
A Formal Model of Client-Cloud Interaction

Károly Bósa, Roxana-Maria Holom, and Mircea Boris Vleju

Abstract In our former work, we have showed that cloud computing still requires
lots of fundamental research. Among many other existing problems in cloud com-
puting, we identified the lack of client orientation and lack of formal foundations as
serious deficiencies. In this chapter, we give a summary on our research and discuss
the architectures as well as the formal models of some software solutions with which
we are going to address (a part of) these two problems in cloud computing.

The solution we propose is a novel and uniform client-cloud interaction approach
by which cloud service owners, who may be different from the cloud providers, are
able to fully control the usage of their services in the case of each user subscription.
In this context, any cloud service can be invoked by distinct devices; therefore, the
content must be adapted to various channels and end devices, in particular with
respect to needs arising from mobile clients. For a quick and seamless integration
between the cloud provider’s identity management system and the system used
by the client, we introduce the concept of a client-centric tool. An extension of
the client-cloud interaction model enables client-to-client interaction (CTCI) in an
almost direct way, so that the involvement of cloud services is transparent to the
users.

In this chapter, we propose a formalization of this solution that incorporates
the major advantages of abstract state machines (ASMs) and ambient calculus by
specifying the algorithms of executable components (agents) in terms of ASMs and
by describing their communication topology, locality, and mobility in the terms of
ambient calculus.

1 Introduction

Nowadays “cloud computing” is one of the most often used buzzword in computing,
and many providers (Amazon, Google, Microsoft, IBM, etc.) of cloud services

K. Bósa (�) • R.-M. Holom • M.B. Vleju
Christian Doppler Laboratory for Client-Centric Cloud Computing, Johannes Kepler University
Linz, Softwarepark 21, 4232 Hagenberg, Austria
e-mail: k.bosa@cdcc.faw.jku.at; r.holom@cdcc.faw.jku.at; b.vleju@cdcc.faw.jku.at

© Springer International Publishing Switzerland 2015
B. Thalheim et al. (eds.), Correct Software in Web Applications and Web Services,
Texts & Monographs in Symbolic Computation,
DOI 10.1007/978-3-319-17112-8_4

83

mailto:k.bosa@cdcc.faw.jku.at
mailto:r.holom@cdcc.faw.jku.at
mailto:b.vleju@cdcc.faw.jku.at

84 K. Bósa et al.

(infrastructure as a Service (IaaS), software as a service (SaaS), platform as a service
(PaaS), data as a service (DaaS), etc.) emphasize the many benefits of outsourcing
applications into a (private or public) cloud. In other words, it is suggested that
cloud computing represents a mature technology that is ready to be massively used.
But it is our conviction that cloud computing still requires lots of fundamental
research [99].

In particular, most of the offerings in cloud computing are provider centric. For
instance, a client (or tenant) may rent a certain piece of infrastructure, load and
execute a piece of software on it, pay for the use, and leave the cloud without leaving
permanent traces. Certainly, there are many computing-intensive applications, for
example, Web crawling, image processing, machine learning, etc., that fit well
into such a scenario. However, if we think of a multiuser database application, its
usefulness decreases significantly.

Among many other problems in cloud computing, we identified the lack of
client orientation as a serious problem that needs to be addressed in research.1

This subsumes the problems of identity of tenants, access rights, adaptivity to the
needs of clients, and more. For instance, in many cases (e.g., multiuser database
applications), it would be indispensable to keep knowledge of users and their rights
in the authority of the client instead of in the cloud. The immediate consequence of
such an approach is that cloud applications should become hybrid and distributed,
as parts of data and software will reside on premise, while others reside off-site in
the cloud.

There is another serious lack of formal foundations in cloud computing starting
from the simple fact that key notions such as service are not defined. Therefore, in
our research, we deal with the challenges in cloud computing that require solutions
with more stronger client-side orientation, and we also address the fundamental
research question on how a uniform formal model for clouds must look like without
any bias to particular languages and technology.

In this chapter, we present the high-level formal models of our cloud-related
algorithms and software solutions which have strong client-side aspects and which
are integrated into a single cloud service architecture. We split the specification into
three parts.

The first part lays out a cloud service infrastructure that provides a transparent
and uniform way to interact with its clients (service owners and end users). This
includes the following:

• The end users are able to access and combine the available functions of cloud
services.

• The owners of the cloud services, who may be different from the cloud providers
and who may possess exclusive access to certain cloud resources (service
functionalities or data) which is shared among their end users, are able to define

1We define the term client as being a small and medium enterprise (SME) that contracts and uses
any cloud service. Similarly, we refer to a user as an identity within the SME using a cloud-based
service.

A Formal Model of Client-Cloud Interaction 85

some special kind of action schemas called service plots, which may be specific
for end-user subscriptions, respectively. By these action schemas, clients are
able to restrict not only which are the permitted actions belonging to certain
cloud resources (e.g., services) for certain end users, but they are also able to
specify and tune precisely which are the permitted combinations of these actions
to perform certain tasks.

• It is also described how we extended the formal model of the proposed
cloud system with a client-to-client interaction (CTCI) mechanism via a cloud
architecture. The discussed solution for transparent use of services is a kind of
switching service, where registered cloud users communicate with each other,
and the only role the cloud plays is to switch resources from one client to another.

With respect to identity management in a cloud-based approach, a problem arises
in maintaining identity data across the providers. The second component of our
system provides a client-focused identity meta-system based on the concept of
ASMs, which allows a client to maintain a private identity directory while offering
individual users automatic authentication to cloud-based services. In this part, we
introduce the concept of an identity management machine (IdMM), an ASM-based,
client-centric, single sign-on tool, which deals with the client-side aspects of identity
and access management in cloud computing.

The last but not least, the third part of our specification uses ASM ground models
for presenting in a rigorous way the proposed Web application (WA), which tries to
solve the problem of adaptivity by including aspects regarding content adaptation
and displaying. We chose to use ASMs since they permit to design and analyze
asynchronous multiple-agent distributed systems, as the cloud architecture we deal
with; moreover, thanks to refinement mechanism, we show how ground models can
be refined to pseudo-code-like descriptions. A future refinement can possibly bring
to the implementation. ASM method also provides a high-level notation that permits
to concisely describe complex systems and that can be easily understood by all the
stakeholders [25].

As it is shown in Sect. 3, these novel interaction solutions are dynamically
reconfigurable, and they can either take place on a cloud or can be easily shifted
to the client side and wrapped into a middleware software which may be located
in the authority of one or more clients. The latter case can also provide enhanced
privacy protection, since the cloud provider does not necessarily know the (real)
identities of the end users.

In order to achieve this required flexibility of the model, the component
formalization was done in terms of ambient abstract state machines [26, 31],
which inherently makes possible to create such dynamically variable architectures.
This method incorporates the major advantages of the abstract state machines
(ASMs) [26, 64] and of ambient calculus [38, 61]. Namely, one can describe
formal models of complex dynamically reconfigurable distributed (or cloud) sys-
tems including mobile components in two abstraction layers such that while the
algorithms of executable components (agents) are specified in terms of ASMs, their
communication topology, locality, and mobility are described with the terms of

86 K. Bósa et al.

ambient calculus in our method. The abstracted formal architecture presented in
this chapter is also going to be served as a framework which can be enriched with
other novel client-centric mechanisms in the future.

The rest of the chapter is organized as follows: Section 2 gives on overview on
the basic notions of cloud computing and on access control techniques for cloud.
Section 3 informally summarizes the components of our integrated cloud architec-
ture. Section 4 introduces the applied formal approaches and gives a short overview
on ambient calculus and ambient ASM as well as defines some nonbasic ambient
capability actions which are applied in the latter sections. Section 5 describes our
high-level ambient ASM model of our cloud service architecture which is equipped
with service plots and client-to-client interaction via cloud. Section 6 discusses the
specification of client-centric identity and access management for cloud services.
Section 7 deals with the ASM ground models of the software components for
cloud service adaptivity. Section 8 highlights some aspects of verification of the
formal model of our integrated cloud system, which we are going to perform in the
near future. Finally, Sect. 9 discusses the related work, and Sect. 10 concludes this
chapter.

2 Cloud Computing and Access Control Techniques for
Cloud

In this chapter, we give a short overview on the basic notions of cloud computing
and on various cloud-related access control techniques in order to make this chapter
more self-containing as well as to facilitate its understanding for a wider audience.

2.1 Cloud Computing

Cloud computing appeared years ago as a buzzword in computing technology, being
related to other existing technologies, like grid computing and seen as a scalable
external data center [114]. Even though people are referring to cloud computing
since some time and many providers (Amazon, Rackspace, Google, Microsoft, IBM,
etc.) are suggesting that it’s a mature technology, we recognize cloud computing as
still an evolving paradigm [80].

The National Institute of Standards and Technology (NIST) is mentioning impor-
tant aspects of cloud computing in their definition: “Cloud computing is a model
for enabling ubiquitous, convenient, on-demand network access to a shared pool of
configurable computing resources (e.g., networks, servers, storage, applications, and
services) that can be rapidly provisioned and released with minimal management
effort or service provider interaction. This cloud model is composed of five essential
characteristics, three service models, and four deployment models” [80].

A Formal Model of Client-Cloud Interaction 87

Further on, they mention the cloud computing characteristics: on-demand self-
service, a consumer can automatically provision computing capabilities without the
need for human interaction; broad network access, services are available over the
network and accessed through a variety of mechanisms (e.g., mobile phones, tablets,
laptops, and workstations); resource pooling, a provider’s capability to use a multi-
tenant model for pooling computing resources in order to handle multiple clients;
rapid elasticity, the possibility to rapidly scale (in and out) resources; and measured
service, providers are using resources monitoring in order to optimize their services
and support the pay-per-use business model. Specific measurements are used, fitting
the type of service (e.g., storage, processing, bandwidth, and active user accounts).

Cloud providers offer their services (as a utility) conforming to the following
models: software as a service (SaaS), platform as a service (PaaS), and infrastruc-
ture as a service (IaaS). SaaS is a service model where a client uses applications
offered by the provider that run on a cloud infrastructure. Examples of this service
comprise Google Apps for Business [57] and Microsoft Office 365 [81]. PaaS offers
the client the possibility to deploy on a cloud infrastructure his or her applications
created using predefined languages, libraries, services, and tools that are supported
by the cloud provider. Microsoft Azure [15] and Google App Engine [60] are
two examples of such services. IaaS is a service model, which provides the client
fundamental computing resources, like processing, storage, and networks. In this
case, the client can also deploy operating systems, which in the case of PaaS is not
possible. An example of such a service model is the Amazon Elastic Compute Cloud
(Amazon EC2) [10].

There are also different deployment models of a cloud: private cloud (internal
data centers designed for a single organization), community cloud (used by several
organizations with shared interests), public cloud (made available for the general
public), and hybrid cloud (a combination of the all previous models: some parts of
the infrastructure are usable for the general public, while others are ready to use
only for some organizations).

Some of the disadvantages that come together with the adoption of cloud services
are the following [46, 52]: loss of governance, provider lock-in, isolation failure, and
security and privacy issues (insecure interfaces and APIs, malicious insiders, shared
technology issues, data loss or leakage, account or service hijacking, unknown risk
profile).

2.2 Access Management in Cloud Computing

A detailed description of identity and access management in cloud computing
can be found in [109]. The author describes four distinct identity and access
management scenarios within the domain of cloud computing. The first scenario
entails a traditional model where the client maintains a local identity and access
management system which is mirrored on the cloud provider. Such a model is useful
only in IaaS where the client has the ability to install custom software on his or her

88 K. Bósa et al.

virtual machine. The second scenario entails a trusted model where the identity
information is shared to a cloud provider via the use of previously agreed-upon
identity federation protocols. In an identity provider scenario, the client either acts
or uses an external identity provider which makes use of common identity federation
protocols (such as OpenID, OAuth, SAML) to offer the identity-related information
to cloud services. Finally, the author of [109] describes a fourth model where the
client makes use of a cloud provider’s identity and access management system.
This system of all in the cloud means that the client has no control over the data
and must subscribe to a provider’s identity and access management system. Using
multiple services across multiple providers further increases the task of maintaining
the correct identity information data.

The authors of [63] provide a review of identity and access management in cloud
computing. They provide a description of identity and access management as well
as a description of existing tools for identity and access management. They then
provide a review of the existing identity and access management tools in cloud
computing. This review is extended by [83] where the authors better described the
technologies and protocols used in identity and access management emphasizing the
protocols for identity federation. For small and medium enterprises, [79] describes
the challenges when adopting cloud computing services. The authors provide a
detailed description of identity and access management in general, also emphasizing
the existing identity federation and open standards.

While the authors of [63, 79, 83] emphasize the use of identity federation and
existing open standards, it must be noted that most cloud providers tend to use the
“all in the cloud” approach when it comes to their identity and access management
systems. As such, most providers will offer their own identity system, often not
providing the option of using identity federation protocols such as OpenID or
OAuth. When such protocols are offered, the providers often act just as identity
providers and not relaying parties [50].

3 Overview of the Client-Cloud Interaction Software System

Roughly the formal model of cloud systems employed by us can be regarded as a
pool of resources equipped with some infrastructure services. Depending whether
these abstract resources represent only physical hardware and virtual resources or
the entire computing platforms, the model can be an abstraction of IaaS or PaaS,
respectively. The basic hardware (and software) infrastructure is owned by the cloud
provider, whereas the software running on the resources may be either rented or
owned by some tenants of the cloud (service owners). We assume that these software
products may in turn be offered as services (denoted by S1 : : : Si in Fig. 1) and thus
used by some groups of cloud users.

Accordingly, we apply a loose definition of the term service cloud here, where an
entity who is different from the cloud provider and who has disposal of the access
rights to some hardware or software resources running on the cloud may become

A Formal Model of Client-Cloud Interaction 89

Users

PC

Laptop

Mobile

Service Owners
(Tenants)

Client-Cloud
Interaction Middleware

Service Plot
Management

Identity and
Access

Management

Adaptivity

Client-to-client
Interaction

Cloud A
S1...Si

Cloud B
S1...Sj

Cloud C
S1...Sk

Fig. 1 Architecture

a cloud service provider. Thus, from this aspect, the model can be regarded as an
abstraction of a mixture of SaaS and of IaaS (or a mixture of SaaS and PaaS).

We make a distinction between cloud service owners (or tenants) and cloud users
(or end users); see Fig. 1. Users are registered in the cloud, and they subscribe to
and use some (software) services available in the cloud. Service owners are usually
small and medium enterprises (SMEs) that contract with cloud providers, rent some
cloud resources, and/or bring and deploy their own resources (e.g., software service
instances, data, etc.) on the cloud which they share among their end users. Of course,
service owners can also act as normal users, which means they can use services
provided by other tenants.

A developed prototype of this cloud service system has been deployed for testing
purposes on Windows virtual machines under OpenStack cloud infrastructure
software on an IBM CloudBurst server machine.

Due to the applied ambient concept, the relocation of the system component is
trivial, and we can apply our model according to different scenarios (see Fig. 2a,
b). In our developed prototype and in our case studies (see Sect. 3.4), all our novel
software solutions discussed in this chapter are integrated into a compound software
component on the client side called the client-cloud interaction middleware, which
takes place among the end users, the service owners, and the cloud(s) in order
to manage the interactions between them; see Fig. 1. In this middleware-based
architecture, the various components (e.g., service plot management, client-to-client
interaction feature, identity and access management, and content adaptivity) are
only loosely coupled with each other; any of them can be eliminated and the others
still remain functional.

One of the advantages of the employed middleware-based configuration is that
the same instance of the infrastructure services is able to extend the functionalities

90 K. Bósa et al.

Legend:

...

...

I
n
t
e
r
f
a
c
e

Om m+1

2 3 O4 O5O1 O O

2 3 O4 O5O1 O O

End−Devicel

Cloud (nowadays)

S1

S1

Sj

Outer Firewall

Client−Cloud Interaction Middleware

. . .

. . .

Infrastructure Services
Rn

Ri

R1

Cloud SideClient Side

b)

a)

I

n

t

e

r

f

c

e

a

2 3 O4 O5O1 O O2 3 O4 O5O1 O O Om m+1

Outer Firewall

Cloud

. . .

S1 S1 Sj

Infrastructure Services

. . .

. . .

R1 Ri Rn

End−Devicel

Cloud SideClient Side

Ri : Cloud Resource Sj : Service Protected Area Area
 : Firewall Protected : Credential

.

..

O

Contact Device

Contact Device
of Client(SME) V

of Client(SME) W

O. . .

.

..

of Client(SME) V
Contact Device

Contact Device
of Client(SME) W

abstract...

abstract...

abstract...

abstract...

Protected Area
of UserX

Specific Functions
for UserY

Specific Functions
for Client(SME) W

Specific Functions
for Client(SME) V

Specific Functions
for UserX

Specific Functions
for UserY

Specific FunctionsSpecific Functions
for Client(SME) V

Specific Functions
for UserX

for Client(SME) W

Protected Area
of UserX

Fig. 2 Application of our model according to different scenarios. (a) Scenario I. (b) Scenario II

of and to provide a transparent and uniform access to more than one cloud. It should
be noticed that the end users cannot bypass and omit the middleware and access
to the cloud services, since they do not have direct access to the cloud(s) (they
have credentials only to the middleware, and the middleware assigns permanently
or temporarily their credentials to cloud service accounts).

In the following, we give an overview of various components of our integrated
cloud service architecture, whose formal specifications are discussed in this chapter.

A Formal Model of Client-Cloud Interaction 91

3.1 A Cloud Architecture Equipped with Service Plots and a
Client-to-Client Interaction Feature

There are two major problems which we address with the discussed cloud architec-
ture model [30]: on the one hand, how to provide a transparent and uniform way
to interact with the end users, such that it allows the users to access and combine
the available functions of cloud services which may belong to various cloud service
owners (or tenants), and on the other hand, how to give full control into the hands
of the tenants over the usage of the cloud resources which they own or rent on the
cloud.

In our model, we assume that service instances are always equipped with
service operations denoted by unique identifiers o1,. . . , on; see Fig. 2a. These
service operations actually compose the interface of a service instance, and they
are exported from a service to be used by other systems or directly by users.

Furthermore, it is assumed in our approach that each service owner has a
dedicated contact point that resides out of the cloud. It is a special kind of client-
side device that can also act as a server for the cloud itself in some cases. Namely,
if a registered cloud user intends to subscribe to a particular service, he or she sends
a subscription request to the cloud, which may forward it to such a special kind
of client belonging to the corresponding service owner. This client responds with
a special kind of action scheme called service plot, which algebraically defines
and may constrain how the service can be used by the user (e.g., it determines
the permitted combination of service operations). This special kind of client of the
service owners is abstract in the current model.

The received service plots, which may be composed individually for each sub-
scribing user by service owners, are collected with other cloud functions available
for this particular user in a kind of personal user area by the cloud; see Fig. 2a.
Later, when the subscribed user sends a service request, it is checked whether the
requested service operations are allowed by any service plot. If a requested operation
is permitted, then it is triggered to perform; otherwise, it is blocked as long as a plot
may allow to trigger it in the future. Each triggered operation request is authorized
to enter into the user area of the corresponding service owner to whom the requested
service operation belongs. Here, a scheduler mechanism assigns to the request a one-
off access to a cloud resource on which an instance of the corresponding service
runs. Then the service operation request is forwarded to this resource, where the
request is processed by an instance of the service whose operation was requested.
Finally, the outcome of the performed operation returns to the area of the initiator
user, where the outcome is either stored or sent further to a given end-user device.

In this way, the service owners have direct influence on the service usage of
particular users via the provided service plots. If a user subscribes to more than
one service, he or she may have access to more than one plot. These plots are
independent from each other and they can be applied concurrently. If a service owner
makes available more than one service for a user, the owner has the choice either
to provide independent plots for the user or to combine some functions of various

92 K. Bósa et al.

services into a common service plot. This conceptual solution shows a transparent
and uniform way how to provide an advanced access control mechanism for cloud
services without giving up the flexibility of heterogeneous cloud access to these
services.

Regarding our proposed cloud service model, one of the major questions can
be whether it is adaptable to nowadays leading cloud architectures and solutions
(e.g., Amazon S3, Microsoft Azure, IBM SmartCloud, etc.), since these systems
rule the market at present and they will have impact on the cloud business in the near
future as well. Since due to the applied ambient concept the relocation of the system
component is trivial, we can apply our model according to different scenarios. For
instance, all our novel methods including our client-cloud interaction solution can be
shifted to the client side and wrapped into a middleware software which takes place
between the end users and cloud in order to control their interactions; see Fig. 2b
(this scenario was implemented in the mentioned software prototype). Note that
the specified communication topology among the distributed system components
remains the same in both proposed scenarios.

Thinking further this second scenario, we can envisage a new (cloud) service
whose customers are enterprises that take over the role of the service owners in this
service, such that they can fully control how their employees can access and use
third-party clouds. Namely, assuming that these enterprises own or pay for various
cloud services, they can provide customized service plots for their employees via
such a client-cloud interaction controller service to restrict end-user accesses to the
available functions of these cloud services.

3.1.1 Client-to-Client Interaction

We also extended the model of our cloud service architecture with a client-to-client
interaction (CTCI) mechanism via a cloud architecture [29]. Our envisioned cloud
feature can be regarded as a special kind of services we call channels, via which
registered cloud users can interact with each other in an almost direct way and,
what is more, they are able to share available cloud resources among each other as
well.

Some use cases, which may claim the need of such CTCI functions, can be, for
instance, disseminating large or frequently updated data whose direct transmitting
meets some limitations or connecting devices of the same user (in the latter case, an
additional challenge can be during a particular interpretation of the modeled CTCI
functions, how to wrap and transport local area protocols, like upnp via the cloud).
See an overview of the formal model of CTCI in Sect. 5.3.

A Formal Model of Client-Cloud Interaction 93

3.2 Client-Centric Identity and Access Management in Cloud
Computing

The adoption of cloud-based services offers many advantages for small and medium
enterprises. However, a cloud-based approach also entails certain disadvantages.
The papers [7, 34, 46, 99] outline some of these disadvantages: loss of control,
contracting issues, provider lock-in, and other security and privacy issues. Such
issues imply an extra level of trust between a client and a cloud provider. With
respect to identity management, a loss of control implies that the client must
trust the cloud provider with sometimes critical or important identity information
such as credit card information. A potential client would prefer such data to be
stored on premise and only be offered to a service on demand. The vendor lock-
in issue might be mitigated by the adoption of services across multiple providers.
In this scenario, a problem arises in maintaining identity data across the providers.
Changing the surname, for example, entails changing this property for each service
in particular (especially if the service provider does not adopt open standards).
Our research is focused on providing a client-centric identity meta-system which
allows a client to maintain a private identity directory while offering individual
users automatic authentication to cloud-based services via a single sign-on, privacy-
enhanced service.

In the paper [115], we have introduced the concept of an identity management
machine (IdMM), an ASM-based, client-centric, single sign-on tool for small
and medium enterprises that want to adopt or migrate to cloud-based services.
This concept has been further refined in the paper [116] where we described the
architecture of the IdMM. As mentioned in the paper [116], the IdMM is composed
of six agents: the core agent (comprising the rules described in the paper [115]),
the client agent (managing the interaction with the client’s directory), the cloud
agent (used for the interaction with a cloud service), the user agent (handling the
interaction with an individual user), the protocol agent (used for protocol-based
authentication), and the provisioning agent (managing user provisioning, password
resets, and user de-provisioning). Apart from the core agent, each agent is defined
by further refinement of the abstract functions presented in the paper [115]. This
process is still an ongoing task, with the provisioning and protocol agents still left
at an abstract level. In the paper [117], we have described the IdMMClient agent by
further refinement of the client-side abstract functions. We also gave an example of
the IdMMClient’s interaction with an ApacheDS LDAP directory [11].

The IdMM makes an abstraction of the protocols used by both the client and
cloud provider for their identity management systems via the use of the abstract
functions presented in the paper [115]. Such functions leave the organizational
and implementation aspects of the identity management systems directly into the
hands of the end parties. To describe these functions, we must first consider
the interaction between a client and a cloud provider with respect to identity
management, authentication, and authorization. We consider three distinct cases of

94 K. Bósa et al.

client-to-cloud interaction: the direct case, the obfuscated case, and the protocol-
based case.

3.2.1 Direct Client-to-Cloud Interaction

As showed by the authors of the papers [7, 34, 50], one of the greatest issues
surrounding identity management for cloud providers is the need of the cloud
provider to control the customer experience. Many providers make use of their own
custom-designed identity systems to which a client must subscribe. This means that
the client has no choice but to use the cloud provider identity system. While this
may be an inconvenience from a privacy point of view, the real problem lies in
managing the client’s information across multiple providers. A simple change, such
as changing a user’s address, entails changing the value on every single provider the
client uses. Any change made on the client side must also be made on the cloud via
the synchronization of attributes. Concurrently, any changes made by the provider
(such as the addition, replacement, or removal of an attribute) must be reflected in
the client’s directory system.

3.2.2 Obfuscated Client-to-Cloud Interaction

While the direct client-to-cloud interaction allows for an efficient use of cloud
services, it does suffer from a lack of privacy. Since all information about a client
is stored on the provider’s infrastructure, there is an increased risk that through data
leakage or unauthorized access, that information could fall into the wrong hands.
We mitigate this threat by introducing the concept of obfuscated identities.2

We consider an identity to be real if information contained corresponds to the
identity’s owner and is visible to any external entity. An obfuscated identity has its
information obfuscated. Depending on the method of obfuscation, the information
is either undecipherable or can only be deciphered by the owner of the identity.
We also consider a third kind of identity, a partially obfuscated identity. Such an
identity contains a mixture of real and obfuscated data. An example for the use of
real identities can be found in the usage of online stores where the information must
be accurate in order to process the payment and shipping. By contrast, one could use
obfuscated identities for a free online storage service. If, for example, the storage
service requires an age restriction, then one could use a partially obfuscated identity
where only the date of birth is real.

The usage of obfuscated and partially obfuscated identities is dependent on the
cloud service. As mentioned, some services do require real identities. Even if the
service can be used with obfuscated identities, we leave the matter in the hands of
the client. The client can choose whether or not to use obfuscation in such cases.

2For the purpose of this paper, we consider the definition of an identity as explained in paper [112].

A Formal Model of Client-Cloud Interaction 95

For partially obfuscated identities, we also allow the client to choose what real data
attributes are sent to a service.

3.2.3 Protocol-Based Client-to-Cloud Interaction

In recent years, there has been a drive to improve interoperability between cloud
providers mostly to prevent vendor lock-in. From an identity management perspec-
tive, the result has been the adoption of some open-based protocols to facilitate
both cloud interoperability as well as identity access management. Protocols such
as OAuth or OpenID represent an important tool for a client-centric identity
management system. They allow the provider to focus on the requirements of the
service while allowing access via the standard implementation of these protocols.
From the client’s perspective, such protocols allow for an easier integration across
multiple cloud providers. It must be noted however that such protocols do suffer
from a variety of security and privacy issues, as described in [50, 88].

3.3 Cloud Content Adaptivity

This subsection is giving an overview of the problem of adaptivity to different
services, devices, preferences, and environments. By adaptivity we understand that
all the services provided by the cloud to the client should be adapted on the fly to
the different contexts mentioned above.

The previously specified problem (initially presented in the paper [43]) is
described in Fig. 3. As an example, we use a database manager application, which
is deployed on the cloud. The user should be able to use the application (we can

Fig. 3 Problem description

96 K. Bósa et al.

think of an application as of a list of services available in the cloud for that user)
from any device he or she logs in without having to install any other application.
How can we make the cloud services available on all devices? We need a general
application that will adapt to different end devices on the fly. The implementation of
a Web application (WA) comes as a solution to the client-cloud interaction, because
it transfers data among different software components, which execute on different
devices, using only the browser [85]. However, WAs do not have a precise definition
or a precise model to follow, because they are related to various standards and
implementation frameworks. To tackle this problem, we propose the conception of
a formal model prior to code development that would include a rigorous analysis.
Using formal modeling and verification, we want to guarantee reliability properties
in order to ensure that, e.g., the client will receive the same (or as similar as possible)
output independently of the device he or she is using. We show how requirements
can be captured with ASM ground models and how the refinement method can
be applied in order to link the ground models to pseudo-code. Together with the
refinement method, the ASM ground models are generating a documentation which
can be used for inspection, reuse, and maintenance.

We decided to use ASMs, instead of other modeling methods (e.g., Unified
Modeling Language (UML), finite-state machine (FSM)), for realizing the design
of the client-cloud interaction system, because with them, we can prove that the
system’s development is correct and reliable (we can check if the WA under
development behaves as expected). ASM method [25]:

• offers the possibility to design and analyze both procedural single-agent and
asynchronous multiple-agent distributed systems (as the cloud framework we
deal with). In ASMs, an action can be replaced in a refinement step by multiple
parallel actions [22], which means that by going from the current state to the
next state, the set of rules are executed simultaneously [23]. Because of these
attributes, the ASM method was chosen over the FSM.

• creates a high-level modeling at the level of abstraction (allowing to describe
complex systems, which can be easily understood by all the stakeholders)
and links the descriptions in a chain of coherent system models (that can
possibly bring to the implementation) using stepwise refinement. The former
characteristic improves upon the loose character of UML description, and the
second one also fills in a breach in UML [25].

• supports rigorous model validation and verification.

3.4 Cloudification Case Studies

In order to show and prove the feasibility and viability of our approach for control-
ling client-cloud interaction and managing access control, we have accomplished
two cloudification case studies.

A Formal Model of Client-Cloud Interaction 97

In the first case study, we took a stand-alone application called visual SQL [45,
66, 111], whose source code was available for us. Visual SQL is a software tool
which provides a graphical database description language to facilitate intelligent
conceptual diagramming of database queries. We adapted this software to an
existing cloud architecture and made it interoperable with the prototype of our
client-cloud interaction middleware software such that it provides access control
for this cloudified application. This work shows how software applications which
were originally designed for single usage on a local desktop use can be adapted to
a cloud infrastructure and equipped with a sophisticated access control mechanism
for multiple users.

The second case study was related to Office 365 which is a subscription-based
cloud service provided by Microsoft and which integrates other Microsoft online
services together such as Exchange Online, SharePoint Online, Lync Online, Web
Apps, and Office Professional Plus. We combined Office 365 with our client-
cloud interaction middleware such that its functionality was extended with an
access control mechanism, which is more sophisticated than its own. Namely,
Office 365 provides only a limited authority for customers/admin to control their
users.

This advanced access control which is achieved by the application of the client-
cloud interaction middleware cannot be bypassed by the end users, since they have
direct access only to the middleware, but not to the purchased Office 365 service
package of any customer (company) of client-cloud interaction middleware. For
instance, customers of client-cloud interaction middleware can restrict which end
user can make a copy from e-mails received in his or her Office 365 mailbox, who
can attach document stored in Office 365 to e-mails, or who can send e-mails to
external e-mail addresses using Office 365 mail service. We should emphasize that
this work was carried out in the way that we discovered and used only the publicly
available programming interfaces and tools for Office 365 and we did not get any
extra support from Microsoft.

An implemented prototype in the cases of both case studies, respectively, was
deployed for testing purposes on Windows virtual machines under OpenStack cloud
infrastructure software on an IBM CloudBurst server machine as well. It is beyond
the scope of this chapter to describe these case studies and their formal specification,
but we refer to [103], which discusses the first case study and its formal model in
details.

4 Preliminaries

In this section, we give a short summary on the applied formal approach as well as
ambient calculus and ambient ASM in order to facilitate the understanding of the
latter sections.

98 K. Bósa et al.

4.1 The Applied Formal Approach

For our research, we searched for a software engineering method by which both
the algorithms of the concurrent system components and the dynamic topology of
complex distributed and cloud systems can be formally described. As a first step,
we investigated the following two formal approaches:

• One of the most outstanding methods for formal modeling of distributed
components of (mobile) network applications is a calculus of mobile agents
called ambient calculus [38, 61]. This concept is simple, succinct, and sufficient
enough to efficiently describe locality as well as phenomena related to mobility.

Additionally, besides mobility, ambient calculus inherently supports the
reasoning of high-level abstraction of many security considerations which can
be defined by formulating the ability or inability of various entities to cross
certain physical or virtual barriers [37] (e.g., certain combinations of some
ambient expressions can be interpreted as firewalls that filter traffic according
to some security policies, others can be regarded as abstractions of certain access
controls or of ciphertext decodings, etc.). But one of its main drawbacks is that
the ambient calculus is not capable to treat the algorithmic specification of the
executable agents which appear in its ambient constructs.

• For this latter purpose, an obvious candidate would be the mathematically well-
funded and efficient software engineering method called abstract state machines
(ASMs) [25, 64]. ASMs have already demonstrated their usefulness and their
viability in many fields, for example, in the formal definition of sequential [65]
and parallel algorithms [19, 20], giving comprehensive high-level definition and
analysis (verification and validation) of Java programming language and of the
Java virtual machine [108], and modeling Web services [9]. However, there is a
limitation in ASMs to describe dynamically changing hierarchical structures of
components in distributed systems and to express some system properties which
depends on their distribution in space (e.g., local deadlock).

In [26], the ambient concept (notion of “nestable” environments where computa-
tion can happen) is introduced into the ASM method. In that article, it is also shown
how to encode the mobile ambients of ambient calculus in terms of ambient ASM
rules. Since one of the main goals of [26] is to reveal the inherent opportunities
of the new ambient concept introduced into ASMs, the presented definitions for
moving ambients are unfortunately incomplete.

In [31], we extended and completed the ASM rules mentioned above, such that
they fully capture the ambient calculus. By this, a new method is created in terms of
ASM rules, in which one is able to describe formal models of distributed systems
including mobile components in two different abstraction layers (see Fig. 4). This
means that while the algorithms and local interactions of executable agents are given
in terms of ASMs, the long-term interactions and movements of system components
via various administrative domains are specified with the terms of ambient calculus

A Formal Model of Client-Cloud Interaction 99

Fig. 4 Abstraction layers in
the chosen formal approach

Spatial Hierarchy, Mobility,

Ambient
Calculus

Comm. Topology

Ambient ASM

ASM

Agents
Executable

in our approach. This novel method makes possible in a given model that:

• the agents may not only be arbitrarily placed and linked initially, but the
composed structure is rearranged from time to time by the programs of agents
residing in it;

• the behavior of agents is influenced by their current spatial locations and
communication topology;

• one can express visibility and access conditions on ASM agents (or on some
administrative boundaries) explicitly.

Since the definition of ambient ASM is based upon the semantics of ASM without
any changes, each specification given this way can be translated into a traditional
ASM specification.

4.2 Ambient Calculus

The ambient calculus [38] was inspired by the �-calculus [82], but it focuses
primarily on the concept of locality and process mobility across well-defined
boundaries instead of channel mobility as �-calculus. The concept of ambient stands
in the center of the calculus; see a summary of the definition of ambient calculus in
Table 1.

The ambient calculus includes only the mobility and communication primitives
depicted in Table 1(A).3 The main syntactic categories are processes (including both
ambients and agents) and actions (including both capabilities and communication
primitives). A reduction relation P ��! Q describes the evolution of a term P

into a new term Q (and P ��!�
Q denotes a reflexive and transitive reduction

relation from P to Q).

3Name restriction creates a new (unique) name n within a scope P . One must be careful with the
term !(� n)P , because it provides a fresh value for each replica, so .� n/ŠP ¤ Š.� n/P .

100 K. Bósa et al.

Table 1 Definition of ambient calculus

(A) The mobility and communication primitives

P; Q; R::= Processes

P j Q Parallel composition

nŒ P � Ambient

.� n/P Restriction of name n within P 3

0 Inactivity (skip process)

ŠP Replication of P

M:P (Capability) action M then P

.x/:P Input action (the input value is

Bound to x in P)

hai Async output action

M1: : : : :Mk A path formation on actions

M ::= Capabilities

IN n Entry capability (to enter n)

OUT n Exit capability (to exit n)

OPEN n Open capability

(To dissolve n’s boundary)

(B) Reduction (operational semantics)

P � P 0 ; Q � Q0; P �! Q H) P 0 �! Q0

P �! Q H) P j R �! Q j R

P �! Q H) nŒ P � �! nŒ Q �

P �! Q H) .� n/P �! .� n/Q

nŒIN m:P jQ� jmŒR� �! mŒnŒP jQ�jR�

mŒ nŒ OUT m:p jQ�jR� �! nŒP jQ�jmŒR�

OPEN n:P j nŒ Q � �! P j Q

.x/:P j hai �! P.x=a/

(C) Structural congruence (operational semantics)
P � P P � Q H) Q � P

P � Q; Q � R H) P � R P � Q H) P j R � Q j R

P � Q H) nŒ P � � nŒ Q � P � Q H)ŠP �ŠQ

P � Q H) .� n/P � .� n/Q P � Q H) M:P � M:Q

P � Q H) .x/:P � .x/:Q P j Q � Q j P

.P j Q/ j R � P j .Q j R/ ŠP � P j ŠP

.� n/.� m/P � .� m/.� n/P .� n/.P j Q/ � P j .� n/Q if n … f n.P /

.� n/.mŒ P �/ � mŒ .� n/P � if n ¤ m P j 0 � P

Š0 � 0 .� n/0 � 0

An ambient is defined as a bounded place where computation happens. An
ambient is written as n[P], where n is its name, which can be used to control access
(entry, exit, communication, etc.), and a process P is running inside its body (P may
be running even if n is moving). Ambient names may not be unique. Ambients can
be embedded into each other such that they can form a hierarchical tree structure.
An ambient body is interpreted as the parallel composition of its elements (its local
ambients and its local agents) and can be written as follows:

nŒ P1 j : : : j Pk j m1Œ: : :� j : : : j mlŒ: : :� � where Pi ¤ mi Œ: : :�

An ambient can be moved. When an ambient moves, everything inside it moves
with it (the boundary around an ambient determines what should move together
with it). An action defined in the calculus can precede a process P . P cannot

A Formal Model of Client-Cloud Interaction 101

start to execute until the preceding actions are performed. Those actions that are
able to control the movements of ambients in the hierarchy or to dissolve ambient
boundaries are restricted by capabilities. By using capabilities, an ambient can allow
some processes to perform certain operations without publishing its true name to
them (see the entry, exit, and open in Table 1). In case of the modeling of a real-life
system, communication of (ambient) names should be rather rare, since knowing
the name of an ambient gives a lot of control over it. Instead, it should be common
to exchange restricted capabilities to control interactions between ambients (from a
capability, the ambient name cannot be retrieved).

4.3 Ambient ASM

The core idea of ambient ASM [26] is to introduce an implicit parameter curamb
to each location expressing a context for evaluation of terms and execution of
machines. Analogously to conventional implicit object-oriented parametrization
(e.g., this:f .x/ D f .x/), the dot term s:t is introduced, where s is a term standing
for an ambient expression, t is a term of the form f .t1; : : : ; tn/ and f is a location
symbol.

To each location, an additional argument is added for the ambient curamb in
which the location is evaluated. Moreover, the basic ASM classification of functions
and locations is extended with ambient-independent functions and locations (i.e.,
static or dynamic functions and location) whose values for a given argument do not
depend on any ambient expression.

An ASM is an ambient ASM if it can be obtained from a basic ASM [25] by
allowing for every given machine P also a machine of the following form:

amb exp in P

where execution of P is performed in the ambient exp (exp is bound to curamb).
Additionally, the notation nŒ P � introduced by Cardelli and Gordon [38] is also
defined in ambient ASMs as follows:

nŒ P � D amb n in P

The semantics of ambient ASMs is defined by transformation into basic ASMs
in [26].

4.3.1 Moving Ambients

In [26], an ASM machine called MOBILEAGENTSMANAGER is described as well,
which gives a natural formulation for the reduction of the three basic capabilities
(ENTRY, EXIT, and OPEN) of ambient calculus in terms of ambient ASM rules. For

102 K. Bósa et al.

this machine, an ambient tree hierarchy is always specified initially in a dynamic-
derived function called curAmbProc. The machine MOBILEAGENTSMANAGER

transforms the current value of curAmbProc according to the capability actions
given in curAmbProc.

In [31], we presented an extended version of the ASM machine MOBILEAGENTS-
MANAGER, which fully captures the calculus of mobile agents4 and which is also
able to interpret (in the corresponding ambient contexts) the agents’ algorithms
given in terms of ASM syntax in curAmbProc. This updated ASM machine is
called EXTENDEDMOBILEAMBIENTMANAGER.

One of consequences of this is that one is able to describe formal models of
distributed systems including mobile components in the mentioned two abstraction
layers and apply some experimental validation on these models. This means that:

• a particular system model can be defined as part of the value of curAmbProc in
terms of ambient calculus terms (like what we did in Sect. 5.2) and in terms of
ASMs;

• either models of some external instruments or some (user) actions (see in
Sect. 5.1) can additionally be added to curAmbProc in parallel composition with
the given model (they will act the role of the environment of the system in a
particular case).

The value of curAmbProc will serve as input for the ASM machine EXTENDEDMO-
BILEAMBIENTMANAGER, which will transform the given value of curAmbProc (by
performing the possible reduction steps and by parsing the specified ASMs) in order
to check how the defined model interacts with its environment and how it behaves
in a particular situation.

4.4 Definitions

As Cardelli and Gordon showed in [38], the ambient calculus with the three basic
capabilities (ENTRY, EXIT, and OPEN) is powerful enough to be Turing complete.
But for facilitating the specification of such a compound formal model as a model
of a cloud infrastructure, we defined some new nonbasic capability actions encoded
in terms of the three basic capabilities.

All the new ambient calculus capabilities defined in this section either directly
appear in the presented cloud model in Sect. 5.2 or serve as a basis and were utilized
for the definitions of one or more subsequent capabilities presented in this section
as well. Table 2 summarizes the definitions of these nonbasic capabilities.

4Besides the three basic capabilities, the reductions of name restriction, input action, and
asynchronous output action as well as the structural congruence for replication are also defined
in terms of ambient ASM rules.

A Formal Model of Client-Cloud Interaction 103

T
ab

le
2

A
su

m
m

ar
y

of
th

e
de

fin
iti

on
s

of
so

m
e

no
nb

as
ic

ca
pa

bi
li

ti
es

N
am

es
N

ew
re

du
ct

io
n

re
la

ti
on

s
(b

as
ed

on
th

e
de

fin
it

io
ns

)
D

efi
ni

ti
on

s
of

th
e

ne
w

ca
pa

bi
li

ti
es

1.
R

en
am

in
g

n
[

n
B

E
m

.P
jQ

]
��!

�

m
[

P
jQ

]
n

B
E

m
.P

�
(�

s)
(s

[
O

U
T

n
jm

[
O

P
E

N
n

.O
U

T
s.

P
]

]
jIN

s.
IN

m
)

2.
Se

ei
ng

n
[

]
jS

E
E

n
.P

��!
�

n
[

]
jP

S
E

E
n

.P
�

(�
r
,s

)(
r
[

IN
n

.O
U

T
n

.r
B

E
s.

P
]

jO
P

E
N

s
)

3.
W

ra
pp

in
g

n
[

m
W

R
A

P
n

.P
]

��!
�

m
[

n
[

P
]

]
m

W
R

A
P

n
.P

�
(�

s,
r
)(

s[
O

U
T

n
.S

E
E

n
.s

B
E

m
.r

[
IN

n
]

]
jIN

s.
O

P
E

N

r
.P

)

4.
A

ll
ow

in
g

co
de

A
L

L
O

W
K

ey
.P

jK
ey

[
Q

]
��!

�

P
jQ

A
L

L
O

W
K

ey
.P

�
O

P
E

N
K

ey
.P

5.
D

ra
w

in
g

in
(a

n
A

m
bi

en
t)

m
[

Q
jA

L
L

O
W

K
ey

]
jn

[
n

D
R

A
W

IN
ke

y
m

.P
]

n
D

R
A

W
IN

ke
y

m
.P

�
K

ey
[

O
U

T
n

.I
N

m
.I

N
n

]
jA

L
L

O
W

m
.P

��!
�

n
[

Q
jP

]

6.
D

ra
w

in
g

in
T

he
n

R
el

ea
se

a
L

oc
k

m
[

Q
jA

L
L

O
W

K
ey

]
jn

[
D

R
A

W
IN

ke
y

m
T

H
E

N
-

R
E

L
E

A
S

E
lo

ck
.P

]��
!

�

lo
ck

[
n

[
Q

jP
]

]
n

D
R

A
W

IN
ke

y
m

T
H

E
N

R
E

L
E

A
S

E
lo

ck
.P

�
K

ey
[

O
U

T
n

.I
N

m
.I

N
n

]
jS

E
E

m
.lo

ck
W

R
A

P
n

.A
L

L
O

W
m

.P

7.
C

on
cu

rr
en

t
Se

rv
er

Pr
oc

es
s

m
Œ

Q
jA

L
L

O
W

K
ey

�
jS

E
R

V
E

R
n ke

y
m

.P
��!

�

S
E

R
V

E
R

n ke
y

m
.P

jn
un

iq
k

[
Q

jP
]

S
E

R
V

E
R

n ke
y

m
.P

�
(�

ne
xt

)(
ne

xt
[

]
j!(

�
n

)(
O

P
E

N
ne

xt
.n

[n
D

R
A

W
IN

ke
y

m
T

H
E

N
R

E
L

E
A

S
E

ne
xt

.P
])

)

104 K. Bósa et al.

4.4.1 Applied Notations

In the rest of this chapter, the term P ��!�
Q denotes multiple reductions. In

addition, P
asm��!�

Q denotes one or more steps of some ASM agents. We also apply
the following abbreviations:

M1: : : : Mn � M1: : : : :Mn:0 where 0 = inactivity

nŒ � � nŒ0� where 0 = inactivity

.� n1; : : : ; nm/P � .� n1/ : : : .� nm/P

4.4.2 Nonbasic Capabilities

Below we give an informal description of each nonbasic capability in Table 2. It is
beyond the scope of the chapter to present detailed explanations and reductions of
their ambient calculus-based definitions, but we refer to our former works [30] and
[28] for more details.

1. Renaming This capability is applied to rename an ambient comprising this
capability. Such a capability was already given in [38], but our definition differs
from Cardelli’s definition. In the original definition, the ambient m was not
enclosed into another, name-restricted ambient (it is called s in our definition),
so after it has left ambient n, n may enter into another ambient called m (if more
than one m exist as sibling of n).

2. Seeing This operation was defined in [38], and it is used to detect the presence
of a given ambient.

3. Wrapping Its aim is to pack an ambient comprising this capability into another
ambient.

4. Allowing Code This capability is just a basic OPEN capability action. It is
applied if an ambient allows/accepts an ambient construct (which may be a bunch
of foreign codes) contained by the body of one of its sub-ambients (which may
be sent from a foreign location). The name of the sub-ambient can be applied
for identifying its content, since its name may be known only by some trusted
parties.

5. Draw in (an Ambient) The aim of this capability is to draw in a particular
ambient (identified by its name) into another ambient (which contains this
capability) and then to dissolve this captured ambient in order to access its
content. For achieving this, a mechanism (contained by the ambient key) is
applied which can be regarded as an abstraction of a kind of protocol identified
by key. The ambient key enters into one of the available target ambients which
should accept its content in order to be led into the initiator ambient.

6. Draw in then Release a Lock This capability is very similar to the previous one,
but after m has been captured by n (and before m is dissolved), n is wrapped by

A Formal Model of Client-Cloud Interaction 105

another ambient. The new outer ambient is usually employed as release for a
lock.5

7. Concurrent Server Process This ambient construct can be regarded as an
abstraction of a multi-threaded server process. It is able to capture and process
several ambients having the same name in parallel. In the definition, n is a
replicated ambient whose each replica is going to capture another ambient called
m. Since there is a name restriction quantifier in the scope of the replication
sign, which bounds the name n, a new, fresh, and unique name (denoted by
n

uniq
k) is generated for each replica of n. One of the consequences of this is that

nobody knows from outside the true name of a replica of the ambient n, so each
replica of n is inaccessible from outside for anybody (even for another replica of
n too).

5 The Specification of the Cloud Service Architecture Based
on Ambient ASM

As was explained at the end of Sect. 4.3.1, the model of our cloud architecture
is given as part of the value of the dynamic-derived function called curAmbProc,
which serves as input for the ASM machine EXTENDEDMOBILEAMBIENTMAN-
AGER [31].

curAmbProc := root[Cloud j Client1 j. . . j Clientn]6

In this section, we focus on the system configuration scenario, where the model of
our new software solutions is integrated with a cloud model (see Fig. 2a); however,
due to the applied ambient concept, the relocation of the new infrastructure services
into a middleware component within the model (see Fig. 2b) cannot be a problem.

In the formal model discussed in this section, we assume that there are some
standardized public ambient names, which are known by all contributors. We
distinguish the following kinds of public names: addresses (e.g., cloud, client1, . . . ,
clientn), message types (e.g., reg.istration/, request, subs.cription/, returnValue,
etc.), and parts of some common protocols (e.g., lock, msg, intf , access, out, o1,
. . . , os , op). All other ambient names are nonpublic in the model which follows.

In this section, we leave the end devices on the client-side abstract, but we define
some user actions with which the cloud service architecture is able to interact.

5In ambient calculus, the capability OPEN n.P is usually used to encode locks [38]. Such a lock
can be released with an ambient like n[Q] whose name corresponds with the target ambient of
the OPEN capability.
6The ambient called root is a special ambient which is required for the ASM definition of ambient
calculus; see [26] and [31].

106 K. Bósa et al.

5.1 User Actions

In the model, user actions are encoded as messages. A user can send the following
kinds of messages to the cloud:

MsgFrame � msg[IN cloud.ALLOW intf .content]
where content can be

RegMsg � reg[ALLOW CID.hUIDxi]

SubsMsg � subs[ALLOW CID.hUIDx; SIDi ; pymti]

RequestMsg � request[IN UIDx j
oi [ALLOW op.hclientk; argsi i] j
:
:
:

oj [ALLOW op.hclientk; argsj i]]

AddClMsg � addCl[IN UIDx j ALLOW CID.hclientk; pathl ; UID.on clientl /i]

AddChMsg � addCh[ALLOW CID.hUIDx; cnamei]

SubsToChMsg � subsToCh[ALLOW CID.hUIDx; cname; uname; clientk; pymti]

ShareInfoMsg � share[IN CHIDi j ALLOW CID.hsndr; rcvr; infoi]

ShareSvcMsg � share[IN CHIDi j ALLOW CID.hsndr; rcvr; info; oi ; argsP; argsFi]

In the definitions above, the ambient msg is the frame of a message; the term
IN cloud denotes the address to where the message is sent; the term ALLOW intf
allows a (server) mechanism on the target side which uses the public protocol intf
to capture the message; and the content can be various kinds of message types. The
term ALLOW CID denotes that the messages are sent to a service of a particular
cloud which identifies itself with the nonpublic protocol/credential CID (stands for
cloud identifier).

The first three kinds of messages were introduced in the original model. In a
RegistrationMsg, the user x provides his or her identifier UIDx that he or she is
going to use in the cloud. By a SubscriptionMsg, a user subscribes to a cloud service
identified by SIDi ; the information represented by pymt proves that the given user
has paid for the service properly.

Again, cloud services provide their functionalities for their environment (users or
other services) via actions called service operations in our model. In a RequestMsg,
a user who has subscribed to some services before can request the cloud to perform
some service operations belonging to some of these services. oi and oj are the
unique names of these service operations and denote service operation requests;
clientk is the identifier of a target location (usually a client device) to where the
output of a given operation should be sent by the cloud; and argsi and argsj are the
arguments of the corresponding requested service operations. Furthermore, the term
IN UIDx represents the address of the target user area within the cloud, and ALLOW

op denotes that the request will be processed by a service plot, which expects service
operation requests (and which interacts with the request via the public protocol op).

A Formal Model of Client-Cloud Interaction 107

The rest of the message types is used by the CTCI functions; see Sect. 5.3. With
AddClMsg, a user can register a new possible target (client) device or location for
the outcomes of the requests initiated by him or her. Such a message should contain
the chosen identifier clientk of the new device, the address pathl of the device, and
the user identifier UID.on clientl / used on the given target device.

By AddChMsg, users can open new channels; by SubsToChMsg, users can
subscribe to channels; and by ShareInfoMsg and ShareSvcMsg, users can share
information as well as service operations with some other users registered in the
same channel. For the detailed description of the argument lists of these last four
messages, see Sects. 5.3.1–5.3.3.

5.2 The Formal Model of the Cloud Architecture

The basic structure of the defined cloud model, which is based on the simplified
infrastructure as a service (IaaS) specification given in [31], is the following:

cloud � (� fw, q, rescr1,. . . rescrm)cloud[
interface j
fw [rescr1[service1] j. . . j rescrl [service1] j rescrlC1[service2] j. . . j rescrm[servicen] j

q[!OPEN msg j BasicCloudfunctions j CTCI functions j
UIDx[userIntf] j. . . j UIDy[userIntf] j
UIDowner

v [ownerIntf] j. . . j UIDowner
w [ownerIntf]

]]]
where

interface � SERVERn
intf msg.IN fw.IN q.n BE msg

In the cloud definition above, the names of the ambients fw, q, and
rescr1,. . . rescrm are bound by name restriction. The consequence of this is that
the names of these ambients are known only within the cloud service system, and
therefore the contents of their body are completely hidden and not accessible at all
from outside of the cloud. So each of them can be regarded as an abstraction of a
firewall protection.

The ambient expression represented by interface “pulls in” into the area protected
by the ambients fw and q any ambient construct which is encompassed by the
message frame msg. The purpose of the restricted ambients fw and q is to prevent
any malicious content which may cut loose in the body of q after a message frame
(msg) has been broken (by OPEN msg) to leave the cloud together with some
sensitive information. For more details, we refer to [30].

The restricted ambients resrc1,. . . , resrcm represent computational resources of
the cloud. Within each cloud resource, some service instances can be deployed. A
service may have several deployed instances in a cloud (see instances of service1 in
resrc1,. . . , resrcl above).

Every user area is represented by an ambient whose name corresponds to the cor-
responding user identifier UIDi . Furthermore, the user areas extended with service

108 K. Bósa et al.

owner role are denoted by UIDowner
i . The terms denoted by BasicCloudfunctions are

responsible for cloud user registration and service subscription. Finally, the terms
denoted by CTCIfunctions encode the client-to-client interaction.

It is beyond the scope of this chapter to describe all parts of this model in detail
(e.g., the structure of service instances servicei , the functions of a service owner
area ownerIntf , and the ASM agents in BasicCloudfunctions). For the specification
of these components, we refer to [30].

5.2.1 User Access Layers

A user access layer (or user area) may contain the following mechanisms: accepting
user requests (!ALLOW request), accepting new plots (!ALLOW newPlot), and
accepting outputs of service operations (!ALLOW returnValue) and some service
plots.

userIntf �
!ALLOW request j !ALLOW newPlot j clientRegServer j !ALLOW returnValue j
PLOTSIDi j. . . j PLOTSIDj j
sortingOutput j client1[postingclient1] j. . . j clientk[postingclientk]

where
sortingOutput � !(o, client, a).output[IN client.ALLOW CID j ho; client; ai]]

clientRegServer � SERVERn
CID addCl.(client, path, UID).(n BE client j postingclient)

postingclienti � SERVERn
CID output.(o, client, a).

OUT clienti .forwardToclienti .returnValue[IN UID.on clienti / j ho; client; ai]]

forwardToclienti � n BE outgoingMsg.OUT UIDx .leavingCloud.pathi

leavingCloud � OUT q.OUT fw.OUT cloud.outgoingMsg BE msg

clientRegServer is applied to process every AddClMsg sent by the corresponding
user. It creates new communication endpoint for target (client) devices. Each
endpoint is encoded by an ambient whose name clienti corresponds with the given
identifier provided in a message AddClMsg. By these endpoints, outputs of service
operations can immediately be directed to registered (client) devices after they
are available. Of course, if no target device or a non-registered one is given in a
RequestMsg, the outcome will be stored in the area of the user.

Every service operation output, which is always delivered within the body of
an ambient called returnValue, consists of three parts: the name of the performed
service operation, the identifier of a target location to where the output should be
sent back, and the outcome of the performed service operation itself.

sortingOutput distributes every service operation output among the communi-
cation endpoints in an ambient called output. The mechanism postingclienti , which
resides in each communication endpoint, is responsible to wrap each output of
service operations which reaches the corresponding endpoint again into an ambient
returnValue and to forward it to the specified user UID.on clienti / on the corresponding
device clienti . It is beyond the scope of this chapter to present a reduction on how a
simple request is processed in our model, but we refer to [30] for more details.

A Formal Model of Client-Cloud Interaction 109

5.2.2 Service Plots

According to [96], a plot is a high-level specification of an action scheme, i.e.,
it captures possible combination of actions (e.g., service operations) in order to
perform a certain task. As it has been mentioned in Sect. 3.1, in our model, service
plots are provided by the service owners who have disposal of access rights of the
services and they are placed into the user areas during the service subscriptions.
The purpose of their usage is to determine the permitted combination of service
operations which can be used by the user with his/her valid subscriptions.

For an algebraic formalization of plots, Kleene algebras with tests (KATs) [70]
have been applied in [94, 95]. Then a plot is an algebraic expression that is composed
out of elements of a carrier-set K containing two elementary operations 0, 1 and
elementary processes (or propositional atoms), of binary operators � and +, and of
unary operators � and N, the last one being only applicable to propositions.

For our purposes, we employ a simplified definition of service plots where we
leave the propositional ground of KATs. This means that in a service plot, the
elementary processes (e.g., oi ; oj 2 K) correspond to slots for operation requests
such that each slot can accept and permit a request only for a particular service
operation, � denotes a sequence (e.g., oi � oj or oioj), + denotes a choice (e.g.,
oi C oj), and � denotes iteration (e.g., o�

i). In addition, we can simulate parallelism
by equating oi j oj with oi oj C oj oi ; so in fact, we are interested in interleaved,
concurrent service operations when we talk of parallel composition of plots.

It is beyond the scope of the chapter to discuss service plots in detail; for more
information, see [30].

5.3 Client-to-Client Interaction Feature

Again, the client-to-client interaction in our model is based on the constructs called
channels. These are represented by ambients with unique names denoted by CHIDi

which contain some mechanisms whose purpose is to share some information and
service operations among some subscribed users; see below:

CTCI functions �
CHID1[channelIntf] j. . . j CHIDl [channelIntf] j
SERVERn

CID addCh.(UID, cname).CHMGR(n, UIDx , cname) j
SERVERn

CID subsToCh.(UID,cname,uname,client,pymt).
CHSUBSMGR(n, UID, cname, uname, client, pymt)

where
channelIntf � SERVERn

CID share.
((sndr, rcvr, info).hsndr;rcvr;info; undef; undef; undefi j
(sndr, rcvr, info, o, argsP, argsF).SHARINGMGR(n, sndr, rcvr, info, o, argsP, argsF))

110 K. Bósa et al.

The specification above contains three ASM agents called CHMGR, CHMGR,
and SHARINGMGR, whose complete ASM definitions are given in [29], but it is
beyond the scope of this chapter to describe them here.

Every cloud user can create and own some channels by sending the message
AddChMsg7 to the cloud, where an instance of the ASM agent CHMGR, which
is equipped with a server mechanism, processes such a request and creates a new
ambient with unique names for the requested channel; see Sect. 5.3.1.

If a user would like to subscribe to a channel, he or she should send the message
SubsToChMsg to the cloud. The server construct belonging to the ASM agent
CHSUBSMGR is responsible for processing these messages; see Sect. 5.3.2. In the
subscription process, the owner of the channel can decide about the rights which
can be assigned to a subscribed user. According to the presented high-level model,
the employed access rights are encoded by the following static nullary functions:
listening is a default basic right, because everybody who joins a channel can receive
shared contents; sending authorizes a user to send something to only one user at a
time; and broadcasting permits a user to distribute contents to all members of the
channel at once.

Both ShareInfoMsg and ShareSvcMsg are processed by the same server which
belongs to the ASM agent SHARINGMGR and which is located in the body of
each ambient CHIDi ; see Sect. 5.3.3. In the case of ShareInfoMsg, the server first
supplements the argument list of the message with three additional undef values,
such that it will have the same number of arguments as ShareSvcMsg has. Then an
instance of the ASM agent SHARINGMGR can process the ShareInfoMsg similarly
to ShareSvcMsg (the first three arguments are the same for both messages).

5.3.1 Establishing a New Channel

CHMGR is a parameterized ASM agent, which expects UID of the cloud user who
is going to create a new channel and cname which is the name of this channel as
arguments. The additional argument n is the unique name of an ambient which was
provided by the surrounding server construct and in which the current AddChMsg is
processed by an instance of this agent (such an argument is also applied in the case
of the other ASM agents below).

First, the agent checks whether the given UID has already been registered on the
cloud and whether the given name cname has not been used as a name of an existing
channel yet. If it is the case, the agent generates a new and unique identifier denoted
by CHID for the new channel; and it inserts into an abstract database a new entry
with all the details of the new channel which are the channel identifier, the channel
name, and the identifier of the owner.

Then it creates an ambient called CHID with the terms denoted by channelIntf
in its body which encode the functions of the new channel. By the abstract tree

7User actions AddChMsg, SubsToChMsg, ShareInfoMsg, and ShareSvcMsg are defined in Sect. 5.

A Formal Model of Client-Cloud Interaction 111

manipulation operation called NEWAMBIENTCONSTRUCT8 introduced in [31], this
generated ambient construct is placed into the ambient tree hierarchy as sibling of
the agent.

Although a channel is always created as a sibling of the current instance of
CHMGR, it contains the capability action OUT n; so as a first step, it leaves the
ambient n which was provided by the surrounding server construct and in which the
message was processed. After that, it is prepared to serve as a channel for client-to-
client interaction (it is supposed that the name cname of every channel is somehow
announced among the potential users).

5.3.2 Subscribing to a Channel

CHSUBSMGR is a parameterized ASM agent, which expects the following as
arguments: UID of the user who is going to subscribe to the channel, cname which
is the name of the channel, uname which is the name that the user is going to use
within the channel, client which is the identifier of a registered client device to where
the shared content will be forwarded, and pymt which is some payment details if it
is required. A user can register to a channel with different names and various client
devices in order to connect these devices via the cloud.

First, the agent checks whether the given UID and cname have already been
registered on the cloud and whether the given uname has not been used as a name
of a member of the channel yet. If it is the case, the agent informs the owner of the
channel about the new subscription, who responses with a set of access rights to the
channel that he or she composed based on the information given in the subscription.

If the subscription has been accepted by the owner and besides listening, some
other rights are granted to the new user, an ambient construct is created and
sent as a message returnValue to the user by NEWAMBIENTCONSTRUCT. This
message contains the capability IN CHID by which the new user can send messages
called ShareInfoMsg and ShareSvcMsg into the ambient CHID which represents the
corresponding channel (the owner of a channel also has to subscribe in order to
receive this information and to be able to distribute content via the channel).

5.3.3 Sharing Information via a Channel

Every server construct in which the agent SHARINGMGR is embedded is always
located in an ambient which represents a particular channel and whose name
corresponds to the identifier of the channel. In order to be able to perform its task,
it is required that each instance of SHARINGMGR knows by some static nullary
function called myChId the name of the ambient in which it is executed.

8This is the only way how an ASM agent can make changes in the ambient tree hierarchy contained
by dynamic-derived function curAmbProc [31].

112 K. Bósa et al.

SHARINGMGR is a parameterized ASM agent, which expects the following
arguments: sndr is the registered name of the sender, rcvr is either the registered
name of a receiver or an asterisk “*,” and info is either the content of ShareInfoMsg
or the description of a shared service operation in ShareSvcMsg. The last three
arguments are not used in the case of the message ShareInfoMsg, and the value
undef is assigned to each of them by the surrounding server construct. In the
message ShareSvcMsg, o denotes the unique identifier of the service operation that
sndr is going to share, argsP denotes the arguments of o that rcvr can freely modify
if he or she calls the operation, and argsF denotes that part of the argument list of
o, whose value is fixed by sndr.

The agent first generates a new and unique operation identifier for the service
operation o (if o is not equal to undef). This new identifier which is stored in
the nullary location function shOp will be announced to the channel member(s)
specified in rcvr. In the next step, the agent checks whether the sndr is a registered
member of the channel. Then if the given value of rcvr is equal to “*,” the agent
broadcasts the corresponding message(s) to all members of the channel. Otherwise,
if the value of rcvr corresponds to the name of a particular member of the channel,
the agent sends the corresponding message(s) only to him or her.

In the case of the processing of ShareInfoMsg, the agent sends to the member(s)
specified in rcvr the message sharedMcontent1 (for its definition, see Table 3), which
contains the sender sndr and the shared information info.

In the case of the processing of ShareSvcMsg, two ambient constructs are created
by NEWAMBIENTCONSTRUCT. The first one is the message sharedMcontent2 (for its
definition, see Table 3) and it is sent to the member(s) specified in rcvr. It contains
the sender sndr, the new operation identifier shOp, the list of public arguments
argsP, and the informal description of the shared operation denoted by info.

The second ambient construct is the plot PLOTshOp (for its definition, see Table 3)
enclosed by the ambient newPlot and equipped with some additional ambient
actions (see the underlined capabilities in the definition of sharedPlot in Table 3)
which move the entire construct into the user area of the channel member(s)
specified in rcvr, where the plot will be accepted by the term !ALLOW newPlot.

Table 3 Definitions of ambient constructs used by the ASM agent SHARINGMGR

sharedMcontenti � returnValue[OUT n.OUT myChId.IN UID.hcname; client; contenti i]

content1 � {“sender:” sndr, “content:” info}

content2 � {“sender:” sndr, “operation:” shOp, “arguments:” argsP, “description:” info}

sharedPlot � newPlot[OUT n.OUT myChId.IN UID j PLOTshOp]

PLOTshOp � SERVERs
op shOp.triggero

triggero � (� tmp)

(client, argsP).(OUT UID.IN UIDsndr.s BE request j
o[ALLOW op.htmp; .argsP n argsF/ C argsFi] j
tmp[ALLOW output j CID[(o, c, a).OUT UIDsndr .

IN UID.tmp BE returnValue.hshOp; client; ai]])

A Formal Model of Client-Cloud Interaction 113

The execution of the shared service operation shOp can be requested in a usual
RequestMsg as normal service operations. The PLOTshOp is a plot, which can accept
service operation requests for shOp several times. It is a special plot, because instead
of triggering the execution of shOp as in the case of a normal operation, a normal
plot does (see [30]); it converts the original request to another request for operation o

by applying the term triggero. This means that it substitutes the operation identifier
o for shOp, it completes its argument list with argsF, and it forwards the request for
o to the user area of the user sndr who actually has right to trigger the execution of
the operation o.

To the new request, the name-restricted ambient tmp is attached (see its definition
within the definition of triggero in Table 3), whose purpose is similar to the
communication endpoints of registered clients. Namely, it is placed into the user
area of sndr temporarily and it is responsible to forward the outcome of this
particular request from the user area of sndr to the user area of the user who initiated
the request. It is beyond the scope of this chapter to present a reduction on how a
particular request for a shared operation is processed in our model, but we refer
to [29] for more details.

6 The Specification of the Identity Management Machine

The identity management machine (IdMM), first presented in the paper [115], is
a privacy-enhanced client-centric identity meta-system based on the concept of
abstract state machines. The IdMM provides a “proxy” between a client and cloud-
based identity management solutions “translating” the protocols used by the client
to manage identities to a set of protocols used by cloud providers. The IdMM can
then authenticate a user to a given cloud service as well as manage any private
identity-related data stored on the cloud.

As mentioned in Sect. 3.2, the IdMM is composed of six agents. Figure 5
details the overall architecture of the system. The six agents, first introduced
in the paper [116], define the various interactions needed for the authentication,
de-authentication, and attribute synchronization for cloud services, based on the
abstract functions described in Fig. 6. In this section, we will give an overview for
of the agents: the core, client, cloud, and user agents. We will then detail a proof-of-
concept implementation previously presented in [119]. Since the specification of the
agents is still an ongoing task, we will end this section with a description of future
work on the IdMM.

114 K. Bósa et al.

Fig. 5 IdMM architecture

Fig. 6 Abstract functions

6.1 The IdMM Core Agent

The core agent for our client-centric solution is described in the paper [115]. The
agent has nine states (Fig. 7). The initial state of the IdMM is UserLogin. While in
this state, the user is prompted to input his or her credentials and is subsequently
authenticated to the machine. If a user cannot be authenticated, the machine halts
with the appropriate error. When a user wants to log out, the event triggered will
set the state to UserLogout. This will log the user out of the machine, set the state
to UserLogoutService which logs the user out of every single service he or she was
connected to, and halt the execution of the machine. The termination of the machine
occurs in the halt state. If an error exists, the appropriate message will be displayed
to the user.

When the user wants to use a specific service, he or she will specify the service’s
uniform resource identifier (URI). The event triggered by this action will set the
state to ServiceLogin. In the ServiceLogin state, the machine attempts to find the
matching service given the URI. If no services can be found, an error message is
triggered. If a service is found, the state will be set to AuthorizeLogin. In case the

A Formal Model of Client-Cloud Interaction 115

Fig. 7 IdMM flow

user is already connected to the service, he or she will be redirected to the given
URI. The authorization is done by the AuthorizeLogin state. If the user has the
appropriate access rights, the state is set to PerformLogin where the machine checks
the type of identity required and sets the state to PerformObfuscatedLogin. If the
service supports protocol-based authentication, then PerformObfuscatedLogin will
switch to PerformProtocolLogin, which will perform the authentication based on a
given protocol. In case the service does not support protocol-based authentication,
the machine will perform the authentication with the given identity. The machine
switches to the ServiceLogout state when a log-out event is triggered. In this state,
the IdMM searches for the matching service and performs the log-out.

To describe the rules for each state, we make use of abstract functions (Fig. 6).
The client-side functions, cloud-based functions, and user-based functions will
be further refined by describing the IdMMClient, IdMMCloud, IdMMProtocol, and
IdMMUser agents. To ease this process, we keep the underlying communication
layers abstract.9 The system functions include two important functions: random and
setUserAttr. In order to handle an obfuscated identity, we use the function users to
select a list of the obfuscated identities contained in the client’s directory. We would
then choose a random identity from this list and use it to authenticate the required
cloud service. At present, we propose that the function random be restricted to only
this requirement. More research can be conducted in this topic to further enhance

9In the paper [119], for example, we have included the IdMMClient agent as part of a Tomcat server.
The communication with the core agent is done via the Google Web Toolkit RPC framework.

116 K. Bósa et al.

privacy. For instance, we might choose not to include identities that have been
previously used with the given service. If the service requires a partially obfuscated
identity, we use the function setUserAttr to replace some of the obfuscated values
in the identity with real values that correspond to the current user.

6.2 The IdMM Client Agent

The IdMMClient agent is responsible with the interaction with the client’s directory
service. It retrieves any relevant information from the directory service and converts
it to the IdMM’s data structures. To achieve this, we have further refined the
client-side functions presented in Fig. 6. Apart for the getAuthAttrs function, the
refinement involves introducing a new submachine for each client-side function.10

The refinement of the client-side functions is described in the paper [117]. To
allow a seamless adoption of the IdMM, we make an abstraction with respect to the
client’s directory. The refinement of the client-side functions yielded an interface
(client interaction interface) of 20 directory-dependent functions (Fig. 8). In
addition to the interface, the refinement of the client-side functions also yielded a list
of parameters for each of the submachines. These parameters include information
about the client’s directory (location, authentication mechanism, credentials) as well
as information about the structure of the client’s directory. In the paper [117], we
illustrated how to implement a client interaction interface for an ApacheDS server.11

Fig. 8 Client-side function refinement

10For the purpose of this paper, we will not detail each submachine. The refinement and description
of the client side functions are described in the paper [117].
11ApacheDS [11] is a Java-based embeddable directory server certified by the Open Group as
LDAPv3 (Lightweight Directory Access Protocol) [101] compatible.

A Formal Model of Client-Cloud Interaction 117

We used the Novell LDAP Classes for Java API [84] to facilitate the interaction with
the ApacheDS server.

6.3 The IdMM Cloud Agent

The IdMMCloud agent is responsible for the interaction with any cloud service.
Its purpose is to authenticate or de-authenticate a user to/from a given cloud
service and, when needed, to perform attribute synchronization (see Sect. 3.2.1).
To achieve this goal, the cloud-based abstract functions presented in Fig. 6 must
be further refined. At present, we have the specifications for only the direct and
obfuscated client-to-cloud interaction scenarios presented in Sect. 3.2. Our current
work entails the understating and specification of the protocol interaction as detailed
in Sect. 10. As such, the refinement of the functions performLogin, performLogout,
and syncServiceAttr is achieved by introducing the IdMMCloud submachine as
presented in the paper [120].

Since the direct interaction scenario takes into consideration the fact that different
cloud providers will have different authentication systems, we have introduced the
concept of a cloud plug-in (Fig. 9). This interface represents a set of functions
that will be used for authentication, de-authentication, and attribute synchronization
on various cloud services. For each cloud service used, an implementation of this
interface must be provided. We consider two distinct ways for authentication, de-
authentication, and attribute synchronization. In case the service provider already
offers an API for this purpose, we simply use the functions makeAPIAuthentication,
makeAPIDeAuthentication, and makeAPISync. If the service provider does not have
such an implementation, we use a custom-created one marked by the generic
functions. For example, we use the functions requestAuthParameters and parseAu-
thParameters to obtain all parameters used for the authentication process. We then
use the functions requestGenericAuthentication and parseGenericAuthentication to
make the actual authentication process.

Fig. 9 Cloud plug-in

118 K. Bósa et al.

Fig. 10 IdMMCloud flow

The rules for the IdMMCloud submachine are presented in the paper [120]. The
initial state of the machine depends on the function being called. For the function
performLogin, the initial state will be PerformLogin (Fig. 10). Similarly, the initial
states will be PerformLogout and SyncServiceAttrs for the functions performLogout
and syncServiceAttrs. While in these states, the appropriate values of the machine’s
dynamic frame are set and the state is set to FindPlugin. In this state, the machine
attempts to find a plug-in that matches the provided service. If no plug-in is
found, the machine halts. When a plug-in is found, the state of the machine is
set to DetermineType. The rules for this state determine which of the MakeAPI-
Auth, MakeAPIDeAuth, MakeAPISync, MakeGenericSync, MakeGenericAuth, or
MakeGenericDeAuth states will be chosen based on the type of the request and
whether the service offers an API. While in the aforementioned states, the actual
authentication, de-authentication, or attribute synchronization processes take place
via the use of the CloudPlugin functions presented in Fig. 9.

A Formal Model of Client-Cloud Interaction 119

6.4 The IdMM User Agent

The IdMMUser agent is responsible for the interaction with the user. It handles inputs
from the user and displays the appropriate messages. This goal is achieved by imple-
menting the user-based functions presented in Fig. 6. Since the implementation of
these functions is software dependent, we opted to keep the functions abstract.

The function prompt is used to prompt the user into typing his or her credentials
and returns a list of attributes representing the credentials. The function error is used
to notify the user of an error that occurred during the authentication process. The
function redirect is used to redirect the user to a specific URI, specified as a parame-
ter. The event triggered by the user entering a URI will call the function triggerAuth
which changes the state of the IdMM core agent to ServiceLogin. When the user
wants to de-authenticate from a service, the underlying event will call the function
triggerDeAuth, causing the state of the core agent to change to ServiceLogout. The
de-authentication from the IdMM is done via the triggerLogoff function, which sets
the state to UserLogout. During the implementation phase described in the paper
[119], we became aware that some Web-based applications do require the user to
enter dynamically generated data for the sole purpose of disallowing automated
requests. Most often, this is achieved via captcha messages. As such, we were forced
to introduce a new user-based function, String captcha.Object message/, to allow
the user to input captcha messages.

6.5 A Proof-of-Concept Implementation

In the paper [119], we described a proof-of-concept implementation for the IdMM
focusing primarily on software-as-a-service (SaaS) platforms. The implementation
follows the architecture described in Fig. 5. We used an ApacheDS [11] directory
service running in a cloud-based environment on a private virtual machine. The
implementation for the IdMMClient agent is running as part of an Apache Tomcat
[12] server. The communication between the IdMMClient agent and the ApacheDS
service is done via the use of the Novell LDAP Classes for Java [84]. The client
interaction parameters described in Sect. 6.2 are stored in a .properties file (as
opposed to an XML file as described in the paper [117]). The Tomcat server hosting
the IdMMClient agent is running on a public virtual machine in the same cloud-based
environment as the ApacheDS server.

The IdMMCore, IdMMCloud, and IdMMUser agents are running as part of a Google
Chrome browser extension. Since the specification of Google Chrome extensions
[58] entails the use of JavaScript, as opposed to the usage of Java for the IdMMClient,
we opted to use the Google Web Toolkit framework [59]. By using this framework,
we can restrict the programming language of the implementation to only Java,
leaving the compilation of the code to JavaScript down to the GWT framework.
The communication between the IdMMCore agent and the IdMMClient agent (for

120 K. Bósa et al.

the execution of the client-side function presented in Fig. 6) is achieved by using
GWT’s own RPC framework. The credentials returned by the user-based function
prompt() as well as the address of the IdMMClient are stored in encrypted format
in the browsed local storage environment. The user may modify the values via
the use of the extension’s option page. All communication between the client’s
directory and the IdMMClient agent, IdMMCore, and IdMMCloud agents is encrypted.
Any privacy-related data stored in the dynamic frame is encrypted as well.

A demo of the implementation can be found in [118].

7 Cloud Content Adaptivity Specification

The adaptivity solution, first presented in [43], uses a WA wrapped inside a
middleware system to adjust cloud services to client’s device. This research includes
the creation of ASM ground models in a way to reflect the requirements and to
serve as a basis for implementation. The next subsection introduces the system
architecture of the proposed solution.

7.1 The System Architecture

The system architecture illustrated in Fig. 11 shows how the cloud, the middleware,
and the client (here represented by his or her devices) are interacting. The client’s
point of connection is a WA which should adapt itself, on the fly, to different devices
(smartphones, tablets, laptops, and desktop computers) and different browsers.
The interaction between the client and the cloud is done through a middleware
software. The WA represents the front-end and the middleware the back end.
After a successful log-in, the application will display a list of cloud services
corresponding to the user’s credentials. By selecting a service, a request is sent to
the middleware, which will forward it to the cloud and wait for the corresponding
answer. Meanwhile, a device profile will be created, using the third-party tools and
frameworks.

For detecting the device properties, the Modernizr framework is used by creating
JavaScript tests. These tests will be executed on the client side and the corresponding
cookie variable will be updated, sending the information to the server side, where
the session and the local database will also be updated. When the features cannot be
detected using Modernizr, then a device detection database tool can be used (e.g.,
Wireless Universal Resource FiLe (WURFL)). If the user uses the cloud services
from the same device several times, then the device information can be read from the
local database, without accessing the device detection database or writing again the
JavaScript tests. Even when the information is locally available, the session is still
used, because of optimization purposes. Another reason for saving the information
locally is also the client-client interaction. One client could choose to send the output

A Formal Model of Client-Cloud Interaction 121

Fig. 11 System architecture

of a service from cloud to another client, which is logged in from another device,
which means that sending the answer from the cloud not only to the device for which
we have the profile in the session but also to another device for which we can read
the information from the database.

The answer that arrives from the cloud is parsed and processed using the device
information. When images or videos are involved, their format is checked, and if it
is not accepted by the device, then third-party tools are used to transform the media
to the corresponding format. When the adaptation is finished, the message is sent
back to the device. In case some JavaScript tests exist, they will be executed on the
client side for getting the new information; afterward, the cookie is updated. When
the loading finishes, the message is displayed on the device.

The middleware acts like the virtual provider described in [9]. In our case,
we leave out for now the sending and receiving part and concentrate only on the
adaptation.

122 K. Bósa et al.

7.2 ASM Ground Models

In order to reflect the WA intended behavior, the ASM method was used for
building the ground models. The main components of the system were modeled
such that the refinement of their abstract models would be a description of the future
implementation.

Further on, the models including only aspects with respect to content adaptation
and displaying are presented. Most of the work is done on the server side using the
information discovered on the client side.

7.2.1 Display Output Agent

Figure 12 illustrates the ASM ground model that describes the client’s device
activity. There are three states through which the agent goes, Waiting for message
(the initial state), Execute client tests, and Displaying the message (the final state).

The agent waits in the initial state until a message comes from the server. The
messages sent by the middleware to the client are saved in a queue. When a message
becomes available in the queue, the agent executes the macro Decrypt message.
After the decryption of the message, the flow goes further with the condition Client
tests available. If JavaScript tests (which verify the device properties) are available,
then the agent goes to the state Execute client tests. This is a durative action (there
is an interval of time between starting and ending the execution) which is executed
internally by the browser. When the JavaScript execution finishes, the agent retrieves
the new device information and updates the cookie, in this way communicating to
the server the new values of the device properties. The flow takes the same route,
as when no client tests would exist. The guard Extra resources verifies if extra

Waiting for message

Message arrived Decrypt message

Client tests available

Execute client tests

Yes

Update cookie profile
with feature info

Extra resources

Download extra resources

Yes

No

Displaying the message

No

Fig. 12 Display output ASM

A Formal Model of Client-Cloud Interaction 123

images and/or videos are necessary. In a positive case, the system downloads them
(the abstract macro Download extra resources does this action). The agent’s state
changes, reaching the final one, Displaying the message.

7.2.2 Receive Request Agent

Figure 13 displays the ASM ground model for receiving the client’s request. The
algorithmic idea consists in having only the initial and the final states: Waiting for
requests and Waiting for answers from Cloud. Again, a queue is used to store the
requests sent by the client. When a client’s request arrives, it is then forwarded to
the cloud (this is fulfilled by the Send requests to Cloud macro), and in parallel, the
agent verifies if the session or the cookie contains information regarding the device
which sent the request.

If the condition Device info available in the session/cookie is not met, then we
are dealing with the first request sent during that session. Using the guard Device
profile available on the server, the agent verifies if this is the first time that the user
logs in from the corresponding device. If this is the case, then the agent retrieves the
device details from the local database by executing the Retrieve the local device
profile macro. After retrieving the device details, another macro is executed to
Update session/cookie with device info. The information is saved on the session
and on the cookie to ease the communication between client and server agents and
to optimize the process regarding the verification of device properties. Whenever
a new JavaScript test is executed, the cookie and the session variables are updated
using the test’s result. The state is changed and the agent waits for answers from the
cloud.

Waiting for requests

Requests available

Send requests to Cloud

Yes

Device info available in
the session/cookie

Device profile
up-to-date

on the server

Device profile available
on the server

No

Yes

Save device profile
on the server

No

Write client tests
for determining
device features

No

Retrieve the local
device profile

Yes

Device profile
retrieved

Update session/cookie
with device info

Waiting for answers
from cloud

Yes

Fig. 13 Receive request ASM

124 K. Bósa et al.

If the guard Device profile available on the server is not satisfied, then the client’s
tests for retrieving the values of all device properties that are necessary for code
adaptation are written. The macro Write client tests for determining device features
is responsible for the previous action. In the same time, the state is changed to
Waiting for answers from Cloud.

By writing JavaScript code together with Modernizr, the client’s tests are created
in order to determine the device and browser capabilities. The tests will be written
on server side and executed in background on the client side. After the execution
finishes, the answer is sent back to the server. Information regarding JavaScript
interpretation using ASMs is provided by Börger et al. [27]. Using the information
provided in that article, the macro Update session/cookie profile with feature info,
which can be seen by the reader in Fig. 12, deals with the description of the client’s
tests. Starting from the basic client’s tests, new tests could be inserted if, while
parsing the answer sent by the cloud, new device properties are involved.

Another way to follow is when the information is already available in the session,
which means that the request in case is not the first one coming from the client.
Using the guard Device profile up-to-date on the server, the agent verifies if the local
database already contains the device information. If no modification is necessary, the
final state is reached. In the contrary case, when device properties have to be created
or updated, the macro Save device profile on the server is executed. At this point,
the agent also reaches the final state.

7.2.3 Receive and Process Answer Agent

The algorithm presented in the ground model from Fig. 14 describes what the agent
does with the answer sent by the cloud in order to adapt it to the device. The agent
finds itself in four different control states: Waiting for answers from Cloud, Filter
and adapt content, Message format transformed, and Send answer to client. The
starting control state is Waiting for answers from Cloud and the final state is Send
answer to client.

The agent waits for the messages having the state set to Waiting for answers
from Cloud. The messages sent by the cloud are saved in a queue which is checked
by the guard Message available. Whenever a message is available, a verification is
done to see if its format is supported by the browser installed on the device (this
check is contained by the guard Message format supported). If the message is not
written in Hypertext Markup Language (HTML) or Extensible Hypertext Markup
Language (XHTML), then the macro Transform the message format (html/xhtml)
is executed and the agent’s state is changed to Message format transformed. If the
message’s format can be displayed in the browser, we go further on with checking if
the device details are available, using the guard Device information available. What
is this guard actually doing? It checks to see if the device profile is available in the
session. If the device information is not already available, then the flow goes on with
the next condition without adapting the HTML code. In this case, the page will be

A Formal Model of Client-Cloud Interaction 125

Waiting for answers
from Cloud

Message available

Message format supported

Transform the
message format
(html/xhtml)No

Message format
transformed

Device information available

Yes

Retrieve device information

Yes

Filter and adapt
content

Client tests
per request necessaryNo

Write client tests
for the properties

changeable at every request

Yes

Client tests
per request finished

Encrypt message

No

Send answer
to client

Fig. 14 Receive and process answer ASM

Parsing the
content

Elements available
Device profile

contains
the element

Yes

Ask 3rd-party tools
for device information

No

Waiting for device
information

Update device profile
on the server

Update device profile
variable on session/cookie

Extra resources
needed

Yes

Generate resources
(images/videos)Yes

Resources readyAdapt element

No

Element adapted

Content adapted

No

Fig. 15 Filter and adapt content ASM

displayed on the device in its original state, containing only the adjustments done
automatically by the browser.

If the device information is available in the session, then using the macro Retrieve
device information, the corresponding information is retrieved and the agent’s state
is set to Filter and adapt content. This action is extended in the model displayed by
Fig. 15. When the adaptation finishes, the agent reaches the same condition as the
one reached when the device information is not available.

126 K. Bósa et al.

The guard Client tests per request necessary checks if an extra JavaScript code
has to be inserted in order to test the device capabilities which can change by every
request. An example is the Global Positioning System (GPS) location property. GPS
information is something that could change each time the user makes a new request,
because he or she might change his or her position (we can imagine that the user
is moving, being in a train or in a car, when accessing the cloud). If there are no
tests per request required, the agent has one more step to do before going to the
final state, which is Encrypt message. When this macro is executed, the control state
Send answer to client is reached. The macro Write client tests for the properties
changeable at every request is executed if the corresponding tests are necessary,
and the guard Client tests per requests finished verifies if this execution finished and
if the agent is ready for encryption. The same flow as for the “No” branch follows;
the macro Encrypt message is executed and the final state is reached.

7.2.4 Filter and Adapt Content Agent

For adapting the content coming from the cloud, a general HTML/XHTML parser
has to be designed. As a basis for this, the paper [56] can be used. In [56], a multi-
agent ASM formal model is described, which shows the browser behavior and how
its components interact.

Figure 15 displays the algorithm of the Filter and adapt content model, which
was mentioned as a control state in the previous ground model (Fig. 14). In this ASM
ground model, the agent can reach five control states: Parsing the content, which
is also the initial state, Waiting for device information, Resources ready, Element
adapted, and the final state Content adapted.

The adaptation algorithm starts with the parsing of the HTML content of the
answer which came from the cloud. Each HTML element is identified, while parsing
the content and the guard Elements available verifies if the algorithm still has to
check and adapt other HTML elements. If this is the case, then the agent goes to
the next condition Device profile contains the element. If the device profile saved in
the session does not contain information with respect to the chosen element, then a
device detection database third-party tool is used. A query containing the specific
element is sent to the device detection database. When the agent reaches the macro
Ask 3rd-party tools for device information, the state changes to Waiting for device
information. The agent waits until this durative action is executed by the device
detection database. When the information is returned to the agent, two macros are
executed in parallel: Update device profile on the server and Update session/cookie
with device information. By updating the information in the session and in the local
database, we will not have to query again the third-party tool regarding the same
HTML element for the possible future requests. Nearby these two actions, the guard
Extra resources needed is also fired.

One of the existing device detection databases can be used, without creating an
own database, because this would cost a lot of time, mainly because of the database
maintenance.

A Formal Model of Client-Cloud Interaction 127

The agent executes the Extra resources needed guard for verifying if the
element’s (e.g., an image or a video) format is supported by the browser running
on the current device. In case the format is not applicable, the macro Generate
resources (images/videos) is executed and the control state is updated to Resources
ready. The next step is the same as the one when no extra resources are needed.

The Adapt element macro does the job of changing the HTML element cor-
responding to the device profile. If, for example, a very complex list should be
displayed on a smaller device, on which the user should scroll too much for
seeing the information, then the list should be changed by eliminating the not-
so-important information and make it expandable, such that the user could easier
read the information and reach faster the information which is interesting for him
or her. By detecting the device properties, the developer discovers which types of
elements are suitable for the device and can also change the format correspondingly.
Reaching the execution of this last macro, the state corresponding to each element
is set to Element adapted. Changing the state of each element is like a flag which
is set on each element. The agent goes to the final state, Content adapted, when all
elements reached the state Element adapted.

7.3 The Use of ASM Ground Models

In the previous section, the WA’s constraints/assumptions were expressed by the
creation of ASM ground models. The fact that the requirements change based on
the device that is querying the cloud services requires the development of a flexible
and extendable piece of software by using successive refinement steps that adapt the
abstract models to the changing requirements.

For reaching the compilable code, the next phase after the creation of the ground
models is the definition of the macros by using pseudo-code-like descriptions.
Typically, there are necessary more steps to reach the code, because the design
phase starts with a not-so-precise model and gradually more details are introduced
with each step, taking into account the requirements of the system [23]. Below is an
exemplification of how the Display Output Agent ground model from Fig. 12 can be
refined by describing the agent’s signature and the ASM macros.

Below follows the agent’s signature. The ctl_state={Waiting for message, Exe-
cute client tests, Displaying the message} variable represents the agent’s con-
trol states and has as initial value the state Waiting for message. The queue
messages.self / contains the messages sent by the middleware; its initial value is
the empty set. The cookie.deviceProfile/ 2 COOKIE variable stores the device
profile, where the set COOKIE contains key�value elements (initial value = undef).
headPageW messages.self / ! html is a function that returns the first HTML text sent
by the middleware. Its initial value is undef . Modernizr is a set that contains the
features (and their corresponding values) tested by using the Modernizr framework.
Using the agent’s signature, the macros can be defined as follows.

128 K. Bósa et al.

CLIENTDISPLAYOUTPUTMACROS D
if MESSAGEARRIVED then

DECRYPTMESSAGE

if CLIENTTESTSAVAILABLE.headPage.
messages.self /// then

ctl_state WD executeClientTests
UPDATECOOKIE

end if
if EXTRARESOURCES then

DOWNLOADEXTRARESOURCES

end if
ctl_state WD displayingTheMessage

end if
Where

MESSAGEARRIVED D .messages.self / ¤ empty/

DECRYPTMESSAGE - abstract

CLIENTTESTSAVAILABLE.page/ D
.9t 2 htmlTags tagName.t/ D “SCRIPT” and

CONTAINSMODERNIZRTESTS.t//

CONTAINSMODERNIZRTESTS.scriptTag/ D
if hasAttribute.scriptTag; src/ then

let url D valueOfAttribute.scriptTag; src/ in
9c 2 contentOfFile.url/ c D “Modernizr.addTest”

else
9c 2 contentOfTag.scriptTag/

c D “Modernizr.addTest”
end if

EXTRARESOURCES D .extraResources ¤ empty/

DOWNLOADEXTRARESOURCES - abstract

UPDATECOOKIE D
if ctl_state D executeClientTests then

for all f 2 self :Modernizr do
insert f into self :cookie.deviceProfile/

end for
end if
CLIENTTESTSAVAILABLE macro verifies if there are Modernizr tests defined

in the JavaScript part of the page. There are two possibilities to declare the client’s
tests, directly in the SCRIPT section of the page and through another JavaScript file.
The “Modernizr.addTest” method (made available by the Modernizr framework)
can be used either in the content part of the SCRIPT tag or inside the JavaScript file.

UPDATECOOKIE macro parses all the features (key�value pairs) tested using the
Modernizr framework and creates the agent’s cookie.

A Formal Model of Client-Cloud Interaction 129

Following the example given above, each of the ground models defined in
Sect. 7.2 could be refined to pseudo-code and afterward translated to CoreASM.

8 The Problem of Verification

Although our work is focused only on the specification of some novel solutions
concerning client-cloud interaction at present, the validation and the verification of
our (ground) models have been planned as our future work. Hence, we devote the
following section to this subject.

In the context of software systems, formal verification can be regarded as
a decision problem [105]. Namely, if it is given a programming language L

and a formal language F suitable to express properties of programs in L (e.g.,
completeness, soundness, compactness, liveness, and safety and halting problems),
the problem of verifying L programs against F properties can be considered as
follows [105]:

• Given a program ˘ 2 L and a property ' 2 F , decide whether for every input
I appropriate for ˘ , ˘ on input I satisfies '.

The decidability of this problem depends on the expressiveness of both L and F .
Although there exists some artificial subset of formal languages which are extended
with some (first-order) logics and for which the above problem is always decidable
(e.g., sequential nullary ASMs conjugated with a first-order branching temporal
logic [105]), their computational power and expressiveness are limited.

Verification in process calculi (e.g., ambient calculus) and in state transition
systems is often done by checking bisimulation equivalence [104], where it is
investigated whether the associating systems behave in the same way in the sense
that one system simulates the other and vice versa. A more complex process
representing an implementation is shown to be bisimilar to a simpler process
representing a specification. The simpler process should be so clear that it can
be regarded as satisfying correctness requirements in an intuitive sense, not with
rigorous mathematical proof.

This procedure may be not reliable or not applicable at all for many cases in
general (intuitive checking of correctness of formal ground model is often nontrivial
and a very error-prone method). Hence, for verifying correctness properties for
algorithms specified by these formal languages, some (temporal) logics are required,
such that some model checking verification can be applied. There are model check-
ing algorithms for process calculi with calculus style specification logic [17, 49],
but such a logic often is very complicated to describe or understand, and sometimes
results are not obtained in reasonable amount of time even for the proofs of very
simple correctness requirements.

In some other cases, the aim of the coupling of a formal language and such a
special logic is to address only the verification of specific aspects or features in
the specified systems. For instance, Cloud Calculus [67] applies ambient calculus

130 K. Bósa et al.

to specify topology of cloud systems and firewall security rules such that it is able
to verify whether the global security policy after the virtual machine migration is
consistently preserved with respect to the initial one.

In the case of the formal model of our integrated system discussed in this chapter,
which is given in terms of our two-abstraction-layer approach mentioned above,
verification can be reduced to pure ASM verification, since the definitions which
are given in terms of ambient calculus can be replaced with ambient ASM rules
which in turn can be translated to normal ASMs.

Although ASMs can be seen merely as a specification formalism, strictly speak-
ing, ASMs constitute a computation model on structures. The program of an ASM
is like the program of a Turing machine, a description of how to modify the current
configuration of a machine in order to obtain a possible successor configuration.
Since ASMs are computationally complete—they can calculate all computable
functions—the problem given above is, in its full generality, undecidable.

The advantage of ASMs is that they are close to logic, which makes the overall
design easily amenable to well-understood mathematical techniques. Essentially,
the mathematical foundation of ASMs supports the formal verification of dynamic
systems designed by means of ASMs.

For the verification of the properties of ASMs, mechanical theorem proving
(e.g., Isabelle [24, 89], KIV [93], PVS [51, 54], etc.) as well as model checking
systems [106, 121] can be applied. For these, some logics were also developed [107],
which are tailored for ASMs in terms of an atomic predicate for function updates.

After the correctness of an ASM (ground) model is proved, we can apply
stepwise refinement method [22] to extend the model and to prove in each step
that the new model preserves the same properties, which the predecessor model
possessed. The design of complex systems is typically organized as a series of
refinement steps, where the final goal is to minimize the gap in reasoning between
the refined formal model and a particular implementation.

In Sects. 8.1 and 8.2 below, it is presented shortly which correctness properties
for Web application are assumed and how could ASM ground models help, respec-
tively, and which solutions are available for the client- and server-side adaptation.

8.1 Correctness of Web Application

WAs do not have a precise definition or a precise model to follow. This happens
because they are related to different standards (which can be incomplete or bad
documented) and implementation frameworks [27]. They are using a huge number
of diverse technologies and there is not much knowledge about how to measure or
ensure the quality properties [85]. Because of this, it is hard to prove the correctness
of WAs.

Correctness is an important aspect in providing good-quality WAs. The quality
properties are separated in two sections: external and internal qualities. Correctness
is one of the external qualities and is part of “Web Content” properties’ category.

A Formal Model of Client-Cloud Interaction 131

If we are referring to the functionality part, we can state that a WA is correct if
it behaves according to its specification [69] (based on the requirements, we can
decide if the information available in a Web page is valid or not [3]). The first
step in creating a correct WA is to make a rigorous analysis to precisely state and
analyze the similarities and differences among the various devices and browsers.
The development of a WA is an entire process, which after the analysis phase
continues with stating a list of precisely formulated properties and then creating the
WA (ground) models to hold the properties. The implementation can be described
as refinements of those initial abstract models. From this, we could build a way
to certify the properties of a WA, by checking the obtained model against the
given properties. We can classify the correctness properties into two interesting
groups[27]:

• Correctness properties for session and state management. The session state
should not be affected when, for example, the user navigates away from the page
and afterward he or she returns. Replicated parts of the state should be consistent,
equivalent between client side and server side, and the state should persist when
the client changes (e.g., from desktop to mobile).

• Application correctness properties. These properties deal with the dependence
of the WA intended behavior on the programming and execution infrastructure
(e.g., browser, connection, plug-ins). In order to achieve a precise analysis, a
rigorous high-level description is mandatory.

From the fact that no strict way of proving correctness and completeness of
the requirements/design exists results a problem regarding the transition from
informal to mathematical representations. In [122], the use of ASM ground models
(defined as an analysis of dynamic properties of a system using pseudo-code-
like descriptions over abstract data structures) is recommended. A characteristic of
ground models is the direct correspondence between the interpretation of the system
requirements to be modeled and their abstract state machine representation, which
simplifies the transition’s problem (mentioned previously).

By building an abstract model from the requirements, which satisfies the
CoCoCo-properties—consistency, correctness, and completeness [23]—we can
check whether the WA satisfies the requirements [21]. To fulfill these properties,
it means to directly solve the following problems: communication, verification,
and validation. Using ASMs for ground models, we can satisfy the properties
mentioned before. The simplicity and generality of the ASM language solves
the communication problem. The verification problem can be solved by applying
standard (pseudo-code) inspection and reasoning. The validation of ASM models
can be realized by simulating the ASM runs using the existent tools [25] (e.g., ASM
Workbench [40], .NET-executable AsmL engine [16]). CoreASM12 and ASMETA

12http://sourceforge.net/projects/coreasm/.

http://sourceforge.net/projects/coreasm/

132 K. Bósa et al.

(ASM mETAmodeling)13 are two examples of the tools allowing different forms of
model analysis for the ASM macros mentioned in the ground models.

In order to reason about correctness of programs and increase their quality, for-
mal verification techniques can be used. By applying model checking to ASMs, one
could assure the correctness and quality of software specifications. Farahbod et al.
[53] specifies how ASM specifications written in CoreASM can be automatically
transformed into Promela specifications, which, afterward, can be verified using
the SPIN model checker. AsmetaSMV[13] is a tool that automatically translates
ASM specifications written in AsmetaL[55] (the textual notation for ASM models
in ASMETA) into models of the NuSMV model checker, and so it allows the
verification of computation tree logic (CTL) and linear temporal logic (LTL)
formulae.

8.2 Correctness with Respect to Adaptivity

Adaptivity to different devices and user preferences is essential for developing a
correct WA. A clear condition for a correct WA says that the application should
behave corresponding to the specification. If a WA is not adaptive, then it might not
function or display correctly on some devices, which means that it would not reflect
the specification. The vast number of types of devices and their browsers are big
issues for the content and presentation adaptation. The formal model has to describe
the particularities of each device and how to change the content and the presentation
correspondingly. This could be done by using the client- and server-side adaptation
techniques, which require to query the device for its features.

For each of the two main content adaptation techniques which were mentioned
before, server-side and content-side adaptation, there already exist frameworks or
third-party tools that could be used during the development of an application. The
server-side adaptation is realized with the help of the device detection databases,
which are available both in the open-source format (e.g., OpenDDR [86]) and
in the commercial format (e.g., WURFL [100], DeviceAtlas [1]). A significant
difference between the open source and the commercial solutions is how often
the databases are being updated. Commercial databases are more reliable, because
most of them are daily updated. This is an important issue to check when a device
detection database is considered, because an out-of-date database could result in the
delivery of erroneous data to the devices. For the client-side adaptation, the “Mod-
ernizr” JavaScript framework [14] could be used. The problem of missing browser
functionalities could be solved by using replacement code done in JavaScript, the
so-called polyfills. Small visual layouts could be also solved on the client side. A
big advantage of the server-side adaptation is the loading time, everything that loads
on the server will load faster [48]. When significant changes have to be done, the

13http://asmeta.sourceforge.net/.

http://asmeta.sourceforge.net/

A Formal Model of Client-Cloud Interaction 133

server offers a high level of control in fine-tuning. Both of the abovementioned
techniques are presenting limitations in discovering all the properties of a device. On
client side, the physical nature of the device cannot be determined (e.g., OS version,
model, maximum HTML size), but on server side, it is not possible to determine the
real-time information (e.g., GPS coordinates, device orientation). On server side,
the user could cause problems in detecting the device by changing the user agent
(UA). The UA is a string available in the HTML header of a Web page and it is
used to query the device detection databases. A similar problem could happen on
client side, even without the intervention of the user—many browsers return false
positives for certain query tests.

9 Related Work

It is beyond the scope of this chapter to discuss the vast literature of formal modeling
mobile systems and service-oriented architectures (SOAs), but we refer to some
surveys on these fields [32, 37, 96].

However, if we would like to put our work in context, we should mention first
of all [110], in which one of the first examples is presented for representing various
kinds of published services as a pool of resources, like it is in our model.

The application of the concept of mobile ambients in the development of
distributed SOAs is not a novel idea. One of the first research works that investigated
and analyzed location-based services whose availability is related to the surrounding
physical environment of the user is [73]. This work has not considered mobility yet,
but it introduces the notion of service domains. These domains refer to geographical
boundaries which are associated with a set of services that is available for the
user within the boundary. In other words, Loke et al. [73] describes a new kind
of location-based service discovery architecture.

In the software development community, a UML-based modeling approach
called service-oriented architecture modeling language (SoaML) [102] has started
to become increasingly popular for modeling service-oriented architectures. More-
over, SoaML has an extension called Ambient-SoaML [4, 6] which combines
SoaML with the concept of mobile ambients for modeling service-oriented mobile
applications.

Another modeling technique is cloud modeling language (CloudML) [33, 42],
which aims at facilitating the specification of provisioning, deployment, monitoring,
and adaptation concerns of multi-cloud systems at design time. Furthermore,
CloudML also contains the models@run-time environment for enacting the pro-
visioning, deployment, and adaptation of these systems, as well as for monitoring
their status at run time.

Ambient-PRISMA [5] is an aspect-oriented software architectural approach
for modeling and developing distributed and mobile applications, which is also
extended with the ambient concept. Ambients appear in the (UML-like) meta-
model of PRISMA as some special kind of connectors that model the notion of

134 K. Bósa et al.

location and offer mobility services to the components. Mobility of architectural
elements is supported by reconfiguring the software architecture. Although SoaML,
Ambient-SoaML, CloudML, and Ambient-PRISMA are advanced model-driven
engineering techniques, which have more or less been integrated with the software
development practice, they are definitely not formal methods and they have
no relation to any mathematically rigorous formal specification and verification
techniques unlike our approach.

Another research similar to ours is Cloud Calculus [67], which is built upon
ambient calculus for capturing the dynamic topology of cloud computing systems.
Cloud Calculus is effective to verify whether global security policies are preserved
after virtual machine migrations, but it is a very specific tool which is not applicable
for giving the formal specification of functionalities of cloud/distributed systems.

There exists also some research works which apply ambient logic [35, 39] tai-
lored for ambient calculus to formally verify various security protocols (e.g., authen-
tication and key agreement protocol (AKA) [125]). Furthermore, [41] presents a
general algorithm on how the processes expressed by ambient calculus can be model
checked against formulas of the ambient logic.

In [26], the ambient concept (notion of “nestable” environments where com-
putation can happen) is introduced into the ASM method, such that the definition
of ambient ASM is based upon the semantics of ASM without any changes. But
ambient ASM, on which our model is based, is not the only research which aims
to build in a concept of mobile ambients to the ASM method. In [113], some
advantages of a simple ambient concept introduced into ASM are demonstrated.
Although this work was also inspired by ambient calculus, it is by far not as refined
and versatile as ambient ASM.

Our approach according to which service instances must be always equipped
with unique operations such that they compose the interface of a service instance
was originally applied among others in the definition of Abstract State Services
(AS2s). AS2s were introduced first in [75] and were extended and described in detail
in [76, 77]. The theory of AS2s integrates a customized ASM thesis for database
transformations [98] as well. In an AS2, there are views on some hidden database
layer that are equipped with service operations denoted by unique identifiers. The
definition of AS2s also includes the pure data services (service operations are just
database queries) and the pure functional services (operation without underlying
database layer) as extreme cases.

For an algebraic formalization of plots, Kleene algebras with tests (KATs) [70]
have been applied in [78]. Prior to this work, the formalization of algebraic plots was
founded in [94, 95]. In [18], the idea of ASM-based plot expressions was outlined.
Then in [97], it was described in detail how KAT expressions in plots can be replaced
with assignment free ASMs, which have more expressive power.

In [78], a formal high-level specification of service cloud is given. This work is
similar to ours in some aspects. Namely, it applies the language-independent AS2s
with algebraic plots for representing services. But it principally focuses on service
specification, service discovery, service composition, and orchestration of service-

A Formal Model of Client-Cloud Interaction 135

based processes; and it does not apply any formal approach to define either static or
dynamically changing structures of distributed system components.

Workflow-based solutions have often been applied in case of Web service
orchestration for controlling execution of some combination of activities. The
Business Process Execution Language (BPEL) [68, 74] is a typical representative of
this approach, where a workflow can be specified such that the given Web services
can be run sequentially, in parallel or even iterated. But in contrast to algebraic plot-
based solutions equipped with the concept of service operations, services appear as
indivisible components without being interleaved in a BPEL orchestration.

With respect to identity management, there have been several attempts to define
a client-centric approach [115]. The author of the paper [2] describes a privacy-
enhanced user-centric identity management system allowing users to select their
credentials when responding to authentication requests. It introduces “a category-
based privacy preference management for user-centric identity management” using
a CardSpace compatible selector for Java and extended privacy utility functions
for P3PLite and PREP languages. The advantage of such a system is that it allows
users to select the specific attributes that will eventually be sent to a relying party.
Such a system works well for enhancing privacy; however, it fails to address the
extra overhead inflicted on the user. As the paper [92] shows, a typical user would
tend to ignore obvious security and privacy indicators. For composite services, the
authors of the paper [124] describe a universal identity management model focused
on anonymous credentials. The model “provides the delegation of anonymous
credentials and combines identity meta-system to support easy-to-use, consistent
experience and transparent security.”

From a client-centric perspective, Microsoft introduced an identity management
framework (CardSpace) aimed at reducing the reliance on passwords for Internet
user authentication while improving the privacy of information. The identity
meta-system, introduced with Windows Vista and Internet Explorer 7, makes use
of an “open” XML-based framework allowing portability to other browsers via
customized plug-ins. However, CardSpace does suffer from some known privacy
and security issues, mentioned in the papers [8, 87]. The concept of a client-
centric identity meta-system is thoroughly defined in the paper [36]. The framework
proposed here is used for the protection of privacy and the avoidance of unnecessary
propagation of identity information while at the same time facilitating exchange of
specific information needed by Internet systems to personalize and control access to
services. By defining abstract services, the framework facilitates the interoperation
of the different meta-system components.

Passwords managers can, in our opinion, reside within the topic of automatic
authentication for individual users. Projects such as KeePass[90] and LastPass [72]
do offer similar functionalities to the IdMM. However, both fall short in two key
criteria. Neither of them is truly automatic, since some input is required by the user
upon authentication to a service, and while both work well with individual users,
they cannot be adapted for SMEs.

The content adaptation topic presented major interest for the mobile device
direction. Different solutions for cross-platform mobile development are available,

136 K. Bósa et al.

like cross-platform compilers/applications and building HTML5 or HTML5 hybrid
applications [44]. Native mobile applications are not applicable to our problem,
because we do not want to create a corresponding application for every mobile
operating system; our scope is developing a general application which respects an
ASM specification. Cremin [47] explains shortly the different mobile Web content
adaptation techniques. Each technique has its own advantages and disadvantages;
one should choose the technique that better suits the project, after analyzing the
requirements. In our case, the hybrid approach suits the best, so we want to achieve
something similar to what [91] presents. Still, our solution would like to use the
device detection database as few times as possible, only when the information
regarding the properties cannot be retrieved on the client side. The content of a
Web page is adapted on the server side corresponding to the properties detected
on the client side. Another technique is responsive design, which is combining
the Cascading Style Sheets (CSS) media queries with the flexible images and is
using the flexible grid technique to scale the page [47]. An example of how to use
responsive design for creating a mobile application is presented in [62]. Regardless
of the adaptation technique used, the previous works do not apply a formal method
in order to prove the correctness of their system.

10 Conclusions

In this chapter among others, we described a high-level formal model of a cloud
service architecture in terms of a novel formal approach. The applied method is able
to incorporate the major advantages of the ASMs and of ambient calculus. Namely,
by this, one is capable to specify in the same formal model of a distributed system
both the long-range mobility via several boundaries in a dynamically changing
spatial hierarchy and the algorithms of executable components. Since this cloud
model is the first nontrivial model which is based on this method, our work also
revealed how viable is in practice our two abstraction layers formal approach.

Our cloud model applies a new client-cloud interaction solution based on
algebraic plots by which service owners are able to fully control the usages of their
services in the case of each subscription, respectively.

The ASM formal models we presented can allow model analysis at early stages of
system design, by applying different validation techniques on them, like simulation
or scenario construction, through the use of one of the existing ASM tools (e.g.,
CoreASM, ASMETA). This, together with the verification (model checking of
properties) of our models, is part of our future work.

Client-To-Client Interaction Besides the cloud service architecture model, we
also discussed a high-level formal definitions of some novel client-to-client inter-
action features, by which not only information but cloud service functions can be
also shared among the cloud users. Our approach is general enough to manage a

A Formal Model of Client-Cloud Interaction 137

situation in which a shared version of a cloud service is shared again several times
by several users.

Furthermore, if we shift the client-to-client functionality to client side and wrap
into a middleware as it is proposed in Sect. 3 and depicted on Fig. 2b, then no traces
of the user activities belonging to the shared services will be left on the cloud. The
reason for this is because all the service operations which are shared via a channel
are used on behalf of its initial distributor. This consideration can lead one step into
the direction of anonym usage of cloud services. The consequence of this is that if
a cloud user who has contracts with some service providers completely or partially
shares some services via a channel, then he or she should be aware of the fact that
all generated costs caused by the usage of these shared services will be allocated to
him or her.

Identity Management Machine The current specification of the IdMM, presented
in Sect. 6, is thus far limited to the IdMMCore, IdMMClient, IdMMUser, and IdMMCloud

agents, allowing for an automatic authentication tool for cloud-based services
in the direct and obfuscated interaction scenarios. Since the specification of the
IdMMProtocol and IdMMProvisioning is currently an ongoing task, we intend to study
the various open protocols used in identity management (such as LDAP) or in
authentication and authorization (such as OpenID and OpenAuth). With this study
complete, we will then refine the cloud-based functions regarding the authentication
via the formally mentioned protocols. Our plan is to first allow IdMM to use
external identity providers to authenticate to services while IdMM only takes care
of automating the process. With this complete, we can then specify the IdMMProtocol

agent which will act as a stand-alone identity provider communicating with the
client’s directory via the IdMMClient agent.

With the specification of the IdMMProtocol agent complete, we can then detail the
IdMMProvisioning agent which will allow for an easier management of the identities
and access rights stored both on the client and the cloud provider’s systems. The
agent will be responsible for the creation, modification, and deletion of identities
on the client’s directory as well as account creation, synchronization, and deletion
on the necessary cloud services. The system will also be responsible for periodical
passwords resets on cloud services.

The final step in our research is to apply an access management component to
the IdMM. The specification of the IdMM core agent allows for the enforcement
of access rights via the rules for the AuthorizeLogin state. Further research in the
realm of access rights management is required before a full specification of the
access management component is achieved.

Cloud Content Adaptivity In Sects. 7.2 and 7.3, the readers can discover how a
content adaptation system, created for the interaction between the client’s devices
and the cloud, can be represented using ASM ground models and how these models
are refined to reach implementation phases. We identified four different agents,
which are executing the algorithms defined by the corresponding ground models.
These models are designed using the ASM formal modeling method, which gives
us the possibility of validating and verifying the system.

138 K. Bósa et al.

Further work includes the refinement of all ASM ground models presented in
Sect. 7.2, as we did in Sect. 7.3, which means that we will go on with writing the
ASM macros, refine them, and finally reach the development phase. The refinement
of the ASM macros will lead to the system prototype’s implementation. Future
research could include the specification of the adaptation rules for each HTML
element corresponding to different categories. It is not mandatory to have a different
rule for every device; we could also define a rule per group/category. Kumar and
Kumar [71] and Yang et al. [123] are also dealing with HTML adaptation, by
using the DOM content extraction and rule repositories, respectively, by adopting
description logics for the creation of a hierarchical ontology. In our case, the rules
will be specified in terms of ASMs.

Acknowledgements This research has been supported by the Christian Doppler Society.

References

1. Afilias Technologies Ltd: Mobile device detection solution—deviceatlas. https://deviceatlas.
com/ (2013)

2. Ahn, G.J., Ko, M., Shehab, M.: Privacy-enhanced user-centric identity management. In: IEEE
International Conference on Communications, 2009. ICC ’09, pp. 1–5 (2009). doi:10.1109/
ICC.2009.5199363

3. Alalfi, M.H., Cordy, J.R., Dean, T.R.: Modeling methods for web application verification and
testing: state of the art. Softw. Test. Verif. Reliab. 19(4), 265–296 (2009). doi:10.1002/stvr.
v19:4. http://dx.doi.org/10.1002/stvr.v19:4

4. Ali, N., Babar, M.: Modeling service oriented architectures of mobile applications by
extending soaml with ambients. In: 35th Euromicro Conference on Software Engineering and
Advanced Applications, 2009. SEAA ’09, pp. 442–449 (2009). doi:10.1109/SEAA.2009.25

5. Ali, N., Ramos, I., Solis, C.: Ambient-prisma: ambients in mobile aspect-oriented soft-
ware architecture. J. Syst. Softw. 83(6), 937–958 (2010). doi:http://dx.doi.org/10.1016/j.jss.
2009.12.009. http://www.sciencedirect.com/science/article/pii/S0164121209003161 [Soft-
ware Architecture and Mobility]

6. Ali, N., Chen, F., Solis, C.: Modeling support for mobile ambients in service oriented
architecture. In: IEEE First International Conference on Mobile Services (MS), 2012, pp.
1–8 (2012). doi:10.1109/MobServ.2012.18

7. Alpár, G., Hoepman, J.H., Siljee, J.: The identity crisis, security, privacy and usability issues
in identity management. CoRR abs/1101.0427 (2011)

8. Alrodhan, W., Mitchell, C.: Addressing privacy issues in cardspace. In: Third International
Symposium on Information Assurance and Security, 2007. IAS 2007, pp. 285–291 (2007).
doi:10.1109/IAS.2007.12

9. Altenhofen, M., Börger, E., Lemcke, J.: An abstract model for process mediation. In: Pro-
ceedings of the 7th International Conference on Formal Methods and Software Engineering,
ICFEM’05, pp. 81–95. Springer, Berlin/Heidelberg (2005). doi:10.1007/11576280_7. http://
dx.doi.org/10.1007/11576280_7

10. Amazon Web Services: Amazon elastic compute cloud (amazon ec2). http://aws.amazon.
com/ec2/ (2014)

11. Apache Software Foundation: Apache directory. http://directory.apache.org/apacheds/ (2013)
12. Apache Software Foundation: Apache tomcat. http://tomcat.apache.org/ (2013)

https://deviceatlas.com/
https://deviceatlas.com/
10.1109/ICC.2009.5199363
10.1109/ICC.2009.5199363
10.1002/stvr.v19:4
10.1002/stvr.v19:4
http://dx.doi.org/10.1002/stvr.v19:4
10.1109/SEAA.2009.25
http://dx.doi.org/10.1016/j.jss.2009.12.009
http://dx.doi.org/10.1016/j.jss.2009.12.009
http://www.sciencedirect.com/science/article/pii/S0164121209003161
10.1109/MobServ.2012.18
10.1109/IAS.2007.12
10.1007/11576280_7
http://dx.doi.org/10.1007/11576280_7
http://dx.doi.org/10.1007/11576280_7
http://aws.amazon.com/ec2/
http://aws.amazon.com/ec2/
http://directory.apache.org/apacheds/
http://tomcat.apache.org/

A Formal Model of Client-Cloud Interaction 139

13. Arcaini, P., Gargantini, A., Riccobene, E.: AsmetaSMV: a way to link high-level ASM models
to low-level NuSMV specifications. In: Proceedings of the 2nd International Conference on
Abstract State Machines, Alloy, B and Z (ABZ 2010). Lecture Notes in Computer Science,
vol. 5977, pp. 61–74. Springer, Heidelberg (2010)

14. Ates., F., Irish, P., Sexton, A., Seddon, R., Farkas, A.: Modernizr: the feature detection library
for html5/css3. http://modernizr.com/ (2013)

15. Azure, M.: Azure: Microsoft’s cloud platform. https://azure.microsoft.com/ (2014)
16. Barnett, M., Schulte, W., Tillmann, N.: Using asml for runtime verification. In: Börger,

E., Gargantini, A., Riccobene, E. (eds.) Abstract State Machines 2003. Lecture Notes in
Computer Science, vol. 2589, pp. 407–407. Springer, Berlin/Heidelberg (2003). doi:10.1007/
3-540-36498-6_24. http://dx.doi.org/10.1007/3-540-36498-6_24

17. Beste, F.: The model prover: a sequent-calculus based modal �-calculus model checker
tool for finite control �-calculus agents. Master’s thesis, Department of Computer Science,
Uppsala University (1998). ftp://ftp.docs.uu.se/pub/mwb/x4.ps.gz

18. Binemann-Zdanowicz, A., Thalheim, B.: Modeling information services on the basis of ASM
semantics. In: Proceedings of the Abstract State Machines 10th International Conference on
Advances in Theory and Practice, ASM’03, pp. 408–410. Springer, Berlin/Heidelberg (2003).
http://dl.acm.org/citation.cfm?id=1754749.1754777

19. Blass, A., Gurevich, Y.: Abstract state machines capture parallel algorithms. ACM Trans.
Comput. Logic 4, 578–651 (2003). doi:http://doi.acm.org/10.1145/937555.937561. http://
doi.acm.org/10.1145/937555.937561

20. Blass, A., Gurevich, Y.: Abstract state machines capture parallel algorithms: correction and
extension. ACM Trans. Comput. Logic 9, 19:1–19:32 (2008). doi:http://doi.acm.org/10.1145/
1352582.1352587. http://doi.acm.org/10.1145/1352582.1352587

21. Bolis, F., Gargantini, A., Guarnieri, M., Magri, E., Musto, L.: Model-driven testing for web
applications using abstract state machines. In: Grossniklaus, M., Wimmer, M. (eds.) Current
Trends in Web Engineering. Lecture Notes in Computer Science, vol. 7703, pp. 71–78.
Springer, Berlin/Heidelberg (2012). doi:10.1007/978-3-642-35623-0_7. http://dx.doi.org/10.
1007/978-3-642-35623-0_7

22. Börger, E.: The asm refinement method. Form. Asp. Comput. 15(2–3), 237–257 (2003).
doi:10.1007/s00165-003-0012-7. http://dx.doi.org/10.1007/s00165-003-0012-7

23. Börger, E.: Construction and analysis of ground models and their refinements as a foundation
for validating computer based systems. Form. Asp. Comput. 19(2), 225–241 (2007). doi:10.
1007/s00165-006-0019-y. http://dx.doi.org/10.1007/s00165-006-0019-y

24. Börger, E., Rosenzweig, D.: The wam—definition and compiler correctness. In: Beierle, C.,
Plümer, L. (eds.) Logic Programming: Formal Methods and Practical Applications. Studies in
Computer Science and Artificial Intelligence, vol. 11, pp. 20–90. North-Holland, Amsterdam
(1995)

25. Börger, E., Stärk, R.: Abstract State Machines: A Method for High-Level System Design and
Analysis. Springer, New York (2003)

26. Börger, E., Cisternino, A., Gervasi, V.: Ambient abstract state machines with applications. J.
Comput. Syst. Sci. (Special Issue in honor of Amir Pnueli) 78(3), 939–959 (2012). doi:10.
1016/j.jcss.2011.08.004. http://dx.doi.org/10.1016/j.jcss.2011.08.004

27. Börger, E., Cisternino, A., Gervasi, V.: Contribution to a rigorous analysis of web application
frameworks. In: Derrick, J., Gnesi, S., Latella, D., Treharne, H. (eds.) Integrated Formal
Methods. Lecture Notes in Computer Science, vol. 7321, pp. 1–20. Springer, Berlin/
Heidelberg (2012). doi:10.1007/978-3-642-30729-4_1. http://dx.doi.org/10.1007/978-3-
642-30729-4_1

28. Bósa, K.: A formal model of a cloud service architecture in terms of ambient asm. Technical
report, Christian Doppler Laboratory for Client-Centric Cloud Computing (CDCC), Johannes
Kepler University Linz, Hagenberg (2012)

http://modernizr.com/
https://azure.microsoft.com/
10.1007/3-540-36498-6_24
10.1007/3-540-36498-6_24
http://dx.doi.org/10.1007/3-540-36498-6_24
ftp://ftp.docs.uu.se/pub/mwb/x4.ps.gz
http://dl.acm.org/citation.cfm?id=1754749.1754777
http://doi.acm.org/10.1145/937555.937561
http://doi.acm.org/10.1145/937555.937561
http://doi.acm.org/10.1145/937555.937561
http://doi.acm.org/10.1145/1352582.1352587
http://doi.acm.org/10.1145/1352582.1352587
http://doi.acm.org/10.1145/1352582.1352587
10.1007/978-3-642-35623-0_7
http://dx.doi.org/10.1007/978-3-642-35623-0_7
http://dx.doi.org/10.1007/978-3-642-35623-0_7
10.1007/s00165-003-0012-7
http://dx.doi.org/10.1007/s00165-003-0012-7
10.1007/s00165-006-0019-y
10.1007/s00165-006-0019-y
http://dx.doi.org/10.1007/s00165-006-0019-y
10.1016/j.jcss.2011.08.004
10.1016/j.jcss.2011.08.004
http://dx.doi.org/10.1016/j.jcss.2011.08.004
10.1007/978-3-642-30729-4_1
http://dx.doi.org/10.1007/978-3-642-30729-4_1
http://dx.doi.org/10.1007/978-3-642-30729-4_1

140 K. Bósa et al.

29. Bósa, K.: An ambient asm model for client-to-client interaction via cloud computing. In: Pro-
ceedings of the 8th International Conference on Software and Data Technologies (ICSOFT),
Reykjavik, Iceland, pp. 459–470. SciTePress (2013). doi:10.5220/0004490904590470. http://
www.icsoft.org/. (Best Paper Award)

30. Bósa, K.: An Ambient ASM Model for Cloud Architectures. Acta Cybernetica (2014).
Submitted

31. Bósa, K.: Formal modeling of mobile computing systems based on ambient abstract state
machines. Semant. Data Knowl. Bases 7693, 18–49 (2013). doi:10.1007/978-3-642-36008-
4_2. http://dx.doi.org/10.1007/978-3-642-36008-4_2

32. Boudol, G., Castellani, I., Hennessy, M., Kiehn, A.: A theory of processes with localities.
Form. Asp. Comput. 6, 165–200 (1994). doi:10.1007/BF01221098. http://dx.doi.org/10.1007/
BF01221098

33. Brandtzaeg, E., Parastoo, M., Mosser, S.: Towards a domain-specific language to deploy
applications in the clouds. In: Cloud Computing 2012: 3rd International Conference on Cloud
Computing, Grids, and Virtualization, pp. 213–218. IARIA (2012)

34. Brunette, G., Mogull, R.: Security guidance for critical areas of focus in cloud computing V2.
1. http://goo.gl/PxAeP (2009)

35. Caires, L., Cardelli, L.: A spatial logic for concurrency (part I). Inf. Comput. 186(2), 194–235
(2003)

36. Cameron, K., Posch, R., Rannenberg, K.: Proposal for a common identity framework: a user-
centric identity metasystem. http://goo.gl/3q2sF (2008)

37. Cardelli, L.: Mobility and security. In: Bauer, F.L., Steinbrüggen, R. (eds.) Foundations of
Secure Computation Proceedings of the NATO Advanced Study Institute. Lecture Notes for
Marktoberdorf Summer School 1999 (A summary of several Ambient Calculus papers), pp.
3–37. IOS Press, Amsterdam (1999)

38. Cardelli, L., Gordon, A.D.: Mobile ambients. Theor. Comput. Sci. 240(1), 177–213 (2000)
39. Cardelli, L., Gordon, A.D.: Anytime, anywhere: modal logics for mobile ambients. In: In

POPL ’00: Proceedings of the 27th ACM SIGPLAN-SIGACT symposium on Principles of
programming languages, pp. 365–377. ACM (2000)

40. Castillo, G.: The asm workbench: a tool environment for computer-aided analysis and
validation of abstract state machine models. In: Margaria, T., Yi, W. (eds.) Tools and
Algorithms for the Construction and Analysis of Systems. Lecture Notes in Computer
Science, vol. 2031, pp. 578–581. Springer, Berlin/Heidelberg (2001). doi:10.1007/3-540-
45319-9_40. http://dx.doi.org/10.1007/3-540-45319-9_40

41. Charatonik, W., Gordon, A., Talbot, J.M.: Finite-control mobile ambients. In: Métayer, D.L.
(ed.) Programming Languages and Systems. Lecture Notes in Computer Science, vol. 2305,
pp. 295–313. Springer, Berlin/Heidelberg (2002). doi:10.1007/3-540-45927-8_21. http://dx.
doi.org/10.1007/3-540-45927-8_21

42. Chauvel, F., Ferry, N., Morin, B., Rossini, A., Solberg, A.: Models@Runtime to support
the iterative and continuous design of autonomous reasoners. In: Bencomo, N., France, R.,
Götz, S., Rumpe, B. (eds.) MRT 2013: 8th International Workshop on Models@run.time at
MODELS 2013: ACM/IEEE 14th International Conference on Model Driven Engineering
Languages and Systems. CEUR Workshop Proceedings (2013)

43. Chelemen, R.M.: Modeling a web application for cloud content adaptation with asms. In:
International Conference on Cloud Computing and Big Data (CloudCom-Asia), 2013, pp.
44–51 (2013). doi:10.1109/CLOUDCOM-ASIA.2013.76

44. Chipperfield, R.: An introduction to cross-platform mobile development technologies.
http://www.codeproject.com/Articles/388811/An-introduction-to-cross-platform-mobile-
developme (2012)

45. Christian-Albrechts-Universität zu Kiel: Visual programming of databases - visual sql. http://
www.informatik.uni-kiel.de/en/is/miscellaneous/visualsql (2008)

46. Cloud Security Alliance: Top threats to cloud computing. http://goo.gl/wLd7m (2010)
47. Cremin, R.: Mobile web content adaptation techniques. http://mobiforge.com/starting/story/

mobile-web-content-adaptation-techniques (2011)

10.5220/0004490904590470
http://www.icsoft.org/
http://www.icsoft.org/
10.1007/978-3-642-36008-4_2
10.1007/978-3-642-36008-4_2
http://dx.doi.org/10.1007/978-3-642-36008-4_2
http://dx.doi.org/10.1007/BF01221098
http://dx.doi.org/10.1007/BF01221098
http://goo.gl/PxAeP
http://goo.gl/3q2sF
10.1007/3-540-45319-9_40
10.1007/3-540-45319-9_40
http://dx.doi.org/10.1007/3-540-45319-9_40
10.1007/3-540-45927-8_21
http://dx.doi.org/10.1007/3-540-45927-8_21
http://dx.doi.org/10.1007/3-540-45927-8_21
10.1109/CLOUDCOM-ASIA.2013.76
http://www.codeproject.com/Articles/388811/An-introduction-to-cross-platform-mobile-developme
http://www.codeproject.com/Articles/388811/An-introduction-to-cross-platform-mobile-developme
http://www.informatik.uni-kiel.de/en/is/miscellaneous/visualsql
http://www.informatik.uni-kiel.de/en/is/miscellaneous/visualsql
http://goo.gl/wLd7m
http://mobiforge.com/starting/story/mobile-web-content-adaptation-techniques
http://mobiforge.com/starting/story/mobile-web-content-adaptation-techniques

A Formal Model of Client-Cloud Interaction 141

48. Cremin, R., Passani, L.: Server-side device detection: history, benefits and how-to. http://
mobile.smashingmagazine.com/2012/09/24/server-side-device-detection-history-benefits-
how-to/ (2012)

49. Dam, M.: Model checking mobile processes. In: Best, E. (ed.) CONCUR’93, 4th International
Conference on Concurrency Theory. Lecture Notes in Computer Science, vol. 715, pp. 22–36.
Swedish Institute of Computer Science/Springer, Kista/Berlin/Heidelberg (1993). Full
version in Research Report R94:01

50. Dhamija, R., Dusseault, L.: The seven flaws of identity management: usability and security
challenges. IEEE Secur. Priv. 6(2), 24 –29 (2008). doi:10.1109/MSP.2008.49

51. Dold, A.: A formal representation of abstract state machines using pvs. Technical report,
University Ulm (1998)

52. ENISA: Cloud computing. benefits, risks and recommendations for information security.
Technical report, The European Network and Information Security Agency. http://www.enisa.
europa.eu/activities/risk-management/files/deliverables/cloud-computing-risk-assessment
(2009)

53. Farahbod, R., Glässer, U., Ma, G.: Model checking coreasm specifications. In: Proceedings
of the 14th International Abstract State Machines Workshop (ASM’07) (2007)

54. Gargantini, A., Riccobene, E.: Encoding abstract state machines in pvs. In: Gurevich, Y.,
Kutter, P., Odersky, M., Thiele, L. (eds.) Abstract State Machines: Theory and Applications.
Lecture Notes in Computer Science, vol. 1912, pp. 303–322. Springer, Heidelberg (2000)

55. Gargantini, A., Riccobene, E., Scandurra, P.: A metamodel-based language and a simulation
engine for abstract state machines. J. Univers. Comput. Sci. 14(12), 1949–1983 (2008)

56. Gervasi, V.: An asm model of concurrency in a web browser. In: Derrick, J., Fitzgerald,
J., Gnesi, S., Khurshid, S., Leuschel, M., Reeves, S., Riccobene, E. (eds.) Abstract State
Machines, Alloy, B, VDM, and Z. Lecture Notes in Computer Science, vol. 7316, pp. 79–93.
Springer, Berlin/Heidelberg (2012). doi:10.1007/978-3-642-30885-7_6. http://dx.doi.org/10.
1007/978-3-642-30885-7_6

57. Google: Google apps for business. http://www.google.com/enterprise/apps/business/ (2014)
58. Google Chrome: What are extensions?. http://developer.chrome.com/extensions/index.html

(2013)
59. Google Developers: Google web toolkit. https://developers.google.com/web-toolkit/ (2013)
60. Google Developers: Google app engine: platform as a service . https://developers.google.com/

appengine/ (2014)
61. Gordon, A.D., Cardelli, L.: Equational properties of mobile ambients. Math. Struct. Comp.

Sci. 13, 371–408 (2003). doi:10.1017/S0960129502003742. http://dl.acm.org/citation.cfm?
id=966815.966816

62. Grigsby, J.: Responsive design for apps. http://blog.cloudfour.com/responsive-design-for-
apps-part-1/ (2013)

63. Gunjan, K., Sahoo, G., Tiwari, R.K.: Identity management in cloud computing - a review. Int.
J. Bus. Forecast. Market. Intell. 1(4) (2012). http://www.ijert.org

64. Gurevich, Y.: Evolving algebra 1993: Lipari guide. In: International Conference on Functional
Programming, pp. 9–36. Oxford University Press, New York (1994)

65. Gurevich, Y.: Sequential abstract state machines capture sequential algorithms. ACM Trans.
Comput. Logic 1, 77–111 (2000). doi:http://doi.acm.org/10.1145/343369.343384. http://doi.
acm.org/10.1145/343369.343384

66. Jaakkola, H., Thalheim, B.: Visual SQL – high-quality ER-based query treatment. In:
Jeusfeld, M.A., Pastor, O. (eds.) Conceptual modeling for novel application domains. In:
Proceedings of ER 2003 Workshops ECOMO, IWCMQ, AOIS, and XSDM, Chicago, IL,
13 October 2003. Lecture Notes in Computer Science, vol. 2814, pp. 129–139. Springer,
Heidelberg (2003)

67. Jarraya, Y., Eghtesadi, A., Debbabi, M., Zhang, Y., Pourzandi, M.: Cloud calculus: security
verification in elastic cloud computing platform. In: Smari, W.W., Fox, G.C. (eds.)
CTS, pp. 447–454. IEEE, Denver (2012). http://dblp.uni-trier.de/db/conf/cts/cts2012.html#
JarrayaEDZP12

http://mobile.smashingmagazine.com/2012/09/24/server-side-device-detection-history-benefits-how-to/
http://mobile.smashingmagazine.com/2012/09/24/server-side-device-detection-history-benefits-how-to/
http://mobile.smashingmagazine.com/2012/09/24/server-side-device-detection-history-benefits-how-to/
10.1109/MSP.2008.49
http://www.enisa.europa.eu/activities/risk-management/files/deliverables/cloud-computing-risk-assessment
http://www.enisa.europa.eu/activities/risk-management/files/deliverables/cloud-computing-risk-assessment
10.1007/978-3-642-30885-7_6
http://dx.doi.org/10.1007/978-3-642-30885-7_6
http://dx.doi.org/10.1007/978-3-642-30885-7_6
http://www.google.com/enterprise/apps/business/
http://developer.chrome.com/extensions/index.html
https://developers.google.com/web-toolkit/
https://developers.google.com/appengine/
https://developers.google.com/appengine/
10.1017/S0960129502003742
http://dl.acm.org/citation.cfm?id=966815.966816
http://dl.acm.org/citation.cfm?id=966815.966816
http://blog.cloudfour.com/responsive-design-for-apps-part-1/
http://blog.cloudfour.com/responsive-design-for-apps-part-1/
http://www.ijert.org
http://doi.acm.org/10.1145/343369.343384
http://doi.acm.org/10.1145/343369.343384
http://doi.acm.org/10.1145/343369.343384
http://dblp.uni-trier.de/db/conf/cts/cts2012.html#JarrayaEDZP12
http://dblp.uni-trier.de/db/conf/cts/cts2012.html#JarrayaEDZP12

142 K. Bósa et al.

68. Juric, M.B.: Business Process Execution Language for Web Services BPEL and BPEL4WS,
2nd edn. Packt Publishing, Birmingham (2006)

69. Kappel, G.: Chapter I: Web applications. University Lecture. http://is.uni-paderborn.de/
fileadmin/Informatik/AG-Engels/Lehre/WS1213/WE/slides/WE-2012-01.pdf (2012)

70. Kozen, D.: Kleene algebra with tests. Trans. Program. Lang. Syst. 19(3), 427–443 (1997)
71. Kumar, V., Kumar, A.: Client device based content adaptation using rule base. J. Comput. Sci.

7(12), 1908–1913 (2011)
72. LastPass: Lastpass—the last password you have to remember. https://lastpass.com/ (2013)
73. Loke, S.W., Krishnaswamy, S., Naing, T.T.: Service domains for ambient services: concept

and experimentation. Mob. Netw. Appl. 10(4), 395–404 (2005). http://dl.acm.org/citation.
cfm?id=1160162.1160165

74. Louridas, P.: Orchestrating web services with BPEL. IEEE Softw. 25(2), 85–87 (2008). http://
doi.ieeecomputersociety.org/10.1109/MS.2008.42

75. Ma, H., Schewe, K.D., Thalheim, B., Wang, Q.: Abstract state services. In: Object-Oriented
and Entity-Relationship Modelling/International Conference on Conceptual Modeling/The
Entity Relationship Approach, pp. 406–415 (2008). doi:10.1007/978-3-540-87991-6_48

76. Ma, H., Schewe, K.D., Thalheim, B., Wang, Q.: Composing personalised services on top of
abstract state services. In: Delcambre, L., Kaschek, R.H., Mayr, H.C. (eds.) The Evolution
of Conceptual Modeling, no. 08181 in Dagstuhl Seminar Proceedings. Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik, Dagstuhl (2008). http://drops.dagstuhl.de/opus/volltexte/
2008/1597

77. Ma, H., Schewe, K.D., Thalheim, B., Wang, Q.: A theory of data-intensive software services.
Serv. Orient. Comput. Appl. 3(4), 263–283 (2009)

78. Ma, H., Schewe, K.D., Thalheim, B., Wang, Q.: A formal model for the interoperabil-
ity of service clouds. Service Oriented Computing and Applications 6(3), 189–205
(2012). doi:10.1007/s11761-012-0101-7. http://cdcc.faw.jku.at/publications/kdschewe/
schewe2012FMCloud.pdf

79. Mather, T., Kumaraswamy, S., Latif, S.: Cloud Security and Privacy: An Enterprise Perspec-
tive on Risks and Compliance. O’Reilly Media, Inc., Sebastopol (2009)

80. Mell, P., Grance, T.: The nist definition of cloud computing. http://csrc.nist.gov/publications/
nistpubs/800-145/SP800-145.pdf (2011)

81. Microsoft: Office 365. http://office.microsoft.com/en-us/ (2014)
82. Milner, R., Parrow, J., Walker, D.: A calculus of mobile processes, parts I and II. Inform. Com-

put. 100(1), 1–77 (1992). doi:10.1016/0890-5401(92)90008-4. http://dx.doi.org/10.1016/
0890-5401(92)90008-4

83. Nida, P., Dhiman, H., Hussain, S.: A survey on identity and access management in cloud
computing. Int. J. Eng. Res. Technol. 3(4) (2014). http://www.ijert.org/

84. Novell: Ldap classes for java. http://www.novell.com/developer/ndk/ldap_classes_for_java.
html (2013)

85. Offutt, J.: Web software applications quality attributes. In: Quality Engineering in Software
Technology (CONQUEST 2002), pp. 187–198 (2002). http://www.cs.gmu.edu/~offutt/rsrch/
papers/conquest02.pdf

86. OpenDDR LLC: Openddr - the best open and completely free device description repository
with access apis available worldwide. http://www.openddr.org/ (2013)

87. Oppliger, R., Gajek, S., Hauser, R.: Security of microsoft’s identity metasystem and
cardspace. In: ITG-GI Conference Communication in Distributed Systems (KiVS), pp. 1–12
(2007)

88. Prodromou, E.: Openid privacy concerns. http://goo.gl/WIDYx (2007)
89. Pusch, C.: Verification of compiler correctness for the wam. In: von Wright, J., Grundy, J.,

Harrison, J. (eds.) Theorem Proving in Higher Order Logics (TPHOLs’96). Lecture Notes in
Computer Science, vol. 1125, pp. 347–362. Springer, Berlin (1996)

90. Reichl, D.: Keepass password safe. http://www.keepass.info/contact.html (2013)

http://is.uni-paderborn.de/fileadmin/Informatik/AG-Engels/Lehre/WS1213/WE/slides/WE-2012-01.pdf
http://is.uni-paderborn.de/fileadmin/Informatik/AG-Engels/Lehre/WS1213/WE/slides/WE-2012-01.pdf
https://lastpass.com/
http://dl.acm.org/citation.cfm?id=1160162.1160165
http://dl.acm.org/citation.cfm?id=1160162.1160165
http://doi.ieeecomputersociety.org/10.1109/MS.2008.42
http://doi.ieeecomputersociety.org/10.1109/MS.2008.42
10.1007/978-3-540-87991-6_48
http://drops.dagstuhl.de/opus/volltexte/2008/1597
http://drops.dagstuhl.de/opus/volltexte/2008/1597
10.1007/s11761-012-0101-7
http://cdcc.faw.jku.at/publications/kdschewe/schewe2012FMCloud.pdf
http://cdcc.faw.jku.at/publications/kdschewe/schewe2012FMCloud.pdf
http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf
http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf
http://office.microsoft.com/en-us/
10.1016/0890-5401(92)90008-4
http://dx.doi.org/10.1016/0890-5401(92)90008-4
http://dx.doi.org/10.1016/0890-5401(92)90008-4
http://www.ijert.org/
http://www.novell.com/developer/ndk/ldap_classes_for_java.html
http://www.novell.com/developer/ndk/ldap_classes_for_java.html
http://www.cs.gmu.edu/~offutt/rsrch/papers/conquest02.pdf
http://www.cs.gmu.edu/~offutt/rsrch/papers/conquest02.pdf
http://www.openddr.org/
http://goo.gl/WIDYx
http://www.keepass.info/contact.html

A Formal Model of Client-Cloud Interaction 143

91. Reiger, B., Rieger, S.: Adaptation: why responsive design actually begins on the
server. http://www.slideshare.net/yiibu/adaptation-why-responsive-design-actually-begins-
on-the-server (2012)

92. Schechter, S., Dhamija, R., Ozment, A., Fischer, I.: The emperor’s new security indicators.
In: IEEE Symposium on Security and Privacy, 2007. SP ’07, pp. 51–65 (2007). doi:10.1109/
SP.2007.35

93. Schellhorn, G.: Verifikation Abstrakter Zustandsmaschinen. Ph.D. thesis, University Ulm
(1999)

94. Schewe, K.D., Thalheim, B.: Reasoning about web information systems using story algebras.
In: Advances in Databases and Information Systems, ADBIS, pp. 54–66 (2004)

95. Schewe, K.D., Thalheim, B.: Conceptual modelling of web information systems. Data Knowl.
Eng. 54(2), 147–188 (2005)

96. Schewe, K.D., Thalheim, B.: Personalisation of web information systems: a term rewriting
approach. Data Knowl. Eng. 62(1), 101–117 (2007). doi:DOI:10.1016/j.datak.2006.07.007.
http://www.sciencedirect.com/science/article/pii/S0169023X06001406

97. Schewe, K.D., Thalheim, B.: Term rewriting for web information systems: termination
and Church-Rosser property. In: Proceedings of the 8th International Conference on
Web Information Systems Engineering, WISE’07, pp. 261–272. Springer, Berlin/Heidelberg
(2007). http://dl.acm.org/citation.cfm?id=1781374.1781404

98. Schewe, K.D., Wang, Q.: A customised ASM thesis for database transformations. Acta
Cybern. 19(4), 765–805 (2010). http://dl.acm.org/citation.cfm?id=1945572.1945579

99. Schewe, K.D., Bosa, K., Lampesberger, H., Ma, J., Rady, M., Vleju, B.: Challenges in cloud
computing. Scal. Comput. Pract. Exp. 12(4), 385–390 (2011)

100. ScientiaMobile, Inc: Wurfl - mobile device database by scientiamobile. http://wurfl.
sourceforge.net/ (2013)

101. Sermersheim, J.: Lightweight directory access protocol (ldap): the protocol. RFC. http://tools.
ietf.org/html/rfc4511 (2006)

102. Service Oriented Architecture Modeling Language (SoaML): Specification for the UML
Profile and Metamodel for Services (UPMS) Revised Submission. OMG document: ptc/2009-
04-01 (2009)

103. Shaarawy, M.: Cloudification of visual sql. Master’s thesis, Johannes Kepler University Linz
(2013)

104. Song, H., Compton, K.J.: Verifying �-calculus processes by promela translation. Technical
report, Department of Electrical Engineering and Computer Science University of Michigan,
Ann Arbor (2003)

105. Spielmann, M.: Abstract state machines: verification problems and complexity. Ph.D. thesis,
RWTH Aachen (2000)

106. Spielmann, M.: Model checking abstract state machines and beyond. In: Proceedings of the
International Workshop on Abstract State Machines, Theory and Applications, ASM ’00, pp.
323–340. Springer, London (2000). http://dl.acm.org/citation.cfm?id=647752.734545

107. Stärk, R.F., Nanchen, S.: A logic for abstract state machines. J. Univers. Comput. Sci. 7(11),
980–1005 (2001)

108. Stärk, R.F., Schmid, J., Börger, E.: Java and the Java Virtual Machine: Definition, Verification,
Validation. Springer, Heidelberg (2001)

109. Sturrus, E.: Identity and access management in a cloud computing environment. Master’s
thesis, Econometric Institute, Erasmus School of Economics, Erasmus University Rotterdam
(2011). http://thesis.eur.nl/pub/10422/MA-5%20IENE%20Sturrus_294763.pdf

110. Tanaka, Y.: Meme Media and Meme Market Architectures: Knowledge Media for Editing,
Distributing, and Managing Intellectual Resources. Wiley, New York (2003). http://books.
google.at/books?id=tezm83Wiqv8C

111. Thalheim, B.: Visual SQL: towards ER-based object-relational database querying. In:
Proceedings of the 27th International Conference on Conceptual Modeling, ER ’08, pp. 520–
521. Springer, Berlin/Heidelberg (2008). doi:10.1007/978-3-540-87877-3_41. http://dx.doi.
org/10.1007/978-3-540-87877-3_41

http://www.slideshare.net/yiibu/adaptation-why-responsive-design-actually-begins-on-the-server
http://www.slideshare.net/yiibu/adaptation-why-responsive-design-actually-begins-on-the-server
10.1109/SP.2007.35
10.1109/SP.2007.35
DOI: 10.1016/j.datak.2006.07.007
http://www.sciencedirect.com/science/article/pii/S0169023X06001406
http://dl.acm.org/citation.cfm?id=1781374.1781404
http://dl.acm.org/citation.cfm?id=1945572.1945579
http://wurfl.sourceforge.net/
http://wurfl.sourceforge.net/
http://tools.ietf.org/html/rfc4511
http://tools.ietf.org/html/rfc4511
http://dl.acm.org/citation.cfm?id=647752.734545
http://thesis.eur.nl/pub/10422/MA-5%20IENE%20Sturrus_294763.pdf
http://books.google.at/books?id=tezm83Wiqv8C
http://books.google.at/books?id=tezm83Wiqv8C
10.1007/978-3-540-87877-3_41
http://dx.doi.org/10.1007/978-3-540-87877-3_41
http://dx.doi.org/10.1007/978-3-540-87877-3_41

144 K. Bósa et al.

112. The Open Group Identity Management Work Area: Identity management. http://goo.gl/ssPTu
(2004)

113. Valente, M., Bigonha, R., Loureiro, A., Maia, M.: Abstractions for mobile computation in
ASM. In: Graham, P., Maheswaran, M. (eds.) Proceedings of the International Conference on
Internet Computing, IC 2000, 26–29 June, pp. 165–172. CSREA Press, Las Vegas (2000)

114. Venters, W., Whitley, E.A.: A critical review of cloud computing: researching desires and
realities. J. Inf. Tech. 27(3), 179–197 (2012)

115. Vleju, M.B.: A client-centric asm-based approach to identity management in cloud comput-
ing. In: Advances in Conceptual Modeling. Lecture Notes in Computer Science, vol. 7518,
pp. 34–43. Springer, Berlin/Heidelberg (2012). doi:10.1007/978-3-642-33999-8_5. http://dx.
doi.org/10.1007/978-3-642-33999-8_5

116. Vleju, M.B.: A client-centric identity management tool for small and medium enterprises
using cloud services. In: 4th Workshop on Software Services, pp. 15–19. Bled, Slovenia
(2012). http://www.cloudconference.eu/

117. Vleju, M.B.: Interaction of the idmm with a client-side identity management component.
Technical report, Christian Doppler Laboratory for Client-Centric Cloud Computing (CDCC),
Johannes Kepler University Linz, Hagenberg (2012)

118. Vleju, M.B.: IdMM demo. http://youtu.be/DoM36D0ydkA (2013)
119. Vleju, M.B.: A practical implementation of a client-centric identity management tool for

cloud computing. In: EUROCAST-Computer Aided Systems Theory, Gran Canaria (2013)
120. Vleju, M.B.: Automatic authentication to cloud-based services. J. Univers. Comput. Sci.

20(3), 385–405 (2014). http://www.jucs.org/jucs_20_3/automatic_authentication_to_cloud
121. Winter, K.: Model checking for abstract state machines. Ph.D. thesis, Technical University of

Berlin (2001)
122. Yaghoubi Shahir, H., Farahbod, R., Glässer, U.: Refactoring abstract state machine models.

In: Derrick, J., Fitzgerald, J., Gnesi, S., Khurshid, S., Leuschel, M., Reeves, S., Riccobene, E.
(eds.) Abstract State Machines, Alloy, B, VDM, and Z. Lecture Notes in Computer Science,
vol. 7316, pp. 345–348. Springer, Heidelberg (2012). doi:10.1007/978-3-642-30885-7_28.
http://dx.doi.org/10.1007/978-3-642-30885-7_28

123. Yang, S.H., Zhang, J., Huang, A., Tsai, J.P., Yu, P.: A context-driven content adaptation
planner for improving mobile internet accessibility. In: IEEE International Conference
on Web Services, 2008. ICWS ’08, pp. 88–95 (2008). doi:10.1109/ICWS.2008.31. http://
ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4670163

124. Zhang, Y., Chen, J.L.: Universal identity management model based on anonymous credentials.
In: IEEE International Conference on Services Computing (SCC), pp. 305–312 (2010).
doi:10.1109/SCC.2010.46

125. Zhang, X., Li, X., Luo, W.: Aka protocol and its formal analysis and verification using
ambient calculus and logics. In: International Conference on Networking and Digital Society,
vol. 1, pp. 194–197 (2009). doi:http://doi.ieeecomputersociety.org/10.1109/ICNDS.2009.54

http://goo.gl/ssPTu
10.1007/978-3-642-33999-8_5
http://dx.doi.org/10.1007/978-3-642-33999-8_5
http://dx.doi.org/10.1007/978-3-642-33999-8_5
http://www.cloudconference.eu/
http://youtu.be/DoM36D0ydkA
http://www.jucs.org/jucs_20_3/automatic_authentication_to_cloud
10.1007/978-3-642-30885-7_28
http://dx.doi.org/10.1007/978-3-642-30885-7_28
10.1109/ICWS.2008.31
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4670163
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4670163
10.1109/SCC.2010.46
http://doi.ieeecomputersociety.org/10.1109/ICNDS.2009.54

	A Formal Model of Client-Cloud Interaction
	1 Introduction
	2 Cloud Computing and Access Control Techniques for Cloud
	2.1 Cloud Computing
	2.2 Access Management in Cloud Computing

	3 Overview of the Client-Cloud Interaction Software System
	3.1 A Cloud Architecture Equipped with Service Plots and a Client-to-Client Interaction Feature
	3.1.1 Client-to-Client Interaction

	3.2 Client-Centric Identity and Access Management in Cloud Computing
	3.2.1 Direct Client-to-Cloud Interaction
	3.2.2 Obfuscated Client-to-Cloud Interaction
	3.2.3 Protocol-Based Client-to-Cloud Interaction

	3.3 Cloud Content Adaptivity
	3.4 Cloudification Case Studies

	4 Preliminaries
	4.1 The Applied Formal Approach
	4.2 Ambient Calculus
	4.3 Ambient ASM
	4.3.1 Moving Ambients

	4.4 Definitions
	4.4.1 Applied Notations
	4.4.2 Nonbasic Capabilities

	5 The Specification of the Cloud Service Architecture Based on Ambient ASM
	5.1 User Actions
	5.2 The Formal Model of the Cloud Architecture
	5.2.1 User Access Layers
	5.2.2 Service Plots

	5.3 Client-to-Client Interaction Feature
	5.3.1 Establishing a New Channel
	5.3.2 Subscribing to a Channel
	5.3.3 Sharing Information via a Channel

	6 The Specification of the Identity Management Machine
	6.1 The IdMM Core Agent
	6.2 The IdMM Client Agent
	6.3 The IdMM Cloud Agent
	6.4 The IdMM User Agent
	6.5 A Proof-of-Concept Implementation

	7 Cloud Content Adaptivity Specification
	7.1 The System Architecture
	7.2 ASM Ground Models
	7.2.1 Display Output Agent
	7.2.2 Receive Request Agent
	7.2.3 Receive and Process Answer Agent
	7.2.4 Filter and Adapt Content Agent

	7.3 The Use of ASM Ground Models

	8 The Problem of Verification
	8.1 Correctness of Web Application
	8.2 Correctness with Respect to Adaptivity

	9 Related Work
	10 Conclusions
	References

