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Abstract. We consider a problem of adaptive design of experiments for
Gaussian process regression. We introduce a Bayesian framework, which
provides theoretical justification for some well-know heuristic criteria
from the literature and also gives an opportunity to derive some new
criteria. We also perform testing of methods in question on a big set of
multidimensional functions.
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1 Introduction

Construction of an approximation for an unknown dependency is one of the main
steps of surrogate modelling (modelling based on the data) [1,2]. One of the most
popular approaches is based on the Gaussian process model [3,4]. It is used in a
variety of applied projects including conceptual design, structural optimization,
multicriteria optimization, design in aerospace and automobile industries.

In many engineering applications the number of evaluations of a target func-
tion f(x) is sufficiently limited due to a long execution time of one evaluation
and/or its high cost. That’s why the problem of creating methods for construc-
tion of a training set DN of limited size N in a way to get the best possible
quality of approximation is of the great importance. The design of experiments
(DoE), which optimizes some statistical criterion, is called optimal design of
experiments. For parametric models the problem of design of experiments, which
optimizes the quality of approximation, is very close to the problem of optimal
experimental design for estimation of the model’s parameters. The theory of
optimal DoE for parametric models is well-developed, see [5,6] and many oth-
ers. However, in the situation, when approximation model is non-parametric (for
example, Gaussian process regression model), we come to the different statement
of the DoE problem [7,8], in which the DoE is constructed in a way to obtain
the best possible prediction of the target function value. In this paper we will
consider the adaptive variant of such a problem which recently gained much
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attention [1,9]. The adaptive DoE process constructs training set iteratively
and on each iteration design points are selected based on the properties of the
approximation constructed on the previous iteration.

In this paper we focus on the adaptive design of experiments for Gaussian
process (or kriging) regression models. This kind of models along with a predic-
tion of the unknown function f(x) allows to estimate a variance of the prediction
σ2(x). Such a point-wise error estimate gives an opportunity to construct dif-
ferent strategies for reducing uncertainty of the approximation and therefore
improving its quality. This area of research originates from the field of design
and analysis of computer experiments [10–12]. The adaptive sampling strategies
for improving the quality of approximation are closely related to the surrogate-
based optimization [13], sequential designs for estimating the probability of a
failure [14] and adaptive designs for estimating the sensitivity indices [15].

This paper makes a contribution in two main directions. First of all, we
provide a Bayesian framework which allows to define optimal adaptive sampling
strategies. Then we show, that many of the commonly used adaptive sampling
criteria are approximations of optimal one-step look-ahead strategies. Also some
new adaptive sampling strategies are obtained as optimal one-step look-ahead
solutions. Second, we make an extensive testing of the most of currently used
adaptive sampling approaches for the Gaussian process regression and compare
them numerically.

2 Gaussian Process Regression

Let y = f(x) be some unknown function with input vector x ∈ X ⊂ R
n and

output y ∈ R, DN =
(
XN ,yN

)
=

{(
xi, yi = f(xi)

)
, i = 1, . . . , N

}
be a train-

ing set. Let’s assume that f(x) is a realization of a Gaussian process. Gaussian
process, being a one of the possible ways to define a distribution on the func-
tional space, is completely defined by its mean m(x) = E[f(x)] and covariance
function k(x, x̃) = E[(f(x) − m(x))(f(x̃) − m(x̃))]. In applications the weighted
exponential covariance function k(x, x̃) = σ2 exp(−∑n

i=1 θ2i (xi − x̃i)2) is widely
used.

Let us assume without loss of generality that m(x) ≡ 0. If the covariance
function k(x, x̃) is known, then the posterior process is also Gaussian:

PN (f) = P(f |DN ) ∼ GP
(
f̂N (x), K̂N (x, x̃)

)
, (1)

where the posterior mean of the Gaussian process f(x) at some set of test points
X∗ can be written as follows [16]:

f̂N (X∗) = f̂(X∗|DN ) = K∗K−1yN , (2)

where K∗ =
[
k(x∗

i ,xj), i = 1, . . . , N∗; j = 1, . . . , N
]
, K =

[
k(xi,xj), i, j =

1, . . . , N
]
.

The posterior covariance matrix at test points is given by

K̂N (X∗) = K̂(X∗|XN ) = K∗∗ − K∗K−1KT
∗ , (3)
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where K∗∗ =
[
k(x∗

i ,x
∗
j ), i, j = 1, . . . , N∗

]
. Then the posterior variance σ̂2

N (X∗) =
σ̂2(X∗|XN ) = diag(K̂N (X∗)).

The posterior mean at test points can be used for prediction of function
values (approximation) and the posterior variance provides corresponding point-
wise errors estimates. Let us note that here we described only basic idea of the
Gaussian process regression. For more details about the model and parameters
estimation algorithms please see [16–18]. Formulas (2) and (3) allow for simple
iterative updates when new points are added to the training set.

Proposition 1. Let for a Gaussian process f(x) a mean and a covariance func-
tions are equal to f̂0(x) ≡ 0 and K̂0(x, x̃) = k(x, x̃) correspondingly. Then the
following update equations can be used to calculate the mean and the covariance
function of the posterior process for i = 1, . . . , N :

f̂i(x) = f̂i−1(x) +
K̂i−1(x,xi)
K̂i−1(xi,xi)

(
yi − f̂i−1(x)

)
,

K̂i(x, x̃) = K̂i−1(x, x̃) − K̂i−1(x,xi)K̂i−1(xi, x̃)
K̂i−1(xi,xi)

.

Moreover, due to the fact, that a Gaussian random measure is completely defined
by the mean and the covariance functions, the corresponding iterative update is
available for the posterior Gaussian measure (1).

Corollary 1. There exists a functional φ such that Pl = φ(xl, yl,Pl−1), l =
1, . . . , N .

3 Adaptive Design of Experiments

The area of adaptive design of experiments has been paid much attention in
recent decades and numerous criteria have been proposed. To the best of our
knowledge, all the criteria are obtained from the common sense arguments,
such as uniform filling of the design space, reduction of the error predicted by
Gaussian process model, etc. However, it seems reasonable to develop criteria
which are optimal in terms of some statistical functional. We are going to intro-
duce Bayesian framework which allows to formally state the adaptive design of
experiments problem and start with some definitions.

Definition 1. Let ρ = ρ(f, f̂) be some measurable functional. We will call it
error function (see particular examples below).

Definition 2. Let qρ

(
Dl

)
= E

[
ρ(f, f̂l)

∣
∣Dl

]
, where expectation is taken as con-

ditional given fixed sample Dl. Let’s call qρ

(
Dl

)
a mean posterior risk.

Definition 3. The optimal experimental plan XN is a solution of the following
optimization problem:

J∗ = min
XN∈XN

EyN

[ N∑

i=1

Qρ

(
xi, yi,Di−1

)
]
, (4)
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where Qρ

(
xi, yi,Di−1

)
= qρ

(
Di−1 ∪ (xi, yi)

) − qρ

(
Di−1

)
.

Let us note, that (4) is equivalent to minimizing the error at the final iteration:

J∗ = min
XN∈XN

EyN

[
qρ

(
DN

)] − qρ

(
D0

)
,

where we set qρ

(
D0

)
= Eρ(f, f̂0), f̂0 = 0.

Due to Corollary 1 the problem (4) is a stochastic dynamic programming
problem and we can write the Bellman equations for it:

Jr

(
Dr−1

)
= min

xr∈X

Eyr

[
Qρ

(
xr, yr,Dr−1

)
+ Jr+1

(
Dr−1 ∪ (xr, yr)

)
]
, r = 1, . . . , N,

where Jr

(
Dr−1

)
is a value function at r-th step and JN+1 ≡ 0. Unfortunately,

this stochastic dynamic programming problem is infinite dimensional and can
not be solved explicitly. That is why in the next section we consider various
one-step look-ahead solutions.

4 One-Step Look-Ahead Solutions

Value function for the last step of the stochastic dynamic programming problem
(4) is given by the following formula:

JN

(
DN−1

)
= min

xN∈X

EyN

[
Qρ

(
xN , yN ,DN−1

)
]
.

Thus, the criterion for choosing an optimal one-step look-ahead point has the
form:

xN = arg min
x∈X

Iρ(x), (5)

where Iρ(x) = EyN

[
Qρ

(
x, yN ,DN−1

)
]
.

Depending on the choice of the error function ρ(f, f̂) different types of criteria
will follow. We consider the following types of the error function:

1. L2-normof difference between f and f̂N : ρ2(f, f̂N ) = 1
|X|

∫
X
(f(u)−f̂N (u))2du.

2. L1-norm of difference between f and f̂N : ρ1(f, f̂N ) = 1
|X|

∫
X

|f(u)−f̂N (u)|du.

3. L∞-norm of difference between f and f̂N : ρ∞(f, f̂N ) = maxu∈X |f(u) −
f̂N (u)|.

4.1 L2 Error Function

Proposition 2. If the error function is ρ(f, f̂N ) = ρ2(f, f̂N ), then the optimal
one-step look-ahead criterion has the form

Iρ2(x) =
∫

X

(
σ̂2(u|XN−1 ∪ x) − σ̂2(u|XN−1)

)
du.
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We will denote this criterion as IntegratedMseGain. Due to the fact that
σ̂2(u|XN−1) is independent of xN this criterion coincides with the well known
criterion IMSE [10]:

IIMSE(x) =
1

|X|
∫

X

σ̂2(u|XN−1 ∪ x)du.

Proposition 3. Change of the posterior variance at point v after point x is
added to the sample, can be written as:

σ̂2(v|XN−1 ∪ x) − σ̂2(v|XN−1) = − K̂2
N−1(x,v)

σ̂2(x|XN−1)
.

Corollary 2. The criterion Iρ2(x) can be rewritten as:

Iρ2(x) = − 1
|X|

∫

X

K̂2
N−1(x,v)

σ̂2(x|XN−1)
dv.

This corollary allows to compute Iρ2 more effectively and increase its compu-
tational stability compared to IMSE, as no direct inversion of the covariance
matrix for a full training set (XN−1 ∪ x) is needed.

In some important particular cases the criterion can be computed analyti-
cally. For example, for a widely used in applications weighted exponential covari-
ance function we can state the following preposition.

Proposition 4. Letk(x, x̃) = σ2 exp(−∑n
i=1 θ2i (xi−x̃i)2), andX =

∏n
i=1[ai, bi].

Define k(x) = {k(x,xi)}N−1
i=1 . Then

Iρ2(x) =
trace

(
k(x)kT (x)C

) − 2kT (x)c(x) + cNN (x)
|X|σ̂2(x|XN−1)

,

where c(x) =
[
ciN

]N−1

i=1
, C =

[
cij

]N−1

i,j=1
, erf(x) = 2√

π

∫ x

0
e−t2dt,

cij = σ4
n∏

k=1

√
π exp(− 1

2θ2k(xk
i − xk

j )2)√
8θk(bk − ak)

[
erf

(√
2θk

(
ak − xk

i + xk
j

2
)
)

−

−erf
(√

2θk

(
bk − xk

i + xk
j

2
)
)]

,

where for the ease of notations we denoted x = xN .

4.2 L1 Error Function

Proposition 5. If the error function is ρ(f, f̂N ) = ρ1(f, f̂N ), then the optimal
one-step look-ahead criterion has the form

Iρ1(x) =
∫

X

√
2
π

(
σ̂(u|XN−1 ∪ x) − σ̂(u|XN−1)

)
du.

To the best of our knowledge this criterion has no analogues in the literature,
but its computation is complicated due to the structure of the formula inside
the integral.
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4.3 L∞ Error Function

Proposition 6. If the error function is ρ(f, f̂N ) = ρ∞(f, f̂N ), then the optimal
one-step look-ahead criterion has the form

Iρ∞(x) = E

[
max
u∈X

∣
∣f(u)−f̂(u|DN−1∪(x, yN ))

∣
∣−max

u∈X

∣
∣f(u)−f̂(u|DN−1)

∣
∣
∣
∣
∣
∣DN−1

]
.

Let us note that this criterion can’t be computed analytically. In order to com-
pute it one can use approximation techniques for the distribution of the maxi-
mum of the posterior Gaussian random process. In many common situations the
maximum is proportional to the maximal value of the posterior variance [19],
which justifies usage of the popular criterion Maximum Variance (MaxVar) [10]

IMV (x) = σ̂2(x|XN−1).

5 Towards More Robust Adaptive DoE Criterion

It is of the great importance that the optimization problem (5) is always mul-
timodal and its complexity highly depends on the complexity of the criterion
in question. Some popular criteria as IMSE, have very complicated surface with
multiple narrow local optima, which makes their optimization a hard task. In
this work we consider a simple multiplicative combination of criteria Integrat-
edMseGain and Maximum Variance (IntegratedMseGainMaxVar):

IIGMV (x) =
σ̂2(u|XN−1)

|X|
∫

X

(
σ̂2(u|XN−1 ∪ x) − σ̂2(u|XN−1)

)
du =

=
1

|X|
∫

X

[
k(x,u) − k(x,X)T K−1k(u,X)

]2
du =

1
|X|

∫

X

K̂2
N−1(x,u)du.

This criterion takes into account global behaviour of the function as Integrat-
edMseGain does, but is more numerically stable then IntegratedMseGain and
MaxVar (see behaviours of these criteria for 2D example in Figure 1).

IMSE MaxVar IntegratedMseGain-
MaxVar

Fig. 1. Surfaces of IMSE, MaxVar and IntegratedMseGainMaxVar criteria
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6 Experiments

6.1 Model Experiments

For the experiments we used a big set of artificial functions which are commonly
used for testing optimization algorithms [20–22]. The idea behind such a choice
is that approximation models are very often used as substitutes for real target
functions during surrogate-based optimization process [13].

We performed testing on 10 different functions with 3 and 4 dimensional
inputs. For every function we generated 10 independent initial DoEs with the
size (10 * dimensionality) points. Adaptive DoE was performed starting from
each initial DoE and for each criterion, described in Section 4, except criteria
Iρ1 and Iρ∞ as they are hard to compute even numerically. As a benchmark
we used the method of random sampling and the non-adaptive method which
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Fig. 2. Dolan-More curves for test func-
tions, 30 added points
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Fig. 3. Dolan-More curves for test func-
tions, 50 added points
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Fig. 4. Error curves for Michalewicz func-
tion
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Table 1. Input parameters for compression spring design problem

Input parameter d D n hf

Lower bound 0.25 mm 1 cm 70 2.5 cm

Upper bound 5 mm 2 cm 100 100 cm

Fig. 6. Compression spring and its para-
meters

Fig. 7. RMS on the test set depending on
the number of points added to DoE

generates new points maximizing minimum inter-point distance, i.e. provides a
maximum to the following criterion: Iuniform(x) = minv∈XN−1 d(x,v), where
d(x,v) is a Euclidean distance between points x and v.

On every iteration we add to the DoE one point optimizing the criterion in
question and re-estimate parameters of Gaussian process regression using max-
imum likelihood approach. Results are compared by means of the root mean
squared error on big test set of 10000 points. For convenience results are pre-
sented in the form of Dolan-More curves [23]. The higher curve is on the plot,
the better is the quality obtained by the corresponding algorithm. Results are
presented for 30 adaptively added points (see Figure 2) and for 50 adaptively
added points (see Figure 3).

Let us note that IntegratedMseGain criterion provides good results in the
most cases (the value of the Dolan-More curve at zero). However for many test
functions this criterion also shows bad performance due to numerical instability
(the corresponding Dolan-More curve reaches the maximal level with significant
delay compared to the curves for other criteria). IntegratedMseGainMaxVar cri-
terion is more robust and provides better results.

Also let’s consider an example how the error of approximation changes from
iteration to iteration of adaptive DoE process. We consider Michalewicz function
in the domain [0, 1]2. On Figures 4 and 5 we plot the dependence of the approx-
imation error on a number of iteration of the adaptive DoE process (the results
are averaged over 5 initial train samples). It can be easily seen, that adaptive
methods are much better then the random sampling with the error of the best
method 1.7 times smaller then the error, obtained in case the random sampling
is used.
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6.2 Spring Design

We consider a physical model of a compression spring [24]. We wish to construct
a DoE which provides an accurate approximation of a force of the spring at its
pre-load height, h0 = 2.5 cm. The input design parameters are wire diameter
d, coil diameter D, number of coils in the spring n and spring free height hf ,
see Figure 6. We provide parameters bounds in Table 1. The force of a spring is
computed by means of the physical model [24].

We generated two designs: a random design with 200 points and an adaptive
design of the same size, generated using IntegratedMseGainMaxVar criterion
(starting from an initial random design with 100 points). We computed a root
mean squared error on a big test sample for each iteration of a DoE generation
algorithm, see Figure 7. We conclude, that the adaptive design for this test case
ensures decreasing trend for the approximation error and better quality than the
random design.

7 Conclusions

In this work we propose an approach to adaptive design of experiments for a
Gaussian process regression which allows to formulate it as stochastic dynamic
programming problem. Optimal one-step look-ahead solutions of this problem
allow to justify many criteria of adaptive design of experiments, well known
from the literature. Also in this work we introduce new criterion IntegratedM-
seGainMaxVar, which in simple form combines well-known criteria, but achieves
better numerical stability. Experimental results show the benefits of adaptive
designs compared to the random sampling. The proposed criterion provides bet-
ter results then the other criteria. As a direction of future research we plan to
construct solutions of dynamic programming problem with horizon of few steps
and obtain new, more accurate criteria of adaptive design of experiments.
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