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           Introduction 

 Ang II is a neuropeptide with multiple actions on 
the brain. The distribution of its AT1 receptor in 
the central nervous system (CNS) coincides with 
several cerebral regions known to regulate car-
diovascular and body fl uid homeostasis [ 1 ,  2 ]. It 
is now known that a brain RAS exists [ 3 ], with 
actions largely complementary to those of the 
systemic peptide [ 4 ,  5 ]. 

 Ang II does not cross the blood–brain barrier, 
but, through generation at the periphery, can 
stimulate the brain RAS at specifi c brain sites 
such as the circumventricular organs (specifi c 
sites in the CNS that lack the blood–brain bar-

rier). Circumventricular organs are critically 
involved in the regulation of many homeostatic 
processes, including the control of cardiovascu-
lar functions, hydromineral balance, body tem-
perature, and hormone secretion [ 6 ]. The action 
of peripherally generated Ang II at these sites is 
believed to infl uence classical behavioral (drink-
ing), endocrine (vasopressin, oxytocin, and adre-
nocorticotrophic hormone secretion), and 
autonomic functions [ 7 ,  8 ]. Ang II belongs to the 
group of peptides known to stimulate dopamine 
(DA) release [ 9 ]. Furthermore, Ang II receptors 
are located in DA-rich brain areas [ 10 ]. Central 
actions of Ang II are not exclusively associated 
with their traditional roles. Indeed, several stud-
ies have shown that central Ang II is also involved 
in sexual behavior, stress, learning and memory 
[ 11 ], and included in drug abuse induced effects 
such as psychostimulants and alcohol.  

    Brain Renin-Angiotensin System: 
Distribution and Functions 

 In the brain, the angiotensinogen (AOGEN), syn-
thesized by astrocytes [ 12 ] and also present in 
neurons, is cleaved by renin, which is present in 
the brain in very low concentrations [ 13 ], to gen-
erate the inactive decapeptide angiotensin I. By 
the activity of the angiotensin-converting enzyme 
(ACE), widely distributed in the brain [ 14 ], angio-
tensin I is hydrolyzed at its carboxy- terminus, 
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which leads to generation of the active octapep-
tide Ang II. Ang II seems to represent the fi rst 
neuroactive form of the angiotensins [ 15 ] and it 
is not only generated in the brain via this classical 
pathway, involving renin and ACE, but can also 
be produced directly from AOGEN by cathepsin 
G or tonin [ 16 ]. Subsequently, Ang II is metabo-
lized to Ang III, which is itself converted to Ang 
IV by aminopeptidases. There are further hypoth-
eses that the brain processes alternative enzymatic 
mechanisms for the formation of neuroactive 
forms of angiotensin that are distinct from those 
involved in the classical pathway [ 17 ]. 

 The biological actions of Ang II are mediated 
by seven specifi c transmembrane-spanning G 
protein-coupled angiotensin receptors. Studies of 
non-peptide antagonists have led to the identifi -
cation of two pharmacologically distinct Ang II 
receptor subtypes: AT1 and AT2 [ 18 ]. 

 The distribution of angiotensin-like immuno-
reactivity in nerve terminals is well defi ned [ 19 ] 
and has a good correlation with angiotensin AT1 
and AT2 receptors, defi ned by in vitro autoradiog-
raphy with 125I-Ang II, or by in situ hybridization 
histochemistry [ 2 ,  20 ]. In addition, angiotensin 
receptors and angiotensin-like immunoreactive 
nerve terminals are present in sites where microin-
jections of Ang II produce changes in physiologi-
cal parameters such as blood pressure, drinking 
behavior, salt appetite, and neuroendocrine func-
tion [ 19 ]. These observations provide strong sup-
port for the hypothesis that angiotensin acts as a 
neurotransmitter or neuromodulator in the brain. 
Furthermore, the discovery of non-peptide and 
selective Ang II receptor antagonists (losartan, 
PD 123177, candesartan, between others), in addi-
tion to the known ACE inhibitors, have helped in 
understanding some of the central RAS functions. 

 Brain Ang II is involved in fl uid and salt inges-
tion, neuroendocrine system modulation includ-
ing vasopressin and corticotrophin-releasing 
factor release, and interaction with the autonomic 
control of the cardiovascular system to infl uence 
blood pressure [ 21 ,  22 ]. In many instances, these 
effects are complementary to those of the sys-
temic peptide on peripheral target organs. Thus, 
systemic Ang II affects the brain through AT1 
receptors located in the circumventricular organs: 

subfornical organ, vascular organ of the lamina 
terminalis, median eminence, anterior pituitary, 
and the postrema area of the hindbrain [ 2 ,  23 ]. 
In addition, endogenous neurally-derived Ang 
II appears to act at many CNS sites behind the 
blood−brain barrier [ 24 ,  25 ] such as the median 
preoptic nucleus, hypothalamic paraventricular 
nucleus, anteroventral preoptic, suprachiasmatic 
and periventricular nuclei, and discrete regions of 
the lateral and dorsomedial hypothalamus. Most 
of the classical actions of Ang II are mediated 
via the AT1 receptors present in large amounts 
in these areas, whereas AT2 receptor stimulation 
may cause opposite effects. 

 Ang II generated within the brain can act on 
AT1 receptors as a neurotransmitter or neuro-
modulator in neural pathways, infl uencing the 
cardiovascular system and fl uid and electrolyte 
balance. Angiotensinergic neural pathways 
within the brain may have important homeostatic 
functions, particularly related to the control of 
arterial pressure, fl uid and electrolyte homeosta-
sis, and thermoregulation. 

 The brain RAS is also involved in the modula-
tion of multiple additional functions, including 
processes of sensory information [ 17 ,  26 ], learn-
ing and memory [ 27 ,  28 ], and the regulation of 
emotional [ 26 ] and behavioral responses [ 29 , 
 30 ]. Researchers have reported that Ang II infl u-
enced rat behavior in an open fi eld [ 29 ], locomo-
tion, and stereotypy [ 31 ,  32 ]. 

 Brain Ang II was found to regulate some 
responses induced by drugs of choice for abuse 
such as cocaine, amphetamine, alcohol, as well 
as others. It was also found that Ang II enhanced 
the stereotypy induced by apomorphine (APO, 
D1 and D2 dopaminergic agonist), and this 
response was blocked by Ang II AT1 receptor 
antagonists [ 33 ]. The presence of Ang II AT1 
receptors has been described in pre- and postsyn-
aptic dopaminergic neurons [ 9 ] which are 
involved in behavioral and rewarding responses 
induced by psychostimulants and alcohol, as well 
as their modulator action on noradrenergic [ 34 ], 
serotoninergic [ 35 ], gabaergic, and glutamatergic 
neurotransmission [ 36 ,  37 ]. 

 Our goal in this chapter is to present and dis-
cuss the evidence supporting an important role of 
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brain RAS in neuroadaptive responses induced 
by two of the most abused drugs: amphetamine 
and alcohol, proposing this system as a potential 
therapeutic target in the treatment of disorders 
related to these drugs of choice for abuse.  

    Renin-Angiotensin System 
and Dopamine 

 Increasing ontogenetic, anatomic, and functional 
evidence has indicated the existence of a brain 
RAS and its interaction with other putative neu-
rotransmitters and their receptors. During the 
embryologic period, it was shown that Ang II 
increased the differentiation of mesencephalic 
precursors toward the dopaminergic phenotype 
[ 38 ]. Moreover, all RAS components have been 
observed in the caudate putamen (CPu), as well 
as in the other basal ganglia structures. AT1 
receptors were observed in the cell body in the 
substantia nigra (SNi) pars compacta, and at the 
presynaptic terminal in the CPu [ 39 ,  40 ] and in 
motivated circuitry key areas, such as nucleus 
accumbens (NAc) and tegmental ventral area 
(VTA), [ 41 ,  42 ]. Studies in adult human brain 
revealed the same localization in these structures 
[ 43 ,  44 ]. Despite the fact that AT1 receptor den-
sity is low in the rat CPu and NAc, other authors 
found that Ang II acts presynaptically in the rat 
CPu and NAc to potentiate DA release [ 9 ,  45 ]. In 
human basal ganglia, ACE was located in the SNi 
pars reticulata and enriched in striosomes of the 
striatum, which regulates the DA turn-over in 
CPu [ 46 ]. 

 There is evidence that indicates a role of Ang 
II, through AT1 receptors, in functions mediated 
by dopaminergic system, such as locomotor and 
stereotypic behaviors [ 31 ]. In this sense, it showed 
an increase in rat exploratory activity induced by 
Ang II intracerebroventricular (ICV) administra-
tion, which was higher by administration of APO 
and decreased by dopaminergic antagonists [ 47 , 
 48 ]. Other experimental studies have shown that 
Ang II increased the stereotypy induced by APO, 
and it was blocked by ACE inhibitor administra-
tion [ 33 ] or by Losartan, an AT1 receptor blocker 
[ 31 ,  32 ]. Furthermore, the Ang II induced  rotation 

behavior in 6- hidroxydopamine lesion rat  striatum 
and was reversed by Losartan or dopaminergic 
antagonists [ 49 ]. 

 In addition, ICV Ang II administration 
increases extracellular DA in the NAc which is 
related to Ang II-induced drinking [ 50 ]. This is 
in accord with the fi ndings of Nicolaidis, who in 
1974 found that rats submitted to extracellular 
dehydration were able to self-inject intracerebral 
Ang II [ 51 ]. These data support the concept that 
Ang II can contribute to the reinforcement 
effects of drinking behavior and add to the 
increasing body of evidence implicating the 
mesolimbic dopaminergic system in reward-
relating behaviors. 

 On the other hand, new outcomes show that 
Ang II participates in neuroplastic processes. In 
that regard it was demonstrated that the sensitiza-
tion to the hypertensive effect to systemic Ang II 
was induced by repeated central administration 
of Ang II [ 52 ]. Moreover, there is evidence that 
RAS is involved in neuroadaptive changes 
related to behavior and neurochemical sensitiza-
tion to natural reinforcements and drugs of choice 
for abuse [ 53 ]. 

 The RAS system is involved not only in dopa-
minergic system regulation, but there is evidence 
that through AT1 receptors, Ang II mediates the 
noradrenaline transport increase and the tyrosine 
hydroxylase and dopamine beta hydroxylase 
enzymes transcription [ 34 ]. It is necessary to 
clarify that mainly dopaminergic areas of the 
brain, CPu and NAc, receive projections from 
other different neurotransmission systems such 
as the noradrenergic system from locus coeru-
leus, the serotoninergic system from dorsal raphe 
nucleus, and the glutamatergic system from the 
cortex.  

    RAS and Psychostimulants 

 There is considerable evidence that DA neuro-
transmission in the CPu and NAc plays a key role 
in long-term neuroadaptive changes induced by 
psychostimulants such as cocaine or amphet-
amine. Repeated exposure to amphetamine, as 
with most addictive drugs, results in a progressive 
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and enduring enhancement of its psychomotor 
and positive reinforcing effects. The enhanced 
response to psychostimulants, a phenomenon 
termed behavioral sensitization, relies on time- 
dependent neuroplastic changes in the brain cir-
cuitry that are involved in motivational behavior 
[ 54 ,  55 ]. These changes are associated with long- 
lasting hyperactivity of the mesolimbic dopami-
nergic pathway [ 56 ,  57 ]. The evidence indicates 
that exposure to a drug of choice for abuse is not 
needed to be repeated to induce locomotor sensi-
tization; thus studies in mice and rats showed that 
a single exposure to psychostimulants (amphet-
amine or cocaine) induced behavioral  sensitization 
[ 58 ,  59 ]. The sensitization process encompasses 
two temporally distinct phases: induction and 
expression [ 56 ,  60 ]. Neuroadaptive changes in 
mesotelencephalic dopaminergic projections play 
a key role in the induction and expression of 
amphetamine sensitization. Sensitization can be 
induced by microinjection of amphetamine into 
the VTA; meanwhile its expression is associated 
with time-dependent adaptations in forebrain 
DA-innervated areas, such as the NAc and CPu. 

 Behavioral sensitization is not limited to 
addictive drugs and can also be induced by strong 
motivational or affective states (thirst or hunger) 
associated with natural reward stimuli, such as 
water, salt, food, etc. [ 52 ]. In this sense, repeated 
sodium depletion was able to induce RAS activa-
tion and Ang II synthesis, producing an increase 
in sodium intake. The increase in sodium intake 
was parallel to neuronal activation (Fos-ir) in 
brain nucleus involved in motivation and reward 
[ 61 ]. Moreover, increased Fos expression in the 
NAc core and shell has been described in animals 
with sodium depletion submitted to a sham-
drinking paradigm, in which the persistent appe-
titive behavior and prolonged ingestion are 
similar to the behavior of animals responding to 
drugs of choice for abuse [ 62 ]. 

 In this sense, Roitman and colleagues found 
that the medium spiny neurons within the shell of 
the NAc of rats that had experienced sodium 
depletions had signifi cantly more dendritic 
branches and spines than controls [ 63 ]. Behavioral 
cross-sensitization between sodium depletion 
and cocaine has also recently been described [ 64 ]. 

The results from these experiments indicate that 
treatments generating a sustained salt appetite 
and producing cocaine-induced psychomotor 
responses show reciprocal behavioral cross- 
sensitization, similar to results found using 
amphetamine [ 53 ]. 

 There is evidence that supports a direct rela-
tionship between RAS and behavioral sensitiza-
tion. In our laboratory it was found that Ang II 
AT1 receptors are involved in the neuroadaptive 
changes induced by a single exposure to amphet-
amine and that such changes were related to the 
development of behavioral and neurochemical 
sensitization. The study examined the expression 
of amphetamine (0.5 mg/kg, i.p.)-induced loco-
motor activity in animals pretreated with an AT1 
receptor antagonist, candesartan cilexetil (3 mg/
kg, p.o. × 5 days) 3 weeks after an injection of 
amphetamine (5 mg/kg, i.p.) [ 65 ]. The AT1 
blockade effects became evident 3 weeks after 
pretreatment with a single exposure to amphet-
amine, when the adaptive changes in behavioral 
response had been described to be more pro-
nounced [ 59 ]. The dopaminergic hyperactivity 
associated with sensitization was also tested by 
measuring  3 H-DA release in vitro from CPu and 
NAc slices, induced by K+ (28 mM) stimulus. 
The behavioral and neurochemical sensitization 
to amphetamine was confi rmed with this two- 
injection protocol, and pretreatment with the AT1 
blocker, candesartan, blunted these responses 
[ 65 ]. With the same purpose, the involvement of 
brain Ang II AT1 receptors was studied in the 
development of neuronal activity changes, and so 
the immunoreactivity of CPu neurons to FOS 
antibody (FOS-ir) was measured after 3 weeks of 
the same treatment described above. There are no 
previous studies showing a neuronal hyperactiv-
ity in CPu and NAc induced by a two injections 
protocol and the results also showed that the AT1 
blocker pretreatment prevented this neuronal 
hyperactivity [ 66 ]. Furthermore, we observed 
that the same AT1 blocker pretreatment attenu-
ated the phosphorylated extracellular regulated 
kinase (p-erk) immunostaining increase in NAc 
induced by amphetamine (unpublished data, 
Fig.  7.1 ). These experimental approaches pro-
vide evidence that supports the involvement of 
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brain Ang II AT1 receptors in the development of 
amphetamine- induced behavior sensitization. A 
new role of brain RAS may be indicated because 
it has been suggested that the phenomenon of 
behavioral sensitization is an adaptive process 
within addiction to psychostimulants and other 
drugs of choice for abuse [ 67 ].  

 Recent results from our laboratory have 
showed an increase in the AT1 receptors protein 
expression in CPu and NAc, 7 and 21 days after 
the amphetamine treatment (5 mg/kg, i.p., 1 day), 
and a decrease in AOGEN RNAm and protein 
expression in CPu, 21 days after the amphet-
amine treatment, indicating that amphetamine 
induced long-lasting changes in brain RAS sys-
tem [ 68 ]. Moreover, in another experiment the 
functional role of AT1 receptors in the expression 
of sensitization to amphetamine was studied. The 
AT1 receptors were blocked (Losartan 8 μg/μL 
by brain side) in CPu and NAc, 5 min before an 
amphetamine challenge (0.5 mg/kg, i.p) 21 days 
after amphetamine (5 mg/kg, i.p) administration. 
These results showed that the expression of 
amphetamine-induced sensitization was blunted 
after the blockade of AT1 receptors in CPu [ 68 ]. 

 The experiments provide evidence supporting 
the brain RAS involvement in behavior sensitiza-
tion induced by amphetamine, contributing 
to the knowledge of neurobiological mechanisms 
involved in the psychostimulant drug effects. 

 The aforementioned evidence points to a new 
role of the brain RAS in long-lasting effects 
induced by psychostimulant drugs.  

    RAS and Ethanol 

 Alcohol is another of the major drugs abused 
today, and alcoholism and alcohol-related disor-
ders are disturbingly prevalent in contemporary 
society. Despite the ever-increasing contributions 
to the fi eld of alcohol research, a clinically effec-
tive pharmacological treatment for alcohol abuse 
has yet to be developed [ 69 ]. It was extensively 
studied in animals the relationship between alco-
hol intake and the RAS [ 70 ,  71 ]. In this sense, it 
was also found that Ang II induced alcohol con-
sumption throught AT1 receptors activation [ 71 ]. 
In 1988, Spinosa and co-workers assessed the 
ability of the ACE inhibitors (captopril and enal-
april) to change alcohol consumption in labora-
tory rats. The drugs were found to produce a 
marked reduction in voluntary alcohol consump-
tion independently of changes in blood pressure 
and without altering alcohol pharmacokinetics 
[ 72 ]. As was observed with psychostimulant 
drugs, the mesolimbic DA system had been 
hypothesized to mediate the reinforcing actions 
of other drugs such as  ethanol. Acute administra-
tion of ethanol directly alters the DA neurotrans-
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  Fig. 7.1     Left panel : Average number of p-erk immunore-
active neurons in nucleus accumbens (NAc,  Bregma : 
1.92) in response to a challenge injection of amphetamine 
(0.5 mg/kg, i.p.), 21 days after a pretreatment with cande-
sartan (Cv, 3 mg/kg, 5 days, p.o.) or vehicle (Veh) and a 
treatment with amphetamine (amph, 5 mg/kg, 1 day, i.p.) 
or saline (Veh-sal, Cv-sal, Veh-amph, and Cv-amph). 

Values are means ± SEM. * p  < 0.05 signifi cantly different 
from the other amphetamine- challenged groups, + p  < 0.05 
signifi cantly different from Veh-amph, (1-way ANOVA, 
post hoc Newman-Keuls).  Right panel : Photomicrographs 
×200 magnifi cations showing the pattern of p-erk immu-
noreactive neurons       
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mission. Alcohol- preferring animals exhibited a 
greater dopaminergic response to acute ethanol 
administration than alcohol−non-preferring ani-
mals [ 73 ]. Electro-physiological studies demon-
strated that ethanol administration increased the 
fi ring rate of VTA DA neurons in vivo [ 74 ] and 
in vitro [ 75 ,  76 ]. Systemic administration of etha-
nol has been shown to increase extracellular DA 
levels in the NAc and VTA [ 77 – 80 ]. Additionally, 
microdialysis studies demonstrated an increase in 
DA release in the NAc following oral self- 
administration of ethanol [ 81 – 83 ]. Finally, previ-
ous data indicate that microinjections of ethanol 
matabolite into the posterior VTA increase dopa-
mine release in the NAc shell [ 84 ]. 

 Involvement of brain RAS components in 
drug-induced responses has been investigated by 
correlating altered RAS function and ethanol 
consumption. Increased expression of AOGEN 
was found in microarray studies of brains from 
different rodent lines selectively bred for high 
ethanol preference (HAP mice) compared with 
their respective controls [ 85 ]. Supporting this 
idea, chronic ethanol consumption tended to 
increase AT1 binding in CPu and NAc in 
C57BL/6 mice, an ethanol-tolerating strain [ 10 ]. 

 The studies performed in animals with genetic 
modifi cation in several components of the RAS 
demonstrated that Ang II via AT1 receptor action 
is a positive modulator of spontaneous ethanol 
consumption in rodents [ 86 ,  87 ]. Transgenic rats 
expressing a specifi c AOGEN antisense RNA in 
the brain [TGR(ASr-AOGEN)680] present 
angiotensin generation and drastically reduced 
and modifi ed levels of AT1 receptors in the 
CNS. These animals show lower ethanol con-
sumption and altered responses after ethanol 
intoxication compared with controls. Supporting 
the idea that angiotensin-mediated DA release 
plays an essential role in Ang II-triggered regula-
tion of alcohol intake, altered DA concentrations 
were found in relevant brain areas. Indeed, con-
centrations of DA as well as its principal 
 metabolite (DOPAC) were found to be strongly 
reduced in a region covering the VTA of 
TGR(ASrAOGEN)680 rats [ 88 ]. It is interesting 
to note that mice lacking the D2 receptor gene 
were less sensitive to alcohol-induced ataxia than 

their wild type littermates while they ingested 
lower amounts of alcohol in free choice experi-
ments [ 89 ]. It is believed that Ang II stimulates 
DA release in NAc and CPu [ 9 ], and angiotensin 
receptors are expressed in brain areas such as the 
NAc, where dopaminergic transmission has been 
strongly implicated in alcohol self- administration 
and sensitivity [ 10 ,  46 ]. Evidence has shown an 
increase in the voluntary consumption of alcohol 
in the transgenic mice expressing a rat angioten-
sinogen transgene (TGM123). These animals 
have elevated levels of Ang II resulting from 
additional expression of the AOGEN transgene. 
Consumption was signifi cantly reduced by 
administration of fl uphenazine, a DA receptor 
antagonist. Thus, increased alcohol intake in 
mice over-expressing angiotensin may relate to 
an interaction of Ang II with dopaminergic sys-
tems. Furthermore, the knockout mice lacking 
the AOGEN gene (TLM), drank even less alcohol 
than the controls. Furthermore, it was found that 
the ACE inhibitor Spirapril, known to cross the 
blood–brain barrier and consequently lower the 
Ang II levels in brain and blood circulation, sup-
pressed alcohol intake in the TGM123 mice [ 87 ]. 
Ang II ICV infusion in the ethanol-tolerating 
mice, C57BL/6J, stimulated the intake of 4 % 
ethanol solution and caused a transient increase 
in the intake of 10 % ethanol solution. The 
increase in ethanol solution intake that occurred 
did not increase progressively over the 3 days of 
Ang II treatment, as is usually observed when 
water is available [ 90 ], probably indicating a 
response to hedonic stimulus of alcohol more 
than to homeostatic deregulation by Ang II 
infusion. 

 The stimulation of brain RAS by food deple-
tion also modifi es alcohol consumption. Animals 
deprived of ad libitum food access had higher 
ethanol consumption than controls during treat-
ment, and the behavior was reversed when free 
access to rat food was restored [ 91 ]. 

 Controversial results have been reported on 
ICV infusion of Ang II in rats. An increased alco-
hol intake has been described by Fitts [ 92 ], but 
most experiments indicate no functional effects 
for this type of Ang II administration [ 90 ,  91 ,  93 ]. 
It is important to highlight that these experiments 
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are based on invasive techniques with unpredictable 
effects on drinking behavior. Functional stimulation 
of Ang II receptors in the vicinity of the lateral 
ventricle does not exert an infl uence on alcohol 
consumption. Furthermore, as alcohol consump-
tion does not decrease at the expense of a robust 
increase in water consumption, it is possible to 
assume dissociation between the effects of Ang II 
on alcohol and water intake [ 93 ]. 

 Experiments have been conducted with phar-
macologic modifi cation of RAS activity. The 
blockade of the receptors with different doses of 
the Ang II antagonist SarThr-Ang II does not 
modify alcohol consumption. Interestingly, ACE 
inhibitors reduce alcohol intake in a dose- 
dependent manner in genetically selected 
alcohol- preferring and –non-preferring rats, as 
well as in Wistar rats [ 94 – 96 ]. This may indicate 
that ACE inhibitors are not acting through periph-
erally based Ang II-related processes to reduce 
alcohol consumption. Because peripheral admin-
istration of ACE inhibitors can elevate central 
RAS activity, the present fi ndings indicate that if 
the reduction in alcohol intake produced by ACE 
inhibition is mediated through the RAS, the locus 
of this effect is likely to be at a central site not 
accessible to a peripherally administered Ang II 
antagonist [ 95 ]. 

 These results clearly support the hypothesis 
that the central RAS, through AT1 receptors, are 
involved in the control of alcohol intake behav-
iour, modulating the DA system.  

    Conclusion 

 It is widely known that the high incidence in 
health costs and in patient welfare and its envi-
ronmental deterioration are a result of drug abuse 
and alcohol-related diseases worldwide. In this 
context it is very important to study new targets 
in order to provide new pharmacological tools for 
the treatment of these pathologies. A group of 
drugs that interfere with the RAS, widely used in 
clinical practice for hypertension treatment and 
cardio protection, have particular advantages 
because they are nearly free of severe side effects. 
Therefore, the results presented in this chapter 

regarding the key role of the brain RAS in the 
neuroadaptative response to drugs of choice for 
abuse show a new therapeutic application for 
AT1 blockers. More research is needed to reveal 
the effectivity of long-term treatment of available 
ACE inhibitors or AT1 blockers that could be 
used in the treatment of drug abuse disorders.     
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