Formal Modelling and Verification
of Transactional Web Service Composition:
A Refinement and Proof Approach with Event-B

Idir Ait-Sadoune and Yamine Ait-Ameur

Abstract Several languages for describing Web service compositions, like BPEL
(Business Process Execution Language), make use of fault and compensation
constructs to handle internal and/or external runtime errors of the composed
service. This situation particularly occurs for transactional services. However, the
absence of a rigorous definition of these BPEL constructors makes it difficult to
correctly define the transactional behaviour of a BPEL process. The definitions of
such constructs are usually given by their informal descriptions available in the
standards. Our contribution proposes an approach to formally define the semantics
of these operators. Thus, this paper presents a new Event-B semantics for formal
modelling of Web service compositions that covers the scope, the fault and the
compensation handlers introduced by the BPEL language specification. It also
proposes a methodology showing how we can use Event-B method to design
transactional BPEL processes. The proposed approach is illustrated by a case study.

1 Introduction

Service-oriented architectures (SOA) are increasingly used in various applica-
tion domains. Indeed, a wide range of services operate on the Web and access
different distributed and shared resources like databases, data warehouses and
scientific calculation repositories. Moreover, the compositions of such services
define complex systems not only in the area of computing but also in various
businesses like manufacturing or scheduling. Some of these services performing
transactional activities are called transactional Web services. This kind of services
must satisfy the relevant properties related to transactional systems (atomicity,
consistency, isolation and durability (ACID) properties) traditionally required by

1. Ait-Sadoune (D<)
LRI - CentraleSupelec, 3, rue Joliot-Curie, 91190 Gif-Sur-Yvette, France
e-mail: idir.aitsadoune @supelec.fr

Y. Ait-Ameur
IRIT - ENSEEIHT, Toulouse, France
e-mail: yamine@n7.fr

© Springer International Publishing Switzerland 2015 1
B. Thalheim et al. (eds.), Correct Software in Web Applications and Web Services,

Texts & Monographs in Symbolic Computation,

DOI 10.1007/978-3-319-17112-8_1

mailto:idir.aitsadoune@supelec.fr
mailto:yamine@n7.fr

2 1. Ait-Sadoune and Y. Ait-Ameur

database management systems. Although the notion of transactions is well mastered
by traditional shared and distributed databases, SOA suffers from a lack of formal
semantics of transactional Web services. Indeed, in the current SOA tools, overall
business transactions may fail or be cancelled when many ACID transactions are
committed.

BPEL (Business Process Execution Language [22]) is considered as a standard
of Web service composition specification. It offers a compensation mechanism
by providing resources for flexible control of reversal and/or resume activities.
To reach this goal, BPEL offers the possibility to define fault handling and
compensation in an application-specific manner. BPEL has an XML-based textual
representation, and its dynamic semantic description is still informally defined in the
standards. Due to the lack of formal semantics of BPEL, ambiguous interpretations
remain possible, especially the use of different mechanisms (fault handlers and
compensation handlers) to handle transactional behaviour. Such languages do not
offer the capability to formally handle the transactional Web service aspects and to
ensure their correct behaviour.

Several approaches have proposed formal semantics to the BPEL language using
different formal descriptions. Petri nets, transition systems, pi-calculus and process
algebra have been set up to model BPEL processes; they are summarised in Sect. 8.
In our previous work ([5, 6]), we have defined an Event-B-based [2] semantics for
the various elements of data and service descriptions and for simple and structured
BPEL activities. In this paper, we propose to extend this work to cover the scope, the
fault and the compensation handlers introduced by the BPEL language specification.
We also propose a methodology to design a transactional BPEL process by assisting
a designer for detecting and verifying a transactional behaviour in a BPEL process.

This paper is structured as follows. The next section presents the Event-B
method, and Sect. 3 gives an overview of the BPEL language and the case study
used in this paper to illustrate the proposed approach. Sections 4, 5 and 6 present,
respectively, the proposed approach for analysing transactional Web services and
how Event-B method is used to encode these scope, fault and compensation
constructs. Section 7 presents an application of the proposed approach to a case
study. Section 8 discusses our approach compared to the state of the art in formal
verification of BPEL processes and transactional Web services. Finally, a conclusion
and some perspectives are outlined.

2 The Event-B Method

The Event-B method [2] is a recent evolution of the B method [1]. This method
is based on the notions of preconditions and post-conditions [16], the weakest
precondition [9] and the calculus of substitution [1]. It is a formal method based
on first-order logic and set theory.

Modelling and Verification of Transactional Processes with Event-B 3

2.1 Event-B Model

An Event-B model is defined by a set of variables, defined in the VARTABLES
clause that evolves thanks to events defined in the EVENTS clause. It encodes a state
transition system where the variables represent the state and the events represent the
transitions from one state to another.

An Event-B model is made of several components of two kinds: Machines and
Contexts. The Machines contain the dynamic parts (states and transitions) of a
model, whereas the Contexts contain the static parts (axiomatisation and theories) of
a model. A Machine can be refined by another one, and a Context can be extended
by another one. Moreover, a Machine can see one or several Contexts (Fig. 1).

The refinement operation [3] offered by Event-B encodes model decomposition.
A transition system is decomposed into another transition system with more and
more design decisions while moving from an abstract level to a less abstract one.
A refined Machine is defined by adding new events, new state variables and a gluing
invariant. Each event of the abstract model is refined in the concrete model by adding
new information expressing how the new set of variables and the new events evolve.

A Context is defined by a set of clauses (Fig. 2) as follows:

* CONTEXT represents the name of the component that should be unique in a
model.
* EXTENDS declares the Context extended by the described Context.

See
0,* = Context

&= extendsNames : EString

| Machine

5% refinesNames : EString
&% seesNames : EString

0.*
B
extends
refines
Fig. 1 MACHINE and CONTEXT relationships
CONTEXT context_identifier, MACHINE machine_identifier,
EXTENDS context _identifier, REFINES machine_identifier,
SETS SEES
K context_identifier;
CONSTANTS VARIABLES
c v
AXIOMS INVARIANTS
axm: A(s,c) inv: I(s,c,v)
THEOREMS THEOREMS
thm : T(s,c) thm : T(s,c,v)
END VARIANT
V(s,c,v
EVEN(TS)
< event_list >
D

Fig. 2 The structure of an Event-B development

4 1. Ait-Sadoune and Y. Ait-Ameur

* SETS describes a set of abstract and enumerated types.

e CONSTANTS represents the constants used by a model.

e AXIOMS describes, in first-order logic expressions, the properties of the
attributes defined in the CONSTANTS clause. Types and constraints are
described in this clause as well.

 THEOREMS are logical expressions that can be deduced from the axioms.

Similarly to Contexts, a Machine is defined by a set of clauses (Fig. 2). Briefly,
the clauses mean:

* MACHINE represents the name of the component that should be unique in a
model.

* REFINES declares the Machine refined by the described Machine.

* SEES declares the list of Contexts imported by the described Machine.

* VARIABLES represents the state variables of the model of the specification.
Refinement may introduce new variables in order to enrich the described system.

e INVARIANTS describes, by first-order logic expressions, the properties of the
variables defined in the VARIABLES clause. Typing information, functional
and safety properties are usually described in this clause. These properties shall
remain true in the whole model. Invariants need to be preserved by events. It
also expresses the gluing invariant required by each refinement for property
preservation.

» THEOREMS defines a set of logical expressions that can be deduced from the
invariants. They do not need to be proved for each event like for the invariant.

* VARIANT introduces a decreasing natural number which states that the “conver-
gent” events terminate.

* EVENTS defines all the events (transitions) that occur in a given model. Each
event is characterised by its guard and by the actions performed when the guard is
true. Each Machine must contain an “Initialisation” event. The events occurring
in an Event-B model affect the state described in VARIABLES clause.

An event consists of the following clauses (Fig. 3):

CEINT3

— status can be “ordinary”, “convergent” (the event has to decrease the variant)
or “anticipated” (the event must not increase the variant).

— refines declares the list of events refined by the described event.

— any lists the parameters of the event.

Fig. 3 Event structure Event evt =
Status convergent
any
X
where
grd: G(s,c,v,x)
then
act: v:|BA(s,c,v,x,V)
end

Modelling and Verification of Transactional Processes with Event-B 5

< variable_identifier > = < expression > (1)
< variable_identifier_list > :| < before_after_predicate > 2)
< variable_identifier > 1€ < set_expression > 3)

Fig. 4 The kinds of actions of an event

— where expresses the guard of the event. An event is fired when its guard
evaluates to true. If several guards evaluate to true, only one is fired with a
non-deterministic choice.

— then contains the actions of the event that are used to modify the state
variables.

Event-B offers three kinds of actions that can be deterministic or not (Fig. 4). For
the first case, the deterministic action is represented by the “assignment” operator
that modifies the value of a variable. This operator is illustrated by the action (1). For
the case of the non-deterministic actions, the action (2) represents the “before-after”
operator acting on a set of variables whose effect is represented by a predicate,
expressing the relationship between the contents of variables before and after the
triggering of the action. Finally, the action (3) represents the non-deterministic
choice operator, acting on a variable, by modifying its content with an undetermined
value in a set of values.

2.2 Proof Obligation Rules

Proof obligations (POs) are associated to any Event-B model. They are automati-
cally generated. The proof obligation generator plug-in in the Rodin platform [24]
is in charge of generating them. These POs need to be proved in order to ensure
the correctness of developments and refinements. The obtained PO can be proved
automatically or interactively by the prover plug-in in the Rodin platform.

The rules for generating proof obligations follow the substitution calculus [1]
close to the weakest precondition calculus [9]. In order to define some proof
obligation rules, we use the notations defined in Figs. 2 and 3 where s denotes
the seen sets, ¢ the seen constants and v the variables of the Machine. Seen axioms
are denoted by A(s, ¢) and theorems by 7 (s, ¢), whereas invariants are denoted by
I(s, ¢, v) and local theorems by 7 (s, ¢, v). For an event evt, the guard is denoted by
G(s, ¢, v, x), and the action is denoted by the before-after predicate BA(s, ¢, v, x, V")
(the action (2) of Fig. 4).

* The theorem proof obligation rule: this rule ensures that a proposed context or
machine theorem is indeed provable:

A(s,c) = T(s,c)
A(s,c) AN (s,c,v) = T(s,c,v)

6 1. Ait-Sadoune and Y. Ait-Ameur

* Invariant preservation proof obligation rule: this rule ensures that each invariant
in a machine is preserved by each event:

A(s,c) ANI(s,c,v) AG(s,c,v,x) ABA(s,c,v,x,v") = I(s,c,V)

* Feasibility proof obligation rule: the purpose of this proof obligation is to ensure
that a non-deterministic action is feasible:

A(s,c) AN I(s,c,v) AG(s,c,v,x) = I .BA(s,c,v, x, V")

» The numeric variant proof obligation rule: this rule ensures that under the guards
of each convergent or anticipated event, a proposed numeric variant is indeed a
natural number:

A(s,c) A (s,c,v) AG(s,c,v,x) = V(s,c,v) €N

» The variant proof obligation rule: this rule ensures that each convergent event
decreases the proposed numeric variant. It also ensures that each anticipated
event does not increase the proposed numeric variant. The rule in the case of
a convergent event is

A(s,c) ANI(s,c,v) AG(s,c,v,x) ABA(s,c,v,x,v") = V(s,c,v") < V(s,c,v)
The rule in the case of an anticipated event is
A(s,c) ANI(s,c,v) AG(s,c,v,x) ABA(s,c,v,x,v") = V(s,c,v) < V(s,c,v)

There are other rules for generating proof obligations to prove the correctness of
refinement. These rules are given in [2].

2.3 Semantics of Event-B Models

The new aspect of the Event-B method [2], in comparison with classical B [1], is
related to the semantics. Indeed, the events of a model are atomic events of state
transition systems. The semantics of an Event-B model is trace-based semantics
with interleaving. A system is characterised by the set of licit traces corresponding
to the fired events of the model which respects the described properties. The traces
define a sequence of states that may be observed by properties. All the properties
will be expressed on these traces.

This approach proved the capability to represent event-based systems like railway
systems, embedded systems or Web services. Moreover, decomposition (thanks
to refinement) supports building of complex systems gradually in an incremental
manner by preserving the initial properties, thanks to the preservation of a gluing
invariant.

Modelling and Verification of Transactional Processes with Event-B 7
3 Service Composition Description Languages

The Web service composition description languages are XML-based languages. The
most popular languages are BPEL [22], CDL [30], OWL-S [29], BPMN [23] and
XPDL [31]. If these languages are different from the description point of view, they
share several concepts, in particular the service composition. Among the shared
concepts, we find the notions of activity for producing and consuming messages;
attributes, for instance, correlation; message decomposition; service location; com-
pensation in case of failure; events; and event handling. These elements are essential
to describe service compositions and their behaviour.

However, due to their XML-based definition, these languages suffer from a
lack of semantics. It is usually informally expressed in the standards that describe
these languages using natural language or semiformal notations. Hence, the need
of a formal semantics expressing this semantics emerged. Formal description
techniques and the corresponding verification procedures are very good candidates
for expressing the semantics and for verifying the relevant properties.

The formal approach we develop in this paper uses BPEL as a service com-
position description language and Event-B as a formal description technique. The
proposed approach can be extended to be used with other service composition
description language.

3.1 Overview of BPEL

BPEL (Business Process Execution Language [22]) is a standardised language
for specifying the behaviour of a business process based on interactions between
a process and its service partners (partnerLink). It defines how multiple service
interactions, between these partners, are coordinated to achieve a given goal. Each
service offered by a partner is described in a WSDL document through a set of
operations and of handled messages.

WSDL (Web Service Description Language [28]) is a standardised language
for describing the published interface (input and output parameter types) of the
Web service. It provides with the address of the described service, its identity,
the operations that can be invoked and the operation parameters and their types.
Thus, WSDL describes the function provided by Web service operations. It defines
the exchanged messages that envelop the exchanged data and parameters. The
composition of such Web services is described in languages, like BPEL, supporting
such composition operators.

A BPEL process uses a set of variables to represent the messages exchanged
between partners. They also represent the state of the business process. The content
of these messages is amended by a set of activities which represent the process
flow. This flow specifies the operations to be performed, their ordering, activation
conditions, reactive rules, etc. Figures 5 and 6 show the XML structure of a WSDL
description and a BPEL process.

8 1. Ait-Sadoune and Y. Ait-Ameur

<message name="InfosMessage” >
<part name="DebitInfosPart” type="DebitInfos”/>
<part name="CreditInfosPart” type="CreditInfos/>
</message>
<message name="ResponseMessage” >
<part name="ResponsePart” type="int"/>
</message>
<message name="DebitMessage”>
<part name="DebitInfosPart” type="DebitInfos”/>
</message>
<message name="CreditMessage”>
<part name="CreditInfosPart” type="CreditInfos”/>
</message>
<portType name="BankTransferPortType’ >
<operation name="BankTransferOperation”>
<input message="InfosMessage”/>
<output message="InfosOut”/>
</operation>
<operation name="DebitOperation”>
<input message="DebitMessage”/>
</operation>
<operation name="CreditOperation”>
<input message="CreditMessage”/>
</operation>
</portType>

Fig. 5 The XML WSDL (Web Service Description Language) description of BankTransfer
services

<process name="BankTransfer” ...>
<variables>
<variable name="TransactionIn” messageType="InfosMessage”/>
<variable name="TransactionOut” messageType="InfosOut”/>
<variable name="DebitInfo” messageType="DebitInfosMessage”/>
<variable name="CreditInfo”” messageType="CreditInfosMessage”/>
</variables>
<sequence name="BankTransferProcess”>
<receive name="ReceiveTransferInfos” variable="TransactionIn” ... operation="BankTransferOperation”/>
<assign name="AssignTransferInfos”>...</assign>
<invoke name="InvokeDebit” ... operation="DebitOperation” inputVariable="DebitInfo”/>
<invoke name="InvokeCredit” ... operation="CreditOperation” inputVariable="CreditInfo”/>
<assign name="AssignResponse”>...</assign>
<reply name="Reply” variable="TransactionOut” ... operation="BankTransferOperation” />
</sequence>
<process/>

Fig. 6 The XML BPEL description of BankTransfer process

BPEL offers two categories of activities: (1) atomic activities representing the
primitive operations performed by the process (they are defined by the invoke,
receive, reply, assign, terminate, wait and empty activities and correspond to
basic Web services) and(2) structured activities obtained by composing primitive
activities and/or other structured activities using the sequence, if, while and repeat
Until composition operators that model traditional sequential control constructs.
Three other composition operators are defined by the pick operator defining a

Modelling and Verification of Transactional Processes with Event-B 9

non-deterministic choice, the flow operator defining the concurrent execution and
the scope operator defining subprocess execution. BPEL also introduces systematic
mechanisms for fault handling by defining a set of activities to be executed for
handling possible errors anticipated by the Web service composition designer.
A compensation handler can be associated to the fault handler; it starts from the
erroneous process itself to undo some steps that have already been completed and
return the control back at the identified checkpoints.

3.2 A Case Study

We have chosen to illustrate our approach on the pedagogical case study of the
BankTransfer commonly used to describe transactional Web services (Figs. 5, 6
and 7). This example describes a service processing a bank transfer between two

?

% BankTransfertProcess

@ ReceiveTransferinfos
= AssignTransferinfos
& InvokeDebit

& InvokeCredit
~ AssignResponse
@ Reply

Fig. 7 The graphical BPEL description of BankTransfer process

10 1. Ait-Sadoune and Y. Ait-Ameur

bank accounts from two different banks. On receiving the transfer order from a
customer, the process makes, in sequence, a debit from the source bank account
and a credit to the target bank account. The BPEL description of Fig. 6 shows
how the BankTransfer process is decomposed into a sequence of ReceiveTransfer-
Infos, AssignTransferlnfos, InvokeDebit, InvokeCredit, AssignResponse and Reply
activities. The transaction order information, sent by the customer, is stored in
the Transactionln message, and the transaction receipt is sent to the customer in
the TransactionOut message. The Debitinfo and Creditinfo messages contain the
information sent to the two bank accounts to make the transfer.

4 Event-B for Analysing Transactional Web Services

Our idea is to provide assistance to BPEL developers using the Event-B method [2].
The choice of this formal method is guided by the fact that proof-based methods
do not suffer from the state number explosion problem and proofs are eased by
the refinement thanks to the decomposition it provides. Our motivation for the use
of this formal method is detailed in the previous work [5, 6]. More precisely, our
objective is to provide a methodology for detecting the BPEL process parts that
handle critical resources. Traditionally, the developer builds its BPEL process and
describes the process behaviour without using fault and compensation handlers to
guarantee transactional constraints. He/she adds these constraints by observing the
behaviour of the obtained process.

In the approach we promote, the designed BPEL process is translated into an
Event-B model according to the rules defined in [5] and [6]. Then, the transactional
properties and the properties related to the consistencies of resources used by the
BPEL process are expressed in the form of consistency invariants (consistency
property). These invariants are defined by the designer because there is no BPEL
resource supporting their expression nor a technique for their checking. Once this
enrichment is performed, proof obligations (POs) are generated. Some of these POs
related to invariants involving the transactional properties are unprovable because
triggering some events separately violates the consistency invariants. Then, BPEL
activities related to the event source of these unprovable POs are detected and
isolated in a BPEL scope element. This element allows the designer to define a
particular BPEL part on which specific mechanisms only apply to this isolated part
in an atomic manner. In our case, for transactional BPEL parts, we recommend to
apply the mechanisms for fault and compensation handling to the scope element
(compensational atomicity property: guarantees that a transaction consisting of
a Web service request will run in such a way that either all of its requests are
completed successfully or all requests that occurred during the processing of this
transaction will be compensated) and the “isolated” attribute of the corresponding
scope is set to “true”. As a consequence, the execution of this part is isolated by
the orchestration tools (isolation property), and at the same time, consistency of
the resources used by these activities is guaranteed. Transactional properties may

Modelling and Verification of Transactional Processes with Event-B 11

require a redesign of the defined BPEL process. From a methodological point of
view, our approach relies on the following steps.

Step 1 Translate the BPEL model into an Event-B model.

Step 2 Introduce, in the Event-B model, the relevant invariants related to the suited
transactional behaviour.

Step 3 Isolate the events of the Event-B model whose POs, associated to the
introduced invariant of step 2, are not provable.

Step 4 Redesign the BPEL model of step 1 by introducing a BPEL scope embed-
ding the events identified at step 3 and compensation/fault handlers.

This step-based approach is applied until the associated Event-B model is free of
unproven POs.

In the following sections, we present the Event-B models for scope, fault handler
and compensation handler BPEL concepts. These models extend the proposed ones
of the general approach of [5] and [6] to support transactional BPEL processes
modelling or checking the behaviour of composed Web services in the case of an
internal or external runtime error of a BPEL process.

5 Modelling Scope, Fault and Compensation Handlers

Before addressing the formal modelling of the transactional behaviour, we reviewed
the proposed Event-B formal semantics of BPEL ([5, 6]).

5.1 Formal Modelling of BPEL ([5, 6])

Our approach for formal modelling of BPEL with Event-B is based on the
observation that a BPEL definition is interpreted as a transition system interpreting
the process coordination. A state is represented in both languages by a variables
element in BPEL and by the VARTABLES clause in Event-B. The various activities
of BPEL represent the transitions. They are encoded by events of the Event-B
EVENTS clause. For a better understanding of this paper, the transformation rules
from BPEL to Event-B models are briefly recalled below. This translation process
consists of two parts: static and dynamic.

5.1.1 Static Part

The first part translates the WSDL definitions that describe the various Web services
and their data types, messages and port types (the profile of supported operations)
into the different data types and functions offered by Event-B. This part is encoded
in the Context part of an Event-B model.

12 1. Ait-Sadoune and Y. Ait-Ameur

CONTEXT BankTransferContext
SETS

Void InfosMessage ResponseMessage DebitMessage CreditMessage DebitlnfosType CreditinfosType
CONSTANTS

DebitInfosPart CreditInfosPart DebitPart CreditPart ResponsePart BankTransferOperation
DebitOperation CreditOperation

AXIOMS

al2: DebitInfosPart € InfosMessage — DebitInfosType

al3: CreditInfosPart € InfosMessage — CreditInfosType

al4: (DebitInfosPart ® CreditInfosPart) € InfosMessage — (DebitInfosType x CreditInfosType)
al5: ResponsePart € ResponseMessage— {0,1}

al6: DebitPart € DebitMessage— DebitlnfosType

al7: CreditPart € CreditMessage— CreditinfosType

al8: BankTransferOperation € InfosMessage leesponseMessuge

al9: DebitOperation € DebitMessage — Void

a20: CreditOperation € CreditMessage — Void

END

Fig. 8 The Event-B CONTEXT of BankTransfer process

A BPEL process references data types, messages and operations of the port
types declared in the WSDL document. In the following, the rules translating these
elements into an Event-B Context are inductively defined:

1 The WSDL message element is formalised by an abstract set. Each part attribute
of a message is represented by a functional relation corresponding to the
template part € message — type_part from the message type to the part type.
On the case study in Fig. 5, a set named InfosMessage is defined in the SETS
clause, and the application of this rule corresponds to the axiom al2 and al3
declarations in the BankTransferContext in Fig. 8.

2 Each operation of a WSDL portType is represented by a functional relation
corresponding to the template operation € input — output mapping the
input message type on the output message type. On the case study in Fig. 5,
the BankTransferOperation operation is encoded by the functional relation
described by axiom a/8 in Fig. 8.

5.1.2 Dynamic Part

The second part concerns the description of the orchestration process of the
activities appearing in a BPEL description. These processes are formalised as Event-
B events; each simple activity becomes an event of the Event-B model, and each
structured or composed activity is translated to a specific event construction. This
part is encoded in a Machine of an Event-B model.

A BPEL process is composed of a set of variables and a set of activities. Each
BPEL variable corresponds to a state variable in the VARIABLES clause, and the

Modelling and Verification of Transactional Processes with Event-B 13

MACHINE BankTransferMachine
SEES BankTransferContext
VARIABLES

Transactionln Debitlnfo CreditInfo Response varSeq_-1

INVARIANTS

il: Transactionln C InfosMessage N card(Transactionln) < 1
i2: Debitlnfo C DebitMessage N card(Debitlnfo) < 1

i3: Creditlnfo C CreditMessage N card(Creditinfo) < 1

i4: Response C ResponseMessage N\ card(Response) < 1

i5: varSeq-1 € {0:1:2:3:4,5:6}

Fig. 9 The Event-B MACHINE of BankTransfer process (part 1)

activities are encoded by events. This transformation process is inductively defined
on the structure of a BPEL process according to the following rules:

3 The BPEL variable element is represented by a variable in the VARIABLES
clause in an Event-B Machine. This variable is typed in the INVARIANTS
clause using messageType BPEL attribute. The variables and invariants corre-
sponding to the case study are given in Fig. 9. For example, the BPEL variable
Debitlnfo is declared and typed.

4 Each BPEL simple activity is represented by a single event in the EVENTS clause
of the Event-B Machine. For example, in Fig. 10, the ReceiveTransferInfos
BPEL atomic activity is encoded by the ReceiveTransferInfos Event-B event.

5 Each BPEL structured activity is modelled by an Event-B description which
encodes the carried composition operator. Modelling composition operations
in Event-B follow the modelling rules formally defined in [4]. Again, on the
same example (Fig. 6), the structured activity BankTransferProcess is encoded
by a sequence of six events controlled by the varSeq_1I variable initialised to
value 6 (Fig. 10).

When the Event-B models formalising a BPEL description are obtained, they
may be enriched by the relevant properties that formalise the user requirements and
the soundness of the BPEL-defined process like BPEL type control, orchestration
and service composition, deadlock freeness, no live-lock, precondition for calling a
service operation and data transformation ([35, 6]).

5.2 An Event-B Model for Scope

The BPEL language provides a particular mechanism for subprocess description
thanks to the scope construct. Scope encapsulates subprocess behaviours and
includes a context used by the execution of the activities that describe its behaviour.
This context contains a state composed by a set of variables. Each scope has a
required primary activity that describes its behaviour (Fig. 11).

14

1. Ait-Sadoune and Y. Ait-Ameur

Initialisation

begin
initl: varSeq_1 := 6
init2: Transactionln := &

init3: Debitinfo .= @
inité4: Creditinfo :== @

iniths: Response := @
end R
Event BankTransferProcess =
when
grdl: varSeq_1 =0
then
skip
en .
Event ReceiveTransferInfos =
any
receive
where
grdl: receive € InfosMessage
grd2: Transactionln = &
grd3: varSeq-1 =06
then
actl: Transactionln := {receive}

act2: varSeq_1 :=varSeq_1 —1

end .
Event AssignTransferInfos =
any

fromto_I to_2
where

grdl: to_1 € DebitMessage
grd2: to.2 € CreditMessage
grd3: from € Transactionln
grd4: Transactionln # &
grd5: DebitInfo = &

grdé : Creditlt}fo =0

grd9: varSeq._
then
actl: Debitlnfo:= {to-1
act2: Creditln{o ::{{loj
d act3: varSeq_I := varSeq_1 — 1
en

grd7: DebitlnfosPart(from) = DebitPart(to_1
grds: Creditln{osl?rt(from) = CreditPart(to_2)

Event InvokeDebit =

any
msg

where
grdl: msi € Debitlnfo
grd2: Debitlnfo # I

rd3: msg € dom(DebitOperation
N grdék : varSeq-1 :(4)
then

actl: varSeq_1 := varSeq_1 — 1

en R
Event InvokeCredit =

any
ms,
where 8
grdl: msg € Creditlnfo
grd2: Creditlnfo #+ @
grd3: msg € dom(CreditOperation)
N grdd : varSeq_-1 =3
then

actl: varSeq-l:=varSeq-1—1

en
Event AssignResponse =

any
to

where
grdl: to € ResponseMessage
grd2: Response = &
grd3: ResponsePart(t0) = 1
grd4d: varSeq-1 =2

then
actl: Resgonse ={ toé
act2: varSeq_1 :=varSeq_1 — 1
end ®
Event Reply =
any
reply
where

grdl: reply € Response

grd2: Response # &

grd3: varSeq_1 =1
then

actl: Response := &

act2: varSeq_1 := varSeq_1 — 1
end

Fig. 10 The Event-B MACHINE of BankTransfer process (part 2)

<scope name="scopeName” isolated="yes—no”? ... >

<variables>?...</variables>
<faultHandlers>?
<catch faultName="fault_1"?... >*

<activity name="catchFault_1">...</activity >

</catch>
<catchAll>?

<activity name=""catchAllFaults”>...</activity >

</catchAll>
</faultHandlers>
<compensationHandler>

<activity ... >...</activity>
</compensationHandler >

<activity name="mainActivity”...>...</activity >
</scope>

Fig. 11 A BPEL scope element containing fault and compensation handlers

Modelling and Verification of Transactional Processes with Event-B 15

MACHINE scopeModel

VARIABLES
varScope
INVARIANTS
i: varScope € {0,1}
EVENTS, Event mainActivity = Event scopeName =
Initialisation
. when when
begin rdl: varScope =1 grdl: varScope =0
initl: varScope =1 grd2: Gy grd2: G
end then then
actl: varScope:=0 actl:
act2: s end

Fig. 12 An Event-B model for a BPEL scope element

The scopeModel MACHINE in Fig. 12 formalises the scope behaviour. This
MACHINE introduces a mainActivity event that models the main activity of a scope
and a scopeName event that models the end of a scope execution. The variable
varScope is initialised to 1. This variable triggers the scopeName event at the end
of the mainActivity event. If the scope’s main activity is of structured type, the
transformation rules defined for structured activities in [5] are applied. Similarly,
the scope variables are modelled according to the variable transformation rules
defined in [5].

Gy, G, S5, and S’ represent the guards and the actions of the mainActivity and
scopeName events. They result from variable and activity modelling and are related
to the data manipulation and to the process behaviour. The same reasoning applies
for fault and compensation handler models presented below.

5.3 An Event-B Model for Fault Handler

A BPEL fault handler is a process that is triggered when an error rose from a partner
Web service or an internal BPEL process. It provides a mechanism to define a set
of customised “fault-handling” activities. A catch element is defined to intercept (to
catch) a specific kind of fault, defined by a “faultName” attribute. If no predefined
name is associated to the intercepted fault, this fault will be processed by a catchAll
element (see Fig. 11).

The faultHandlerModel MACHINE in Fig. 13 formalises a fault Handler as
described in Fig. 11. The mainActivity event models the normal behaviour of the
scope. Different types of errors are taken into account by the defined fault handler.
Error types are defined by an enumerated set called faultType in the SETS clause.
It contains all fault types identified by the designer and used in the BPEL process
description. The model in Fig. 13 formalises the case of errors called fault I among
other faults. A varFault variable is introduced to determine whether the current
behaviour of the process is catching errors (varFault=1) or describes a normal
execution (varFault=0).

16 1. Ait-Sadoune and Y. Ait-Ameur

CONTEXT faultHandlerContext
SETS

SfaultType
CONSTANTS
Sault_1 otherFault
AXIOMS
al: partition(faultType,{fault_1},{otherFault})

END

MACHINE faultHandlerModel
SEES faultHandlerContext
VARIABLES

currentFault varFault

INVARIANTS
il: currentFault € faultType
i2: varFault € {0,1}

EVENTS Event mainActivity =
Initialisation

. when
begin grdl: varFault =0
initl: varFault := 0 grd2: G
init2: currentFault € then
SfaultType actl: S
en end
Event SfaultOccurs = Event catchFault_1 = Event catchAllFaults =
any when where
grdl: varFault =1 grdl: varFault_]
where grd2: currentFault = grd2:
grdl: varFault = 0 Sfault_1 currentFault
grd2: ff € faultType grd3: G otherFault
then then grd3: G
: n
actl: varFault := 1 actl: S; then
act2: currentFault := ff end actl: S
end end !

Fig. 13 An Event-B model for a BPEL fault handler

The occurrence of an error is formalised by the faultOccurs event that is
arbitrarily triggered (non-deterministic occurrence of the event). When this event
is triggered, it ceases the normal behaviour described by the mainActivity event
thanks to the action varFault:=1. The fault processing, corresponding to the error
defined by the currentFault variable content, starts. If this variable contains the
fault_1 value, the catchFault_I event, formalising the processing of the fault_I
error, is triggered. Otherwise (currentFault=otherFault), the catchAllFaults event,
formalising the catchAll element processing, is triggered.

Similarly, this model can be used to formalise a fault handler associated to a
BPEL process.

5.4 An Event-B Model for Compensation Handler

A compensation handler is a wrapper for a process that performs compensation.
A compensation handler for an activity is available for invocation only when the
activity completes successfully. Generally, the invocation of a compensation handler

Modelling and Verification of Transactional Processes with Event-B 17

<process ... >

<faultHandlers>
<catch faultName="scopeFault”... >
<compensate name="catchScope”/>
</catch>
</faultHandlers>
<sequence name="mainActivity”>

<scope name="scopeName” ...>
<compensationHandler>
<activity name="compensationActivity”>...</activity >
<compensationHandler >

</scope>
</sequence>
</process>

Fig. 14 BPEL fault and compensation handlers

is achieved by a fault handler to undo the effects of already completed activities in
the case of a runtime error.

The BPEL process described in Fig. 14 contains two behaviours: the normal
behaviour described by the mainActivity sequence element and the error catching
behaviour described by the fault handler. The normal behaviour consists of a
sequence of activities, and one of these activities is required to be a scope. This
scope contains a compensation handler to cancel its effect in the case of a runtime
error. Then, the fault handling process consists of triggering the compensate activity.

The compensationModel MACHINE described in Fig. 15 formalises a BPEL
process conforming to Fig. 14. The normal behaviour described by a sequence
activity is modelled by a mainActivity event according to the defined rules in [5].
Being the jth activity of this sequence, the scope is modelled by the scopeName
event which represents part of the scope model obtained using the rules defined in
Sect. 5.2. The scopeName event is triggered when varSeg=j.

The fault handler part is modelled by the catchScope event. It formalises a
compensate activity named catchScope. This part describes the scopeFault handling
process. The catchScope event triggers the compensation handler contained in the
scopeName scope, in the case that currentFault is “scopeFault”. This action is done
by assigning value 1 to the varComp variable.

The compensation process is described by the compensationActivity event. It can
be triggered if the scopeName scope has completed its execution (varSeq<j) and
the catchScope event is triggered (varComp=1). The compensationActivity specifies
the process of compensation. It can be described by one or a set of activities. In this
case, the transformation rules of BPEL activities defined in [5] are applied to detail
this description.

18

1. Ait-Sadoune and Y. Ait-Ameur

CONTEXT compensationContext
SETS
SfaultType
CONSTANTS
scopeFault otherFault
AXIOMS
al: partition(faultType {scopeFault} {otherFault})

END

MACHINE compensationModel
SEES compensationContext
VARIABLES

varSeq varComp currentFault varFault
INVARIANTS

il: currentFault € faultType
i2: varFault € {0,1

i3: varComp < {0 }

i4d: varSeq €0,...,n}

EVENTS Event mainActivity = Event scopeName =
Initialisation
. when when
begin grdl: varFault=0 grdl varFault =0
initl: varFault := 0 grd2: varSeq =0 grd2: varSeq = j
init2: varComp := 0 grd3: grd3: Gy
init3: varSeq :=n then then
inité4: currentFault :€ actl s actl S,
SfaultType end act2 varSeq := varSeq — 1
en end
Event faultOccurs = Event catchScope = Event compensationActivity =
any when where
f grdl: varFault = 1 grdl: varComp = 1
where grd2: grd2: varSeq < j
grdl: varFault =0 currentFault = h grd3: ¢
grd2: ff € faultType scopeFault then
then then g actl: Se
actl: varFault:=1 . — en
J act2: currentFault == ff end acti: varComp := 1
en

Fig. 15 An Event-B model for BPEL fault and compensation handlers

6 Use of the Tools

The proposed approach is implemented by integrating various plug-ins in the Rodin
platform which is based on the Eclipse core. We have used existing plug-ins of
Eclipse platform (BPEL editor') and of Rodin platform (Event-B editor, prover [24]
and ProB model checker [18]) and developed plug-ins (BPEL2B plug-in [5]). These
plug-ins are used at different steps of our approach:

* Designing BPEL process with the BPEL editor and translating the obtained
model into an Event-B model using the BPEL2B plug-in (step 1).

* Introducing the relevant invariants related to the suited transactional behaviour
with the Event-B editor (step 2). Isolating the events of the model whose POs,
associated to the introduced invariant of step 2, cannot be proved within the Rodin
prover.

'BPEL Designer Project: http:/eclipse.org/bpel/

http://eclipse.org/bpel/

Modelling and Verification of Transactional Processes with Event-B 19

» The ProB model checker assisting the developer to confirm the diagnostic and to
get a counterexample associated to the isolated events (step 3).

* Redesigning the BPEL model of step 1 by introducing a BPEL scope embedding
the events identified at step 3 and a compensation/fault handler (step 4). The
graphical view of the BPEL editor can be used at this step to facilitate the
insertion of the new elements.

7 Application to the Case Study

The application of the approach outlined in Sect. 4 on the example in Fig. 6 is given
in the following steps. The reader can find all Event-B CONTEXTs and MACHINEs
source codes on this website.’

Step 1 This step on the BankTransfer BPEL process in Fig. 6 leads to the Event-B
model in Figs. 8, 9 and 10 described in Sect. 5.1.

Step 2 The transactional properties are expressed in the form of invariant in
the Event-B model of step 1. Starting from the model in Figs. 8 and 10,
we obtain the model in Fig. 16 by defining a default fault handler with
the defaultFaultHandler event. BankAccountl and BankAccount2 variables
formalise the contents of two bank accounts and the amount variable contains
the value to be transferred. The InvokeDebit and InvokeCredit events invoke
Web services that make the transaction. The consistency property is expressed
by invariant i/2. The sum of BankAccountl and BankAccount2 variables shall
be constant to ensure consistency of the contents of two bank accounts before
triggering InvokeDebit event and after triggering InvokeCredit event. Invariant
i13 expresses the state after triggering InvokeDebit event and before triggering
the InvokeCredit event.

Step 3 The POs are generated by the Rodin platform, and those associated to the

invariant i/2 and to the action varSeq_I:=0 of defaultFaultHandler event,
which aborts the BPEL process, cannot be proved (Fig. 17). An inconsistency
state results from this abortion.
The invariant violation is usually caused by defaultFaultHandler event trig-
gering when the faultOccurs event is triggered after InvokeDebit event. This
diagnostic is confirmed by the ProB model checker [18] that gets a coun-
terexample corresponding to this scenario (Fig. 18). The inconsistency state is
varSeq=0 (defaultFaultHandler event) and BankAccountl + BankAccount2 =
ConsistencyState — amount.

Step 4 If an error occurs during the transaction, a fault handler should restore a
consistent state of the process before aborting it. The InvokeDebit and Invoke-
Credit activities are isolated in the BPEL scope, a fault handler is associated

2http:/fidir.aitsadoune.free.fr

http://idir.aitsadoune.free.fr

20 1. Ait-Sadoune and Y. Ait-Ameur

gONTEXT BankTransferContext

.. faultType
CONSTANTS
...ConsistencyState otherFault
AXIOMS
a12 . partition(faultType, {otherFault})
al3: ConsistencyState € N,

END

MACHINE BankTransferWithoutScope
SEES BankTransferContext
VARIABLES

...varFault currentFault BankAccountl BankAccount2 amount
INVARIANTS

i7: varFault € N AvarFault € {0,1}

i8: currentFault € faultType

i9: BankAccount]l € N

i10: BankAccount2 € N

i1l: amount € N

i12: EvarSqu # 3; = gBankAccount] -+ BankAccount2 = ConsistencyState)

i13: varSeq-1 = 3) = (BankAccountl + BankAccount2 = ConsistencyState — amount)
EVENTS Event ReceiveTransferInfos =
Initialisation Event AssignTransferInfos =
beai Event InvokeDebit =
egin
Lt where
init3: BankAccountl, BankAccount2 L
. ’ - r_ rd4 : varSeq_-1 =4
[o A EankAccount! + BankAccount2 grdS : amoint < BankAccountl
Consistency) grd6: varFaulf=0
init4d: amount :€ N; then ’
inith: currentFault € faultType . .
init6 - varFault ‘= 0 actl: varSeq_1 = varSeq_1 — 1
end act2: BankAccount]l = BankAccount] —
R amount
Event SfaultOccurs = end
when Event InvokeCredit =
grd2: varFault = 0
grd3: varSeq_1#0 where
then st
subl : currentFault := otherFault grds: varSeq_1 =3
sub2: varFault:=1 grd5: varFault =0
end then
R actl: varSeq_1 :=varSeq_1 — 1
Event defaultFaultHandler = act2: BankAccount2 := BankAccount2 +
when J amount
grdl: varFault = 1 en
grd2: currentFault = otherFault Event AssignResponse =
then Event Repﬁ' = N
J subl : varSeq_1 := 0 Event BankTransferProcess =
en

Fig. 16 The consistency property expression of BankTransfer process

to this scope, and the mechanism for compensation handling is applied to the
InvokeDebit and InvokeCredit activities (compensational atomicity property).
The “isolated” attribute of this scope is also set to “true” (isolation property).
The BPEL process obtained by this step is given in Figs. 19 and 20.

When applying again step 1 on the obtained BPEL process, the Event-B model
in Fig. 21 with BankTransferContext and BankTransferMachine components is
obtained. Only elements that differ from the Event-B model in Figs. 8§ and 10
are shown in Fig. 21. The BankTransferProcess is encoded by a sequence of five
events. One of them is BankTransferScope which formalises the BankTransferScope

Modelling and Verification of Transactional Processes with Event-B

£ Event-B Explorer 83

5 (B9 ProB [@ Proving ”
S EMRA 108 Rl

o
@ AssignTransferinfos/grd8/WD -
@" AssignTransferInfos/grd7/WD
3" ReceiveTransferlnfos/NAT
" ReceiveTransferinfos/VAR
@ ReceiveTransferlnfos/il3/INV
@ ReceiveTransfernfos/i12/INV
@’ ReceiveTransfernfos/i5/INV

v L1 " »

@A 4.

@’ faultOccurs/i6/INV
@ INITIALISATION/act1/FIS

Fig. 17 The Rodin diagnostic

+ 3% = O History 22 _[] Event Error View

3" ReceiveTransferinfos/il/INV

@) defaultFaultHandler/i12/INV
4 14 4 Ale 18 TA

e - |

defaultFaultHandler
faultOccurs
InvokeDebit
AssignTransferinfos
RecelveTransferinfos
INITIALISATION
(uninitialised state)

"

K Model Checking finished

1
|

'.6' State Error found!

OK

| [Details >>

—rT

Fig. 18 The ProB diagnostic

21

scope. The main activity of this scope is a BankTransfer activity which is decom-
posed to a sequence of InvokeDebit and InvokeCredit activities controlled by the
varSeq_2 variable initialised to value 2. The scopeFaultOccurs event formalises
the triggering of a runtime error inside the scope. This event triggers the scope
fault handler by assigning the currentFault variable to “scopeFault”. The fault
handler process is described by the compensate, rethrow and scopeFaultHandler

22 1. Ait-Sadoune and Y. Ait-Ameur

<process name="BankTransfer” ...>

<sequence name="BankTransferProcess”>
<receive name="ReceiveTransferInfos” ... />
<assign name="AssignTransferInfos”> ... </assign>
<scope name="BankTransferscope” isolated="true”>
<faultHandlers>
<catchAll>
<sequence>
<compensate/>
<rethrow/>
</sequence>
</catchAll>
</faultHandlers>
<sequence name="BankTransfer”>
<invoke name="InvokeDebit” ...>
<compensationHandler>
<invoke name="InvokeCancelDebit” .../>
</compensationHandler>
</invoke>
<invoke name="InvokeCredit” ...>
<compensationHandler>
<invoke name="InvokeCancelCredit” .../>
</compensationHandler >
</invoke>
</sequence>
</scope>
<assign name="AssignResponse”>...</assign>
<reply name="Reply” .../>
</sequence>
<process/>

Fig. 19 The BPEL description of a redesigned BankTransfer process

events. The compensate event triggers different compensation handlers that consist
of invoking InvokeCancelDebit and InvokeCancelCredit events to cancel the effect
of the InvokeDebit and InvokeCredit events.

In this case, the invariant i/2 is changed and adapted to the modifications made
by introducing a scope. All POs are proved, and unlike the case in Fig. 16, the
invariant i/2 is not violated by the fault handler process if scopeFaultOccurs event
is triggered after InvokeDebit event (Fig. 22). The scopeFaultHandler event triggers
the compensation process (compensate event) before aborting the BPEL process.

8 Related Work

Various approaches have been proposed to model and to analyse BPEL processes.
Most of the work in the literature shows that the proposed approaches use transition
systems for representing the business processes, activities and workflows and model
checking as the underlying formal verification technique for property validation.
Hinz et al. [15] and van der Aalst et al. [27] have used Petri nets to encode

Modelling and Verification of Transactional Processes with Event-B 23

?

= BankTransfertProcess

& | ReceiveTransferinfos

|0, BankTransferScope

= BankTransfer
=

)
InvokeDebit
£

v 1}
& InvokeCredit i
’lnvokoCancalCndit

Fig. 20 The graphical BPEL description of a redesigned BankTransfer process

BPEL processes. Nakajima [21] has mapped a BPEL activity part to a finite
automaton encoded in Promela. FSP (finite state process) and the associated tool
(LTSA) are used by Foster et al. [12] to check if a BPEL Web service composition
behaves like an MSC Web service composition specification captured by message
sequence charts (MSCs). Marconi et al. [20] present the approach that translates
a BPEL process to a set of state transition systems. These systems are composed
of parallel and the resulting parallel composition is annotated with specific Web
service requirements. Salaun et al. [25] show how BPEL processes are mapped to
processes expressed by LOTOS and CCS process algebra operations. Abstract state
machines (ASM) have been developed by Farahbod et al. [11] and Fahland [10]
to model BPEL composition process descriptions. Borger et al. [7] have used ASM
for modelling workflow, specifically BPMN process. The B method and StaAC were
used by Butler et al. [8] to model business transactions and their compensation with
an application to a BPEL process. Other approaches proposed formal models for
Web service compositions. An overview of these approaches can be found in [26].

24

1. Ait-Sadoune and Y. Ait-Ameur

CONTEXT BankTransferContext
SETS

...faultType
CONSTANTS
AXIOMS

ags

END

partition(fault

...otherFault scopeFault CancelDebitOperation CancelCreditOperation

Cance/Deblt(zferanon € DebitMessage — Void
CancelCredit! feranon € CreditMessage — Void
pe,{otherFault},{scopeFault})

MACHINE BankTransferMachine
EES BankTransferContext
VARIABLES

INVARIANTS

mrSeq 1€{0,1,2
varSeq-2 € {0. 1, 2}
varScope € {0,1
varComp € {0.1

varSeqﬁ {0, } 2}
=
=

i13: varSeq 2 =1
EVENTS
Initialisation
begin
initl: varSeq.l,varSeq2:=5,2
init2: varSqu varScope 1
init3: varFault, varComp ,0
end
Event otherFaultOccurs =
when
grd2: varFault = 0
grd3: varSeq.l1 #3
then
subl: currentFault := otherFault
sub2: varFault :=
end
Event defaultFaultHandler =
when
grdl: varFault = 1
grd2: currentFault = otherFault
then
subl : varSeq_1 =0
sub2: varFault := 0
end
Event scopeFaultOccurs =
when
grd2 varFault = 0
grd3 varSeq_1 =3
then
subl currentFault := scopeFault
sub2 varFault :== 1
end
Event compensate =
when
grdl: currentFault = scopeFault
grd2: varFault =1
g3: varSeq_3 =2
then
subl : varComp := 1
al: varSeq_3 := varSeq_3 — 1
end
Event rethrow =
when
gl: varFault = 1
g2: varSeq3 =1
g3: varSeq 2 =2
then
al: currentFault := otherFault
a2: varSeq-3 :=varSeq_3 — 1
end
Event ScopeFaultHandler =
when
gl: varSeq-3 =0
then
skip
en

...varSeq_I varSeq_2 varSeq_3 varScope varComp...

i12: varSeq2 # 1 BankAccountl + BankAccount2 = ConsistencyState)
BankAccount] + BankAccount2 = ConsistencyState — amount)

Event invokeCancelDebit =
any
msg
where
grdl: varComj 1
grd2 varS
grd3 Dehlt
grd4: msge ebl I
N grd5: msge dom(CancelDebltOpemnon)
then
subl BankAccouml = BankAccountl 4 amount
sub2 varSeq.
sub3 varScope
sub4 varComp := 0
end
Event invokeCancelCrebit =
any
msg
where
grdl varComj 7 =]
grd2 varSeq.
grd3 Credlt[gf f
grd4 msg € Creditlnfo
grds msg € dom CancelCredttOpemuon)
grdé amount < BankAccount2
then
subl BankAccount2 := BankAccount2 — amount
sub2 varSeq 2 =1
end
Event ReceiveTransferinfos =
Event AssignTransferin
Event InvokeDebit
Event InvokeCredi;
Event BankTransfer =
when
grdl: varScope = 1
grd2: varSeq_1 =3
grd3: varSqu 0
nf: varFault =
then
subl : varScope := 0
end
Event BankTransferScope =
when
grdl varSeq_1 =3
grd2 varScope =0
nf : varFault = 0
then
actl varSeq_1 = varSeq_1 — 1
end
Event Asst nResponse =
Event Ig
Event BankTmnsferProcess =
END

Fig. 21 The Event-B model of the redesigned BankTransfer process

Modelling and Verification of Transactional Processes with Event-B 25

V) Symbols | [Statistics

Element Name Total Auto Manual Reviewed Undischarged
n2 5 5 0 0 0

Fig. 22 The Rodin statistic view about i12 invariant

In all these proposals, a BPEL description is transformed to a formal model to
be checked. However, some of this work did not take into account the fault and
compensation mechanisms that enable transactional behaviours of BPEL processes.
No formal generic approach handling the full transactional Web service design
process is available. Some approaches have given formal semantics for the fault
and compensation handlers and encoded them in other formal techniques like Petri
nets [14, 19], pi-calculus [13], ASM [11], StaAC and B [8] or SAL [17]. In these
approaches, the designer describes by himself/herself the parts that are handled
by the fault and compensation handlers, and they check properties related to the
behaviour like deadlock freeness. There is no systematic formal modelling approach
for handling transactions. Moreover, there is no way to detect the transactional
part to be isolated in order to guarantee a correct behaviour of the transactional
Web service. Furthermore, existing approaches do not provide the possibility to
check if the consistency of the execution context is guaranteed. This is due to
the abstraction of data in the model checking techniques applied to Web service
validation for reducing the state space exploration. As a consequence, these works
don’t describe nor check properties related to the consistency of data produced by
the BPEL processes.

Our work is proof oriented; it translates the BPEL language and its constructs
into an Event-B model. We encode manipulated data and transactional behaviour,
check traditional properties like deadlock freeness and transactional properties
[5, 6] and offer to the developer assistance to improve his/her BPEL design by
isolating transactional parts to ensure a correct process behaviour. Moreover, it is
tool supported.

Notice that this work applies for all transactional-based process compositions.

9 Conclusion

In this paper, we propose an extension of the BPEL Event-B semantics proposed
in [5] and [6] by covering the scope, the fault and the compensation handlers.
We have also sketched a methodology showing how the obtained Event-B model
can be used to handle a transactional behaviour in Web services. Transactional
services that access and manage critical resources are isolated in a scope elements
with compensation and fault handlers. When modelling fault and compensation

26 1. Ait-Sadoune and Y. Ait-Ameur

handlers by a set of events, it becomes possible to model and check the properties
related to transactional Web services. Moreover, the obtained results are not specific
to Web service compositions. These results can be reused for the definition of
transactional service compositions that occur for areas like telecommunication and
network, manufacturing or scheduling. Indeed, the fact that services are Web based
is not specific to the proposed approach. BPEL is used as a language for service
composition description whatever is the nature or the application domain of the
manipulated services.

This work opens several perspectives. One of them is related to the explicit
semantics carried by the services. For example, composing in sequence a service
that produces distances expressed in centimetres with another one consuming
distances expressed in inches should not be a valid composition. Up to now, our
approach handles implicit semantics only; it does not handle such a composition.
Formal knowledge models carried out by ontologies expressed besides the Event-B
models should be investigated.

References

1. Abrial, J.R.: The B-Book: Assigning Programs to Meanings. Cambridge University Press,
New York (1996)

2. Abrial, J.R.: Modeling in Event-B: System and Software Engineering. Cambridge University
Press, Cambridge (2010)

3. Abrial, J.R., Hallerstede, S.: Refinement, decomposition, and instantiation of discrete models:
application to Event-B. Fundam. Inform. 77, 1-28 (2007)

4. Ait-Ameur, Y., Baron, M., Kamel, N., Mota, J.M.: Encoding a process algebra using the Event
B method. Int. J. Softw. Tools Technol. Transfer 11(3), 239-253 (2009)

5. Ait-Sadoune, 1., Ait-Ameur, Y.: A proof based approach for modelling and verifying web
services compositions. In: 14th IEEE International Conference on Engineering of Complex
Computer Systems (ICECCS), pp. 1-10. IEEE Computer Society, Potsdam (2009)

6. Ait-Sadoune, 1., Ait-Ameur, Y.: Stepwise design of BPEL web services compositions, an Event
B refinement based approach. In: 8th ACIS International Conference on Software Engineering
Research, Management and Applications (SERA), pp. 51-68, Montreal (2010)

7. Borger, E., Thalheim, B.: Modeling workflows, interaction patterns, web services and business
processes: the ASM-based approach. In: Abstract State Machines, B and Z (ABZ 2008).
Lecture Notes in Computer Science, vol. 5238. Springer, Heidelberg (2008)

8. Butler, M., Ferreira, C., Ng, M.Y.: Precise modelling of compensating business transactions
and its application to BPEL. J. Univers. Comput. Sci. 11(5), 712-743 (2005)

9. Dijkstra, E.-W.: A Discipline of Programming, 1st edn. Prentice Hall PTR, Upper Saddle River
(1977)

10. Fahland, D., Reisig, W.: ASM-based semantics for BPEL: the negative Control Flow. In: 12th
International Workshop on Abstract State Machines, pp. 131-151 (2005)

11. Farahbod, R., Glasser, U., Vajihollahi, M.: An abstract machine architecture for web service
based business process management. In: Business Process Management Workshops. Lecture
Notes in Computer Science, vol. 3812, pp. 144-157. Springer, Heidelberg (2005)

12. Foster, H., Uchitel, S., Magee, J., Kramer, J.: Model-based verification of web service
compositions. In: 18th IEEE International Conference on Automated Software Engineering
(ASE’03), pp. 152-163 (2003)

Modelling and Verification of Transactional Processes with Event-B 27

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

Guidi, C., Lucchi, R., Mazzara, M.: A formal framework for web services coordination.
Electron. Notes Theor. Comput. Sci. 180, 55-70 (2007)

He, Y., Zhao, L., Wu, Z., Li, F.: Formal modeling of transaction behavior in WS-BPEL. In:
International Conference on Computer Science and Software Engineering (CSSE 2008) (2008)
Hinz, S., Schmidt, K., Stahl, C.: Transforming BPEL to petri nets. In: Springer-Verlag (ed.)
3rd International Conference on Business Process Management. Lecture Notes in Computer
Science, vol. 2649. Springer, Heidelberg (2005)

Hoare, C.A.R.: An axiomatic basis for computer programming. Commun. ACM 12, 576-580
(1969)

Kovacs, M., Varro, D., Gonezy, L.: Formal analysis of BPEL workflows with compensation by
model checking. Int. J. Ccomput. Syst. Sci. Eng. 23(5), 35-49 (2008)

Leuschel, M., Butler, M.: ProB: a model checker for B. In: Formal Methods, International
Symposium of Formal Methods Europe (FME’03). Lecture Notes in Computer Science, vol.
2805, pp. 855-874. Springer, Heidelberg (2003)

Lohmann, N.: A feature-complete petri net semantics for WS-BPEL 2.0. In: Web Services and
Formal Methods International Workshop WSFM 2007 (2007)

Marconi, A., Pistore, M.: Synthesis and composition of web services. In: Formal Methods
for Web Services - 9th International School on Formal Methods for the Design of Computer,
Communication and Software Systems: Web Services. Lecture Notes in Computer Science,
vol. 5569. Springer, Heidelberg (2009)

Nakajima, S.: Model-checking behavioral specification of BPEL applications. Electron. Notes
Theor. Comput. Sci. 151, 89—-105 (2006)

OASIS: Web Services Business Process Execution Language Version 2.0. http://bpel.xml.org/
(April 2007)

OMG: Business Process Model and Notation (BPMN) Version 2.0. http://www.omg.org/spec/
BPMN/2.0 (June 2010)

Rodin: User Manual of the RODIN Platform. http://deploy-eprints.ecs.soton.ac.uk/11/1/
manual-2.3.pdf (October 2007)

Salaun, G., Bordeaux, L., Schaerf, M.: Describing and reasoning on web services using process
algebra. In: IEEE International Conference on Web Services (ICWS’04), pp. 43-51 (2004)

ter Beek, M.H., Bucchiarone, A., Gnesil, S.: Formal methods for service composition. Ann.
Math. Comput. Teleinformatics 1(5), 1-14 (2007)

van der Aalst, W.M., Mooil, A.J., Stahl, C., Wolf, K.: Service interaction: patterns, formaliza-
tion, and analysis. In: Formal Methods for Web Services - 9th International School on Formal
Methods for the Design of Computer, Communication and Software Systems: Web Services.
Lecture Notes in Computer Science, vol. 5569. Springer, Heidelberg (2009)

W3C: Web Service Definition Language (WSDL 1.1). http://www.w3.org/TR/wsdl (February
2004)

W3C: OWL-S: Semantic Markup for Web Services. http://www.w3.org/Submission/OWL-S/
(November 2004)

W3C: Web Services Choreography Description Language Version 1.0. http://www.w3.org/TR/
ws-cdl-10/ (November 2005)

WMC-WS: Process Definition Interface - XML Process Definition Language. http://www.
wfmc.org/xpdl.html (October 2008)

http://bpel.xml.org/
http://www.omg.org/spec/BPMN/2.0
http://www.omg.org/spec/BPMN/2.0
http://deploy-eprints.ecs.soton.ac.uk/11/1/manual-2.3.pdf
http://deploy-eprints.ecs.soton.ac.uk/11/1/manual-2.3.pdf
http://www.w3.org/TR/wsdl
http://www.w3.org/Submission/OWL-S/
http://www.w3.org/TR/ws-cdl-10/
http://www.w3.org/TR/ws-cdl-10/
http://www.wfmc.org/xpdl.html
http://www.wfmc.org/xpdl.html

	Formal Modelling and Verification of Transactional Web Service Composition: A Refinement and Proof Approachwith Event-B
	1 Introduction
	2 The Event-B Method
	2.1 Event-B Model
	2.2 Proof Obligation Rules
	2.3 Semantics of Event-B Models

	3 Service Composition Description Languages
	3.1 Overview of BPEL
	3.2 A Case Study

	4 Event-B for Analysing Transactional Web Services
	5 Modelling Scope, Fault and Compensation Handlers
	5.1 Formal Modelling of BPEL (iceccs-2009,sera-2010)
	5.1.1 Static Part
	5.1.2 Dynamic Part

	5.2 An Event-B Model for Scope
	5.3 An Event-B Model for Fault Handler
	5.4 An Event-B Model for Compensation Handler

	6 Use of the Tools
	7 Application to the Case Study
	8 Related Work
	9 Conclusion
	References

