
Integrating a Model-Driven Approach
and Formal Verification for the Development
of Secure Service Applications

Marian Borek, Kuzman Katkalov, Nina Moebius, Wolfgang Reif,
Gerhard Schellhorn, and Kurt Stenzel

Abstract We present SecureMDD, a development method for secure service appli-
cations that integrates a model-driven approach with formal specification techniques
using abstract state machines (ASMs), refinement to code and verification with the
interactive theorem prover KIV. A larger case study is used to highlight various
aspects of the method with a focus on services and their formal verification.

1 Introduction

Distributed security-critical applications with different communicating components
like (Web) services, computers, terminals, or smart cards rely on cryptographic
protocols. However, the development of such protocols is notoriously difficult
and error prone [2, 52]. This is true even for short protocols with only few
communication steps [37]. The reason is the presence of a human attacker who
actively tries to break security by eavesdropping and modifying the communication
between two components. Often, flaws in an application or in the underlying
protocols are detected only after years of usage, e.g., in the Europay–MasterCard–
Visa (EMV) protocol [48] used in millions of debit and credit cards or in the
Transport Layer Security (TLS) protocol [55].

To be able to develop secure applications based on cryptographic protocols, it
is essential to integrate formal verification into the development process. Moreover,
the security aspects of the application under development have to be considered in
all phases of the development process. SecureMDD is a model-driven development
method that realizes both aspects and is tailored to develop security-critical smart
card and service applications. Moreover, executable code that is correct and secure
with respect to the formal model is generated automatically. This eliminates the
problem that buggy implementations of secure protocols often render the application
insecure.

M. Borek • K. Katkalov • N. Moebius • W. Reif • G. Schellhorn • K. Stenzel (�)
Institute for Software and Systems Engineering, Augsburg University, 86135 Augsburg, Germany
e-mail: stenzel@informatik.uni-augsburg.de

© Springer International Publishing Switzerland 2015
B. Thalheim et al. (eds.), Correct Software in Web Applications and Web Services,
Texts & Monographs in Symbolic Computation,
DOI 10.1007/978-3-319-17112-8_3

45

mailto:stenzel@informatik.uni-augsburg.de

46 M. Borek et al.

This chapter focuses on (Web) services in SecureMDD. Service-oriented archi-
tectures (SOA) are a common way to develop business or e-government applica-
tions. Functionalities are deployed as exchangeable services that can be reused and
orchestrated to complex systems. Many languages, standards (e.g., Web Services
Business Process Execution Language (WS-BPEL), Service-oriented architecture
Modeling Language (SoaML), Web Services Description Language (WSDL),
Business Process Model and Notation (BPMN)), and approaches [4, 24, 38] exist to
develop such systems. Standard security aspects are covered by existing standards
such as WS-Security [49] and WS-SecurityPolicy [50] and the use of standard
security protocols like TLS [20]. However, using such application-independent
standards and protocols is not sufficient to guarantee the security of an application.

Our approach to develop security-critical service applications allows to com-
pletely model the whole system with Unified Modeling Language (UML). Thus, in
contrast to other approaches (e.g., Business Process Execution Language (BPEL)),
an implementation of the modeled application can be generated automatically. The
manual implementation of method bodies is not necessary. Moreover, from the UML
model of the application, we generate a formal specification based on abstract state
machines (ASMs, [15]) for interactive verification of application-specific security
properties.

SecureMDD started with smart card applications. Services differ a lot from smart
cards because of the different communication abilities, the different behaviors, and
the different operational areas. In order to integrate services into SecureMDD, it has
to be clarified how services, their communication, and their security are modeled,
how a code is generated, how their behavior is specified formally, and how their
security is verified. Some of these aspects have already been described in [11]. The
contribution of this chapter is a detailed explanation of how to formally specify
services and a new case study, the first fully verified SecureMDD application using
services.

The rest of the chapter is structured as follows: Section 2 gives an overview of
the SecureMDD approach and Sect. 3 introduces the case study. Section 4 describes
the formal specification and verification of the example. Section 5 explains the code
generation as well as its deployment. Section 6 discusses related work, and Sect. 7
concludes this chapter. The full model of the case study, the formal verification, and
the generated code can be found on our Web page.1

2 The SecureMDD Approach

SecureMDD is a model-driven development method to create secure applications
based on cryptographic (or more broadly speaking, security) protocols. Figure 1
contains an overview.

1http://www.informatik.uni-augsburg.de/lehrstuehle/swt/se/projects/secureMDD/.

http://www.informatik.uni-augsburg.de/lehrstuehle/swt/se/projects/secureMDD/

SecureMDD 47

UML Applica�on Model Formal ASM Specifica�on
interac�ve proofs

Terminal PSM

Smartcard Code
JavaCard

Smart Card PSM Service PSM

Terminal Code
Java

Service Code
Java

M2M M2M M2M

M2T M2T M2T

M2Tpla�orm-
independent
Model:

pla�orm-
specific
Models:

Implemen-
ta�ons:

M2M: Model-to-Model-Transforma�on
M2T: Model-to-Text-Transforma�on

Test Code
Java

M2T

tests

Tests Proper�es

Protocol Analyzer
automa�c bug search

M2T

Fig. 1 Overview of the SecureMDD approach

The development of an application starts with the creation of a platform-
independent UML model [42, 44]. This is an abstract view of a system, omitting
implementation details. To be able to model security-critical applications, UML was
tailored to this domain by defining a UML profile. The static part of the application
(i.e., components and their attributes, data, etc.) is modeled with a class diagram,
and a deployment diagram models the communication structure. To support the
modeling of the dynamic part (the communication protocols and behavior of the
components) of an application, we defined a domain-specific language called Model
Extension Language (MEL) which is used in UML activity diagrams. With this
language, it is possible to make assignments to the attributes of component classes,
to create objects, or to call predefined cryptographic operations. The platform-
independent UML model of an application consists of all information that is needed
to generate executable code as well as a formal model of the whole application
automatically. An example is presented in the next section.

Additionally, the model contains tests (functional tests as well as attempts to
break the security, i.e., attacks) that are modeled with sequence diagrams [34]
and application-specific security properties expressed in OCL [13]. Examples for
application-specific properties are the following: An electronic prescription that
is stored on an electronic health card cannot be filled twice in a pharmacy,
an electronic ticket cannot be forged, and no money is lost in an electronic
payment system. In our opinion, application-specific security properties give better
guarantees to the security of an application than standard properties like secrecy,
integrity, or authenticity. However, standard properties are often prerequisites for
proving application-specific properties and, thus, have to be verified as well. Our
approach generates a formal specification based on algebraic specifications and

48 M. Borek et al.

ASMs for the modeled application. The generated formal model is suitable for the
theorem prover KIV [5] and is used for interactive verification of the application-
specific security properties [45].

Interactive verification often requires substantial effort, and if an error in the
protocol is found, the verification has to start again with the corrected model. In
order to detect flaws early and efficiently, the application model can be translated
into the input language of the automatic protocol analyzer AVANTSSAR [3].
AVANTSSAR systematically generates all possible traces of the system for a fixed
number of components and a fixed number of protocol runs and checks for a
violation of security properties. From our experience [12], this can find simple
bugs fast, but fails for more intricate errors. One problem is that the search space
becomes too big, so that AVANTSSAR does not terminate or runs out of memory.
Another problem is that some application-specific properties cannot be expressed
in AVANTSSAR, so that only a simplified approximation can be checked. Only the
interactive verification fully proves the security of the application.

Runnable code for the application can also be generated from the abstract model.
The platform-independentmodel is transformed by model-to-model transformations
into three platform-specific models (PSMs), one for the modeled smart card compo-
nents, one for the terminals and computers, and one for the modeled services. The
PSMs contain the relevant information for one component type and add technical
details about the implementation. Using the PSMs as input, executable code of
the application is generated automatically using model-to-text transformations. For
the smart card components, Java Card [28] code is generated. For the terminals
and PCs, we generate Java code. Services are implemented as Java Web Services.
Additionally, Java test code is generated from the modeled tests and it is used to test
the other codes.

Smart cards are small, secure, tamper-proof devices. They are the basis for many
security-relevant applications like debit and credit cards, SIM cards, electronic
passports, electronic identity cards, access control, etc. The challenges to generate
code for these cards in SecureMDD are explained in [43]. This chapter focuses on
services.

The security properties that are proved to hold on the formal model should also
hold on the code level. To guarantee this, the generated code has to be a refinement
of the generated formal model for every modeled application. This requires the proof
that the transformations ensure this refinement relation. However, this is research in
progress. The first result is the definition of a calculus for QVT [53] (the language
used to implement the model-to-model transformations) in KIV. This calculus can
be used to prove the correctness of QVT transformations and of generated Java code
[59].

The application model can be created with any UML tool that is compatible
with Eclipse. All transformations are realized with the Eclipse modeling framework.
QVT [53] is used for the model-to-model transformations and XPand [61] for the
model-to-text transformations. All artifacts can be generated by a single click in
Eclipse.

SecureMDD 49

3 Case Study: Banking

We present a banking case study that uses smart cards, computers, automated teller
machines (ATMs), and different services. As the example is concerned with money,
it is security critical. This section shows how such a system is modeled in the
SecureMDD approach. The next section describes the formal verification of the
example, and then the code generation for services is explained.

The banking case study has two use cases:

• A customer can withdraw money at an ATM. The ATM may belong to the
customer’s bank or to another bank. The ATM communicates with its own
bank, and in the second case, the bank owning the ATM communicates with
the customer’s bank to authorize the withdrawal.

• A customer can transfer money online to another account that can be located at
another bank. The customer uses a PC that communicates with an online banking
service which in turn communicates with the customer’s bank. In case of an inter-
bank transfer, the customer’s bank then communicates with the other bank.

The main application-specific security property that the banking systems ensures is
the following:

The amount of money in the banking system is constant (if money paid out at ATMs is also
counted).

This will be explained in more detail in Sect. 4.6 where the formal specification
and verification of this property is described. Next we describe the communication
structure of the banking system, then the static view, and finally the protocols.

3.1 Communication Structure

The communication structure and components are defined in a UML deployment
diagram (Fig. 2). It consists of nodes, communication paths, and different stereo-
types. They are described in turn.

3.1.1 Components

The customer (called AccountOwner in Fig. 2) represents a real human being.
He/she interacts either with an ATM or a PC that in turn communicates with
an OnlinebankingService. Both the PC and the ATM need the customer’s
Debitcard (the protocols will be explained later in this section). In this sce-
nario, we have two types of banks: AffiliatedBanks that operate ATMs and
DirectBanks that only provide online services. For simplicity, we consider only
one affiliated and one direct bank in this example, but multiple instances of services

50 M. Borek et al.

Fig. 2 Deployment diagram for the banking example

are supported in SecureMDD. The online banking service can communicate with
both banks, and the two banks can communicate with each other.

The type of each component is indicated by the stereotype in the node.
Hence the stereotype «Service» shows that OnlinebankingService,
DirectBank, and AffiliatedBank are services. A service can be stateful
or stateless. OnlinebankingService is stateful. This means it can maintain
a session and keeps information like a protocol state and a session key for
every invoker. This allows to secure messages between Debitcard and
OnlinebankingService with an application-specific cryptographic protocol
that uses PC only as an intermediate. The other services (AffiliatedBank and
DirectBank) do not need to store session-dependent information, and thus, it is
sufficient that they are stateless.

3.1.2 Communication Paths

The communication between components can be unidirectional (indicated by an
arrow head) or bidirectional (no arrows). The connection between AccountOwner
and ATM is unidirectional. This means that every action is triggered by the user;

SecureMDD 51

only after an ATM has received an instruction from the user will it become
active. The same is true between ATM and Debitcard: The ATM will send a
message to Debitcard, and afterward the card can answer, but it cannot send
messages of its own accord. In contrast, the connection between DirectBank
and AffiliatedBank is bidirectional. This means that any of them can start
a communication with the other if it has received a message from an ATM or the
OnlinebankingService.

3.1.3 Threats

The communication paths also contain «Threat» stereotypes. They describe
attacker capabilities for the connection. He/she can be a full Dolev and Yao [21]
attacker who is able to read, send, and suppress messages on the fly, but he/she can
also have only a subset of these abilities.

The attacker’s abilities and connection security influence each other. If a
connection has no applied «Threat» stereotype like the connection between
AccountOwner and ATM or ATM and Debitcard, then the connection is
assumed to be secure (which must be achieved by physical means). A threat
between AccountOwner and ATM would mean that the attacker can observe
the personal identification number (PIN) the user types (by shoulder surfing or
a hidden camera); a threat between Debitcard and PC could be the result of
malware on the PC. Both are not considered in the example. The PC communicates
with the OnlinebankingService over the Internet. Here, the full Dolev–Yao
attacker is assumed (e.g., a malicious employee of the Internet service provider).
The connection does not use TLS (see below) because the protocol will realize
an end-to-end encryption between Debitcard and OnlinebankingService
which makes TLS unnecessary.

3.1.4 Transport Layer Security

If a connection has an applied «Threat» stereotype with any ability, the con-
nection can be secured with TLS (the standard Transport Layer Security protocol
[20], indicated by the «TLS» stereotype) with mutual authentication as the default.
This means that both communication partners know each other in advance and
authenticate each other when the communication starts. An alternative is server-
side authentication where only the server authenticates itself. TLS is used for the
communication between OnlinebankingService and the banks. The connec-
tion has a «Threat» stereotype with the properties read, send, and suppress. That
means that the attacker can read, send, and suppress messages on this connection.
However, in combination with «TLS», it means that the attacker can only read
encrypted messages and that the properties send and suppress imply that the attacker
can only disconnect the connection (see Sect. 4 for more details). The assumption for
the connection between DirectBank and AffiliatedBank is that the attacker

52 M. Borek et al.

can only read messages. Thus, the attacker is not able to affect the connection or the
transmitted messages.

3.2 Static View of the Banking System

A UML class diagram specifies all components with their attributes, data types, and
messages. Figure 3 shows the relevant part of the class diagram; only the messages
are omitted.

3.2.1 Classes

The component classes are annotated with the stereotypes «Service»,
«Terminal», «Smartcard» as in the deployment diagram (Fig. 2). The two
components AffiliatedBank and DirectBank are specializations of the
abstract Bank. The other classes are data types that are either stored in attributes
or transmitted in messages or both. Messages and their content are also modeled
as classes.2 Since components send and receive messages, they have a UML

<<Initialize>>-privateKeyCard : PrivateKey
<<Initialize>>-publicKeyCard : PublicKey
<<Initialize>>-publicKeyOBS : PublicKey
-nonceCard : Nonce
-sessionKey : SymmKey

<<Smartcard>>
Debitcard

<<Initialize>>-certVerifyKey : PublicKey
<<Initialize>>-privateKeyOBS : PrivateKey
<<Initialize>>-affiliatedBankCode : String
<<Initialize>>-directBankCode : String
-nonceOBS : Nonce
-sessionKey : SymmKey

<<Service>>
OnlinebankingService

{stateful}

<<Initialize>>-moneyPaidOut : Number

<<Terminal>>
ATM

<<Initialize>>-bankCode : String

<<Service>>
Bank

{stateless}

WAIT_FOR_SERVER_HELLO
AUTHENTICATED

IDLE

<<enumeration>>
StateCard

<<key>>-accountNumber : String
-name : String
-pin : Secret
-balance : Number
-dispo : Number

<<data>>
Account

WAIT_FOR_SESSION_KEY
AUTHENTICATED

IDLE

<<enumeration>>
StateService

-pin : Secret
-money : Number

<<data>>
UserOnlineTransactionInfo

-name : String
-accountNumber : String
-bankCode : String

<<data>>
AccountInfo

-pin : Secret
-money : Number

<<data>>
UserTransactionInfo

-publicKey : PublicKey

<<SignData>>
<<data>>

Certificate

<<Terminal>>
PC

AffiliatedBank

<<Message>>
Message

DirectBank

<<use>>

<<use>>

-receiverAccountInfo

<<use>>

<<use>>

<<Initialize>>
<<status>>

-serviceState

<<Initialize>>
<<signed>>
-certCard

<<use>>

<<Initialize>>
-accountInfo

<<status>>
<<Initialize>>
-cardState

<<Initialize>>
-accounts *

-certCardData

-userTransInfo

Fig. 3 Class diagram of the banking example

2All 21 messages can be found on our web page http://www.informatik.uni-augsburg.de/
lehrstuehle/swt/se/projects/secureMDD/. Some of them are used in the activity diagrams in Figs. 4
and 6.

http://www.informatik.uni-augsburg.de/lehrstuehle/swt/se/projects/secureMDD/
http://www.informatik.uni-augsburg.de/lehrstuehle/swt/se/projects/secureMDD/

SecureMDD 53

dependency to the abstract message class Message from which all messages are
derived.

3.2.2 Cryptographic Data Types

The OnlinebankingService and the Debitcard employ cryptographic
keys (PublicKey, PrivateKey, SymmKey), nonces (i.e., random numbers,
Nonce), and a certificate to establish a secure communication between each
other. These data types are predefined in SecureMDD. The Certificate class
is annotated with the stereotype «SignData» and the association certCard
with «signed». This means that the data is not used as clear text but digitally
signed, and the signature is used. Other cryptographic data types are Secret
for information that the attacker should never know and types and operations for
encryption and hashing.

3.2.3 Attributes

The «Initialize» stereotype indicates that this attribute or association has to
be set during the initial deployment of the system. For example, a Bank has a code
(attribute BankCode) and a list of accounts (association accounts) that are fixed
since we do not consider opening or closing accounts in this example.

The Debitcard contains account information of an account owner who should
be the owner of the card. They have no keys, states, or nonces because their
communication will be secured with TLS. The PC has no attributes because it only
forwards the messages between OnlinebankingService and Debitcard.
An ATM temporarily stores the PIN and the money that an account owner tries to
withdraw in a UserTransactionInfo class. Additionally, it also keeps track
of how much money it has ever paid out in an attribute moneyPaidOut. This
information is important to express the main security property mentioned at the
beginning (the amount of money in the banking system is constant) even though it is
not really necessary for the functionality of the system.

3.3 Dynamic View: Protocols and Behavior

The dynamic part of the system is described with activity diagrams. They describe
the communication protocols between components and what happens inside a
component. The full functionality of the system is defined. All in all, eight activity
diagrams are modeled: three communication protocols and five activity diagrams
for internal behavior.

54 M. Borek et al.

3.3.1 Protocol for Withdrawing Money

The activity diagram for withdrawing money from an ATM is shown in Fig. 4.
Five components are involved in this scenario: an AccountOwner, an ATM,
a Debitcard, an AffiliatedBank, and optionally a DirectBank.
They are modeled as swim lanes. First an AccountOwner inserts his/her
card into an ATM slot, chooses “withdraw money”, and enters his/her PIN
as well as the sum of money to withdraw on the user interface of the ATM
(1). The interaction of a real human with the ATM is modeled as a message
UDebit with argument userTransactionInfo (an instance of the class
UserTransactionInfo) that is sent to the ATM. Message passing is indicated
by UML SendEvent and AcceptEvent nodes. The ATM stores this information in
its attribute userTransInfo, asks the Debitcard for the account information
(2), and sends all data to its owner, the AffiliatedBank (3). The bank first
checks if the account belongs to itself or another bank by comparing the received
bank code with its own. This is modeled with a UML decision node and guards.
If the account belongs to the bank itself, it calls the debitFunction (4) and
then, depending on the return value, the money is issued or not. The fork symbol
in the node indicates a reference to another activity diagram where the behavior of
debitFunction is modeled, and the flow final node indicates abortion of the
protocol. debitFunction debits an account if everything is ok (PIN correct and
credit line not exceeded). If the account belongs to another bank, the message is
forwarded to the DirectBank (5) and the amount will be debited there. After
that, if the debit action was successful, a message TerminalPayOut is sent back
(6) and the ATM pays out the money (7).

3.3.2 Details About Protocols in SecureMDD

The actions and guards contain statements of our MEL language. x := y is
an assignment and b : Boolean := ... a local variable declaration. Static
analysis will ensure that all identifiers exist in the current scope of the class of the
swim lane and that everything is type correct w.r.t. the class diagram.

The protocol uses no cryptography because all communications are assumed
to be secure against an attacker as specified in the deployment diagram (Fig. 2).
The ATM counts how much money it issues with moneyPaidOut :=
moneyPaidOut + money. This is not necessary for the protocol, but needed
in order to express the security property.

Smart cards, services, and terminals are very different in reality, but there is
almost no difference in their treatment in the activity diagram. This is the idea of
model-driven development—the model abstracts from technical details. Only the
class and deployment diagrams distinguish the components by applying different
stereotypes. However, this is not the complete truth. The modeler must be aware
that a smart card has very limited resources and cannot be used to store data in the
same manner as a service or terminal.

SecureMDD 55

U
D

eb
it(

us
er

Tr
an

sa
ct

io
nI

nf
o)

U
Ta

ke
M

on
ey

(m
on

ey
)

 (1
)

(7
)

R
es

G
et

A
cc

ou
nt

In
fo

(a
cc

ou
nt

In
fo

)

U
D

eb
it(

us
er

Tr
an

sa
ct

io
nI

nf
o)

m
on

ey
Pa

id
O

ut
 :=

m

on
ey

Pa
id

O
ut

 +
 m

on
ey

;

Te
rm

in
al

Pa
yO

ut
(m

on
ey

)

U
Ta

ke
M

on
ey

(m
on

ey
)

us
er

Tr
an

sI
nf

o
:=

us

er
Tr

an
sa

ct
io

nI
nf

o;

D
eb

it(
ac

co
un

tIn
fo

,
us

er
Tr

an
sI

nf
o)

G
et

A
cc

ou
nt

In
fo

()

de
bi

tS
uc

ce
ss

fu
l :

 B
oo

le
an

 :=

de
bi

tF
un

ct
io

n(
ac

co
un

tIn
fo

, u
se

rT
ra

ns
In

fo
) :

 d
eb

itF
un

ct
io

n

m
on

ey
 :

N
um

be
r :

=
us

er
Tr

an
sI

nf
o.

m
on

ey
;

D
eb

it(
ac

co
un

tIn
fo

,u
se

rT
ra

ns
In

fo
)

D
eb

it(
ac

co
un

tIn
fo

,
us

er
Tr

an
sI

nf
o)

Te
rm

in
al

Pa
yO

ut
(m

on
ey

)

Te
rm

in
al

Pa
yO

ut
(m

on
ey

)

(4
)

(5
)

R
es

G
et

A
cc

ou
nt

In
fo

(a
cc

ou
nt

In
fo

)

G
et

A
cc

ou
nt

In
fo

()

(2
)

(3
)

(6
)

Te
rm

in
al

Pa
yO

ut
(u

se
rT

ra
ns

In
fo

.m
on

ey
)

D
eb

it(
ac

co
un

tIn
fo

,u
se

rT
ra

ns
In

fo
)

de
bi

tS
uc

ce
ss

fu
l :

 B
oo

le
an

 :=

de
bi

tF
un

ct
io

n(
ac

co
un

tIn
fo

,
us

er
Tr

an
sI

nf
o)

 :
de

bi
tF

un
ct

io
n

dB
an

k
: D

ire
ct

B
an

k
 a

B
an

k
: A

ffi
lia

te
dB

an
k

ca
rd

 :
D

eb
itc

ar
d

at
m

 :
A

TM
u

: A
cc

ou
nt

O
w

ne
r

 [a
cc

ou
nt

In
fo

.b
an

kC
od

e
==

 b
an

kC
od

e]

 [e
ls

e]

 [d
eb

itS
uc

ce
ss

fu
l]

 [e
ls

e]

 [d
eb

itS
uc

ce
ss

fu
l]

 [e
ls

e]

F
ig

.4
Pr

ot
oc

ol
to

w
it

hd
ra

w
m

on
ey

fr
om

an
A

T
M

56 M. Borek et al.

3.3.3 Overview over the Handshake Protocol

The other use case in the example is the online transaction. It is much more
complicated than using an ATM because first a secure channel must be set up
between the smart card and the online banking service by cryptographic means
and second because the money transfer to another bank may fail in which case the
transaction must be reverted.

In Fig. 5, the handshake protocol is shown as a sequence diagram. A sequence
diagram in SecureMDD serves only documentation purposes and shows only
the involved components and message types that are exchanged. This makes it
impossible to generate code, whereas an activity diagram contains everything
needed.

The handshake protocol establishes a secure session between Debitcard
and OnlinebankingService using security data types and cryptographic
operations defined in SecureMDD. There are four participants involved in this sce-
nario: the AccountOwner, a PC, the Debitcard, and the Onlinebanking-
Service. The user starts the protocol by sending the message UHandshake to
the PC (i.e., by interacting with GUI of a program on the PC). The PC begins
by sending Handshake to the Debitcard. Afterward, the PC only forwards
messages between the card and the online banking service. The card sends a
ClientHello containing a nonce encrypted with the public key of the online
banking service and the card’s certificate. The server answers with ServerHello
containing the card’s nonce and a server nonce encrypted with the card’s public
key. As the last major step, the card generates a session key and sends it together
with the server nonce encrypted with the server’s public key to the online banking

obs : OnlinebankingServiceu : AccountOwner c : Debitcardpc : PC

ServerHello5:

HandshakeSuccessful9:

UHandshake1:

ClientHello3:

SessionKey7:

Handshake2:

ClientHello4:

ServerHello6:

SessionKey8:

UHandshake
Successful

10:

Fig. 5 Messages of the handshake protocol

SecureMDD 57

service. This is a standard challenge-response protocol that is used in a similar form
in TLS and many other protocols. Since the protocol has nothing that is specific to
services and since cryptographic protocols in SecureMDD have been described in
detail elsewhere (e.g., [42, 45, 46]), the activity diagram is omitted here.

3.3.4 Protocol for Money Transfer

Figure 6 shows the protocol to transfer money from one account to another
one. It will only run after a successful handshake. This is indicated by a state
AUTHENTICATED that is checked by the card (2). If the check succeeds, the online
transaction can be processed. The account owner has to type in the transaction data,
namely, the PIN, the amount of money that should be transferred, and the receiver’s
account information. This data (uoti) is sent from the PC to the card (1). The
card checks the state, wraps uoti and the account information (accountInfo)
that is initially stored on the card in the message TransactionData, and
encrypts it with the previously exchanged session key (3). encrypt is a predefined
operation in MEL. Then the state is set to IDLE, and the encrypted data is sent
to the online banking service via the PC. After receiving the message, the service
checks that its state is also AUTHENTICATED and decrypts the received data with
the previously exchanged session key. The state is set back to IDLE to avoid replay
attacks, and on the basis of the card holder’s bank code, it is checked which bank
the card holder account belongs to. Depending on this, the message is either sent
over the port affiliated to the affiliated bank (4) or over the port direct to
the direct bank (5). The ports are modeled in the deployment diagram (see Fig. 2).
If bank b1 receives a transaction message with PIN, the amount of money that
should be transferred, the sender’s account information, and the receiver’s account
information, it checks if the card holder account belongs to it. If so, it checks if
the receiver’s account also belongs to it and processes the transaction internally
(6). Otherwise, the bank deducts the sum from the card holder’s account and sends
a request to the bank of the receiver’s account to increase the sum in its account
(7). If this fails because of a nonexistent account number, b1 is notified, and the
deduction from the card holder account is revoked (8). The failure (denoted by
the flow final) will be propagated back to the user. Otherwise, the transaction was
successful, and a message is sent back over the online banking service and the
PC to the user. But before the notification is sent to the user, the PC closes the
session with the online banking service using the stereotype «closeSession»
(9). The online banking service must store the state and the session key across
several protocol steps. Therefore, the service is stateful and provides a new instance
for every invoker. Because the same instance could also be used in another protocol,
it is necessary to model the first call of a stateful service. Therefore, the stereotypes
«openSession» and «closeSession» are supported. «openSession»
was used in the handshake protocol which was not shown.

58 M. Borek et al.

U
Tr

an
sa

ct
io

n
Su

cc
es

sf
ul

()

U
O

nl
in

e
Tr

an
sa

ct
io

n
(u

ot
i)

Tr
an

sa
ct

io
nS

uc
ce

ss
fu

l()

Tr
an

sa
ct

io
nS

uc
ce

ss
fu

l()

tr
an

sD
at

a
: T

ra
ns

ac
tio

nM
SG

:=

 d
ec

ry
pt

(s
es

si
on

K
ey

, e
nc

);

se
rv

ic
eS

ta
te

 :=

St
at

eS
er

vi
ce

.ID
LE

;

Tr
an

sa
ct

io
n(

tr
an

sD
at

a)

vi
a

af
fil

ia
te

d

Tr
an

sa
ct

io
n(

tr
an

sD
at

a)
 v

ia
 d

ire
ct

Tr
an

sa
ct

io
nD

at
a(

en
c)

se
rv

ic
eS

ta
te

 :=

St
at

eS
er

vi
ce

.ID
LE

;

 (
4)

 (
5)

<<
cl

os
eS

es
si

on
>>

Tr
an

sa
ct

io
n

Su
cc

es
sf

ul
()

U
Tr

an
sa

ct
io

n
Su

cc
es

sf
ul

()

Tr
an

sa
ct

io
n

D
at

a(
en

c)

Tr
an

sa
ct

io
n

D
at

a(
en

c)

O
nl

in
e

Tr
an

sa
ct

io
n

(u
ot

i)U
O

nl
in

e
Tr

an
sa

ct
io

n
(u

ot
i)

 (
1)

(9
)

m
sg

 :
Tr

an
sa

ct
io

nM
SG

 :=

cr
ea

te
 T

ra
ns

ac
tio

nM
SG

(

 a
cc

ou
nt

In
fo

, u
ot

i);

en
c

: E
nc

D
at

aS
ym

m
 :=

en

cr
yp

t(s
es

si
on

K
ey

, m
sg

);

ca
rd

St
at

e
:=

 S
ta

te
C

ar
d.

ID
LE

;

O
nl

in
eT

ra
ns

ac
tio

n(
uo

ti)

Tr
an

sa
ct

io
nD

at
a(

en
c)

ca
rd

St
at

e
:=

St

at
eC

ar
d.

ID
LE

;
(2

)

 (
3)

de
cr

ea
se

d
: B

oo
le

an
 :=

de

cr
ea

se
C

ar
dH

ol
de

rA
cc

ou
nt

B
al

an
ce

(td
) :

de

cr
ea

se
C

ar
dH

ol
de

rA
cc

ou
nt

B
al

an
ce

Su
bt

ra
ns

ac
tio

n(
td

.u
se

rT
ra

ns
In

fo

 .
re

ce
iv

er
A

cc
ou

nt
In

fo
,

 td

.u
se

rT
ra

ns
In

fo
.m

on
ey

,
 td

.a
cc

ou
nt

In
fo

.a
cc

ou
nt

N
um

be
r)

ha
nd

le
Fa

ile
dT

ra
ns

ac
tio

n(
m

on
ey

,
ac

co
un

tN
um

be
r)

 :
ha

nd
le

Fa
ile

dT
ra

ns
ac

tio
n

m
on

ey
Tr

an
sf

er
re

d
: B

oo
le

an
 :=

in

tr
aB

an
kT

ra
ns

ac
tio

n(
td

)
:

in
tr

aB
an

kT
ra

ns
ac

tio
n

Su
bt

ra
ns

ac
tio

nS
uc

ce
ss

fu
l

(in
cr

ea
se

d,
 m

on
ey

,
ac

co
un

tN
um

be
r)

Tr
an

sa
ct

io
nS

uc
ce

ss
fu

l()

Tr
an

sa
ct

io
n(

td
)

(6
)

(8
)

in
cr

ea
se

d
: B

oo
le

an
 :=

in

cr
ea

se
R

ec
ei

ve
rA

cc
ou

nt
B

al
an

ce
(

rA
cc

ou
nt

In
fo

,
m

on
ey

,
sA

cc
ou

nt
N

um
be

r)
 :

in

cr
ea

se
R

ec
ei

ve
rA

cc
ou

nt
B

al
an

ce

Su
bt

ra
ns

ac
tio

nS
uc

ce
ss

fu
l(

 in
cr

ea
se

d,
 m

on
ey

,

 s

A
cc

ou
nt

N
um

be
r)

Su
bt

ra
ns

ac
tio

n(

 rA
cc

ou
nt

In
fo

,

 m
on

ey
,

sA
cc

ou
nt

N
um

be
r)

(7
)

b1
 :

B
an

k
b2

 :
B

an
k

ob
s

: O
nl

in
eb

an
ki

ng
Se

rv
ic

e
ca

rd
 :

D
eb

itc
ar

d
pc

 :
PC

u
: A

cc
ou

nt
O

w
ne

r

 [t
ra

ns
D

at
a.

ac
co

un
tIn

fo
.b

an
kC

od
e

 =
=

af
fil

ia
te

dB
an

kC
od

e]

 [t
ra

ns
D

at
a.

ac
co

un
tIn

fo
.b

an
kC

od
e

 =
=

di
re

ct
B

an
kC

od
e]

 [s
er

vi
ce

S
ta

te
 =

=
S

ta
te

S
er

vi
ce

.A
U

TH
E

N
TI

C
A

TE
D

]

 [e
ls

e]

 [e
ls

e]

 [e
ls

e]

 [c
ar

dS
ta

te
 =

=

S
ta

te
C

ar
d.

A
U

TH
E

N
TI

C
A

TE
D

]

 [e
ls

e]

 [t
d.

ac
co

un
tIn

fo
.b

an
kC

od
e

==
 b

an
kC

od
e]

 [t
d.

us
er

Tr
an

sI
nf

o.
re

ce
iv

er
A

cc
ou

nt
In

fo
.b

an
kC

od
e

 =
=

ba
nk

C
od

e]

 [m
on

ey
Tr

an
sf

er
re

d]

 [i
nc

re
as

ed
]

 [e
ls

e]

 [e
ls

e]

 [e
ls

e]

 [e
ls

e]

 [e
ls

e]

 [d
ec

re
as

ed
]

F
ig

.6
Pr

ot
oc

ol
to

tr
an

sf
er

m
on

ey
fr

om
on

e
ac

co
un

tt
o

an
ot

he
r

SecureMDD 59

3.3.5 Structuring Protocols

In Fig. 6, we have seen the use of the superclass Bank in an activity diagram. This
is very useful to avoid the modeling of redundant behavior and makes the diagrams
clearer. The deployment diagram (see Fig. 2) ensures that if b1 is a DirectBank,
then b2 is an AffiliatedBank and vice versa.

Some functionality is encapsulated in methods that are predefined or defined
in the model. Methods designed in the model like intraBankTransaction,
decreaseCardHolderAccountBalance,increaseReceiverAccount
Balance, and handleFailedTransaction allow big and complex protocols
to be divided into smaller diagrams, so that all of them remain clear.

The activity diagram increaseReceiverAccountBalance (Fig. 7) mod-
els an internal behavior. Therefore, it has only one swim lane for a Bank. Activity

Fig. 7 Sub-activity increaseReceiverAccountBalance

60 M. Borek et al.

parameters are used to pass arguments. The operation checks if the bank code is
correct and if the account number exists. If this is the case, the account is credited
and the operation returns true. Otherwise, nothing happens and false is returned.
The graphical visualization of the operation is the choice of the modeler. It is also
possible to write the whole code as one big blob.

This concludes the description of the example. All diagrams can be found on
our Web page.3 It shows how complex applications involving different types of
components (services, terminals, PCs, smart cards, and users) can be modeled in
SecureMDD. An important aspect is that the full behavior of the application can be
modeled, the communication protocol and the internal behavior of the components.
SecureMDD provides a UML profile, predefined cryptographic operations and
data types, and modeling guidelines to easily model distributed security-critical
applications.

The next section describes the formal specification and verification of such
applications.

4 Formal Specification and Verification

In this section, the formal model which is automatically generated from the
platform-independent UML model is introduced. In Sect. 4.1, an overview of the
transformation process is given. Section 4.2 introduces the static part of the formal
model, i.e., the data types, components of the application, and message types. In
Sect. 4.3, the specification of the dynamic aspects of the system are described with
ASMs. Sections 4.4 and 4.5 explain specific details for services, and Sect. 4.6 reports
on the formal verification of the example.

4.1 Overview of the Transformation Process

The formal model that is generated from the UML diagrams is an abstract view
of the whole UML model (which is a representation of the complete system under
development). It contains an arbitrary but finite number of components (smart cards,
terminals, and services) and has an arbitrary number of interleaved protocol runs.

The static aspects of an application, i.e., the components, data types, commu-
nication infrastructure, and the attacker, are defined using algebraic specifications.
The dynamic part of an application, i.e., the cryptographic protocols, is given as
an ASM. The ASM consists of two sets of rules: rules defining the behavior of the
attacker and rules defining the dynamic behavior of the components (agents in the
formal model). Executing rules induces a trace of states. Since applicable rules are

3http://www.informatik.uni-augsburg.de/lehrstuehle/swt/se/projects/secureMDD/.

http://www.informatik.uni-augsburg.de/lehrstuehle/swt/se/projects/secureMDD/

SecureMDD 61

Fig. 8 Dependencies between the UML model and the formal model

chosen nondeterministically, a set of traces is obtained, “everything that can happen
in this world”. Figure 8 shows the components of the formal model and from which
part of the UML model they are generated. Technically, a UML model is loaded
into Eclipse with the Eclipse modeling framework, and specification text suitable
for our interactive theorem prover KIV [5] is generated with XPand [61], also part
of the Eclipse modeling framework. Other provers could be supported by writing
new XPand transformations.

The generated formal model is then used to prove the security of the modeled
application with KIV. One relevant security property for the banking example is
that the sum of (electronic) money in the system is constant, i.e., no money is lost,
and it is not possible to “generate” money. Money dispensed at an ATM is also
counted. This can be formulated as an OCL constraint for the class diagram and is
translated into a proof obligation in the formal model.

4.2 The Static Part: Data Types and Algebraic Specifications

4.2.1 Data Types

The data of the application, i.e., the messages, predefined security data types, and
data types defined in the class diagrams, are translated into algebraic specifications.
To reduce the gap between the UML models and the formal model used for
interactive verification, we use the same data types as in the class diagrams and
do not add a generic data format like some other approaches, e.g., [26, 54]. This

62 M. Borek et al.

simplifies the verification considerably. For example, an account is specified as a
freely generated data type

Account D mkAccount(. .accountNumber : string;
. .name : string;
. .pin : Secret;
. .balance : int;
. .dispo : int);

and the data type message consists of all 21 messages:

message D mkTransactionData(. .msg : EncData) with isTransactionData
j mkTransactionSuccessful with isTransactionSuccessful
:
:
:

The specification is not intended to faithfully represent instances of arbitrary
class diagrams. Without a heap or references (or something similar), it is not
possible to model arbitrary pointer structures like cycles or shared objects. However,
this is not necessary since messages and data used in a cryptographic protocol do
not (and should not) use such features.

4.2.2 Dynamic Functions

Every instance of a component class (service, terminal, smart card, or user) becomes
an agent in the formal specification because it has a behavior as defined by the
protocol steps. The attributes of the component classes are modeled as dynamic
functions that are modified (updated) by the ASM rules. For each attribute, one
dynamic function that maps an agent to the attribute’s value is defined. For example,

ATM-moneyPaidOut : agent ! int;

is the dynamic function for the moneyPaidOut attribute of class ATM, and ATM-
moneyPaidOut(ag) returns the value of the attribute for a given ATM agent ag. The
banking system contains 20 dynamic functions. Experience has shown that slicing a
class into its attributes simplifies verification as compared to one dynamic function
that returns the full state of an agent. The reason is that an update of one attribute
and a lookup of another attribute are syntactically disjoint:

update(ATM-userTransInfo(ag), uti) and ATM-moneyPaidOut(ag)
as compared to something like
update(ATM(ag), update(ATM(ag).userTransInfo, uti))(ag).moneyPaidOut

The specification guarantees that the number of agents is finite so that it is safe
to iterate over all agents and summarize ATM-moneyPaidOut(ag), i.e., the sum of
all money dispensed at all ATMs.

SecureMDD 63

4.2.3 Cryptography and the Attacker

The predefined security data types do not depend on the concrete application, and
the transformation is generic for all applications. For example, encrypted data is
specified as a freely generated data type EncData:

EncData D mkEncData(. .key : SymmKey; . .plain : PlainData);

This means the encrypted data contains the key used for encryption. This
approach is similar to [54]. This allows to easily specify whether a decryption will
succeed or not: The key must be the same as the one used for encryption (private
and public key pair for asymmetric encryption). In the specification of the attacker,
he/she cannot access the key directly so that the behavior of the cryptographic data
types and operations is the same as in reality.

The attacker is only implicitly present in the UML model by «Threat»
stereotypes. In the formal specification, the attacker is modeled explicitly as a
separate agent that can interact with other components by sending and receiving
messages. He/she is associated with a set of data that represents his/her knowledge.
If the attacker eavesdrops on a communication path and data is sent over that path,
it is analyzed and added to the attacker’s knowledge. For example, if the attacker
obtains an encrypted message and knows the key, he/she decrypts the message and
analyzes its contents to find, e.g., secret PINs. Or, if he/she obtains a key, he/she can
decrypt some previously obtained encrypted messages that may contain other keys.
Again, this is similar to [54]. Conversely, the attacker can only send messages he/she
can construct from his/her knowledge. He/she can encrypt and send a message with
a key he/she knows (and he/she must know the data to encrypt) or he/she can simply
send a previously obtained message (a replay attack) even if he/she cannot decrypt it.
The attacker is not able to decrypt messages without knowing the key, or to generate
arbitrary keys, or to guess arbitrary nonces or secrets. This models the fact that it is
virtually impossible to find a key or nonce by chance or brute force in the lifetime
of the application. This is sometimes called the “perfect cryptography assumption”
or “symbolic cryptography” as compared to “computational cryptography”. Non-
cryptographic data such as numbers or strings are never a secret and can always
be used by the attacker in messages. Therefore, a PIN must be modeled as a secret
(1234 in itself is known as a number to everybody, but as a PIN, it should be kept
secret).

Only the specifications for predefined security data types and cryptographic
operations that are actually used will be generated. The banking system uses
symmetric and asymmetric encryption, digital signatures, nonces, and secrets
(PINs).

64 M. Borek et al.

4.3 The Dynamic Part: Abstract State Machine and Traces

The dynamic part of the application, i.e., the security protocols, is defined with
activity diagrams in UML. In the formal model, they are translated into an ASM.
The ASM consists of a number of rules, basically the individual protocol steps. An
applicable rule is chosen nondeterministically in a given state and evaluated yielding
another state (one STEP). Rules are applied arbitrarily often (STEP*). In effect, all
possible (finite and infinite) traces of the specified “world” are generated:

ASM D STEP*

STEP nondeterministically chooses an action to perform. Possible steps are
an attacker step or a step for a component type. For example, if the chosen
step is the OnlinebankingService-agent step, an arbitrary component ag of the
OnlinebankingService class is chosen and the ASM rule ONLINEBANK-
INGSERVICESTEP is executed for this component.

STEP D
choose asm-step do

if asm-step D attacker-step then ATTACKER
else if asm-step D OnlinebankingService-agent-step then

choose ag with exOnlinebankingService(ag) do
ONLINEBANKINGSERVICESTEP

else . . .

The ONLINEBANKINGSERVICESTEP contains all protocol steps the online
banking service can perform. Message passing is modeled with input queues
(inboxes for short). A protocol step can be executed if the inbox of a component
contains a message of the appropriate type; otherwise, nothing happens.

ONLINEBANKINGSERVICESTEP D
choose port with is-valid-port(ag, port) and inputs(ag)(port) ¤ [] do
let inmsg D inputs(ag)(port).first in

inputs WD rem(ag, port, inputs) seq
if (isSessionKey(inmsg)) then SESSIONKEY else
if (isClientHello(inmsg)) then CLIENTHELLO else
if (isTransactionData(inmsg)) then TRANSACTIONDATA else
if (isTransactionSuccessful(inmsg)) then TRANSACTIONSUCCESSFUL else
. . .

The message is removed from the inbox, and the correct ASM rule runs. The rule
processes the message, performs checks, and updates the state of the component as
defined in the corresponding protocol step in the activity diagram. The sending of
a new message is modeled by placing it in the inbox of the receiving component.
If the attacker can eavesdrop on the communication path (read capability in the
deployment diagram), the message is also added to the attackers knowledge.

TRANSACTIONDATA D
let enc D inmsg .msg in

if (serviceState(ag) D AUTHENTICATED) then

SecureMDD 65

if (not (can_decrypt(sessionKey(ag), enc) and
isTransactionMSG(decrypt(sessionKey(ag), enc)))) then
STOPSTEP

else
let transData D decrypt(sessionKey(ag), enc).transactionMSG in . . .

TRANSACTIONDATA encapsulates the actual ASM rule. All the intermediate
steps are just a convenient grouping of related rules. Aside from some syntactical
differences, the abstract program is very similar to the activity diagram. It has
the same control structure, checks, and assignments. But there are differences.
For example, in MEL, the if statement with the test if (not (can_decrypt
... does not occur. It is added during the transformation. MEL only contains the
statement

transData : TransactionMSG := decrypt(sessionKey, enc);

decrypt is a predefined MEL operation that behaves in the generated code
(and hence in the real world) as follows: It performs the actual decryption (by
applying an algorithm like DES or AES) and then checks that the result is actually
an object of the expected type (TransactionMSG above). If this is not the
case, an exception is thrown. The abstract code has the same behavior. If the
key is not correct (in this case can_decrypt is false), the result of decryption is a
meaningless sequence of bytes (for good algorithms like AES). If the key is correct,
the result is something meaningful, but could be of a different type. This is tested
in the second part (isTransactionMSG(decrypt(...))). Since the abstract
programming language has no exceptions, the same behavior is obtained with the
if-then-else.

One ASM rule is evaluated atomically. We assume that an attacker cannot influ-
ence or modify what happens inside a component and cannot read a component’s
local state. Components are considered as secure in the model. An attacker can only
interact with messages and inboxes according to the deployment diagram (Fig. 2,
described in Sect. 3.1). Another consequence of this atomicity is that the access to
a Web service must be serialized as explained in Sect. 5.2. This can be an efficiency
problem but is currently necessary to achieve the same behavior for the model and
the generated code.

In case the attacker was chosen instead of a component, the ASM rule for the
attacker is called. Then, it is nondeterministically chosen if the attacker suppresses
or sends a message. If the attacker suppresses a message, a nonempty inbox is
chosen that belongs to a channel where messages can be suppressed by the attacker.
Then, a message is deleted from that inbox. In the send case, the attackers generate
an arbitrary message from his/her current knowledge. The message is then sent to a
randomly chosen inbox accessible by the attacker (i.e., the channel has the attacker-
send property).

66 M. Borek et al.

4.4 Transport Layer Security and the Attacker

In Sect. 3, it was mentioned that security stereotypes for connections like «TLS»
influence the stereotype «Threat». If an attacker has the abilities to read, send,
and suppress messages (i.e., a Dolev–Yao attacker [21] for this connection) and the
connection is secured with TLS, the attacker loses some of those abilities. Because
TLS is a secure protocol, we use some of its security properties [20]. TLS begins
with a handshake that authenticates one or both communication partners. Then
messages are encrypted with a session key, their integrity is ensured by a message
authentication code (MAC), and a sequence number is used to detect missing or
replayed messages. If an error is detected, the connection is closed.

We assume that an attacker is not able to obtain a valid TLS certificate that is
accepted by other components. This means he/she cannot initiate a TLS-secured
communication if mutual authentication is used. His/her abilities regarding a com-
munication between two components are also limited: The attacker can only read
encrypted messages. The used key is a session key exchanged during authentication
that will never be used in another session. Therefore, reading the messages is useless
for the attacker because he/she cannot decrypt them and they cannot be used for
replays because of the sequence number. As mentioned previously, we are only
concerned with logical security properties, not traffic analysis where the message
length or timing may be important.

Furthermore, in the formal model, the attacker loses his/her ability to send
messages, because if the message is not encrypted with the correct session key
(which the attacker does not possess), the MAC verification will fail and the message
will not be accepted. A replayed message is encrypted with the correct session key,
but will not be accepted because of the sequence number. The ability to suppress
messages is lost as well because the next message will have an incorrect sequence
number. However, the attacker has the ability to terminate the session by replaying
a message, because any error in a TLS session leads to termination.

To summarize, it is appropriate to formalize a TLS-secured connection as one
where an attacker can either do nothing or can only abort the connection (depending
on the annotations in the deployment diagram Fig. 2).

4.5 Stateful and Stateless Services as Agents

A service component can be stateless or stateful. Both must be treated slightly
different in the formal model. A stateless service is similar to other agents like
terminals and smart cards. The formal model may have an arbitrary number of
services or it may be restricted to exactly one.

A stateful service however creates an instance of itself for each invoker. The
actual code of the invoker calls a manager which is also implemented as a stateless
service. It creates an instance of the actual service, deploys it, and returns the address

SecureMDD 67

of this service instance. All this is done by the framework used in the generated
code as described in Sect. 5.1. This behavior is not modeled in the UML model
of the application, and it is not reflected in the formal specification because it is
an implementation issue only. We assume that an attacker has the same abilities
for the communication between the two services as between the client and the
service. Therefore, no additional security weaknesses are created in the code. Only
the address of the service is transmitted which is not a security-critical information
leak because either the attacker cannot read this information (if no threat is present
in the deployment diagram) or he/she can act as man in the middle anyway (if a
threat is present and TLS is not used) or a man-in-the-middle attack is not possible
because TLS is used with mutual authentication as described in Sect. 4.4.

For one stateful service, the formal model has an arbitrary number of agents that
represent the different new instances of the same service. They all have the same
initial attributes that are reset with every connection establishment. Thus, a stateful
service is modeled as a set of agents that can be handled as the other agent types.

4.6 Verification of Security Properties

Besides the automatic code generation, the verification of security properties for the
generated applications is a major benefit for the development of secure systems.
With this approach, we do not have to guess whether the application is secure, since
we were able to formally verify it.

Usually only generic properties like secrecy or authentication are proven for
security protocols (see [36] for an overview). In contrast, the SecureMDD approach
focuses on application-specific security properties [45]. They give better confidence
in the properties of the application as a whole. In the banking system (Sect. 3), it is
interesting to know that PINs and session keys remain secret, but the real properties
are about money. The system has the property that the amount of money is constant
in the following sense:

The sum of all account balances plus the amount of all the money that has been withdrawn
from cash machines is constant.

This property can be formalized as an OCL constraint that is added to a class in
the UML model:

Bank.allInstances().accounts.balance->sum() +
ATM.allInstances().moneyPaidOut->sum() = C

where C is an unspecified constant. This OCL constraint is translated into a property
of the abstract state machine, i.e., the sum is constant in all states of all runs of the
ASM. We define

BanksMoney(accounts) = Bank.allInstances().accounts.balance->sum()
ATMMoney(moneyPaidOut) = ATM.allInstances().moneyPaidOut->sum()
sum = BanksMoney(accounts) + ATMMoney(moneyPaidOut)

68 M. Borek et al.

BanksMoney(accounts) and ATMMoney(moneyPaidOut) are the algebraic terms
that are the result of the translation of the OCL constraints. BanksMoney iter-
ates over the accounts of the banks and summarizes their balance attributes,
and ATMMoney iterates over all components of type ATM and sums up their
moneyPaidOut attributes (see the class diagram Fig. 3).

Then the property can be written formally as

init(. . .) ^ sum D C ! [STEP*] sum D C

[�] is the box operator of dynamic logic. The meaning of [˛]' is that if program
˛ terminates the condition, ' holds afterward. We start with an initial state (i.e., no
protocol steps have been executed, all components are in their initial state, the initial
knowledge of the attacker is fixed, and so on). Then, the protocol steps are chosen
nondeterministically and executed. Thus, we consider all finite sequences of steps.
As described in Sect. 4.3, the ASM consists of a while loop that executes STEP or
stops. Therefore, the proof works by proving an invariant for every step of the ASM.
Of course, the invariant must already hold in the initial state:

(INV(. . .) ^ sum D C) ! [STEP] (INV(. . .) ^ sum D C)

It turns out the property stated above is not quite correct because not yet finished
protocol runs must be taken into account. For example, during an online transaction
(Fig. 6), there is a situation where one account has been debited, but the receiver
not yet credited. In a sense, the money is contained in the message between the two
banks—it is in transit—and must be included in the money count. So the actual sum
must be computed as follows:

sum D BanksMoney(accounts) C ATMMoney(atms) C MoneyInTransit(inboxes)

The definition of MoneyInTransit uses the inboxes of the ASM that are
used to model message passing. The correct OCL constraint therefore must include
inboxes. For example, if all inboxes are empty, then MoneyInTransit is zero,
and we can write

AllInboxes().isEmpty implies4

Bank.allInstances().accounts.balance->sum() +
ATM.allInstances().moneyPaidOut->sum() = C

It is possible to define MoneyInTransit in OCL or to specify it directly in
the KIV system. As it turns out, the correct definition is quite complicated and was
found only after several corrections. The reason for the complexity is twofold: the
behavior of the protocol itself and the attacker abilities.

The protocol for withdrawing money from an ATM is quite straightforward:
The user’s account is debited, and the amount to dispense is sent in a
TerminalPayOut message (see Fig. 4) either directly to the ATM or via the
AffiliatedBank. Therefore, we have to count the money in the TerminalPayOut
messages. The online transfer (Fig. 6) debits the sender’s account and sends a

4implies is an OCL keyword since an arrow -> is used for operations on collections.

SecureMDD 69

Subtransaction message to the other bank whose money must be counted.
The receiving bank answers with a SubtransactionSuccessful message.
However, crediting the receiver may fail because of an incorrect account number.
In this case, the message contains a false flag, true otherwise. This means the
money of a SubtransactionSuccessful message must be counted if and
only if the flag is false.

However, the attacker must be taken into account. He/she has very limited
capabilities in the example as was explained in Sects. 3.1 and 4.4. He/she has
full control over only one communication path, the connection between a PC
and the OnlinebankingService (see Fig. 2). This means he/she can inject
arbitrary messages, for example, TerminalPayOut, Subtransaction, or
SubtransactionSuccessful messages even if this is completely useless
(both PC and OnlinebankingService ignore them). Therefore, we must count
the money contained in these messages only if they occur between the banks and/or
the ATM. There the attacker cannot inject messages, so they must be genuine.

To prove the main security property, a more generalized invariant must be
established that consists of several subproperties. This is necessary for almost all
applications. In the banking system, the following properties must be established:

• Generic properties about connections between components. Only those commu-
nication paths as specified in the deployment diagram are possible (Fig. 2).

• Properties that some messages occur only between dedicated components. This
is related to the exact specification of MoneyInTransit and the exact behavior of
service answers (because a service always answers its caller).

• Properties about the sending account. The banks are modeled as stateless
services. This means that all needed information must be contained in
the messages. If a transaction fails, the receiving bank must know the
account number of the sending account to initiate a refund (with message
SubtransactionSuccessful and flag false). This account number is
sent in the Subtransaction message.

Therefore, it must be proved (and the property is actually needed for the main
proof) that the sending account number in those two messages really exists.

These properties are far from obvious and were found during failed proof
attempts. If it turns out that the invariant is not strong enough (or even incorrect, i.e.,
not really invariant), it must be modified, and the proofs must be done again. This
often happens even if the protocol is secure. The effort can be reduced significantly
if it is ensured that the invariant proofs are done automatically by the proof tool. In
KIV, this can be ensured with suitable rewrite rules.

The final proof uses 244 lemmas that require 953 user interactions and 17,125
proof steps for their proofs. A little less than half of the effort is needed for the
invariant, the rest for properties of the various counting functions. A first version
of the case study required 484 theorems, 4,229 user interactions, and 27,038 proof
steps. This shows how our verification technique for SecureMDD applications and
cryptographic protocols has improved over time. Other case studies show similar

70 M. Borek et al.

improvements. All specifications, lemmas, and proofs can be found on our Web
page5 together with several other case studies.

5 Automatic Code Generation

SecureMDD not only supports the modeling and formal verification of security-
critical applications but also the automatic generation of runnable code for the
application from the class and activity diagrams. As described in Sect. 2, three
platforms are supported: smart cards, terminals, and services.

• Smart cards: The full smart card code of the application is generated as Java Card
code. It can be deployed without any modifications or extensions. Java Card [28]
is a version of Java tailored to resource-constrained devices. Java Card has the
usual Java statements and expressions, but no strings, no integers, no floats, no
threads, no reflection, and no garbage collection. Communication with a smart
card is done with sequences of bytes, i.e., byte arrays.

These limitations make programming in Java Card very difficult and error
prone. The code generation handles serialization of objects for communication,
reuse of objects on the card (this is necessary because of the missing garbage
collection), details of short arithmetics, and cryptographic operations. More
details can be found in [43].

• Terminals: For terminals, the full protocol logic is generated in Java, as well as
code for the communication with other components, including object serializa-
tion. Only GUI code for interaction with a user must be added. This can be done
without modifying or interfering with the protocol logic [23].

The code is similar to hand-programmed Java with one subtle exception. The
MEL semantics knows no pointers, but only values because object identities
play no role in security protocols. Therefore, the generated code uses value
comparison (with equals methods) instead of pointer comparison and ensures
that assignments behave as if the object was deep cloned. Copying is used only if
aliasing and field updates cause incorrect side effects. This can be analyzed given
the activity diagrams.

• Services: The protocol logic and code for communication and serialization are
generated. The code can be deployed without additions or modifications in a
Java service framework.

The rest of this section describes the service code generation and deployment
in more detail.

Technically, the UML model is loaded into Eclipse with the Eclipse modeling
framework. Then model-to-model transformations written in QVT [53] create
intermediate platform-specific UML models for each platform. From these models,

5http://www.informatik.uni-augsburg.de/lehrstuehle/swt/se/projects/secureMDD/.

http://www.informatik.uni-augsburg.de/lehrstuehle/swt/se/projects/secureMDD/

SecureMDD 71

source code is generated by model-to-text transformations with XPand [61]. Both
QVT and XPand are part of the Eclipse modeling framework.

As mentioned in Sect. 2, the transformations are designed so that the generated
code is correct and secure with respect to the formal specification. A formal proof
that the transformations indeed guarantee this property is an ongoing research.

5.1 Services and Service Communication

The service components are implemented as Java Web services that use SOAP [41]
as underlying technology. To implement Web services, Metro6 that integrates JAX-
WS [47] (Java API for XML—Web Services) is used. JAX-WS is a standard and
supports server and clients and can be used by annotated plain old Java objects
(POJOs) that are generated by the transformations.

A service is implemented as a Java class that is annotated with @WebService, and
the public interface of a service is defined by service operations that are annotated
with @WebMethod. The return value of a service operation is sent to the invoker.
For asynchronous message passing, the return value is void and the operation is
annotated with @OneWay.

A SecureMDD service always contains only one service operation process
(see Listing 1.) that handles all incoming messages. It invokes the internal method
processMessage with the message that is wrapped in a MessageWrapper
object. The wrapping is necessary because JAXB (Java Architecture for XML
Binding, part of JAX-WS) needs a container to transmit an object of a class
hierarchy with information about the object’s run time type. msg.getMsg()
selects the actual message from the wrapper. This is an object of class Message,
the common superclass for all messages in the class diagram (Fig. 3). The method
processMethodmakes a case distinction over the actual type of the message and
dispatches to one method for each message class. This approach (only one public
method to handle all incoming messages) is also used in the terminal and smart card
code and behaves exactly as the formal ASM (Sect. 4.3).

@WebMethod
p u b l i c s ynchronized MessageWrapper p r o c e s s (MessageWrapper msg)

throws S e r v i c e E x c e p t i o n {
MessageWrapper m = n u l l ;
t r y {

m = new MessageWrapper (p roc e s s M e s s a ge (msg . getMsg ())) ;
} ca tch (j a v a . l a n g . E x c e p t i o n e) { s t o p () ; }
re turn m;

}

p r i v a t e Message proc e s s M e s s a ge (Message inmsg) throws j a v a . l a n g . E x c e p t i o n {
s wi tc h (inmsg . getCode ()) {

case Code . DEBIT :
re turn p r o c e s s D e b i t ((D e b i t) inmsg) ;

6http://metro.java.net/.

http://metro.java.net/

72 M. Borek et al.

case Code .TERMINALPAYOUT :
re turn p r o c e s s T e r m i n a l P a y O u t ((T e rmina lPayOut) inmsg) ;

. . .
d e f a u l t :

s t o p () ;
re turn n u l l ;

}
}

Listing 1. The single service operation of a SecureMDD service and the dispatcher

The OnlineBankingService handles an online transfer by delegating it to the
customer’s bank. This happens when the service receives a TransactionData
message (see Fig. 6). For each message, one Java method is generated. The method
processTransactionData is shown in Listing 2.

p r i v a t e Message p r o c e s s T r a n s a c t i o n D a t a (T r a n s a c t i o n D a t a inmsg)
throws j a v a . l a n g . E x c e p t i o n {

s ynchronized (manager) {
EncDataSymm enc = inmsg . getMsg () ;
i f (s e r v i c e S t a t e == S t a t e S e r v i c e . getAUTHENTICATED ()) {

Transact ionMSG t r a n s D a t a = (Transact ionMSG)
(EncDataSymm . d e c r y p t (s e s s ionKey , enc)) ;

s e t S e r v i c e S t a t e (S t a t e S e r v i c e . getIDLE ()) ;
i f (t r a n s D a t a . g e t A c c o u n t I n f o () . ge tBankCode ()

. e q u a l s (a f f i l i a t e d B a n k C o d e)) {
re turn sendMsg (new T r a n s a c t i o n (t r a n s D a t a) , P o r t s . a f f i l i a t e d) ;

} e l s e {
i f (t r a n s D a t a . g e t A c c o u n t I n f o () . ge tBankCode ()

. e q u a l s (d i rec tBankCode)) {
re turn sendMsg (new T r a n s a c t i o n (t r a n s D a t a) , P o r t s . d i r e c t) ;

} e l s e {
s t o p () ;
re turn n u l l ;

}
}

} e l s e {
s e t S e r v i c e S t a t e (S t a t e S e r v i c e . getIDLE ()) ;
s t o p () ;
re turn n u l l ;

} } }

Listing 2. Main method for an online transfer

The body of the method is generated from the activity diagram. The method
is called with a TransactionData object, checks the current state of the (stateful)
service, and decrypts the message with the session key exchanged before. The
decrypt method is part of the SecureMDD implementation of cryptographic
operations and raises an exception if the internal decryption does not yield a valid
serialized object or if the object is not of the expected type. Both can happen because
of an attack. An attacker may send garbage, or a message encrypted with another
key, or replay a different message encrypted with the correct key. The ASM rule (in
Sect. 4.3) shows the same behavior by corresponding checks in an if statement (if
(not (can_decrypt ...))). An exception always aborts a protocol step, and
the ASM rule simply finishes in this case. A generic method sendMsg finishes the
protocol step by sending the next message (a Transaction) to the next service.

SecureMDD 73

A stateful service is implemented by two service classes. One class is annotated
with @Stateless and the other with @Stateful. The first is the service manager and
the second the actual stateful service. An invoker calls the service manager and
obtains an address for a fresh instance of the stateful service that was created by
the service manager. After that, the invoker communicates with a service instance
created exclusively for it (see Sect. 4.5 for a discussion why this does not create a
security hole).

Services are invoked by stubs that are automatically generated by the library
wsimport that is a part of JAX-WS. Stubs manage the communication between client
and service by mapping Java objects to XML documents and vice versa as well as
the transport of the XML documents. Which stubs have to be generated for a service
invoker component is defined by the deployment diagram. The generated stubs also
contain the classes that are transferred, but without method implementations. Hence,
the classes generated by wsimport are replaced by the classes that are generated by
the model transformation.

The deployment diagram specifies how many service instances of the same
component can be invoked by one component instance. If a component instance
can invoke only one instance of a service component (denoted by multiplicity 1),
then the stubs are generated at deployment time and can be used without changes.
Otherwise (with multiplicity *), for each service to invoke, its address must be
known. The stubs that are generated for one instance can be used with an address
for any instance of the same type.

5.2 Parallel Service Invocation

Because services can access shared memory at the same time, it is important to
consider parallelism. Especially, protocol steps with read and write access have
to be executed atomically. This is the intended behavior, and the ASM behaves
like this. A possible solution is that the developer of an application has to manage
the synchronization explicitly in the UML model. A more comfortable way is that
the synchronization is managed automatically by the code generation. Our current
solution is to execute only one service operation at any given time, i.e., to force a
completely sequential behavior. For a stateless service, the bodies of the operations
are synchronized on the service instance, and for stateful services, the bodies have
to be synchronized on the manager instance. Possible future work is to look for a
strategy to synchronize only the critical parts of the code.

5.3 Transport Layer Security

TLS with server side authentication is provided by a Java library. If another TLS
implementation should be used, the generated TLS code can be disabled. TLS

74 M. Borek et al.

uses keys and certificates; thus, we need a key and trust store to provide them.
The key store contains asymmetric key pairs, while the trust store provides signed
certificates; if a certificate represents a certificate authority, all certificates issued by
this authority will also be accepted. To use TLS, keys and certificates have to be
transferred inside a secure environment before the system can be deployed.

5.4 Deployment

The deployment diagram contains all important information to deploy an application
(some additional information is defined in the class diagram). To deploy the banking
system, the following information is important. The application model contains a
user that represents a real human, a smart card component, and components that can
be deployed on PCs or servers. Except for the OnlinebankingService, each
of these components can be instantiated multiple times, i.e., an arbitrary number of
PC applications and Bank services can be deployed. The generated Java Card code
can be loaded onto an arbitrary number of smart cards, and the ATM code can be
loaded onto an arbitrary number of real ATMs.

The online banking service can be accessed by many account owner PCs at the
same time and can invoke operations of the bank services. The communication
between a user and a PC has to be secured against an attacker (i.e., against shoulder
surfing and malware). A PC can communicate with a service over any kind of
network, and services can also communicate over any kind of network.

For the PC, a Java package containing all necessary code is generated. The class
PC can be instantiated on any device that supports Java and is secured against an
attacker (i.e., free of malware). For the bank service, a Java package is generated as
well. This package can be deployed inside a container on any Java Web server.

The class diagram defines attributes that have to be initialized at the start of a ser-
vice (they are annotated with «Initialize» in the class diagram). For the banks,
these are the initial accounts and bank codes; for the OnlinebankingService,
public and private keys and bank codes; etc. These attributes must be passed as
parameters to the constructor before the service is started.

SecureMDD provides predefined key-value lists that are used for the accounts.
The generated code provides a prototypical implementation that resides in memory.
It can be replaced by any other implementations or databases that implement the
same interface.

Because requirements usually change during software development, it is useful
that code for the modeled applications can be automatically generated and tested.
For testing, a test case that initializes all instances, deploys all services, and calls the
user messages to execute the protocols has to be written. If such a test case exists,
the whole process from code generation over service deployment up to running the
test code can be invoked with one click inside Eclipse. In our test framework, all
services are deployed on one lightweight server that is integrated in Java, but of
course it is possible to deploy the services on other servers.

SecureMDD 75

The full generated and runnable code can be found on our website.7

6 Related Work

Related work relevant for this chapter can be divided into three categories: veri-
fication of cryptographic protocols, model-driven development of security-critical
systems, and model-driven development of service applications. They are treated in
turn.

6.1 Verification of Cryptographic Protocols

A lot of verification techniques and tools to prove the security of cryptographic
protocols exist; an overview is given in [36]. These techniques can be divided
into three categories: belief logics (e.g., [17]), state exploration (e.g., [6, 37]), and
theorem proving (e.g., [10, 39, 54]). Most of them are based on automatic tools
and focus on generic security protocols (which are not specific to an application,
e.g., authentication protocols) and prove standard security properties. In contrast,
the protocols of the banking system as well as the security property highly depend
on the considered application. It is not clear if automatic tools can cope with that
kind of security property.

Some approaches dealing with application-specific security properties exist. One
method that is related to ours is the inductive approach of Paulson [54] that uses
the theorem prover Isabelle for verification and was successfully applied to several
case studies. Bella extends the inductive approach to deal with smart cards [8]
but concentrates on generic security protocols as well. In [9], Bella et al. give an
overview of their work on SET (Secure Electronic Transaction), a set of e-commerce
protocols devised by Visa and MasterCard. The case study is formally modeled and
verified using the inductive approach. Considered and proven (application-specific)
security properties are that the payment information of the customer are only known
to the bank, not to the merchant, and that the order information is not known to the
bank.

Another interesting case study with application-specific security properties was
the Mondex electronic purse. Mondex has received a lot of attention because its
formal verification has been set up as a challenge for verification tools [60] that
several groups worked on. The results of the participating groups are summarized in
[30]. Mondex is about transferring money (from one card to another), and the main
property is that no money is lost.

7http://www.informatik.uni-augsburg.de/lehrstuehle/swt/se/projects/secureMDD/.

http://www.informatik.uni-augsburg.de/lehrstuehle/swt/se/projects/secureMDD/

76 M. Borek et al.

6.2 Model-Driven Development of Security-Critical Systems

Surveys can be found in [33] and [29]. The most closely related approach is
UMLSec by Jan Jürjens ([32] and newer work). He developed a method to model
systems based on cryptographic protocols with UML. Inputs for model checking
and automatic theorem proving are automatically generated from the models and
standard security properties are proven. Besides several other case studies, Jürjens
worked on the security of the Common Electronic Purse Specification (CEPS) for
cash-free point-of-sale transactions. One considered security property was that the
sum of balances of all smart cards (which are used for payments) and all cards
of the merchants (where the earned money is stored) is the same at any time. The
appropriate proof was not done by tools but is paper based [31]. UMLSec does not
aim at generating runnable code since the focus is on modeling only the security-
related parts.

Smith et al. [58] model security protocols with UML class diagrams and state
machines. Partial code can be generated from the state machine and tested against
attacks. The attacker model and the number of components is fixed. Formal
verification is not supported. Bushager et al. [18] use UML use case and sequence
diagrams to model smart card protocols. Partial code can be generated, but since
the internal behavior of the components is not modeled, that code must be added by
hand. Verification is also not supported. There is quite a lot of work on modeling
access control. We mention only SecureUML by Basin et al. [7]. UML class
diagrams are used to model security-critical applications with role-based access
control (RBAC). Specific authorization constraints can be defined with OCL. Code
generation is not supported.

6.3 Model-Driven Development of Service Applications

The approach developed by Deubler et al. [19] considers the development of
security-critical service-oriented systems. For modeling and verification, it uses
the tool AUTOFOCUS [27] that provides its own modeling language similar to
UML. The considered security mechanisms are authentication and authorization
that are proved with a model checker. Application-specific properties as well as code
generation are not considered. AUTOFOCUS was used by Grünbauer et al. [25] to
model a banking application where a customer can submit a transfer order online.
Essentially this is the handshake protocol and the first part of the transfer protocol
of our banking system (the actual transfer is not considered). The confidentiality
and authenticity of the order is proved with a model checker. However, the attacker
capabilities had to be simplified because the original model was too complex for
automatic verification.

SECTISSIMO by Memon et al. [40] is a framework to model security-critical
services with a business process language, enrich the model with security policies,

SecureMDD 77

and generate code to enforce the policy. The security policy can be composed of a
set of given cryptographic primitives and protocols. Formal verification of security
properties is not supported.

MDD4SOA developed by Mayer et al. [38] is a model-driven approach for
service orchestration that transforms a platform-independent model into several
PSMs and those to partial code for the languages BPEL, WSDL, and Java and the
formal language Jolie. It uses its own UML profile [22] to allow the modeling of
SOA and verify properties with the formal language Jolie. Compliance of service
orchestration with their interaction protocols can be checked automatically [56].
Security aspects are not considered, and the full behavior of the components is not
modeled.

There is some work on model-driven development of Web services in general.
Baina et al. [4] use UML state machines to describe service communication and
generate BPEL-based service skeletons that implement conversation management
logic. Gronmo et al. [24] import Web service descriptions into UML, composite
them, and generate a new Web service description. Both approaches focus on service
composition and neither model the complete service behavior nor consider security.
Sheng et al. [57] focus on context-aware Web services. UWE4JSF by Kroiss et al.
[35] defines a UML profile and can generate executable code.

The following papers consider security in a model-driven approach for Web ser-
vice architectures. Nakamura et al. [51] describe security with UML by primitives
that will be transformed into security configurations such as WS-SecurityPolicy.
They do not verify the security of an application and only parts of an application
are modeled. Alam et al. [1] use OCL and role-based access control (RBAC) and
generate eXtensible Access Control Markup Language (XACML) policy files to
define a security infrastructure. This approach focuses on access control only.

Formal approaches to services can also be used to formally verify security
properties. SecureMDD uses ASMs to define the behavior of components like
services, and if services communicate with other services, this is a simple form of
service orchestration. More elaborate approaches to specify services with ASMs by
Börger and Thalheim [16] and Börger and Sörensen [14] contain interesting ideas
for future extensions of SecureMDD.

We are not aware of an approach like ours that allows model-driven develop-
ment of security-critical Web service applications, generates executable code, and
guarantees application-specific security properties for the modeled system by using
interactive verification.

7 Conclusion

We presented in detail how services are supported in our SecureMDD approach.
Security in service applications is an important issue. Since it is difficult to express
business security requirements with standard security properties, our approach
supports the consideration of application-specific security properties in all stages

78 M. Borek et al.

of the development process. Secure applications using smart cards, terminals,
and services are modeled with extended UML and the domain-specific language
MEL. The banking system used as a case study demonstrates the need to verify
application-specific security properties even if standard security protocols like TLS
are used. From a platform-independent UML model, runnable code as well as a
formal specification is generated automatically. The code describes an application
in full detail and can be deployed and used without any changes. The formal
specification is used to verify the application-specific security properties. The code
is correct and secure with respect to the formal specification.

Future work for services includes handling parallelism in a more efficient way,
integrating a real database and WS-Security standards, and extending the commu-
nication structure to allow more complex service orchestrations. SecureMDD will
also support Android and Apps as an additional platform in the future.

References

1. Alam, M.M., Breu, R., Breu, M.: Model driven security for web services (MDS4WS). In: 8th
International Multitopic Conference, 2004. Proceedings of INMIC 2004, pp. 498–505. IEEE,
Piscataway (2004)

2. Anderson, R.J., Needham, R.M.: Programming satan’s computer. In: Computer Science Today,
vol. 1000, pp. 426–440. Springer, Heidelberg (1995)

3. Armando, A., Arsac, W., Avanesov, T., Barletta, M., Calvi, A., Cappai, A., Carbone, R.,
Chevalier, Y., Compagna, L., Cúellar, J., et al.: The AVANTSSAR platform for the automated
validation of trust and security of service-oriented architectures. In: Proceedings of TACAS
2012 – Tools and Algorithms for the Construction and Analysis of Systems. LNCS, vol. 7214.
Springer, Heidelberg (2012)

4. Baina, K., Benatallah, B., Casati, F., Toumani, F.: Model-driven web service development. In:
Advanced Information Systems Engineering, pp. 527–543. Springer, Heidelberg (2004)

5. Balser, M., Reif, W., Schellhorn, G., Stenzel, K., Thums, A.: Formal system development
with KIV. In: Fundamental Approaches to Software Engineering. Lecture Notes in Computer
Science, vol. 1783. Springer, Heidelberg (2000)

6. Basin, D.A., Mödersheim, S., Viganò, L.: OFMC: a symbolic model checker for security
protocols. Int. J. Inf. Secur. 4(3), 181–208 (2005)

7. Basin, D., Doser, J., Lodderstedt, T.: Model driven security: from UML models to access
control infrastructures. ACM Trans. Softw. Eng. Methodol. 15, 39–91 (2006)

8. Bella, G.: Mechanising a protocol for smart cards. In: Proceedings of e-Smart 2001,
International Conference on Research in Smart Cards. Lecture Notes in Computer Science,
vol. 2140. Springer, Heidelberg (2001)

9. Bella, G., Massacci, F., Paulson, L.C.: Verifying the SET purchase protocols. J. Automat.
Reas. 36(1–2), 5–37 (2006)

10. Blanchet, B.: Automatic verification of correspondences for security protocols. J. Comput.
Secur. 17(4), 363–434 (2009)

11. Borek, M., Moebius, N., Stenzel, K., Reif, W.: Model-driven development of secure service
applications. In: 2012 35th Annual IEEE Software Engineering Workshop (SEW), pp. 62–71.
IEEE, Piscataway (2012)

12. Borek, M., Moebius, N., Stenzel, K., Reif, W.: Model checking of security-critical applications
in a model driven approach. In: Software Engineering and Formal Methods. Springer,
Heidelberg (2013)

SecureMDD 79

13. Borek, M., Moebius, N., Stenzel, K., Reif, W.: Security requirements formalized with ocl in
a model-driven approach. In: 2013 IEEE Model-Driven Requirements Engineering Workshop
(MoDRE). IEEE, Piscataway (2013)

14. Börger, E., Sörensen, O.: BPMN core modeling concepts: inheritance-based execution seman-
tics. In: Handbook of Conceptual Modeling. Theory, Practice, and Research Challenges,
pp. 287–332. Springer, Heidelberg (2011)

15. Börger, E., Stärk, R.F.: Abstract State Machines—A Method for High-Level System Design
and Analysis. Springer, Heidelberg (2003)

16. Börger, E., Thalheim, B.: Modeling workflows, interaction patterns, web services and business
processes: the ASM-based approach. In: Proceedings of ABZ 2008. Lecture Notes in Computer
Science, vol. 5238. Springer, Heidelberg (2008)

17. Burrows, M., Abadi, M., Needham, R.: A logic of authentication. ACM Trans. Comput. Syst.
8(1), 18–36 (1990)

18. Bushager, A., Zwolinski, M.: Modelling smart card security protocols in systemC TLM. In:
IEEE/IFIP 8th International Conference on Embedded and Ubiquitous Computing, pp. 637–
643. IEEE Computer Society, Piscataway (2010)

19. Deubler, M., Grünbauer, J., Jürjens, J., Wimmel, G.: Sound development of secure service-
based systems. In: Proceedings of the 2nd International Conference on Service Oriented
Computing, pp. 115–124. ACM, New York (2004)

20. Dierks, T., Rescorla, E.: The transport layer security (TLS) protocol version 1.2. IETF Network
Working Group. http://www.ietf.org/rfc/rfc5246.txt (2008)

21. Dolev, D., Yao, A.C.: On the security of public key protocols. In: Proceedings of 22th IEEE
Symposium on Foundations of Computer Science. IEEE, Piscataway (1981)

22. Foster, H., Gönczy, L., Koch, N., Mayer, P., Montangero, C., Varró, D.: UML extensions for
service-oriented systems. In: Rigorous Software Engineering for Service-Oriented Systems,
pp. 35–60. Springer, Heidelberg (2011)

23. Grandy, H., Stenzel, K., Reif, W.: Object-oriented verification kernels for secure Java
applications. In: Aichering, B., Beckert, B. (eds.) SEFM 2005 – 3rd IEEE International
Conference on Software Engineering and Formal Methods. IEEE, Piscataway (2005)

24. Gronmo, R., Skogan, D., Solheim, I., Oldevik, J.: Model-driven web services development.
In: 2004 IEEE International Conference on e-Technology, e-Commerce and e-Service, 2004.
EEE’04, pp. 42–45. IEEE, Piscataway (2004)

25. Grünbauer, J., Hollmann, H., Jürjens, J., Wimmel, G.: Modelling and verification of layered
security protocols: a bank application. In: Proceedings of SAFECOMP 2003. Lecture Notes in
Computer Science, vol. 2788. Springer, Heidelberg (2003)

26. Haneberg, D., Grandy, H., Reif, W., Schellhorn, G.: Verifying smart card applications: an ASM
approach. In: International Conference on integrated Formal Methods (iFM) 2007. Lecture
Notes in Computer Science, vol. 4591. Springer, Heidelberg (2007)

27. Huber, F., Molterer, S., Rausch, A., Schatz, B., Sihling, M., Slotosch, O.: Tool supported
specification and simulation of distributed systems. In: Proceedings, International Symposium
on Software Engineering for Parallel and Distributed Systems, 1998, pp. 155–164. IEEE,
Piscataway (1998)

28. Java Card 2.2.2 Application Programming Interfaces: http://www.oracle.com/technetwork/
java/\javacard/specs-138637.html (2006)

29. Jensen, J., Jaatun, M.G.: Security in model driven development: a survey. In: Sixth
International Conference on Availability, Reliability and Security, ARES 2011. Lecture Notes
in Computer Science, pp. 704–709. Springer, Heidelberg (2011)

30. Jones, C., Woodcock, J. (eds.): Form. Asp. Comput. 20(1) (2008)
31. Jürjens, J.: Developing high-assurance secure systems with UML: a smartcard-based purchase

protocol. In: IEEE International Symposium on High Assurance Systems Engineering. IEEE,
Piscataway (2004)

32. Jürjens, J.: Secure Systems Development with UML. Springer, Heidelberg (2005)
33. Kasal, K., Heurix, J., Neubauer, T.: Model-driven development meets security: an evaluation

of current approaches. In: 44th Hawaii International Conference on System Sciences (HICSS),
pp. 1–9. IEEE Computer Society, Piscataway (2011)

http://www.ietf.org/rfc/rfc5246.txt
http://www.oracle.com/technetwork/java/javacard/specs-138637.html
http://www.oracle.com/technetwork/java/javacard/specs-138637.html

80 M. Borek et al.

34. Katkalov, K., Moebius, N., Stenzel, K., Borek, M., Reif, W.: Model-driven testing of security
protocols with secureMDD. In: Fifth IFIP International Conference on New Technologies,
Mobility and Security (NTMS 2012). IEEE, Piscataway (2012)

35. Kroiss, C., Koch, N., Knapp, A.: UWE4JSF: a model-driven generation approach for web
applications. In: 3rd Workshop on The Web and Requirements Engineering at ICWE 2012.
Lecture Notes in Computer Science, vol. 5648, pp. 493–496. Springer, Heidelberg (2009)

36. Lopez Pimental, J.C., Monroy, R.: Formal support to security protocol development: a survey.
Computacion y Sistemas 12(1), 89–108 (2008)

37. Lowe, G.: Breaking and fixing the Needham-Schroeder public-key protocol using FDR. In:
Second International Workshop on Tools and Algorithms for Construction and Analysis of
Systems (TACAS). Lecture Notes in Computer Science, vol. 1055, pp. 147–166. Springer,
Heidelberg (1996)

38. Mayer, P., Schroeder, A., Koch, N.: MDD4SOA: model-driven service orchestration. In:
Proceedings of 12th IEEE International EDOC Conference (EDOC 2008). IEEE, Piscataway
(2008)

39. Meadows, C.: The NRL protocol analyzer: an overview. J. Logic Program. 26(2), 113–131
(1996)

40. Memon, M., Hafner, M., Breu, R.: SECTISSIMO: a platform-independent framework for
security services. In: Proceedings of the First International Modeling Security Workshop.
CEUR Workshop Proceedings, vol. 413. http://ceur-ws.org/Vol-413/ (2008)

41. Mitra, N., Lafon, Y.: SOAP Version 1.2. W3C (2007)
42. Moebius, N., Stenzel, K., Reif, W.: Modeling security-critical applications with UML in the

SecureMDD approach. Int. J. Adv. Softw. 1(1), 59–79 (2008)
43. Moebius, N., Stenzel, K., Grandy, H., Reif, W.: Model-driven code generation for secure smart

card applications. In: 20th Australian Software Engineering Conference. IEEE, Piscataway
(2009)

44. Moebius, N., Stenzel, K., Grandy, H., Reif, W.: SecureMDD: a model-driven development
method for secure smart card applications. In: Workshop on Secure Software Engineering,
SecSE, at ARES 2009. IEEE, Piscataway (2009)

45. Moebius, N., Stenzel, K., Reif, W.: Formal verification of application-specific security
properties in a model-driven approach. In: Proceedings of ESSoS 2010 - International
Symposium on Engineering Secure Software and Systems. Lecture Notes in Computer
Science, vol. 5965. Springer, Heidelberg (2010)

46. Moebius, N., Stenzel, K., Borek, M., Reif, W.: Incremental development of large, secure
smart card applications. In: Proceedings of the Workshop on Model-Driven Security. ACM,
New York (2012)

47. Mordani, R., Chinnici, R., Hadley, M.: The Java API for XML-Based Web Services (JAX-WS)
2.0. JCP (2006)

48. Murdoch, S.J., Drimer, S., Anderson, R., Bond, M.: Chip and PIN is broken. In: Proceedings
of the 2010 IEEE Symposium on Security and Privacy, pp. 433–446. IEEE, Piscataway (2010)

49. Nadalin, A., Kaler, C., Hallam-Baker, P., Monzillo, R.: Web Services Security: SOAP Message
Security 1.0. OASIS (2004)

50. Nadalin, A., Goodner, M., Gudgin, M., Barbir, A., Granqvist, H.: WS-SecurityPolicy 1.2.
OASIS (2006)

51. Nakamura, Y., Tatsubori, M., Imamura, T., Ono, K.: Model-driven security based on a web
services security architecture. In: IEEE International Conference on Services Computing,
pp. 7–15. IEEE, Piscataway (2005)

52. Needham, R.M., Schroeder, M.D.: Using encryption for authentication in large networks of
computers. Commun. ACM 21(12), 993–999 (1978)

53. Object Management Group (OMG): Meta Object Facility (MOF) 2.0 Query/View/Transforma-
tion Specification, Version 1.1. http://www.omg.org/spec/QVT/1.1/ (2011)

54. Paulson, L.C.: The inductive approach to verifying cryptographic protocols. J. Comput. Secur.
6, 85–128 (1998)

55. Ray, M., Dispensa, S.: Renegotiating TLS. Technical Report, PhoneFactor Inc. (2009)

http://ceur-ws.org/Vol-413/
http://www.omg.org/spec/QVT/1.1/

SecureMDD 81

56. Schroeder, A., Mayer, P.: Verifying interaction protocol compliance of service orchestrations.
In: Proceedings of the 6th International Conference on Service-Oriented Computing. Lecture
Notes in Computer Science, vol. 5364. Springer, Heidelberg (2008)

57. Sheng, Q.Z., Benatallah, B.: Contextuml: a uml-based modeling language for model-driven
development of context-aware web services. In: International Conference on Mobile Business,
2005. ICMB 2005, pp. 206–212. IEEE, Piscataway (2005)

58. Smith, S., Beaulieu, A., Greg Phillips, W.: Modeling and verifying security protocols using
UML 2. In: International Systems Conference (SysCon), pp. 72–79. IEEE Computer Society,
Piscataway (2011)

59. Stenzel, K., Moebius, N., Reif, W.: Formal verification of QVT transformations for code
generation. In: 14th International Conference on Model Driven Engineering Languages and
Systems, MODELS 2011. Lecture Notes in Computer Science, vol. 6981. Springer, Heidelberg
(2011)

60. Woodcock, J.: First steps in the verified software grand challenge. IEEE Comput. 39(10),
57–64 (2006)

61. Xpand: http://projects.eclipse.org/projects/modeling.m2t.xpand (2009)

http://projects.eclipse.org/projects/modeling.m2t.xpand

	Integrating a Model-Driven Approach and Formal Verification for the Development of Secure Service Applications
	1 Introduction
	2 The SecureMDD Approach
	3 Case Study: Banking
	3.1 Communication Structure
	3.1.1 Components
	3.1.2 Communication Paths
	3.1.3 Threats
	3.1.4 Transport Layer Security

	3.2 Static View of the Banking System
	3.2.1 Classes
	3.2.2 Cryptographic Data Types
	3.2.3 Attributes

	3.3 Dynamic View: Protocols and Behavior
	3.3.1 Protocol for Withdrawing Money
	3.3.2 Details About Protocols in SecureMDD
	3.3.3 Overview over the Handshake Protocol
	3.3.4 Protocol for Money Transfer
	3.3.5 Structuring Protocols

	4 Formal Specification and Verification
	4.1 Overview of the Transformation Process
	4.2 The Static Part: Data Types and Algebraic Specifications
	4.2.1 Data Types
	4.2.2 Dynamic Functions
	4.2.3 Cryptography and the Attacker

	4.3 The Dynamic Part: Abstract State Machine and Traces
	4.4 Transport Layer Security and the Attacker
	4.5 Stateful and Stateless Services as Agents
	4.6 Verification of Security Properties

	5 Automatic Code Generation
	5.1 Services and Service Communication
	5.2 Parallel Service Invocation
	5.3 Transport Layer Security
	5.4 Deployment

	6 Related Work
	6.1 Verification of Cryptographic Protocols
	6.2 Model-Driven Development of Security-Critical Systems
	6.3 Model-Driven Development of Service Applications

	7 Conclusion
	References

