition, we note that in
Schafheitlin (1922), the term before the equal sign was given as ax C 2x dx.
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E.g. the differential of
p

ax C xx is D a dx C 2x dx

2
p

ax C xx
, the different. of16 3

p
ax C xx

is
a dx C 2x dx

3� 3
p

ax C xx
.

To find the differential of the quantity17
3

p
ax C xxp
yx C yy

. The differential of

the Numerator
a dx C 2x dx

3� 3
p

ax C xx
is found, and that of the Denominator Œ7� D

y dx C x dy C 2y dy

2
p

yx C yy
by Rule 5. Find by Rule 4:

a dxC2x dx
3� 3

p
axCxx

in
p

xy C yy C �y dx�x dy�2y dy
2
p

xyCyy
in 3

p
ax C xx

xy C yy

the differential of18
3

p
axCxxp
yxCyy

. The differential of the quantity
q

axCxxCpaayCy3
is

D 2a dx C 4x dx in
p

aay C y3 C aa dy C 3yy dy

2

q
ax C xx Cp

aay C y3 in 2
p

aay C y3
:

Œ8� This page is blank.

Œ9� The Use of Differential Calculus in Solving Problems

Problem I. To find the Tangent of the Parabola.19

From the nature of the Parabola, ax D yy. Therefore, in addition a dx D 2y dy.
Consequently20 a W 2y WW dy W dx:Moreover, because each Curved line is understood
to be of an infinity of straight lines, by Postul. 2, the tangent AD is in a straight line
with the infinitely small portion DF of the parabola BDF. Therefore draw (Fig. 11.1)
DG parallel to the Diameter AE, 4DGF and 4ACD will be similar. Wherefore,
FG W GD WW CD W AC, which is21 dy W dx WW y W s . subtangent / WW a W 2y (from prev.)
thus s D 2yy

a
D 2ax

a
D 2x. If therefore AC is taken as twice the abscissa BC itself,

16L’Hôpital gave this example on p. 8.
17L’Hôpital gave this example on p. 8.
18L’Hôpital gave a similar example on p. 8.
19Compare this to Example I, Part 1, on p. 13.
20Bernoulli wrote this proportional relationship as: a � 2y WW dy � dx.
21The relation dy W dx WW y W s, concerning the Differential Triangle, is given in Proposition I on
p. 11.
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Fig. 11.1 Tangent to the Parabola

and through the point A and the given point D on the Curve the straight line AD is
drawn, that will be the Tangent. Q. e. i.22

In the same way, to find the tangent in the Cubic Parabola:23

1. If its nature is aa x D y3. The Subtangent will be D 3x. Indeed, aa dx D 3yy dy,
and aa W 3yy WW dy W dx WW y W s

D 3y3

aa
D 3aax

aa
D 3x:

2. If a xx D y3. Then24 s D 3x
2

. For25 2ax dx D 3yy dy. Because of this 2ax W 3yy WW
dy W xx WW y W s D 3y3

2ax D 3axx
2ax D 3x

2
.

22This is an abbreviation for Quod erit inveniendum; “which was to be found.”
23Compare what follows to the generalized parabola, where fractional exponents may be used,
on p. 13.
24In Schafheitlin (1922) the denominator was given as a.
25In Schafheitlin (1922), the term 2ax was given as 2a.
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In the Biquadratic Parabola

1. If a3 x D y4. s D 4x: For a3 dx D 4y3 dy: Therefore, a3 W 4y3 WW dy W dx WW y W
s D 4y4

a3
D 4a3x

a3
D 4x.

2. Œ10� If aa xx D y4. s D 2x: For 2aax dx D 4y3 dy and 2aax W 4y3 WW dy W dx WW y W
s D 4y4

2aax D 4aaxx
2aax D 2x.

3. If a x3 D y4. s D 4
3
x: 3axx dx D 4y3 dy and 3axx W 4y3 WW dy W dx WW y W s D

4y4

3axx D 4ax3

3axx D 4x
3

.

In Other Parabolas

1. If a4 x D y5. s D 5x: a4 dx D 5y4 dy.
2. If a3 xx D y5. s D 5

2
x.

3. If aa x3 D y5. s D 5
3
x.

4. If a x4 D y5. s D 5
4
x.

And thus for the Others. From which the general Rule can be formed: If the
nature of any Parabola is a.c x.m D y.n:

Its Subtangent is
nx

m
.

In fact ac mxm�1 dx D nyn�1 dy, and

ac mxm�1 W nyn�1 WW dy W dx WW y W s D nyn

ac mxm�1 D ac xm n

ac xm�1 m D ac xm�1 nx

ac xm�1 m D nx

m
:

Problem II. [11] To Find the Tangent of the Ellipse.26

Let the Diameter (Fig. 11.2) be BJ D b: The Parameter D a, the Abscissa D x

the applied ordinate D y. The differential of the abscissa CE D dx, and the differ. of
the applied ordinate FG D dy. Here (for the same reason, as noted in the Parabola)
4DFG and 4ACD will be similar. Therefore, FG W GD WW DC W AC i. e. dy W dx WW
y W s. Moreover, from the nature of the Ellipse, b W a WW bx � xx W yy. Therefore,
abx�axx D byy; and taking the differentials on both sides ab dx�2ax dx D 2by dy:
Thus ab � 2ax W 2by WW dy W dx WW y W s. Therefore

s D 2byy

ab � 2ax
D 2abx � 2axx

ab � 2ax
D 2bx � 2xx

b � 2x :

26Compare this to the more general Example II on p. 13.



11 Bernoulli’s Lectiones 195

Fig. 11.2 Tangent to the Ellipse

Problem III. To Find the Tangent of the Hyperbola.27

With the same set out in accordance with the Ellipse, likewise dy W dx WW y W s.
And (Fig. 11.3) from the nature of the Hyperbola b W a WW bx C xx W yy. For this
reason, abx C axx D byy and ab dx C 2ax dx D 2by dy: Therefore, ab C 2ax W 2by WW
dy W dx WW y W s D

D 2byy

ab C 2ax
D 2ab x C 2a xx

ab C 2ax
D 2bx C 2xx

b C 2x
:

Even Asymptotes are found from the Tangent, considering them to be Tangents Œ12�
at infinity, and their abscissas x and ordinates y as infinite. And JH and JM will
be found, through whose endpoints H and M the Asymptote passes. However,
in this case, JH (Fig. 11.4) is the very same as AJ is with regard to any other

Tangent, and JM as any JO, evidently JH D bx

b C 2x
D by postul. 1 (because in

this case x is infinitely larger than b)
bx

2x
D 1

2
b D 1

2
the transverse Diameter;

also JM D by

2b C 2x
D

p
abxp

4b C 4x
D by postul. 1

r
abx

4x
D

p
ab

2
D the Conjugate

semidiameter.

27Compare this to Example II, Part 2, on p. 13 and the more generalized Example III on p. 15.
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Fig. 11.3 Tangent to the Hyperbola

Fig. 11.4 Asymptotes of the Hyperbola
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Fig. 11.5 Problem IV

Problem IV. To Find the Tangent of the Curve, which has this property, the sum of
the three straight lines drawn from any point on the curve to three given points in
any straight line is always equal.

[13] Let (Fig. 11.5) A, B , and C be three given points, whose distances of which
are AB D a, AC D b, AF D x, and DF D y. The Sum of the three lines ADCBDC
CD D c. Therefore, we will have AD D p

xx C yy, BD D p
aa � 2ax C xx C yy

and DC D p
bb � 2bx C xx C yy. Therefore

p
xx C yy Cp

aa � 2ax C xx C yy Cp
bb � 2bx C xx C yy D c

and taking differentials of both sides

2x dx C 2y dy

2
p

xx C yy
C 2x dx C 2y dy � 2a dx

2
p

aa � 2ax C xx C yy
C 2x dx C 2y dy � 2b dx

2
p

bb � 2bx C xx C yy
D 0:

Reducing to quantities in which dx is on one side, and in which dy is on the other,
and dividing the entire quantity by 2

2
, we will have

y dyp
xx C yy

C y dyp
aa � 2ax C xx C yy

C y dyp
bb � 2bx C xx C yy

D b dx � x dxp
bb � 2bx C xx C yy

C a dx � x dxp
aa � 2ax C xx C yy

C �x dxp
xx C yy

:

Resolving the equation into a proportion, it is

yp
xx C yy

C yp
aa � 2ax C xx C yy

C yp
bb � 2bx C xx C yy

W b � xp
bb � 2bx C xx C yy

C a � xp
aa � 2ax C xx C yy

C �xp
xx C yy

WW dx W dy
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and dy W dx D y W s (because of similar triangles DDG and EDF), which is therefore

yyp
xx C yy

C yyp
aa � 2ax C xx C yy

C yyp
bb � 2bx C xx C yy

b � xp
bb � 2bx C xx C yy

C a � xp
aa � 2ax C xx C yy

� xp
xx C yy

:

From this solution it is plainly apparent, that this method is concise, and more
succinct than that of Descartes, by which means if this Problem had been solved, it
would first be necessary, in order to bring forth that curved line, to find the equation
in purely rational terms; a task that is of great labor and tedium.

Problem V. [14] To Find the kind of line whose Subtangents are always equal.28

Let (Fig. 11.6) AB be the Tangent, BC the Subtangent D a, AC D y, AD D dy,
and cC or aD D dx. We will have dy W dx WW y W a and alternately dy W y WW dx W a.
Because it is true that the ratio dx W a is always constant, likewise dy W y will
always be constant, i.e.29 � �

� �y W y W y makes a geometric progression. And for this
reason, this is a Logarithmic line, whose ordinates make a Geometric progression
and abscissas an Arithmetic.

Problem VI. To Find The Tangent of the Cycloid.30

Let (Fig. 11.7) ABD be a Cycloid, whose Tangent at the point E is to be found,
the circle BHDB is drawn in the middle, whose semi-circumference equals half of
the base AD or DC, and diameter D 2a. EM is drawn further up to be parallel to the
base AC, and BF D x is parallel to the same, and to this the ordinate EF D y D BM.

Fig. 11.6 Curve of Constant Subtangent

28Compare this to §39 on p. 38.
29The notation that follows evidently signifies the progression of y-values.
30Compare this §18 on p. 18, which depends on a general proposition in §15.



11 Bernoulli’s Lectiones 199

Fig. 11.7 Tangent to the Cycloid

And it is by the nature of this Curve that the straight line EH D the arc HB D f .
And indeed x D FB D EH C HM D

f Cp
2ay � yy and dx D df C 2a dy � 2y dy

2
p
2ay � yy

:

On the other hand [15] df D HN D by postul. 2 the subtense of the Right triangle

HKN D p
�HK C �KN D a dyp

2ay � yy
. Therefore

dx D 2a dy � y dyp
2ay � yy

and because dy W dx WW y W s will likewise have

dy W 2a dy � y dyp
2ay � yy

WW y W s; that is 1 W 2a � yp
2ay � yy

WW y W s

which therefore D 2ay � yyp
2ay � yy

D p
2ay � yy D HM. Because the subtangent

FG D HM we will have FB � FG D EM � HM i. e. GB D EH and by consequence
the Tangent EG is equal and parallel to the subtense BH.

Problem VII. To Find The Tangent of the Conchoid.31

Let (Fig. 11.8) GL D a

CF D AD D b

GD D x

DE D AB D dx:

31Compare this to §25 on p. 22, which depends on a more general proposition in §24.
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Fig. 11.8 Tangent to the Conchoid of Nichomedes

1. Because of the similar triangles DEF and DLG, DL W LG WW DE W EF

p
xx � aa W a WW dx W a dxp

xx � aa
:

2. Because of the similar triangles BGC and EGF, GF W GC WW EF W BC

x W b C x WW a dxp
xx � aa

W ax dx C ab dx

x
p

xx � aa
:

3. Because of the similar triangles ABC and AGK, AB W BC WW AG W GK i. e.

dx W ax dx C ab dx

x
p

xx � aa
WW x C b W GK;

or if the first and second term are divided by dx,

1 W ax C ab

x
p

xx � aa
WW x C b W axx C 2abx C abb

x
p

xx � aa
D GK:
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[16] And by calculation this is solved as follows:32 Now GF D GD, so DG2 W
.GH � GC/ D AG W GK.

AB W BC WW ED W BC (because ED D AB) WW ED W EF C EF � BC WW
DG W GH C GF W GC: WW DGF W CGH WW AG W GK:

or �DG:

Construction. Because of this, the Tangent is easily constructed in this way: CM
is drawn parallel to FH and the points F and M are connected, let AK be made
parallel to the line connecting FM, this AK will be the Tangent that we wish to find.

Proof. Because CG W GM WW FG W GH, we will have CGH D FGM. However,
AG W GK WW FG W GM WW �FG W FGM . CGH/. Therefore AG W GK WW
�FG or �DG W CGH. And therefore by calculation it is discovered that AK
will be the Tangent of the Conchoid.

Problem VIII. To determine the Tangent of the Cissoid Curve.33

Let (Fig. 11.9) ABC be a semi-circle, FB is erected perpendicular from the Center,
BD and BE are assumed to be any equal arcs, the intersection H of the line AE that
is drawn and the perpendicular DG is a point on the Cissoid. Now it is necessary to
determine the Tangent at this point. To this end, we wish to find the equation that
expresses the nature of this curve, which one does as follows: Let AF D FC D a,
AG D x, and GH D y. Therefore FG or KF D a� x and GD or KE D p

2ax � xx.
Moreover AK W KE WW AG W GH i. e. 2a � x W p

2ax � xx WW x W y and therefore

Fig. 11.9 Tangent to the Cissoid

32In Schafheitlin (1922), Schafheitlin suggests that we read this argument as: because ED D AB,

AG W GK D AB W BC D ED W BC D ED

EF
� EF

BC
D DG

GH
� GF

GC
Bernoulli uses the rectangle symbol

in analogy to the square: DGF represents the area of the rectangle DGF, i.e. the product of DG
and GF.
33Compare this to §28 on p. 25, which depends on the more general proposition in §27.
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p
2a � x W p

x WW x W y or 2a � x W x WW xx W yy. Hence x3 D 2ayy � xyy, the
differential [17] of which is 3xx dx D 4ay dy � 2xy dy � yy dx and 3xx dx C yy dx D
4ay dy �2xy dy. And for this reason 3xx C yy W 4ay �2xy WW dy W dx WW y W s, therefore
s or

GL D 4ayy � 2xyy

3xx C yy
D 2x3

3xx C yy

or substituting the value of yy, we have
2ax � xx

3a � x .

Problem IX. To Find the Tangent of the Quadratrix.34

If (Fig. 11.10) ABC is a Quarter of a Circle, and any arc AD is made, to the
portion AE of the radius, as the quarter AB is to the total radius AC, the radius
DC and the perpendicular EF are drawn, the point of intersection F will be on
the Curve AFG, which is called the Quadratix. Now it is desired to determine
the Tangent at the point F . Let AC D a, AB D b, AH D x, and AD D f ,

then DH D p
2ax � xx, AE D af

b
, HC D a � x, and EC D a � af

b
. Moreover

HC W HD WW EC W EF, that is a � x W p
2ax � xx WW ab � af

b
W EF. Therefore one

finds EF D ab � af
p
2ax � xx

ab � bx
. Now, as in the Sixth Problem, we find for the little

portion Dd, i.e. for df D a dxp
2a � xx

, and for this reason, for the small portion Ee,

that is for the differential of the line AE D aa dx

b
p
2ax � xx

, and by Rules 4 and 5 the

Fig. 11.10 Tangent to the Quadratrix

34Compare this to §30 on p. 27, which depends on a more general proposition in §29.
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Fig. 11.11 Tangent to the Quadratrix – Alternate

differential of EF (where the value of df is substituted) will be found, because as
the differential of EF is to the differential of the line EA, so the line EF is to s.

In Another Way. Let (Fig. 11.11) CK be perpendicular to DC, and retaining the
same letters as previously, we wish to find the point K, which if it is joined to
the point F , the line FK touches the curve AFG. It is done this way: HC W DC WW
EC W CF i. e. a � x W a WW ab � ef

b
W CF.

[18] Therefore FC D aab � aaf

ab � bx
. Likewise DC W FC WW Dd W Ff , that is

a W aab � aaf

ab � bx
WW df D a dxp

2ax � xx
W Ff :

And therefore Ff is equal to
aab dx � aaf dx

ab � bx
p
2ax � xx

. However, the differential of FC D

�a3b df C aaxb df C aabb dx � aafb dx

aabb � 2abbx C bbxx

D �a4b dx C a3bx dx C aabb dx � aafb dx
p
2ax � xx

aabb � 2abbx C bbxx
p
2ax � xx

= differ. of FC. However, this differential is to

aab dx � aaf dx

ab � bx
p
2ax � xx

as
�aa C ax C b � fp

2ax � xx

a � x W b � f

WW aab � aaf

ab � bx
D FC W CK D aabb � 2aabf C aaff

�aab C abx C bb � bf
p
2ax � xx

:
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Fig. 11.12 Quadratrix: Point of Intersection

Accordingly, if the tangent is drawn from the point A, CK D �b, a quantity which,
because it is negative, indicates that CK is to the right, i.e. towards the part AH or
x, as one would suppose.

Problem X. To find the point of intersection G (Fig. 11.12) of the Quadratrix curve
AG and the perpendicular radius CB.35

We imagine a pointD, taken near the pointB , so that the distance DB is infinitely
small, just as [19] the distance CE, and so the radius CD and perpendicular EF are
drawn, there will be no doubt the point F is considered to be the same as G, which
obviously are not different from one another, owing to an infinitely small interval.
This point F is therefore determined: AB W AC WW AD W AE WW DB W EC WW DB W
FG WW CB W CG WW AC W CG. Therefore CG is the third proportional to the quarter
circumference and to the radius. Hence the point G cannot be determined in any
other way, without at the same time having the rectification of the circular line.

Problem XI.36 To Find the Tangent in the Spiral of Archimedes.37

That curve is called the Spiral of Archimedes, which is described from a point,
which is moved from the center to the circumference of a circle, the radius rotating
uniformly in equal durations of time as the point is moved from the center to the
circumference.38 We wish to find the tangent of this curve. Let (Fig. 11.13) the radius
AC D a, the circumference DDCD D b, AB D x, and the perpendicular AE to the

35Compare this to §31 on p. 28.
36In Schafheitlin (1922), it is noted that in the manuscript this is erroneously given as IX.
37Compare this to §23 on p. 21, which depends on a more general proposition in §22.
38In other words, changes in radial distance are proportional to angular changes of the radius.
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Fig. 11.13 Tangent to the Spiral of Archimedes

line AB is drawn. The Radius AC will be to the circumference as AB is to the arc39

CKD. Also AD W AF WW DD W FG, and a W x WW b dx

a
W bx dx

aa
, again BG W FG WW AB W

AE, i.e. dx W bx dx

aa
WW x W bxx

aa
D s.40 Thus, if the tangent at C is to be drawn, we

find that s D b, which Archimedes demonstrated by a long discourse.

On Maxima and Minima

Problem XII. 41 [20] To find the largest quantity, quantities are considered as ordi-
nates of any curve concave towards the axis, as in Fig. ABC (Fig. 11.14). And vice
versa to find the least quantity, considered as any ordinates of any curve convex

39There is no point K in Figure 11.13, although it presumably should be where the line AE
intersects the circle DDCD.
40In other words, from the first proportion it follows that FG D bx dx

a2
and therefore from the second

that AE D s D bx2

a2
.

41Compare this to the treatment of maximum and minimum beginning on p. 45.
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Fig. 11.14 Maximum and Minimum

Fig. 11.15 Product of Three Quantities

towards the axis, as in Fig. GDE, with axis GE. By this consideration, the tangent
at a minimum or maximum point should be drawn parallel to the axis. Because
dy W dx WW y W s and y is infinitely smaller than the Subtangent, we will furthermore
have that dy D 0 with respect to this dx. Therefore, if the maximum is to be found
of that rectangle, which is made of two parts x and a�x of a given line a, I consider
ax�xx as the ordinate on a certain curve concave towards the axis, and its differential
a dx � 2x dx D 0. Therefore, a dx D 2x dx and x D 1

2
a. Therefore, the rectangle

will be maximum if it is assumed that x D 1
2
a.

Problem XIII. To divide a given line into three parts, so that the parts multiplied in
turn make the largest solid that it is possible to produce by the three parts of the
same line.

Let (Fig. 11.15) the part AB D x, the remainder will be cut in two at the point
D; however by Probl. XII �BD or �DC is the maximum rectangle of the two
parts of the line BC, therefore the same being multiplied by AB gives the maximum
[21] solid of the three parts of this line. Thus aax � 2axx C x3 D Maximum.42 Its
differential aa dx � 4ax dx C 3xx dx D 0 and xx D 4

3
ax � 1

3
aa and x D 1

3
a:

In the same way, if the line AC were to be cut into four parts, so that the parts
multiplied in turn make the largest quantity of four dimensions, it is found that

42When D bisects BC, the volume of the solid is x
�
1
2
.a � x/

�2
, so the quantity being maximized

here is in fact a constant multiple of the volume, which achieves its maximum at the same value
of x.
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Fig. 11.16 Problem XIV

x D 1
4
a. And if the line AC were to cut in five parts, etc., it is found that x D 1

5
a.

And so it is with regard to the others.

Problem XIV. To find the maximum Rectangle, which is described by the abscissa
and the ordinate on a Circle.

Let (Fig. 11.16) the Diameter AB D a and AC D x, we will have CB D a � x,
CD D p

ax � xx, and ACD D p
ax3 � x4 D Maximum. Its differential

3axx dx � 4x3 dx

2
p

ax3 � x4 D 0:

Also, 3axx dx D 4x3 dx and 3a D 4x, and finally x D 3
4
a. Q. e. i.

Problem XV. To find the maximum Rectangle, which is described from the portions
of an ordinate in the quadrant of a Circle that is cut by the subtense of this Quadrant.

Let (Fig. 11.17) AC D a and DC D x, we will have DF D x and DE Dp
2ax � xx, so DFE D p

2ax3 � x4 � xx D Maximum. Its differential43

6axx dx � 4x3 dx

2
p
2ax3 � x4 � 2x dx D 3ax dx � 2xx dx � 2x dx

p� �p
2ax � xx

D 0:

Therefore 3a � 2x D 2
p
2ax � xx and 9aa � 12ax C 4xx D 8ax � 4xx and

xx D 20ax � 9aa

8
and44 x D 5

4
a

/ q 7
16

aa.

Problem XVI. [22] A traveler45 A (Fig. 11.18) heading towardE must pass through
the flat and well-worn field AFDB and the rough and uneven territory DBGE, for
any paths that have been walked, in the time a, the distance b in the flat field FDB
may be traversed, and in the same time the distance c in the rough place. We wish

43In Schafheitlin (1922), the denominator of the second fraction was incorrectly given asp
2ax3 � x4. This was also repeated in the next line.

44The symbol

/

means C or �.
45Compare to §59 on p. 54.
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Fig. 11.17 Problem XV

Fig. 11.18 A Traveler in Two Terrains

to find the shortest route from A to E, i. e. how the traveler covers the distance
in the smallest time. On the line BD that divides the two different paths, let the
perpendiculars AB D m and ED D n be drawn. Let BC D x and BD D e, we will
have DC D e � x, AC D p

mm C xx and CE D p
ee � 2ex C xx C nn. However,

b W a WW p
mm C xx W a

p
mm C xx

b

D the time taken by the line AC and

c W a WW p
ee � 2ex C xx C nn W a

p
ee � 2ex C xx C nn

c

D the time taken by the line CE. Therefore, we have

a
p

mm C xx

b
C a

p
ee � 2ex C xx C nn

c
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D the minimum interval of time. Its differ.

ax dx

b
p

mm C xx
C ax dx � ae dx

c
p

ee � 2ex C xx C nn
D 0:

Therefore

x

b
p

mm C xx
D e � x
c
p

ee � 2ex C xx C nn

and cceexx � 2ccex3 C ccx4 C ccnnxx D bbeemm C bbeexx � 2bbemmx � 2bbex3 C
bbmmxx C bbx4. And

C bb � 2bbe C bbmm
x4 x3 � 2bbemm x C bbeemm D 0:

� cc C 2cce C bbee
xx

� ccee
� ccnn

Problem XVII. [23] On the line CE (Fig. 11.19) to find the point D, at which if the
lines DA and DB are drawn from the given points A and B , the sum of them is the
minimum of any two lines drawn at the same time from the points A and B to a
point of the line CE.

The perpendiculars AC D a and BE D b are dropped. Let CE D c and CD D x.
We will have DE D c � x.

AD D p
aa C xx and BD D p

cc � 2cx C xx C bb:

And
p

aa C xx C p
cc � 2cx C xx C bb D minimum. Its differential

x dxp
aa C xx

C x dx � c dxp
cc � 2cx C xx C bb

D 0:

Therefore

xp
aa C xx

D c � xp
cc � 2cx C xx C bb

;

ccxx � 2cx3 C x4 C bbxx D aacc � 2aacx C aaxx C ccxx � 2cx3 C x4, bbxx D
aacc�2aacxCaaxx, hence bx D ac�ax and bxCax D ac. And finally x D ac

aC b
.

Problem XVIII. On the Radius AC (Fig. 11.20) to find the point D, at which if
the perpendicular DE is drawn to AC, the abscissa FE contained between the
circumference BEC and the subtense BC is the maximum of all those that can be
drawn in the same Quadrant.
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Fig. 11.19 Problem XVII

Let AC D a and DC D x, we will have FD D x and DE D p
2ax � xx,

FE D p
2ax � xx � x D Maximum. Its differential

a dx � x dxp
2ax � xx

� dx D 0:

Hence we will have a � x D p
2ax � xx, aa � 2ax C xx D 2ax � xx,

xx D 4ax � aa

2
and x D a

/ q 1
2
aa:

Problem XIX. [24] Let the weightA (Fig. 11.21) be suspended from a rope AC fixed
at the point C and crossing over a pulley E, which hangs freely on a rope affixed
at B . We wish to find where the pulley E and the weight A will be at rest.46

46Compare to §60 on p. 56.
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Fig. 11.20 Problem XVIII

Fig. 11.21 The Pulley Problem
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Supposing that the rope and the pulley have no weight, the Pulley and weight
rest in that place, where the distance AD of the weight A to the line BC, parallel to
the horizon, is a maximum. Therefore, to find the length of the rope, let AC D a,
BC D b, BE D c, and DE D x. We will have BD D p

cc � xx, DC D b�p
cc � xx,

CE D p
bb C cc � 2bp

cc � xx, and AE D a � p
bb C cc � 2bp

cc � xx. AD D
x C a �p

bb C cc � 2bp
cc � xx D Maximum. Its different.47

dx � bx dxp
cc � xx times

p
bb C cc � 2bp

cc � xx
D 0:

Hence

q
bb C cc � 2bp

cc � xx D bxp
cc � xx

and

bb C cc � 2bp
cc � xx D bbxx

cc � xx
;

bb C cc � bbxx

cc � xx
D 2b

p
cc � xx D bbcc C c4 � 2bbxx � ccxx

cc � xx
:

Therefore b4c4Cc8C4b4x4Cc4x4C2bbc6�4b4ccxx�6bbc4xx�2c6xxC4bbccx4 D
4bbc6 � 12bbc4xx C 12bbccx4 � 4bbx6.

In Another Way. Let BD D x. We will have DC D b � x, DE D p
cc � xx,

CE D p
bb � 2bx C cc, AE D a� p

bb � 2bx C cc, AD D a� p
bb � 2bx C cc Cp

cc � xx D Maximum. Its differential D
C b dxp

bb � 2bx C cc
� x dxp

cc � xx
D 0:

Therefore x
p

bb � 2bx C cc D b
p

cc � xx. And bbxx�2bx3Cccxx D bbcc�bbxx
and

x3 D 2bbxx C ccxx � bbcc

2b
:

Problem XX. [25] To find the shortest Crepuscule.48

47The Latin preposition in was used to mean the multiplication of the two factors. This will be
consistently translated as “times.”
48I.e. the shortest twilight. Compare to §61 on p. 57.
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Fig. 11.22 Problem of the Shortest Twilight

Let C (Fig. 11.22a) be the center of the Sphere, ANB the meridian, AB the
Diameter of the Equator, MN the diameter of the Horizon, OP the diam. of the
parallel crepuscular circle, DF the diameter of the parallel to the Equator, which
we wish to find and is such that, as the Sun rotates along it, the arc KL, which is
intercepted between the Horizon and the Crepuscular parallel, is to be proportionally
the smallest, that is, so that it has the minimum ratio to its circumference, or to its
Diameter. Indeed, in this case this is well known to be the Crepuscule that is the
smallest of all.

Now let (Fig. 11.22b) the radius be CA D a. GH or the sine of the crepuscular
arc PN D b. GH is to GJ as the sine of the complement of the elevation of the
pole is to the total sine. Therefore let GJ D c, hence HJ D p

cc � bb D f . Let
CE or the sine of BF, the declination of the sun that we wish to find, be D x.

Because GH W HJ WW CE W EJ we will have EJ D fx

b
D the sine of the arc RK

and EG D bc � fx

b
D the sine of the arc RL. Now separately (Fig. 11.22c), the great

circle drf is described, with center e, diameter df , and radius er perpendicular to
the Diameter. Let it be made that as DE is to EJ, so de is to ei, and as DE is to
EG, so de is to eg, the parallels ik and gl will be drawn, the arc kr similar to49 KR
and the arc rl [26] similar to the arc RL and the whole kl similar to the whole KL.
However, because the arc KL must be the minimum proportion, the arc kl will be to
the constant radius as an absolute minimum and for that reason the subtense kl will
be the minimum.

49In Schafheitlin (1922) the following was written as kR.
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Consequently by this method, in assuming x, ie and ig will be found, and from
these ik and kl, from which the subtense kl can then be found, granting that this
method should give the minimum, as the equation comes forth, which determines x.
In fact, because the subtense kl can only be found through great skill, this method
is exceedingly prolix, and it will produce an equation, for the determination of x,
that will have six dimensions, and in the end will contain more than thirty, to such a
degree that solving the problem by the Cartesian Method is clearly not possible.

We now consider which of the above things may be obtained by means of the
Differential Calculus. In the first place, it is not necessary to find the subtense, or
sine, or other straight line, that would determine the arc kl, as Cartesian Geometry
requires, concerning the measurement, for instance, of those curves that do not turn.
It is sufficient to us that the arc kl must be the smallest, hence its differential D 0,
or the differential of the arc kr D different. of the arc rl. Consequently, it only
remains that the differentials of the arcs kr and rl be found, which, when equated,
will give the equation needed, whose root x will be the sine of the declination of
the sun that we wish to find. Moreover, the differentials of the arcs kr and rl are
discovered thusly: because DE D p

aa � xx and by Construction DE W JE WW de W ie,
we will have

ie D afx

b
p

aa � xx
;

in the same way we will have

eg D abc � afx

b
p

aa � xx

hence

ik D
s
a4bb � aabbxx � aaffxx

aabb � bbxx
D .because bb C ff D cc/

s
a4bb � aaccxx

aabb � bbxx

and

gl D
s
a4bb � aabbxx � aabbcc C 2aabcfx � aaffxx

aabb � bbxx
D .because bb C ff D cc/

[27]

s
a4bb � aaccxx C 2aabcfx � aabbcc

aabb � bbxx
:

If ie is now called m, we will have ik D p
aa � mm, and the differential of the arc

kr D a dmp
aa � mm

, therefore because m D afx

b
p

aa � xx
, we will have
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dm D a3f dx

aab � bxx
p

aa � xx
;

and because

p
aa � mm D

s
a4bb � aaccxx

aabb � bbxx
;

we will have

a dmp
aa � mm

D different. of the arc kr D a3f dx

aa � xx
p

aabb � ccxx
:

If eg is now called n, hence gl D p
aa � nn we will have diff. of the arc

rl D a dnp
aa � nn

. Therefore because n D abc � afx

b
p

aa � xx
, we will have

dn D �a3f dx C abcx dx

aab � bxx
p

aa � xx
;

and because

p
aa � nn D

s
a4bb � aaccxx C 2aabcfx � aabbcc

aabb � bbxx
;

we will have

a dnp
aa � nn

D different. of the arc lr D �a3f dx C abcx dx

aa � xx
p

aabb � ccxx C 2bcfx � bbcc
;

and for that reason, because different. of the arc lr D differ. of the arc kr, we have

a3f dx

aa � xx
p

aabb � ccxx
D �a3f dx C abcx dx

aa � xx
p

aabb � ccxx C 2bcfx � bbcc

dividing each side by a dx and multiplic. by aa � xx, we will have

aafp
aabb � ccxx

D �aaf C bcxp
aabb � ccxx C 2bcfx � bbcc

;

or by cross multipl.

aaf
p

aabb � ccxx C 2bcfx � bbcc D �aaf C bcx
p

aabb � ccxx;
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and taking squares we will have a6bbff �a4ffccxxC2a4f 3bcx�a4ffbbcc D a6bbff �
2a4b3fcx C aab4ccxx � a4ffccxx C 2aafbc3x3 � bbc4x4. Reducing the equation to
zero and dividing by bc, we will have

bc3x4 � 2aafccx3 � aab3cxx C 2a4bbfx C 2a4f 3x � a4ffbc D 0

or because ff C bb D cc, dividing the equation by c we will have

bccx4 � 2aafcx3 � aab3xx C 2a4fcx � a4ffb D 0;

or substituting the value of ff D cc � bb we will have

bccx4 � 2aafcx3 � aab3xx C 2a4fcx � a4bcc C a4b3 D 0:

The equation is divided by xx � aa and we will have

bccxx � 2aafcx C aabcc � aab3 D 0;

or (because cc � bb D ff ) bccxx � 2aafcx C aabff D 0, which equation, if [28]
solved, will give

x D aaf ˙ af
p

aa � bb

bc
:

I can most easily convert this equation into the simplest proportion in this way:
because JG is to JH, or c is to f , as the total sine or a is to the sine of the elevation

of the pole, it therefore will be
af

c
. Hence

aaf ˙ af
p

aa � bb

bc
D a˙ p

aa � bb

b
times the sine of the elevation of the pole.

For that reason, b W a˙p
aa � bb WW sine elev. pole W x. Or in terms of Trigonometry

we have this proportion: as the right sine of the crepuscular arc is to the versed sine
of this arc (for the � sign), or as the versed sine of the complement in two right
angles50 of the same arc (for the C sign), so is the sine of the elevation of the pole to
the sine of the declination of the sun towards the South, which we wish to find. If the
declination of the sun is known, the location of the same on the Ecliptic can be found
by a single operation. But if there should be two minimum crepuscules, and each one
is actually frequented, as the sun turns through the Southern Signs, that one which
is found with the � sign, generally is at an elevation of the pole that is possible.

50I.e., the supplement. In Schafheitlin (1922), the phrase ad duos rectos was misprinted as ad discos
rectos.
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The other one with the C sign, however, cannot happen unless it happens very near
the Equatorial region. Indeed, at this other one a greater elevation of the pole comes
about, as the declination of the sun gets larger, than the maximum declination of
the same, which is 23 1

2
deg. In fact it sometimes happens, that the sine of the

declination that we wish to find gets entirely larger than the total sine, and hence
the said minimum Crepuscule is not made only impossible, but clearly imaginary.
However, each minimum crepuscule, where it is possible, happens twice in a year,
because the sun comes to the same declination twice. The maximum crepuscules
happen when the sun appears at the Tropics, which is easy to demonstrate.

[29] NB. I judge that the second of the shortest crepuscules, found by the C sign,
by no means satisfies the question, just as happens when only a single root of an
equation satisfies a Problem. For if there are two different minimum crepuscules.
A maximum crepuscule must necessarily come between them, which is not found
by means of our equation, inasmuch as that reached only to two dimensions.
Otherwise if there are two minimum crepuscules with a maximum coming between,
the equation would rise to at least three dimensions.

On the Discovery of the Inflection Point of Curves

Problem XXI. Let any Curve, which has double curvature, concave toward the axis
from the beginning, and afterward convex to the same; or vice versa convex from
the beginning, and concave to the end; moreover that point, which separates those
two curvatures, or which is the end of the former and the beginning of the latter, is
called the point of inflection or of bending back.51 Therefore as often as the Curve
changes its curvature, it has as many inflection points, in whatever way the curve is
defined, which we will now find according to one or another method.

First Method

It is clear from the Consideration of the Curve, that, as long as the Curve maintains
only one Curvature, the Tangents at successive increasing abscissas recede from the
vertex of the curve, but where it first puts on the contrary curvature, the Tangents at
increasing abscissas now come near to the vertex.52 I say this comes from carefully
considering the curvature of whatever nature; then from this the infection point is
most easily determined. Indeed, because the tangent at the inflection point is farthest
from the vertex, [30] the subtangent minus the abscissa, or the abscissa minus the
Subtangent, will be the maximum of all possible, that is t � x D m or x � t D m,

51Compare this to Definition II given on p. 66.
52This is clarified in §66, Part 1. on p. 68.



218 11 Bernoulli’s Lectiones

Fig. 11.23 A Curve Related to the “Witch of Agnesi”

hence by the Method of maxima and minima, we will have dt � dx D 0 or dx � dt D
0. From this equation, the value of the abscissa x emerges, at which the ordinate y
determines the inflection point that we wish to find.

Second Method

This same point can be found in a different way as follows: I imagine to be in that
place, where the Curve is simultaneously convex and concave, indeed it is equally
the one and the other; because it is not possible for both to be true, it is necessary
that it should be straight, that is, neither convex nor concave (however, this should
not be understood as if a finite portion of the curve were straight, but rather that two
infinitely small parts lie in a line). Therefore, whereas in any straight line in which
dx is made constant, dy is likewise constant, and hence ddy (the differential of the
differential of y) is D 0, the inflection point can be found by making ddy D 0, from
which equation the abscissa x will be determined, and at the same time the inflection
point that we wish to find. Examples will to a greater extent illustrate each method
of solving the matter.

Therefore let ABC (Fig. 11.23) be the given curve,53 whose nature (setting AD D
x and BD D y) is expressed by this equation axx � yxx � aay D 0, we wish to find
the inflection point B . By the first method. Differentials of the equation are taken,

53Compare this to §68 on p. 71.
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and we will have 2ax dx�xx dy�2xy dx�aa dy D 0 and therefore 2ax dx�2yx dx D
xx dy C aa dy, and hence 2ax � 2yx W xx C aa WW dy W dx WW y W t . Consequently one
finds

t D xxy C aay

2ax � 2yx
D axx

2ax � 2yx
D ax

2a � 2y

D
�

because y D axx

aa C xx

�
aax C x3

2aa
:

Therefore

x � t D aax � x3
2aa

D Maximum:

Hence the differential of the same

aa dx � 3xx dx

2aa
D 0:

Multipl. by 2aa and divis. by dx we will have aa � 3xx D 0 or 1
3
aa D xx and

x D a

q
1
3
.

[31] By the second method. Because

y D axx

aa C xx

taking differentials we will have54

dy D 2a3x dx

� W aa C xx
and ddy D 2a7 dx2 � 4a5xx dx2 � 6a3x4 dx2

QQ W aa C xx
D 0

or multiplic. by QQ W aa C xx and divid. by 2a3 dx2 we will have a4�2aaxx�3x4 D
0, which equation, if divided by aa C xx, will give aa � 3xx D 0, as previously.

These two methods succeed no less in Mechanical curves than in Geometric, if
the mode is duly applied, and the ratio between dy and dx is obtained.

Let, e.g., ABC (Fig. 11.24)55 be the curve of such a nature that as the semi-circle
AGF is described on AF, and the ordinate BD is produced at G, BD is = the arc AG.
We wish to find the inflection point B .

54From this point onward, most occurrences �; C;QQ (for square, cube, and fourth power) are
followed by a colon. This is not meant to represent a proportion, but rather the application of the
power to the expression that follows it.
55The letter C was missing in the figure in the manuscript.
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Fig. 11.24 The Inverse Cosine Curve

By method 1. Let AD D x, AG or BD D y and AF D 2a; we will have

dy D .because be D Gg/
a dxp
2ax � xx

:

Also dy W dx WW y W t , therefore

t D y dx

dy
D y

p
2ax � xx

a

and t � x D y
p
2ax � xx

a
� x D Maximum. Therefore its differential

2ax dy � xx dy C ay dx � yx dx

a
p
2ax � xx

� dx D 0

or 2ax dy � xx dy D yx dx � ay dx C a dx
p
2ax � xx and

dy D yx dx � ay dx C a dx
p
2ax � xx

2ax � xx
:

However, it was found above

dy D a dxp
2ax � xx

D yx dx � ay dx C a dx
p
2ax � xx

2ax � xx
:

Reducing the equation one has yx � ay D 0 and hence x D a.
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By method 2. Because

dy D a dxp
2ax � xx

; we will have ddy D �aa dx2 C ax dx2

2 aa � xx
p
2ax � xx

D 0:

And for this reason, �aa C ax D 0 and x D a.
[32] Thus to determine the inflection point of the Conchoid of Nichomedes56

by the methods we have given, it is necessary to have the nature of the Conchoid
by means of an equation, or any relation exhibited between the abscissa and the
ordinate.

Therefore let (Fig. 11.25) AF D a, EF D b, AD D x and BD D y; we will have
BG D a and DE D a � x. Because DE W EF WW BG W GF, we will have

GF D ab

a � x : Therefore GE D
p
2abbx � bbxx

a � x :

However GF W GE WW BF W BD, that is

ab

a � x W
p
2abbx � bbxx

a � x or a W p
2ax � xx WW aa C ab � ax

a � x W y

and for this reason

y D b

a � x
p
2ax � xx C p

2ax � xx

and its different.

dy D aab dx

aa � 2ax C xx
p
2ax � xx

C a dx � x dxp
2ax � xx

W dx WW y
 
aC b � x
a � x

p
2ax � xx

!

W t:

Fig. 11.25 The Conchoid of Nichomedes

56Compare this to §71 on p. 72.
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Therefore, we will have

t D ab � bx C aa � 2ax C xx times 2ax � xx

aab C C W a � x :

Now put a � x D z in order to make the Calculation easier, and we will have

t D bz C zz times aa � zz

aab C z3
D aabz C aazz � bz3 � z4

aab C z3

and t � x D t � a C z D 2aabz C aazz � bz3 � az3 � a3b
aab C z3

D Maximum. And

therefore the differential of that will be

D 2a4bb dz C 2a4bz dz � 3aabbzz dz � 4aabz3 dz � aaz4 dz

� W aab C z3
D 0:

This is multiplied by � W aab C z3 and divided by aab dz C aaz dz, and we will have
2aab � 3bzz � z3 D 0 or z3 C 3bzz � 2aab D 0 will be obtained. The Root z of this
equation gives the value of a�x, or the abscissa ED, the ordinate BD to which goes
through the inflection point B that we wished to find. And thus for the first Method.

[33] By the second method, we therefore have:

Because dy D aab dx

aa � 2ax C xx
p
2ax � xx

C a dx � x dxp
2ax � xx

substituting z in the place of a � x we will have

dy D aab dx

zz
p

aa � zz
C z dxp

aa � zz

therefore its differential57

�2a4bz dz dx C 3aabz3 dz dx

aaz4 � z6
p

aa � zz
C aa dz dx

aa � zz
p

aa � zz
D 0:

Multiplying the equation by aaz4 � z6
p

aa � zz and dividing by aaz dz dx, we have
z3 C 3bzz � 2aab D 0, as previously. Noting that if a D b the resulting equation
z3 C 3azz � 2a3 D 0 becomes planar; indeed, it can be divided by z C a D 0 and
we will have zz C 2az � 2aa D 0, hence z D �aC p

3aa D ED.

57In Schafheitlin (1922), the differential dz was missing from the first term of the first numerator.
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Now let (Fig. 11.26) ABC be another kind of Conchoid,58 which is such that the
Rectangle between FG and GB is everywhere equal to the Rectangle between FE
and EA. We wish to find the inflection point B .

With the same set out as above, the relation between x and y is sought, in this
way:

DF W EF WW BD W GE therefore GE D by

aC b � x ;

from which it is found

GF D
s

bbyy

� W aC b � x C bb;

Fig. 11.26 A Different Conchoid

58Compare this to §72 on p. 74.
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and because

EF W ED WW GF W GB we will have GB D a � x
b

s
bbyy

�a � x C b
C bb

hence

FGB D a � x times
byy

�a � b C x
C b D FEA D ab:

To abbreviate the calculation, let a � x D z and the equation that was found will
be changed to the following zyy C z3 C 2bzz C bbz D azz C 2abz C abb, and for
that reason

yy D azz C 2abz C abb � z3 � 2bzz � bbz

z

and

y D z C b

r
a � z

z
D p

az � zz C b

r
a � z

z

therefore

dy D a dz � 2z dz

2
p

az � zz
� ab dz

2z
p

az � zz
:

Because dz D �dx

�a dx C 2z dx

2
p

az � zz
C ab dx

2z
p

az � zz
W dx WW y

�
D z C b

r
a � z

z

�
W t

therefore

t D 2z3 C 2azz � 2bzz C 2abz

�az C 2zz C ab

[34] and

t � x D t � aC z D �azz � 2bzz C aaz C 3abz � aab

�az C 2zz C ab
D Maximum;
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and for this reason, the differential of this, which is59

�aazz � 4abzz C 2aabz � 4abbz C 3aabb times C dz

� W �az C 2zz C ab
D 0:

Multipl. by60 � W �az C 2zz C ab and divid. by az C ab times dz, we have

�az � 4bz C 3ab D 0 hence z D 3ab

aC 4b
:

By the second method the same is found as follows.

Because

dy D �a dx C 2z dx

2
p

az � zz
C ab dx

2z
p

az � zz
;

therefore its differential

aa dz dx

4az � 4z
p

az � zz
C 4abzz dz dx � 3aabz dz dx

4az3 � 4z4
p

az � zz
D 0:

Multiplying the equation by 4az3 � 4z4
p

az � zz and dividing by az dz dx we have

az C 4bz � 3ab D 0 and hence z D 3ab

aC 4b
D ED, as previously.

Third method for finding the inflection point.

The Examples produced will be sufficient to show, that the given methods for
finding inflection points can be reduced to the method of Maximum and Minimum.
However, it is well known, that it is always necessary, that the relation between
x and y is had by means of an equation, if the inflection point is to be found
by the proposed method. With the method I now reveal, the inflection point is
determined only by means of the generation of the curve, and from this the relation
between x and y is obtained. In what follows, however, I go in different directions
in understanding the inflection point.

59In Schafheitlin (1922), the overline extended over the entire numerator.
60In Schafheitlin (1922), the minus sign before the az was omitted.
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Fig. 11.27 Differentials

[35] I suppose that any curve is composed of an infinity of infinitely small straight
lines (Fig. 11.27) ab, bc, cd, etc., and the tangent at any point d to be nothing other
than the small line dc itself, produced to m. However, it is evident that if the curve
is outwardly convex, the tangent of the subsequent little piece de falls outside, and
makes the infinitely small angle ldm. If, however, the curve is outwardly concave,
the tangent of the subsequent little piece falls inside. Consequently, the inflection
point will be in that place, where the tangent of the subsequent little piece falls
neither inside nor outside and hence the preceding little piece coincides with the
Tangent, that is, where two adjacent small pieces, such as de and fg, lie in a straight
line.

This is understood of all curves, whose nature does not become known except
by generation and by the relation of lines extending from a certain common point
to other ones, which, if they have an inflection point, its general equation can be
determined.

Indeed, let ABC (Fig. 11.28) be any Curve, having an inflection point at B that
we wish to find. From the given point F (the line drawn from which to the curve
explains the generation or nature of the curve) we understand the lines FB and
Fb to be drawn, making the infinitely small angle bFB, and having drawn the
perpendiculars FD and Fd to FB and Fb, let the tangent BdD be drawn from the
point B , which (because B is the inflection point) will likewise be the tangent to
the point b. Describing the arcs Be and gd with the center F , let FB or Fb D z,
FD or Fd D t , and Be D dy; we will have be D dz and gD D dt. Because ang.

BFe D gFd we will have FB W Fd WW Be W gd, therefore gd D t dy

z
and (because

of the similarity of the triangles beB and gdD) be W Be WW gd W gD, which is

dz W dy WW t dy
z W dt, therefore

t dy2

z
D dz dt, or [36] (because t W z WW dy W dz),

dy3

dz
D dz dt and dy3 D dz2 dt, from which equation, when dy and dt can be given

in terms of dz, z may be extracted, or the line FB, hence FB is known and also the
inflection point B is found.

E.g. let ABC (Fig. 11.29) be the first Conchoid, of Nichomedes, of which A is
the vertex, F the pole, and MN the Asymptote. We wish to find the inflection point
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Fig. 11.28 Inflection Point in a Curve Generated from a Pole

Fig. 11.29 Conchoid of Nichomedes

B , without knowing the relation between abscissas and ordinates, but only from
the generation of the Conchoid, for which, of course, however you draw FB, the
intercepted NB is always equal to the constant AM.

Given this, make AM D NB D a, FM D b, FB or Fb D z, be D dz, and
Be D dy; if NO is drawn parallel to Be, we will have FN D z � a, no D dz, and
NM D p

zz � 2az C aa � bb. By simil. of triangles NMF and Non, NM W MF WW no W



228 11 Bernoulli’s Lectiones

oN therefore

No D b dzp
zz � 2az C aa � bb

and because FN W FB WW No W Be, we will have61

Be D bz dz

z � ap
zz � 2az C aa � bb

D dy:

Likewise

be W Be WW bF W t D bzz

z � ap
zz � 2az C aa � bb

;

and whose differential �dt (NB. �dt is used, because as z increases, t decreases,
and hence the different. of t is a negative quantity)62

D �2abz3 dz C 4aabbzz dz � b3zz dz � 2a3bz dz C 2ab3z dz

zz � 2az C aa � bb
p

zz � 2az C aa � bb times � W z � a :

Consequently the general equation dy3 D dz2 dt is modified into the following63

b3z3 dz3

zz � 2az C aa � bb
p

zz � 2az C aa � bb times C W z � a

D 2abz3 dz3 � 4aabzz dz3 C b3zz dz3 C 2a3bz dz3 � 2ab3z dz3

zz � 2az C aa � bb
p

zz � 2az C aa � bb times � W z � a

an equation which multiplied by zz � 2az C aa � bb
p

zz � 2az C aa � bb times C W
z � a and divided by bz dz3, when reduced to zero will give this: 2az3 � 6aazz C
6a3z � 3abbz � 2a4 C 2aabb D 0. If a D b, we have 2zz � 6az C 3aa D 0 and

z D 3
2
aC

q
3
4
aa D FB.

[37] Now ABC (Fig. 11.30) will be the other Conchoid, in which all rectangles
FNB are equal to FMA, and setting FN D x as before, we will have no D dx,
NM D p

xx � bb,

No D b dxp
xx � bb

; NB D ab

x
; FB or z D ab C xx

x
;

61In Schafheitlin (1922), the overline on the term z � a was omitted.
62In Schafheitlin (1922), every occurrence of dz in the numerator was written as dz3.
63In Schafheitlin (1922), every occurrence of dz3 in the numerator of the second fraction was
written as dz.
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Fig. 11.30 Another Conchoid

and

be or dz D xx dx � ab dx

xx
;

now because FN W FB WW No W Be, we will have Be or

dy D abb dx C bxx dx

xx
p

xx � bb

and because be W eB WW BF W t , we will have

t D aab3 C 2abbxx C bx4

x3 � abx
p

xx � bb
;

taking the differential we will have

�dt D �6abbx6 � b3x6 C 5ab4x4 � 4aab3x4 C 5aab5xx C 2a3b4xx � a3b6

times
dx

xx � bb
p

xx � bb times � W x3 � abx
:
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Fig. 11.31 Parabolic Spiral

Therefore if the values we have found are substituted into the general equation
dy3 D dz2 dt, this equation will come forth

dx3 times C W abb C bxx

x8 � bbx6
p

xx � bb
D

6abbx6 C b3x6 � 5ab4x4 C 4aab3x4 � 5aab5xx � 2a3b4xx C a3b6 times dx3

x8 � bbx6
p

xx � bb
:

Multiply the equation by x8 � bbx6
p

xx � bb, and reducing to zero divide by dx3

and abbx4 C aab3xx, and we will have

6xx � 8bb � 2ab D 0 and therefore x D
r
4bb C ab

3
D FN:

Now let ABbC (Fig. 11.31) be the Spiral Parabola or Parabolic Spiral,64 with
vertex A and Center C , whose nature is such that, as from the center C through A a
circle is described, and drawing any radius CN, cutting the Curve in B , the square
of BN is equal to the Rectangle between the arc AN and a particular constant line,
which may be called the Parameter. We wish to find the inflection point B .

Let the radius CA or CN D a, the Parameter D b, and CB D z, therefore BN D
a � z, the arc

64Compare this to §73 on p. 76.
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AN D aa � 2az C zz

b
;

hence

�Nn D �2a dz C 2z dz

b
;

Be D dz, and because CN W Ce WW Nn W be we will have

�be D C2az dz � 2zz dz

ab
D dy:

Likewise Be W be WW BC W t , we will have

t D �2azz C 2z3

ab

[38] therefore

�dt D �4az dz C 6zz dz

ab
;

and for that reason dy3, that is

C8a3z3 dz3 � 24aaz4 dz3 C 24az5 dz3 � 8z6 dz3

a3b3
D 4az dz3 � 6zz dz3

ab
:

Multiplying the equation by a3b3 and dividing by 2z dz3, this comes forth on
reducing to zero 4z5 � 12az4 C 12aaz3 � 4a3zz � 3aabbz C 2a3bb D 0, the root of
which equation gives the quantity CB.

Remark. It is to be remarked in closing, that because in every curve the inflection
point maintains the property, that the Tangent at that point simultaneously cuts the
Curve such that the angle of cutting is smaller than any given angle, that is, nothing
other than a straight line between the tangent (or, if you prefer, the secant) and the
curve can be drawn through the inflection point. Indeed, because the inflection point
is a jointly concave and convex portion of the curve, and seeing that the tangent
is exterior at the convex, but interior at the concave, it is clear the Tangent at the
inflection point lies outside this part, however inside the other, that is, cutting the
curve itself at this point. However, any angle of cutting is known to be smaller than
any you wish to give, since notwithstanding that it cuts the curve, it does not on that
account give up the nature of a tangent.



Chapter 12
Selected Letters from the Correspondence
Between the Marquis de L’Hôpital and Johann
Bernoulli

Letter 5: L’Hôpital to Malebranche
Fougères,1October 23, 1690

I cannot express to you, Sir, all the joy that your kind letter has given me, because
it assures me of your friendship, which I value more than anything. Since we parted
I have received two or three letters from Mr. Huygens concerning the centers of
oscillation. In the end, he approved of what I had sent him concerning this and I
even believe that he will have it put in the Journals of Holland.2 I am not happy with
the piece that I put in your hands even though you appear to me to approve of it. My
plan is to completely change the Arithmetic of the infinities.3 It seems to me that I
have a more general and easier method of demonstrating all of these propositions,
which I am sure will not displease you. I have worked on the centers of gravity,
which to my mind is the most difficult thing there is in Geometry. I would ask you
to be so good as to give me your advice, because this will influence the judgement
that I bring to this matter. The wish that I have to be with you will make me hasten
my return, which, however, cannot be soon enough, because of domestic affairs that
keep me here, where I am very much annoyed not to have the time to apply myself
to my studies.

1The Château of Fougères in Brittany belonged to the estate L’Hôpital’s father-in-law.
2Historie des ouvrages des sçavans, June-August 1690, pp. 440–449.
3This manuscript was never published. In Bernoulli (1955, p. 158), the Editor quotes a portion of
a letter written by Malebranche to a Fr. Jaquemet at about this time: “Over the holidays, I read the
writings of the marquis de l’hopital which occupied two months most agreeably. I believe he will
have it printed this winter, if his affairs leave him the time that is necessary for it, and you will see
the finest of mathematics, explained with much clarity and few words.”

© Springer International Publishing Switzerland 2015
R.E. Bradley et al., L’Hopital’s Analyse des infiniments petits, Science
Networks. Historical Studies 50, DOI 10.1007/978-3-319-17115-9_12
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Fig. 12.1 With kind permission of Springer ScienceCBusiness Media

I pray you, Sir, to permit me to assure Fr. Bizance4 of my services. I am also
addressing you a letter for Fr. Jaquemet, which you will please take the trouble to
read and to give to him. Finally, Sir, I am with all possible respect and esteem your
most humble and obedient servant

the Marquis De L’Hôpital

Madame de L’Hôpital thanks you for the honor of your kind regards and sends
you her compliments.

Letter 6: L’Hôpital to Bernoulli
Paris, December 8, 1692

I am very much obliged, Sir, with the decency and candor with which your letter5

is filled. I read the paper that you sent me for which I thank you, although I find
the problem of tangents is only half solved, as it seems to me difficult to determine
the value of t in terms of x and y, which would nevertheless be necessary to have
to find the value of the subtanget, and thus I would wish to have an example. With
regard to the curve whose subtangent is

p
ay C xx, it is very easy to remove the

incommensurables by supposing that
p

ay C xx D m (Fig. 12.1). This gives the
differential equation

2mm dm � 2mx dx D mm dx � xx dx;

4Louis Byzance (ca. 1647–1722) and Claude Jaquement (1651–1729) were fathers in the Oratorian
order and members of Malenbranche’s circle.
5This refers to Johann Bernoulli lost letter of November 1692, which was the first letter in his
correspondance with L’Hôpital.
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however I have not been able to find the way to take the integrals and I suspect that
the curve is not geometric6 in the sense of Descartes. You would make me very
happy by sharing with me what you have discovered concerning this. I would also
very much like it if you could send me a general method for solving problems like
the following one.7 Let any semi-Ellipse ABD be given, whose semi-axes are AC
and CB. Assuming that there is an infinity of paraboles that all pass through the
point D, and whose vertices are on the semi-Ellipse; we wish to find the line that
touches all of them. Instead of an Ellipse and of parabolas we might assume other
lines to infinity. This problem appears to me seems to bear some relationship to what
Mr. Leibniz said in the Acts of Leipzig in the month of April of this year.8 Please
make a thousand compliments on my part to Mr. your brother,9 and to thank him
for the obliging manner by which he speaks of me in the Journals of Leipzig10 with
regard to what I had previously remarked on the centers of oscillation.11 I really
cannot wait for the continuation of seriebus infinitis;12 because this is a field where
it appears to me that there are many things to be clarified, and I believe him to be
more capable than anyone. I would be very pleased to know the method by which
he reduces the caustics that are formed by refraction to evolutes, and what are his
amazing problems of which he spoke to you in his last letter. If he has sent them to
Leipzig, as he told you he would, I will wait to see them in the Acts.13 Ask him also
what is that proposition that is in his book de arte conjecturandi which he would
esteem as highly as the quadrature of the circle. You see, Sir, that I continue to ask
you to teach me and that I am making use of the freedom that you gave me on this;
in return, if I may do anything to render you service in this country, I will set to it
with all possible energy, having for you a most particular inclination and esteem,

the Marquis De L’Hôpital

I forgot to tell you that I have not received the Acts of Leipzig that Mr. your
brother sent me. Tell me by which carriage they will be coming and whom I should
address myself here to get them. Please make my compliments to Mr. Stehelin. The
secretary sent his to you and to him also.

6In other words, L’Hôpital believes the curve to be transcendental and not algebraic.
7See (L’Hôpital 1696, §146–147).
8Acta Eruditorum, April 1692, p. 168.
9This is how L’Hôpital refers to Jakob Bernoulli in his correspondance with Johann Bernoulli.
10Acta Eruditorum, July 1691, p. 317.
11Historie des ouvrages des sçavans, 1690, pp. 440–449; letter from L’Hôpital to Huygens of April
1690.
12Positionum de seriebus infinitis. . . , Basel 1692.
13Throughout (Bernoulli 1955) this is consistently written as “actes.” We have chosen to use the
proper formatting for the name of a journal.
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Letter 7: L’Hôpital to Bernoulli
Paris, January 2, 1693

I received, Sir, with great pleasure your letter of December 18th,14 you must never
think that I am able to forget a person for whom I have as much esteem and
friendship as I have for you and I will demonstrate it to you on all encounters.
But let us get down to business.

1. It seems to me that the problem of the curve whose subtangent is
p

ay C xx is
not yet solved; because even though you arrived at the differential equation,

2m dy D �y dm C a3 dy dy

yy dm

we find by supposing according to the rule m D ny�2, this other equation15

dn2 � 2ny�2 dy dn D a3 dy2

which still has three terms, and thus we have advanced no further. Therefore, it is
necessary, if you please, that you push the problem to the end, that is to say that
you give the construction of the curve that satisfies it.

2. The manner by which you find the intersection of two infinitely close parabolas
appears very ingenious to me. You are mistaken in calculation because I find16

z or EM D 4y3 dx2 � 4yyx dy dx

4yy dx2 � 4yx dy dx C xx dy2

and it becomes easier by assuming that CG is constant, because, it follows that
CG, that is to say

Ch D 2xx dy � 2xy dx

x dy � 2y dx
:

3. The manner by which Mr. your brother determines all quadrable areas of the
curve

y4 � 6aayy C 4xxyy C a4 D 0

14That letter, in response to l’Hôpital’s letter of December 8th, is lost.
15As noted in Bernoulli (1955, p. 161) the first term of what follows should be y�1dn2:
16See Bernoulli (1955, pp. 161–162) for a detailed explanation of this passage.
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is very elegant. Will he not be printing his book de arte conjecturandi17 soon? I
have no doubt that it deserves the reputation that it has acquired among scholars.
I would simply like to know what it is in this discovery that you have told me he
was making such a big deal about.

4. The construction of the curve of Mr. Leibniz, a ddx D dy2 is correct; here is the
demonstration of it that I have discovered. Let CG D x, GH or the arc AE D y,
GB D z, and we will have, because of the logarithm,

dx D �a dz

z

and because of the circle

dy D a dzp
aa � zz

:

Now, by the assumption, the differential of

dx2 C dy2 or
a4 dz2

aazz � z4

must be equal to zero, thus

aaz ddz � z3 ddz � aa dz2 C 2zz dz2 D 0

from which we conclude

aa dz2

aa � zz
D aa dz2 � aaz ddz

zz
;

that is to say dy2 D a ddx. I would very much like to know how you arrived at
this construction. Please send me the manner in which Mr. your brother found
an infinite series equal to the subtense of an arc of a given circle. You would
give me great pleasure by sending me the construction of the curves that you
mentioned to me. I do not despair that you will put the method of inverse tangents
into perfection and by this method you will solve the curve of descent of Mr.
Leibniz.18 Please allow me to take the liberty that you gave to me by asking you
to think about the following questions at your leisure (Fig. 12.2).

1. Let the parabola AECF and the circle BD be given in position in the same plane.
From all points B and D of the cirlce the tangents BA, BC, DE, and DF to the

17This is a reference to the second part of Positionum de seriebus infinitis. . . , Basel 1692.
18That is, the Leibniz Isochrone; see Acta Eruditorum, April 1689, p. 195.
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Fig. 12.2 With kind permission of Springer ScienceCBusiness Media

parabola are drawn. I wish to find the curve that touches all lines AC and EF that
joins the points of contact.19

2. Assuming that the given straight line AC slides inside the parabola, we wish to
find the curve that it continually touches.20

3. The four lines AB, AC, DB, and DC, being assumed tangents to a parabola, we
wish to prove that the line EF that divides the straight lines BC and AD in the
middle is a diameter of the parabola. You know that this theorem was proved by
Mr. Newton for the Ellipse and the hyperbola on page 92.21 However, I do not see
that his demonstration extends to the parabola. Please send me the demonstration
of this theorem in your reply and if you find something easier than that of Newton
for the Ellipse and the hyperbola, by making use of your beloved algebra, you
would make me happy by sharing it with me. For the other two questions, that
will be at your leisure, because I foresee that the calculations will be long. I finish,
Sir, by wishing you a year as fertile in discoveries as the last and by assuring you
that I am in the best of my heart entirely yours

the M. De L’Hôpital

Since I wrote my letter I received the Journals of Leipzig by the Strasbourg
coach, the last month of which is the month of September. They arrived long ago
and it is my fault that I did not look for them earlier, which is why you should send
me by the same coach the last three Journals of the year 1692 with the twelfth section
of the supplements and the continuation of Mr. your brother’s de seriebus infinitis,
to whom I make a thousand compliments. Tell me, I pray you, to whom I should
send money for these journals. Mrs. de L’Hôpital thanks you for remembering her

19This problem is the subject of L’Hôpital (1696, §161).
20Bernoulli’s solution, contained in the lost letter of January, 20, 1693, is the model for L’Hôpital
(1696, §158).
21This is a reference to Book I, Lemma 25, Corollary 3, of the Principia.
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and also the little girl who says every day that she wants to go to Basel to eat pies
with Mrs. Bernoulli. Before I send her there, it would be good if you let me know
if she still likes them so much, as well as all the treats, and whether she has lost the
taste for these since your trip to Paris.

Letter 11: L’Hôpital to Bernoulli
Paris, June 27, 1693

I am extremely surprised, Sir, that you have made no response to my previous letter
and I do not know to what to attribute this silence. I do not wish, however, to imitate
this and I would rather make all kinds of overtures to maintain your friendship,
to which I attach great importance, rather than to risk seeing it diminished by the
discontinuation of the correspondence between us. Mr. the Abbé Bignon came to
find me a few days ago and asked me to honor the Academy of sciences (these are
his words) by sometimes attending the meetings that they hold, which I accepted,
and I went yesterday for the first time. You may be assured that I will not miss any
occasion to render service to you and to obtain a solid position for you here. I saw
Mr. Varignon who seems to me to be a very good friend of yours, and he gave me
a small piece of paper on which had the following question, which he told me you
had sent to him. Let the equation

p
2a3x � x4 � a 3

p
a2x

a � 4
p

ax3
D y

express the nature of a curve whose abscissa is x and whose ordinate is y. We wish
to know the value of y when x becomes equal to the constant a. Solution. y D 2a,
because in this case22

p
2a3x � x4 � a 3

p
a2x

a � 4
p

ax3
D aa � aa

a � a D aC a:

You have not responded to me about the two curved lines that I proposed to you
some time ago, which have the differential equations

a a dy C x y dy D a x dx � x y dx � a y dx

22This is the first appearance of the problem of evaluating algebraic expressions that take the
form of 0

0
for certain values of the variable by means of what is now called L’Hôpital ’s Rule.

This example, which we call Bernoulli’s 0
0

Challenge, appears in L’Hôpital (1696, (see §164)).
Bernoulli’s letter to Varignon is lost Bernoulli (1955, p. 173, Note 2.). Bernoulli’s solution is given
in letter 28.
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and

x3 dy D 3 x3 dx C 3 a a dx � 2 x y y dx:

These lines are not difficult to describe; however, I will send you the construction if
you wish it. Furthermore, Sir, remember that you owe me two responses right away
and the only means of repairing your negligence is to send them to me as soon as
possible. I await them impatiently because they will tell me your news and I am
without reservation entirely yours

The M. De L’Hôpital

The secretary sends his compliments and also complains about your silence.
Since writing my letter I found the solution to your problem, which I send you to

be inserted in the Acts of Leipzig, if you judge that they are worth the trouble.

PROBLEM.

The curved line CMN has the property such that each of its tangents MT is always
to the part CT of the axis, taken between its origin C and the intersection T of the
tangent, in a given ratio of p to q. We wish to know the nature of this line, or the
manner of describing it.

[L’Hopital gives his solution to this Reverse Tangent Problem here; see Bernoulli
(1955, pp. 174–177). This problem was posed by Bernoulli in Acta Eruditorum,
May 1693, p. 234. The solution is sometimes called the Bernoulli Curve; this is a
frequent topic of discussion in letters 10–23.]

. . .
If you send this solution to Leipzig please be so kind as to make an exact figure,

because you know well enough that I don’t have the talent to do so, it will also be
necessary to put the discussion in Latin, which you do better than me. Even though
my letter is dated the 20th, it is only leaving today, which is the 27th of June.23

Letter 12: L’Hôpital to Bernoulli
Without Location, July 8, 1693

I have just now received, Sir, your letter from the 2nd of this month, which gave me
great great joy, because I feared that some accident had happened to you.

I strongly approve of what you tell me regarding what Mr. Huygens has published
in the Journals of Holland and I believe the best thing is not to speak about it. There

23Acta Eruditorum, September 1693, pp. 398–399.
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could be no shorter rule than what you sent24 me for reducing differential equations
of the first degree to quadratures; I strongly doubt that Mr. Leibniz’ rule is as short.
This makes me want to see the rule in all its extent, I hope that you will share it
with me on the 1st occasion. Tell me also if you can use this method to solve the
two differential equations that I have proposed to you, and if you are happy with the
solution of your problem,25 apparently because you didn’t speak of it in any way in
your last letter; because you did not have the time to examine it.

Do not doubt, Sir, that I do everything I can to lure you to this country, I’ve
already spoken about you in a favorable manner, that is to say in rendering you
justice in the academy of sciences by sharing with them my solution to the problem
you had proposed in the Acts,25 and on the 1st occasion I will speak to Mr. the abbé
Bignon about the subject of you and I will give a good account of you, assuring you
that I can not have greater pleasure than to be able to entertain you often and to see
you face-to-face, that I am entirely yours

the M. De L’Hôpital

Mrs. de L’Hôpital assures you of her services.

Letter 14: L’Hôpital to Bernoulli
Paris, August 1, 1693

This letter, Sir, is to let you know that I have received the three months of the Acts
of Leipzig. In the one for the month of May, I saw your solution to the problem of
Mr. de Baune26 and I found these words:

“Curva autem ipsa AI est ex earum numero, quarum rectificationes quidem
in abstracto non habentur, longitudines tamen per ipsasmet curvas construi et
determinari possunt, quod nob. Dn. Huygens praestitit in nouva sua logarithmica,
et ego jam olim in logarithmica vulgari.”27 From these words it is clear that you sent
this solution to Leipzig only after having seen the letter from Mr. Huygens,28 even
though you expressly told me the opposite.29 Because I believe one must speak with

24The Editor of Bernoulli (1955) believes this is the rule for integrating homogeneous differential
equations.
25I.e., the Problem stated in Letter 11.
26Acta Eruditorum, May 1693, p. 234.
27This translates roughly as: “While the curve AI is, because of its degree, such that it does not have
a rectification in the abstract, nevertheless the lengths of the curves themselves can be constructed
and determined, as the noble Mr. Huygens has given in his own new logarithms and in what follows
I will proceed in common logarithms.”
28What is meant here is the open letter of Huygens of February 1693, which prompted Bernoulli
to send his second construction of the Curve of de Baune to the Acta Eruditorum.
29Presumably in the lost Letter (9, 1) in May 1693.
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an open heart with one’s friends, especially with those that one esteems and with
whom one wishes to always maintain friendship, I will tell you frankly that you
would have made me happy to have used another method and to have cleared it with
me beforehand; because I can truthfully assure you that Mr. Huygens put it in his
letter at my insistence and furthermore that my intention had been to send you my
construction of the measurement of the logarithm in order to ask you to put in the
Acts of Leipzig, if you had judged it worthy. It is not that I wish to complain, on
the contrary I know that I should thank you because by inserting this solution in the
Acts, you have done so in the manner that wounds me as little as possible, not having
spoken about me. Furthermore, it is a done deal that we must both forget about;
although I still can’t stop myself from telling you that you could write to Leipzig to
have add more or less the following to the end of my solution to your last problem:
“ne sinistrae interpretationi locum dent30 (I continue in French) what we find in the
Acts of Leipzig for the month of May and in l’histore des sçavans for the month of
February, you believe it is appropriate to say that one should not be amazed that two
people had found the solution to the same problem and that having intentionally put
it without a name in the 34th journal of Paris, it will be attributed to both in what
follows.” It seems to that in this way you preserve my reputation without hurting
your own in anyway, and without going into further detail nor naming anyone, this
says all that needs to be said on this occasion. I am sure that if you write to Leipzig
as soon as you receive this letter you will still be in time, because things are not
printed on the same day that they arrive. No matter what you do in this regard, Sir,
you should always count on me as a sincere friend who offers to you with pleasure
everything that belongs to him, that is to say his purse and his credit, which is not
as great as he might wish. I tell you that if we can attract you to Paris, you will need
take no inn other than my house, being with all my heart entirely yours

the M. De L’Hôpital

The secretary sends you many compliments.
When I was about to seal my letter, I received in the post the month of June31

and one of your letters of July 26th to which I will reply precisely and principally
on what concerns you, because I will definitely ask Mr. the abbé Bignon on what
we may count on. I forgot to tell you that you would give my pleasure for you to
send a request to Leipzig that will include the date of the letter in which I sent you
my solution, so that no one might suspect me of having taken it from the letter of
Mr. your brother,32 which as I see is found in the month of June. I ask you to please
reply to me about this as soon as possible, because the Leipzig affair causes me
some distress.

30This translates roughly as: “So that the placement should not give over to sinister interpretation.”
31I.e., the June issue of the Acta Eruditorum.
32Acta Eruditorum, June 1693, p. 255.
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Letter 15: L’Hôpital to Bernoulli
Paris, September 2, 1693

[L’hopital discusses a number of issues and gives a construction for the point of
intersection of two infinitely close refracted rays.]

. . . But I ask you how you have found the construction of the tangents of the
tractrices that Mr. Varignon communicated to me;33 and if you are willing I also
propose to you at the same time to find the tangents that describe the mean points
between the tractrices. I confess that I did not work very hard to solve the equation

p
2a3x � x4 � a 3

p
a2x

a � 4
p

ax3
D y

where x D a. Because I see no hope of success, since all the solutions that first
present themselves are not correct, I did not want to waste my time unnecessarily,
and I’d prefer to learn it from you if you are willing to share it with me. I finish, Sir,
by asking you always to love me and to believe me to be entirely yours

The M. De L’Hôpital

Mrs. de L’Hôpital is your servant.

Letter 17: L’Hôpital to Bernoulli
Oucques, October 7, 1693

[L’hopital discusses a number of issues including the Paris Academy prize compe-
tition and the caustic by refraction.]

. . .
Please remember to send me the tangents of the tractrices and those of the curves

described by points between tractrices34 that you have no trouble finding, because
things which seem the most difficult to others are easy for you, as I have experienced
several times. The method that you use to solve the equation

aa � ax

a � p
ax

D y

33Bernoulli had already sent this problem of the tangent to the tractrix to Varignon in May, along
with his 0

0
challenge.

34L’Hôpital had asked for solutions to both of these problems in letter 15.
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where x D a, is general.35 However, it is not practical, as you yourself noted in the
proposed equation and so even though I had thought that it was necessary to remove
the incommensurables, I did not push this thought any further, seeing that it was
impossible to come to the solution in this example.

I have no doubt that your latter method contains something very curious because
it extends to all irrationals, which is why I would be most obliged if you would share
it with me. I’m afraid of tiring you with all these requests, but chalk it up to your
cleverness, and the permission you have given to me. This is a very long letter that
might bore you, but I hope that you would be willing to take it as it is and you do
not run the risk, because in the end permit me to tell you that if there is not enough
space in a letter one may add another page to it. I finish by wishing for perfect health
for Mr. your brother and assuring you that I am, as usual, entirely yours

the M. De L’Hôpital

I beg you to send my compliments to Mr. Stehelin and tell him that I thank him for
his remembrance, Mrs. L’Hôpital sends you her’s as well as Espine and Henriette,
who is quite angry that you are not here so that she can make amends for the scratch
that she gave you, through a good deed equivalent to the dishonesty with which she
received you when you tried to kiss her.

Letter 18: L’Hôpital to Bernoulli
Oucques, December 2, 1693

[L’hopital discusses a number of issues including cusps, the radius of the evolute,
and the inverse tangent problem.]

. . . But after that, I beg you to remember your promise on the tangent to the
tractrices and the solution to the equation

p
2a3x � x4 � a 3

p
a2x

a � 4
p

ax3
D y where x D a

where I am sure I will see something quite unique and very beautiful, as in all your
inventions.

. . .

35In his response to letter 15, which was lost, Bernoulli presumably suggested this simplified
version of his 0

0
challenge.
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Letter 19: L’Hôpital to Bernoulli
Paris, January 16, 1694

I do not know to what to tribute, Sir, the length of time that you are taking to reply to
me,36 however I do not want to imitate you in your silence. You have no doubt heard
us speak of the Marquis of Antremonts, my wife’s uncle, and whom the Countess
of Antremonts had made her sole legity, which obliges us, as you know, to leave
Ouques much earlier than we had wished. He died on the 17th of last month, and as
my wife is his only heiress and he leaves great wealth with debts and outstanding
business, this gives us a lot of trouble for the time being, but it will bring us much
later on. We will soon get several properties near Lyon where we will be obliged
to spend part of the year, which I think puts us a little closer to you. Please let me
know the number of journals that you have sent me and what I owe you for them and
where I should send you the money. You would oblige me by sending me the rest of
the journals for the year 1693.37 Please remember to reply to me about everything
that I asked you, I would rather wait longer and have it be more extensive. I am
sending you my solution to your problem and I am, Sir, essentially yours

the marquis de L’Hôpital

The secretary sends you many compliments, make mine to Mr. the Professor. You
showed me while you were in Paris, that the volaria is the same as the (catenary), that
is to say that if you assume that the sail is composed of an infinity of small inflexible
rectangles equal to one another they will bend themselves in the same manner being
pushed by the wind as they would under their own weight. I now ask you if you
think the same thing will happen if the number of rectangles is determinate.

Letter 20: L’Hôpital to Bernoulli
Paris, March 17, 1694

I begin, Sir, by making many apologies for having delayed my reply to your letter of
January 26 for so long, but the continual problems that the death of Mr. le marquis
d’Antremonts give me are the cause of it. There is much property, but we have
also found many more debts than we had thought, because there are two hundred
thousand pounds, and yet in his will he gives the ladies nearly the same sum of two
hundred thousand pounds, and because we are disputing this legacy, this make us
enter into a large lawsuit, of which you know that the outcomes are always uncertain.
You won’t mind that I congratulate you on your fiancé,38 whom you tell me is so

36Bernoulli had not written to l’Hôpital since late September 1693.
37The Editor of the Bernoulli (1955) made a correction here; 1694 was written.
38In the winter of 1693, Bernoulli became engaged to Dorothea Falkner.
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pretty, which I do not doubt because you chose her and you have good taste. For
your wedding I would be very happy to find myself there but it does not have the
appearance of being possible, but in return I hope that you will come see us on our
grounds,39 because they are but a days journey from Geneva, which is not very far
from your house. We will dine well there, because . . . 40 it is the best wine in the
country and Madame de L’Hôpital fears that if you go there that you will no longer
be satisfied with her simple wine that comes from Oucques to Paris.

I will happily to give you a pension41 of three hundred pounds, which will begin
the first of January of this present year, and I will send you two hundred pounds
for the first half of the year because of the journals you have sent me, and the
other half year will be of one hundred fifty pounds, and so on in the future. I
promise you to increase this stipend shortly, which I well understand to be very
modest, and it will be as soon as my affairs are somewhat straightened out, and I
can enjoy the succession, because at present I haven’t yet touched anything. I am
not so unreasonable as to demand all of your time for this, but I will ask you at
intervals to give me a few hours of your time, to work on what I will ask you and
also to communicate your discoveries to me, while asking you at the same time not
to share any of them with others. I even ask you not to send here to Mr. Varignon, nor
to others, any copies of the writings you have left with me; if they should become
public I would not be at all pleased. Answer me on all of this and believe me, Sir, to
be entirely yours

the M. de L’Hôpital

I have not yet received any of the Acts of Leipzig, neither by the Strasbourg coach
nor from Mr. Anisson.

Madame de L’Hôpital sends a thousand compliments to you and to your intended
spouse, in assuring you that she takes all imaginable joy in everything that is
happening to you.

Letter 21: L’Hôpital to Bernoulli
Paris, April 7, 1694

I find you to be very lucky, Sir, to possess a sweetheart so full of charms; the portrait
that you have made of her for me makes me curious to judge for myself and I will
be very happy should you both be willing to be tempted to come and pass some time
in our lands at St. André, my wife takes great pleasure in anticipation and asks you
to do so when the time is right (Fig. 12.3).

39L’Hôpital had just inherited the castle St. André-de-Briord in the Department of Ain, near the
Swiss border.
40This portion is illegible.
41In other words, a recurring payment.
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Fig. 12.3 With kind permission of Springer ScienceCBusiness Media

With this, I am sending you the letter of exchange for 200 £42 that I promised
through Mr. Nicolas Goy, banker, but in the future I will look for somebody else,
because he has taken 12 out of 100 for the exchange, which seems too much to me.

Here is a difficulty with regard to evolutes that I ask you to clarify for me. Mr.
your brother in the Acts of Leipzig43 for the year 1692, page 116, and Mr. Leibniz,44

page 443 hold that at an inflection point the radius of the evolute or of the osculating
circle always becomes infinitely large. However, I find that it may also be infinitely
small or null; for let BAC be a curved line, which has an inflection point at A and as
tangent at this point the straight line FAG. It is clear that in beginning to evolve at
the point A, we describe the curve AE by the evolution of the part CA and the entire
curve DAE also has an inflection point at A, although at this point the radius of the
evolute BAC is null. Suppose, for example, that the curve DAE is the paraboloid
aax3 D y5; it is easy to show that it has an inflection point A and that the radius of
its evolute at this point is null or zero. The argument that Mr. Leibniz presents on
the same page 443 does nothing against me; it is true that two perpendiculars to a
curve that are infinitely close to one another cannot go from convergent to divergent
except by first passing through parallelism, supposing that they increase as they
approach the inflection point. However, on the contrary suppose that they decrease,
they become null or zero, as happens in the examples that I have just given. Now,
here is my difficulty. The general expression of the radius of the evolute is

dx2 C dy2
p

dx2 C dy2

�dx d dy
:

42This currency symbol was used by L’Hôpital for pound.
43Acta Eruditorum, March 1692.
44Acta Eruditorum, September 1692.
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Fig. 12.4 With kind permission of Springer ScienceCBusiness Media

Now, at the inflection point we always have d dy D 0, and consequently this
quantity becomes infinite, because the numerator cannot be zero, being the sum
of two squares. Furthermore, it is certain that at an inflection point the two infinitely
close tangents make no angle between themselves, but that they fall exactly one on
the other, from which it follows that their perpendiculars must be parallel and never
zero. How then to reconcile this with what we have previously shown.

It seems clear to me that at an inflection point we always have d dy D 0, but
I don’t see that this is reciprocal and I believe that their is an infinity of curves
that do not change their curvature and which nevertheless have certain points where
d dy D 0. Tell me what you think about this.

I forgot to tell you that Mr. your brother is mistaken in the same place when he
holds that in all the paraboloids (except the common parabola) the osculating circle
of the vertex is infinitely large, for we may easily show that there are many of these
paraboloids where it is infinitely small, as in ax3 D y4. I have one other thing to ask
you (Fig. 12.4):

You told me that your curve for the tangents AMCM has as its asymptote a line
BD parallel to the tangent AE when p is greater than q.45 I would very much like to
know the method of determining the points B and C . You would give me pleasure
by explaining all this to me and in believing more than ever that I am entirely yours

the M. De L’Hôpital

My sweetheart sends her compliments to yours and she exhorts her to learn
mathematics because she lacks only this to be rendered perfect, and for my part
I kiss her hand a thousand times.

45Bernoulli apparently made this incorrect assertion in letter .20; 1/. In Letter 22, he corrects this
error and gives a full account of his curve. However, this has been omitted from this volume,
because of its length and lack of relevance to L’Hôpital (1696).
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Letter 22: Bernoulli to L’Hôpital
Basel, April 22, 1694

Sir46

Your generosity extends much further than I deserve, but I see that you take
pleasure in making me totally confused, not being in a position to do anything that
would match the generous action that you have just extended towards me, because a
simple expression of thanks is but a heap of words that gives little satisfaction, and
the offer of one’s services in return, when they are too small, is more annoying than
acceptable. What then can I do on my part not to incur one or the other vice? Being
on the one hand entirely ashamed only to give you words when I owe you deeds,
and on the other hand to offer you my puny services for which you might care very
little. However, I pray you, Sir, to consider well this verse Si desint vires tamen est
laudanda voluntas,47 that is to say, although I may not always be able to answer
everything you ask of me, or rather to execute your orders, may you nevertheless
have the kindness to take my good intentions for the most part (Fig. 12.5). With this
conviction, I will satisfy you as much as I can with the difficulties that you had the
honor of sharing with me in your last letter.48

I have read with great pleasure the great doubts that you have against Mister
Leibniz and my brother concerning the inflection point. I have even already sent
it to Leipzig to the Editor of the Acts to be communicated to Mr. Leibniz, saying
simply that you find that the radius of the evolute at an inflection point is not always
infinite, despite what he holds on the said page of the Acts, and that if he desires
your demonstration, I will send it to him. We will now see how he will respond
to it. As for me, I find that were right to correct both of them; my brother, having
seen your letter, said the same and already retracted what he said in the Acts in the
cited location, although he adds that he only put it in incidentally, without having

Fig. 12.5 With kind permission of Springer ScienceCBusiness Media

46This letter, in response to Letter 21, is the first surviving letter from Bernoulli to L’Hôpital. It is
a copy of the original, with the note to “Mr. the Marq. De L’Hôpital” in the margin.
47This Latin quote translates roughly to: “If strength is lacking, nevertheless the desire is to be
praised.”
48That is, Letter 21.
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carefully considered the nature of the point of contour. Indeed, I find that there are as
many of even more curves in which the radius of the evolute at the point of contour
is infinitely small, as those in which it is infinite, without making any difficulty for
the fact that the general expression of this radius is49

dxq C dyq
p

etc.

�dx d dy
;

for I do not deny that at an inflection point d dy is always D 0, far from that it
may also be infinite with respect to other d dy’s; it is this that makes the general
expression sometimes also D 0. The reason for this is that even though the curve
increases, d dy increases also, so that when the curvature is infinite, that is to say
when the radius of the evolute is infinitely small, d dy also becomes infinite with
respect to the others. I say with respect, because a differential of whatever kind
may be infinitely greater than the others of the same kind and nevertheless infinitely
smaller than a differential of the preceding degree, which is easy to demonstrate.
This being so, it is a false principle to believe (although I have previously believed
it myself) that a curve passing from convexity to concavity must necessarily pass
through straightness, which is found between the two different curvatures, and
that consequently d dy is 0. This does not follow at all, or to say otherwise, this
straightness might also sometimes occupy but a differential of the curve, infinitely
small with respect to the other differentials, as you see in the present figure, where
ABCFG denotes a curve, for which AK is the axis, and AB, BC, CF and FG are
the differentials of the curve and AH, HI, and IK are the differentials of the axis.
It is clear that the inflection point may be at D, in such a way that it is only the
two infinitely small parts CD and DE of the entire differential CF, that are set
in a straight line and in this way I concede to you that the two perpendiculars
at D and E are parallel, but because of their infinitely small distance they are
joined, and it is those at C and F whose intersection (which without doubt could
be infinitely close) makes the radius of the evolute at the inflection point. This is
why I say to find the inflection point, we must see if the d dy are increasing or
decreasing. If they are increasing, d dy must be equal to infinity and if decreasing,
to zero. It does not appear clear to you that at an inflection point we always have
d dy D 0, but we sometimes have d dy D infinity. However, it is true that this
is not reciprocal, because there is an infinity of curves that have at a certain point
the radius of the evolute either infinite or infinitely small without changing their
curvature, which is verified in several paraboloids. In addition, Sir, I must point out
to you a considerable thing in such curves, through which we will better see the
nature of the point of contour: if we begin to evolve a curve at the inflection point
where the radius of the osculating circle is infinite, we will describe another curve
which also has an inflection point, but one in which the radius of the osculating
circle is infinitely small. If we now evolve this second curve by also beginning at

49Here Bernoulli uses the a subscript of q to represent the square of a quantity.
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the inflection point, but we describe a third curve which has its inflection point,
but for which the radius of the osculating circle is not only infinitely small, but
even infinitely smaller than that of the second curve. In evolving the third curve we
describe a fourth one, for which the radius of the osculating circle at the inflection
point is infinitely smaller than that of the third curve, and so on.50 This is easily seen
when we consider that the first radius of the evolute is equal to the first differential
of the same, from which it is clear that there is but one single type of curve for which
the radius of the osculating circle at the point of inflection is infinite, but there is an
infinity of types where this radius is always infinitely small. On the occasion of all
that I have just said, I must tell you of another difficulty that came to mind along
time ago on the maxima et minima. You know that to find a greatest or least we make
dy equal to zero because we have believed until now that the y’s for which we wish
to find the greatest or the least make a curve whose tangent at the largest or smallest
ordinate is parallel to the axis. However, I say that this is not general, because there
are curves that I call bicornes,51 in which the greatest or least ordinates pass through
a point which I call de rebroussement.52 Now, the tangents at these points are not
parallel, but for the most part, perpendicular to the axis as we see in these figures.
This is why we make a big mistake when we make dy D 0 in these sorts of curves,
in order to find the greatest ordinate, it being possible that dy is infinite.53

When my Brother holds that in all the paraboloids the osculating circle of
the vertex is infinite he means the paraboloids where x is raised to but a single
dimension.54 As for my curve for the tangents that are always in the same ratio to
the intercepts, before responding to what you have asked me, it is necessary to put
in its entirety the calculation that I made use of to arrive at the general equation that
determines the nature of these curves (Fig. 12.6).

. . .

Fig. 12.6 With kind permission of Springer ScienceCBusiness Media

50See L’Hôpital (1696, §82).
51This is Bernoulli’s term, a French adjective meaning having two horns.
52This term was coined by Bernoulli and used by L’Hôpital in L’Hôpital (1696). In French
rebrousser chemin means to retrace ones steps. The English word for such a point is cusp, which
we will use in what follows. We will also use “bicorn” for a curve with a cusp, even though this is
not standard English usage.
53The case of an extremum at a cusp was omitted from the Lectiones. L’Hôpital included it in §47
(p. 46).
54By “paraboloids,” Bernoulli means curves whose equation is xp D yq , where p and q are
positive integers. So in this case, Jakob means p D 1 and q > 2.
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[Bernoulli now gives his as yet unpublished solution to the tangent problem
stated by l’Hôpital in Letter 11. The details are in Bernoulli (1955, pp. 208–211).]

. . .
My brother tells me (I do not know if it is true) that he knows a trick for

constructing my equation that I found for the curve of descent.
Tell me, if you please, if you have received the Acts with the supplements by way

of Mr. Anisson. I already have two months of this year with a supplement which I
will send to you on the first possible occasion, because I cannot send you anything
else by way of Strasbourg coach without passports. However, one of our booksellers
sends books to Mr. Anisson from time to time and in the future I will make use of
this convenience. I am sending you herewith my inaugural dissertation,55 I hope
that you will also find in it something that is worthy of being read.

My wife and I send our very humble compliment to Madame and thank you for
the invitation that you made to us to go and spend some time at your estate. If I can
steal away some time for myself, I assure you that we would not miss out on finding
ourselves there; if it is impossible for both of us it might be for me alone, for I would
be delighted to see you again and to assure you from my own mouth that I am, with
a profound respect,

Sir

Your most humble and most obedient and most obliged servant
Bernoulli

Letter 23: L’Hôpital to Bernoulli
Without Location, May 1694

I have just received, Sir, your letter of April 22. I take pleasure along with you
that your wedding is finished as well as your theses on logic and medicine. I am
very pleased that you are happy with my remark on the evolutes, and I was already
satisfied in part on the difficulty that I proposed to you, for in considering curves
as being composed of an infinity of little arcs which all have their centers in the
evolute, it is clear that when the radius is infinitely small, the arc which in this case
is but a point is also infinitely small with respect to the other arcs which are the
differentials of the curve, and consequently the contiguous perpendiculars fall on
one another. Furthermore, in the convex part the value of d dy is negative and on the
concave part positive, so that at the inflection point we must pass from the one to the
other. Now this may happen in two ways, either the d dy’s increase and therefore
it must be that d dy becomes infinite, or they decrease and therefore it must be that
d dy is equal to zero, in the same way that the contiguous perpendiculars may go
from convergent to divergent in two ways as I told you my last letter (Fig. 12.7).

55Dissertatio de motu musculorum, Bernoulli’s dissertation for his doctorate in Medicine, 1694.
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Fig. 12.7 With kind permission of Springer ScienceCBusiness Media

Fig. 12.8 With kind permission of Springer ScienceCBusiness Media

With regard to the curves that you call bicorn, and about which I wrote you
sometime ago on the occasion of your curve in the Acts in the case where q is greater
than p, I have several difficulties which I ask you to clarify for me indepth. Secondly,
you have told me that at the cusp C the radius of the evolute must necessarily be
equal to zero. Now, I find that it may be infinite, which is proven by the example of
several paraboloids,56 and also that it could have a finite or determined magnitude.
For let DAE be a curve which has the line AC as tangent at the inflection point A.
If we evolve the part DAB beginning at the point D we form the bicorn line BCF,
and at the cusp C the radius CA of the evolute DAE has a finite magnitude.57 You
see therefore that the consideration of the evolute does not help us to find this kind
of point C . Now, here is how I figure it. Let BCF (Fig. 12.8) be a bicorn curve for
which the ordinate PM or PN D y and the abscissa AP D x. It is clear that the
dy’s increase in the part CF as x decreases and on the contrary in the part CB it
increases as x increases. Therefore, if we imagine a certain curved line that has for
its abscissas the dy’s, or finite straight lines that are in the same ratio, the question
reduces to finding the least of the ordinates in this curve, which gives d dy D to
infinity or zero. How then to reconcile this with what I have just proven. I have

56For example, y D x5=2.
57The accompanying figure is a picture of a cusp of the second kind appears for the first time,
produced through the involution of a curve with an inflection point. See L’Hôpital (1696, §109)
and Figure 5.27.
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Fig. 12.9 With kind permission of Springer ScienceCBusiness Media

pointed out to you at the cusp C (Fig. 12.8) dy must be null with respect to dx as also
dx must be null with respect to dy. Because you have not understood my argument,
apparently because I explained myself in too obscure a manner, I will make sure I
make myself more intelligible. Is it not true that while the abscissa AP .x/ remains
the same, the ordinate y has two values PM and PN, which become equal to one
another when the point P falls on the point E that we wish to find? Therefore if,
along with Messrs. Descartes and Hudde,58 we consider x as known and y as the
unknown in the equation that expresses the nature of this curve, and we multiply it
as usual by an arithmetic progression, we will form a new equation which we use
to determine the cusp C . Now, it is equivalent to taking the differential equation
and erasing from it all the terms that are multiplied by dx. From this we see that dx
should be null with respect to dy. In the same way we prove that by taking AK as the
abscissa and KM or KO as the ordinate, dy must be null with respect to dx. Now, dy
is to dx WW CE W CT . Therefore, we must have that at the same point C the fraction
dy=dx is null, infinite, and determinate. How can this be straightened out? I wait for
the clarification of this from you.

Now, let BCF be the bicorn curve (Fig. 12.9) for which the tangent CE at the cusp
C is parallel to the ordinates PM. It is clear that in the part BC the dy’s are positive
and increasing, whereas in the part CF they are negative and decreasing. From this
it follows that at the point C , dy must be infinite. I will prove, however, by Messrs.
Descartes and Hudde that it must be zero by considering that the abscissas KM and
KO .x/ become equal. It seems, therefore, that in the case where dy is infinite we
also find the same thing as by supposing it equal to zero, so that this consideration
would be useless and does nothing but to hinder, and if this were true with regard to
dy we would also prove it for ddy. I confess to you that I cannot untangle all of this
and you would make me very happy by applying yourself to it with care and to put
all the necessary time into it to clarify it entirely.

We know well enough that zero has a constant quantity as its integral. However, I
ask what is the integral of infinity, for example, in curves ddy infinite at an inflection
point I ask what dy ought to be.

I had forgotten to tell you that it is clear that by evolving a curve at an inflection
point for which the radius of the evolute is infinite at that point, we form another

58The method of Descartes and Hudde is described in Chapter 10 of L’Hôpital (1696).
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curve whose radius is infinitely small at the same point, so that this radius, so to
speak, is infinitely small with respect to the first one. However, I do not see that if
we form a third curve of the same kind, the radius of its evolute at the inflection
point is infinitely smaller still than that of the second one, and so on. This is why I
ask you to explain it to me at a little greater length and above all to give as many
examples as you can, in order to focus the imagination.

I am writing you this in haste because I am overwhelmed with matters that have
left me no spare time up to now. This is why I ask you to pardon me if I made a
few mistakes. I send you the best of my heart. My wife has a fever, she sends her
compliments as well as mine to your sweetheart.

Finally, Mr. the Abbé Catelan has decided to attack the solution that I put in the
memoirs.59 He holds that the curved line whose nature is expressed by the equation
y4 etc. which I gave does not have the given property; to this end he makes a
calculation in which he is mistaken as usual, which I have pointed out in a very
short response.60 I will send you both of them, if you wish, but it is not worth the
trouble.

Letter 24: Bernoulli to L’Hôpital
Basel, May 21, 1694

Sir, I am very pleased that we are in agreement with regard to the inflection point,
but on the matter of the bicorn curves that you have pointed out many difficulties to
me, some of which are in truth are rather important. Every time, having put in all the
necessary time to clarify them, I apply myself to them with care, so that I believe to
be finally brought to the goal, all the ugliness and contradictions that we find on the
subject of the cusp are the only things to appear. You will see my reasons for this,
however I will reply in order to all the points that you have proposed to me. You were
right to say that the radius of the evolute at a cusp may be infinite, but it is similar to
looking for the greatest or the least [ordinates], where I have said that the differential
of the greatest or the least is not always equal to zero, but also sometimes to infinity.
Now you yourself say that in this case this situation does not change, whether we
suppose it equal to zero, or to infinity, as I more clearly show below. Nevertheless
you propose to me an example where the radius of the evolute at the cusp is neither
zero or infinity. You must therefore know, Sir, that you have spoken of curves that
turn back on themselves or bicorn curves, I intended only those whose two parts
change their convexity, for it is evident that then the radius of the osculating circle
must necessarily be either infinite or zero, otherwise the evolute of one part of the
curve that turns back on itself cannot pass to that of the other part without making

59Memoir Mathematique, June 1693, pp. 97–101, Journal des sçavans, March 1694, p. 146. The
reference in Bernoulli (1955, p. 217) was to a different article by l’Hôpital.
60Journal des sçavans, April 1694, pp. 182–183.
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an obvious jump, that is to say that this radius is negative and positive at the same
time, which is absurd. However, in the case of the other cusps, in which the convex
part is opposed to the other concave part, I must confess that I do not know about
them. Nevertheless, I say that the consideration of the evolute may also be used to
discover the cusp in this second kind of curve.61 Here is how: let ABC be any curve,
whose evolute is GDE. Also, let two infinitely close radii CE and BD be drawn and
two perpendiculars EF and DF at the points E and D, meeting at F . As you know,
they will form in this way two similar triangles BDC and EFD. Suppose now that
the curve ABC has a cusp of the second kind, and that the two radii of the evolute
are drawn at the cusp. It is clear that the evolute will always have an inflection point
at the point of intersection of these two radii.62 Now, because, at an inflection point
the radius DF of the osculating circle is always either infinite or infinitely small, it
follows that the ratio of the differential DE of the evolute and of the radius DF of
the osculating circle is either infinitely small or infinitely large with respect to other
ratios. Supposing that the differentials of the evolute are equal to one another, or at
least that they have a finite ratio, for I can conceive every curve as being divided in
whatever manner I wish. This being so, I say that CB to BD must also have a ratio
that is either infinitely small or infinitely large with respect to the others. For this
reason, to find the cusp in curves of the second kind, we take the differential of the
curve and we divide it by the radius of its osculating circle; what results, must be
made equal to zero or to infinity.

. . .
[What follows is a discussion of other mathematical topics.]
. . .
There you are, Sir, your difficulties clarified as much as it was possible for me. I

am quite surprised that Mr. the Abbé Catelan dares to attack a thing that is quite a
bit above his range. Were I to be in your place, I would tell him what Apelles said
to a shoemaker: Ne sutor ultra crepidas.63 You would nevertheless give me pleasure
by sending me his lovely writing with your reply, if this will not cause too much
trouble for the post. Tell me also if you have received the packet of the Acts that
our bookstore sent to Mr. Anisson. The index that you have asked me for via Mr.
Varignon has also arrived; I will send it to you at the first convenience, with the
other months that have since arrived (Fig. 12.10).

61L’Hôpital discovered this kind of cusp, but Bernoulli recognizes its nature and refers to it as
being of the “second kind.”
62This is incorrect, as l’Hôpital will show in Letter 25.
63This translates roughly as “let the shoemaker venture no further.” These words were attributed to
the painter Apelles (4th century BCE) by Pliny the Elder.
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Fig. 12.10 With kind permission of Springer ScienceCBusiness Media

I ask you to make my humble compliments to Madame, I am very much affected
by her illness. Even so, I would be flattered to hear of her convalescence as soon as
you can do me the honor of writing me. My wife also wishes her a happy end to her
fever and sends her respects to you.

I am, Sir, forever

Your very humble and very obedient
Servant Bernoulli

Letter 25: L’Hôpital to Bernoulli
Paris, June 7, 1694

The manner in which you conceive the cusp, Sir, appears to me very ingenious.
Though, nevertheless, I still find some difficulties there, which I hope that you will
be good enough to let me propose to you so that they may be clarified (Fig. 12.11).

The rule that you give for determining the cusp of the second kind appears to
me not to be accurate, because it supposes that the evolutes of these sorts of curves

Fig. 12.11 With kind permission of Springer ScienceCBusiness Media
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always have an inflection point that corresponds to the cusp. Now there is an infinity
of cases where this is not so. Let the curve with the cusp of the second kind be EAL,
which has the straight line AB as common tangent at A. If we evolve the parts EA
and AL beginning at the point B , we form a curve CBD with a cusp of the second
kind in which the radius of the evolute BA at the cusp B does not form an inflection
point on the curve BAL by its extremity A, but rather a cusp of the second kind.
Furthermore, if we divide the radius of the evolute

MF D dx2 C dy2
p

dx2 C dy2

�dx d dy

by the differential of the curve

Mm D
q

dx2 C dy2; we will have
dx2 C dy2

�dx d dy

which according to you must be either infinite or zero, from which we conclude
that at the cusp A, ddy must be either infinitely large or null, and consequently that
the radius AH of the evolute will be either infinite or null, which is contrary to the
supposition. In the third case, it seems to me that in the similar triangles FMm and
FGf , we must compose the differentials Mm and Ff together, as also the radii MF
and FG, because these are magnitudes of the same kind, from which we conclude
that because the point M falling on the cusp A, and the point F on the inflection
point H , the ratio of Mm, the differential of the curve AE, to Ff , the differential of
the radius MF, must become infinitely large or infinitely small at this point. This
gives the general formula

dx2 d 3y C dy2 d 3y � 3 dy ddy2 D 0 or to infinity

which will serve to determine the cusp A in the curves EAL. However, I say further
that this same formula will also serve to determine the cusp B on the curve CBD,
because it is clear that the radius BA being a very small quantity, its differential
must be either null or infinite, which gives the same formula.64 If it is true, as you
maintain, that these sorts of cusps are nothing but the touching of an inflection point
with the opposing part of the curve, it would follow that the cusp A or B would still
have the nature of an inflection point, and consequently that the radius of its evolute
AH or BA would be infinite or null.

I grant you that at the cusp dy is to dx in all imaginable ratios but in this, it seems
to me, the reason is very different from yours and is founded on a distinction that
we have not understood well until now (Fig. 12.12).

I distinguish two kinds of differentials on the ordinates PM of curved lines CBD,
the first sort is the differential MR of two ordinates PM and pm infinitely close

64See Bernoulli (1955, p. 224) for a discussion in modern notation.



12 L’Hôpital-Bernoulli Correspondence 259

Fig. 12.12 With kind permission of Springer ScienceCBusiness Media

to each other, and the other is the differential MN, of two ordinates PM and PN
which start at the same point P . We must note above all that when we wish to make
use of the differentials MN, it is necessary that the nature of the curve CBD be
expressed by an equation in x and y in the manner of Descartes, so that there are
no incommensurables, in order that when x remains the same, the unknown y may
denote indifferently either of the ordinates PM or PN, whereas this is not necessary
when making use of the differentials MR. Given this, it is clear that, if I take the
differential of the equation that expresses the nature of the curve CBD with a cusp,
supposing x to be constant, it is necessary that all the terms that multiply dy, which
in this case is MN, are together equal to zero, and furthermore that if we suppose
PM or AK .y/ to be constant, the terms that multiply dx, which is MO, are also
equal to zero. From this we see that in taking the differential of the given equation,
supposing that x and y are both variable, all the terms that multiply dx on the one
hand, and all of those that multiply dy on the other, are equal to zero,65 which being
the ratio of dy to dx may be whatever we might wish, because zero is to zero in
whatever ratio we wish. However, when dy denotes MR, I say that the ratio of MR
to Rm, which is that of BF to FT at the cusp B , is unique. And this is so true that if

we take the differential of the equation y D x � b
2
3 , which expresses the nature of

the second cubic parabola EBD, in which AB D b , AC D x, and CD D y, we have

dy

dx
D 2

3
3

p
x � b

and making x D b, we see that at the cusp B the ratio of dy to dx is infinite and not
whatever we wish, the reason for which is that dy can only denote the differential of

two equally close ordinates because y is only linear in the equation x � b
2
3 .

Furthermore, Sir, I submit all of this to your judgement, assuring you that I will
ask for nothing more, because I am convinced that having mastered these matters
to the depths that you have it can only be very clear. I ask you to send me in your

65As the Editor points out in Bernoulli (1955, p. 226) it is incorrect to refer to MN as a differential.
The distinction is made somewhat clearer in L’Hôpital (1696, §191).
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response the method of drawing tangents to the tractrix and to the curves described
by the mean points between tractrices, as well as the manner of solving the equation

y D
p
2a3x � x4 � a 3

p
aax

a � 4
p

ax3

when x D a (Fig. 12.13).
I inquired of Mr. Anisson, who has not received any news from Basel, no parcels

nor consequently the Acts of Leipzig which you tell me have already been sent; he
assures me that if he receives them he will send them to me right away. Mr. Varignon
has shown me one of your letters where you say that Mr. Leibniz is writing a book
de scientia infiniti and that he asks you to share with him your discoveries on these
matters. If I dared I would remind you to recall that you have promised me to share
them only with me. I will send you the difficulty with the problem of Mr. l’abbé
Catelan with my reply, because you have asked for it, however, you will see that it
is not worth the trouble. You may count on me, Sir, as on the best of your friends
and it will give me real pleasure to let you know this at every encounter.

The M. De L’Hôpital

Mrs. de L’Hôpital is entirely cured from her fever; she sends her compliments
without forgetting your dear sweetheart.

Letter 26: Bernoulli to L’Hôpital
Basel, June 27, 1694

Sir
The difficulties that you find with the manner in which I conceive of the cusp do

not discredit it; all the same, I do not wish to deny that it is subject to several apparent
contradictions, which I do not know how to untangle at present. Nevertheless,
neither do I wish to doubt that with time I will be able to find the solution, because
indeed there are many things that previously seemed inconceivable that we conceive
of very clearly today. Who would have led us to believe, for example, this paradox
that dy to dx could be at the same time in any imaginable ratio? All the same, this is
what causes us the least trouble for the moment. Other than the difficulties that you
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have proposed to me, to which I can in some fashion respond, I have others of great
consequence, of which here is one. Let ABCDBHEG be a curve which intersects
itself at B and which we evolve beginning at A. It is clear that the curve which
is generated from the evolution has the form of a spiral AFELIK. Now, imagine
that the part BCD becomes smaller and smaller until it actually vanishes. The curve
ABCDBG therefore has a cusp, where in this case the parallel radii of the evolute CF
and DI will coincide and be equal, because we suppose CD to be of null magnitude,
thus the part FLI will be a perfect semi-circle. Consequently, the curve that is
generated by the evolution of a curve with a cusp is not AFH, as we had believed up
until now, because FH is produced not by the evolution, but by the envelopment of
part BH. Thus the curve truly generated by the evolution of a curve with a cusp is
composed of a curve AF, of a semi-circle FLI and of a third curve IK (Fig. 12.14).

The same thing also happens when we consider the curve with the cusp as an
open curve, where the two inflection points C and D coincide, but the semi-circle
FLI comes from the other side, as you see represented here with the same letters. We
may use the same reasoning on curves with cusps of the second kind. Here then is
my difficulty: if every curve describes only a single curve by evolution, how does
it happen that the described curve AFLIK contains a circular part? I believe to
resolve this difficulty we must say that the evolution of cusps may generate various
curves; I know several examples well. For example, we know that the evolute of a
roulette is another roulette, which has a cusp. If we then evolve this other roulette it
reciprocally must generate the first one, but because of what I have just said it will
generate three different curves; how then are we to make sense of all of this? The
only thing I know to say to this is that I believe that the evolute of a roulette AFH
is not an entire roulette ABCDBH, but rather two parts AB and BH for which the
infinitely small part BCD, so to speak, is missing.
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This being so it will be easy to respond to your first difficulty, where you
believe you have shown me that evolutes of curves with cusps of the second kind
do not always have an inflection point, but also some times a cusp, because your
demonstration supposes that we evolve a part of this curve and that we envelop the
other, which I have said is not a true evolution. For I say generally that in evolving
any curve, the radius always increases towards infinity and never decreases. In
addition, suppose apart from this that a curve with a cusp of the second kind may
have a curve with a cusp of the second kind as its evolute; this does not contradict
what I have already put forward, because the cusp also includes an inflection point
(Fig. 12.15).

As for your second difficulty, I admit, Sir, that
dx2 C dy2

�dx ddy
must be infinity or zero

according to me, but why must one conclude that ddy must be either infinitely large
or null at a cusp? It suffices that dx or dy may be either infinity or zero, because
these differentials are not free, being determined by those of the evolute. This is
what made me say (not having taken magnitudes of the same type) with respect to
the others, and thus your general formula dx2 d 3y, etc. follows immediately in the
same way. It is nevertheless good that you have noticed this and expressed it in a
formula.

The final difficulty that you proposed to me does nothing against what I have
said: it is quite true that the radius of the evolute at an inflection point must be either
infinity or zero. The reason for this is because the involute of the concave part cannot
pass to that of the convex part without the radius being infinite or null, that is to say
positive and negative at the same time. Now, cusps of the second kind have only the
concave part, because the convex part is infinitely small and consequently it is not
necessary that its evolute passes from one side to the other, nor by consequence that
its radius be positive and negative at the same time, and thus it can be of a finite
magnitude without contradiction.
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The reasoning by which you demonstrate66 that at a cusp, dy is to dx in every
imaginable ratio is very ingenious. However, besides the fact that it gives no idea of
this point and does not explain its nature, it also gives rise to some doubts:

1. You take MN and MO for the differentials of PM and of KM, but it seems to
me that PM and PN, as also KM and KO, differ by a finite magnitude, and
consequently MN and MO are not differential magnitudes if it is not the case that
P falls on F . However, then MN and MO are nothing but magnitudes that have
become infinitely small, for I believe that there is a difference between infinitely
small and differential; all differentials are infinitely small, but not reciprocally.
Therefore, MN and MO, although infinitely small, are not included in the general
equation of differentials that compose the curve MBNO etc.

2. Supposing that MN is to MO as zero to zero, you then conclude that MN is to MO
in whatever ratio we may wish. However, I deny that between zero and zero there
is always all imaginable ratios, because I have shown you that in the example you
proposed to me

p
2a3x � x4 � etc.

a � etc

when x D a, it becomes 0
0

D to a determinate magnitude, and consequently the
numerator zero to the denominator zero does not have whatever ratio one might
wish.

I come back, Sir, at the first opportunity to the method of solving this equation as
well as the method of drawing tangents to the tractrix and to the curves described
by the mean points between tractrices. I had wished to send them to you at present,
but finding myself unable to do so because of the evolutes that enveloped my entire
brain, I was not able to put it in writing on the spot, because it has been quite some
time since I have thought about these. Also, I am now quite occupied in moving,
having lived up until now with my father-in-law, which gives me little rest to gather
my animal spirits. In a word, I am not yet in the routine of being married (Fig. 12.16).

If you have not yet received the Acts, you will receive them soon. Mr. Varignon
will give you another packet containing the month of December 1693, Jan., Feb.,
and March 1694, the supplement Volume IV sect. III and the general index that I
sent to him with his Acts.

Mr. the Abbé Catelan is without doubt extremely unremitting against you,
because he attempts to obscure the clearest truths that come from you, but he
acquires little glory in the opinion of knowledgeable men. Tell me please if he
wishes to give a method of inverse tangents: if he finds the quadratrix from the

66See Letter 25, Footnote 65.
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quadratrix itself, it seems to me supposing one has what one seeks. Please be so kind
as to give the very humble compliments of my wife as well as mine to Madame.
We wish her a happy cure from her fever.

I am Sir, etc.

Letter 28: Bernoulli to L’Hôpital
Basel, July 22, 1694

Sir, I do not doubt that you have received my last letter, which I gave myself the
honor of writing to you almost four weeks ago. This one is to accompany the extract
of the month of May of the Acts of Leipzig that I sent you by the post. You will
see there your solution to my problem with Mr. the Abbé Catelan’s difficulty.67 I
am very surprised not to see your clarification, because it is to be feared that this
will cause some harm to the differential calculus among people who are not in the
know and who might add credence to Mr. Catelan’s difficulty without examining
the subject. This is what made me believe that it is not one of your friends that
communicated to the Editor of the Acts your solution accompanied by the difficulty
without having attached the response to it. You will also find in that extract the
solution to the Florentine Enigma by Mr. Viviani, but it is more or less the same as
the one that I gave you in Paris. Here, finally, is the method for drawing tangents to
the tractrix and to the curves described by the mean points between tractrices, and
also the solution of these sorts of equations

y D
p
2a3x � x4 � a 3

p
aax

a � 4
p

ax3
; when x D a:

67Acta Eruditorum, May 1694, pp. 193–196, 196. These are translations of the articles mentioned
by l’Hôpital at the end of Letter 23.
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I flatter myself that you will be pleased, having taken all the care that is needed to
explain myself clearly.

I received a letter from Mr. Leibniz in the past few days, in which he asks me
again to communicate some of my discoveries to be inserted in his treatise de
scientia infiniti. However, I do not know how I should behave with regard to this,
because which ever way I take I find myself quite hindered. It is certainly true that
I promised you68 to share my discoveries with no one but you, but do you counsel
me to refuse Mr. Leibniz’ request and to entirely cut off correspondance with him?
In truth that would be to act with little honesty towards a man to whom I am so
indebted. Nevertheless, I believe that in order to keep the promise that I made to
you, the best course would be for me would be to communicate to Mr. Leibniz only
that which concerns the differential and integral calculus in general and which is
already known to my brother and possibly to others as well as to me. However, for
that which concerns the things that have gone on between you and me, in particular
and the discoveries that I have made on your behalf and that I will make in the
future on the opportunities that you give me, I make you a sacred promise, Sir,
to always keep them secret and to let nothing at all out. I have already given you
proof of this in advance, having always refused under the pretexts fabricated by Mr.
Varigion, the principles of the integral calculus that he has solicited so often and
so insistently, even though I am much obliged to him for the great services he has
rendered me. I do not doubt that he will ask for them again, so please tell me by
what means I may withdraw from his requests once and for all. I leave tomorrow
for the country 6 leagues from here to drink the waters at Bad Pfäffres, if you wish
to take the trouble to write to me you need only use the ordinary address. Having
made my very humble respects to Madame and those of my wife, I am, Sir,

Your very humble and
your very obedient servant

Bernoulli

Method for drawing tangents to the tractrix and to the curves described by the
mean points between tractrices.69

ABCN is a perfectly flexible rope that we drag by one of its extremities N along
a given curve NO, the rope draws with it the attached weights A, B , C , etc., of
different magnitudes and of different intervals, as the same number of tractrices,
which by the movement of the rope describe the curves AH, BL, CM, etc. We wish
to know the method for drawing the tangents.

Sol. It is clear that the curve AH has the straight line AB itself for a tangent,
because AB is the direction of the weight A that describes the curve AH. However,
to find the tangent to the curve BL, I remark that it cannot be BC because it is not

68Presumably in the lost reply to Letter 20.
69Compare to §45 on p. 41.
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the direction of the weight B being impeded and diverted by the weight A. It is
therefore a matter of finding the direction of the weight B , which will be the tangent
of the curve BL, which I do as follows. Having extended the straight line AB, I form
the rectangle Eb on the diagonal BC and I consider that if the weight A were not
there, the weight B would have the diagonal Be as its direction with a quantity of
motion denoted by Be. Now, this motion is composed of BE and of Bb and I see
that if we now consider the weight A as resisting, it will only be BE that will lose
its motion, and Bb will remain whole, because A does not resist the weight B going
along Bb, but all the resistance turns towards BE. Therefore, if we make the weight
AC the weight B to the weight B , as BE or be is to a fourth quantity bi, this bi will
be the remainder of the motion by the law of statics. This is why having drawn Bi,
which denotes the motion composed of the whole Bb and the remainder bi, it will
be the direction of the weight B and consequently the tangent of the curve BL. In
the same way we find the tangent to the curve CM: because after having made the
rectangle Fc, the motion Cc remains whole and CF is retarded by the weight B and
by a part of the weight A, which is to A as BE is to Be. Therefore, having made

A � BE

Be
C B C C W C WW cf W co;

the straight line co will be the direction of the weightC and consequently the tangent
to the curve CM (Fig. 12.17). To find a tangent to a fourth curve we must make
(using corresponding letters)

A � BE � CF

Be � Cf
C B � CF

Cf
C C CD W D WW dg W du;

the straight line drawn Du will be the tangent to the fourth curve; and so on for the
others. For the second part of the problem, namely to draw the tangents of the curves
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described by the mean points between the tractrices, I transform it into another
general problem, as follows:70

Given two curves AC and BD to which we apply an infinity of equal lines AB,
ab, etc., all of which we divide in the given ratio of AE to EB, we wish to know the
method for drawing the tangents to the curve EH described the divisions E, e, etc.

Sol. Let AB and ab be two infinitely close equal lines. Having drawn ah, Ef , and
Bg perpendicular to AB and ab, it is clear that Ah, fe, and gb are equal. Let AE D a,
EB D b, Ah or fe or gb D dx, ah D dy, and gB D dz, then we have

fE D a dz C b dy

aC b
; therefore Ef W fe WW a dz C b dy

aC b
W dx;

from which I easily draw the tangent at E, because having drawn three perpendicu-
lars aM, EN and BL, we will draw two tangents aP and BO to the given curves and
we will apply two equal perpendiculars PM and OL to the angles OBL and PaM.
Thus, by the correspondence of sides of similar triangles, if we take EN equal to

AE � BL C EB � hM

AB

and we make NQ perpendicular to EN and equal to PM or OL, it is manifest that EQ
will be the tangent that we wish to find of the curve EH. Q.E.I.71 It is easy to see
how this problem includes the second part of the previous one, because the intervals
between the weights always remain the same, so the distances of the mean points
also do not change (Fig. 12.18).

Probl.72 Given a curve whose nature is expressed by a fraction equal to y, which
in a certain case has the numerator and the denominator equal to zero, we wish to
find the value, that is to say the magnitude of the ordinate y.

70Compare this to §36 on p. 35.
71I.e., That which was to be found.
72Compare this to §163 on p. 151.
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Sol. Let AEC be the given curve, AD D x, DE D y, AB D to a constant,
such that BC becomes equal to a fraction, the denominator and numerator of which
are equal to zero. Therefore, to find the magnitude of the ordinate BC, I construct
on the same axis adb two other curves aeb and ˛�b of such a nature that having
taken abscissas equal to AD and ad, the ordinates de are in ratio to the numerator
of the general fraction, which expresses the ordinate DE, and d� are in ratio to the
denominator of the same fraction. This being done it is clear that de divided by d�
may be supposed equal to DE. The problem therefore reduces to finding the value
of de divided by d� in the case that ab is equal to AB. Now, I see that in this case, de
and d� vanish because the two terms of the fraction vanish, and thus the two curves
aeb and ˛�b intersect at the point b. Therefore, we need only take the differentials73

ˇc and ˇ� , of which the one divided by the other which will tell me the magnitude
of BC that I seek. This is what gives me the following general rule: To find the value
of the ordinate of the given curve in the given case we must divide the differential
of the numerator of the general fraction by the differential of the denominator; the
quotient, after having made x equal to the supposed AB, will be the magnitude of
BC (Fig. 12.19).

Example. The curve ACE has for its equation

p
2a3x � x4 � a 3

p
aax

a � 4
p

ax3
D y:

Thus, if AB is D a, we have BC D 0 a
0

, now we wish to know the true value.

According to the rule, I take the differential of the numerator
p
2a3x � x4�a 3

p
aax,

which is

D a3 dx � 2x3 dxp
2a3x � x4 � a2 dx

3 3
p

axx
;

73Bernoullis says les dernieres differentielles; literally “the last differentials.”
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and the differential of the denominator

a � 4
p

ax3; which is
�3a dx

4
4

p
a3x

;

having now substituted in the place of x the supposed value a, we find � 4
3
a dx for

the first differential and � 3
4

dx for the second one. Therefore,

� 4
3
a dx

� 3
4

dx
or

16a

9
D BC:

Q.E.I.

To verify this method, we may take a very easy example such as this one

a
p

ax � xx

a � p
ax

D y;

which we may also solve, although with much difficulty, with common geometry
by removing the irrationality; for we will find by either method BC D 3a.

Letter 29: L’Hôpital to Bernoulli
Paris, August 18, 1694

I received, Sir, the solution of the two problems that I requested of you, for which
I am very much obliged to you and with which I am very much pleased. You were
very good to send me the Acts of Leipzig and I was very much surprised to see the
same difficulty with the Abbé C. appear again there, which I thought I had entirely
satisfied. However, what you apparently haven’t taken note of is that there is a fairly
considerable addition that seems to have been taken only from my clarification, as if
it had been conceived of in advance. This is what induced me to make the response
that I am sending you, and I ask you please to translate it into Latin and to send it
as soon as possible to the editor of the Acts and to request on your behalf and mine
to put it in soon without delay. We’re going to St. André at the end of the coming
month and therefore, Sir, if you are man of your word prepare yourself to come and
see use during this time. We will eat well and drink good wine, for it is thought to
be the best in the entire country. I am quite angry that you tell me has happened to
your arm,74 because you tell me that you will take the waters this that makes me

74Presumably, Bernoulli mentioned this accident in a postscript to Letter 28 that was not included
in the draft. He began Letter 30 on September 9, 1694, with the sentence “It is a few days since I
returned from the country; the swelling that I had in my arm from a fall is entirely cured.”
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apprehensive about your health, and you would do me pleasure by giving me news
about it.

I am entirely yours

The M. de L’Hôpital.

My wife sends you her compliments and to Madame your wife, whom she begs
to make the journey to St. André.

Letter 31: L’Hôpital to Bernoulli
Paris, October 2, 1694

I’m very happy, Sir, that you are cured of the swelling that you had in your arm.
Please explain to me at greater length why, in the plenum, the full force, with which
the sail DC pushes the ship sailing along BK, is to that with which it pushes along
BG as the square BK is to the square BG, given that you agree in the void it is as
BK is to BG, and it seems that in the first instant the impulse of the wind against the
sail should be the same, whether there is nothing to resist it as in the void, or on the
contrary, it finds that there is matter which resists the impulse as in plenum. Whether
a window, for example, is closed or partially open, it seems that being pushed by the
wind, it received the same impulse in the first instant. I am sending you the reply of
Mr. Huygens so that you can examine it with care and so that you can tell me your
feelings about all of this. I thank you for the trouble you have taken to translate my
reply into Latin and to send it to Leipzig. I would be very curious to see what Mr.
Leibniz has in the Acts for the month of July and, Mr. your brother, in those for the
month of June. That is why I ask you to send them to me from Geneva to Lyon,
addressed to Mr. Gautier, lumber Merchant at the port of St. Clair, to hold for Mr.
the Marquis de L’Hôpital in his château of St. André.

I depart soon to go there, and you will oblige me by sending me as soon possible
all the new things that you told me you have found, because this appears very
beautiful to me, you should address your letters to Mr. the Count of St. Mesme,75 the
street of the little musk near the arsenal, to be held for Mr. the Marquis de L’Hôpital,
if it is necessary to put a Paris address, because if it were not, which you could learn
from the post, you need only address your letters to Lyon, where I have told you
above.

In any case, we accept no excuses, neither Madame de L’Hôpital or me, for not
coming to see us in St. André, and I do not find that there can be any valid reason
that keeps you from coming to spend as little time as you wish with us. Madame
de L’Hôpital also invites Madame your wife. She hopes soon to receive some of
her letters. Be well assured that if you make this voyage, I will take care to pay the
costs; I know well that it is not this reason that would keep you from coming, but I

75L’Hôpital’s father.
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also know that this is reasonable and that things must be thus, because you would
not take this trip only for the love of me. I have 36 £ to give you that Mr. Varignon
has asked me to give to you, and in addition the 150 £ remaining for the rest of the
year. I will give you all this in St. André and when I get there I will tell you how
much time it will take you to come find me. I am perfectly yours

The M. de L’Hôpital.

Since writing my letter I have been assured that you need only address your
letters to Lyon and they will go without passing through Paris. You should still find
out about this at your home to be even more certain.

Letter 39: L’Hôpital to Bernoulli
Lyon, February 3, 1695

You will find, Sir, included here a bill of exchange for two hundred pounds, namely
one hundred and fifty pounds for the remainder of last year and thirty six pounds
ten sols76 from Mr. Varignon, and the surplus for the Acts of Leipzig that you have
sent me. You have apparently received my last two letters in which I asked you to
make sure that my first draft does not appear in print and to substitute the second
one that I have sent in its place.77 I am sure that you will forget nothing in order to
give me the satisfaction that I’m asking of you on this matter. Do not write to me
here any further and send your letters to the usual address in Paris, where I hope to
be in fifteen or sixteen days starting tomorrow morning.

I am, Sir, entirely yours

The M. De L’Hôpital.

Letter 41: Bernoulli to L’Hôpital
Basel, February 19, 1695

Sir, I am very happy in that I have received two presents all at once. The one comes
from you as a result of your generosity, for which I thank you infinitely, promising

76The French pound was divided into 20 sous or sols.
77In Letter 33, L’Hôpital had sent Bernoulli his solution to the Probloma aequilibrii, a problem
posed by Sauveur, to be translated into Latin and sent to the Acts Eruditorum. In Letter 36,
Bernoulli confirmed that he had done this, but also admitted to adding some remarks of his
own, which substantially simplified this solution. In Letter 37, L’Hôpital sent Bernoulli a different
solution asking him to sent it to the Acts Eruditorum with a request that the first piece be withdrawn.
This request came too late and both pieces appeared: in February pp. 56–59 and in Supplement II,
1696 pp. 289–291.
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you to put all my efforts into making myself worthy. The other comes from my wife,
who has made me the father of a boy, which she delivered eight days ago.78 I would
have been delighted if, in returning to Paris, you had taken the route through here,
because I would have taken the liberty of asking you to present him at baptism to be
his godfather. I have not failed to constantly give you counsel in such a way that I
have strived to give you all possible satisfaction and even more so in what you have
asked of me concerning your two solutions. However, I see by your last letter than
you had already departed from Lyon when my letter79 arrived there; for this reason
if you would please take the trouble to write to Mr. Gautier, and ask him to send you
that letter, for you will see there what I have written to Mr. Menkenius, and also a
copy of what I sent him to be inserted in the Acts, in case your first article should
be printed before the arrival of the countermand. I hope that you will take great
pleasure from this precaution that I took, having managed things in such a way that
if the counter-order should arrive in Leipzig too late you will still have the biggest
part of the new solution, which you will see better in the aforementioned copy. To
show you that I hold exactly to my word, see what Mr. Leibniz wrote to me in his last
letter. Quod de infiniti scientiâ cogito opusculum si tuis (ut tuae innuere videntur)
auxiliis destitueretur vereor ut mature prodeat in lucem, aut omnino ut prodeat.80

He wrote me this way because I had sincerely refused him my writings under the
pretext of no longer having them in my hands. However, I am angry that because of
this he will entertain thoughts of not making his work current. You must encourage
him, for the good of the public, to remain firm in his original design; because I know
that he esteems and respects you greatly, calling you Phoenicem Mathematicorum
Galliae81 that is to say, the only one in France who understands the inner Geometry.
The post that is about to depart is urging me to finish, and begging you to assure
Madame of my very humble respects and also those of my wife who is doing well.

I am,

Sir, etc.
Bernoulli.

78Nikolaus (II) Bernoulli (1695–1726).
79Letter 40.
80This may be translated roughly as: “Now concerning The Science of the Infinite, I fear that if the
work lacks your contributions (as your [letter] seems to hint), then it will not come to light in good
time, or else not at all.”
81The Phoenix of Mathematicians of France.
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Letter 44: L’Hôpital to Bernoulli
Paris, February 26, 1695

I have just now received, Sir, your letter of the 19th of this month. I congratulate
you on the successful delivery by Mrs. Bernoulli and I wish that the little boy will
walk in the footsteps of his father and one day also to be as learned as he.

I am entirely happy with the way that you treat me, and I hope that in the future,
when I have my affairs in better order, that you will be even more satisfied with me
than in the past. I ask you also to take up some of what I asked of you in my last
letter, which would cause you the least trouble, assuring you that I do not wish to
impose on you. I ask when you write me that you give me some satisfaction with
regards to the questions that I proposed to you in my earlier letters.

My wife sends you and Mrs. Bernoulli a thousand compliments and I am truly,
sir, entirely yours

the M. de L’Hôpital.

Letter 47: L’Hôpital to Bernoulli
Paris, March 12, 1695

This morning I received, Sir, your letter of the 5th of this month. I am quite obliged
for all the honesty you showed me there, and I assure you that I will not abuse it,
and to show you that I consider your career, and not just that which would give
me pleasure, I hope to be able to procure you a chair of mathematics in Holland,82

which is worth twelve hundred pounds of their money, that is to say 1440 £ in that
of France. If this meets with your wishes, you must make your response as soon as
possible, and if this is the case I have two favors to ask of you. One is that you let
me know liberally the money that will you will need to make this voyage and I will
send it, and the other which is only my concern, would be to go through Paris so that
I may provide you with many things. Because if this succeeds, as I have almost no
doubt, I fear that I will not see you for a long time, and I confess that if I had only
my satisfaction in mind I would have greatly desired to find you a position in this
country, but one must forget about oneself when it comes to serving one’s friends.

. . .
[Discussion of roulettes.]
. . .
I see by what you tell me that some of my letters were lost, and it is precisely that

which served as a response to yours, where you sent me your general method for
constructing differential equations of the first degree. I have received three letters

82In a lost letter, Huygens asked L’Hôpital for a recommendation regarding Bernoulli for a position
at the University of Groningen.
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from Mr. Leibniz almost at the same time that I have not carefully examined – he
shared some of his methods for the inverse of tangents with me. It always appears in
my thoughts to have his book on science of the infinite printed. I will send you the
location in the memoirs where the theorems of Mr. your brother on evolutes may be
found.

Please send me a copy of what you have sent to Leipzig to be added to one of
my first solution on the problem of the drawbridge.83 I looked over the book by Mr.
Craig.84 I find that although he has some intelligence, it is clear that he does not
understand these matters as you do, and besides that he does not go straight to the
goal.

I ask you to reply to me as soon as possible, and to believe that no one can be
more attached to you than I am.

The M. De L’Hôpital.

Madame de L’Hôpital sends you a thousand compliments and to Madame
Bernoulli.

Letter 48: Bernoulli to L’Hôpital
Basel, March 26, 1695

Sir, I do not know how to thank you enough for the great care that you have taken
in procuring me a chair of mathematics in Holland, I see by this that your affection
greatly surpasses the small service that I could do for you. All that I wish for is
the continuation of your good graces; if I am not worthy of them, at least I will
try to be so. The arrangements that you offer me are beautiful and acceptable and
indeed you would have already seen me in Paris to receive this gift myself if I were
without a wife and child, because I have the greatest desire in the world to embrace
such a favorable occasion. However, because I am married it is necessary that I
should bring my wife with me, this is why we must act on this meeting with a bit of
forethought, in making use of the council of my friends. Therefore you will be so
good as to tell me the circumstances and particulars of this chair, namely in which
city in Holland it is, to whom you first spoke about it, the means by which you may
procure it for me, and above all, if it is precisely me that they desire; it is on this that
I may take the measure of the situation. I particularly hope for your good advice on

83I.e., the Probloma aequilibrii of Sauveur.
84Craig, John. Methodus figurarum lineis rectis et curvis comprehensarum quadraturas determi-
nandi, London, 1693. L’Hôpital spelled the name “Graiges.”
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Fig. 12.20 With kind permission of Springer ScienceCBusiness Media

all of this, asking you to tell me as a friend if you think that the annual wage would
be sufficient for me to live comfortably, because they tell me it is very expensive to
live in Holland particularly in the time of war (Fig. 12.20).

. . .
[Discussion of roulettes.]
. . .
Your method for determining the points of caustics by refraction, which you

were so good as to send me85 is the same as what you shared with me a long
time ago.86 Even though it is quite easy, I nevertheless hold that one may go even
straighter to the point by seeking only the ratios of the 3 little angles that make up
the two incident rays, two refracted rays and two radii of the osculating circle, which
can be done without any differential calculus, and by an entirely synthetic means,
which consequently is also the most natural. By this method we find that in caustics
by reflection the two angles A C C made by the incident rays and by the reflected
rays are D to two angles B made by the radii of the osculating circle. From this
property we immediately determine the length of the reflected ray DC.87

I am sending you a copy of what I sent to Leipzig. By the way, I still owe you a
response to your letter of February 28. You tell me that Madame is pregnant, my
wife and I wish her a happy delivery; I see you have made her an able arithmetician
in teaching her so well the rule of Three.88 You ask me if my son looks like me, my
wife tells me yes, and one must believe her.

I am, Sir,

Bernoulli

85Memoir Mathematique, August 1693, pp. 129–133.
86Letter 15.
87For a modern treatment of this argument, see Bernoulli (1955, p. 278).
88I.e., cross multiplication. This refers to a joke l’Hôpital made in Letter 32 concerning the birth
of his third child.
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Letter 49: L’Hôpital to Bernoulli
Paris, April 16, 1695

I did not reply earlier, Sir, to your letter of March 26 because I was awaiting a
response from Holland to fully clear up everything that you had asked me on the
subject of the chair of mathematics, but as it has not yet arrived and I am afraid that
you will accuse me of negligence on that which concerns you, I am writing you this
as I wait and as soon as I receive it I will not fail to tell you everything you wish and
also to tell you freely my thoughts about it, because you tell me you wish it. I did
not reply earlier, Sir, to your letter of March 26 because I was awaiting a response
from Holland to fully clear up everything that you had asked me on the subject of
the chair of mathematics, but as it has not yet arrived and I am afraid that you will
accuse me of negligence on that which concerns you, I am writing you this as I wait
and as soon as I receive it I will not fail to tell you everything you wish and also to
tell you freely my thoughts about it, because you tell me you wish it.

. . .
[Discussion of roulettes and inflection points.]
. . .
When you reply to me, send me those two pieces by Mr. your brother and by Mr.

Huygens and believe me, Sir, to be entirely yours with the best of my heart.

The M. De L’Hôpital.

My wife sends you a thousand compliments and to Mrs. Bernoulli.

Letter 50: Bernoulli to L’Hôpital
Basel, May 3, 1695

Sir
I am eager to learn the news from Holland concerning this chair of mathematics.

I would rather you had told me in your last letter, while I was waiting, the city where
it is located, and the person that had given you notice. You will greatly increase the
large obligation that I have to you, if you tell me everything you know about this.

. . .
[Discussion of roulettes and a fourth order analytic curve.]
. . .
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Letter 51: L’Hôpital to Bernoulli
Paris, June 10, 1695

I just received, Sir, your letter of June 5, I have not made a reply to your last letter
any sooner because on that same day my father fell into apoplexy from which he has
just returned but not without much distress. My wife then delivered a daughter,89

as you have guessed, and I lost a little time.
Here is the story of the chair of mathematics in Holland. Mr. Huygens, to whom I

had already written a long time ago that if there should be a chair of mathematics in
Holland it would please me to tell me and to obtain it for you, wrote me a letter, in
which he asked me to find out from you if you were still of the same mind, I replied
to him that I would have to ask about the salary of this chair and the location of the
city so that you would be able to more easily determine your response. He told me
that it had a salary of 1,200 £ in Dutch money, which is worth 1,440 £ in French
money, and that the city was Groningen, but he immediately asked me not to tell
you the name of the city unless you have positively given your word to accept it. On
this matter I wrote you the letter,90 as you know, and as soon as I had received your
response91 I wrote to Mr. Huygens that I found you to be shaken, but you wished
to know if they wanted you in particular, and the city and the other particulars that
you mentioned to me in your letter. On this matter, I have had no response from
Mr. Huygens even though I have written him two more times since then. However,
apparently he made it known to the Curators of the Academy of Groningen, who
wrote you the letter of which you told me. Tell me, I pray you, if you will pass
through Paris, and with regard to the money that you might need for your voyage,
take it, I pray you, from my purse and don’t give it another thought, because it
always gives me great pleasure to do you a good deed in anything (Fig. 12.21).

. . .
[Further discussion of the algebraic curve from Letter 50.]
. . . I finish, my dear Sir, by assuring you of my perfect esteem and of a very

sincere friendship on my part, which remoteness can never alter.

The M. De L’Hôpital.

I reopen my letter to you to tell you that I have seen a man this morning who
told me that Mr. Huygens was dead.92 If this is so I am no longer surprised that
he has not replied to me. I know well that in his last letter he told me he was very
uncomfortable; I would be very angry because he showed me a lot of consideration
and I am certain he would have been good friend to you. Here is a little problem
which I ask you to think about, it concerns the direct method of tangents.

89Charolotte Silvia (June 6, 1696-May 5, 1759).
90Letter 47.
91Letter 48.
92This was a mistake. Huygens actually died on July 8, 1695.
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Fig. 12.21 With kind permission of Springer ScienceCBusiness Media

The curves AEB and DC are given and the curve AMG has the property that
having freely described the arc EM by the evolution of the curve DC, the relationship
of the arcs AE and EM, and the radius CE is expressed by a given equation. We wish
to draw the tangent MT .

I see by what you tell me about Mr. Leibniz that his construction is not very
different from mine. So one might have hoped that it would have appeared sooner.
If you write to Mr. Menkenius, he must do it immediately and do not forget to tell
him that he should make mention of the date he received my construction so that the
public sees than I did not take it from Mr. Leibniz’ construction.93

Letter 52: Bernoulli to L’Hôpital
Basel, June 23, 1695

Sir,
You have told me all kinds of news, both happy and sad. Particularly that of the

happy delivery by Madame has given me extraordinary joy because I feared strongly
for her, because I had not received any of your letters for a long time. I cannot,
therefore help but tell you the joy that this good news caused me. I congratulate you
and also Madame with all my heart. You have a special talent for alternating between
boys and girls (amant alterna Camoenae).94 The illness of Mr. your Father, and the
loss of a lawsuit that you suffered have assuredly distressed me, but the consolation
that I find is that Mr. your Father has come back, and that the judgement was small.

93Leibniz’ solution to the Drawbridge Problem appeared in Acta Eruditorum April 1695, page 184.
L’Hôpital’s second solution appeared two days later in Acta Eruditorum, Supp. II, page 372–374.
94The Muses Love Alternation.
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The most disagreeable news that you tell me is the death of Mr. Huygens; in truth
it caused me to be quite dismayed and I have trouble getting over it, because I
was already counting very much in advance on his friendship which I might have
enjoyed when I was in Holland. Indeed, the desire I had to make the acquaintance of
this great man was the first force that draw me to that county. Finally, I have already
received three letters from Groningen, in the third of which I am urgently pressed to
let my final decision be known so that they know it before the 30th of this month, on
which day the Estates of the city gather together to confirm and invite various people
that the Curators will have named for the various sciences. Thank God the resolution
is taken, because I wrote to Groningen this past Saturday to say that I am ready to
obey as soon as they send me a public letter of invitation. However, my wife has
not yet decided, it being very difficult for her to leave her country and parents, yet
I still hope to persuade her to make this trip with me, or at least to follow me some
time after I have taken possession of this chair. You are certainly very generous by
wanting to provide me with the fare of this trip; I am in your very humble graces;
but I do not know if I can go through Paris, because you may well believe that if I go
with my wife, I will also take my child with a governess and a maid; and therefore I
must choose the shortest path to avoid spending too much for too many people. But
if I travel alone I promise you to take the road to Paris in order to express in person
the most humble gratitude that I owe you for all your great kindness.

. . .
[Further discussion of the fourth degree curve from Letter 50.]
. . .
Now, to the solution of your problem,95 I would very much like to know of what

use it is, it is pretty, but not very useful (Fig. 12.22).

Lemma. Let AaaaD be any curve, which we evolve, making two infinitely close arcs
Eeeee and Nnnnn. I say that the differential of these two arcs is found by making
as EA is to the circular arc ES described by the radius AE and contained between
AE and AS parallel to the tangent De, so the distance of these two arcs EN is to the
fourth quantity that we wish to find. For imagining that the tangents ae, ae, ae, etc.
are drawn, so that they make equal angles EAe, eae, eae, etc. If we now draw nm,
nm, nm, etc. parallel to NE, ne, ne, etc., then it is clear that all the triangles mne are
similar and equal. Now each part ee exceeds nn by the base me; and consequently
the entire curve Eeee exceeds the curve Nnnn by all the me, of which there are as
many as there are angles EAe in the angle EAS (because the sum of all the angles
eae is D EAS) therefore

EA W Ee C Ee C Ee C etc. .ES/ WW EN W me C me C me C etc. .Eeeee �Nnnnn/

Q.E.D.

95The following Lemma appears in L’Hôpital (1696, §166). The subsequent proof of the theorem
appears in L’Hôpital (1696, §169).
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Fig. 12.22 With kind permission of Springer ScienceCBusiness Media

Fig. 12.23 With kind permission of Springer ScienceCBusiness Media

We now give the curves AE and DC [fig. 12.23], and by the evolution of this
latter curve, we freely describe EM and em. The relationship between AE, x and
EM, y is given, and consequently also that between dx and dy. It is required to
draw the tangent at M , of the curve that is generated, that is to say to find the ratio
between mo and Mo. I do this as follows. Let FM D r , and Mo or ne D dr, the arc
of the circle with radius r contained between MF and the parallel FS to CE D s�
and thus by the lemma Mn � oe D s dr

r

�

AE D x; EM D y; nE D dz:
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We therefore have

mo D me � ME C ME � Mn C Mn � oe D dy C dz C s dr

r
:

Now the ratio of En and en to Ee, that is to say that of dz and dr to dx, is given,
because the curve AE is given96 and we can draw a tangent at E. We have therefore
found the ratio of mo to oM, in dx and dy, and consequently we have found the way
to draw the tangent at M . Q.E.D.

I must tell you on this occasion that having been given any curve, I can construct
at the same time another curve, which along with the given curve is equal to an arc
of a circle.97

Given a curve or any portion of a curve ABC [fig. 12.24], whose evolute is DE,
let FG be one of the antivolutes (I call antivolute that which is generated by the
evolution of ED starting at E). Having drawn CI parallel to AG and equal to CF or
AG, I say that the arc of the circle FHI described with radius CF will be equal to the
given curve ABC augmented by its antivolute FG, and consequently if the evolute
DE has its two halves LD and LE similar, and if we take EF D DA, it is clear that
FG will thus be similar and D ABC, and so the given curve ABC will be D to half
of the arc FHI. All of this is easily demonstrated through my lemma.

Fig. 12.24 With kind permission of Springer ScienceCBusiness Media

96As noted in Bernoulli (1955, p. 295), this should say “because the curves AE and DC are given.”
97L’Hôpital combined this and the previous lemma in L’Hôpital (1696, §166). See also §168.
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I am to you with all respect as I am to Madame, Sir, your very humble and very
obedient servant,

Bernoulli

Letter 53: L’Hôpital to Bernoulli
Paris, July 6, 1695

I have received, Sir, your letter of June 23. I am very glad that this chair of
mathematics in Holland suits you, and to have contributed in this way to your career.
Mr. Huygens is not dead, as I told you,98 but his condition is not any better because
he has a raging headache in such a way that one cannot get any reason out of him;
it’s a deplorable accident. If you do not bring Mrs. Bernoulli with you and you are
willing to travel through Paris, it would give me real pleasure, because otherwise I
expect we will not see each other for a long time, however there is no need to disturb
you and you should do what suits you best. Please find attached a bill of exchange
for 200 £.

. . .
[Discussion of the fourth degree curve from Letter 50 and inflection points.]
. . .
You have solved my problem on direct tangents very well. I also believe as you

do that is not of great utility, but what gave me the opportunity to imagine it was
something that Mr. your brother proposed. Regarding that, I sent the solution with
the proof of it that I found to Mr. Leibniz with another very simple problem that
is the following. You know that you have given the construction of the curve that
continually touches the hypotenuse of a right angle by sliding between its sides.99

I considered the matter more generally in the following way. Given any two lines
AB and CD with a constant straight line AC, if one imagines that its extremities A
and C slide between these curves, it is clear that this line AC continually touches
through this motion a certain curved line G, whose points we wish to find.

Solution. I draw the tangents AE and CE, and dropping the perpendicular EF
from their point of intersection E to AC, I take CG D AF, and I say that the point
G will be on the curve we wish to find. I do not send you the proof because you will
find it easily.100

I should be very glad if you send me all the ways by which you have solved
your problem of the centrifugal force under your two different assumptions with the
method you have used to reduce them to the rectification of a curved line. You know
that I have found two curves that satisfy it and I think are the simplest, but you tell

98In Letter 51.
99This was something that Bernoulli taught L’Hôpital in 1692 (Bernoulli 1742, pp. 447–448).
100This proposition and the full proof are given in L’Hôpital (1696, §158).
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Fig. 12.25 With kind permission of Springer ScienceCBusiness Media

me that you can give three under each of these assumptions, which also satisfy it,
and this is what I wish to see (Fig. 12.25).

I have a very different method from yours of finding the quadrature of roulettes
that have arcs of circles as their bases, whether the describing point falls on, outside,
or inside the circumference of the mobile circle. I am sending them to you so that
you can to take care of having them put in the Acts of Leipzig, if you judge it
appropriate.101

Please give me notice of the time that you will leave and the party you will take.
I hope you will have satisfaction in this new position, and I will always look for
opportunities to tell you that I am in my heart, and of my inclination entirely yours

the M. de L’Hôpital.

My wife makes many compliments to you and Mrs. Bernoulli.
As you told me in your penultimate letter that you would be very glad to see what

Mr. Leibnitz communicated to me on the inverse of tangents, I am sending them to
you and I beg you, when you have read and examined them at your leisure, to return
them to me and not to communicate them to anyone, because Mr. Leibniz wrote me
in a way to make me believe that he would not be happy if I showed it.

Letter 54: L’Hôpital to Bernoulli
Paris, July 20, 1695

Because it has been some time, Sir, since I wrote you and I have received no
response, I am at a loss to know if you have received the bill of exchange for the
200 £ that I sent you.

I received all the Acts of Leipzig you mentioned to me in your last letter, for
which I thank you.

101This appeared in Acta Eruditorum, August 1695, pages 372–374.
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A young man from Neuchatel came to see me who says he is a good friend of
yours. He told me that Mr. your brother has had the Geometry of Descartes with the
commentaries by Schooten printed,102 and he had added several pages at the end
containing remarks of his own. I would be very glad to have these remarks, and so
you would make me happy to enclosing them with your letter and sending them to
me by post, because from what he said I do not believe that they are very large. I
am, Sir, yours with all my heart

the M. de L’Hôpital.

Letter 55: Bernoulli to L’Hôpital
Basel, July 26, 1695

Sir
I did indeed receive your letter of the 6th of this month with the bill of exchange,

which it pleased your kindness to attach, and for which I thank you infinitely. I
am delighted to learn that Mr. Huygens is not dead.103 I have been told the same
thing from Holland, but that he has been extremely ill for four months; I wish him
a full recovery of his health, so that I will have the pleasure of enjoying his learned
conversations when I will be in Holland – to this end, I wish you would let me know
me the city where he lives. Dr. Braun wrote me last week to prepare me for the
voyage, because they expect me in Groningen by the month of October the latest,
and I will receive the letter of vocation any day now. I am assuredly not a looking
forward to such a prompt departure, and what troubles me most is that I do not know
yet if my wife will go with me or not, which she has not yet decided, even though
I have done my best to persuade her, so I’m entirely at a loss to know how to begin
making preparations for the voyage. At very least tell, me for God’s sake, if I may
go safely and without danger from France to Holland, and if you can procure me a
passport or a letter of safe conduct. Messrs. Leibniz, Menkenius, my brother-in-
law104 who is in Amsterdam, and others also wish that I would visit them, but how
can I satisfy everyone? My duty compels me, in this case, to leave all by myself and
obey you, even if the detour should be three times as larger as it is. You will forgive
me, Sir, if I’m short on mathematics at this time, because you can clearly see I am
overwhelmed with other thoughts.

. . .
[Discussion of inflection points, centrifugal force, and other matters.]
. . .

102Notae et animadversiones tumultuariae in geometriam Cartesii. Frankfurt 1695.
103In letter 51, L’Hôpital told Bernoulli that he had learned that Huygens had died. In letter 53, he
reported that this had been in error, but in fact Huygens had died on July 8th.
104Emanuel Falkner.
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That is everything that I had to tell you or it will be after paying my respects to
Madame and also those of my wife.

Sir,

Your very humble and obedient servant
Bernoulli.

Letter 56: L’Hôpital to Bernoulli
Paris, August 22, 1695

I have received, Sir, your letter of July 26, by which I see that you will go to
Groningen in the month of October at the latest, and that you do not yet know if
you will bring Mrs. Bernoulli with you, nor what route you will take. I would be
delighted to see you on your way, because I foresee that if I miss this opportunity I
will not get another for a long time. Nevertheless, if it is necessary for you to find
yourself in Groningen by the month of October and you can only stay here for a
few days, I believe it will be better for you to take the shortest route, because the
pleasure that I would have in seeing you too soon be followed by the sorrow of
losing you, and I had counted on you being able to give me a month of your time
that you would spend in Oucques with me, where I am going at the beginning of
October. With regard to a passport, I am assured that it will be very easy to get one
to bring with you if you bring a certificate with you, because you are from Basel,
and the Swiss may pass freely. If you could have given me this time it would have
made me very happy, esteeming you as much as I do, but I would be very angry if
this should put any obstacles to your career, so take the path that suits you best.

I have no doubt that you know about the death of Mr. Huygens.105 He was 66
years old and left his inheritance to his nephews to the exclusion of his brother,
and named two Dutch mathematicians to edit his writings with care and to have
them printed. I am very sorry about this myself, because he was a great friend to
me. I am persuaded that had he known you, he would have thought highly of you
and rendered you any service that he could have. It was he that named you to the
Gentleman of Groningen, who had addressed themselves to him in order to find a
mathematician of his stature, having remembered the request that I had made to him
on your behalf, as he told me in his letter.

I am about to print my treatise on the conic sections, and being urged to do so
by Father Malebranche and several of his friends. I will add to it a small treatise on
the differential calculus,106 in which I will give you all credit that you deserve. I
will not speak at all of the integral calculus, leaving this to Mr. Leibniz who intends
to write a treatise on it, as you know, with the title de scientia infiniti, such that this

105Huygens died on the morning of July 8, 1695.
106This is the first mention of L’Hôpital (1696) to Bernoulli.
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will only be an introduction to his. If you wish to put into order your rules of the
logarithmic calculus, that you invented a while ago, I will include them at the end
under your name, if you wish, and this will contribute to making this treatise better.
Make use of this as you judge appropriate.

. . .
[A discussion of a question about conic sections and other topics.]
. . .
With regards to the Acts of Leipzig I have asked Mr. the Abbé Bignon if we may

send them with his and I will send you the answer. I am, Sir, yours with the best of
my heart

The M. de L’Hôpital.

My wife sends you a thousand compliments and to Madame Bernoulli.

Letter 60: The Marquise de L’Hôpital to Bernoulli
Oucques, February 1, 1696

I have received, Sir, the letter that you wrote to Mr. de L’Hôpital dated January 4,
which I have not given him because he is not in a condition to apply himself to
mathematics, having been very sick, although he is beginning to recover a little as
soon as he is well again I will give him your letter, which I assure you will give him
much pleasure, always having great esteem and friendship for you. I am writing you
this letter lest you be worried about not receiving a reply from Mr. de L’Hôpital.
His illness delayed our return to Paris, to where I do not think we can return before
the end of this month. I am glad that you are adjusting to your new position as well
as Mrs. Bernoulli, whose homesickness will pass with time; I send her a thousand
compliments. Mr. de L’Hôpital has received from Mr. your brother the Professor the
issues of July and August and one of the supplements, but it was at the time that he
wrote him and sent him Mr. Menkenius’ letter, as he told you, and he even replied
not to send him anything until we are in Paris, and we will look for some other way
because it costs a lot by this route. Mr. de L’Hôpital will see if he cannot get them by
means of the Mr. the abbé Bignon. If he finds that this is not convenient, he will ask
you to send them with the help of Mr. your brother the painter;107 because I know
his feelings towards you and you may be assured that they are quite different from
those he has for Mr. your brother the professor, whom he respects as one should
such an able man, but he has a sincere friendship for you. He108 has only written to
Mr. de L’Hôpital with great decency and offers of service, such as sending him the
Acts in your place. For myself, I am now sorry not to have cultivated mathematics;

107Hieronymus Bernoulli (1669–1760), youngest brother of Jakob and Johann.
108That is, Jakob Bernoulli.
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perhaps I would now be able enough to propose some questions to you. All that I
can do is to assure you, Sir, that you have no truer friend than me.

la marquise de Lhospital

Letter 63: L’Hôpital to Bernoulli
Paris, June 15, 1696

I begin by making many excuses to you, Sir, for not having replied sooner to your
letter of April 21,109 but, I have been impeded by an infinity of matters that have
happened to me. At present I am calmer and I will be more regular.

It was very timely that Mr. your brother110 came to me yesterday, because I would
have sent you a bill of exchange for 300 £ in today’s post through Mr. Compagnie
in Amsterdam, because it is easier to find correspondents there than in Basel. As
I have seen in your letter of June 5, that he gave me, that you want me to put this
money in his hands, I withdrew it from the banker and I will not fail to give it to him
prior to his departure and to get back a receipt, as you ask me (Fig. 12.26).

It is true that Mr. Varignon told me a few days ago that you had sent a problem
to Leipzig, which consists in determining the nature of the curve in a vertical plane
that would be described by a heavy body in traveling from a given point to another
given point in the least possible time.111 This problem seems to me the most curious
and the most beautiful that has even been proposed and I would be glad to apply
myself to it, but for that it would be necessary for you to send it to me reduced to
pure mathematics, because physics puzzles me, and as I have not yet completely

Fig. 12.26 With kind permission of Springer ScienceCBusiness Media

109The Marquis had recovered from his illness and written to Bernoulli on April 2.
110Hieronymus.
111This is the beginning of a discussion of the Problem of the Brachistochrone, or line of quickest
descent. Bernoulli sent it to Varignon on May 15 and on June 11 it appeared in the Acta Eruditorum.
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recovered from my illness, I dare not apply myself vigorously to it. Permit me to
ask you, however, for the solution of the following question.

Let any two curves AD and AC be given in a plane, along with a fixed pointE not
on this plane. If we imagine a conic surface EAC that has the point E as its vertex,
and the curve AC as its base, and that we make the other curve AD turn about its
axis AB, it is clear that it will describe through this motion a surface that will by its
intersection with the conic surface. Now, I wish to find the manner to draw a tangent
from a given point on this curved line. My book will appear any day now;112 I treat
only the differential calculus which I attempt to explain in full depth, and my goal
has been only to make a proper introduction to what Mr. Leibniz and others may
give in what follows. I have no doubt that if you would like to take the trouble, you
could give us everything one might want on the integral calculus, and it is this that
we ought to get you to work on, because it seems to me that Mr. Leibniz is too busy
to be able to explain these things as one would wish. I would have liked to have my
conic sections printed at the same time, as I told you, because that has only have
barely filled one volume. However, because I did not wish to work on it since my
illness it turns out that the first treatise will appear by itself. You will see that I give
you the credit that you deserve, and it would be useless to tell me to send you one
because you well know that you are the first person to whom I will send it, being
with a most sincere friendship entirely yours and to Madame Bernoulli’s. My wife
wishes both of you a thousand marks of affection.

the M. De L’Hôpital.

I am sending this directly to Groningen, because they assure me at the post that
it will go through and it is not necessary to make any detours, so please reply to me
as soon as you have received it.

Letter 64: Bernoulli to L’Hôpital
Groningen, June 30, 1696

Sir
I received the honor of you letter from the 15th of this month, in which I saw

with pleasure that my brother113 had come in enough time to get the money that you
intended for me; and indeed I learned from a letter I received from him yesterday
that you gave him 300 £ in return for a note in his hand. Thank you infinitely for
your kindness, seeing from this that you still have the same affection for me as you
have honored me with in the past; I would consider myself to be the happiest in the

112This is l’Hôpital’s second mention of his book (L’Hôpital 1696).
113Hieronymus.
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Fig. 12.27 With kind permission of Springer ScienceCBusiness Media

world, if you continue to do so. For my part, I will not miss out on any occasion to
give you tokens of my obligation and just gratitude that one owes to such a generous
benefactor.

It is true, Sir, that I have sent to Leipzig the problem that Mr. Varignon
communicated to you on my behalf, but I do not know whether or not if it has
been printed. However, having found it very curious as you have also found it, I
also sent it to Germany and to England, to be proposed to the Mathematicians of
those countries, but I do not know if anybody has yet given the solution. Since I
communicated it (which was not long ago) to Mr. Leibniz, I have not yet received
a response from him, so I cannot know whether he has solved it – maybe he will
solve it, maybe not – because one needs a particular address, which he will not soon
know, I am sure (Fig. 12.27).

It is very easy to reduce this problem to pure mathematics, there being nothing
else from physics, but the ordinary principle of Galileo that we have also supposed
in the isochrone curves, that is knowing that the speeds of falling bodies are in
a subdoubled ratio114 to the perpendicular heights traveled. Given this let the two
points A and B be given, we wish to find the nature of the curve AMB, along which
the moving body falling from the point A arrives at the point B in the least time.
Having denoted the horizontal abscissa AC by x and the vertical ordinate CM by
y; the speed of the moving body at M will be expressed by

p
y. Now dividing the

distance Mm traveled by the speed we have that the time it takes to travel along Mm,
and consequently

p
dx2 C dy2p

y

114In other words, the speeds of falling bodies are to one another in the same ratios as the square
roots of the perpendicular distance traveled.
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expresses this time. And thus taking all of the

p
dx2 C dy2p

y

from A to B , what results will be the time that the moving object takes to go from
A to B .

So now this is how the problem is reduced to pure mathematics. Among all the
lines AMB joining two points A and B we wish to find the nature of the one for
which

Z p
dx2 C dy2p

y

is the smallest. I would wish that some of your Geometers who boast of possessing
such excellent methods of maximis and minimis, would set themselves to it, because
here is an example that would give them some trouble and maybe more than their
method could do.

For heavens sake, Sir, why would you want to break your head when you have not
fully recovered from your illness, instead you should break the desire you have to
solve this problem, and think about getting some time to rest after having completed
your book, which I imagine has contributed more than a little to the bad state of your
health.

I solved your question that you proposed to me quite easily, and even more
generally than what you had asked for. Because in place of a conoid surface made by
the revolution of a given curve around a given axis, and in place of the conic surface,
the base of which is a given curve, substitute any two other given surfaces, whether
convex or concave, regular or irregular, and finally geometric or mechanical. These
two surfaces intersect each other in any manner whatsoever; the section will be
another curved line called solid as distinct from those that are described in a plane
and consequently may be called plane. Therefore we wish to find the way of drawing
a tangent from a given point on this solid curve. I say to solve this problem that
having applied two planes that touch the two given surfaces at the given point, the
common section of these two planes, which will be a straight line, will be the tangent
to this solid curve at the given point; because the demonstration is very clear, I do
not put it here.

I must congratulate you, Sir, because your book has begun to appear, for my
brother115 informs me that you gave him several copies for Messrs. Leibniz and
Menkenius. Why did you not send them to me? I could have gotten them to
these gentlemen much more conveniently than my brother the Professor, because
Groningen is more than 3 times closer to Hannover than Basel. I accept with great
thanks the offer that you made to me of a copy. It is your usual politeness that you

115Hieronymus.
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have given a place for my name in your book, for which I am very obliged. I foresee
in advance that when it becomes known to the world, this book will provide you with
a great reputation worthy of your Illustrious Person. I also believe that Mr. Leibniz
will make us wait for a long time for his treatise de scientia infiniti, being too busy.
You may well imagine the reason why I have not been willing to write anything so
far regarding this matter; it is that I have not wanted to do anything without your
consent following the promise that I gave you in the past. However, seeing now that
you are getting me worked up about it yourself, I might very well get the intent
to make a continuation where you have left off, in explaining the integral calculus,
provided I have the leisure. My wife and I send our respects to Madame.

I am Sir

Your very humble and very
obedient servant

J. Bernoulli.

Letter 66: L’Hôpital to Bernoulli
Paris, September 10, 1696

I received, Sir, your letter of August 4, which gave me very great pleasure, because
it let me know that you have not forgotten me. As for the letter you told me you
had written to me beforehand, it must have been lost, because I did not receive
it. I am obliged to you for the offer that you made to me to share with me your
objections to Mr. Leibniz’ system for the estimation of forces and of his responses,
but nevertheless I ask you to reserve this goodwill for another time when I will
examine this matter in depth, which appears to me of great importance for physics.

I have given the order to my publisher to send two hundred copies of my book
to Leers in Rotterdam, and to the aforementioned Leers to send you one as soon as
possible. I gave three of them to Mr. your younger brother when he was here, which
were the only ones that I had, one of which was destined to Mr. your brother in
Basel and the other two for Mssrs. Leibniz and Menkenius. If you have occasion to
write to one of them, you will oblige me by asking them if they have received them,
because I have received no news. Mr. your brother the professor asked me to have
them sent.

Mr. Battier116 went back to Basel because of a vacant chair he wants to obtain. I
am delighted that you are willing to give us the explanation of the integral calculus;
it seems that no one can do it better, and that this book will be highly sought after.
In it, you will be able to assume what I have explained of the differential calculus in
my book, which can be regarded as an introduction to yours. I believe you should
waste no time getting to work on this, because curiosity about these matters is very

116Samuel Battier (1667–1744) friend of Johann Bernoulli and student of Jakob Bernoulli.
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strong. You will find included the receipt for three hundred pounds from Mr. your
brother, which I am sending you as you have asked me. I am, Sir, entirely yours and
the secretary sends you a thousand compliments as well as to Madame Bernoulli.

The M. De L’Hôpital.

Letter 71: Bernoulli to L’Hôpital
Groningen, Mid-February 1697

. . .
[Discussion of two mathematical problems.]
. . .
I have finally received a copy of your book and I thank you most humbly for it.

You have done me too great an honor in speaking so highly of me in the preface.
When I compose something in my turn I will not fail to give you the same in
return. You explain things most intelligibly; I also find a beautiful order there and
the propositions well organized; everything is admirably well done, and a thousand
times better than I could have done. Finally, I desire nothing more than that you had
put your name on the cover of the book, which would have given a much greater
glory, and lent more Authority to our new method. If not for this, the book would
undoubtedly be sought after with greater desire. Now, I must say yet another word
with your permission, you seem to me a little too liberal in giving recognition to my
brother, as if you had made use of his discoveries, and yet I have noticed nothing so
far in your book that might be attributed to my brother with justice. My wife and I
pay our compliments to Madame. And I am entirely,

Sir,

Your very humble and very obedient servant
J. Bernoulli.

P.S. For God’s sake tell me if Mr. Varignon is dead or alive, and in which corner
of the world he might be; he should reply to my very obliging letter that I last wrote
to him a long time ago.

Letter 92: The Marquise de L’Hôpital to Bernoulli
Paris, December 15, 1707

I am delighted, Sir, that the present that I gave you of the posthumous book of the
late Monsieur de L’Hôpital pleases you. Given the esteem I have always had for
you, you may well believe that I would not forget you on this occasion; no one can
better judge this book than you. I received with pleasure the marks of gratitude that
you gave me in your letter, for the memories that I brought back to you by sending
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you this book. If I could do something more to be at your service from this country,
I assure you that I will carry this out with great joy. Mr. Varignon brought Mr. your
nephew to me,117 who asked me on your behalf for my portrait, to put it with the
one of the late Mr. de L’Hôpital that you already have. I promised to let him make a
copy whenever he wishes. Mr. Varignon tells me that one day he will be a very good
painter. I hope he excels in this art as you have done in mathematics, but however
skillful he may become, he will be hard pressed to acquire such a great reputation
in painting, as you have made in mathematics, and to be as excellent a painter as
you are an excellent geometer. I will always be most truly, Sir, your very humble
servant.

the Marquise de L’Hôpital.

117Niklaus (I) Bernoulli “the Younger” (1687–1769).



Chapter 13
Fontenelle’s Eulogy for the Marquis de
L’Hôpital

Guillaume François de l’Hôpital,1 Knight, Marquis of Sainte Mesme, Count of
Entremont, Lord of Ouques, la Chaise, le Bréau and other Places, born in 1661
to Anne2 de l’Hôpital, Lieutenant General of the Armies of the King, first Equerry
to His Royal Highness Gaston, Duke of Orleans, and Elisabeth Gobelin, daughter
of Claude Gobelin, Quartermaster General of the Armies of the King, and Ordinary
Estates Counsel.

The House of l’Hôpital had two branches, to the elder of which Mr. the Marquis
de l’Hôpital had joined the name of l’Hôpital to that of Saint Mesme, and the
younger, which is presently deceased, produced two Marshals of France, and
the Dukes of Vitri. Both of these had as a common stem Adrien de l’Hôpital,
Chamberlain of King Charles VIII, Captain of the Hundred men at arms, and
Lieutenant General in Bretagne, who commanded the vanguard of the Royal Army
in the Battle of St. Aubin in 1488.

Mr. the Marquis de l’Hôpital, whom the Academy of Sciences has lost, being still
a child, had a Tutor, who wanted to learn Mathematics in the leisure hours that his
job afforded him. The young Pupil, who had little taste, and even, as it would appear,
little talent for Latin, and barely an outline of the Elements of Geometry of Circles
and Triangles, but when the natural inclination which almost always foreshadows
great talents declared itself, he set himself to studying with a passion that which
would have frightened anyone other than him at the first sight. He then had another
Tutor, who was obliged by his example to apply himself to Geometry, but even
though he was a man of intellect and industry, his Student always left him far behind.
That which one obtains only through work never measures up to the favors of nature.

One day Mr. the Marquis de l’Hôpital, being only 15 years old, found himself
at the house of Mr. the Duke of Roannés, where skilled Geometers, and among

1This is a translation of Fontenelle’s Eulogy (Fontenelle 1708, pp. 116–145).
2Anne-Alexandre.
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them Mr. Arnaud, spoke of a Problem from Mr. Pascal on the Roulette, which
appeared very difficult. The young Mathematician said that he did not despair of
being able to solve it. They found that they could barely forgive this presumption
and this temerity, because of his age. Nevertheless, a few days later he sent them the
solution to the Problem.

He entered into the services, but without renouncing his more beloved passion.
He studied Geometry only in his Tent, it was not only to study that he retired there, it
was also to hide his devotion to study. For we must admit that the French Nation, as
polite as any Nation, is still in this sort of barbarism, that it doubts if the Sciences,
pushed to a certain perfection, do not demean one, and if it is not more noble to
know nothing. He was so good at the art of hiding his talents, and being ignorant
for the sake of propriety, and he did so well in the craft of war, that those men who
were most penetrating on the faults of others never suspected him of being a great
Geometer, and I have seen myself some of those who had served at the same time,
completely astonished that such a man who had lived like them, and among them,
became one of the great Mathematicians of Europe.

He was Cavalry Captain in the Regiment of the Colonel General, but the
weakness of his vision, which was so short that he could not see at ten paces, caused
him perpetual inconvenience in service, that he had for a long time unsuccessfully
tried to overcome. He was finally obliged to give up and leave the career where he
might have hoped to match his Ancestors.

As soon as war no longer shared in him, Mathematics benefited. He judged by
the Book of De la Recherche de la Verité that its Author3 would be an excellent
Guide in the Sciences; he took his counsel, made good use of it, and became friends
with him in a friendship which lasted until his death. Soon his knowledge reached
the point where it could no longer be hidden; he was only 32 years old, when the
Problems derived from the most subline Geometry, selected with great care for their
difficulty, and proposed to all Geometers in the Acts of Leipzig, tore from him his
secret, and forced him to confess to the public that he was able to solve them.

The first was the following, proposed in 1693 by Mr. Bernoulli, Professor of
Mathematics at Groningen. To find a curve such that all its Tangents terminated at
the Axis are always in a given ratio with the parts of the axis intercepted between
the curve and these Tangents. It was only solved by Mr. Leibniz in Germany, by
Mr. Bernoulli in Switzerland, the brother of the man who had proposed it, by Mr.
Huygens in Holland, and by Mr. de l’Hôpital in France.

Mr. Huygens admits in the Acts of Leipzig that the difficulty of the Problem
had first made him resolve not to think about it, but that such a novel Question
had troubled his sleep in spite of himself, had persecuted him relentlessly, and that
finally he was no longer able to resist. We readily judge what kind of material in
Geometry that this might be, that it appeared so difficult to Mr. Huygens.

All of those who know even a little of the News of the Sciences, have heard
tell of the celebrated Problem of the quickest descent. Mr. Bernoulli of Groningen

3Nicolas Malebranche.
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had asked in the Acts of Leipzig, supposing that a heavy body falls obliquely to the
Horizon, what would be the Curved line that it should describe to fall as quickly as
possible? For, as he said in the Historie of the Academy of Sciences of 1699, p. 67,
this most surprising Paradox was demonstrated: that the straight line, although the
shortest of all the lines that are drawn between the two given points, was not the path
that the Body should take to fall in the least time. He was also certain that Curve in
question was not a circle, as Galileo had thought, and the error of so great a man may
serve to give a sense of the difficulty of the Problem. Mr. Bernoulli proposed this
Enigma in the month of June of 1696, and gave all the Mathematicians of Europe
the remainder of the year to think about it. He saw that these six months were not
sufficient, he further gave the first four months of 1697, and in those ten months only
four Solutions appeared. They were from Mr. Newton, Mr. Leibniz, Mr. Bernoulli
of Basel, and Mr. the Marquis de l’Hôpital. England, Germany, Switzerland, and
France each gave one Geometer for this Problem.

These same names are found at the top of several similar solutions in the Acts
of Leipzig, and they seem to be in possession of the rarest and most elevated of
knowledge.

An account was even given in the Hist. of 1700, p. 78, of a Problem proposed,
like almost all the others, by Mr. Bernoulli of Groningen, and which was only solved
by Mr. de l’Hôpital. It concerned Finding in a vertical plane, a curve such that a
Body which describes it, descending freely, and by its own weight, always pushes
against it at each of its points with a force equal to its absolute weight. One has
aimed to make known the variety of difficulties with this problem, that is to say its
beauty. The Geometers of today are not easy to satisfy on these difficulties, and that
which made Archimedes leave the Baths to shout through the streets of Syracuse, I
have found it, would not be a very glorious discovery to them.

The Hist. of the Academy of 1699, p. 95, also spoke of a solution of Mr. the
Marquis de l’Hôpital, which few others could have attained. Mr. Newton in his
excellent Book on the Mathematical Principles of Natural Philosophy gave the
figure of the Solid which cleaves water, or other liquid, with as little difficulty as
possible. But he did not let it be seen by what method nor by what route he came
to determine this figure. His secret seemed to him worthy of being hidden from the
Public. Mr. Fatio, the famous Geometer, fancied that he had discovered it, and sent a
printed Analysis of it to Mr. de l’Hôpital. It contained 5 large pages in quarto, almost
entirely of calculation. Mr. de l’Hôpital, alarmed by the length and lazy about the
new method, believed he would have rather looked for himself for this solution. He
had effectively found it within two days, and it was simple and natural. This was one
of his great talents. He went not only to Truth, however hidden it was, he went there
by the shortest route. A certain kind of fate decrees in all things that the most natural
methods or ideas are not those that present themselves most naturally. One almost
always puts too great a value on the research that one undertakes, and there are few
geniuses, greedy ones fortunately, who expend only what is absolutely necessary. It
is not that there is a lack of wealth and abundance to supply to useless expenditures,
but there is a greater art in avoiding them, and even a true wealth.
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It would take too long to list here all the Masterpieces of Geometry with which
Mr. de l’Hôpital, and the small number of his equals, have embellished the Journals
of both Germany and of France. One suspects, no doubt, that in order to enter into
those Questions which were reserved for them, they must have had, in addition to
their natural genius, some particular Key, which was only in their hands. Indeed
there was one, and it was the Geometry of the Infinitely small, or the Differential
Calculus, invented by Mr. Leibniz, and at the same time also by Mr. Newton,
and then continually perfected by them and by Messrs. Bernoulli, and by Mr. de
l’Hôpital.

The illustrious Mr. Huygens, who was not the inventor of the differential
Calculus, as Mr. Leibniz was, who did not use it in any of his geometrical studies,
as Mr. de l’Hôpital and Messrs. Bernoulli, who was led without this help to lofty
Theories, and made a most brilliant reputation, who might, in the manner of other
men, and perhaps even more legitimately, mistake what he did not know, and
considered useless that which had not been necessary to him for these great Works,
had nevertheless judged, both by the merit of those who employed this Method,
and by the miracles that he saw emerge from it, that it was worthy of his study.
He was a great enough man to have admitted that he could still learn something in
Geometry, he addressed himself to Mr. de l’Hôpital, who was almost half as old as
he, to instruct him in the differential Calculus, and no doubt this feature in the Life
of Mr. de l’Hôpital is even more glorious to Mr. Huygens than to him.

It is not that Mr. Huygens did not already know the Land of the Infinite by
himself, where one is brought at every moment by the differential Calculus, he
had been obliged to go just as far in some of his most subtle researches, especially
those he had done for the immortal invention of the Pendulum, because refined
Geometry can not go far without penetrating into the infinite. However, there is
a great difference between knowing the Map of a County in general, and being
familiar, in particular, with all the roads, including the little trails that save so much
trouble for Travelers.

Mr. Huygens was then in Holland, where he had retired after leaving Paris and
the Academy of Sciences, of which he was one of the principal ornaments. It seems
from many of his Letters that were found in the papers of Mr. de l’Hôpital, and
above all those of the years of 1692 and 1693, that he consulted Mr. de l’Hôpital
concerning his difficulties with the differential Calculus: that when something
stopped him, he did not catch on to the Method, but even though he did not possess
it well enough, he saw with surprise and with admiration the extent and the fertility
of this Art, that wherever he turned his sight, he discovered new uses, and finally,
in his own words, he conceived of an infinite progress and contemplation. He even
declared publicly in the publication of the Acts of Leipzig, that without a differential
Equation he would never have come to the goal of finding the Curve whose
Tangents, and the portions of the axis always make a given ratio, and furthermore, he
adds in the same Acts, one must note in this Problem a new and singular Analysis
that opens the path to a quantity of things concerning the Theory of Tangents, as
the illustrious inventor of the Calculus has well observed, without which we would
have great trouble being admitted to such a profound Geometry. At the same time
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he wrote to Mr. de l’Hôpital that he owed this differential Equation to his lessons,
which gave him the solution to the Problem.

Until then the Geometry of the Infinitely small was still nothing but a kind of
Mystery, and, so to speak, a Cabalistic Science shared among five or six people.
They often gave their Solutions in the Journals without revealing the Method that
produced them, and even when one could discover it, it was only a few feeble rays of
this Science that had escaped, and the clouds immediately closed again. The Public,
or rather the small number of those who aspired to the higher Geometry, were struck
with a useless admiration that clarified nothing, and they found a way to attract their
applause, while withholding the instruction that they should have given them.

Mr. de l’Hôpital resolved to communicate without restriction the hidden treasures
of the new Geometry, and he did it in his famous book on the Analysis of the
Infinitely small, which he published in 1696. There, all the secrets of the Geometric
Infinity were revealed, and the Infinity of the Infinity, and in a word, all the different
orders of Infinities, which rise up one above the other, and form the most astonishing
and the most daring Edifice that the human Mind has ever dared to imagine.

Just as there are determinate ratios between finite magnitudes, which make up the
unique object of Mathematical research, and magnitudes of these different orders of
Infinities, one is brought by the path of the infinite to understanding of the finite,
which no other Method, that did not have the audacity could ever attain, and at
the same time the skill to address the infinite. The Book of the Infinitely small was
therefore sparkling with truths unknown to the old Geometry, and not only unknown,
but often inaccessible to this Geometry. The old truths found themselves lost in a
crowd of new truths, and the ease with which we saw them born made one regret the
efforts that they had previously cost their inventors. Proofs that by other Methods
had demanded an immense detour, where they had even been possible, or which
even in the hands of another Geometer instructed in the Method had been long and
confused, were of a simplicity and a brevity that almost rendered them suspect.

Such is the effect of the general Methods, once one has sought to discover them.
One is at the fountain, and one needs only to follow the peaceful current of the
consequences. A single Rule from the Book of Mr. de l’Hôpital gives the Tangents
of all imaginable curves; another, all of the greatest and least Ordinates, or all the
Inflection points and Cusps, or all of the Evolutes, or all Catoptrics at once, or all
Dioptrics. Entire Treatises written by the great Authors sometimes are reduced to
a few Corollaries that we meet along the road, and we have trouble distinguishing
among the multitude. Everything is related by the kinds of Systems that Mr. de
l’Hôpital began to put into Geometry, and which will become widespread in the
future.

There are, especially in Mathematics, more good Books than there are ones that
are well made, that is to say that we find enough that may teach, but few that teach
with a certain method, and, so to speak, with a certain charm. It is easy enough to
have good material in one’s hands, but to neglect the form, Mr. de l’Hôpital has
given us a Book that is as well made as it is good. He had the skill to make a small
enough Volume out of an infinity of things, and in it he put this brevity and this
clarity, so delicious to the mind, the order and the precision of the ideas so that we
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might almost dispense with using words. He only wishes to make us think, caring
more to bring us to the discoveries of others, than to jealously go about displaying
his own.

This work was also received with universal acclaim, because acclaim can
be called universal when it’s clear how often new and original works fail to
be appreciated all over Europe, especially when they require effort to be well
understood. Those who pay attention to the events in the History of Science know
the eagerness with which the Analysis of the Infinitely small was seized by all
budding Geometers, who are indifferent to the ancient and the new method, and
who have no interest other than to be educated. Because the intention of the Author
had been principally to produce Mathematicians, and to sow the seeds of upper
Geometry into their minds, he took pleasure to see that they bore fruit from it every
day, and that the Problems previously reserved for those who had grown up in the
thorns of Mathematics, became first attempts for these young people. Apparently,
the revolution became even greater, and with time it found itself with as many
disciples as there had Mathematicians.

After seeing how useful his Book on the Infinitely small had been, he engaged
himself in another work which was also suitable for educating Geometers. In
this plan he embraced the Conic Sections, geometric Loci, the Construction of
Equations, and a Theory of Mechanical Curves. This was precisely the plan of the
Geometry of Mr. Descartes, but more extensive and more complete. He made no
pretense that this work was as original, nor as sublime, as the former. He might have
turned his research to the side of the integral Calculus, which follows and which
assumes the Differential Calculus, which has greater, and until now insurmountable
difficulties, and which because of this today occupies the greatest Geometers, and
which has become the object of their ambition. However, he preferred an enterprise
from which the public could draw more general and more necessary instruction, and
his Zeal for Geometry had outweighed the interest in his glory. Nevertheless, I am
a witness that he could not keep himself from missing the Integral Calculus.

This book was almost finished, when at the beginning of 1704 he was attacked
by a Fever, which did not seem particularly dangerous at first, but as one saw that it
resisted all the different remedies that were employed, one began to fear it, and the
Sick Person faces no greater peril than to contemplate death. He prepared himself
in a most edifying manner, and finally fell into an Apoplexy from which he died the
next day, on February 2, at 43 years of age.

Some have attributed his death to the excesses that he had done in Mathematics,
and what could confirm it, I knew from he himself that often the mornings that
he had destined for this study became entire days without him noticing it. He had
wanted to renounce this for the sake of his health, but he could never maintain this
hardship for more than 4 days. Furthermore, it was natural enough to believe that he
should have made great efforts of the mind, when one considers to which point had
reached the age of 43 years, and how much time in such a short life had been spent
on Mathematics. He had served, he was of a birth that engaged him in a great number
of duties, he had a Family, household responsibilities, a very considerable estate to
manage, and consequently much business; he was in the commerce of the world, and
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he lived more or less like those for whom this unproductive occupation was their sole
occupation. Still, he was not an enemy of pleasures: there were many distractions,
and whatever rare talent we assume that he had for Mathematics, it is impossible
that such a prodigious work filled up only a little of his time. Nevertheless, it never
seemed that study had altered his health, he had the air of the best and most firm
constitution that one might desire. He was not in the least bit somber, nor a day-
dreamer; on the contrary, he was happy enough, and he seemed not to have paid any
price for his great mathematical genius.

In his most common discourse one senses the justice, the solidity, and, in a word,
the Geometry of his soul. He was good company, of perfect integrity, open and
sincere, suited to what he was because it was him, and never taking advantage,
the true modesty of a great man, quick to declare what he did not know, and to
receive instruction, even in matters of Geometry, where it was possible to receive it,
not at all jealous, not through knowledge of his superiority, but through his natural
fairness, because without this fairness, those who believe themselves and even make
themselves superior to others, are nevertheless jealous.

He had married Marie Charlotte de Romilley de la Chesnelaye, Lady of an old
noble family of Brittany, and from whom he had received great estates. So close was
their union that he shared with her his genius for Mathematics. He left behind one
son, and three daughters.
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subtense, 159
surface area

cone, 50–51

T
tangent, xix, xx, li, lii, 11–43, 192–205, 234,

290, 298, 299
definition, 11
ellipse, 13

generalized, 14–15, 194
hyperbola, 13

generalized, 15–16, 194–197
higher order, 13

parabola, 13
at origin, 13
higher order, 13

vertical, 46
tangents, vi, lii, liv
The Contract, xiii–xv, xxxv, 246
third proportional, 29

definition, 29
tractrix, 243, 244, 260, 263, 264

compound, 41–43
generalized, 35–37

tangent of, 244, 260, 263, 264
tangent to, 243, 265–267

transcendental curve, lii
transcendental functions, xiv, xvii
triangle, 295
Tschirnhaus, Ehrenfried, liii, 33
twilight, xxxv, 57–59, 212–217

U
University of Basel, ix, x

V
variable

definition, 1
notation, 3

variables, xviii
Varignon, v, vi, x, xiii–xv, 160, 239, 243, 246,

256, 260, 263, 271, 287, 289, 292,
293

Viète, l
volaria, 245

W
weight, 245
wind, 245, 270
window, 270
witch of Agnesi, xxxvi, 71, 218
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