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Abstract. Symbolic regression via genetic programming has become a very 
useful tool for the exploration of large databases for scientific purposes. The 
technique allows testing hundreds of thousands of mathematical models to find 
the most adequate to describe the phenomenon under study, given the data 
available. In this paper, a major refinement is described, which allows handling 
the problem of the error bars. In particular, it is shown how the use of the geo-
desic distance on Gaussian manifolds as fitness function allows taking into ac-
count the uncertainties in the data, from the beginning of the data analysis 
process. To exemplify the importance of this development, the proposed me-
thodological improvement has been applied to a set of synthetic data and the re-
sults have been compared with more traditional solutions. 
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1 Introduction  

One of the main objectives of data analysis in scientific applications consists of the 
task of extracting from the data mathematical expressions for the problem at hand, to 
be compared with theoretical models and computer simulations. In the last years, 
symbolic regression (SR) via genetic programming (GP) has proved to be a very use-
ful approach to this task.  The method allows exploring the available databases and 
identifying among the mathematical expressions produced, the Best Unconstrained 
Empirical Model Structure (BUEMS) to describe the phenomena of interest. The 
main advantage of the proposed approach consists of practically eliminating any as-
sumption about the mathematical form of the models. The obtained equations are 
therefore data driven and not hypothesis driven. The basic elements of symbolic re-
gression via genetic programming are covered in Section 2. 
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In the last years, SR via GP has been successfully applied in various fields and has 
obtained significant results even in the analysis of very complex systems such as high 
temperature plasmas for the study of thermonuclear fusion [1]. On the other hand, the 
methodology is still in evolution and would benefit from upgrades aimed at increasing 
both its versatility and the quality of its results.  

In this paper, an approach to handle the error bars in the measurements is proposed, 
to increase the scientific relevance of the method. Indeed in many scientific studies, 
such as the extraction of scaling laws from large data sets, very often the measure-
ments are taken as perfect or at least the consequence of their uncertainties is not 
properly evaluated. In this work, it is shown how the error bars of the measurements 
can be taken into account in a principled way from the beginning of the data analysis 
process using the concept of the Geodesic distance on Gaussian Manifolds (GD). The 
idea, behind the approach proposed, consists of considering the measurements not as 
points, but as Gaussian distributions. This is a valid assumption in many physics ap-
plications, because the measurements are typically affected by a wide range of noise 
sources, which from a statistical point of view can be considered random variables.  
Each measurement can therefore be modelled as a probability density function (pdf) 
of the Gaussian type, determined by its mean μ and its standard deviation σ. The dis-
tance between the measurements and the estimates of the various models can there-
fore be calculated using the GD using the Rao formula (see Section 4). This distance 
can be used as fitness function in the SR code to converge on the most suitable model 
taking into account the error bars of the measurements in a principled way, since the 
beginning of the data analysis process. 

With regard to the structure of the paper, SR via GP is introduced in the next sec-
tion. The mathematical formalism of the GD on Gaussian manifolds is presented in 
Section 3. The potential of the proposed technique to tackle the uncertainties in the 
data is illustrated with a series of numerical tests using synthetic data. Some examples 
of application are described in detail in Section 4. Summary and directions of future 
activities are the subject of the last section of the paper.  

2 The Basic Version of Symbolic Regression via Genetic 
Programming  

As mentioned in the previous section, this paper describes the refinement of advanced 
statistical techniques for the extraction of mathematical expressions from large data-
bases to investigate the behaviour of scientific phenomena. The main advantage of the 
basic tools consists of practically eliminating any assumption about the form of the 
models. This section describes briefly the mathematical basis of the tools imple-
mented to perform the analysis presented in the rest of the paper.  
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Table 1. Types of function nodes included in the symbolic regression used to derive the results 
presented in this paper, xi and xj are the generic independent variables 

Function class List 
Arithmetic c (real and integer constants),+,-,*,/ 
Exponential exp(xi),log(xi),power(xi, xj), power(xi,c) 
Squashing logistic(xi),step(xi),sign(xi),gauss(xi),tanh(xi), erf(xi),erfc(xi) 

 
To derive the results presented in this paper, the Akaike Information Criterion 

(AIC) has been adopted [4] for the FF. The AIC, is a well-known model selection 
criterion that is widely used in statistics, to identify the best models and avoid overfit-
ting. The AIC form used in the present work is: ܥܫܣ ൌ 2݇ ൅ ݊ ڄ lnሺܴܧܵܯ/݊ሻ                                           (1) 

where RMSE is the Root Mean Square Error, ݇ is the number of nodes used for the 
model and ݊ the number of entries in the database (DB). The AIC allows rewarding 
the goodness of the models, by minimizing their residuals, and at the same time pena-
lising the model complexity by the dependence on the number of nodes. The better a 
model, the smaller its AIC.  

Having optimised the models with non-linear fitting, what remains is the qualifica-
tion of the statistical quality of the obtained scaling laws. To this end, a series of sta-
tistical indicators have been implemented. They range from model selection criteria, 
such as the Bayesian Information Criterion (BIC), to statistical indicators, such as the 
Kullback-Leibler divergence (KLD) [5,6].  

3 Geodesic Distance to Include the Effects of the Error Bars 
and Application to Scaling Laws 

As seen in the previous sections, the goal of SR via GP is to extract the most appro-
priate formulas to describe the available data. To achieve this, typically the RMSE of 
the distances between the data and the model predictions is used in the FF. In this 
way, SR is implicitly adopting the Euclidean distance. The (dis)similarity between 
data points and predictions is measured with the Euclidean distance, which has a pre-
cise geometrical meaning and a very long historical pedigree. However, it implicitly 
requires considering all data as single infinitely precise values. This assumption can 
be appropriate in other applications but it is obviously not the case in science, since 
all the measurements typically present error bars. The idea is to develop a new dis-
tance between data, which would take into account the measurement uncertainties. 
The additional information provided by this distance should hopefully render the final 
results more robust. In particular, using the GD the final equations are more general 
and less vulnerable to the detrimental effects of outliers (see Section 4).  

The idea, behind the approach proposed in this paper, consists of considering the 
measurements not as points, but as Gaussian distributions. This is a valid assumption 
in many scientific applications, because the measurements are affected by a wide 
range of noise sources, which from a statistical point of view can be considered ran-
dom variables.  Since the various noises are also typically additive, they can be  
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expected to lead to measurements with a global Gaussian distribution around the most 
probable value, the actual value of the measured quantity. Each measurement can 
therefore be modelled as a probability density function (pdf) of the Gaussian type, 
determined by its mean μ and its standard deviation σ: ݌ሺߤ|ݔ, ሻߪ ൌ ଵ√ଶగఙ ݌ݔ݁ ቂെ ሺ௫ିఓሻమଶఙమ ቃ                                              (2) 

In this work, having in mind applications to experimental data, it is assumed that 
the measured values are the most likely ones, within the probability distribution 
representing the measurement errors. In the case of Gaussian distributions, the most 
likely value is the mean. Therefore, the individual measurements are assumed to be 
the means of the Gaussian distributions representing their uncertainties. This is the 
typical hypothesis adopted in the application of the GD. 

Modelling measurements not as punctual values, but as Gaussian distributions, re-
quires defining a distance between Gaussians. The most appropriate definition of 
distance between Gaussian distributions is the geodesic distance (GD), on the proba-
bilistic manifold containing the data, which can be calculated using the Fischer-Rao 
metric [7]. For two univariate Gaussian distributions ݌ଵሺߤ|ݔଵ, ,ଵሻ and pଶሺx|µଶߪ σଶሻ, 
parametrized by their mean ߤ௜ and standard deviations ߪ௜ሺ݅ ൌ 1,2ሻ, the geodesic dis-
tance GD is given by: 

GDሺpଵ||pଶሻ ൌ √2ln ଵାஔଵିஔ ൌ 2√2 tanhିଵ δ , where δ ൌ ቂሺµభିµమሻమାଶሺ஢భି஢మሻమሺµభିµమሻమାଶሺ஢భା஢మሻమቃభమ
        (3) 

In the case of multiple independent Gaussian variables, it is easy to prove that the 
square GD between products of distributions is given by the sum of the squared GDs 
between corresponding individual distributions. 

The last thing required consists of inserting the GD into the SR. To this end, a good 
solution has proved to be to insert the GD in the FF according to the following formula: ܥܫܣ ൌ 2݇ ൅ ∑ ௜௜ܦܩ                                                       (4) 

Where the symbols have the same meaning as in formula (1) and the index i runs 
over the entries of the database. 

4 Example of Application: Scaling Laws  

To exemplify the flexibility and power of the techniques described in the previous 
section, they are applied to the problem of deriving scaling laws from the data. Sec-
tion 4.1 contains an introduction to the problem of data driven scaling laws. In  
Section 4.2 the capability of the upgraded methodology to identify also scaling laws is 
proven using synthetic data.  

4.1 Scaling Laws  

In various fields of science, such as Magnetic Confinement Nuclear Fusion, many 
systems to be studied are too complex to allow a treatment on the basis of first  
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principle physical models. Therefore, to overcome the gap between theoretical under-
standing and data, in order to profit from the deluge of experimental measurements of 
the last decades, data driven models have become quite popular. They are particularly 
useful to assessing how system properties scale with dimensions or other parameters.   
One major hypothesis is implicitly accepted in the vast majority of the most credited 
scaling laws reported in the literature [9,10]: the fact that the scaling laws are in form 
of power law monomials. Indeed the available databases have typically been studied 
using traditional log regression. This implies that the final scaling laws are assumed 
“a priori” to be power law monomials of the form: ܤఉܥఞ … ఒିܪఊିܩఋܦ …  ఓ; whereିܭ
the capital letters represent physical quantities [11]. This assumption on the form of 
these scaling equations is often not justified neither on theoretical nor on experimental 
grounds. Moreover, the use of log regression to analyse the data typically does not 
take into account the uncertainties in the measurements properly. The two develop-
ments described in the previous sections overcome these limitations. SR via GP 
allows the freedom to identify scaling laws of very different mathematical forms and 
the GD can take properly into account the error bars in the measurements. The profit 
of combining these two approaches (SR via GP and a Gaussian manifold based me-
tric) in the proposed tool are shown in the next Section using synthetic data.  

4.2 Numerical Results 

Synthetic databases have been generated to test the Euclidean metric and Geodesic 
metric as fitness function for SR via GP. Four formulas have been investigated , each 
one composed of two terms with three independent variables and one dependent vari-
able, as showing the equations (5), (6), (7), (8). The range of variation of the three 
independent variables is also reported ݔଵ א ሾ0.015, 3.9ሿ, ݔଶ א ሾ0.044, 1.97ሿ, ݔଷ ,ሾ0.268א 2.178ሿ. Values are randomly generated, uniformly distributed within the vari-
ation range of the independent variables, in relation to the size of the database. The 
study is performed by choosing the number of entries in the DB, then checking if the 
genetic algorithm, with the different metrics, gives in output the formulas used to 
generate the data. 

ଵ݂ ൌ cosሺݔଵ · ଶሻݔ ൅ sin  ଵ଴.ହ                                           (5)ݔ

ଶ݂ ൌ cos ቀ௫భ௫మቁ ൅ ଷݔ2 · ሼ1 ሾ1 ൅ ሺെ0.8݌ݔ݁ · ⁄ଶሻሿݔ ሽ                            (6) 

ଷ݂ ൌ ଶଵ.ହݔ · ଷݔ െ 0.5 · ଵ଴.ହݔ · cos  ଷ                                    (7)ݔ

ସ݂ ൌ ଵݔ · ଶݔ · ଷሻݔሺെ݌ݔ݁ ൅  ଷ                                                   (8)ݔ2

After the choice of the formula and the size of the inputs, it is possible to choose 
the type of noise to be applied to the analytical formulation: Uniform, Gaussian and 
Asymmetric. In the case of uniform noise, it is possible to set the percentage of noise 
compared to the average value of the chosen analytical formulation. Hence, a random 
uniform vector is generated, including values between +/- the percentage of the mean 
value of the used formula. This noise vector is then applied to the dependent variable 
to generate the noise-affected database. In the case of Gaussian noise, the standard 
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deviation of the distribution of the noise can be selected. This way, a random noise of 
Gaussian distribution, which has zero mean and standard deviation equal to a percen-
tage of the average value of the chosen analytical formulation, is generated. After 
that, this noise vector is applied to the dependent variable to generate the noise-
affected database. The last type of noise is asymmetric. It consist of two random 
Gaussian distributions, in which the user can choose the standard deviations of the 
two distributions, always equal to a percentage of the average value of the analytical 
formulation. And more, the weight of the first distribution can be chosen, while the 
second is complementary to the first. The first Gaussian distribution always has zero 
mean, while the second has mean equal to two times the sum of the two standard dev-
iations. Also, in this case the noise vector is then applied to the dependent variable to 
generate the noise-affected database.  

Once the noise-affected databases are generated, as described before, Symbolic 
Regressions adopting the Euclidean metric and the Geodesic metric (introduced in 
section3) are used to study the behaviour of the algorithm. In all the cases in which 
the noise distributions are Gaussian noise or Uniform noise, the two metrics have 
provide exactly the same results. This is true for independently from the size of the 
databases. On the other hand, when the database contains outliers there is a significant 
improvement in the results of the Geodesic metric compared to the Euclidean metric. 
Table II shows the results of the SR conducted to database of 50 inputs (very few). 
This is challenging scenario to check which metric gives the best results in relation 
the presence of outliers (asymmetric database). In the columns the table shows the 
characteristic parameters of the asymmetric noise (described previously), the metric 
used and the standard deviations (for GD metric).The accuracy of algorithm in finding 
the right formula is shown in the last column. The results that can be found are classi-
fied as follows: Global, the algorithm finds perfectly the formulation expected; (1/2) 
the algorithm finds, at least, the first term of the formulation; (2/2) the algorithm 
finds, at least, the second term of the formulation; Negative, when the algorithm does 
not find any terms of the formulation. 

Table 2. Summary table of tests carried out on the database of 50 inputs (where there are five 
points outliers) to the equations from (5) to (8), containing details of all the noise information 
and the metric listed in this section 

Type Noise Eq. 
 I Gauss ࣌
[%mean 
value] 

II Gauss ࣌
[%mean 
value] 

Weight I 
Gauss [0,1]א 

Metric 
GD࣌ data 
[%] 

GD࣌ model 
[%] 

Goals 

Asymmetric (5) 15 30 0.9 EUC --- --- (1/2) 

Asymmetric  (5) 15 30 0.9 GD 20 0.1 Global 

Asymmetric (6) 10 50 0.9 EUC --- --- Negative 

Asymmetric  (6) 10 50 0.9 GD 20 0.1 (1/2) 

Asymmetric (7) 15 30 0.9 EUC --- --- (1/2) 

Asymmetric  (7) 15 30 0.9 GD 10 0.1 (1/2) 

Asymmetric (8) 10 50 0.9 EUC --- --- Negative 

Asymmetric  (8) 10 50 0.9 GD 10 0.1 Global 
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5 Discussion and Conclusions  

In this paper, symbolic regression via genetic programming has been tested on different 
custom noise-affected databases to check the most challenging scenarios in relation to the 
fitness function (FF) of the algorithm. In the study, many variations of the parameters of 
the noise have been carried out on all four formulas presented. The obtained results dem-
onstrate that the two metric, Euclidean and Gaussian, return the same performance, for all 
levels of Gaussian noise and dimensions of the database investigated. On the other hand, 
when the Geodesic distance is used, the method is significantly more robust to the pres-
ence of outliers because the GD tends to discriminate the data too far from the main 
trend. 

So, to summarise, in the case of databases affected by Gaussian noise, SR via GP per-
forms equally well irrespective of the fact the Euclidean or the Geodesic distance is used. 
In these cases, the using the GD simply provides an alternative way to double-check the 
quality of the results as it can be seen in Table III. In the case of small databases, affected 
by a significant percentage of outliers, the use of the GD improves the resilience and the 
reliability of the results compared to the RMSE. In these situations, as in the case of clas-
sification as reported in [12], the use of the GD provides a competitive advantage com-
pared to the traditional RMSE based on the Euclidean distance. 

Table 3. Summary table of tests carried out on the database of 50 or 500 inputs with Gaussian 
noise, using the formulations from (5) to (8), containing details of all the noise information and 
the metric listed in this section. Results show how both metric can be used as a double check of 
the quality of the results. 

Inputs DB Eq. 
 I Gauss ࣌

[%mean value] 
Metric 

GD ࣌ data [%] 

GD࣌ model 
[%] 

Goals 

50 (5) 30 EUC --- -- (1/2) 

50 (5) 30 GD 30 0.1 (1/2) 

50 (6) 30 EUC --- --- (1/2) 

50 (6) 30 GD 30 0.1 (1/2) 

50 (7) 30 EUC --- --- (1/2) 

50 (7) 30 GD 30 0.1 (1/2) 

50 (8) 30 EUC --- --- (2/2) 

50 (8) 30 GD 30 0.1 (2/2) 

500 (5) 20 EUC --- --- Global 

500 (5) 20 GD 20 0.1 Global 

500 (6) 20 EUC --- --- (1/2) 

500 (6) 20 GD 20 0.1 (1/2) 

500 (7) 20 EUC --- --- (1/2) 

500 (7) 20 GD 20 0.1 (1/2) 

500 (8) 20 EUC --- --- Global 

500 (8) 20 GD 20 0.1 Global 



 How to Handle Error Bars in Symbolic Regression for Data Mining 355 

References 

1. Wesson, J.: Tokamaks, 3rd edn. Clarendon Press Oxford, Oxford (2004) 
2. Schmid, M., Lipson, H.: Science, vol. 324, April 2009 
3. Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Natu-

ral Selection. MIT Press, Cambridge (1992) 
4. Hirotugu, A.: A new look at the statistical model identification. IEEE Transactions on Au-

tomatic Control 19(6), 716–723 (1974) 
5. Silverman, B.W.: Density Estimation for Statistics and Data Analysis. Chapmans & Hall 

(1986) 
6. Burnham, K.P., Anderson, D.R.: Model Selection and Multi-Model Inference: A Practical 

Information-Theoretic Approach, 2nd edn. Springer (2002) 
7. Amari, S., Nagaoka, H.: Methods of information geometry. Translations of mathematical 

monographs, vol. 191. American Mathematical Society (2000) 
8. Connor, J.W., Taylor, J.-B.: Nuclear Fusion 17, 5 (1977) 
9. Murari, A., et al.: Nucl. Fusion 53, 043001 (2013), doi:10.1088/0029-5515/53/4/043001 

10. Murari, A., et al.: Nucl. Fusion 52, 063016 (2012), doi:10.1088/0029-5515/52/6/063016 
11. Barenblatt, G.I.: Scaling. Cambridge University Press (2003) 
12. Murari, A., et al.: Nucl. Fusion 53, 033006, (9 p.) (2013) 


	How to Handle Error Bars in Symbolic Regression
for Data Mining in Scientific Applications
	1 Introduction
	2 The Basic Version of Symbolic Regression via Genetic
Programming
	3 Geodesic Distance to Include the Effects of the Error Bars
and Application to Scaling Laws
	4 Example of Application: Scaling Laws
	4.1 Scaling Laws
	4.2 Numerical Results

	5 Discussion and Conclusions
	References


