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Abstract. The new method for incremental learning of SVM model incorporating 
recently proposed TEDA approach is proposed. The method updates the widely re-
nowned incremental SVM approach, as well as introduces new TEDA and RDE 
kernels which are learnable and capable of adaptation to data. The slack variables 
are also adaptive and depend on each point’s ‘importance’ combining the outliers 
detection with SVM slack variables to deal with misclassifications. Some sugges-
tions on the evolving systems based on SVM are also provided. The examples of 
image recognition are provided to give a ‘proof of concept’ for the method. 
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1 Introduction 

Nowadays, there are plenty of models for object classification. Some of them are 
aimed on off-line classification, which takes all the samples at once, other are aimed 
for the incremental classification, which work sample-by-sample. Those which do not 
require to hold all the sample set, are referred as ‘online’. Finally, ‘evolving’ models 
are designed to change the structure of the system taking into account recent changes 
and forget those patterns which occurred long ago.  

The problem stated in the article is raised by different approaches: SVM models, 
novel TEDA data analysis concept, and evolving systems. 

SVM was first proposed as Generalised Portrait Algorithm by Vapnik and Lerner 
in 1963 [1], with some works together with Chervonenkis [2], but was not widely 
used until the beginning of the 1990-s, when new contributions by Vapnik and other 
authors were proposed [3], [4]. Now, the SVM family contains a huge number of 
different algorithms, capable of most widely known machine learning problems (clus-
tering[5], outlier detection[6], structured learning[7]). 

TEDA approach has recently emerged and gives promising results on data outlier 
detection[8], classification [9] and other machine learning problems [10]. It is based 
on data and provides attractive concept of learning the parameters by data, not by 
some pre-defined constraints.  

Evolving systems describe the ability of structural adaptation “from scratch” to 
consider the changes in the data stream[11], [12]. The distinctive feature of such a 
system is that it takes into consideration more recent patterns in data, forgetting those 
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that happened many time ago and hence may be not relevant, by changing the struc-
ture of the classifier and forgetting the patterns which are not relevant. One of the 
popular applications of such systems is classification [13], [14], [15]. Such methods 
are based on fuzzy systems, as well as neural networks [16]. 

The outline of the article is as follows: 

─ first, the SVM systems are reviewed; 
─ second, the TEDA background and TEDA SVM statement is given; 
─ third, the  novel TEDA kernel is proposed; 
─ fourth, incremental update procedure is formulated; 
─ fifth, the new samples incremental update procedure is proposed; 
─ sixth, the experimental results are discussed. 

The article is finalised by conclusion, describing the research results. 

2 SVM Model Formulation 

Here the accurate statement of the supervised learning problem is performed. Let us 
have some object set, which we designate as , and a finite space of object classes, 
referred as Υ. Then, let us have a subset, , named training set, for each the 
following function is defined: : Υ.  The problem is to build a function : Υ, approximating the function  on the set . The assumption is that  
will be a good mapping for further objects,  where the index  denotes validation. 

; , . The method we propose has its roots in the SVM problem 
statement [4, 17]. Here we introduce the basic formulation of SVM problem with 
slack variables and notation we further use. Consider a two class classification prob-
lem, where  , , … , , Υ 1, 1 , , 1 … . (1)

Here  is the number of the data samples.  
Here we state the problem for overlapping classes (C-SVM) [17] ∑ Ξ min , , ,  (2)

w.r.t. following constraints: 1 Ξ , Ξ 0, 1 … . (3)

Here Ξ  are so-called ‘slack variables’,  is the so-called ‘box constraint’ parameter 
[17]. This problem statement allows some misclassification of the training set for 
hardly-divisible data, and , where ,  are the parameters of the 
hyperplane. This formulation is widely used [4, 17,18]. If we write down Lagrangian, 
differentiate it and find an extremum [17], we get the dual problem 
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12 min, , 
0 , ∑ 0.  

(4)

Then, we can consider another problem ( -SVM) [18]: ∑ Ξ min , , ,   (5)

w.r.t. the following constraints: Ξ , Ξ 0, 1, … , , (6)

The parameter  gives a lower bound for the fraction of support vectors, as well as 
an upper bound for the fraction of margin errors in case of 0. This formulation 

can be proven to be equivalent to C-SVM with , if 0 [18]. 

Then we can denote a kernel function , , where ·  
is some mapping function, taken from the (possibly infinite) mapping functions space.   
It can be recognised as a replacement to the ordinary scalar product, introducing non-
linearity into the model. The widely known kernels are: linear, Mahalanobis [19], 
cosine [20], Gaussian [21], histogram intersection [22] or survival [23] kernels). One 
can also restore it based on the data using metric learning techniques. Hence, the fea-
ture transformation (for finite or infinite space) can be replaced by changing the dis-
tance metric, given by the kernel. 

3 TEDA Approach Summary 

TEDA framework provides a novel systematic method of a “per point” online data 
analysis [8], [9].   

Consider that we have object space Ω  containing data samples, where  is 
the data dimensionality. This space is equipped with some distance (i.e. Euclidean, 

, cosine or any others). Further we refer this distance as , . We can pick data 
samples sequence from this object space: , … … , Ω, , (7)

where  is a sequence number of the object which can be represented as the instant 
of time, when the data sample has arrived. For this reason, index  will be referred 
to as time instant further for simplicity. We can construct sum distance to some par-
ticular point Ω, for each  element up to the -th one [8], [10]: ∑ , , 1.  (8)

Based on this definition, we define the eccentricity at the time instant : 

∑ 2 ∑ ,∑ ∑ , , 2, ∑ 0.  (9)
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The complement of eccentricity, typicality is defined as: 1 . (10)

The eccentricity and typicality are both bounded [8], [10]: 0 1, ∑ 2, 2, ∑ 0.  (11)0 1, ∑ 2, 2, ∑ 0.  (12)

Normalised eccentricity and typicality can also be defined as [8], [10]:  , ∑ 1, 2, ∑ 0.  (13)

, ∑ 1, 2, ∑ 0.  (14)

The method’s capability of online problems resolution follows from existence of the 
formulae of the incremental update [8], [9]. There exist convenient formulae for in-
cremental calculation for Euclidean and Mahalanobis distance [19], but here we do 
not discuss it. Generally, for any distance, we can use the formula      d ,  and calculate all other quantities based on it.  

4 The TEDA SVM Statement 

In the classical formulation of SVM given above we aim to give an upper bound of 
the fraction of margin errors. But here we are targeting aiming to make it dependent 
on the ‘importance’ of each of the support vectors, i.e. make more ‘typical’ support 
vectors penalised more for being out of boundaries, rather than ‘anomalous’. In other 
words, we care less for anomalous data samples and more for typical ones to be cov-
ered well by the classifier; we do not try to cover all data sample equally, but propor-
tionally to their typicality. 

Here, the “local” typicality in regards to each of the classes is proposed as a weight 
for each of the support vectors. For each class  we define typicality [8] 

 1 2 ∑ ,∑ ∑ , , , , С, с С\с .   (15)

Here  denotes the objects with labels from the set , which we build here by the 
scheme ‘one versus the rest’. For each of the classes we build the following model: 12  0 Ξ 0 Ξ min, ,   (16)

w.r.t. following constraints: 1 Ξ , Ξ 0, 1 … .   (17)
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We can see that this model preserves the upper boundary property γ for the margin 

errors [1817], where , 0, as the upper boundary is known:  ,.  But what we gain additionally is possibility to control the ‘importance’ of each 
data samples. The algorithm takes into account our desire to ‘sacrifice’ the correct 
recognition only for the most ‘anomalous’ data. The more typical is data in the model, 
the higher will be the box constraint for it because of higher typicality. Opposite case, 
when the object is more anomalous, is penalised less due to lower typicality in order 
to avoid fitting the model to anomalous cases.  

5 TEDA Kernel 

Further to TEDA formulation, we propose also novel formulation of a kernel within 
the TEDA framework. We define the following TEDA-like kernel: , , , , , ∑ , ∑ ,∑ ∑ , , ∑ ∑ , 0.  

(18)

Here  is a normalised data eccentricity, γ 0 is some parbameter, showing the 
data eccentricity involvement. It helps us to take into account not only scalar product 
itself, but also the importance of each of the points. The interpretation of the kernel is 
to increase the kernel values for the ‘anomalous’ points, and at the same time de-
crease the kernel values between ‘typical’ points, bringing it closer in the data space. 

To be the kernel,  should meet the following requirements: 

1. , , . 
2.  is positive semi-definite, i.e. , , … Ω, , , … Ω,  where Ω 

is a Hilbert space, the matrix , ,  is non-negative defi-
nite, that is for any  0. 
Proof sketch:  

1.  , , ∑ , ∑ ,∑ ∑ , , ∑ , ∑ ,∑ ∑ ,  , . 
2. For Euclidean distance, it can be proven to be equivalent to: 

 , , ,  (19)

where  is the mean over , , … ,  is a variance over , , … which 
depend on the data set and are the values derived from data. It can be proven to be a 
particular case of the polynomial kernel multiplied on the linear kernel. 

The scalar product can be replaced here by any kernel  , , to get this  
expression:  
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, , ,  (20)

We can also make the similar statement via RDE [12]: , 1/ 1 Σ . (21)

It is equivalent to Cauchy kernel [12] (up to the multiplier), and Cauchy kernel itself 
can be proven to be a proper kernel, hence it is also a kernel: , / , 0.  (22)

6 TEDA SVM Incremental Update 

Here the standard problem of the incremental update is stated.  
Let us have a training data sequence , … , … ,  which arrives one-by 

one, where  is an order number of the data element. For each  there is a label Υ. Up to the -th element we have the problem (16). 
Then, the 1 -th element arrives, and the problem is re-formulated as 12  0 Ξ 0 Ξ min, ,   (23)

w.r.t. following constraints: 1 Ξ , Ξ 0, 1 … 1. (24)

Also, we should take into account that , (25)

as it was mentioned before, and  is a feature mapping. Hence, we should also 
update the feature mapping . Generally, it is not feasible as the mapping can be 
set on functional spaces including infinite-dimensional ones. It can be shown, that 
dual problem transition allows us to express  in terms of the kernel ,    (this notation denotes scalar product, although the mapping can be 
given in infinite-dimensional space). Hence we need to update the kernel matrix N N only, where , .  

Then we can see, that the incremental update consists of several stages: 

─ kernel update (section 6.2); 
─ solution update for the updated kernel (section 6.2); 
─ solution update for the updated box constraints (section 6.3); 
─ solution update incorporating the new data (section 6.1).  

Then we can write down the dual problem as  
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∑ ∑ ∑ ∑   ∑ ∑  , ∑ ∑ min ,  ,  0 , 1, , ∑ 0.  

(26)

Differentiating the dual problem, we obtain Karush-Kuhn-Tucker conditions 
(KKT): ∑ , 1 1,  

0, 0, 0,0, 00, . . (27)

Let us denote all the training set as . This set is divided onto three disjoined sets: 
margin vectors , for which 0, error support vectors  , for which  0, and the rest of the vectors vectors , for which 0, which are 
not included into the existing solution. 

6.1 Adding new Samples 

The incremental learning method for SVM was first described in [24].  
Apart of this previously proposed method, here we do not choose one global box 

constraint  for every element of the SVM problem, but use its own box constraint 
for every object. More, we do not even make it constant, but update it from data.  

When transferring from the problem (26) for  elements to the problem for 1 
elements, we should ensure, that the data is in equilibrium, i.e. the conditions of the 
problem are satisfied.  

Let us denote for notation simplicity     1. 
We denote as   , . 
Then, we begin to change the new vector’s coefficient  until the configuration 

within the system changes: Δ Δ ∑ Δ Δ , ,  0 Δ ∑ Δ .  
(28)

Then, we can define  

Θ 0 ………  (29)

and write the KT conditions changing equations  in the vector form as 
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Θ Δ Δ … Δ … TΔ   (30)

for the support vector set. 
Then we can continue with Δ Δ , (31)Δ Δ , . (32)… Θ …   (33)

for all support vectors, and 0  \ . 
Then  Δ Γ Δ ,  ; Γ ∑ , .  (34)

After that, we find the maximal increment until the following event occur: 

- 0, with  joining   when 0; 
- 0,with  joining  when 0; 
- 0 ,   with 0 when -th vector transfers from  to , and 

 when transferring from  to ;  
- 0,  , with 0 when -th vector transfers from  to ; 
- 0, ,  with 0 when  -th vector transfers from  to . 

After this procedure, the new support vectors should be added to the matrix Θ . 
It can be proven that  Θ Θ 00 … 0  

… 1 … 1 .  

(35)

This formula allows us to add a vector into S.  
The procedure is repeated until no transition between subsets , , and  occurs. 

Also, it should be noticed, that the procedure is proven to be reversible [24]. The 
process of deletion data during the learning process is referred as decremental learn-
ing [24].  

6.2 Updating the Kernel 

Here we address the learnable kernel update problem in SVM: 12 , min, . (36)

The problem is replaced by one with the new kernel  
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12 , min,  (37)

Again, the problems are constrained as in (26). 
Therefore, the problem differs in kernel we use. As before, we denote    , , , . (38)

Let us denote also Δ .  (39)

Then we consider  Δ Δ Δ Δ Δ , Δ 0. (40)

Here 0 1. The problem is to express the corrections of Δ  as a function of 
some coefficient 0, 1 . 

Here we denote Θ as in (29) and 

Θ 0 0 … 00 Δ … Δ
0 Δ … Δ . (41)

Then Θ Θ Δ Δ … Δ Θ … . (42)

In this case Δ Δ … Δ Θ Θ Θ …  … Θ Θ Θ . . . (43)

The maximal increment condition is the same as for the new data update, but addi-
tionally we should mind 0, 1 . The update of the matrix is performed the same 
way like  Θ.  

6.3 Updating Box Constraints 

In this case, we use the same update equations, as the standard update for the new 
data, but here we check if the KKT constraints are violated on the first stage due to 
the change of the box constraints. 

We remember, that for each of the objects we have (27) with the old constraints. 
For the stage 1 we should have 
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0, 0,0, 0 ,0, .  (44)

but for some of the vectors  the conditions can be broken: .  Also, 
because generally , some transitions between  sets  and  may occur. 
Hence, we need to correct the solution w.r.t. all the vectors violating the conditions.  

The procedure is proposed in a following way. For each vector , violating the 
KKT conditions, we perform the procedure exactly the same way as for the new vec-
tor, considering that it is a newly-added vector to -vector SVM problem with train-
ing set \  and new   . For the sets  and , the vector should be preliminarily 
deleted by decremental learning procedure should be as [24]. 

7 Suggestions on the Method Implementation 

Additionally, even despite the given method is not ‘evolving’ but ‘online’, as it does 
not discard the previous data samples, the decremental learning procedure can be 
proposed, as the incremental procedure for SVM is reversible. The following simplest 
method can be considered: 

─ for each sample , update its within-class typicality  ; 
─ inspect all the samples which appeared in the train sequence up to the newest ele-

ment :  , … , … , . If their typicality is lower than some given 
threshold , we can state, that the sample should be rejected. 

─ For the sample set elements to be rejected, perform decremental learning, analo-
gous to that described in [24]. 

Using this modification, we can employ all the benefits of evolving systems, such as 
possibility to adopt to the changes on the data neglecting those patterns that appeared 
long ago, but base it on the SVM framework, rather than fuzzy systems or neural 
networks. Usage of the SVM framework, instead of fuzzy rule-based evolving sys-
tems, gives us an opportunity of using strict optimisation problem statements, which 
gives benefits of better generalisation of the method.   

8 Demonstrations for the Experimental Data 

For the proof of concept, an example of human activities images classification was 
provided (Fig. 1, data set [25]). The feature transformation method was exactly bor-
rowed from the previous research described in [13] and is composed from Haar and 
gist [26] features. 
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Fig. 1. Human activities data samples 

 

Fig. 2. Results of the recognition for different methods (left picture is SVM with histogram 
intersection kernel, accuracy rate is 79%, right picture is SVM with TEDA kernel, combined 
with histogram intersection kernel, and TEDA box constraints, accuracy rate is 81%). 

For the experiments, the following methods were compared: 

─ SVM with Gaussian kernel with 34.4725,  30. 
─ SVM with TEDA kernel, combined with Gaussian kernel, with 34.4725, 2,   30, and TEDA weights. 
Here the Gaussian kernel is  , exp / 2 . (45)

In contrast to Gaussian distribution probability density, the multiplier is neglected, 
just because the solution will be the same for any constant. 

By TEDA kernel combined with Gaussian kernel we denote 

TEDA ,  , .  (46)

No other modifications are introduced into the model except the TEDA kernel and 
TEDA weights.  Therefore, we suppose that the improvement in the kernel and box 
variables leads to the increase of the quality of the recognition. 

The training data set contains 200 items, 40 images for each of the classes. The 
testing data set consists of 100 items, 20 images per class. Although the method was 
initially designed for handwritten symbol images, it can be also applied to describe 
any other images as well. 
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The results are given as it is depicted in Fig. 2. On the left part of the image, the re-
sults for Gaussian kernel are proposed. At the right part of the image, SVM was  
augmented with TEDA ‘box constraints’ and uses TEDA kernel, combined with 
Gaussian kernel. One can see, that the results were (slightly) improved. However, the 
method has more perspectives, as it makes the model more flexible giving different 
values to the ‘box constraints’ and enabling kernel learning ‘from scratch’. 

9 Conclusion 

In this paper, the new modification of the SVM with slack variables for classification 
was proposed which changes slack variables independently for each of the data sam-
ples taking into account the ‘typicality’ of each data sample and forcing more ‘anoma-
lous’ data to be misclassified sooner than typical ones. For this purpose, the novel 
‘box constraints’ update model was developed based on the recently proposed TEDA 
framework, and the novel learnable kernels based on TEDA and RDE were proposed. 
The incremental SVM was modified to take into account changes of the box variables 
during the training process, as well as learnable kernels. Though the model, proposed 
here, is not evolving yet, the ideas were described how to make the model ‘evolving’. 
In the experimental section, a few examples were given to approve the ideas of SVM 
with new learnable box constraints.  
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