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Abstract. An overview of data models suitable for smart cities is given.
CityGML and G-maps implicitly model the underlying combinatorial
structure, whereas topological databases make this structure explicit.
This combinatorial structure is the basis for topological queries, and
topological consistency of such data models allows for correct answers
to topological queries. A precise definition of topological consistency in
the two-dimensional case is given and an application to data models is
discussed.

1 Introduction

Electronic government, planning systems, and citizen participation require data
models suitable for performing such tasks. Geographic Information Systems
(GIS) for smart cities are used for assessing transportation and mobility, urban
risk management and GIS-assisted urban planning, including noise-mapping and
solar energy issues [17].

In order to be useful for more than visualisation purposes, data models must
be topologically consistent, meaning that the underlying combinatorial and geo-
metric models must be compatible. The reason is that it is usually more efficient
to use the combinatorial model for topological queries. The precise definition
of topological consistency varies considerably in the literature. E.g. in [9], 3D-
meshes via one-dimensional finite elements are considered. Their consistency rule
is that line segments intersect only in boundary points. With this, they achieve
self-correction of inconsistent meshes. In [3], topological-geometric consistency
means that the interiors of 1-cells resp. 2-cells may not intersect. However, no
statement about cells of different dimensions is made. The authors of [18] use
only the geometric model for determining topological relations, and then make
corrections of violations against topological integrity constraints. According to
[1], a surface is consistent if and only if it is a valid 2D-manifold. In [8], the
topological consistency of simplifications of line configurations is treated with-
out defining topological consistency. The authors of [14] discuss arbitrary con-
figurations of points, line segments and polygons in the plane, as well as their
extrusions to 3D. Their consistency rules are that line segments may intersect
only in their boundary points, and the interior of a polygon may not intersect
any other object. Nothing is said about the intersection of a point with another
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object, or how the boundaries of objects intersect. For [12], a surface in IR3 is
consistent if it is a so-called 2.8D map. Gröger & Plümer extend this consistency
rule by not allowing the interiors of points, lines, areas and solids to intersect
[10,11]. An efficiently verifiable list of local consistency rules then requires a
tesselation of IR3. This excludes e.g. free or exterior walls, i.e. polygons which
border at most one solid.

In the following section, we will discuss some data models for smart cities,
namely CityGML, G-maps and topological databases. The next section gives
some examples of queries involving topology in smart cities. This is followed by
a section in which our point of view on topological consistency is made into a
precise definition, and some consequences are discussed.

2 Data Models for Smart Cities

CityGML is an XML-based format for virtual 3D city models based on the Geo-
graphic Markup Language (GML). It is an international standard issued by the
Open Geospatial Consortium (OGC) [13]. In essence, it models a configuration
of points, line segments, polygons with holes, and solids together with a semantic
structure by representing the thematic properties, taxonomies and aggregations.
Solids and line segments are given by their boundary representations, and poly-
gons with holes by their cycles of vertices under the tag gml:LinearRing. The
combinatorial structure can be extracted from the xlink-topology together with
the coordinate lists.

A generalized map (or short: G-map) is a topological model designed for
representing subdivided objects in any dimension, and is an implicit boundary
representation model. The definition of a G-map is given in [15] as

Definition 1. An n-G-map is an (n + 2)-tuple G = (D,α0, . . . , αn) such that

– D is a finite set of points called darts
– α0, . . . , αn are involutions on D, i.e. αi ◦ αi is the identity map on D
– αi ◦ αj is an involution if i + 2 ≤ j with i, j ∈ {0, . . . , n}

The combinatorial structure is given by i-cells which in turn are defined as
G-maps whose underlying darts are an orbit of the group generated by the
involutions other than αi. G-maps can depicted in the following way:

– A dart is depicted as • �

– An orbit under the group 〈α0〉 generated by the involution α0 is depicted as
• � � •

– An orbit under the group 〈αi〉 generated by αi with i > 0 is depicted by
connecting darts with i strokes. E.g. for i = 1 : � • • �

An example of a G-map with two 2-cells, five 1-cells and four 0-cells is given in
Figure 1 (left). The 2-cells are the orbits of 〈α0, α1〉 which are the upper and
lower triangles of Figure 1 (right); the 1-cells are the orbits of 〈α0, α2〉 which are
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Fig. 1. Left: A G-map with two 2-cells, five 1-cells, and four 0-cells. Right: The cell
complex associated with the G-map

the sides; and the 0-cells are the orbits of 〈α1, α2〉 which are the vertices of the
figure. Notice that involution α2 leaves some darts fixed, i.e. has fixed points.

One problemwithG-maps is their verbosity, especially in higher dimensions [6].
This means that it takes very many darts to describe a cell complex with relatively
few cells. The reason is that a dart corresponds uniquely to a cell tuple which is
a maximal sequence of cells (cn, . . . , c0) with ci a face of ci+1. The number of cell
tuples is in general exponential in the number of cells for n large. The review article
[7] contains some examples of urban models generated with G-maps.

A topological database [5,16] is mathematically given by a set of objects
together with a binary relation on this set. As a relational database, it can be
realised by two tables: one X for the objects, and one R for the relation. It is
well known that a binary relation defines a topology on a set, and every finite
topological space has a relation which defines the topology [2]. The table R
can then be interpreted as the relation “bounded by” from which connectivity
queries can be made.

It follows that in a topological database, the combinatorial structure is explic-
itly modelled. Additional orientation information yields an algebraic structure
which turns R into a (partial) matrix, and under the condition R2 = 0 this is
a relational form of a chain complex with boundary operator R, important for
some topological computations (e.g. Betti numbers). Figure 2 shows a cell com-
plex with oriented cells and its relational boundary operator as a partial matrix.
The orientation of the areas A,B is fixed here to be counter clockwise.

3 Topological Queries in Smart Cities

Once the combinatorial model underlying the data model has been established,
topological queries can be made. A large class of topological queries are path
queries: Is there a path A → B? under some constraints. These constraints can
be of geometric or of semantic nature. For example, the objects passed along a
path must have a certain minimum size (geometric constraint) or the path must
be inside a building (semantic constraint). Combinations of different types of
constraints are also possible.
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Fig. 2. Left: A cell complex with oriented cells. Right: Its relational boundary operator
as a partial matrix

A particular type of path queries makes use of the adjacency graph. On a
2D-manifold, this is the area adjacency graph: the nodes are the polygons, and
the edges are given by polygons adjacent along a common line segment. In 3D, it
is the volume adjacency graph. Here, the nodes are the solids, and two solids are
connected by an edge iff they share a common polygon at their boundaries. The
advantage of the adjacency graph is that it does not use the complete dataset.
However, it is quite common to have available only 2-dimensional data for city
models. Then, in order to compute the volume adjacency graph of a complex
building with many rooms, it is first necessary to fill all the shells surrounded by
polygons with solids. This is a homology computation: the shells are the second
homology. Homology computations are in essence algebraic computations, for
which a chain complex derived from the data becomes useful. The number of
shells is thus the second Betti number. The first homology is given by the loops,
(window-like) openings, “inner courts”, “tunnels” and “passages” of buildings.
The first Betti number is their count. Consequently, the topological database
enhanced with orientation information (i.e. the relational chain complex) has
everything needed for homology queries.

4 Topological Consistency

As we have seen, topological queries exploit the combinatorial (or algebraic)
model underlying the data model. This approach prefers the use of topological
databases or relational chain complexes over data models which do not explicitly
code the combinatorial structure. From CityGML or G-maps, a topological data-
base can be extracted. In order for topological queries to yield correct answers,
the geometric and combinatorial models must be compatible. This form of topo-
logical consistency means that both models must realise the same cell complex
structure of the data. In other words, the data comprising of points, line seg-
ments and polygons must form a valid cell complex geometrically, and this is
the combinatorial model underlying the data model. In Geographic Information
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Systems, polygons may have holes. Such polygons are in general not cells, and
we call these quasi-cells. A quasi-cell complex is obtained by sewing quasi-cells
along their boundaries iteratively into the one-skeleton of the previously obtained
quasi-cell complex. A one-dimensional quasi-cell complex is a cell complex. This
generalises our notion of topological consistency:

Definition 2. A finite set consisting of points, line segments, polygons with
holes, together with the sides of each element is topologically consistent if its
elements are closures of (quasi-)cells of a quasi-cellulation of the union of all
elements in IR3.

A quasi-cellulation of a space is the quasi-cell complex obtained from a partition
of the space into (quasi-)cells. The combinatorial quasi-cell complex associated
with a configuration as in Definition 2 is the quasi-cell complex obtained by
sewing each element along its boundary with each side as it occurs along the
boundary. Such a configuration is topologically consistent if and only if the
quasi-cellulation from Definition 2 coincides with the combinatorial quasi-cell
complex associated with this configuration. Checking topological consistency
amounts to computing pairwise intersections of elements. Such an intersection
must then be a disjoint union of boundary elements plus possibly the interior of
an element. Figure 3 shows an example of a consistent configuration. It consists

•
A

•

• •

Fig. 3. A consistent configuration consisting of a square A, four line segments and four
points

of a square, and the line segments and points at its boundary. These cells form
a natural cellulation of the square, and coincide with the combinatorial cell
complex associated with this configuration.

In [4], we prove the following intersection criterion:

Theorem 1. A configuration as in Definition 2 is topologically consistent if
and only if the intersection of any two distinct maximal elements A and B is
the (possibly empty) disjoint union of boundary elements of A and B.

An immediate consequence of Theorem 1 is that if an urban model is built
up of polygons (with or without holes), topological consistency can be checked
by computing the intersections of pairs of polygons. Line segments and points
need not be intersected in this case. Figures 4–6 represent possible topological
inconsistencies. Notice that in Fig. 5, the boundary vertices of polygon A are
depicted as ◦ and �, whereas those of polygon B are • and �.
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Fig. 4. A topologically inconsistent configuration where A∩B is not a union of objects
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Fig. 5. Left: A topologically inconsistent configuration where A ∩ B is a non-disjoint
union of objects. Right: The combinatorial cell complex associated with the configura-
tion to the left contains a loop-hole.
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Fig. 6. A topologically inconsistent configuration where A ∩ B is a point which is not
a boundary element of both A and B

5 Conclusions

We have discussed data models for smart cities: CityGML, G-maps and topo-
logical databases. The first two indirectly model the combinatorial structure
underlying the data, whereas topological databases explicitly model it, and can
be enhanced with orientation information on the individual building blocks.
This combinatorial model can then be exploited to retrieve answers to topo-
logical queries which are correct if the model is topologically consistent, i.e.
the underlying combinatorial and geometric models are compatible. Topological
consistency can be checked through computing intersections of maximal building
blocks which are polygons with holes or line segments in 3D. It is well known that
this can be done in polynomial time. Applications of topological consistency are
also beyond purely topological queries: for example, our results can lead to more
efficient GIS-assisted urban planning systems, transportation and noise manage-
ment, or improved management and evaluation of Smart Cities and public Open
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Linked Data repositories, exploiting the advantages of topological consistency in
data. Examples of possible applications could include airport terminal buildings,
or commercial application of flying robots, e.g. the logistics and delivery drones
that are used in some warehouses. A validator for CityGML data is work in
progress. Future research will include the extension of the notion of topological
consistency to higher dimensions and to the case where objects may be contained
in higher-dimensional objects, like e.g. points or line segments inside a polygon.
This is relevant for applications in Geographic Information Systems: for example
a town in a region should be consistently represented as a point inside a polygon
in certain levels of detail.
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