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In memory of Alexey Chervonenkis



Preface

This volume contains the Proceedings of the Third Symposium on Statistical Learn-
ing and Data Sciences, which was held at Royal Holloway, University of London, UK,
during April 20–23, 2015. The original idea of the Symposium on Statistical Learning
and Data Sciences is due to two French academics – Professors Mireille Gettler Summa
and Myriam Touati – from Paris Dauphine University. Back in 2009 they thought that
a “bridge” was required between various academic groups that were involved in re-
search on Machine Learning, Statistical Inference, Pattern Recognition, Data Mining,
Data Analysis, and so on; a sort of multilayer bridge to connect those fields. This is
reflected in the symposium logo with the Passerelle Simone-de-Beauvoir bridge. The
idea was implemented and the First Symposium on Statistical Learning and Data Sci-
ences was held in Paris in 2009. The event was indeed a great “bridge” between vari-
ous communities with interesting talks by J.-P. Benzecri, V. Vapnik, A. Chervonenkis,
D. Hand, L. Bottou, and many others. Papers based on those talks were later presented
in a volume of the Modulad journal and separately in a post-symposium book entitled
Statistical Learning and Data Sciences, published by Chapman & Hall, CRC Press. The
second symposium, which was equally successful, was held in Florence, Italy, in 2012.

Over the last 6 years since the first symposium, the progress in the theory and appli-
cations of learning and data mining has been very impressive. In particular, the arrival of
technologies for collecting huge amounts of data has raised many new questions about
how to store it and what type of analytics are able to handle it – what is now known
as Big Data. Indeed, the sheer scale of the data is very impressive – for example, the
Large Hadron Collider computers have to store 15 petabytes a year (1 petabyte = 1015

bytes). Obviously, handling this requires the usage of distributed clusters of computers,
streaming, parallel processing, and other technologies. This volume is concerned with
various modern techniques, some of which could be very useful for handling Big Data.

The volume is divided into five parts. The first part is devoted to two invited pa-
pers by Vladimir Vapnik. The first paper, “Learning with Intelligent Teacher: Similarity
Control and Knowledge Transfer,” is a further development of his research on learning
with privileged information, with a special attention to the knowledge representation
problem. The second, “Statistical Inference Problems and their Rigorous Solutions,”
suggests a novel approach to pattern recognition and regression estimation. Both pa-
pers promise to become milestones in the developing field of statistical learning.

The second part consists of 16 papers that were accepted for presentation at the
main event, while the other three parts reflect new research in important areas of statis-
tical learning to which the symposium devoted special sessions. Specifically the special
sessions included in the symposium’s program were:

– Special Session on Conformal Prediction and its Applications (CoPA 2015), or-
ganized by Harris Papadopoulos (Frederick University, Cyprus), Alexander Gam-
merman (Royal Holloway, University of London, UK), and Vladimir Vovk (Royal
Holloway, University of London, UK).



VIII Preface

– Special Session on New Frontiers in Data Analysis for Nuclear Fusion, organized
by Jesus Vega (Asociacion EURATOM/CIEMAT para Fusion, Spain).

– Special Session on Geometric Data Analysis, organized by Fionn Murtagh (Gold-
smith College London, UK).

Overall, 36 papers were accepted for presentation at the symposium after being re-
viewed by at least two independent academic referees. The authors of these papers
come from 17 different countries, namely: Brazil, Canada, Chile, China, Cyprus, Fin-
land, France, Germany, Greece, Hungary, India, Italy, Russia, Spain, Sweden, UK, and
USA.

A special session at the symposium was devoted to the life and work of Alexey
Chervonenkis, who tragically died in September 2014. He was one of the founders of
modern Machine Learning, a beloved colleague and friend. All his life he was connected
with the Institute of Control Problems in Moscow, over the last 15 years he worked at
Royal Holloway, University of London, while over the last 7 years he also worked
for the Yandex Internet company in Moscow. This special session included talks in
memory of Alexey by Vladimir Vapnik – his long standing colleague and friend – and
by Alexey’s former students and colleagues.

We are very grateful to the Program and Organizing Committees, the success of the
symposium would have been impossible without their hard work. We are indebted to the
sponsors: the Royal Statistical Society, the British Computer Society, the British Classi-
fication Society, Royal Holloway, University of London, and Paris Dauphine University.
Our special thanks to Yandex for their help and support in organizing the symposium
and the special session in memory of Alexey Chervonenkis. This volume of the pro-
ceedings of the symposium is also dedicated to his memory. Rest in peace, dear friend.

February 2015 Alexander Gammerman
Vladimir Vovk

Harris Papadopoulos
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Learning with Intelligent Teacher:
Similarity Control and Knowledge Transfer

In memory of Alexey Chervonenkis

Vladimir Vapnik1,2(B) and Rauf Izmailov3

1 Columbia University, New York, NY, USA
vladimir.vapnik@gmail.com

2 AI Research Lab, Facebook, New York, NY, USA
3 Applied Communication Sciences, Basking Ridge, NJ, USA

rizmailov@appcomsci.com

Abstract. This paper introduces an advanced setting of machine learn-
ing problem in which an Intelligent Teacher is involved. During train-
ing stage, Intelligent Teacher provides Student with information that
contains, along with classification of each example, additional privileged
information (explanation) of this example. The paper describes two mech-
anisms that can be used for significantly accelerating the speed of Stu-
dent’s training: (1) correction of Student’s concepts of similarity between
examples, and (2) direct Teacher-Student knowledge transfer.

Keywords: Intelligent teacher · Privileged information · Similarity con-
trol · Knowledge transfer · Knowledge representation · Frames · Support
vector machines · SVM+ · Classification · Learning theory · Kernel func-
tions · Similarity functions · Regression

1 Introduction

During the last fifty years, a strong machine learning theory has been developed.
This theory (see [21], [18], [19], [5]) includes:

– The necessary and sufficient conditions for consistency of learning processes.
– The bounds on the rate of convergence, which, in general, cannot be improved.
– The new inductive principle of Structural Risk Minimization (SRM), which

always achieves the smallest risk.
– The effective algorithms (such as Support Vector Machines (SVM)), that

realize the consistency property of SRM principle.

This material is based upon work partially supported by AFRL and DARPA under
contract FA8750-14-C-0008. Any opinions, findings and / or conclusions in this mate-
rial are those of the authors and do not necessarily reflect the views of AFRL and
DARPA.

c© Springer International Publishing Switzerland 2015
A. Gammerman et al. (Eds.): SLDS 2015, LNAI 9047, pp. 3–32, 2015.
DOI: 10.1007/978-3-319-17091-6 1



4 V. Vapnik and R. Izmailov

The general learning theory appeared to be completed: it addressed almost
all standard questions of the statistical theory of inference. However, as always,
the devil is in the detail: it is a common belief that human students require far
fewer training examples than any learning machine. Why?

We are trying to answer this question by noting that a human Student has an
Intelligent Teacher1 and that Teacher-Student interactions are based not only on
brute force methods of function estimation. In this paper, we show that Teacher-
Student interactions are also based on special mechanisms that can significantly
accelerate the learning process. In order for a learning machine to use fewer
observations, it has to use these mechanisms as well.

This paper considers the model of learning that includes the so-called Intel-
ligent Teacher, who supplies Student with intelligent (privileged) information
during training session. This is in contrast to the classical model, where Teacher
supplies Student only with outcome y for event x.

Privileged information exists for almost any learning problem and this infor-
mation can significantly accelerate the learning process.

2 Learning with Intelligent Teacher: Privileged
Information

The existing machine learning paradigm considers a simple scheme: given a set
of training examples, find, in a given set of functions, the one that approximates
the unknown decision rule in the best possible way. In such a paradigm, Teacher
does not play an important role.

In human learning, however, the role of Teacher is important: along with
examples, Teacher provides students with explanations, comments, comparisons,
metaphors, and so on. In this paper, we include elements of human learning into
classical machine learning paradigm. We consider a learning paradigm called
Learning Using Privileged Information (LUPI), where, at the training stage,
Teacher provides additional information x∗ about training example x.

The crucial point in this paradigm is that the privileged information is avail-
able only at the training stage (when Teacher interacts with Student) and is
not available at the test stage (when Student operates without supervision of
Teacher).

In this paper, we consider two mechanisms of Teacher–Student interactions
in the framework of the LUPI paradigm:

1. The mechanism to control Student’s concept of similarity between training
examples.
2. The mechanism to transfer knowledge from the space of privileged infor-
mation (space of Teacher’s explanations) to the space where decision rule is
constructed.

1 Japanese proverb assesses teacher’s influence as follows: “better than a thousand
days of diligent study is one day with a great teacher.”
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The first mechanism [20] was introduced in 2006, and here we are mostly
reproduce results obtained in [22]. The second mechanism is introduced in this
paper for the first time.

2.1 Classical Model of Learning

Formally, the classical paradigm of machine learning is described as follows: given
a set of iid pairs (training data)

(x1, y1), ..., (x�, y�), xi ∈ X, yi ∈ {−1,+1}, (1)

generated according to a fixed but unknown probability measure P (x, y), find,
in a given set of indicator functions f(x, α), α ∈ Λ, the function y = f(x, α∗)
that minimizes the probability of incorrect classifications (incorrect values of
y ∈ {−1,+1}). In this model, each vector xi ∈ X is a description of an example
generated by Nature according to an unknown generator P (x) of random vectors
xi, and yi ∈ {−1,+1} is its classification defined according to a conditional
probability P (y|x). The goal of Learning Machine is to find the function y =
f(x, α∗) that guarantees the smallest probability of incorrect classifications. That
is, the goal is to find the function which minimizes the risk functional

R(α) =
1
2

∫
|y − f(x, α)|dP (x, y), (2)

in the given set of indicator functions f(x, α), α ∈ Λ when the probability
measure P (x, y) = P (y|x)P (x) is unknown but training data (1) are given.

2.2 LUPI Model of Learning

The LUPI paradigm describes a more complex model: given a set of iid triplets

(x1, x
∗
1, y1), ..., (x�, x

∗
� , y�), xi ∈ X, x∗

i ∈ X∗, yi ∈ {−1,+1}, (3)

generated according to a fixed but unknown probability measure P (x, x∗, y), find,
in a given set of indicator functions f(x, α), α ∈ Λ, the function y = f(x, α∗)
that guarantees the smallest probability of incorrect classifications (2).

In the LUPI paradigm, we have exactly the same goal of minimizing (2) as in
the classical paradigm, i.e., to find the best classification function in the admis-
sible set. However, during the training stage, we have more information, i.e., we
have triplets (x, x∗, y) instead of pairs (x, y) as in the classical paradigm. The
additional information x∗ ∈ X∗ belongs to space X∗ which is, generally speaking,
different from X. For any element xi of training example generated by Nature,
Intelligent Teacher generates both its label yi and the privileged information x∗

i

using some unknown conditional probability function P (x∗
i , yi|xi).

Since the additional information is available only for the training set and
is not available for the test set, it is called privileged information and the new
machine learning paradigm is called Learning Using Privileged Information.
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Next, we consider three examples of privileged information that could be
generated by Intelligent Teacher.

Example 1. Suppose that our goal is to find a rule that predicts the outcome y
of a surgery in three weeks after it, based on information x available before the
surgery. In order to find the rule in the classical paradigm, we use pairs (xi, yi)
from past patients.

However, for past patients, there is also additional information x∗ about pro-
cedures and complications during surgery, development of symptoms in one or two
weeks after surgery, and so on. Although this information is not available before
surgery, it does exist in historical data and thus can be used as privileged informa-
tion in order to construct a rule that is better than the one obtained without using
that information. The issue is how large an improvement can be achieved.

Example 2. Let our goal be to find a rule y = f(x) to classify biopsy images
x into two categories y: cancer (y = +1) and non-cancer (y = −1). Here images
are in a pixel space X, and the classification rule has to be in the same space.
However, the standard diagnostic procedure also includes a pathologist’s report
x∗ that describes his/her impression about the image in a high-level holistic
language X∗ (for example, “aggressive proliferation of cells of type A among
cells of type B” etc.).

The problem is to use images x along with the pathologist’s reports x∗ as a
privileged information in order to make a better classification rule just in pixel
space X: classification by a pathologist is a difficult and time-consuming pro-
cedure, so fast decisions during surgery should be made automatically, without
consulting a pathologist.

Example 3. Let our goal be to predict the direction of the exchange rate of
a currency at the moment t. In this problem, we have observations about the
exchange rates before t, and we would like to predict if the rate will go up or
down at the moment t + Δ. However, in the historical market data we also have
observations about exchange rates after moment t. Can this future-in-the-past
privileged information be used for construction of a better prediction rule?

To summarize, privileged information is ubiquitous: it usually exists for
almost all machine learning problems.

In Section 4, we describe a mechanism that allows one to take advantage of
privileged information by controlling Student’s concepts of similarity between
training examples. However, we first describe statistical properties enabling the
use of privileged information.

3 Statistical Analysis of the Rate of Convergence

According to the bounds developed in the VC theory [21], [19], the rate of
convergence depends on two factors: how well the classification rule separates
the training data

(x1, y1), ..., (x�, y�), x ∈ Rn, y ∈ {−1,+1} (4)

and the VC dimension of the set of functions in which the rule is selected.
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The theory has two distinct cases:

1. Separable case: there exists a function f(x, α�) in the set of functions
f(x, α), α ∈ Λ that separates the training data (4) without errors:

yif(xi, α�) > 0 ∀i = 1, ..., �.

In this case, the function f(x, α�) that minimizes the empirical risk (on
training set (4)) with probability 1 − η has the bound

p(yf(x, α�) ≤ 0) < O∗
(

h − ln η

�

)
,

where p(yf(x, α�) ≤ 0) is the probability of error for the function f(x, α�)
and h is VC dimension of the admissible set of functions. Here O∗ denotes
order of magnitude up to logarithmic factor.

2. Non-separable case: there is no function in f(x, α), α ∈ Λ that can sep-
arate data (4) without errors. Let f(x, α�) be a function that minimizes
the number of errors on (4). Let ν(α�) be the error rate on training data
(4). Then, according to the VC theory, the following bound holds true with
probability 1 − η:

p(yf(x, α�) ≤ 0) < ν(α�) + O∗
(√

h − ln η

�

)
.

In other words, in the separable case, the rate of convergence has the order of
magnitude 1/�; in the non-separable case, the order of magnitude is 1/

√
�. The

difference between these rates2 is huge: the same order of bounds requires 320
training examples versus 100,000 examples. Why do we have such a large gap?

3.1 Key Observation: SVM with Oracle Teacher

Let us try to understand why convergence rates for SVMs differ so much for
separable and non-separable cases. Consider two versions of the SVM method
for these cases.

In the separable case, SVM constructs (in space Z which we, for simplicity,
consider as an N -dimensional vector space RN ) a maximum margin separating
hyperplane. Specifically, in the separable case, SVM minimizes the functional

T (w) = (w,w)

subject to the constraints

(yi(w, zi) + b) ≥ 1, ∀i = 1, ..., �;

2 The VC theory also gives more accurate estimate of the rate of convergence; however,
the difference remains essentially the same.
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while in the non-separable case, SVM minimizes the functional

T (w) = (w,w) + C
�∑

i=1

ξi

subject to the constraints

(yi(w, zi) + b) ≥ 1 − ξi, ξi ≥ 0, ∀i = 1, ..., �.

That is, in the separable case, SVM uses � observations for estimation of N
coordinates of vector w, while in the nonseparable case, SVM uses � observations
for estimation of N + � parameters: N coordinates of vector w and � values of
slacks ξi. Thus, in the non-separable case, the number N + � of parameters to be
estimated is always larger than the number � of observations; it does not matter
here that most of slacks will be equal to zero: SVM still has to estimate all � of
them. Our guess is that the difference between the corresponding convergence
rates is due to the number of parameters SVM has to estimate.

To confirm this guess, consider the SVM with Oracle Teacher (Oracle SVM).
Suppose that Teacher can supply Student with the values of slacks as privileged
information: during training session, Teacher supplies triplets

(x1, ξ
0
1 , y1), ..., (x�, ξ

0
� , y�)

where ξ0i , i = 1, ..., � are the slacks for the Bayesian decision rule. Therefore, in
order to construct the desired rule using these triplets, the SVM has to maximize
the functional

T (w) = (w,w)

subject to the constraints

(yi(w, zi) + b) ≥ ri, ∀i = 1, ..., �,

where we have denoted

ri = 1 − ξ0i , ∀i = 1, ..., �.

One can show that the rate of convergence is equal to O∗(1/�) for Oracle SVM.
The following (slightly more general) proposition holds true [22].

Proposition 1. Let f(x, α0) be a function from the set of indicator functions
f(x, α), α ∈ Λ with VC dimension h that minimizes the frequency of errors
(on this set) and let

ξ0i = max{0, (1 − f(xi, α0))}, ∀i = 1, ..., �.

Then the error probability p(α�) for the function f(x, α�) that satisfies the
constraints

yif(x, α) ≥ 1 − ξ0i , ∀i = 1, ..., �

is bounded, with probability 1 − η, as follows:

p(α�) ≤ P (1 − ξ0 < 0) + O∗
(

h − ln η

�

)
.
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Fig. 1. Comparison of Oracle SVM and standard SVM

That is, for Oracle SVM, the rate of convergence is 1/� even in the non-separable
case. Figure 1 illustrates this: the left half of the figure shows synthetic data
for a binary classification problem using the set of linear rules with Bayesian
rule having error rate 12% (the diagonal), while the right half of the figure
illustrates the rates of convergence for standard SVM and Oracle SVM. While
both converge to the Bayesian solution, Oracle SVM does it much faster.

3.2 From Ideal Oracle to Real Intelligent Teacher

Of course, real Intelligent Teacher cannot supply slacks: Teacher does not know
them. Instead, Intelligent Teacher, can do something else, namely:

1. define a space X∗ of (correcting) slack functions (it can be different from
the space X of decision functions);
2. define a set of real-valued slack functions f∗(x∗, α∗), x∗ ∈ X∗, α∗ ∈ Λ∗

with VC dimension h∗, where approximations

ξi = f∗(x, α∗)

of the slack functions3 are selected;
3. generate privileged information for training examples supplying Student,
instead of pairs (4), with triplets

(x1, x
∗
1, y1), ..., (x�, x

∗
� , y�). (5)

3 Note that slacks ξi introduced for the SVM method can be considered as a realization
of some function ξ = ξ(x, β0) from a large set of functions (with infinite VC dimen-
sion). Therefore, generally speaking, the classical SVM approach can be viewed as
estimation of two functions: (1) the decision function, and (2) the slack function,
where these functions are selected from two different sets, with finite and infinite
VC dimension, respectively. Here we consider two sets with finite VC dimensions.
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During training session, the algorithm has to simultaneously estimate two func-
tions using triplets (5): the decision function f(x, α�) and the slack function
f∗(x∗, α∗). In other words, the method minimizes the functional

T (α∗) =
�∑

i=1

max{0, f∗(x∗
i , α

∗)} (6)

subject to the constraints

yif(xi, α) > −f∗(x∗
i , α

∗), i = 1, ..., �. (7)

Let f(x, α�) be a function that solves this optimization problem. For this
function, the following proposition holds true [22].

Proposition 2. The solution f(x, α�) of optimization problem (6), (7) sat-
isfies the bounds

P (yf(x, α�) < 0) ≤ P (f∗(x∗, α∗
� ) ≥ 0) + O∗

(
h + h∗ − ln η

�

)

with probability 1 − η, where h and h∗ are the VC dimensions of the set
of decision functions f(x, α), α ∈ Λ and the set of correcting functions
f∗(x∗, α∗), α∗ ∈ Λ∗, respectively,

According to Proposition 2, in order to estimate the rate of convergence
to the best possible decision rule (in space X) one needs to estimate the rate
of convergence of P{f∗(x∗, α∗

� ) ≥ 0} to P{f∗(x∗, α∗
0) ≥ 0} for the best rule

f∗(x∗, α∗
0) in space X∗. Note that both the space X∗ and the set of functions

f∗(x∗, α∗), α∗ ∈ Λ∗ are suggested by Intelligent Teacher that tries to choose
them in a way that facilitates a fast rate of convergence. The guess is that a
really Intelligent Teacher can indeed do that.

As shown in the VC theory, in standard situations, the uniform convergence
has the order O(

√
h∗/�), where h∗ is the VC dimension of the admissible set of

correcting functions f∗(x∗, α∗), α∗ ∈ Λ∗. However, for special privileged space
X∗ and corresponding functions f∗(x∗, α∗), α∗ ∈ Λ∗ (for example, those that
satisfy the conditions defined by Tsybakov [15] or the conditions defined by
Steinwart and Scovel [17]), the convergence can be faster (as O([1/�]δ), δ > 1/2).

A well-selected privileged information space X∗ and Teacher’s explanation
P (x∗, y|x) along with sets f(x, α�), α ∈ Λ and f∗(x∗, α∗), α∗ ∈ Λ∗ engender a
convergence that is faster than the standard one. The skill of Intelligent Teacher
is being able to select of the proper space X∗, generator P (x∗, y|x), set of func-
tions f(x, α�), α ∈ Λ, and set of functions f∗(x∗, α∗), α∗ ∈ Λ∗: that is what
differentiates good teachers from poor ones.

4 SVM+ for Similarity Control in LUPI Paradigm

In this section, we extend SVM to the method called SVM+, which allows one
to solve machine learning problems in the LUPI paradigm [22].
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Consider again the model of learning with Intelligent Teacher: given triplets

(x1, x
∗
1, y1), ..., (x�, x

∗
� , y�),

find in the given set of functions the one that minimizes the probability of
incorrect classifications.4

As in standard SVM, we map vectors xi ∈ X onto the elements zi of the
Hilbert space Z, and map vectors x∗

i onto elements z∗
i of another Hilbert space

Z∗ obtaining triples
(z1, z∗

1 , y1), ..., (z�, z
∗
� , y�).

Let the inner product in space Z be (zi, zj), and the inner product in space Z∗

be (z∗
i , z∗

j ).
Consider the set of decision functions in the form

f(x) = (w, z) + b,

where w is an element in Z, and consider the set of correcting functions in the
form

f∗(x∗) = (w∗, z∗) + b∗,

where w∗ is an element in Z∗. In SVM+, the goal is to minimize the functional

T (w,w∗, b, b∗) =
1
2
[(w,w) + γ(w∗, w∗)] + C

�∑
i=1

[(w∗, z∗
i ) + b∗]+

subject to the linear constraints

yi((w, zi) + b) ≥ 1 − ((w∗, z∗) + b∗), i = 1, ..., �,

where [u]+ = max{0, u}.
The structure of this problem mirrors the structure of the primal problem

for standard SVM, while containing one additional parameter γ > 0.
To find the solution of this optimization problem, we use the equivalent

setting: we minimize the functional

T (w,w∗, b, b∗) =
1
2
[(w,w) + γ(w∗, w∗)] + C

�∑
i=1

[(w∗, z∗
i ) + b∗ + ζi] (8)

subject to constraints

yi((w, zi) + b) ≥ 1 − ((w∗, z∗) + b∗), i = 1, ..., �, (9)

and
(w∗, z∗

i ) + b∗ + ζi ≥ 0, ∀i = 1, ..., � (10)

4 In [22], the case of privileged information being available only for a subset of examples
is considered: specifically, for examples with non-zero values of slack variables.
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and
ζi ≥ 0, ∀i = 1, ..., �. (11)

To minimize the functional (8) subject to the constraints (10), (11), we construct
the Lagrangian

L(w, b, w∗, b∗, α, β) = (12)

1
2
[(w,w) + γ(w∗, w∗)] + C

�∑
i=1

[(w∗, z∗
i ) + b∗ + ζi] −

�∑
i=1

νiζi −

�∑
i=1

αi [yi[(w, zi) + b] − 1 + [(w∗, z∗
i ) + b∗]] −

�∑
i=1

βi[(w∗, z∗
i ) + b∗ + ζi],

where αi ≥ 0, βi ≥ 0, νi ≥ 0, i = 1, ..., � are Lagrange multipliers.
To find the solution of our quadratic optimization problem, we have to find

the saddle point of the Lagrangian (the minimum with respect to w,w∗, b, b∗

and the maximum with respect to αi, βi, νi, i = 1, ..., �).
The necessary conditions for minimum of (12) are

∂L(w, b, w∗, b∗, α, β)
∂w

= 0 =⇒ w =
�∑

i=1

αiyizi (13)

∂L(w, b, w∗, b∗, α, β)
∂w∗ = 0 =⇒ w∗ =

1
γ

�∑
i=1

(αi + βi − C)z∗
i (14)

∂L(w, b, w∗, b∗, α, β)
∂b

= 0 =⇒
�∑

i=1

αiyi = 0 (15)

∂L(w, b, w∗, b∗, α, β)
∂b∗ = 0 =⇒

�∑
i=1

(αi − βi) = 0 (16)

∂L(w, b, w∗, b∗, α, β)
∂ζi

= 0 =⇒ βi + νi = C (17)

Substituting the expressions (13) in (12) and, taking into account (14), (15),
(16), and denoting δi = C − βi, we obtain the functional

L(α, δ) =
�∑

i=1

αi − 1
2

�∑
i,j=1

(zi, zj)yiyjαiαj − 1
2γ

�∑
i,j=1

(αi − δi)(αj − δj)(z∗
i , z∗

j ).

To find its saddle point, we have to maximize it subject to the constraints

�∑
i=1

yiαi = 0 (18)
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�∑
i=1

αi =
�∑

i=1

δi (19)

0 ≤ δi ≤ C, i = 1, ..., � (20)

αi ≥ 0, i = 1, ..., � (21)

Let vectors α0, δ0 be the solution of this optimization problem. Then, according
to (13) and (14), one can find the approximation to the desired decision function

f(x) = (w0, zi) + b =
�∑

i=1

α∗
i (zi, z) + b

and to the slack function

f∗(x∗) = (w∗
0 , z

∗
i ) + b∗ =

�∑
i=1

(α0
i − δ0i )(z∗

i , z∗) + b∗

The Karush-Kuhn-Tacker conditions for this problem are
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

α0
i [yi[(w0, zi) + b] − 1 + [(w∗

0 , z
∗
i ) + b∗]] = 0

(C − δ0i )[(w∗
0 , z

∗
i ) + b∗ + ζi] = 0

ν0
i ζi = 0

Using these conditions, one obtains the value of constant b as

b = 1 − yk(w0, zk) = 1 − yk

[
�∑

i=1

α0
i (zi, zk)

]
,

where (zk, z∗
k, yk) is a triplet for which α0

k 	= 0 and δ0k 	= C.
As in standard SVM, we use the inner product (zi, zj) in space Z in the form

of Mercer kernel K(xi, xj) and inner product (z∗
i , z∗

j ) in space Z∗ in the form
of Mercer kernel K∗(x∗

i , x
∗
j ). Using these notations, we can rewrite the SVM+

method as follows: the decision rule in X space has the form

f(x) =
�∑

i=1

yiα
0
i K(xi, x) + b,

where K(·, ·) is the Mercer kernel that defines the inner product for the image
space Z of space X (kernel K∗(·, ·) for the image space Z∗ of space X∗) and α0 is
a solution of the following dual space quadratic optimization problem: maximize
the functional

L(α, δ) =
�∑

i=1

αi−
1
2

�∑
i,j=1

yiyjαiαjK(xi, xj)−
1
2γ

�∑
i,j=1

(αi−δi)(αj −δj)K∗(x∗
i , x

∗
j )

(22)
subject to constraints (18) – (21).
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Remark. In the special case δi = αi, our optimization problem becomes equiva-
lent to the standard SVM optimization problem, which maximizes the functional

L(α, δ) =
�∑

i=1

αi − 1
2

�∑
i,j=1

yiyjαiαjK(xi, xj)

subject to constraints (18) – (21) where δi = αi.
Therefore, the difference between SVM+ and SVM solutions is defined by

the last term in objective function (22). In SVM method, the solution depends
only on the values of pairwise similarities between training vectors defined by the
Gram matrix K of elements K(xi, xj) (which defines similarity between vectors
xi and xj). The SVM+ solution is defined by objective function (22) that uses
two expressions of similarities between observations: one (xi and xj) that comes
from space X and another one (x∗

i and x∗
j ) that comes from space of privileged

information X∗. That is, Intelligent Teacher changes the optimal solution by
correcting concepts of similarity.

The last term in equation (22) defines the instrument for Intelligent Teacher
to control the concept of similarity of Student.

To find value of b, one has to find a sample (xk, x∗
k, yk) for which αk > 0, δk <

C and compute

b = 1 − yk

[
�∑

i=1

yiαiK(xi, xk)

]
.

Efficient computational implementation of this SVM+ algorithm for classifi-
cation and its extension for regression can be found in [14] and [22], respectively.

5 Three Examples of Similarity Control Using Privileged
Information

In this section, we describe three different types of privileged information
(advanced technical model, future events, holistic description), used in similarity
control setting [22].

5.1 Advanced Technical Model as Privileged Information

Homology classification of proteins is a hard problem in bioinformatics. Experts
usually rely on hierarchical schemes leveraging molecular 3D-structures, which
are expensive and time-consuming (if at all possible) to obtain. The alternative
information on amino-acid sequences of proteins can be collected relatively easily,
but its correlation with 3D-level homology is often poor (see Figure 2). The
practical problem is thus to construct a rule for classification of proteins based
on their amino-acid sequences as standard information, while using available
molecular 3D-structures as privileged information.
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Fig. 2. 3D-structures and amino-acid sequences of proteins

Fig. 3. Comparison of SVM and SVM+ error rates

Since SVM has been successfully used [8], [9] to construct protein classification
rules based on amino-acid sequences, the natural next step was to see what perfor-
mance improvement can be obtained by using 3D-structures as privileged infor-
mation and applying SVM+ method of similarity control. The experiments used
SCOP (Structural Classification of Proteins) database [11], containing amino-acid
sequences and their hierarchical organization, and PDB (Protein Data Bank) [2],
containing 3D-structures for SCOP sequences. The classification goal was to deter-
mine homology based on protein amino-acid sequences from 80 superfamilies (3rd
level of hierarchy) with the largest number of sequences. Similarity between amino-
acid sequences (standard space) and 3D-structures (privileged space) was com-
puted using the profile-kernel [8] and MAMMOTH [13], respectively.



16 V. Vapnik and R. Izmailov

Standard SVM classification based on 3D molecular structure had an error
rate smaller than 5% for almost any of 80 problems, while SVM classification
using protein sequences gave much worse results (in some cases, the error rate
was up to 40%).

Figure 3 displays comparison of SVM and SVM+ with 3D privileged infor-
mation. It shows that SVM+ never performed worse than SVM. In 11 cases it
gave exactly the same result, while in 22 cases its error was reduced by more
than 2.5 times. Why does the performance vary so much? The answer lies in
the nature of the problem. For example, both diamond and graphite consist of
the same chemical element, carbon, but they have different molecular structures.
Therefore, one can only tell them apart using their 3D structures.

5.2 Future Events as Privileged Information

Time series prediction is used in many statistical applications: given historical
information about the values of time series up to moment t, predict the value
(qualitative setting) or the deviation direction (positive or negative; quantitative
setting) at the moment t + Δ.

One of benchmark time series for prediction algorithms is the quasi-chaotic
(and thus difficult to predict) Mackey-Glass time series, which is the solution of
the equation [10], [4]

dx(t)
dt

= −ax(t) +
bx(t − τ)

1 + x10(t − τ)
.

Here a, b, and τ (delay) are parameters, usually assigned the values a = 0.1, b =
0.2, τ = 17 with initial condition x(τ) = 0.9.

The qualitative prediction setting (will the future value x(t+T ) be larger or
smaller than the current value x(t)?) for several lookahead values of T (specifi-
cally, T = 1, T = 5, T = 8) was used for comparing the error rates of SVM and
SVM+. The standard information was the vector xt = (x(t − 3), x(t − 2), x(t −
1), x(t)) of current observation and three previous ones, whereas the privileged
information was the vector x∗

t = (x(t+T −2), x(t+T −1), x(t+T +1), x(t+T +2))
of four future events.

The experiments covered various training sizes (from 100 to 500) and several
values of T (namely, T = 1, T = 5, and T = 8). In all the experiments, SVM+
consistently outperformed SVM, with margin of improvement being anywhere
between 30% and 60%; here the margin was defined as relative improvement
of error rate as compared to the (unattainable) performance of the specially
constructed Oracle SVM.

5.3 Holistic Description as Privileged Information

This example is an important one, since holistic privileged information is most
frequently used by Intelligent Teacher. In this example, we consider the problem
of classifying images of digits 5 and 8 in the MNIST database. This database
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Fig. 4. Sample MNIST digits ans their resized images

contains digits as 28*28 pixel images; there are 5,522 and 5,652 images of digits 5
and 8, respectively. Distinguishing between these two digits in 28*28 pixel space
is an easy problem. To make it more challenging, the images were resized to
10*10 pixels (examples are shown in Figure 4). A hundred examples of 10*10
images were randomly selected as a training set, another 4,000 images were used
as a validation set (for tuning the parameters in SVM and SVM+) and the
remaining 1,866 images constituted the test set.

For every training image, its holistic description was created (using natural
language). For example, the first image of 5 (see Figure 4) was described as
follows:

Not absolute two-part creature. Looks more like one impulse. As for two-

partness the head is a sharp tool and the bottom is round and flexible. As

for tools it is a man with a spear ready to throw it. Or a man is shooting an

arrow. He is firing the bazooka. He swung his arm, he drew back his arm and

is ready to strike. He is running. He is flying. He is looking ahead. He is swift.

He is throwing a spear ahead. He is dangerous. It is slanted to the right. Good

snaked-ness. The snake is attacking. It is going to jump and bite. It is free and

absolutely open to anything. It shows itself, no kidding. Its bottom only slightly

(one point!) is on earth. He is a sportsman and in the process of training.

The straight arrow and the smooth flexible body. This creature is contradictory

- angular part and slightly roundish part. The lashing whip (the rope with a

handle). A toe with a handle. It is an outside creature, not inside. Everything

is finite and open. Two open pockets, two available holes, two containers. A

piece of rope with a handle. Rather thick. No loops, no saltire. No hill at all.

Asymmetrical. No curlings.

The first image of 8 (Figure 4) was described as follows:

Two-part creature. Not very perfect infinite way. It has a deadlock, a blind

alley. There is a small right-hand head appendix, a small shoot. The right-

hand appendix. Two parts. A bit disproportionate. Almost equal. The upper
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one should be a bit smaller. The starboard list is quite right. It is normal like it

should be. The lower part is not very steady. This creature has a big head and

too small bottom for this head. It is nice in general but not very self-assured. A

rope with two loops which do not meet well. There is a small upper right-hand

tail. It does not look very neat. The rope is rather good - not very old, not very

thin, not very thick. It is rather like it should be. The sleeping snake which

did not hide the end of its tail. The rings are not very round - oblong - rather

thin oblong. It is calm. Standing. Criss-cross. The criss-cross upper angle is

rather sharp. Two criss-cross angles are equal. If a tool it is a lasso. Closed

absolutely. Not quite symmetrical (due to the horn).

These holistic descriptions were mapped into 21-dimensional feature vectors.
Examples of these features (with range of possible values) are: two-part-ness

(0 - 5); tilting to the right (0 - 3); aggressiveness (0 - 2); stability (0 - 3);

uniformity (0 - 3), and so on. The values of these features (in the order they
appear above) for the first 5 and 8 are [2, 1, 2, 0, 1], and [4, 1, 1, 0, 2], respec-
tively. Holistic descriptions and their mappings were created prior to the learning
process by an independent expert; all the datasets are publicly available at [12].

The goal was to construct a decision rule for classifying 10*10 pixel images in
the 100-dimensional standard pixel space X and to leverage the corresponding
21-dimensional vectors as the privileged space X∗. This idea was realized using
the SVM+ algorithm described in Section 4. For every training data size, 12
different random samples selected from the training data were used and the
average of test errors was calculated.

To understand how much information is contained in holistic descrip-
tions, 28*28 pixel digits (784-dimensional space) were used instead of the 21-
dimensional holistic descriptions in SVM+ (the results shown in Figure 5). In
this setting, when using 28*28 pixel description of digits, SVM+ performs worse
than SVM+ using holistic descriptions.

6 Transfer of Knowledge Obtained in Privileged
Information Space to Decision Space

In this section, we consider one of the most important mechanisms of Teacher-
Student interaction: using privileged information to transfer knowledge from
Teacher to Student.

Suppose that Intelligent Teacher has some knowledge about the solution of
a specific pattern recognition problem and would like to transfer this knowledge
to Student. For example, Teacher can reliably recognize cancer in biopsy images
(in a pixel space X) and would like to transfer this skill to Student.

Formally, this means that Teacher has some function y = f0(x) that distin-
guishes cancer (f0(x) = +1 for cancer and f0(x) = −1 for non-cancer) in the
pixel space X. Unfortunately, Teacher does not know this function explicitly (it
only exists as a neural net in Teacher’s brain), so how can Teacher transfer this
construction to Student? Below, we describe a possible mechanism for solving
this problem; we call this mechanism knowledge transfer.
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Fig. 5. Error rates for the digit recognition task

Suppose that Teacher believes in some theoretical model on which the knowl-
edge of Teacher is based. For cancer model, he or she believes that it is a result
of uncontrolled multiplication of the cancer cells (cells of type B) which replace
normal cells (cells of type A). Looking at a biopsy image, Teacher tries to gener-
ate privileged information that reflects his or her belief in development of such
s process; Teacher can holistically describe the image as:

Aggressive proliferation of cells of type B into cells of type A.

If there are no signs of cancer activity, Teacher may use the description

Absence of any dynamics in the of standard picture.

In uncertain cases, Teacher may write

There exist small clusters of abnormal cells of unclear origin.

In other words, Teacher is developing a special language that is appropriate
for description x∗

i of cancer development using the model he believes in. Using
this language, Teacher supplies Student with privileged information x∗

i for the
image xi by generating training triplets

(x1, x
∗
1, y1), ..., (x�, x

∗
� , y�). (23)

The first two elements of these triplets are descriptions of an image in two
languages: in language X (vectors xi in pixel space), and in language X∗ (vectors
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x∗
i in the space of privileged information), developed for Teacher’s understanding

of cancer model.
Note that the language of pixel space is universal (it can be used for descrip-

tion of many different visual objects; for example, in the pixel space, one can
distinguish between male and female faces), while the language used for describ-
ing privileged information is very specific: it reflects just a model of cancer
development. This has an important consequence: the set of admissible func-
tions in space X has to be rich (has a large VC dimension), while the the set of
admissible functions in space X∗ may be not rich (has a small VC dimension).

One can consider two related pattern recognition problems using triplets (23):

1. The problem of constructing a rule y = f(x) for classification of biopsy in
the pixel space X using data

(x1, y1), ..., (x�, y�). (24)

2. The problem of constructing a rule y = f∗(x∗) for classification of biopsy in
the space X∗ using data

(x∗
1, y1), ..., (x

∗
� , y�). (25)

Suppose that language X∗ is so good that it allows to create a rule y = f∗
� (x∗)

that classifies vectors x∗ corresponding to vectors x with the same level of accu-
racy as the best rule y = f�(x) for classifying data in the pixel space.5

Since the VC dimension of the admissible rules in a special space X∗ is much
smaller than the VC dimension of the admissible rules in the universal space
X and since, the number of examples � is the same in both cases, the bounds
on error rate for rule y = f∗

� (x∗) in X∗ will be better6 than those for the rule
y = f�(x) in X. That is, generally speaking, the classification rule y = f∗

� (x∗)
will be more accurate than classification rule y = f�(x).

The following problem arises: how one can use the knowledge of the rule
y = f∗

� (x∗) in space X∗ to improve the accuracy of the desired rule y = f�(x) in
space X?

6.1 Knowledge Representation

To answer this question, we formalize the concept of representation of the knowl-
edge about the rule y = f∗

� (x∗).
Suppose that we are looking for our rule in Reproducing Kernel Hilbert

Space (RKHS) associated with kernel K∗(x∗
i , x

∗). According to Representer The-
orem [7], [16], such rule has the form

f∗
� (x∗) =

�∑
i=1

γiK
∗(x∗

i , x
∗) + b, (26)

5 The rule constructed in space X∗ cannot be better than the best possible rule in
space X, since all information originates in space X.

6 According to VC theory, the guaranteed bound on accuracy of the chosen rule
depends only on two factors: frequency of errors on training set and VC dimen-
sion of admissible set of functions.
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where γi, i = 1, ..., � and b are parameters.
Suppose that, using data (25), we found a good rule (26) with coefficients γi =

γ∗
i , i = 1, ..., � and b = b∗. This is now our knowledge about our classification

problem. Let us formalize the description of this knowledge.
Consider three elements of knowledge representation used in AI [1]:

1. Fundamental elements of knowledge.
2. Frames (fragments) of the knowledge.
3. Structural connections of the frames (fragments) in the knowledge.

We call the fundamental elements of the knowledge the smallest number of
the vectors u∗

1...., u
∗
m from space X∗ that can approximate7 the main part of the

rule (26):

f∗
� (x∗) − b =

�∑
i=1

γ∗
i K∗(x∗

i , x
∗) ≈

m∑
k=1

β∗
kK∗(u∗

k, x∗). (27)

Let us call the functions K∗(u∗
k, x∗), k = 1, ...,m the frames (fragments) of

knowledge. Our knowledge

f∗
� (x∗) =

m∑
k=1

β∗
kK∗(u∗

k, x∗) + b

is defined as a linear combination of the frames.

6.2 Scheme of Knowledge Transfer Between Spaces

In the described terms, knowledge transfer from X∗ into X requires the following:

1. To find the fundamental elements of knowledge u∗
1, ..., u

∗
m in space X∗.

2. To find frames (m functions) K∗(u∗
1, x

∗), ...,K∗(u∗
m, x∗) in space X∗.

3. To find the functions φ1(x), ..., φm(x) in space X such that

φk(xi) ≈ K∗(u∗
k, x∗

i ) (28)

holds true for almost all pairs (xi, x
∗
i ) generated by Intelligent Teacher that

uses some (unknown) generator P (x∗, y|x).

Note that the capacity of the set of functions from which φk(x) are to be chosen
can be smaller than that of the capacity of the set of functions from which the
classification function y = f�(x) is chosen (function φk(x) approximates just one
fragment of knowledge, not the entire knowledge as function y = f∗

� (x∗), which
is a linear combination (27) of frames). Also, as we will see in the next section,
estimates of all the functions φ1(x), ..., φm(x) are done using different pairs as
training sets of the same size �. That is, our hope is that transfer of m fragments
of knowledge from space X∗ into space X can be done with higher accuracy
than estimating function y = f�(x) from data (24).

7 In machine learning, they are called the reduced number of support vectors [3].
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After finding approximation of frames in space X, the knowledge about the
rule obtained in space X∗ can be approximated in space X as

f�(x) ≈
m∑

k=1

δkφk(x) + b∗,

where coefficients δk = β∗
k (taken from (26)) if approximations (28) are accurate.

Otherwise, coefficients δk can be estimated from the training data, as shown in
Section 6.3.

Finding Fundamental Elements of Knowledge. Let our functions φ belong
to RKHS associated with the kernel K∗(x∗

i , x
∗), and let our knowledge be defined

by an SVM method in space X∗ with support vector coefficients αi. In order to
find the fundamental elements of knowledge, we have to minimize (over vectors
u∗
1, ..., u

∗
m and values β1, ..., βm) the functional

R(u∗
1, ..., u

∗
m;β1, ..., βm) = (29)

∣∣∣∣∣
∣∣∣∣∣

�∑
i=1

yiαiK
∗(x∗

i , x
∗) −

m∑
s=1

βsK
∗(u∗

s, x
∗)

∣∣∣∣∣
∣∣∣∣∣
2

RKGS

=

�∑
i,j=1

yiyjαiαjK
∗(x∗

i , x
∗
j ) − 2

�∑
i=1

m∑
s=1

yiαiβsK
∗(x∗

i , u
∗
s) +

m∑
s,t=1

βsβtK
∗(u∗

s, u
∗
t )

The last equality was derived from the following property of the inner product
for functions from RKHS [7], [16]:

(
K∗(x∗

i , x
∗),K(x∗

j , x
∗)

)
RKHS

= K∗(x∗
i , x

∗
j ).

Fundamental Elements of Knowledge for Homogenous Quadratic Ker-
nel. For general kernel functions K∗(·, ·), minimization of (29) is a difficult
computational problem. However, for the special homogenous quadratic kernel

K∗(x∗
i , x

∗
j ) = (x∗

i , x
∗
j )

2,

this problem has a simple exact solution [3]. For this kernel, we have

R =
�∑

i,j=1

yiyjαiαj(x∗
i , x

∗
j )

2−2
�∑

i=1

m∑
s=1

yiαiβs(x∗
i , u

∗
s)

2+
m∑

s,t=1

βsβt(u∗
s, u

∗
t )

2. (30)

Let us look for solution in set of orthonormal vectors u∗
i , ..., u

∗
m for which we can

rewrite (30) as follows

R̂ =
�∑

i,j=1

yiyjαiαj(x∗
i , x

∗
j )

2 − 2
�∑

i=1

m∑
j=1

yiαiβs(x∗
i , u

∗
s)

2 +
m∑

s=1

β2
s (u∗

s, u
∗
s)

2. (31)
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Taking derivative of R̂ over u∗
k, we obtain that the solutions u∗

k, k = 1, ...,m
have to satisfy the equations

dR̂

duk
= −2βk

�∑
i=1

yiαix
∗
i x

∗T
i u∗

k + 2β2
k(u∗

ku∗T
k )u∗

k = 0.

Introducing notation

S =
�∑

i=1

yiαix
∗
i x

∗T , (32)

we conclude that the solutions satisfy the equation

Su∗
k = βku∗

k, k = 1, ...,m.

That is, the solutions u∗
1, ..., u

∗
m are the set of eigenvectors of the matrix S corre-

sponding to non-zero eigenvalues β1, . . . , βm, which are coefficients of expansion
of the classification rule on the frames (uk, x∗)2, k = 1, . . . , m.

Using (32), one can rewrite the functional (31) in the form

R̂ = 1TS1 −
m∑

k=1

β2
k, (33)

where we have denoted by 1 the (� × 1)-dimensional matrix of ones.
Therefore, in order to find the fundamental elements of knowledge, one has

to solve the eigenvalue problem for (n×n)-dimensional matrix S and then select
an appropriate number m of eigenvectors corresponding to m eigenvalues with
largest absolute values. One chooses such value of m that makes functional (33)
small. The number m does not exceed n (the dimensionality of matrix S).

Finding Images of Frames in Space X. Let us call the conditional average
function

φk(x) =
∫

K∗(u∗
k, x∗)p(x∗|x) dx∗

the image of frame K∗(u∗
k, x∗) in space X. To find m image functions φk(x) of the

frames K(u∗
k, x∗), k = 1, ...,m in space X, we solve the following m regression

estimation problems: find the regression function φk(x) in X, k = 1, . . . , m, using
data

(x1,K
∗(u∗

k, x∗
1)), ..., (x�,K

∗(u∗
k, x∗

� )), k = 1, . . . , m, (34)

where pairs (xi, x
∗
i ) belong to elements of training triplets (23).

Therefore, using fundamental elements of knowledge u∗
1, ...u

∗
m in space X∗,

the corresponding frames K∗(u∗
1, x

∗), ...,K∗(u∗
m, x∗) in space X∗, and the train-

ing data (34), one constructs the transformation of the space X into m-
dimensional feature space

φ(x) = (φ1(x), ...φm(x)),

where k coordinates of vector function φ(x) are defined as φk = φk(x).
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6.3 Algorithms for Knowledge Transfer

1. Suppose that our regression functions can be estimated accurately: for a
sufficiently small ε > 0 the inequalities

|φk(xi) − K∗(u∗
k, x∗

i )| < ε, ∀k = 1, ...,m and ∀i = 1, ..., �

hold true for almost all pairs (xi, x
∗
i ) generated according to P (x, x∗, y). Then

the approximation of our knowledge in space X is

f(x) =
m∑

k=1

β∗
kφk(x) + b∗,

where β∗
k , k = 1, ...,m are eigenvalues corresponding to eigenvectors u∗

1, ..., u
∗
m.

2. If, however, ε is not too small, one can use privileged information to employ
both mechanisms of intelligent learning: controlling similarity between training
examples and knowledge transfer.

In order to describe this method, we denote by vector φi the m-dimensional
vector with coordinates

φi = (φ1(xi), ..., φm(xi))T .

Consider the following problem of intelligent learning: given training triplets

(φ1, x
∗
1, y1), ..., (φ�, x

∗
� , y�),

find the decision rule

f(φ(x)) =
�∑

i=1

yiα̂iK̂(φi, φ) + b. (35)

Using SVM+ algorithm described in Section 4, we can find the coefficients
of expansion α̂i in (35). They are defined by the maximum (over α̂ and δ) of the
functional

R(α̂, δ) =

�∑
i=1

α̂i − 1
2

�∑
i,j=1

yiyjα̂iα̂jK̂(φi, φj) − 1
2γ

�∑
i,j=1

yiyj(α̂i − δi)(α̂j − δj)K∗(x∗
i , x

∗
j )

subject to equality constraints

�∑
i=1

α̂iyi = 0,

�∑
i=1

α̂i =
�∑

i=1

δi
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and inequality constraints

α̂i ≥ 0, 0 ≤ δi ≤ C, i = 1, . . . , �

(see Section 4).

Remark. One can use different ideas to represent knowledge obtained in the
space X∗. The main factors of these representations are concepts of fundamen-
tal elements of the knowledge. They could be, for example, just the support
vectors or coordinates xt∗, t = 1, ..., d of d-dimensional privileged space X∗.
However, the fundamental elements defined above have some good properties:
for the quadratic kernel, the number m of fundamental elements does not exceed
the dimensionality of the space. Also, as was shown in multiple experiments with
digit recognition [3], in order to generate the same level of accuracy of the solu-
tion, it was sufficient to use m elements, where the value m was at least 20 times
smaller than the corresponding number of support vectors.

6.4 Kernels Involved in Intelligent Learning

In this paper, among many possible Mercer kernels (positive semi-definite func-
tions), we consider the following three types:

1. Radial Basis Function (RBF) kernel:

KRBFσ
(x, y) = exp{−σ2(x − y)2}.

2. INK-spline kernel. Kernel for spline of order one with infinite number of
knots. It is defined in the nonnegative domain and has the form

KINK1(x, y) =
d∏

k=1

(
1 + xkyk +

|xk − yk|max{xk, yk}
2

+
(max{xk, yk})3

3

)

where xk ≥ 0 and yk ≥ 0 are k coordinates of d-dimensional vector x.
3. Homogeneous quadratic kernel

KPol2 = (x, y)2,

where (x, y) is the inner product of vectors x and y.

The RBF kernel has a free parameter σ > 0; two other kernels have no free
parameters. That was achieved by fixing a parameter in more general sets of
functions: the degree of polynomial was chosen to be 2, and the order of INK-
splines was chosen to be 1. Note that INK-splines are sensitive to the selection of
minimum value a of coordinates x; as illustrated in [6], for reliable performance
one should select a = −3 and reset all the values smaller than that to a (assuming
all the coordinates are normalized to N(0, 1) by subtracting the empirical means
and dividing the values by empirical standard deviations).
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It is easy to introduce kernels for any degree of polynomials and any order
of INK-splines. Experiments show excellent properties of these three types of
kernels for solving many machine learning problems. These kernels also can be
recommended for methods that use both mechanisms of Teacher-Student inter-
action.

6.5 Knowledge Transfer for Statistical Inference Problems

The idea of privileged information and knowledge transfer can be also extended
to Statistical Inference problems considered in [23], [24].

For simplicity, consider the problem of conditional probability P (y|x) esti-
mation8 from iid data

(x1, y1), ..., (x�, y�), x ∈ X, y ∈ {0, 1}, (36)

where vector x ∈ X is generated by a fixed but unknown distribution function
P (x) and binary value y ∈ {0, 1} is generated by an unknown conditional prob-
ability function P (y = 1|x), (P (y = 0|x) = 1 − P (y = 1|x)); this is the function
we would like to estimate.

As shown in [23], [24], this requires solving the Fredholm integral equation
∫

θ(x − t)P (y = 1|t)dP (t) = P (y = 1, x)

if probability functions P (y = 1, x) and P (x) are unknown but iid data (36)
generated according to joint distribution P (y, x) are given. Papers [23], [24]
describe methods for solving this problem, producing the solution

P�(y = 1|x) = P (y = 1|x; (x1, y1), ..., (x�, y�)).

In this section, we generalize classical Statistical Inference problem of conditional
probability estimation to a new model of Statistical Inference with Privileged
Information. In this model, along with information defined in the space X, one
has the information defined in the space X∗.

Consider privileged space X∗ along with space X . Suppose that any vector
xi ∈ X has its image x∗

i ∈ X∗.
Consider iid triplets

(x1, x
∗
1, y1), ..., (x�, x

∗
� , y�) (37)

that are generated according to a fixed but unknown distribution function
P (x, x∗, y). Suppose that, for any triplet (xi, x

∗
i , yi), there exist conditional

probabilities P (yi|x∗
i ) and P (yi|xi). Also, suppose that the conditional prob-

ability function P (y|x∗) defined in the privileged space X∗ is better than the
conditional probability function P (y|x) defined in space X; here by “better”

8 The same method can be applied to all problems described in [23], [24].
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we mean that the conditional entropy for P (y|x∗) is smaller than conditional
entropy for P (y|x):

−
∫

[log2 P (y = 1|x∗) + log2 P (y = 0|x∗)] dP (x∗) <

−
∫

[log2 P (y = 1|x) + log2 P (y = 0|x)] dP (x).

Our goal is to use triplets (37) for estimating the conditional probability
P (y|x; (x1, x

∗
1, y1), ..., (x�, x

∗
� , y�)) in space X better than it can be done with

training pairs (36). That is, our goal is to find such a function

P�(y = 1|x) = P (y = 1|x; (x1, x
∗
1, y1), ..., (x�, x

∗
� , y))

that the following inequality holds:

−
∫

[log2 P (y = 1|x; (xi, x
∗
i , yi)�

1) + log2 P (y = 0|x; (xix
∗
i , yi)�

1)]dP (x) <

−
∫

[log2 P (y = 1|x; (xi, yi)�
1) + log2 P (y = 0|x; (xi, yi)�

1, )]dP (x).

Consider the following solution for this problem:

1. Using kernel K(x̂∗, x∗) = (x̂∗, x∗)2, the training pairs pairs (x∗
i , yi) extracted

from given training triplets (37) and the methods of solving our integral
equation described in [23], [24], find the solution of the problem in space of
privileged information X∗:

P (y = 1|x∗; (x∗
i , yi)�

1) =
�∑

i=1

α̂i(x∗
i , x

∗)2 + b.

2. Using matrix S =
∑�

i=1 α̂ix
∗
i x

∗T
i , find the fundamental elements of knowl-

edge (the eigenvectors u∗
1, ..., u

∗
m corresponding to the largest norm of eigen-

values β1, ..., βm of matrix S).
3. Using some universal kernels (say RBF or INK-Spline), find in the space X

the approximations φk(x), k = 1, . . . , m of the frames (u∗
k, x∗)2, k = 1, ...,m.

4. Find the solution of the conditional probability estimation problem
P (y|φ; (φi, yi)�

1) in the space of pairs (φ, y) where φ = (φ1(x), . . . , φm(x)).

6.6 General Remarks About Knowledge Transfer

What Knowledge Does Teacher Transfer? In previous sections, we linked
the knowledge of Intelligent Teacher about the problem of interest in space X
to his knowledge about this problem in space X∗. For knowledge transfer, one can
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consider a more general model. Teacher knows that goal of Student is to construct
a good rule in space X with one of the functions from the set f(x, α), x ∈ X, α ∈
Λ with capacity V CX . Teacher also knows that there exists a rule in space X∗

of the same quality which belongs to the set f∗(x∗, α∗), x∗ ∈ X∗, α∗ ∈ Λ∗ that
has much smaller capacity V CX∗ . This knowledge can be defined by the ratio
of the capacities

κ =
V CX

V CX∗
.

The larger is κ, the more knowledge Teacher can transfer and fewer examples
will Student need to select a good classification rule.

What Are the Roots of Intelligence? In this paper, we defined the roots of
intelligence via privileged information produced by Teacher according to Intel-
ligent generator P (x∗, y|x). Existence of triplets9 (x, x∗, y) in description of the
World events reflects Holism branch of philosophy, in which any event has multi-
ple descriptions that cannot be reduced to a single point of view. In the opposite
Reductionism branch of philosophy, descriptions of events can be reduced to a
single major point of view (this is reflected in many branches of natural science).

We believe that Intelligent learning reflects Holism philosophy in particular,
in multi-level interactions. It appears that intelligent learning is a multi-level
representation of events and transfer elements of knowledge between different
levels. We also believe that attempts to significantly improve the rate of learning
in the classical setting using only more elaborate mathematical techniques are
somewhat akin to Baron Munchausen’s feat of pulling himself from a swamp10:
for a significant improvement in learning process, Student needs additional (priv-
ileged) information in the same way the real-life Baron would have needed at
least a solid foothold for getting out of his predicament.

Holistic Description and Culture. Generally speaking, Student and Teacher
can have different sets of functions in Space X∗. In Section 5.3, we presented
holistic descriptions of digits 5 and 8 as privileged information for training data
reflecting impression of Prof. of Russian Poetry Natalia Pavlovitch. To trans-
form her linguistic representation of privileged information into formal code,
Prof. Pavlovitch suggested features for the transformation. One can see that
transformation of privileged information from human language into code is very
individual. Two different Students can obtain different functions as a result of
transfer of the same knowledge given by Teacher. Therefore, in real life, Teacher
has to elevate Student on the level of culture where Student can appropriately
understand the privileged information.
9 One can generalize the knowledge transfer method for multiple levels of privileged

information, say, for two levels using quadruples (x, x∗, x∗∗, y).
10 Baron Munchausen, the fictional character known for his tall tales, once pulled him-

self (and his horse) out of a swamp by his hair.



Learning with Intelligent Teacher 29

Quadratic Kernel. In the method of knowledge transfer, the special role
belongs to the quadratic kernel (x1, x2)2. Formally, only two kernels are amenable
for simple methods of finding fundamental elements of knowledge (and therefore
for knowledge representation): the linear kernel (x1, x2) and the quadratic kernel
(x1, x2)2.

Indeed, if linear kernel is used, one constructs the separating hyperplane in
the space of privileged information X∗

y = (w∗, x∗) + b∗,

where vector of coefficients w∗ also belongs to the space X∗, so there is only
one fundamental element of knowledge – the vector w∗. In this situation, the
problem of constructing the regression function y = φ(x) from data

(x1, (w∗, x∗
1)), ..., (x�, (w∗, x∗

� )) (38)

has, generally speaking, the same level of complexity as the standard problem
of pattern recognition in space X using data (36). Therefore, one should not
expect performance improvement when transferring the knowledge using (38).

With quadratic kernel, one obtains 1 ≤ m ≤ d fundamental elements of
knowledge in d-dimensional space X∗. In this situation, according to the methods
described above, one defines the knowledge in space X∗ as a linear combination of
m frames. That is, one splits the desired function into m (simplified) fragments
(a linear combination of which defines the decision rule) and then estimates
each of m functions φk(x) separately, using training sets of size �. The idea
is that, in order to estimate well a fragment of the knowledge, one can use a
set of functions with a smaller capacity than is needed to estimate the entire
function y = f(x), x ∈ X. Here privileged information can improve accuracy of
estimation of the desired function.

To our knowledge, there exists only one nonlinear kernel (the quadratic ker-
nel) that leads to an exact solution of the problem of finding the fundamental
elements of knowledge. For all other nonlinear kernels, the problems of finding
the fundamental elements require difficult (heuristic) computational procedures.

Some Philosophical Interpretations. Classical German philosophy had for-
mulated the following general idea (Hegel,1820):

What is reasonable11 is real and what is real is reasonable.

If we interpret the word “reasonable” as “has a good mathematical justification”
and word “real” as “is realized by Nature” we can reformulate this idea as follows:

Models that have a good mathematical justification are realized by the
Nature and models that are realized by the Nature have a good mathe-
matical justification.

11 Some translations from German use “rational” instead of “reasonable”.
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From this point of view, the existence of only one kernel (the quadratic poly-
nomial (xi, xj)2) that allows one to find the exact solution of the knowledge
representation problem means that there exists only one good level of structural
complexity for privileged information that can be used by Intelligent Teacher:
not too simple (such as based on linear kernel (x1, x2)), but not too complex
(such as based on kernels (x1, x2)s, s > 2). This claim, however, is not based on
a proof, it is rather based on belief in classical German philosophy.

7 Conclusions

In this paper, we tried to understand mechanisms of human learning that go
beyond brute force methods of function estimation. In order to accomplish this,
we introduced the concept of Intelligent Teacher who generates privileged infor-
mation during training session. We described two mechanisms that can be used
to accelerate the learning process.

1. The mechanism to control Student’s concept of similarity between training
examples.

2. The mechanism to transfer knowledge from the space of privileged informa-
tion to the desired decision rule.

It is quite possible that there exist more mechanisms in Teacher-Student inter-
actions and thus it is important to find them 12 .

The idea of privileged information can be generalized to any statistical infer-
ence problem creating non-symmetric (two spaces) approach in statistics.

Teacher-Student interaction constitutes one of the key factors of intelligent
behavior and it can be viewed as a basic element in understanding intelligence
(in both machines and humans).

Acknowledgments. We thank Professor Cherkassky, Professor Gammerman, and
Professor Vovk for their helpful comments on this paper.

12 In [23], we discuss the idea of replacing the SVM method with the so-called V -matrix
method of conditional probability estimation. As was shown in Section 6.5, privileged
information also can be used for estimation of the conditional probability function.
However, for estimation of this function, Intelligent Teacher can also include in the
privileged information his evaluation of the probability p(xi) that event xi belongs
to class y = 1 given his guess

ai ≤ p(xi) ≤ bi,

where 0 ≤ ai < bi ≤ 1 are some values. For example, in the problem of classification
of a biopsy image xi, the pathologist can give his assessment of cancer probabil-
ity (hopefully non-trivial (ai > 0, bi < 1)). Footnote 10 in [23] shows how such
information can be used for evaluation of conditional probability function.
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1 Basic Concepts of Classical Statistics

In the next several sections, we describe main concepts of Statistics. We first
outline these concepts for one-dimensional case and then generalize them for
multidimensional case.

1.1 Cumulative Distribution Function

The basic concept of Theoretical Statistics and Probability Theory is the so-called
Cumulative distribution function (CDF)

F (x) = P (X ≤ x).
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This function defines the probability of the random variable X not exceeding
x. Different CDFs describe different statistical environments, so CDF (defining
the probability measure) is the main characteristic of the random events. In this
paper, we consider the important case when F (x) is a continuous function.

1.2 General Problems of Probability Theory and Statistics

The general problem of Probability theory can be defined as follows:

Given a cumulative distribution function F (x), describe outcomes of random
experiments for a given theoretical model.

The general problem of Statistics can be defined as follows:

Given iid observations of outcomes of the same random experiments, esti-
mate the statistical model that defines these observations.

In Section 2, we discuss several main problems of statistics. Next, we consider
the basic one: estimation of CDF.

1.3 Empirical Cumulative Distribution Functions

In order to estimate CDF, one introduces the so-called Empirical Cumulative
Distribution function (ECDF) constructed for iid observations obtained accord-
ing to F (x):

X1, ...,X�.

The ECDF function has the form

F�(x) =
1
�

�∑
i=1

θ(x − Xi),

where θ(x − Xi) is the step-function

θ(x − Xi) =
{

1, if x ≥ Xi

0, if x < Xi

Classical statistical theory is based on the fact that ECDF converges to the CDF
with increasing number � of observations.

1.4 The Glivenko-Cantelli Theorem and Kolmogorov Type Bounds

In 1933, the following main theorem of statistics, Glivenko-Cantelli theorem, was
proven.
Theorem. Empirical cumulative distribution functions converge uniformly to
the true cumulative distribution function:

lim
�→∞

P{sup
x

|F (x) − F�(x)| ≥ ε} = 0, ∀ε > 0.
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In 1933, Kolmogorov derived asymptotical exact rate of convergence of ECDF
to CDF for continuous functions F (x):

lim
�→∞

P{
√

� sup
x

|F (x) − F�(x)| ≥ ε} = 2
∞∑

k=1

(−1)k−1 exp{−2ε2k2}. (1)

Later, in 1956, Dvoretzky, Kiefer, and Wolfowitz showed the existence of
exponential type of bounds for any fixed �:

P{sup
x

|F (x) − F�(x)| ≥ ε} ≤ 2 exp{−2ε2�} (2)

(Massart [5]). The bound (2) is defined by the first term of the right-hand side
of Kolmogorov asymptotic equality (1).

Glivenko-Cantelli theorem and bounds (1), (2) can be considered as a foun-
dation of statistical science since they claim that:
1. It is possible to estimate the true statistical distribution from iid data.
2. The ECDF strongly converges to the true CDF, and this convergence is fast.

1.5 Generalization to Multidimensional Case

Let us generalize the main concepts described above to multidimensional case.
We start with CDF.
Joint cumulative distribution function. For the multivariate random vari-
able x = (x1, ..., xd), the joint cumulative distribution function F (x), x ∈ Rd is
defined by the function

F (x) = P (X1 ≤ x1, ...,Xd ≤ xd). (3)

As in the one-dimensional case, the main problem of statistics is as follows:
estimate CDF, as defined in (3), based on random multivariate iid observations

X1, ...,X�, Xi ∈ Rd, i = 1, . . . , �..

In order to solve this problem, one uses the same idea of empirical distribution
function

F�(x) =
1
�

�∑
i=1

θ(x − Xi),

where x = (x1, ..., xd) ∈ Rd, Xi = (X1
i , ...,Xd

i ) ∈ Rd and

θ(x − Xi) =
d∏

k=1

θ(xk − Xk
i ).

Note that
F (x) = Euθ(x − u) =

∫
θ(x − u)dF (u),
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and the generalized (for multidimensional case) Glivenko-Cantelli theorem has
the form

lim
�→∞

P

{
sup

x

∣∣∣∣∣Euθ(x − u) − 1
�

�∑
i=1

θ(x − Xi)

∣∣∣∣∣ ≥ ε

}
= 0.

This equation describes the uniform convergence of the empirical risks to their
expectation over vectors u ∈ Rd for the parametric set of multi-dimensional
step functions θ(x − u) (here x, u ∈ Rd, and u is vector of parameters). Since
VC dimension of this set of functions is equal1 to d, then, according to the
VC theory [17], [14], [15], the corresponding rate of convergence is bounded as
follows:

P

{
sup

x

∣∣∣∣∣Euθ(x − u) − 1
�

�∑
i=1

θ(x − Xi)

∣∣∣∣∣ ≥ ε

}
≤ exp

{
−

(
ε2 − d ln �

�

)
�

}
. (4)

According to this bound, for sufficiently large �, the convergence of ECDF to
the actual CDF does not depend too much on dimensionality of the space. This
fact has important consequences for Applied Statistics.

2 Main Problems of Statistical Inference

The main target of statistical inference theory is estimation (from the data) of
specific models of random events, namely:
1. conditional probability function;
2. conditional density function;
3. regression function;
4. density ratio function.

2.1 Conditional Density, Conditional Probability, Regression, and
Density Ratio Functions

Let F (x) be a cumulative distribution function of random variable x. We call
non-negative function p(x) the probability density function if

∫ x

−∞
p(x∗)dx∗ = F (x).

Similarly, let F (x, y) be the joint probability distribution function of variables x
and y. We call non-negative p(x, y) the joint probability density function of two
variables x and y if

∫ y

−∞

∫ x

−∞
p(x∗, y∗)dx∗dy∗ = F (x, y).

1 Since the set of d-dimensional parametric functions θ(x − u) can shatter, at most, d
vectors.
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1. Let p(x, y) and p(x) be probability density functions for pairs (x, y) and
vectors x. Suppose that p(x) > 0. The function

p(y|x) =
p(x, y)
p(x)

is called the Conditional Density Function. It defines, for any fixed x = x0, the
probability density function p(y|x = x0) of random value y ∈ R1. The estimation
of the conditional density function from data

(y1,X1), ..., (y�,X�) (5)

is the most difficult problem in our list of statistical inference problems.
2. Along with estimation of the conditional density function, the important

problem is to estimate the so-called Conditional Probability Function. Let vari-
able y be discrete, say, y ∈ {0, 1}. The function defined by the ratio

p(y = 1|x) =
p(x, y = 1)

p(x)
, p(x) > 0

is called Conditional Probability Function. For any given vector x = x0, this
function defines the probability that value y will take value one (correspondingly
p(y = 0|x = x0) = 1 − p(y = 1|x = x0)). The problem is to estimate the
conditional probability function, given data (5) where y ∈ {0, 1}.

3. As mentioned above, estimation of the conditional density function is a
difficult problem; a much easier problem is the problem of estimating the so-
called Regression Function (conditional expectation of the variable y):

r(x) =
∫

yp(y|x)dy,

which defines expected value y ∈ R1 for a given vector x.
4. In this paper, we also consider another problem that is important for

applications: estimating the ratio of two probability densities [11]. Let pnum(x)
and pden(x) > 0 be two different density functions (subscripts num and den
correspond to numerator and denominator of the density ratio). Our goal is
then to estimate the function

R(x) =
pnum(x)
pden(x)

given iid data
X1, ...,X�den

distributed according to pden(x) and iid data

X ′
1, ...,X

′
�num

distributed according to pnum(x).
In the next sections, we introduce direct settings for these four statistical

inference problems.
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2.2 Direct Constructive Setting for Conditional Density Estimation

According to its definition, conditional density p(y|x) is defined by the ratio of
two densities

p(y|x) =
p(x, y)
p(x)

, p(x) > 0 (6)

or, equivalently,
p(y|x)p(x) = p(x, y).

This expression leads to the following equivalent one:∫ ∫
θ(y − y′)θ(x − x′)p(y|x′)dF (x′)dy′ = F (x, y), (7)

where F (x) is the cumulative distribution function of x and F (x, y) is the joint
cumulative distribution function of x and y.

Therefore, our setting of the condition density estimation problem is as fol-
lows:

Find the solution of the integral equation (7) in the set of nonnegative func-
tions f(x, y) = p(y|x) when the cumulative probability distribution functions
F (x, y) and F (x) are unknown but iid data

(y1,X1), ..., (y�,X�)

are given.

In order to solve this problem, we use empirical estimates

F�(x, y) =
1
�

�∑
i=1

θ(y − yi)θ(x − Xi), (8)

F�(x) =
1
�

�∑
i=1

θ(x − Xi) (9)

of the unknown cumulative distribution functions F (x, y) and F (x). Therefore,
we have to solve an integral equation where not only its right-hand side is defined
approximately (F�(x, y) instead of F (x, y)), but also the data-based approxima-
tion

A�f(x, y) =
∫ ∫

θ(y − y′)θ(x − x′)f(x′, y′)dy′dF�(x′)

is used instead of the exact integral operator

Af(x, y) =
∫ ∫

θ(y − y′)θ(x − x′)f(x′, y′)dy′dF (u′).

Taking into account (9), our goal is thus to find the solution of approximately
defined equation

�∑
i=1

θ(x − Xi)
∫ y

−∞
f(Xi, y

′)dy′ ≈ 1
�

�∑
i=1

θ(y − yi)θ(x − Xi). (10)
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Taking into account definition (6), we have
∫ ∞

−∞
p(y|x)dy = 1, ∀x ∈ X .

Therefore, the solution of equation (10) has to satisfy the constraint f(x, y) ≥ 0
and the constraint ∫ ∞

−∞
f(y′, x)dy′ = 1, ∀x ∈ X .

We call this setting the direct constructive setting since it is based on direct def-
inition of conditional density function (7) and uses theoretically well-established
approximations (8), (9) of unknown functions.

2.3 Direct Constructive Setting for Conditional Probability
Estimation

The problem of estimation of the conditional probability function can be consid-
ered analogously to the conditional density estimation problem. The conditional
probability is defined as

p(y = 1|x) =
p(x, y = 1)

p(x)
, p(x) > 0 (11)

or, equivalently,
p(y = 1|x)p(x) = p(x, y = 1).

We can rewrite it as∫
θ(x − x′)p(y = 1|x′)dF (x′) = F (x, y = 1). (12)

Therefore, the problem of estimating the conditional probability is formulated
as follows.

In the set of bounded functions 0 ≤ p(y = 1|x) ≤ 1, find the solution of
equation (12) if cumulative distribution functions F (x) and F (x, y = 1) are
unknown but iid data

(y1,X1), ..., (y�,X�), y ∈ {0, 1}, x ∈ X

generated according to F (x, y) are given.
As before, instead of unknown cumulative distribution functions we use their

empirical approximations

F�(x) =
1
�

�∑
i=1

θ(x − Xi), (13)

F�(x, y = 1) = p�F�(x|y = 1) =
1
�

�∑
i=1

yiθ(x − Xi), (14)
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where p� ratio of the examples with y = 1 to the total number of the observations.
Therefore, one has to solve integral equation (12) with approximately defined

right-hand side (13) and approximately defined operator (14):

A�p(y = 1|x) =
1
�

�∑
i=1

θ(x − Xi)p(y = 1|Xi).

Since the probability takes values between 0 and 1, our solution has to satisfy
the bounds

0 ≤ f(x) ≤ 1, ∀x ∈ X .

Also, definition (11) implies that∫
f(x)dF (x) = p(y = 1),

where p(y = 1) is the probability of y = 1.

2.4 Direct Constructive Setting for Regression Estimation

By definition, regression is the conditional mathematical expectation

r(x) =
∫

yp(y|x)dy =
∫

y
p(x, y)
p(x)

dy.

This can be rewritten in the form

r(x)p(x) =
∫

yp(x, y)dy. (15)

From (15), one obtains the equivalent equation∫
θ(x − x′)r(x′)dF (x′) =

∫
θ(x − x′)

∫
ydF (x′, y′). (16)

Therefore, the direct constructive setting of regression estimation problem is as
follows:

In a given set of functions r(x), find the solution of integral equation (16) if
cumulative probability distribution functions F (x, y) and F (x) are unknown but
iid data (5) are given.

As before, instead of these functions, we use their empirical estimates. That
is, we construct the approximation

A�r(x) =
1
�

�∑
i=1

θ(x − Xi)r(Xi)

instead of the actual operator in (16) and the approximation of the right-hand
side

F�(x) =
1
�

�∑
j=1

yjθ(x − Xj)

instead of the actual right-hand side in (16), based on the observation data

(y1,X1), ..., (y�,X�), y ∈ R, x ∈ X . (17)
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2.5 Direct Constructive Setting of Density Ratio Estimation
Problem

Let Fnum(x) and Fden(x) be two different cumulative distribution functions
defined on X ⊂ Rd and let pnum(x) and pden(x) be the corresponding density
functions. Suppose that pden(x) > 0, x ∈ X . Consider the ratio of two densities:

R(x) =
pnum(x)
pden(x)

.

The problem is to estimate the ratio R(x) when densities are unknown, but iid
data

X1, ...,X�den ∼ Fden(x) (18)

generated according to Fden(x) and iid data

X ′
1, ...,X

′
�num ∼ Fnum(x) (19)

generated according to Fnum(x) are given.
As before, we introduce the constructive setting of this problem: solve the

integral equation ∫
θ(x − u)R(u)dFden(u) = Fnum(x)

when cumulative distribution functions Fden(x) and Fnum(x) are unknown, but
data (18) and (19) are given. As before, we approximate the unknown cumulative
distribution functions Fnum(x) and Fden(x) using empirical distribution functions

F�num(x) =
1

�num

�num∑
j=1

θ(x − X ′
j)

for Fnum(x) and

F�den(x) =
1

�den

�den∑
j=1

θ(x − Xj)

for Fden(x).
Since R(x) ≥ 0 and limx→∞ Fnum(x) = 1, our solution must satisfy the

constraints
R(x) ≥ 0, ∀x ∈ X ,∫

R(x)dFden(x) = 1.

Therefore, all main empirical inference problems can be represented via (mul-
tidimensional) Fredholm integral equation of the first kind with approximately
defined elements. Although approximations converge to the true functions, these
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problems are computationally difficult due to their ill-posed nature. Thus they
require rigorous solutions.2

In the next section, we consider methods for solving ill-posed operator equa-
tions which we apply in Section 6 to our problems of inference.

3 Solution of Ill-Posed Operator Equations

3.1 Fredholm Integral Equations of the First Kind

In this section, we consider the linear operator equations

Af = F, (20)

where A maps elements of the metric space f ∈ M ⊂ E1 into elements of the
metric space F ∈ N ⊂ E2. Let f be a continuous one-to-one operator and
f(M) = N . The solution of such operator equation exists and is unique:

M = A−1N .

The crucial question is whether this inverse operator is continuous. If it is
continous, then close functions in N correspond to close functions in M. That
is, ”small” changes in the right-hand side of (20) cause ”small” changes of its
solution. In this case, we call the operator A−1 stable [13].

If, however, the inverse operator is discontinuous, then ”small” changes in
the right-hand side of (20) can cause significant changes of the solution. In this
case, we call the operator A−1 unstable.

Solution of equation (20) is called well-posed if this solution
1. exists;
2. is unique;
3. is stable.

Otherwise we call the solution ill-posed.
We are interested in the situation when the solution of operator equation

exists, and is unique. In this case, the effectiveness of solution of equation (20)
is defined by the stability of the operator A−1. If the operator is unstable, then,
generally speaking, the numerical solution of equation is impossible.

Here we consider linear integral operator

Af(x) =
∫ b

a

K(x, u)f(u)du

defined by the kernel K(t, u), which is continuous almost everywhere on a ≤ t ≤
b, c ≤ x ≤ d. This kernel maps the set of functions {f(t)}, continuous on [a, b],

2 Various classical statistical methods exist for solving these problems; our goal is to
find the most accurate solutions that take into account all available characteristics
of the problems.
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onto the set of functions {F (x)}, also continuous on [c, d]. The corresponding
Fredholm equation of the first kind is

∫ b

a

K(x, u)f(u)du = F (x),

which requires finding the solution f(u) given the right-hand side F (x).
In this paper, we consider integral equation defined by the so-called convo-

lution kernel
K(x, u) = K(x − u).

Moreover, we consider the specific convolution kernel of the form

K(x − u) = θ(x − u).

As stated in Section 2.2, this kernel covers all settings of empirical inference
problems.

First, we show that the solution of equation
∫ 1

0

θ(x − u)f(u)du = x

is indeed ill-posed3. It is easy to check that

f(x) = 1 (21)

is the solution of this equation. Indeed,
∫ 1

0

θ(x − u)du =
∫ x

0

du = x. (22)

It is also easy to check that the function

f∗(x) = 1 + cos nx (23)

is a solution of the equation
∫ 1

0

θ(x − u)f∗(u)du = x +
sin nx

n
. (24)

That is, when n increases, the right-hand sides of the equations (22) and (24)
are getting close to each other, but solutions (21) and (23) are not.

The problem is how one can solve an ill-posed equation when its right-hand
side is defined imprecisely.

3 Using the same arguments, one can show that the problem of solving any Fredholm
equation of the first kind is ill-posed.
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3.2 Methods of Solving Ill-Posed Problems

Inverse Operator Lemma. The following classical inverse operator lemma [13]
is the key enabler for solving ill-posed problems.
Lemma. If A is a continuous one-to-one operator defined on a compact set
M∗ ⊂ M, then the inverse operator A−1 is continuous on the set N ∗ = AM∗.

Therefore, the conditions of existence and uniqueness of the solution of an
operator equation imply that the problem is well-posed on the compact M∗.
The third condition (stability of the solution) is automatically satisfied. This
lemma is the basis for all constructive ideas of solving ill-posed problems. We
now consider one of them.

Regularization Method. Suppose that we have to solve the operator equation

Af = F (25)

defined by continuous one-to-one operator A mapping M into N , and assume
the solution of (25) exists. Also suppose that, instead of the right-hand side
F (x), we are given its approximation Fδ(x), where

ρE2(F (x), Fδ(x)) ≤ δ.

Our goal is to find the solution of equation

Af = Fδ

when δ → 0.
Consider a lower semi-continuous functional W (f) (called the regularizer)

that has the following three properties:

1. the solution of the operator equation (25) belongs to the domain D(W ) of
the functional W (f);

2. functional W (f) is non-negative values in its domain;
3. all sets

Mc = {f : W (f) ≤ c}
are compact for any c ≥ 0.

The idea of regularization is to find a solution for (25) as an element mini-
mizing the so-called regularized functional

Rγ(f̂ , Fδ) = ρ2E2
(Af̂, Fδ) + γδW (f̂), f̂ ∈ D(W ) (26)

with regularization parameter γδ > 0.
The following theorem holds true [13].

Theorem 1. Let E1 and E2 be metric spaces, and suppose for F ∈ N there exists
a solution f ∈ D(W ) of (26). Suppose that, instead of the exact right-hand side
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F of (26), its approximations4 Fδ ∈ E2 are given such that ρE2(F, Fδ) ≤ δ.
Consider the sequence of parameter γ such that

γ(δ) −→ 0 for δ −→ 0,

lim
δ−→0

δ2

γ(δ)
≤ r < ∞. (27)

Then the sequence of solutions f
γ(δ)
δ minimizing the functionals Rγ(δ)(f, Fδ) on

D(W ) converges to the exact solution f (in the metric of space E1) as δ −→ 0.
In a Hilbert space, the functional W (f) may be chosen as ||f ||2 for a lin-

ear operator A. Although the sets Mc are (only) weakly compact in this case,
regularized solutions converge to the desired one. Such a choice of regularized
functional is convenient since its domain D(W ) is the whole space E1. In this
case, however, the conditions imposed on the parameter γ are more restrictive
than in the case of Theorem 1: namely, γ should converge to zero slower than
δ2.

Thus the following theorem holds true [13].
Theorem 2. Let E1 be a Hilbert space and W (f) = ||f ||2. Then for γ(δ) satisfy-
ing (27) with r = 0, the regularized element f

γ(δ)
δ converges to the exact solution

f in metric E1 as δ → 0.

4 Stochastic Ill-Posed Problems

In this section, we consider the problem of solving the operator equation

Af = F, (28)

where not only its right-hand side is defined approximately (F�(x) instead of
F (x)) but also the operator Af is defined approximately. Such problem are
called stochastic ill-posed problems.

In the next subsections, we describe the conditions under which it is possible
to solve equation (28) where both the right-hand side and the operator are
defined approximately.

In the following subsections, we first discuss the general theory for solv-
ing stochastic ill-posed problems and then consider specific operators describing
particular problems, i.e., empirical inference problems described in the previous
sections 2.3, 2.4, and 2.5. For all these problems, the operator has the form

A�f =
∫

θ(x − u)f(u)dF�(u).

We show that rigorous solutions of stochastic ill-posed problem with this oper-
ator leverage the so-called V -matrix, which captures some geometric properties
of the data; we also describe specific algorithms for solution of our empirical
inference problems.
4 The elements Fδ do not have to belong to the set N .
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4.1 Regularization of Stochastic Ill-Posed Problems

Consider the problem of solving the operator equation

Af = F

under the condition where (random) approximations are given not only for the
function on the right-hand side of the equation but for the operator as well (the
stochastic ill-posed problem).

We assume that, instead of the true operator A, we are given a sequence of
random continuous operators A�, � = 1, 2, ... that converges in probability to
operator A (the definition of closeness between two operators will be defined
later).

First, we discuss general conditions under which the solution of stochastic
ill-posed problem is possible and then we consider specific operator equations
corresponding to the each empirical inference problem.

As before, we consider the problem of solving the operator equation by the
regularization method, i.e., by minimizing the functional

R∗
γ�

(f, F�, A�) = ρ2E2
(A�f, F�) + γ�W (f). (29)

For this functional, there exists a minimum (perhaps, not unique). We define
the closeness of operator A and operator A� as the distance

||A� − A|| = sup
f∈D

||A�f − Af ||E2

W 1/2(f)
.

The main result for solving stochastic ill-posed problems via regularization
method (29) is provided by the following Theorem [9], [15].

Theorem. For any ε > 0 and any constants C1, C2 > 0 there exists a value
γ0 > 0 such that for any γ� ≤ γ0 the inequality

P{ρE1(f�, f) > ε} ≤
≤ P{ρE2(F�, F ) > C1

√
γ�} + P{||A� − A|| > C2

√
γ�}

(30)

holds true.

Corollary. As follows from this theorem, if the approximations F�(x) of the
right-hand side of the operator equation converge to the true function F (x) in
E2 with the rate of convergence r(�), and the approximations A� converge to the
true operator A in the metric in E1 defined in (30) with the rate of convergence
rA(�), then there exists a function

r0(�) = max {r(�), rA(�)} ; lim
�→∞

r0(�) = 0,

such that the sequence of solutions to the equation converges in probability to
the true one if

lim
�→∞

r0(�)√
γ�

= 0, lim
�→∞

γ� = 0.
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4.2 Solution of Empirical Inference Problems

In this section, we consider solutions of the integral equation

Af = F

where operator A has the form

Af =
∫

θ(x − u)f(u)dF1(x),

and the right-hand side of the equation is F2(x). That is, our goal is to solve the
integral equation ∫

θ(x − u)f(u)dF1(x) = F2(x).

We consider the case where F1(x) and F2(x) are two different cumulative dis-
tribution functions. (This integral equation also includes, as a special case, the
problem of regression estimation where F2(x) =

∫
ydP (x, y) for non-negative y).

This equation defines the main empirical inference problem described in Section
2. The problem of density ratio estimation requires solving solving this equation
when both functions F1(x) and F2(x) are unknown but the iid data

X1
1 , ...,X1

�1 ∼ F1 (31)

X1
1 , ...,X1

�2 ∼ F2 (32)

are available. In order to solve this equation, we use empirical approximations
instead of actual distribution functions obtaining

A�1f =
∫

θ(x − u)dF�1(u) (33)

F�k
(x) =

1
�k

�k∑
i=1

θ(x − Xk
i ), k = 1, 2,

where F�1(u) is empirical distribution function obtained from data (31) and
F�2(x) is the empirical distribution function obtained from data (32).

One can show (see [15], Section 7.7) that, for sufficiently large �, the inequality

||A� − A|| = sup
f

||A�f − Af ||E2

W 1/2(f)
≤ ||F� − F ||E2

holds true for the smooth solution f(x) of our equations.
From this inequality, bounds (4), and the Theorem of Section 4.1, it follows

that the regularized solutions of our operator equations converge to the actual
functions

ρE1(f�, f) →�→∞ 0

with probability one.
Therefore, to solve our inference problems, we minimize the functional

Rγ(f, F�, A�1) = ρ2E2
(A�1f, F�2) + γ�W (f). (34)

In order to do this well, we have to define three elements of (34):
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1. The distance ρE2(F1, F2) between functions F1(x) and F2(x) in E2.
2. The regularization functional W (f) in space of functions f ∈ E1.
3. The rule for selecting the regularization constant γ�.

The next sections describe solution approaches for the first two problems.

5 Solving Statistical Inference Problems with V -matrix

Consider the explicit form of the functional for solving our inference problems.
In order to do this, we specify expressions for the squared distance and regular-
ization functional in expression (34).

5.1 The V -matrix

Definition of Distance. Let our distance in E2 be defined by the L2 metric

ρ2E2
(F1(x), F2(x)) =

∫
(F1(x) − F2(x))2σ(x)dμ(x),

where σ(x) is a known positive function defined on X and μ(x) is a known mea-
sure defined on X . To define distance, one can use any non-negative measurable
function σ(x) and any measure μ(x). For example, if our equation is defined in
the box domain [0, 1]d, we can use uniform measure in this domain and σ(x) = 1.

Below we define the measure μ(x) as

μ(x) =
d∏

k=1

F�(xk), (35)

where each F�(xk) is the marginal empirical cumulative distribution function of
the coordinate xk estimated from data.

We also consider function σ(x) in the form

σ(x) =
n∏

k=1

σk(xk). (36)

In this paper, we consider several weight functions σ(xk):

1. The function
σ(xk) = 1.

2. For the problem of conditional probability estimation, we consider the func-
tion

σ(xk) =
1

F�(xk|y = 1)(1 − F�(xk|y = 1)) + ε
, (37)

where ε > 0 is a small constant.
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3. For the problem of regression estimation, we consider the case where y ≥ 0
and, instead of F�(xk|y = 1) in (37), use monotonic function

F�(xk) =
1

�ŷav

�∑
i=1

yiθ(xk − Xk
i ),

where ŷav is the average value of y in the training data. This function has
properties of ECDF.

4. For the problem of density ratio estimation, we consider an estimate of func-
tion Fnum(x) instead of the estimate of function F (x|y = 1) in (37).

Remark. In order to justify choice (37) for function σ(x), consider the problem
of one-dimensional conditional probability estimation. Let f0(x) be the true con-
ditional probability. Consider the function f̂0(x) = p1f0(x). Then the solution
of integral equation

∫
θ(x − u)f̂(u)dF (x) = F (x|y = 1)

defines the conditional probability f0(x) = p1f0(x). Consider two functions: the
estimate of the right-hand side of equation F�(x|y = 1) and the actual right-hand
side F0(x|y = 1)

F0(x|y = 1) =
∫ x

−∞
f̂0(t)dt.

The deviation
Δ = (F0(x|y = 1) − F�(x|y = 1))

between these two functions has different values of variance for different x. The
variance is small (equal to zero) at the end points of an interval and large some-
where inside it. To obtain the uniform relative deviation of approximation from
the actual function over the whole interval, we adjust the distance in any point of
interval proportional to the inverse of variance. Since for any fixed x the variance
is

Var(x) = F (x|y = 1)(1 − F (x|y = 1)), (38)

we normalize the squared deviation Δ2 by (38). Expression (37) realizes this
idea.

Definition of Distance for Conditional Probability Estimation Prob-
lem. Consider the problem of conditional probability estimation.

For this problem, the squared distance between approximations of the right-
hand side and the left-hand side of equation

F�(x, y = 1) = p�F�(x|y = 1) =
1
�

�∑
i=1

yiθ(x − Xi)
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can be written as follows:
ρ2(A�f, F�) =

∫ (∫
θ(x − u)f(u)dF�(u) −

∫
yiθ(x − u)dF�(u)

)2

σ(x)dμ(x),

where yi ∈ {0, 1} and F�(x) is the empirical distribution function estimated from
training vectors Xi. Therefore, we obtain the expression

ρ2(A�f, F�) =
1
�2

�∑
i,j=1

f(Xi)f(Xj)
∫

θ(x − Xi)θ(x − Xj)σ(x)dμ(x)−

2
�2

�∑
i,j=1

f(Xi)yj

∫
θ(x − Xi)θ(x − Xj)σ(x)dμ(x)+

1
�2

�∑
i,j=1

yiyj

∫
θ(x − Xi)θ(x − Xj)σ(x)dμ(x)

(39)

where the last term does not depend on function f(x).
Since both σ(x) and μ(x) are products of one-dimensional functions, each

integral in (39) has the form

Vi,j =
∫

θ(x − Xi)θ(x − Xj)σ(x) dμ(x) =
d∏

k=1

∫
θ(xk − Xk

i )θ(xk − Xk
j )σk(xk)dμ(xk).

(40)

This (� × �)-dimensional matrix of elements Vi,j we call V -matrix of the sample
X1, ...,X�, where Xi = (X1

i , . . . Xd
i ), ∀i = 1, . . . , �.

Consider three cases:

Case 1: Data belongs to the upper-bounded support (−∞, B]d for some B,
σ(x) = 1 on this support, and μ is the uniform measure on it. Then
the elements Vi,j of V -matrix have the form

Vi,j =
d∏

k=1

(B − max{Xk
i ,Xk

j }).

Case 2: Case where σ(xk) = 1 and μ is defined as (35). Then the elements Vi,j

of V -matrix have the form

Vi,j =
d∏

k=1

ν(Xk > max{Xk
i ,Xk

j }).

where ν(Xk > max{Xk
i ,Xk

j }) is the frequency of Xk from the given
data with the values largen than max{Xk

i ,Xk
j }.
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Case 3: where σ(x) is defined as (36, 37) and μ(x) as (35). In this case, the
values Vi,j also can easily be numerically computed (since both functions
are piecewise constant, the integration (40) is reduced to summation of
constants).

To rewrite the expression for the distance in a compact form, we introduce
the �-dimensional vector Φ

Φ = (f(X1), ..., f(X�))T .

Then, taking into account (39), we rewrite the first summand of functional (34)
as

ρ2(A�f, F�) =
1
�2

(
ΦT V Φ − 2ΦT V Y + Y T V Y

)
, (41)

where Y denotes the �-dimensional vector (y1, ..., y�)T , yi ∈ {0, 1}.

Distance for Regression Estimation Problem. Repeating the same deriva-
tion for regression estimation problem we obtain the same expression for distance

ρ2(A�f, F�) =
1
�2

(
ΦT V Φ − 2ΦT V Y + Y T V Y

)
,

where coordinates of vector Y are values y ∈ R are given in examples (17) for
regression estimation problem.

Distance for Density Ratio Estimation Problem. In the problem of den-
sity ratio estimation, we have to solve the integral equation∫

θ(x − u)R(u)dFden(u) = Fnum(x),

where cumulative distribution functions Fden(x) and Fnum(x) are unknown but
iid data

X1, ...,X�den ∼ Fden(x)

and iid data
X ′

1, ...,X
′
�num ∼ Fnum(x)

are available.
Using the empirical estimates

F�num(x) =
1

�num

�num∑
j=1

θ(x − X ′
j)

and

F�den(x) =
1

�den

�den∑
j=1

θ(x − Xi)

instead of unknown cumulative distribution Fnum(x) and Fden(x) and repeat-
ing the same distance computations as in problems of conditional probability
estimation and regression estimation, we obtain
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ρ2 =
∫ (∫

θ(x − u)R(u)dF�den(u) − F�num(x)
)2

σ(x)dμ(x) =

1
�2den

�den∑
i,j=1

R(Xi)R(Xj)
∫

θ(x − Xj)θ(x − Xj)σ(x)dμ(x)−

2
�num�den

�num∑
i=1

�den∑
j=1

R(Xi)R(X ′
j)

∫
θ(x − Xi)θ(x − X ′

j)σ(x)dμ(x)+

1
�2num

�num∑
i,j=1

∫
θ(x − X ′

j)θ(x − X ′
j)σ(x)dμ(x) =

1
�2num

�num∑
i,j=1

V ∗∗
i,j +

1
�2den

�den∑
i,j=1

R(Xi)R(Xj)Vi,j − 2
�num�den

�den∑
i=1

�num∑
j=1

R(Xi)R(X ′
j)V

∗
i,j ,

where the values Vi,j , V
∗
i,j , V

∗∗
i,j are calculated as

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Vi,j =
∫

θ(x − Xi)θ(x − Xj)σ(x)dμ(x), i, j = 1, ..., �den,

V ∗
i,j =

∫
θ(x − Xi)θ(x − X ′

j)σ(x)dμ(x), i = 1, ..., �num, j = 1, ..., �den,

V ∗∗
i,j =

∫
θ(x − X ′

i)θ(x − X ′
j)σ(x)dμ(x), i, j = 1, ..., �num.

We denote by V , V ∗, and V ∗∗ (respectively, �den × �den-dimensional, �den ×
�num-dimensional, and �num × �num-dimensional) the matrices of corresponding
elements Vi,j , V ∗

i,j , and V ∗∗
i,j . We also denote by 1�num the �num-dimensional vector

of ones, and by R – the �den-dimensional column vector of R(Xi), i = 1, . . . , �den.
Using these notations, we can rewrite the distance as follows:

ρ2 =
1

�2den

(
RT V R − 2

(
�den
�num

)
RT V ∗1�num +

(
�den
�num

)2

1T
�numV ∗∗1�num

)
.

5.2 The Regularization Functionals in RKHS

For each of our inference problems, we now look for its solution in Reproducing
Kernel Hilbert Space (RHS).

Reproducing Kernel Hilbert Space. According to Mercer theorem, any
positive semi-definite kernel has a representation

K(x, z) =
∞∑

k=1

λkφk(x)φk(z), x, z ∈ X ,

where {φk(x)} is a system of orthonormal functions in L2 and λk ≥ 0 ∀k.
Consider the set of functions

f(x; a) =
∞∑

k=1

akφk(x). (42)



Statistical Inference Problems and Their Rigorous Solutions 53

We say that set of functions (42) belongs to RKHS of kernel K(x, z) if we can
define the inner product (f1, f2) in this space such that

(f1(x),K(x, y)) = f1(y). (43)

It is easy to check that the inner product

(f(x, a), f(x, b)) =
∞∑

k=1

akbk

λk
,

where ak, k = 1, ... and bk, k = 1, ... are the coefficients of expansion of functions
f(x, a), and f(x, b), satisfies the reproducing property (43). In particular, the
equality

(K(x1, z),K(x2, z)) = K(x1, x2) (44)

holds true for the kernel K(x, x∗) that defines RKHS.
The remarkable property of RKHS is the so-called Representer Theorem [3],

[4], [8], which states that any function f(x) from RKHS that minimizes functional
(34) can be represented as

f(x) =
�∑

i=1

ciK(Xi, x),

where ci, i = 1, ..., � are parameters and Xi, i = 1, ..., � are vectors of observa-
tions.

Explicit Form of Regularization Functional. In all our Statistical Inference
problems, we are looking for solutions in RKHS, where we use the squared norm
as the regularization functional:

W (f) = (f, f) = ||f ||2. (45)

That is, we are looking for solution in the form

f(x) =
�∑

i=1

αiK(Xi, x), (46)

where Xi are elements of the observation. Using property (44), we define the
functional (45) as

W (f) =
�∑

i,j=1

αiαjK(xi, xj).

In order to use the matrix form of (34), we introduce the following notations:

1. K is the (� × �)-dimensional matrix of elements K(Xi,Xj), i, j = 1, ..., �.
2. K(x) is the �-dimensional vector of functions K(Xi, x), i = 1, ..., �.
3. A is the �-dimensional vector A = (α1, ..., α�)T of elements αi, i = 1, ..., �.
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In these notations, the regularization functional has the form

W (f) = AT KA, (47)

and its solution has the form

f(x) = AT K(x). (48)

6 Solution of Statistical Inference Problems

In this section, we formulate our statistical inference problems as optimization
problems.

6.1 Estimation of Conditional Probability Function

Here we present an explicit form of the optimization problem for estimating
conditional probability function.

We are looking for the solution in form (48), where we have to find vector A.
In order to find it, we have to minimize the objective function

T (A) = AT KV KA − 2AT KV Y + γAT KA, (49)

where Y is a binary vector (with coordinates y ∈ {0, 1}) defined by the obser-
vations. The first two terms of the objective function come from distance (41),
the last term is the regularization functional (47). (The third term from (49)
was omitted in the target functional since it does not depend on the unknown
function.) Since the conditional probability has values between 0 and 1, we have
to minimize this objective function subject to the constraint

0 ≤ AT K(x) ≤ 1, ∀x ∈ X. (50)

We also know that ∫
AT K(x)dF (x) = p0, (51)

where p0 is the probability of class y = 1.
Minimization of (49) subject to constraints (50), (51) is a difficult optimiza-

tion problem. To simplify this problem, we minimize the functional subject to
the constraints

0 ≤ AT K(Xi) ≤ 1, i = 1, ..., �, (52)

defined only at the vectors Xi of observations. 5

Also, we can approximate equality (51) using training data

1
�

�∑
i=1

AT K(Xi) = p�, (53)

5 One can find the solution in closed form A = (V K + γI)−1V Y if constraints (52),
(53) are ignored; here I is the identity matrix.
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where p� is frequency of class y = 1 estimated from data. Using matrix notation,
the constraints (52) and (53) can be rewritten as follows:

0� ≤ KA ≤ 1�, (54)

1
�
AT K1� = p�. (55)

where K is the matrix of elements K(Xi,Xj), i, j = 1, ..., � and 0�, 1� are �-
dimensional vectors of zeros and ones, respectively.

Therefore, we are looking for the solution in form (48), where parameters
of vector A minimize functional (49) subject to constraints (54) and (55). This
is a quadratic optimization problem with one linear equality constraint and 2�
general linear inequality constraints.

In Section 6.4, we simplify this optimization problem by reducing it to a
quadratic optimization problem with one linear equality constraint and several
box constraints.

6.2 Estimation of Regression Function

Similarly, we can formulate the problem of regression function estimation, which
has the form (46). To find the vector A, we minimize the functional

T (A) = AT KV KA − 2AT KV Y + γAT KA, (56)

where Y is real-valued vector (with coordinates yi ∈ R1 of the observations (5)).
Suppose that we have the following knowledge about the regression function:

1. Regression y = f(x) = AT K(x) takes values inside an interval [a, b]:

a ≤ AT K(x) ≤ b, ∀x ∈ X . (57)

2. We know the expectation of the values of the regression function:
∫

AT K(x)dF (x) = c. (58)

Then we can solve the following problem: minimize functional (56) subject to
constraints (57), (58).

Usually we do not have knowledge (57), (58), but we can approximate it from
the training data. Specifically, we can approximate a by the smallest value of yi

(without loss of generality, we consider yi ≥ 0), while b can be approximated by
the largest value of yi from the training set:

a� = min{y1, ..., y�}, b� = max{y1, ..., y�}.

We then consider constraint (57) applied only for the training data:

a� ≤ AT K(Xi) ≤ b�, i = 1, ..., �. (59)
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Also, we can approximate (58) with the equality constraint

1
�

�∑
i=1

AT K(Xi) =
1
�

�∑
i=1

yi. (60)

Constraints (59), (60) can be written in matrix notation

a�1� ≤ KA ≤ 1�b�, (61)

1
�
AT K1� = ŷav, (62)

where ŷav is the right-hand side of (60). If these approximations6 are reasonable,
the problem of estimating the regression can be stated as minimization of the
functional (56) subject to constraints (61), (62). This is a quadratic optimiza-
tion problem with one linear equality constraint and 2� general linear inequality
constraints.

6.3 Estimation of Density Ratio Function

To solve the problem of estimating density ratio function in the form

R(x) = AT K(x),

where A is the �den-dimensional vector of parameters and K(x) is the �den-
dimensional vector of functions K(X1, x), ...,K(X�den , x), we have to minimize
the functional

T (A) = AT KV KA − 2
(

�den
�num

)
AT KV ∗1�num + γAT KA, (63)

where K is the �den × �den-dimensional matrix of elements K(Xi,Xj) subject to
the constraints

AT K(x) ≥ 0, ∀x ∈ X,∫
AT K(x)dFden(x) = 1.

As above, we replace these constraints with their approximations

KA ≥ 0�den ,

1
�den

AT KV ∗1�num = 1

Here K is (�den×�den)-dimensional matrix of observations from Fden(x), and V ∗

is (�den × �num)-dimensional matrix defined in Section 5.1.

6 Without constraints, the solution has the closed form (see footnote 7), where y ∈ R1

are elements of training data for regression.
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6.4 Two-Stage Method for Function Estimation:
Data Smoothing and Data Interpolation

Solutions of Statistical Inference problems considered in the previous sections
require numerical treatment of the general quadratic optimization problem: min-
imization of quadratic form subject to one linear equality constraint and 2� linear
inequality constraints of general type (� linear inequality constraints for density
ratio estimation problem).

Numerical solution for such problems can be computationally hard (especially
when � is large). In this section, we simplify the problem by splitting it into two
parts:

1. Estimating function values at � observation points, i.e., estimating vector
Φ = (f(X1), ..., f(X�))T .

2. Interpolating the values of function known at the � observation points to
other points in the space X .

Estimating Function Values at Observation Points. In order to find the
function values at the training data points, we rewrite the regularization func-
tional in objective functions (49), (56), (63) in a different form. In order to do
this, we use the equality

K = KK+K,

where K+ is the pseudoinverse matrix of matrix7 K.
In our regularization term of objective functions, we use the equality

AT KA = AT KK+KA.

1. Estimation of values of conditional probability. For the problem
of estimating the values of conditional probability at � observation points, we
rewrite the objective function (49) in the form

W (Φ) = ΦT V Φ − 2ΦT V Y + γΦT K+Φ, (64)

where we have denoted
Φ = KA. (65)

In the problem of estimating conditional probability, Y is a binary vector.
In order to find vector Φ, we minimize the functional (64) subject to box

constraints
0� ≤ Φ ≤ 1�,

and equality constraint
1
�
ΦT 1� = p�.

7 Pseudoinverse matrix M+ of the matrix M (not necessarily symmetric) satisfies the
following four conditions: (1) MM+M = M , (2) M+MM+ = M+, (3) (MM+)T =
MM+, and (4) (M+M)T = M+M . If matrix M is invertible, then M+ = M−1.
Pseudoinverse exists and is unique for any matrix.



58 V. Vapnik and R. Izmailov

2. Estimating values of regression. In order to estimate the vector Φ of
values of regression at � observation points, we minimize functional (64) (where
Y is a real-valued vector), subject to the box constraints

a�1� ≤ Φ ≤ b�1�,

and the equality constraint
1
�
ΦT 1� = ŷav.

3. Estimating values of density ratio function. In order to estimate the
vector Φ of values of density ratio function at �den observation points X1, ...,X�den ,
we minimize the functional

ΦT V Φ − 2
(

�den
�num

)
ΦT V ∗1�num + γΦT K+Φ

subject to the box constraints
Φ ≥ 0�den ,

and the equality constraint

1
�den

ΦT V ∗1�num = 1.

Function Interpolation. In the second stage of our two-stage procedure, we
use the estimated function values at the points of training set to define the
function in input space. That is, we solve the problem of function interpolation.

In order to do this, consider representation (65) of vector Φ∗:

Φ∗ = KA∗. (66)

We also consider the RKHS representation of the desired function:

f(x) = A∗T K(x). (67)

If the inverse matrix K−1 exists, then

A∗ = K−1Φ∗.

If K−1 does not exist, there are many different A∗ satisfying (66). In this situa-
tion, the best interpolation of Φ∗ is a (linear) function (67) that belongs to the
subset of functions with the smallest bound on VC dimension [15]. According to
Theorem 10.6 in [15], such a function either satisfies the equation (66) with the
smallest L2 norm of A∗ or it satisfies equation (66) with the smallest L0 norm
of A∗.

Efficient computational implementations for both L0 and L2 norms are avail-
able in the popular scientific software package Matlab.

Note that the obtained solutions in all our problems satisfy the corresponding
constraints only on the training data, but they do not have to satisfy these
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constraints at any x ∈ X . Therefore, we truncate the obtained solution functions
as

ftr(x) = [A∗T K(x)]ba,

where

[u]ba =

⎧⎨
⎩

a, if u < a
u, if a ≤ u ≤ b
b, if u > b

Additional Considerations. For many problems, it is useful to consider the
solutions in the form of a function from a set of RKHS functions with a bias
term:

f(x) =
�∑

i=1

αiK(Xi, x) + c = AT K(x) + c.

To keep computational problems simple, we use fixed bias c = ŷav. (One can
consider the bias as a variable, but this leads to more complex form of constraints
in the optimization problem.)

Using this set of functions, our quadratic optimization formulation for esti-
mating the function values at training data points for the problem of conditional
probability and regression estimation is as follows: minimize the functional (over
vectors Φ)

(Φ + ŷav1�)T V (Φ + ŷav1�) − 2(Φ + ŷav1�)T V Y + γΦT K+Φ

subject to the constraints

(a − ŷav)1� ≤ Φ ≤ (b − ŷav)1�,

(where a = 0, b = 1 for conditional probability problem and a = a�, b = b� for
regression problem) and constraint

ΦT 1� = 0.

For estimating the values of density ratio function at points (X1, . . . , X�den), we
choose c = 1 and minimize the functional

(Φ + 1�den)
T V (Φ + 1�den) − 2

(
�den
�num

)
(Φ + 1�den)

T V ∗1�num + γΦT K+Φ

subject to the constraints
−1�den ≤ Φ,

ΦT 1�den = 0.
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6.5 Applications of Density Ratio Estimation

Density ratio estimation has many applications, in particular,

– Data adaptation.
– Estimation of mutual information.
– Change point detection.

It is important to note that, in all these problems, it is required to estimate
the values R(Xi) of density ratio function at the points X1, ...,X�den (generated
by probability measure Fden(x)) rather than function R(x).

Below we consider the first two problems in the pattern recognition setting.
These problems are important for practical reasons (especially for unbalanced
data): the first problem enables better use of available data, while the second
problem can be used as an instrument for feature selection. Application of density
ratio to change point detection can be found in [2].

Data Adaptation Problem. Let the iid data

(y1,X1), ..., (y�,X�) (68)

be defined by a fixed unknown density function p(x) and a fixed unknown condi-
tional density function p(y|x) generated according to an unknown joint density
function p(x, y) = p(y|x)p(x). Suppose now that one is given data

X∗
1 , ...,X∗

�1 (69)

defined by another fixed unknown density function p∗(x). This density function,
together with conditional density p(y|x) (the same one as for (68)), defines the
joint density function p∗(x, y) = p(y|x)p∗(x).

It is required, using data (68) and (69), to find in a set of functions f(x, α), α ∈
Λ, the one that minimizes the functional

T (α) =
∫

L(y, f(x, α))p∗(x, y)dydx, (70)

where L(·, ·) is a known loss function.
This setting is an important generalization of the classical function estimation

problem where the functional dependency between variables y and x is the same
(the function p(y|x) which is the part of composition of p(x, y) and p∗(x, y)),
but the environments (defined by densities p(x) and p∗(x)) are different.

It is required, by observing examples from one environment (with p(x)), to
define the rule for another environment (with p∗(x)). Let us denote

R(x) =
p∗(x)
p(x)

, p(x) > 0.

Then functional (70) can be rewritten as

T (α) =
∫

L(y, f(x, α))R(x)p(x, y)dydx
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and we have to minimize the functional

T�(α) =
�∑

i=1

L(yi, f(Xi, α))R(xi),

where Xi, yi are data points from (68). In this equation, we have multipli-
ers R(Xi) that define the adaptation of data (69) generated by joint density
p(x, y) = p(y|x)p(x) to the data generated by the density p∗(x, y) = p(y|x)p∗(x).
Knowledge of density ratio values R(Xi) leads to a modification of classical algo-
rithms.

For SVM method in pattern recognition [14], [15], this means that we have
to minimize the functional

T�(w) = (w,w) + C

�∑
i=1

R(Xi)ξi (71)

(C is a tuning parameter) subject to the constraints

yi((w, zi) + b) ≥ 1 − ξi, ξ ≥ 0, yi ∈ {−1,+1}, (72)

where zi is the image of vector Xi ∈ X in a feature space Z.
This leads to the following dual-space SVM solution: maximize the functional

T�(α) =
�∑

i=1

αi − 1
2

�∑
i,j=1

αiαjyiyjK(Xi,Xj), (73)

where (zi, zj) = K(Xi,Xj) is Mercer kernel that defines the inner product (zi, zj)
subject to the constraint

�∑
i=1

yiαi = 0 (74)

and the constraints
0 ≤ αi ≤ CR(Xi). (75)

The adaptation to new data is given by the values R(xi), i = 1, ..., �; these values
are set to 1 in standard SVM (71).

Unbalanced Classes in Pattern Recognition. An important application
of data adaptation method is the case of binary classification problem with
unbalanced training data. In this case, the numbers of training examples for
both classes differ significantly (often, by orders of magnitude). For instance, for
diagnosis of rare diseases, the number of samples from the first class (patients
suffering from the disease) is much smaller than the number of samples from the
second class (patients without that disease).

Classical pattern recognition algorithms applied to unbalanced data can lead
to large false positive or false negative error rates. We would like to construct
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a method that would allow to control the balance of error rates. Formally, this
means that training data are generated according to some probability measure

p(x) = p(x|y = 1)p + p(x|y = 0)(1 − p),

where 0 ≤ p ≤ 1 is a fixed parameter that defines probability of the event of
the first class. Learning algorithms are developed to minimize the expectation
of error for this generator of random events.

Our goal, however, is to minimize the expected error for another generator

p∗(x) = p(x|y = 1)p∗ + p(x|y = 0)(1 − p∗),

where p∗ defines different probability of the first class (in the rare disease exam-
ple, we minimize expected error if this disease is not so rare); that is, for param-
eter p = p∗.

To solve this problem, we have to estimate the values of density ratio function

R(x) =
p∗(x)
p(x)

from available data. Suppose we are given observations

(y1,X1), ..., (y�,X�). (76)

Let us denote by X1
i vectors from (76) corresponding to y = 1 and by X0

j vectors
corresponding to y = 0. We rewrite elements of x from (76) generated by p(x)
as

X1
i1 , ...,X

1
im

,X0
im+1

, ...,X0
i�

Consider the new training set that imitates iid observations generated by p∗(x)
by having the elements of the first class to have frequency p∗:

X1
i1 , ...,X

1
im

,X1
j1 , ...X

1
js

,X0
im+1

, ...,X0
i�

, (77)

where X1
j1

, . . . , X1
js

are the result of random sampling from X1
i1

, . . . , X1
im

with
replacement. Now, in order to estimate values R(Xi), i = 1, ..., �, we construct
function F�den(x) from data (76) and function F�num(x) from data (77) and use
the algorithm for density ratio estimation. For SVM method, in order to balance
data, we have to maximize (73) subject to constraints (74) and (75).

Estimation of Mutual Information. Consider k-class pattern recognition
problem y ∈ {a1, ..., ak}.

The entropy of nominal random variable y (level of uncertainty for y with no
information about corresponding x) is defined by

H(y) = −
k∑

t=1

p(y = at) log2 p(y = at).
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Similarly, the conditional entropy given fixed value x∗ (level of uncertainty of y
given information x∗) is defined by the value

H(y|x∗) = −
k∑

t=1

p(y = at|x∗) log2 p(y = at|x∗).

For any x, the difference (decrease in uncertainty)

ΔH(y|x∗) = H(y) − H(y|x∗)

defines the amount of information about y contained in vector x∗. The expecta-
tion of this value (with respect to x)

I(x, y) =
∫

ΔH(y|x)dF (x)

is called the mutual information between variables y and x. It defines how much
information does variable x contain about variable y. The mutual information
can be rewritten in the form

I(x, y) =
k∑

t=1

p(y = at)
∫ (

p(x, y = at) log2
p(x, y = at)

p(x)p(y = at)

)
dF (x) (78)

(see [1] for details).
For two densities (p(x|y = at) and p(x), the density ratio function is

R(x, y = at) =
p(x|y = at)

p(x)
.

Using this notation, one can rewrite expression (78) as

I(x, y) =
k∑

t=1

p(y = at)
∫

R(y = at, x) log2 R(y = at, x)dF (x), (79)

where F (x) is cumulative distribution function of x.
Our goal is to use data

(y1,X1), ..., (y�,X�)

to estimate I(x, y). Using in (79) the empirical distribution function F�(x) and
values p�(y = at) estimated from the data, we obtain the approximation I�(x, y)
of mutual information (79):

I�(x, y) =
1
�

m∑
t=1

p(y = at)
�∑

i=1

R(Xi, y = at) log2 R(Xi, y = at).

Therefore, in order to estimate the mutual information for k-class classifica-
tion problem, one has to solve the problem of values of density ratio estimation
problem k times at the observation points R(Xi, y = at), i = 1, ..., � and use
these values in (79).

In the problem of feature selection, e.g., selection of m features from the set
of d features, we have to find the subset of k features that has the largest mutual
information.



64 V. Vapnik and R. Izmailov

7 Concluding Remarks

In this paper, we introduced a new unified approach to solution of statistical
inference problems based on their direct settings. We used rigorous mathemat-
ical techniques to solve them. Surprisingly, all these problems are amenable to
relatively simple solutions.

One can see that elements of such solutions already exist in the basic classical
statistical methods, for instance, in estimation of linear regression and in SVM
pattern recognition problems.

7.1 Comparison with Classical Linear Regression

Estimation of linear regression function is an important part of classical statis-
tics. It is based on iid data

(y1,X1), ..., (y�,X�), (80)

where y is distributed according to an unknown function p(y|x). Distribution
over vectors x is a subject of special discussions: it could be either defined by
an unknown p(x) or by known fixed vectors. It is required to estimate the linear
regression function

y = wT
0 x.

Linear estimator. To estimate this function, classical statistics uses ridge
regression method that minimizes the functional

R(w) = (Y − Xw)T (Y − Xw) + γ(w,w), (81)

where X is the (� × n)-dimensional matrix of observed vectors X, and Y is the
(�×1)-dimensional matrix of observations y. This approach also covers the least
squares method (for which γ = 0).

When observed vectors X in (81) are distributed according to an unknown
p(x), method (81) is consistent under very general conditions.

The minimum of this functional has the form

w� = (XTX + γI)−1XT Y. (82)

However, estimate (82) is not necessarily the best possible one.
The main theorem of linear regression theory, the Gauss-Markov theorem,

assumes that input vectors X in (80) are fixed. Below we formulate it in a slightly
more general form.
Theorem. Suppose that the random values (yi − wT

0 Xi) and (yj − wT
0 Xj) are

uncorrelated and that the bias of estimate (82) is

μ = Ey(w� − w0).
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Then, among all linear8 estimates with bias9 μ, estimate (82) has the smallest
expectation of squared deviation:

Ey(w0 − w�)2 ≤ Ey(w0 − w)2, ∀w.

Generalized linear estimator. Gauss-Markov model can be extended in the
following way. Let �-dimensional vector of observations Y be defined by fixed
vectors X and additive random noise Ω = (ε1, ..., ε�)T so that

Y = Xw0 + Ω,

where the noise vector Ω = (ε1, ..., ε�)T is such that

EΩ = 0, (83)

EΩΩT = Σ. (84)

Here, the noise values at the different points Xi and Xj of matrix X are correlated
and the correlation matrix Σ is known (in the classical Gauss-Markov model, it
is identity matrix Σ = I). Then, instead of estimator (82) minimizing functional
(81), one minimizes the functional

R(w) = (Y − Xw)T Σ−1(Y − Xw) + γ(w,w). (85)

This functional is obtained as the result of de-correlation of noise in (83), (84).
The minimum of (85) has the form

ŵ∗ = (XT Σ−1X + γI)−1XT Σ−1Y. (86)

This estimator of parameters w is an improvement of (82) for correlated noise
vector.
V -matrix estimator of linear functions. The method of solving regression
estimation problem (ignoring constraints) with V matrix leads to the estimate

ŵ∗∗ = (XT V X + γI)−1XT V Y.

The structure of the V -matrix-based estimate is the same as those of linear
regression estimates (82) and (86), except that the V -matrix replaces identity
matrix in (82) and inverse covariance matrix in (86).

The significant difference, however, is that both classical models were devel-
oped for the known (fixed) vectors X, while V -matrix is defined for random
vectors X and is computed using these vectors. It takes into account infor-
mation that classical methods ignore: the domain of regression function and the
geometry of observed data points. The complete solution also takes into accounts
the constraints that reflects the belief in estimated prior knowledge about the
solution.
8 Note that estimate (82) is linear only if matrix X is fixed.
9 Note that when γ = 0 in (81), the estimator (82) with γ = 0 is unbiased.
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7.2 Comparison with SVM Methods for Pattern Recognition

For simplicity, we discuss in this section only pattern recognition problem; we
can use the same arguments for the non-linear regression estimation problem.

The pattern recognition problem can be viewed as a special case of the prob-
lem of conditional probability estimation. Using an estimate of conditional prob-
ability p(y = 1|x), one can easily obtain the classification rule

f(x) = θ(p(y = 1|x) − 1/2).

We now compare the solution θ(f(x)) with

f(x) = AT K(x)

obtained for conditional probability problem with the same form of solution that
defines SVM.

The coefficients A for LS-SVM have the form [7], [12]

A = (K + γI)−1Y.

If V -matrix method ignores the prior knowledge about the properties of condi-
tional probability function, the coefficients of expansion have the form

A = (KV + γI)−1V Y.

It is easy, however, to incorporate the existing constraints into solution.
In order to find the standard hinge-loss SVM solution [10], [14], we have to

minimize the quadratic form

−AT YKYA + 2AT1�

with respect to A subject to the box constraint

0� ≤ A ≤ C1�

and the equality constraint
AT Y1� = 0,

where C is the (penalty) parameter of the algorithm, and Y is (�×�)-dimensional
diagonal matrix with yi ∈ {−1,+1} from training data on its diagonal (see
formulas (71), (72) , (73), (74), and (75) with R(xi) = 1 in (71) and (75)).

In order to find the conditional probability, we also to have to minimize the
quadratic form

ΦT (V + γK+)Φ − 2ΦV Y,

with respect to Φ subject to the box constraints10

0� ≤ Φ ≤ 1�

10 Often one has stronger constraints

a� ≤ Φ ≤ b�,

where 0� ≤ a� and b� ≤ 1� are given (by experts) as additional prior information.
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and the equality constraint
ΦT1� = �p�,

where γ is the (regularization) parameter of the algorithm (See Section 6.4).
The essential difference between SVM and V -matrix method is that the

constraints in SVM method appear due to necessary technicalities (related to
Lagrange multiplier method11) while in V -matrix method they appear as a result
of incorporating existing prior knowledge about the solution: the classical setting
of pattern recognition problem does not include such prior knowledge12.

The discussion above indicates that, on one hand, the computational com-
plexity of estimation of conditional probability is not higher than that of stan-
dard SVM classification, while, on the other hand, the V -estimate of conditional
probability takes into account not only the information about the geometry of
training data (incorporated in V -matrix) but also the existing prior knowledge
about solution (incorporated in constraints (54), (55)).

From this point of view, it is interesting to compare accuracy of V -matrix
method with that of SVM. This will require extensive experimental research.13

11 The Lagrange multiplier method was developed to find the solution in the dual opti-
mization space and constraints in SVM method are related to Lagrange multipliers.
Computationally, it is much easier to obtain the solution in the dual space given by
(73), (74), (75) than in the primal space given by (71), (72). As shown by compar-
isons [6] of SVM solutions in primal and dual settings, (1) solution in primal space is
more difficult computationally, (2) the obtained accuracies in both primal and dual
spaces are about the same, (3) the primal space solution uses significantly fewer
support vectors, and (4) the large number of support vectors in dual space solution
is caused by the need to maintain the constraints for Lagrange multipliers.

12 The only information in SVM about the solution are the constraints yif(xi, α) ≥
1 − ξi, where ξi ≥ 0 are (unknown) slack variables [18]. However, this information
does not contain any prior knowledge about the function f .

13 In the mid-1990s, the following Imperative was formulated [14], [15]:
“While solving problem of interest, do not solve a more general problem as an

intermediate step. Try to get the answer that you need, but not a more general one.
It is quite possible that you have enough information to solve a particular problem
of interest well, but not enough information to solve a general problem.”

Solving conditional probability problem instead of pattern recognition problem
might appear to contradict this Imperative. However, while estimating conditional
probability, one uses prior knowledge about the solution (in SVM setting, one does
not have any prior knowledge), and, while estimating conditional probability with V -
matrix methods, one applies rigorous approaches (SVM setting is based on justified
heuristic approach of large margin). Since these two approaches leverage different
factors and thus cannot be compared theoretically, it is important to compare them
empirically.
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Appendix: V -Matrix for Statistical Inference

In this section, we describe some details of statistical inference algorithms using
V -matrix. First, consider algorithms for conditional probability function P (y|x)
estimation and regression function f(x) estimation given iid data

(y1,X1), ..., (y�,X�) (87)

generated according to p(x, y) = p(y|x)p(x). In (87), y ∈ {0, 1} for the problem
of conditional probability estimation, and y ∈ R1 for the problems of regression
estimation and density ratio estimation. Our V -matrix algorithm consists of the
following simple steps.

Algorithms for Conditional Probability and Regression Estimation

Step 1. Find the domain of function. Consider vectors

X1, ...,X� (88)

from training data. By a linear transformation in space X , this data can be
embedded into the smallest rectangular box with its edges parallel to coordinate
axes. Without loss of generality, we also chose the origin of coordinate y such
that all yi ∈ [0,∞], i = 1, ..., � are non-negative.

Further we assume that data (88) had been preprocessed in this way.
Step 2. Find the functions μ(xk). Using preprocessed data (88), construct

for any coordinate xk of the vector x the piecewise constant function

μk(x) =
1
�

�∑
i=1

θ(xk − Xk
i ).

Step 3. Find functions σ(xk). For any coordinate of k = 1, ..., d find the
following:

1. The value

ŷav =
1
�

�∑
i=1

yi

(for pattern recognition problem, ŷav = p� is the fraction of training samples
from class y = 1).

2. The piecewise constant function

F∗(xk) =
1

�ŷav

�∑
i=1

yiθ(x − Xi)

(For pattern recognition problem, function F∗(xk) = P (xk|y = 1) estimates
cumulative distribution function of xk for samples from class y = 1).
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3. The piecewise constant function

σk(x) =
(
F∗(xk)(1 − F∗(xk)) + ε

)−1
.

Step 4. Find elements of V -matrix. Calculate the values

V k
ij =

∫
θ(xk − Xk

i )θ(xk − Xk
j )σ(xk)dμ(xk) =

∫ ∞

max{Xk
i ,Xk

j }
σ(xk)dμ(xk).

Since both σ(xk) and μ(xk) are piecewise constant functions, the last integral is
a sum of constants.

Step 5. Find V -matrix. Compute elements of V -matrix as

Vij =
d∏

k=1

V k
ij .

Remark 1. Since V -matrix in the problems of conditional probability and
regression estimation is scale-invariant, one can multiply all elements of this
matrix by a fixed constant in order to keep the values of matrix elements within
reasonable bounds for subsequent computations.
Remark 2. Any diagonal element V k

tt is not less than elements of the corre-
sponding row V k

tj and column V k
jt. Therefore, in order to compute V -matrix in

multidimensional case, it is reasonable to compute the diagonal elements first
and, if they are small, just to replace the entries in the corresponding row and
column with zeros.

It is possible (especially for large d) that V -matrix can have dominating
diagonal elements. In this case, V -matrix can be approximated by a diagonal
matrix. This is equivalent to the weighed least squares method where weights
are defined by the diagonal values Vtt.

Step 6. Find the values of conditional probability or the values of
regression at the points of observation. Solve the quadratic optimization
problem defined in the corresponding sections (in Section 6.4).

Step 7. Find the conditional probability or regression function. Solve
interpolation problem defined in Section 6.4.

Algorithms for Density Ratio Estimation

For the problem of density ratio estimation, the algorithm requires the fol-
lowing modifications:

Step 1a. Find the domain of function. Domain of function is defined
using data

X1, ...,X�den ,X ′
1, ...,X

′
�num , (89)

where training vectors Xi and X ′
j are distributed according to Fden(x) and

Fnum(x′), respectively.



70 V. Vapnik and R. Izmailov

Step 2a. Find the functions μ(xk). Using (preprocessed) data (89), con-
struct for coordinate xk, k = 1, ..., d of vector x the piecewise constant function

μk(x) =
1

(�den + �num)

(
�den∑
i=1

θ(xk − Xk
i ) +

�num∑
i=1

θ(xk − X ′k
i )

)
.

Step 3a. Find functions σ(xk). For any coordinate xk, k = 1, ..., d find:

– the piecewise constant function

F∗∗(xk) =
1

�num

�num∑
j=1

θ(x − X ′
j);

– the piecewise constant function

σ(xk) =
(
F∗∗(xk)(1 − F∗∗(xk)) + ε

)−1
,

where ε > 0 is a small value.

Step 4a. Find the V -matrix and V ∗-matrix. Estimate the matrices using
expressions from corresponding sections.

Step 5a. Find the values of density ratio function at the points of
observation. Solve the quadratic optimization problem defined in corresponding
sections.

Step 6a. Find the density ratio function. Solve the interpolation prob-
lem defined in Section 6.4 (if estimated values of density ratio in �den points are
not sufficient for the application, and the function itself has to be estimated).

Choice of Regularization Parameter

The value of regularization parameter γ can be selected using standard cross-
validation techniques.
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Abstract. We discuss a way of implementing feature mapping for classification 
problems by expressing the given data through a set of functions comprising of 
a mixture of convex functions. In this way, a certain pattern’s potential of be-
longing to a certain class is mapped in a way that promotes interclass separa-
tion, data visualization and understanding of the problem’s mechanics. In terms 
of enhancing separation, the algorithm can be used in two ways: to construct 
problem features to feed a classification algorithm or to detect a subset of prob-
lem attributes that could be safely ignored. In terms of problem understanding, 
the algorithm can be used for constructing a low dimensional feature mapping 
in order to make problem visualization possible. The whole approach is based 
on the derivation of an optimization objective which is solved with a genetic al-
gorithm. The algorithm was tested under various datasets and it is successful in 
providing improved evaluation results. Specifically for Wisconsin breast cancer 
problem, the algorithm has a generalization success rate of 98% while for Pima 
Indian diabetes it provides a generalization success rate of 82%. 

Keywords: Classification · Features · Visualization · Convexity 

1 Introduction 

During the many decades during which Machine Learning has been evolving, a lot of 
algorithms have been developed and introduced. While the hypothesis of the  
generative algorithms like the Bayes classifier may be considered as self-explained 
and naturally deduced, a discriminative model’s hypothesis like the ones calculated by 
a Neural Network or a Support Vector Machine is difficult to grasp. This phenomenon 
is really obvious when we deal with a non-linear boundary hypothesis. Real world 
machine learning problems are very rarely restricted to two or three attributes. On the 
contrary, the most recently defined Machine Learning problems comprise of tens, 
hundreds or even thousands of attributes. This phenomenon is stressed by the lately 
developed belief among the Machine Learning Community that is not the better algo-
rithm that wins at the end of the day but the one supplied with the most data [2]. For-
tunately, nowadays collecting data is much easier than it was two decades ago. At the 
same time, Machine Learning has provided ways to reduce data dimensionality thus 
allowing partial visualization and data analysis simplification. The problem of using 
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such methods is that they reduce the dimensionality of the input space meaning that 
the decision of which part of the information could be thrown away is taken in the 
data space and not the feature space. Another concern with this approach is the fact 
that significant information may be inevitably disposed, towards the goal of ending up 
with two or three (transformed) attributes in order to visualize a portion of the data. 
This high information disposal may prevent the emergence of important data govern-
ing relationships. On the other hand, it may be useful to have a feature mapping that 
can be constrained to two or three dimensions for visualization purposes. Such a 
mapping naturally encapsulates the data relationships and correlations. By definition, 
mapping a rather difficult problem into only one, two or three features means that 
these features must be highly expressive and may comprise of complex functions in 
order to be able to encapsulate a great amount of the data inter-relations. This ap-
proach implies that the derived data representation (feature mapping) is a classifica-
tion hypothesis for the problem at hand. Effectively, the data is visualized based on a 
powerful hypothesis that has success rates that are very close to or even better than 
the success rates of state of the art Machine Learning algorithms. 

2 The Feature Mapping Optimization Objective 

Let's assume a training data set  { , , , , . . . , , } consisting 
of labeled patterns such as and {1,2,3, . . . , } meaning that there are 

different labels (classes). The basic task is to construct a hypothesis :
{1,2, . . . , } that can predict the label of an unseen data pattern. This hypothesis is 
based on features that map the characteristics of the different classes of the problem. 
These features are chosen to be a mixture of convex functions having the problem 
attributes as variables. The decision of using convex functions has to do with the 
properties of this special group of functions that are used to accomplish mathematical 
adequacy. The feature mapping optimization objective is derived assuming two 
classes for reasons of simplicity so it holds for this discussion that 2. We will 
also refer to these classes as the positive and the negative class. To keep the graphs 
simple the data patterns are restricted to be one dimensional so it further holds 
that  1. Finally, we define two random variables  + and -, one for each prob-
lem class. Assuming a feature mapping function  then a certain pattern's feature 
value is in the form of . In order to promote inter class separation the 
expected feature values of the patterns of each class should be separated with a dis-
tance  that should be as large as possible.   + -                                                  1  

The optimization objective should be the maximization of separating distance  and is 
defined as 

{ + - }                                       2  

Figure 1 demonstrates the rationale behind the defined objective function. 
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The first subscript of the random variables represents its class and the second sub-
script the furthest opposite class pattern. Using these definitions the maximum Total 
Atomic Inter-class Distance equation (5) may be expanded as in (6). It is noted that 
(6) reflects the maximum TAID because + , { , , , } are the fur-
thermost opposite class feature mappings values given +  and - . 1

+γ -
1

- +δ +1
-α +

1
+ -β   =

+γ - - +δ -α -                    + + -β                                               6
 

- + - +

- + - + 0 

Replacing the above quantity back to (6) we have 

+γ +δ -α -β , 0                    7  

Equation (7) can be further simplified using the following facts 

+γ + , 0
+δ - , 0
-a + , 0
-β + , 0 

Substituting in (7) 

+ - + +                 =  2 + 2f -                                                                       8  

Inspecting (8) closer reveals that it essentially includes equation (4) as an embedded 
sub-goal. Since the TAID metric calculates the sum of the minimum feature distance 
of the patterns of each class to its nearest opposite class feature value and we are also  
considering a problem consisting of two classes of data, it is rational to get the multip-
lier of two for the sub-goal of equation (4). Armed with the basic form of the objec-
tive function we are ready to begin formalizing the final expression of the problem. 
There are still some issues to be solved before there is completeness and ability to 
implement the method. These concerns are listed below: 

• Feature mapping functions should be bounded in order to avoid over fitting and 
maintain sanity. Fixed upper and lower bounds are implemented which results in re-
jecting candidate solutions that map any of the data outside this acceptable range. In 
all experimental runs of the algorithm the bounds are symmetrical in the range -1000 
up to 1000. 
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• Regularization should be added in order to avoid over fitting. Omitting the analy-
sis we just provide the added regularization term which makes sure that the term 
never gets zero or extremely low during the search.  In practice, the regularization 
term reflects the number of the boundary range integer values on which at least one 
positive or one negative pattern is mapped. ∑      +Bound i = -Bound ,       1                  0                                                       9    

• The algorithm should have the ability to construct multiple features in order to 
deal with problems of high complexity. In this way a number a features can be com-
bined together to provide a decent feature mapping. Having a feature already con-
structed using the objective function, a new feature calculation should not ignore its 
existence and perform its own search in a way that consummates all previous work 
done so far. This approach provides a whole new perspective to the process of feature 
mapping the specific problem by adding a different angle of view upon the training 
patterns. To maintain a different angle of view upon the problem,  should map a 
specific pattern  in a different location on the feature range than already did. 
Towards this direction the distance of the two mappings is considered in the objective. 
In a formal definition, in order to calculate the objective function of (5) should be 
modified to reflect the existence of such as 1

j
{ + - }

1
j

{ - + }   +       1
j

{ + - }
1

j
{ - + }     10  

Every time a new feature is to be calculated, new sub-goals in the form of function (5) 
must be included so as to achieve current feature's diversity from the previously  
constructed features. This increases the complexity of the algorithm exponentially 
making it very inefficient at a point of losing its practical use. For this reason, the 
multi- feature objective function (10) is modified in such a way that the requirements 
of the above discussion are preserved without overwhelming the performance of the 
solver. The new objective function is using Euclidean distance for the calculation of 
the current feature function. Every feature mapping at a given point is represented by 
a vector ̊ . . .  whose elements are all previous feature 
mappings and the one to be calculated ( ). Using this approach we have the fol-
lowing objective function. The last term  is the regularization term defined in (9). 1

j
{ + - }

1
j

{ - + }  

• The last modification to the objective function is a term that adds attribute 
sparseness to the performed feature mapping. The attributes describing the input pat-
terns may be selectively used in an individual feature construction based on their sui-
tability, information content and contribution in respect to all available attributes. This 
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means that  it is preferred, that only a subset of the problem attributes are called forth 
in calculating a feature. Limiting the number of involved attributes in the feature con-
struction process, favors the usage of the strongest feature elements during each fea-
ture  mapping iteration and consequently advances the concentration on a certain 
angle of view for the problem. This approach is more appropriate when the problem at 
hand is difficult in the sense that a powerful classification algorithm like a Support 
Vector Machine or a Neural Network provides somehow lower than desired or ex-
pected success rates. There are also situations that a problem has a great number of 
attributes and it seems rational to construct many features each of which encapsulates 
a narrow spectrum of the characteristics carried inside the attributes. In such cases the 
degree of sparseness may be large in order to promote usage of different attributes 
during the calculation of each problem feature. This approach is similar to sparse 
auto-encoders currently used by researchers in deep learning algorithms[1]. The fea-
ture construction can end when no more unused attributes are used in the lastly con-
structed feature. At the end of the algorithm execution, it may be observed that some 
attributes were not used at all, implying that they could be neglected in the training of 
a classification algorithm. The final objective function intended for maximization is 
shown below 1

j
{ + - }

1
j

{ - + }              
   , , , 0                                                       11  

The coefficient of sparseness  defines the degree of attributes negligence and the 
overall sparseness term depends on how many attributes are actually involved in a 
specific feature  calculation over the total attributes of the problem. The sparseness 
coefficient can be tuned accordingly depending on the problem at hand. 

3 Algorithm Implementation 

Having the objective function fully defined in (11), this section deals with how to 
implement an efficient search method. A gradient based method cannot be used be-
cause the objective is not a fixed function with variable parameters and its form can-
not be known a priori. The search process should combine and test a great number of 
convex functions until it reaches a good quality solution. By definition genetic pro-
gramming algorithms are the best fit for this type of problems. The representation 
scheme of the genetic programming algorithm consists of a set of convex functions, 
some primitive operators and some squashing functions. More specifically, the opera-
tors used are addition, subtraction, multiplication, division, entropy information, pat-
tern normal value, power function, Gaussian function, logistic function and greater 
than Boolean functions. The algorithm essentially combines the building blocks of the 
problem's genome with the goal is to eventually come up with a good feature mapping 
representation. When a calculation for a pattern falls outside the defined range of the 
feature mapping the candidate solution is allocated a very small fitness. An initial 
population goes through the genetic operations of crossover and mutation for several 
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generations until convergence to a state that the best population fitness value does not 
change any more. 

4 Experimental Results 

To test the capabilities of the algorithm we first use 2-dimensional artificial datasets 
because of the natural capability of visualizing the feature mapping surface directly in 
relation to the input space of the problem. This provides a better understanding of the  
behavior of the method and reveals its strength and weaknesses. Then we test the 
algorithm on real world problems, namely the banknotes dataset, the Wisconsin breast 
cancer dataset and the Pima Indian diabetes dataset[3]. The first artificial dataset gen-
erated consists of two inseparable classes of data distributed as in Figure 3. The two 
features calculated are shown with letters A and B. We observe that features are of 
satisfactory quality and map the variability of the data classes. One of the greatest 
advantages of the proposed algorithm is the smoothness of its mapping. Tangled data 
is given a feature value that implies less confidence than the feature value of patterns 
placed far away from the opposite class clusters. This smoothness quality is a charac-
teristic of good solutions that generalize well on unseen data. The feature surface 
of contributes to the overall problem by emphasizing on distinct feature mapping 
areas of concern that should get an improvement on their  representation. 
 

 
 

Fig. 3. Two non-separated classes distributed in a two dimensional space are feature mapped 
with two features A( ) and B( ) using Total Atomic Inter-class Distance 

Constructing only a few enriched features and plotting them in respect to each oth-
er provides an insight view to the problem. Besides visualization, the features calcu-
lated can be fed directly into a machine learning classification algorithm. Especially 
when the problem has a great number of attributes, highly sparse feature mapping can 
make a significant difference in terms of classification results as seen later. The 
second artificial dataset tested consists of three clusters of inseparable data with the 
positive class placed between two negative class clusters. Figure 4 shows the data 
distribution and the feature mapping results. The third dataset consists of multiple 
separable clusters of data and is shown in Figure 5.   
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Abstract. Sensitivity analysis aims to identify which input parame-
ters of a given mathematical model are the most important. One of the
well-known sensitivity metrics is the Sobol sensitivity index. There is
a number of approaches to Sobol indices estimation. In general, these
approaches can be divided into two groups: Monte Carlo methods and
methods based on metamodeling. Monte Carlo methods have well-establi-
shed mathematical apparatus and statistical properties. However, they
require a lot of model runs. Methods based on metamodeling allow to
reduce a required number of model runs, but may be difficult for analysis.
In this work, we focus on metamodeling approach for Sobol indices esti-
mation, and particularly, on the initial step of this approach — design of
experiments. Based on the concept of D-optimality, we propose a method
for construction of an adaptive experimental design, effective for calcu-
lation of Sobol indices from a quadratic metamodel. Comparison of the
proposed design of experiments with other methods is performed.

Keywords: Active learning · Global sensitivity analysis · Sobol indices ·
Adaptive design of experiments · D-optimality

1 Introduction

Understanding the behaviour of complex mathematical models of complex physi-
cal systems is a crucial point for an engineering practice. Discovering knowledge
about the most important parameters of the model and learning parameters
dependency structure allow to understand better the system behind the model
and reveal the way to optimize its performance.

Given some mathematical model, the sensitivity analysis tries to find the
input parameters which variability has strong effect on the model output and
to evaluate this effect quantitatively; to determine how the parts of the model
interplay, how the model relates to the real world (see [1]). One of the common
metrics to evaluate the sensitivity is a Sobol sensitivity index. A lot of Monte
Carlo methods were developed for estimation of Sobol indices: direct Monte
c© Springer International Publishing Switzerland 2015
A. Gammerman et al. (Eds.): SLDS 2015, LNAI 9047, pp. 86–95, 2015.
DOI: 10.1007/978-3-319-17091-6 4
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Carlo simulation, FAST [2], SPF scheme [3] and others. However, these methods
require a lot of runs of the analysed model and, therefore, are impractical for a
number of industrial applications.

On the other hand, metamodeling methods for Sobol indices estimation allow
to reduce the necessary number of model runs. In metamodeling approach, in
general, we replace the original model by an approximating metamodel (also
known as surrogate model or response surface) which is more computationally
efficient and has known internal structure. Approaches based on metamodels
consist of the following steps: generation of experimental design and training
sample, construction of metamodel and calculation of sensitivity indices using
the constructed model. Note that for the last step we can use both prediction
based on the constructed model and knowledge about its internal structure, e.g.
values of its estimated parameters.

This work is devoted to construction of adaptive experimental designs for
effective calculation of Sobol indices, i.e. calculation using the minimal number
of model runs.

There are several approaches related to the experimental design construction
for sensitivity analysis problems. Most of them are associated with a uniform (in
some sense) space filling design, e.g. Latin Hypercube, Sobol sequences and oth-
ers. These approaches are highly flexible, since specified structure of the analysed
model is not required for them. However, these designs, in general, are not opti-
mal in the sense of the fastest convergence of sensitivities to their true values.

Unlike space-filling designs, we try to construct an effective design and, there-
fore, we make assumptions on the model structure. We assume that the analysed
model is quadratic one with a white noise. Although we consider only this simple
case, the obtained results can be generalized to a wider class of models, including
Polynomial Chaos Expansions and others.

In the above assumptions, we investigate asymptotic behaviour (with respect
to the increasing design size) of the proposed estimate for sensitivity index based
on quadratic metamodel, prove its asymptotic normality and introduce an opti-
mality criterion for designs. Based on this criterion, we propose a procedure for
construction of an effective adaptive experimental design and compare it with
other designs.

The paper is organized as follows: in section 2, we review the definition of
sensitivity indices and describe their calculation based on quadratic metamodel.
In section 3, asymptotic behaviour of index estimate is considered. In section 4,
we introduce optimality criterion and propose the procedure for construction of
an adaptive experimental design. In section 5, experimental results are given.

2 Calculation of Sensitivity Indices Using Quadratic
Metamodel

2.1 Sensitivity Indices

Consider a mathematical model y = f(x), where x = (x1, . . . , xd) ∈ X ⊂ R
d is

a vector of (input) features, y ∈ R
1 is an output feature and X is a design space.
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The model is defined as a “black box”: its internal structure is unknown, but for
the selected design of experiment X = {xi}n

i=1 ∈ R
n×d we can get a set of model

responses and form a training sample L = {xi, yi = f(xi)}n
i=1, which allows us to

investigate properties of this model.
Let there be given some probability distribution on the design space X with

independent components, and let xΩ = (xi1 , . . . , xip) be some subset of input
features.

Definition 1. Sensitivity index of feature set xΩ is defined as

SΩ =
V(E(y|xΩ))

V(y)
, (1)

where E and V denote a mathematical expectation and a variance.

Remark 1. In this paper, we consider only sensitivity indices of type Si � S{i},
called first-order or main effect sensitivity indices.

Remark 2. In practice, in order to simulate the variability of input features if no
additional information is available, independent uniform distributions are often
used with the borders, obtained from physical considerations.

2.2 Metamodeling Approach

Consider calculation of sensitivity indices using the quadratic (meta)model. The
model can be represented as

y = α0 +
d∑

i=1

αixi +
d∑

i,j=1, i≤j

βijxixj , (2)

where αi and βij are coefficients of the model.
This model can be rewritten as y = ϕ(x)θ, where θ = (α1, . . . , αd, β12, . . . ,

β(d−1)d, β11, . . . , βdd, α0) ∈ R
q, q = d + d(d−1)

2 + d + 1 and

ϕ(x) = (x1, . . . , xd, x1x2, . . . , xd−1xd, x2
1, . . . , x

2
d, 1). (3)

As it was mentioned above, the variability of input features is often modeled
via uniform distribution on some interval. Without loss of generality, we assume
that xi ∼ U([−1, 1]), i = 1, . . . , d. Following [4], it is easy to calculate the
analytical expressions for sensitivity indices for the quadratic model (2) with
uniformly distributed features.

Proposition 1. Let xi be i.i.d. and xi ∼ U([−1, 1]) for i = 1, . . . , d, then the
sensitivity indices for the quadratic model (2) have the following form:

Sk =
1
3α2

k + 4
45β2

kk

1
3

∑d
i=1 α2

i + 1
9

∑d
i,j=1, i<j β2

ij + 4
45

∑d
i=1 β2

ii

, k = 1, . . . , d. (4)
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Assuming that the original model f(x) is well approximated by some quadratic
model, we can obtain an estimate for the sensitivity indexSi of originalmodel using
analytical expression for indices (4). Taking into account the results of Proposi-
tion 1, we can propose the following procedure for indices estimation:

1. Generate an experimental design X = {xi}n
i=1 ∈ R

n×d,
2. Simulate the original mathematical model on this design,
3. Form the training sample L = {xi, yi = f(xi)}n

i=1,
4. Construct a quadratic model based on this training sample,
5. Calculate sensitivity indices using estimated coefficients αi and βij .

In this paper, we focus on construction of an effective experimental design
for this procedure. Note that since Sk = ψ(α,β) is a nonlinear function of
the parameters α and β, then the existing approaches to the construction of
experimental designs, which are effective for estimating αi and βij (D-, IV-
criterion, see [8]), are not effective for the considered case.

3 Asymptotic Approximation

In this section, we consider asymptotic properties of our indices estimates if the
original model is quadratic with Gaussian noise:

y = ϕ(x)θ + ε, where ε ∼ N(0, σ2). (5)

Rewrite the formula (4) for sensitivity index using λ = Aθ:

Sk =
λ2

k + λ2
kk∑d

i=1 λ2
i +

∑d
i,j=1, i<j λ2

ij +
∑d

i=1 λ2
ii

k = 1, . . . , d, (6)

where λ = (λ1, . . . , λd, λ12, . . . , λ(d−1)d, λ11, . . . , λdd) ∈ R
q−1, q = d+ d(d−1)

2 +d+
1, normalization matrix A = [diag(

√
1/3, . . . ,

√
1/3,

√
4/45, . . . ,

√
4/45,

√
1/9,

. . . ,
√

1/9), zeros(q−1, 1)] ∈ R
(q−1)×q consists of a diagonal matrix and a column

of zeros; kk denotes the index of the term, corresponding to the squared value
of the k-th feature.

Let us assume that the training sample L = {xi, yi = f(xi)}n
i=1 is given,

where X = {xi}n
i=1 ∈ R

n×d is a design matrix. Let θ̂OLS be the Ordinary Least
Square estimate of the model parameter θ based on this training sample, then
the estimated index Ŝk has the form:

Ŝk =
λ̂2

k + λ̂2
kk∑d

i=1 λ̂2
i +

∑d
i,j=1, i<j λ̂2

ij +
∑d

i=1 λ̂2
ii

, k = 1, . . . , d, (7)

where λ̂ = Aθ̂OLS.
Using standard results for a linear regression (see [5]), it is not difficult to

prove the following proposition.
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Proposition 2. Let Ψ = ϕ(X) ∈ R
n×q be an extended design matrix for the

training sample in the case of quadratic model, the matrix ΨT Ψ is invertible,
then

V(λ̂) = V(Aθ̂) = A · V(θ̂) · AT = σ2A(ΨT Ψ)−1AT ,

Eλ̂ = Aθ = λ,

δ̂ = λ̂ − λ ∼ N (0, σ2A(ΨT Ψ)−1AT ).

Let t̂i � 2λiδ̂i + δ̂2i , t̂ij � 2λij δ̂ij + δ̂2ij , t̂ii � 2λiiδ̂ii +
+ δ̂2ii, i, j = 1, . . . , d, i ≤ j, and

t̂ = (t̂1, . . . , t̂d, t̂12, . . . , t̂(d−1)d, t̂11, . . . , t̂dd) ∈ R
q−1. (8)

Let us rewrite formula (7) for estimated sensitivity index in the form

Ŝk(t̂) =
λ2

k + λ2
kk + t̂k + t̂kk∑d

i=1(λ
2
i + t̂i) +

∑d
i,j=1, i<j(λ

2
ij + t̂ij) +

∑d
i=1(λ

2
ii + t̂ii)

.

The following theorem allows to establish asymptotic properties of this index
estimate while new examples are added to the training sample. In this theorem,
if some variable has index n, then this variable depends on the training sample
of size n.

Theorem 1. 1. Let new points are being added iteratively to experimental design
so that

1
n

ΨT
n Ψn −→

n→+∞ Σ, where Σ = ΣT , det Σ > 0. (9)

2. Let t = (t1, . . . , td, t12, . . . , t(d−1)d, t11, . . . , tdd) ∈ R
q−1,

S(t) = (S1(t), . . . , Sd(t)), where for k = 1, . . . , d

Sk(t) =
λ2

k + λ2
kk + tk + tkk

∑d
i=1(λ

2
i + ti) +

∑d
i,j=1, i<j(λ

2
ij + tij) +

∑d
i=1(λ

2
ii + tii)

.

G =

(
∂S

∂t

)∣
∣
∣
∣
t=0

, Λ = diag(λ1, . . . , λq−1) (10)

and holds
det(BΣ−1BT ) �= 0 (11)

where B = GΛA, then

√
n(Ŝn − S) D−→

n→+∞ N (0, 4σ2BΣ−1BT ). (12)

Proof. 1. From Proposition 2 we obtain
√

n δ̂n
D−→

n→+∞ N (0, σ2AΣ−1AT ), (13)

√
n δ̂2

n
D−→

n→+∞ 0. (14)

Using Slutsky’s theorem ([6]) we obtain from (13) and (14) for t̂:
√

n t̂ D−→
n→+∞ N (0, 4σ2Λ(AΣ−1AT )ΛT ). (15)
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2. Applying δ-method ([7]) on expansion of Ŝ(t̂) = (Ŝ1(t̂), . . . , Ŝd(t̂)) and
asymptotically small parameter t̂, we obtain required expression (12).

The next section provides a method for construction of an experimental
design for effective calculation of sensitivity indices.

4 Optimality Criterion and Procedure for Design
Construction

Taking into account the results of Theorem 1, the limiting covariance matrix of
the indices estimates depends on a) variance σ2, b) true values of coefficients of
quadratic model, defining B, c) experimental design, defining Σ.

In the above assumptions, the asymptotic formula (12) allows to evaluate the
quality of the experimental design. Indeed, generally speaking the less covariance
matrix norm ‖4σ2BΣ−1BT ‖ is, the less risk of sensitivity indices estimation is.
However, there are two problems on the way of using this formula to construct
effective designs. The first one relates to the choice of specific minimized func-
tional for the limiting covariance matrix. The second one refers to the fact that
we do not know true values of the coefficients of quadratic model, defining B;
therefore, we will not be able to accurately evaluate the quality of the design.

The first problem can be solved in different ways. A number of statisti-
cal criteria for design optimality (A-, C-, D-, I-optimality and others, see [8])
are known. In this work, we use D-optimality criterion. D-optimal experimental
design minimizes the determinant of the limiting covariance matrix. If the vec-
tor of the estimated parameters is normally distributed then D-optimal design
allows to minimize the volume of the confidence region for this vector.

The second problem is more complicated: the optimal design for estimation
of sensitivity indices depends on the true values of these indices, and it can be
constructed only if these true values are known.

There are several approaches to this problem. These approaches are usually
associated with either some assumptions about the unknown parameters, or
adaptive design construction (see [10]).

Particularly, the minimax-optimal criterion and the averaging-optimal (Baye-
sian optimal) criterion for design construction use the assumptions about the
unknown parameters and allow to achieve design that is optimal in average and
independent from the true values of the unknown parameters. However, in this
case there is a problem of the choice of an a priori set of possible values (in case
of minimax-optimal criterion) or an a priori distribution (in case of the averaged
optimal criterion) for the unknown parameters.

On the other hand, in case of adaptive designs, new points are generated
sequentially based on current estimate of the unknown parameters, which allows
to avoid a priori assumptions on these parameters. However, in this case there
is a problem with a confidence of the solution found: if on some step of design
construction parameters estimates are very different from their true values, then
the design, which is constructed on the basis of these estimates, may lead to
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new parameters estimates, which are also very different from the real values and
so on. In practice, during the construction of adaptive design, assumptions on
non-degeneracy of results can be checked at each iteration, and depending on
the results one can adjust the current estimates.

In this paper, we propose an adaptive method for construction of design
of experiment for calculation of sensitivity indices based on the asymptotic D-
optimal criterion (see an algorithm below). As an initial condition, we require
an original design to be non-degenerate, i.e. such that for an extended design
matrix at the initial moment it holds that det(ΨT

0 Ψ0) 	= 0. In addition, at each
iteration the non-degeneracy of the matrix, defining the minimized criterion, is
checked.

In Section 4.1 the details of the optimization procedure are given.

Goal: Construct experimental design for calculation of sensitivity indices
Parameters: initial n0 and final n numbers of points in the design; set of possible

design points Ξ.
Initialization:

– non-degenerate initial design X0 = {xi}n0
i=1 ⊂ Ξ;

– Φ0 =
∑n0

i=1 ϕ(xi)ϕ
T (xi);

– B0 = G0Λ0A, where G0 and Λ0 (10) are obtained using the initial estimates of the
coefficients of a quadratic model;

Iterations: for all i from 1 to n − n0:

– xn0+i = arg minx∈Ξ det
[
Bi−1(Φi−1 + ϕ(x)ϕT (x))−1BT

i−1

]

– Calculate values Gi, Λi and Bi = GiΛiA using current estimates of the quadratic
model coefficients

– Φi = Φi−1 + ϕ(xn0+i)ϕ
T (xn0+i)

Output: The design of experiment X = X0 ∪ Xadd, where Xadd = {xk}n
k=n0+1

4.1 Optimization Details

The idea behind the optimization procedure in the proposed algorithm is anal-
ogous to the idea of the Fedorov algorithm for construction of optimal designs
[9].

In order to simplify the optimization problem, we need several identities:

– Let A be some non-singular square matrix, u and v be vectors such that
1 + vT A−1u 	= 0, then

(A + uvT )−1 = A−1 − A−1uvT A−1

1 + vT A−1u
. (16)
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– Let A be some non-singular square matrix, u and v be vectors of appropriate
dimensions, then

det(A + uvT ) = det(A)(̇1 + vT A−1u). (17)

Let D = B(Φ + ϕ(x)ϕT (x))−1BT , then applying (16) and (17), we obtain

det(D) = det
[
BΦ−1BT − BΦ−1ϕ(x)ϕT (x)Φ−1BT

1 + ϕT (x)Φ−1ϕ(x)

]

= det
[
M − uvT

]
, (18)

where M = BΦ−1BT , u = BΦ−1ϕ(x)
1+ϕT (x)Φ−1ϕ(x)

, v = BΦ−1ϕ(x). Assuming that
matrix M is non-degenerate, we obtain

det(D) = det(M)(̇1 − vT M−1u) → min

The resulting optimization problem is

vT M−1u → max (19)

or
(ϕT (x)Φ−1)BT (BΦ−1BT )−1B(Φ−1ϕ(x))

1 + ϕT (x)Φ−1ϕ(x)
→ max

x∈Ξ
(20)

This problem is easier than the initial one and can be solved with one of the
standard methods of optimization.

5 Experimental Results

5.1 Description of Experiments

This section describes the comparison of the proposed approach with some mod-
ifications and with other approaches. In the experiments, we assume that the
set of possible design points Ξ is a uniform grid in the hypercube [−1, 1]d. At
first, we generated some non-degenerate random initial design, and then we used
various techniques to add new points iteratively. The sizes of the initial and final
designs were n0 = 30 and n = 60 points. Normalized empirical quadratic risk
was chosen as a metric of quality of the results, normalization coefficient was
equal to σ2/ni, where ni is a size of the design on the i-th iteration.

Methods for Testing. iterDoptSI: the proposed method; iterDopt: adding
a point maximizing the determinant of the information matrix |ΨT

n Ψn| → maxxn

(see [9]). The resulting design is in some sense optimal for estimation of the
coefficients of a quadratic model; rand: adding a random point from the set
of possible design points; randunif: adding a random point in the hypercube
[−1, 1]d.
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Fig. 1. Quadratic risk in case of different designs. 3-dimensional case

Fig. 2. Quadratic risk in case of different designs. 6-dimensional case

Additional Methods. iterDoptSI-exactCoeffs: variation of the proposed
method, in which the estimates of quadratic model coefficients, which are used
when adding next points, are replaced with their true values; iterDoptSI-
fixedCoeffs: variation of the proposed method, in which the estimates of
quadratic model coefficients, which are used when adding next points, are fixed
to their initial values.

5.2 Description of Results

Figures 1 and 2 demonstrate the performance of different approaches in the
case of 3 and 6-dimensional design space. They show the dependence of the
normalized quadratic empirical risk on the number of iteration related to adding
a new point to the design.

Thepresentedfigures illustrate that a) theproposedmethod iterDoptSIallows
to get better results than the methods iterDopt, rand and randunif; b) if sensi-
tivity indices are estimated accurately at initial moment, then the performances of
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the proposed method, iterDoptSI-exactCoeffs and iterDoptSI-fixedCoeffs
are approximately the same, so one can use simplified computational schemes in
which the evaluated indices are not updated at each iteration of Algorithm 4; c)
method iterDoptSI is more efficient at low dimensions.

6 Conclusion

We proposed an asymptotic optimality criterion and method for construction
of experimental design which is effective for calculation of sensitivity indices
in case of noisy quadratic model. Comparison with other designs shows the
superiority of the proposed method over competitors. The proposed approach
can be generalized to arbitrary polynomial metamodel and arbitrary continuous
distribution of input features. This will be the topic of our future works.
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Abstract. Models with high predictive performance are often opaque,
i.e., they do not allow for direct interpretation, and are hence of limited
value when the goal is to understand the reasoning behind predictions.
A recently proposed algorithm, GoldenEye, allows detection of groups
of interacting variables exploited by a model. We employed this tech-
nique in conjunction with random forests generated from data obtained
from electronic patient records for the task of detecting adverse drug
events (ADEs). We propose a refined version of the GoldenEye algo-
rithm, called GoldenEye++, utilizing a more sensitive grouping metric.
An empirical investigation comparing the two algorithms on 27 datasets
related to detecting ADEs shows that the new version of the algorithm
in several cases finds groups of medically relevant interacting attributes,
corresponding to prescribed drugs, undetected by the previous version.
This suggests that the GoldenEye++ algorithm can be a useful tool for
finding novel (adverse) drug interactions.

Keywords: Classifiers · Randomization · Adverse drug events

1 Introduction

In some cases, the goal is to find predictive models with the highest possible
performance, e.g., the lowest classification error, for some task of interest. In
other cases, this task is complemented with a desire to understand how the model
makes its predictions, something which may help creating trust in the model
as well as allowing for novel insights. The strongest models, however, are often
opaque, meaning that the logic behind made predictions is very hard to follow in
practice. Examples of such models include support vector machines and random
forests. Recently, the GoldenEye algorithm was proposed [1], which allows for
detecting relations between input variables that are exploited by any type of
classifier, including opaque ones. Although this technique does not provide a
complete picture of the inner workings of the classifier, it allows to gain some
understanding of which variables are exploited and in what context. Moreover,
c© Springer International Publishing Switzerland 2015
A. Gammerman et al. (Eds.): SLDS 2015, LNAI 9047, pp. 96–105, 2015.
DOI: 10.1007/978-3-319-17091-6 5
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the detection of such interactions may provide useful insights in the particular
application domain.

One domain in which one is particularly interested in finding interactions is
pharmacovigilance [2]. During clinical trials a typical drug is only tested in isola-
tion or together with a few very common other drugs [3]. This means that when
the drug enters the market, very limited empirical evidence has been collected
on potential interactions with other drugs. To some extent, potential negative
interactions are reported through spontaneous reporting systems, e.g., diuret-
ics and non-steroidal anti-inflammatory drugs [4]. However, it is widely known
that such systems suffer from severe under-reporting, e.g., due to the inability
of healthcare personnel to accurately identify the involved drugs [5]. Recently,
electronic patient records (EPRs) are starting to be used as a complementary
source of information, see, e.g., [6]. In addition to containing cases where patients
have been prescribed drugs and assigned ADE diagnoses, such EPR data also
contain cases with drug prescriptions but without suspected ADEs, in contrast
to the spontaneous reporting systems, which only include cases with suspected
ADEs. Hence, the EPR data to a larger extent allows for estimating the risk of
obtaining a particular ADE, given a set of drugs.

In this study, we will investigate the use of GoldenEye as a tool for finding
candidate drug interactions, when applied to EPR data related to 27 different
ADE classification tasks. We use random forests [7] to generate the underlying
models, which are further analyzed with GoldenEye. The latter employs permu-
tation of input variables to detect any changes in the output predictions. The
employed metric for detecting changes is fidelity, i.e., to what extent the class
labels change. However, in some cases this metric can be too crude, for example,
when the classes are imbalanced. In this work, we also investigate replacing the
fidelity metric with a more sensitive one, namely correlation between class mem-
bership probabilities for original and randomized data. This allows for detecting
changes in the classifier performance even when the output class labels do not
change, i.e., when only the class probabilities change.

In the next section, we briefly describe the original technique, GoldenEye, and
introduce the revised version, GoldenEye++. We also describe the experimental
setup for the empirical investigation. In Section 3, we present the experimental
results, and finally, in Section 4, we summarize the main conclusions and point
out directions for future work.

2 Method

In this section, we briefly review the GoldenEye algorithm and associated termi-
nology and definitions; for more details, please refer to [1]. We proceed to present
an improvement to the GoldenEye algorithm.

2.1 The GoldenEye Algorithm

GoldenEye is an iterative algorithm for finding groups of interacting attributes
in a dataset. The finding of groups is formulated as an optimization problem
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using fidelity (the fraction of matching predictions between the original dataset
and a randomized dataset) as the goodness measure.

The algorithm works as follows. First, the baseline fidelity fidb is calculated
for a grouping where each attribute is in a group of its own (all-singleton group-
ing). A grouping threshold Δ is defined as Δ = fidb + δ, i.e., the baseline fidelity
plus a given constant. Next, the algorithm iteratively removes from the current
grouping the attribute which reduces fidelity the least. Attributes are removed
from the group one at a time until the fidelity of the current grouping drops
below the grouping threshold. At this point, it is determined that a group has
been found; the group is stored and the iteration is restarted using the current
grouping. Finally, the algorithm outputs the grouping (groups of interacting
attributes) for the dataset. A group of attributes means, that the attributes
within the group interact, and that this interaction of the variables is exploited
by the classifier for predicting the class of an instance.

Figure 1 shows an example of the GoldenEye grouping process for a dataset
with four attributes; a, b, c and d, and a grouping threshold Δ = 0.8. Assume
that the class y in the dataset is given by the relation y = (a ⊕ b) ∨ c, i.e.,
attributes a and b interact and must hence occur together in a group when
predicting the class, while attribute c is in its own group and attribute d is not
needed at all. The path taken by the GoldenEye algorithm is shown by arrows
with solid lines. At Level 1, the baseline goodness is calculated. At Level 2, one
attribute at a time is detached and the goodness for each grouping is calculated.
The grouping {{a,b, c}, {d}} has the highest goodness at this level, and since it
also is above Δ, it is used as the starting point for the next iteration on Level
3. On Level 3 it is observed that detaching attribute c lowers the goodness the
least, giving the grouping {{a,b}, {c}, {d}}. Detaching any other attribute at
Level 3 would lower the goodness below Δ. Finally, at Level 4, it is observed
that detaching the remaining attribute a lowers the goodness below Δ. This
terminates the first round of iterations, and the result is the first group: {a,b}.
In the next round of iterations, the starting point is {{c,d}, {a}, {b}}, i.e., the
attributes already in some group are singletons, whereas all currently ungrouped
attributes are all initially in the same group. Following the same scheme of
detaching one attribute at a time, the singleton group {c} is identified after which
the grouping process is complete, with the final grouping being {{a,b}, {c}, {d}}
(boxed on Level 3). Finally, it is investigated whether the singletons c and d are
needed for the classification, and it is observed that randomizing d does not
affect the goodness, so it can be pruned. The final grouping after pruning is now
{{a,b}, {c}}, corresponding to the known structure of the data.

Definitions. The dataset X is an n × m matrix of n observations and m
attributes. A subset S ⊆ [m] is called a group of attributes and the set of non-
overlapping groups of attributes S = {S1, . . . , Sk}, Si ⊆ [m] and Si∩Sj = ∅ ∀ i �=
j, is called a grouping of attributes. Some attributes j ∈ [m] may not be part of
any group.
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{{a, b, c, d}}
goodness = 1 {{a, d, c}, {b}}

goodness = 0.75

{{d, b, c}, {a}}
goodness = 0.75

{{a, b, c}, {d}}
goodness = 1

{{a, b, d}, {c}}
goodness = 0.92

{{a, b}, {c}, {d}}
goodness = 0.92

{{a, c}, {b}, {d}}
goodness = 0.75

{{c, b}, {a}, {d}}
goodness = 0.75

{{a}, {b}, {c}, {d}}
goodness = 0.75

Level 1 Level 2 Level 3 Level 4
 = 0.80

Fig. 1. Illustration of the grouping process using the GoldenEye algorithm

The interpretation is that the attributes in a group are associated and that
the relationships between the attributes in a group are needed for the classifica-
tion task.

Given a dataset X and a grouping S, we define X∗
S as the random permuta-

tion of X using S: all attributes in a group are permuted together within-class,
and all attributes not occurring in any group are permuted at random. For more
details, please refer to Algorithm 1 in [1]. This randomization scheme hence ran-
domizes each group independently, keeping class-dependent associations between
attributes in the groups intact.

In the original implementation of the GoldenEye algorithm, fidelity gfid is
used as the goodness measure in the optimization problem:

gfid = E [I (yi = y∗
i )] , (1)

where I() is the indicator function, yi = f(X(i, ·)) and y∗
i = f(X∗

S(i, ·)) are the
predicted class labels on the unrandomized data, and on the random permutation
X∗

S of the dataset, respectively. See [1] for a more detailed description of the
algorithm.

2.2 The GoldenEye++ Algorithm

Fidelity is, in the same way as accuracy, susceptible to class imbalance (see,
e.g., [8]), and this might affect the groupings detected by the GoldenEye algo-
rithm. An example of this is if the classifier does not utilize the true relationship
between attributes when sufficient performance is reached when the classifier
functions as a majority class predictor. For binary classification tasks using clas-
sifiers outputting class probabilities, we introduce a new goodness measure gcor,
relating class probabilities in the original dataset and in a randomized version
of the dataset.

Definition 1. Correlation Goodness Given a dataset X with binary classes, a
classifier f that outputs class probabilities and a grouping of attributes S, Cor-
relation goodness gcor is defined as the correlation between the predicted class
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probabilities pi for the original unrandomized dataset and the predicted class
probabilities p∗

i for the randomized dataset X∗
S obtained by permuting X accord-

ing to S:

gcor = cor (pi, p∗
i ) , (2)

where pi and p∗
i denote the probability that instance i belongs to, e.g., class

0 (or, equivalenty, class 1).

The GoldenEye method relies on the goodness measure being monotonic
with respect to the breaking of groups. This means that any grouping deviating
from the original will have a goodness equal to or smaller than the original
goodness. The goodness gcor is in the interval [−1, 1] and reasonably can be
assumed to exhibit the property of monotonicity. The correlation used in the
goodness meaure could also be, e.g., rank-order correlation, in which case gcor =
cor (order (pi) , order (p∗

i )).
The goodness measure gcor describes the similarity between the predicted

class membership probabilities of the original and the randomized datasets. This
correlation-based measure is more sensitive to changes in the predicted classes
than accuracy, which allows for a detection of more fine-grained changes in good-
ness due to the randomizations to be detected.

By GoldenEye++ we refer to the GoldenEye algorithm using correlation
goodness, gcor, as the goodness measure instead of fidelity (gfid). The goldeneye
R-package has been updated to support arbitrary goodness functions, such as
correlation goodness used in GoldenEye++ 1.

2.3 Experimental Setup

The behaviour of the GoldenEye++ algorithm was compared to the original
GoldenEye algorithm using (i) 13 binary-class datasets from the UCI Machine
Learning Repository [10] and (ii) 27 medical datasets.

The twenty-seven datasets were extracted from the Stockholm EPR Corpus2

[11] for thepurposeof illustrating theuseof GoldenEye++ tofindknownorpotential
drug-drug interactions.ThisEPRdatabase contains around700,000 (anonymized)
patients’ health records over a two-year period (2009-2010), obtained fromKarolin-
ska University Hospital in Stockholm, Sweden. In each of the 27 datasets, the class
labelwas assigned as a specific diagnosis code3 indicating a certainADE, and hence
the classification task is binary, i.e., whether a patient has been assigned an ADE
code or not. In this case, the positive examples are patients who have been assigned
the corresponding ADE code, while the negative examples are patients who have
1 Downloadable from https://bitbucket.org/aheneliu/goldeneye/ and easily installed

in R using the devtools package [9]: install bitbucket("aheneliu/goldeneye").
2 This research has been approved by the Regional Ethical Review Board in Stockholm

(Etikprövningsnämnden i Stockholm), permission number 2012/834-31/5
3 The diagnosis in the Stockholm EPR Corpus is encoded by the International Statistical

Classification of Diseases and Related Health Problems, 10th Edition (ICD-10)

https://bitbucket.org/aheneliu/goldeneye/
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hadbeenassigneda similar code to thecorrespondingADEcode.For example, if the
class label is G44.4 (drug-induced headache), patients who have had drug-induced
headache constitute the positive examples and thosewhohave been assigned a code
starting with G44 but other than G44.4 constitute the negative examples.

Features in each dataset are drugs that were prescribed to these patients
during the two-year period. The number of features in each dataset ranges from
111 to 987; however, due to heavy computational load and high sparsity of most
features, drugs that were taken by less than 10% of patients in each dataset were
removed, which results in a reduced number of features ranging from 12 to 84
used in this experiment.

The same learning algorithm was used for both the UCI datasets and for
the medical datasets; random forest [7] with 500 trees from the randomForest
package [12] for R [13].

3 Results

3.1 UCI Datasets

The experimental results from the grouping of 13 binary-class UCI datasets
using GoldenEye and GoldenEye++ are shown in Table 1. In order to compare
the similarity of the groupings, we calculated a similarity measure s(g1, g2) =
1 − Ld(g1, g2)/N , where Ld is the Levenshtein distance between g1 and g2;
string representations of the groupings, and N is the number of attributes in
the dataset.

The results show that the groupings from the two algorithms are similar
(high s-value), but were not identical for any dataset. Also, the two algorithms
appear to find a comparable number of groups for the datasets, but containing
a different number of attributes, e.g., diabetes and kr-vs-kp.

It should be noted that a grouping is always a function of both the dataset
and the classifier, and in this case also of the optimization criterion, the goodness
measure, used to detect the groupings. Based on these results, it appears that
the GoldenEye and GoldenEye++ algorithms perform consistently.

3.2 Analyzing Drug Interactions

Among the 27 ADE datasets, GoldenEye found grouped drugs for two datasets,
while GoldenEye++ found grouped drugs for nine datasets. The experimental
results from the ADE datasets using GoldenEye and GoldenEye++ are shown
in Table 2.

As a second step, we continued by manually analysing each group of drugs
with respect to their medical relevance. From a causal point of view, we have
looked at the groups of drugs and tried to partition the drugs into those that
were given to treat the ADE, and those that might possibly have caused the
ADE. We have also tried to identify and analyse the medical relevance of any
other drug that was present in each group. Note that these datasets contain no
temporal information.
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Table 1. Groupings of 13 binary-class UCI datasets using GoldenEye and Golden-
Eye++. The columns give the following numbers. N : the number of attributes in the
dataset, s: similarity between the groupings by GoldenEye and GoldenEye++, groups:
the number of groups found, attrs: the number of attributes contained in the groups,
singl : the number of singletons and pruned : the number of pruned singletons.

GoldenEye GoldenEye++

dataset N s groups attrs singl pruned groups attrs singl pruned

diabetes 8 0.88 1 5 0 3 1 6 0 2
breast-cancer 9 0.11 1 6 0 3 0 0 8 1
breast-w 9 0.89 0 0 4 5 0 0 5 4
heart-c 13 0.08 1 12 0 1 0 0 9 4
heart-statlog 13 0.77 0 0 5 8 0 0 8 5
credit-a 15 0.80 0 0 4 11 0 0 7 8
vote 16 0.88 0 0 1 15 0 0 3 13
hepatitis 19 0.84 0 0 4 15 0 0 7 12
credit-g 20 0.75 1 7 1 12 1 7 3 10
mushroom 22 0.86 0 0 2 20 0 0 5 17
ionosphere 34 0.88 0 0 13 21 0 0 13 21
kr-vs-kp 36 0.58 2 18 0 18 2 7 6 23
sonar 60 0.83 0 0 16 44 0 0 24 36

Table 2. Groupings of 9 ADE datasets using GoldenEye and GoldenEye++. Table
columns as in Table 1.

GoldenEye GoldenEye++

dataset N groups attrs singl pruned groups attrs singl pruned

G44.4 19 0 0 19 0 3 7 12 1
G62.0 57 0 0 57 0 1 8 49 25
I42.7 43 0 0 43 0 1 9 34 25
I95.2 65 0 0 65 0 1 9 56 27
T78.2 12 0 0 12 0 2 8 4 0
T78.3 12 0 0 12 0 2 8 4 0
T78.4 12 1 5 7 6 3 12 0 0
T88.6 49 0 0 49 0 1 9 40 29
T88.7 49 1 9 40 28 1 9 40 12

After discussions with medical experts, we found that for four of the nine
datasets, the relationship between the ADE and the grouping found by Golden-
Eye++ could be trivially explained as drugs that had been prescribed to treat
the particular ADE. Those four datasets contained examples of allergy (T78.4),
angioneurotic oedema (T78.3), anaphylactic chock (T78.2), and drug-induced
headache (G44.4). Hence the medical relevance could be easily verified, but no
causes for any of the ADEs could be identified. For angioneurotic oedema, Gold-
enEye++ found two groups, each corresponding to groups of drugs that are used
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to treat varying degrees of angioneurotic oedema depending on severeness; skin
rash, respiratory system (breathing), or circulatory system (heart). For allergy,
GoldenEye++ found three groups, corresponding to severeness of the allergy;
affecting the breathing or the heart.

The remaining five datasets, shown in Table 3, required a more complex
analysis of cause and effect for each drug with respect to what would be a
likely medical scenario. Here, for each grouping of drugs that was found by
GoldenEye++, the drugs were divided into three (possibly overlapping) sets. The
first set, shown in column 3 of Table 3, were drugs considered to be characteristic
for the patient group. These drugs where used by the medical expert to identify
the patient group, shown in column 2 of Table 3. The second set, shown in column
4, contained drugs present in the grouping that are known to cause the specific
ADE. In the cases where the medical expert had characterised the patient group
as cancer patients undergoing chemotherapy, the ADE was a known adverse
effect of the chemotherapy. The third set of drugs, shown in column 5 of Table 3,
includes all drugs from the grouping that were characterised as suitable drugs
to treat the ADE.

As an example, consider the ADE I42.7 in Table 3, which stands for ”Car-
diomyopathy due to drug and external agent”. GoldenEye++ finds one grouping
of drugs which is then further manually subdivided into two groups. The first

Table 3. Medically relevant groupings of attributes found by GoldenEye++ for 5 of the
medical datasets. For each ADE, all the drugs listed in the table were grouped together
into one group by GoldenEye++. The further division into subgroups (columns 3, 4 and
5) were done manually based on medical relevance. The patient group (column 2) and
cause for ADE (column 4) were manually inferred for each ADE based an analysis of
all drugs grouped by GoldenEye++ for that ADE.

ADE Patient
group

Prior Drugs Drugs
causing

Drugs treating

I42.7 Cancer,
chemo-
therapy

A03FA01, A06AB08, A06AD11,
A06AD65, N02AA01

Chemo-
theraphy

B01AA03, C07AB07,
C07AB02, N05BA04

G62.0 Cancer,
chemo-
therapy

B01AC06, B03BA01, B05BA03,
B05BB01, C10AA01, C10AA01,

H02AB01, N02BE01

Chemo-
theraphy

none

T88.6 Cancer,
chemo-
therapy,
bacterial
infection

A06AD65, N02AA01 J01DD01 B01AB01, B05BA03,
B05BB01, B05BB02,
C01CA24, R03AC02

T88.7 Cancer,
chemo-
therapy

A02BC01, A03FA01, H02AB01,
H02AB06, N02AA01, N02BE01,

N05CF01

unspecified R06AA04, R06AX13

I95.2 Older,
Angina
Pectoris

B05BA03, B05XA06, C01DA02,
C03CA01, C10AA01, N02BE01,

N05CF01

01DA02,
C03CA01

none
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subgroup contains Morphine (N02AA01), Metoclopramide (A03FA01), Lactu-
lose (A06AD11), Macrogol (A06AD65), and Sodium picosulfate (A06AB08).
These drugs are all characteristic for the patient group. Cancer patients under-
going chemotherapy experience severe pain and nausea. The pain motivates the
analgesic Morphine while Metoclopramide is used to treat nausea. As a side
effect, Morphine causes constipation, which is treated by the laxatives Macrogol,
Sodium picosulfate, and Lactulose. The second subgroup consists of the remain-
ing drugs, Warfarin (B01AA03), Metoprolol (C07AB02), Bisoprolol (C07AB07),
and Oxazepam (N05BA04), which are all explained by their role as part of the
treatment or diagnosis of the ADE. Warfarin is an anticoagulant (Vitamine K
antagonist), commonly used for heart patients. Bisprolol and Metoprolol are
beta blockers, also commonly prescribed to heart patients. Oxazepam is a Ben-
zodiazepine derivative used to treat anxiety. Heart patients are often prescribed
some drugs to treat the anxiety caused by their illness.

4 Concluding Remarks

In the field of pharmacovigilance, it is important to gain insights into how differ-
ent drugs interact. However, when investigating the interaction between drugs
using state-of-the art learning algorithms, such as random forest, the black-box
nature of the classifier makes it difficult to understand the basis for predictions.

In this paper, we have extended the GoldenEye algorithm [1] to use instead of
fidelity, a more fine-grained measure based on predicted class probabilities. The
improved algorithm, named GoldenEye++, was compared to the original algo-
rithm using datasets from the UCI machine learning repository. The groupings
detected by the two algorithms were found to be consistent, but not identical.

When applying the GoldenEye++ algorithm on top random forest classifiers
generated from 27 datasets related to adverse drug events, the proposed Gold-
enEye++ algorithm was shown to be able to find medically relevant interactions
between drugs modeled by the random forest classifier.

We conclude that the GoldenEye++ algorithm is a promising technique for
uncovering drug-drug interactions utilized by a classifier.
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High-Performance Data Mining for Drug Effect Detection at Stockholm University,
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Abstract. Approximation algorithms are widely used in many engineer-
ing problems. To obtain a data set for approximation a factorial design
of experiments is often used. In such case the size of the data set can be
very large. Therefore, one of the most popular algorithms for approxima-
tion — Gaussian Process regression — can hardly be applied due to its
computational complexity. In this paper a new approach for a Gaussian
Process regression in case of a factorial design of experiments is pro-
posed. It allows to efficiently compute exact inference and handle large
multidimensional and anisotropic data sets.

Keywords: Gaussian process · Structured data · Regularization

1 Introduction

Gaussian Processes (GP) have become a popular tool for regression which has
lots of applications in engineering problems [13]. They combine a simple structure
of Bayesian inference and interpretable parameters with an ability to approxi-
mate a wide range of functions. However, GP regression is inapplicable for large
training sets because its time complexity is O(N3) and memory complexity is
O(N2), where N is a size of the training sample.

Significant amount of research concerns sparse approximation of GP regres-
sion reducing time complexity to O(M2N) for some M � N [1,9,12]. Several
papers are dedicated to a Mixture of GPs and a Bayesian Machine Committee
[13,14]. However, these are approximations to GP.

Exact GP with reduced time and memory complexity can be achieved by
taking into account a structure of a Design of Experiments (DoE). In engineering
problems factorial DoEs are often used [10]. In such designs there are several
groups of variables — factors, in each factor variables take values from a finite
set. A size of this set is called a factor size and its values are called levels. The
Cartesian product of factors forms the training set. The size of factorial DoE
can be very large as it grows exponentially with dimension of input variables.
c© Springer International Publishing Switzerland 2015
A. Gammerman et al. (Eds.): SLDS 2015, LNAI 9047, pp. 106–115, 2015.
DOI: 10.1007/978-3-319-17091-6 6
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There are several efficient methods based on splines which consider such struc-
ture of the data, e.g. [17]. Several papers describe approaches for GP regression on
a lattice which exploit structure of a covariance matrix, e.g. [3]. Such techniques
have O(N log N) time- and O(N) memory complexity. A disadvantage of these
methods is that they cannot be used in case of multidimensional factors.

Another problem which we are likely to encounter is that factor sizes can vary
significantly. We will refer to this property of data set as anisotropy. Engineers
usually use large factors sizes if the corresponding input variables have big impact
on function values otherwise the factors sizes are likely to be small, i.e. the factor
sizes are often selected using knowledge from a subject domain [15]. Difference
between factor sizes can lead to degeneracy of the GP model.

In this paper we propose an algorithm that takes into account factorial nature
of the DoE and allows to efficiently calculate exact inference of GP regression.
Proposed algorithm is designed for a general case of a factorial DoE when factors
are multidimensional. It is also discussed how to introduce regularization to take
into account possible anisotropy of the training data set.

1.1 Approximation Problem

Let f(x) be some unknown smooth function. The task is given a data set D =
{(xi, yi),xi ∈ R

d, yi ∈ R}N
i=1 of N pairs of inputs xi and outputs yi construct

an approximation f̂(x) of the function f(x), assuming that outputs yi are noisy
with additive i.i.d. Gaussian noise:

yi = f(xi) + εi, εi ∼ N (0, σ2
noise). (1)

1.2 Factorial Design of Experiments

In this paper a special case of factorial DoE is considered. Let us refer to sets of
points sk = {xk

ik
∈ Xk}nk

ik=1, Xk ⊂ R
dk , k = 1,K as factors. A set of points S is

referred to as a factorial DoE if it is a Cartesian product of factors

S = s1 × s2 × · · · × sk = {[x1
i1 , . . . , x

K
iK ], {ik = 1, . . . , nk}K

k=1}. (2)

The elements of S are vectors of the dimension d =
∑K

i=1 di and the sample
size is a product of sizes of all factors N =

∏K
i=1 ni. If all the factors are one-

dimensional then S is a full factorial design. But in a more general case factors
are multidimensional (see Figure 1). Note that in this paper a factorial design
is implemented across continuous real-valued features.

1.3 Gaussian Process Regression

GP regression is a Bayesian approach where a prior distribution over continuous
functions is assumed to be a Gaussian Process, i.e.

f |X ∼ N (μ, Kf ), (3)
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Fig. 1. DoE with 2 factors. x1 is a 1-dimensional and (x2, x3) is a 2-dimensional factor.

where f = (f(x1), f(x2), . . . , f(xN )) is avector of outputs,X = (xT
1 ,xT

2 , . . . ,xT
N )T

is a matrix of inputs, μ = (μ(x1), μ(x2), . . . , μ(xN )) is a vector of mean function
μ(x), Kf = {k(xi,xj)}N

i,j=1 is a covariance matrix of a priori selected covariance
function k.

Without loss of generality the standard assumption of a zero-mean data is
made. Also we assume that observations are corrupted with a Gaussian noise
yi = f(xi)+εi, εi ∼ N (0, σ2

noise). For a prediction of f(x∗) at data point x∗ the
posterior mean, conditioned on the observations y = (y1, y2, . . . , yN ), is used

f̂(x∗) = k(x∗)TK−1
y y, (4)

where k(x∗) = (k(x∗,x1), . . . , k(x∗,xN ))T , Ky = Kf + σ2
noiseI and I is an

identity matrix. Approximation accuracy is evaluated by the posterior variance

cov(f̂(x∗)) = k(x∗,x∗) − k(x∗)TK−1
y k(x∗). (5)

Let us denote the vector of hyperparameters by θ. To choose the hyperpara-
meters of our model we consider the log likelihood

log p(y |X,θ, σf , σnoise) = −1
2
yTK−1

y y − 1
2

log |Ky| − N

2
log 2π (6)

and optimize it over the hyperparameters [13]. The complexity of learning GP
regression is O(N3) as it is needed to calculate the inverse of Ky and the deter-
minant.

2 Proposed Approach

2.1 Tensor and Related Operations

For further discussion we use tensor notation, so let us introduce definition of a
tensor and some related operations.

A tensor Y is a K-dimensional matrix of size n1 × n2 × · · · × nK [8]:

Y = {yi1,i2,...,iK , {ik = 1, . . . , nk}K
k=1}. (7)
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By Y(j) we denote a matrix consisting of elements of the tensor Y whose rows
are 1×nj slices of Y with fixed indices ij+1, . . . , iK , i1, . . . , ij−1 and altering index
ij = 1, . . . , nj . For a 2-dimensional tensor it holds Y(1) = YT and Y(2) = Y.

Let B be some matrix of size ni × n′
i. Then the product of the tensor Y and

the matrix B along the direction i is a tensor Z of size n1×· · ·×ni−1×n′
i×ni+1×

· · ·×nK such that Z(i) = Y(i)B. We will denote this operation by Y ⊗i B. For a
2-dimensional tensor Y multiplication along the first and the second directions
are left and right multiplications by a matrix: Y ⊗1 B = BT Y, Y ⊗2 B = YB.

Let’s consider an operation vec which for every multidimensional matrix Y
returns a vector containing all elements of Y. Then for every tensor Y of size
n1 × n2 × · · · × nK and ni × pi size matrices Bi, i = 1, . . . , K it holds that [8]

(B1 ⊗ B2 · · · ⊗ BK)vec(Y) = vec(Y ⊗1 BT
1 · · · ⊗K BT

K), (8)

Complexity of calculation of the left hand side of the equation is O(N2) assum-
ing that all the matrices Bi are quadratic of size ni × ni and N =

∏
ni. The

complexity of the right hand side is only O(N
∑

i ni).

2.2 Fast Exact Inference

To obtain the benefit of using tensor calculations to perform inference we con-
sider the covariance function which can be represented as a product of covariance
functions each depending only on variables from particular factor. The covari-
ance function and the corresponding covariance matrix take the form

k(xp,xq) =
K∏

i=1

ki(xi
p, x

i
q), Kf =

K⊗
i=1

Ki,

where xi
p, x

i
q ∈ si, Ki is a covariance matrix defined by the ki covariance function

computed at points from si. Such function is still a valid covariance function
being the product of separate covariance functions. The most popular squared
exponential function can also be represented as a product of squared exponential

functions ki(xi
p, x

i
q) = σ2

f,i exp
(

−
∑di

j

(
θ
(j)
i

)2 (
x
(j),i
p − x

(j),i
q

)2), where x
(j),i
p is

a j-th component of xi
p. This covariance function is more general as it allows to

take into account features of factors by choosing different ki for different factors.
Note that factors can be multidimensional.

Let Ki = UiDiUT
i be a Singular Value Decomposition (SVD), where Ui is

an orthogonal matrix of eigenvectors of matrix Ki and Di is a diagonal matrix
of eigenvalues. Using properties of the Kronecker product we obtain

K−1
y =

(
K⊗

i=1

Ui

)([
K⊗

i=1

Di

]
+ σ2

noiseI

)−1 (
K⊗

i=1

UT
i

)
. (9)

Equations (4), (5), (6) do not require explicit inversion of Ky. In each equation
it is multiplied by a vector. Calculation of (9) requires O(N2) operations, but to
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compute K−1
y y much more efficient expression can be derived. Let Y be a tensor

such that vec(Y) = y. Applying identities (8) and (9) K−1
y y can be written as

K−1
y y = vec

[(
(Y ⊗1 U1 · · · ⊗K UK) ∗ D−1

)
⊗1 UT

1 · · · ⊗K UT
K

]
, (10)

where D is a tensor constructed by transforming the diagonal of D =
[ ⊗

k Dk

]
+

σ2
noiseI into a tensor. The elements of the tensor D are eigenvalues of Ky, so

|Ky| =
∏

i1,...,iK

Di1,...,iK . (11)

Taking into account the complexity of computing the right hand side of (8) and
SVD the following proposition is obtained.

Proposition 1. The computational complexity of the log likelihood (6), where
K−1

y y and |Ky| are calculated using (10) and (11), is O
(∑K

i=1 n3
i + N

∑K
i=1 ni

)
.

Supposing that ni � N (the number of factors is large and their sizes are close).
we obtain that O(N

∑
i ni) = O(N1+ 1

K ). This is much less than O(N3).
For a gradient based method which is used for optimization of the log likeli-

hood over parameters θ the derivatives are required. They take the form

∂

∂θ
(log p(y|X, σf , σnoise)) = −1

2
Tr(K−1

y K′) +
1
2
yTK−1

y K′K−1
y y, (12)

where θ is one of the parameters of covariance function (component of θi, σnoise

or σf,i, i = 1, . . . , d) and K′ =
∂K
∂θ

. K′ is also the Kronecker product K′ =

K1 ⊗ · · · ⊗ Ki−1 ⊗ ∂Ki

∂θ ⊗ Ki+1 ⊗ · · · ⊗ KK , where θ is a parameter of the i-
th covariance function. Denoting by A a tensor such that vec(A) = K−1

y y the
second term in (12) is efficiently computed using the same technique as in (10):

1
2
yTK−1

y K′K−1
y y =

〈
A,A ⊗1 KT

1 ⊗2 · · · ⊗i−1 KT
i−1⊗i

∂KT
i

∂θ
⊗i+1 KT

i+1 ⊗i+2 · · · ⊗K KT
K

〉
.

(13)

Using properties of the trace and the Kronecker product we can obtain

Tr(K−1
y K′) =

〈
vec

(
D−1

)
,

K⊗
i=1

diag (UiK′
iUi)

〉
, (14)

where diag
(
A

)
is a vector of diagonal elements of a matrix A.

For the derivatives the following statement holds.

Proposition 2. The computational complexity of calculating derivatives of the

log likelihood is O
(

K∑
i=1

n3
i + N

K∑
i=1

ni

)
.
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2.3 Anisotropy

In an engineering practice sizes of factors often differ significantly. It is a common
case for the GP regression to become degenerate in this case (see Figures 3, 4).
Suppose that the given DoE consists of two one-dimensional factors with sizes
n1, n2 and n1 � n2. Then the length-scale for the first factor is expected to be
much greater than the length-scale for the second factor (or θ1 � θ2). However,
in practice the opposite is often observed. The reason is that the optimization
algorithm stacks in a local maximum as the log likelihood is non-convex function
with lots of local maxima.

Let us denote length-scales as l
(i)
k =

(
θ
(i)
k

)−1, where θ
(i)
k is a k-th component

of a vector of parameters of i-th covariance function. To incorporate knowledge
about factor sizes in GP we introduce a regularization by imposing beta-prior
on θ with parameters α and β and rescaled to some interval

[
a
(i)
k , b

(i)
k

]
:

θ
(i)
k − a

(i)
k

b
(i)
k − a

(i)
k

∼ Be(α, β), {i = 1, . . . , dk}K
k=1, (15)

Let B(α, β) be a beta function. Then the log likelihood has the form

log p(y |X, θ, σf , σnoise) = −1

2
yTK−1

y y − 1

2
log |Ky| − N

2
log 2π − d log(B(α, β))+

∑

k,i

(

(α − 1) log

(
θ
(i)
k − a

(i)
k

b
(i)
k − a

(i)
k

)

+ (β − 1) log

(

1 −
(

θ
(i)
k − a

(i)
k

b
(i)
k − a

(i)
k

))

,

(16)

It is not known a priori large or small should be the length-scales, so prior should

impose nearly the same penalties on the intermediate values of θ. Setting α = β = 2

leads to the desired shape of the prior (Figure 2).
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Fig. 2. Logarithm of Beta distribution probability density function, α = β = 2

Numerous references use a gamma-prior, e.g. [11]. Preliminary experiments showed

that GP models with such prior often degenerate. Prior distribution with compact

support restricts θ
(i)
k to belong to interval

[
a
(i)
k , b

(i)
k

]
therefore prohibiting too small

and too large length-scales and excluding every possibility to degenerate (if intervals
[
a
(i)
k , b

(i)
k

]
are chosen properly).
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It seems reasonable that the length-scale is not needed to be much less than

the distance between points. That is why we choose the lower bound to be ck ∗
min

x,y∈sk,x(i) �=y(i)
‖x(i)−y(i)‖ and the upper bound to be Ck∗ max

x,y∈sk

‖x(i)−y(i)‖. The value

ck should be close to 1. If ck is too small we are taking risks to overfit the data by allow-

ing small length-scales. If ck is too large we are going to underfit the data by allowing

only large length-scales. Constants Ck must be much greater than ck to permit large

length-scales and preserve flexibility. Constants ck = 0.5 and Ck = 100 worked rather

good in our test cases.

Figure 5 illustrates GP regression with introduced regularization. The parameters

were chosen such that the approximation is non-degenerate.
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proposed prior distribution

2.4 Initialization

It is also important to choose reasonable initial values of parameters in order to converge

to a good solution during parameters optimization. The kernel-widths for different

factors should be proportional to the factor sizes. So it seems reasonable to use average

distance between points in a factor as an initial value

θ
(i)
k =

[
1

nk

(

max
x∈sk

(x(i)) − min
x∈sk

(x(i))

)]−1

. (17)

3 Experimental Results

The algorithms were tested on a set of functions from [5,18]. Sample sizes N varied

from 100 to about 200000, input dimensions — from 2 to 6. For each function several

factorial anisotropic DoE were generated. Compared algorithms are proposed approach

without (tensorGP) and with regularization (tensorGP-reg), Fully Independent Train-

ing Conditional GP (FITC) [16], Sparse Spectrum GP (SSGP) [9] and Multivariate

Adaptive Regression Splines (MARS) [7]. For FITC and SSGP the number of induc-

ing points (or spectral points for SSGP) M varied from 500 to 70 as complexity of

algorithms is O(M2N).
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To assess quality of approximation a mean squared error was used

MSE =
1

Ntest

Ntest∑

i=1

(f̂(xi) − f(xi))
2, (18)

where Ntest = 50000 is a size of a test set. The test sets were generated randomly.

To compare performance of algorithms on a number of problems it is convenient

to use Dolan-Moré curves [4]. The idea of Dolan-Moré curves is as follows. Let tp,a be

a quality measure of an a-th algorithm on a p-th problem and rp,a be a performance

ratio, rp,a =
tp,a

min
s

(tp,s)
. Then Dolan-Moré curve is a graph of ρa(τ)

ρa(τ) =
1

np
size{p : rp,a ≤ τ},

which can be thought of as a probability for the a-th algorithm to have performance ratio

within factor τ ∈ R+. The higher the curve ρa(τ) is located the better works the a-th

algorithm. ρa(1) is a ratio of problems on which the a-th algorithm performed the best.

As tensorGP is an exact GP it performs better than the approximations of GP, i.e.

FITC and SSGP. The tensorGP-reg algorithm has better quality due to regularization

(see Figure 6). Figure 7 presents Dolan-Moré curves for training time. Time perfor-

0 0.5 1 1.5 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

log(τ)

ρ
a
(τ
)

tensorGP-reg

tensorGP

SSGP

FITC

MARS

Fig. 6. Dolan-Moré curves for approxima-
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mance of proposed approach is comparable to that of MARS algorithm and outperforms

FITC and SSGP techniques. For N = 1000 training time of tensorGP-reg is about 1

sec, for N = 400000 — 480 sec Training time of standard GP model for N = 1000 is

about 120 sec, for N = 400000 it cannot be fitted due to memory limitation.1

3.1 Rotating Disc Problem

Let us consider a real world problem of a rotating disc shape design. Such kind of

problems often arises during aircraft engine design and in turbomachinery [2]. In this

problem a disc of an impeller rotating around the shaft is considered. The geometrical

1 Experiments were conducted on a PC with Intel i7 2.8 GHz processor and 4 GB
RAM.
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Fig. 8. Rotating disc parametrization Fig. 9. Rotating disc objectives
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Fig. 10. 2D slice along x5 and x6 variables
of FITC. MSE = 86.703.
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Fig. 11. 2D slice along x5 and x6 variables
of tensorGP-reg. MSE = 0.398.

shape of the disc is parameterized by 6 variables x = (h1, h2, h3, h4, r2, r3) (r1 and

r4 are fixed), see Figures 8, 9. The task is to find such geometrical shape of the disc

that minimizes weight and contact pressure p1 between the disc and the shaft while

constraining the maximum radial stress Srmax to be less than some threshold. It

is a common practice to build approximations of objective functions to analyze and

optimize them [6]. We applied the proposed algorithm and FITC to this problem.

The DoE was full factorial and anisotropic, the sample size was 14400, factor sizes —

[1, 8, 8, 3, 15, 5].

Figures 10 and 11 depict 2D slices of contact pressure approximations along x5, x6

variables (other variables are fixed). As you can see tensorGP-reg provides much more

accurate approximation than FITC.

4 Conclusion

Gaussian Processes are often used for building approximations for small data sets.

However, the structure of the given data set contains important information which

allows to efficiently compute exact inference even for large data sets.

Introduced regularization combined with reasonable initialization has proven to be

an efficient way to struggle degeneracy in case of anisotropic data. Algorithm proposed

in this paper takes into account the special factorial structure of the data set and is

able to handle huge samples preserving power and flexibility of GP regression. Our

approach has been successfully applied to toy and real problems.

Acknowledgments. The research was conducted in the IITP RAS and solely sup-
ported by the Russian Science Foundation grant (project 14-50-00150).
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Abstract. We consider a problem of adaptive design of experiments for
Gaussian process regression. We introduce a Bayesian framework, which
provides theoretical justification for some well-know heuristic criteria
from the literature and also gives an opportunity to derive some new
criteria. We also perform testing of methods in question on a big set of
multidimensional functions.

Keywords: Active learning · Computer experiments · Sequential design ·
Gaussian processes

1 Introduction

Construction of an approximation for an unknown dependency is one of the main
steps of surrogate modelling (modelling based on the data) [1,2]. One of the most
popular approaches is based on the Gaussian process model [3,4]. It is used in a
variety of applied projects including conceptual design, structural optimization,
multicriteria optimization, design in aerospace and automobile industries.

In many engineering applications the number of evaluations of a target func-
tion f(x) is sufficiently limited due to a long execution time of one evaluation
and/or its high cost. That’s why the problem of creating methods for construc-
tion of a training set DN of limited size N in a way to get the best possible
quality of approximation is of the great importance. The design of experiments
(DoE), which optimizes some statistical criterion, is called optimal design of
experiments. For parametric models the problem of design of experiments, which
optimizes the quality of approximation, is very close to the problem of optimal
experimental design for estimation of the model’s parameters. The theory of
optimal DoE for parametric models is well-developed, see [5,6] and many oth-
ers. However, in the situation, when approximation model is non-parametric (for
example, Gaussian process regression model), we come to the different statement
of the DoE problem [7,8], in which the DoE is constructed in a way to obtain
the best possible prediction of the target function value. In this paper we will
consider the adaptive variant of such a problem which recently gained much
c© Springer International Publishing Switzerland 2015
A. Gammerman et al. (Eds.): SLDS 2015, LNAI 9047, pp. 116–125, 2015.
DOI: 10.1007/978-3-319-17091-6 7
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attention [1,9]. The adaptive DoE process constructs training set iteratively
and on each iteration design points are selected based on the properties of the
approximation constructed on the previous iteration.

In this paper we focus on the adaptive design of experiments for Gaussian
process (or kriging) regression models. This kind of models along with a predic-
tion of the unknown function f(x) allows to estimate a variance of the prediction
σ2(x). Such a point-wise error estimate gives an opportunity to construct dif-
ferent strategies for reducing uncertainty of the approximation and therefore
improving its quality. This area of research originates from the field of design
and analysis of computer experiments [10–12]. The adaptive sampling strategies
for improving the quality of approximation are closely related to the surrogate-
based optimization [13], sequential designs for estimating the probability of a
failure [14] and adaptive designs for estimating the sensitivity indices [15].

This paper makes a contribution in two main directions. First of all, we
provide a Bayesian framework which allows to define optimal adaptive sampling
strategies. Then we show, that many of the commonly used adaptive sampling
criteria are approximations of optimal one-step look-ahead strategies. Also some
new adaptive sampling strategies are obtained as optimal one-step look-ahead
solutions. Second, we make an extensive testing of the most of currently used
adaptive sampling approaches for the Gaussian process regression and compare
them numerically.

2 Gaussian Process Regression

Let y = f(x) be some unknown function with input vector x ∈ X ⊂ R
n and

output y ∈ R, DN =
(
XN ,yN

)
=

{(
xi, yi = f(xi)

)
, i = 1, . . . , N

}
be a train-

ing set. Let’s assume that f(x) is a realization of a Gaussian process. Gaussian
process, being a one of the possible ways to define a distribution on the func-
tional space, is completely defined by its mean m(x) = E[f(x)] and covariance
function k(x, x̃) = E[(f(x) − m(x))(f(x̃) − m(x̃))]. In applications the weighted
exponential covariance function k(x, x̃) = σ2 exp(−

∑n
i=1 θ2i (xi − x̃i)2) is widely

used.
Let us assume without loss of generality that m(x) ≡ 0. If the covariance

function k(x, x̃) is known, then the posterior process is also Gaussian:

PN (f) = P(f |DN ) ∼ GP
(
f̂N (x), K̂N (x, x̃)

)
, (1)

where the posterior mean of the Gaussian process f(x) at some set of test points
X∗ can be written as follows [16]:

f̂N (X∗) = f̂(X∗|DN ) = K∗K−1yN , (2)

where K∗ =
[
k(x∗

i ,xj), i = 1, . . . , N∗; j = 1, . . . , N
]
, K =

[
k(xi,xj), i, j =

1, . . . , N
]
.

The posterior covariance matrix at test points is given by

K̂N (X∗) = K̂(X∗|XN ) = K∗∗ − K∗K−1KT
∗ , (3)
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where K∗∗ =
[
k(x∗

i ,x
∗
j ), i, j = 1, . . . , N∗

]
. Then the posterior variance σ̂2

N (X∗) =
σ̂2(X∗|XN ) = diag(K̂N (X∗)).

The posterior mean at test points can be used for prediction of function
values (approximation) and the posterior variance provides corresponding point-
wise errors estimates. Let us note that here we described only basic idea of the
Gaussian process regression. For more details about the model and parameters
estimation algorithms please see [16–18]. Formulas (2) and (3) allow for simple
iterative updates when new points are added to the training set.

Proposition 1. Let for a Gaussian process f(x) a mean and a covariance func-
tions are equal to f̂0(x) ≡ 0 and K̂0(x, x̃) = k(x, x̃) correspondingly. Then the
following update equations can be used to calculate the mean and the covariance
function of the posterior process for i = 1, . . . , N :

f̂i(x) = f̂i−1(x) +
K̂i−1(x,xi)
K̂i−1(xi,xi)

(
yi − f̂i−1(x)

)
,

K̂i(x, x̃) = K̂i−1(x, x̃) − K̂i−1(x,xi)K̂i−1(xi, x̃)
K̂i−1(xi,xi)

.

Moreover, due to the fact, that a Gaussian random measure is completely defined
by the mean and the covariance functions, the corresponding iterative update is
available for the posterior Gaussian measure (1).

Corollary 1. There exists a functional φ such that Pl = φ(xl, yl,Pl−1), l =
1, . . . , N .

3 Adaptive Design of Experiments

The area of adaptive design of experiments has been paid much attention in
recent decades and numerous criteria have been proposed. To the best of our
knowledge, all the criteria are obtained from the common sense arguments,
such as uniform filling of the design space, reduction of the error predicted by
Gaussian process model, etc. However, it seems reasonable to develop criteria
which are optimal in terms of some statistical functional. We are going to intro-
duce Bayesian framework which allows to formally state the adaptive design of
experiments problem and start with some definitions.

Definition 1. Let ρ = ρ(f, f̂) be some measurable functional. We will call it
error function (see particular examples below).

Definition 2. Let qρ

(
Dl

)
= E

[
ρ(f, f̂l)

∣∣Dl

]
, where expectation is taken as con-

ditional given fixed sample Dl. Let’s call qρ

(
Dl

)
a mean posterior risk.

Definition 3. The optimal experimental plan XN is a solution of the following
optimization problem:

J∗ = min
XN∈XN

EyN

[ N∑
i=1

Qρ

(
xi, yi,Di−1

)]
, (4)
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where Qρ

(
xi, yi,Di−1

)
= qρ

(
Di−1 ∪ (xi, yi)

)
− qρ

(
Di−1

)
.

Let us note, that (4) is equivalent to minimizing the error at the final iteration:

J∗ = min
XN∈XN

EyN

[
qρ

(
DN

)]
− qρ

(
D0

)
,

where we set qρ

(
D0

)
= Eρ(f, f̂0), f̂0 = 0.

Due to Corollary 1 the problem (4) is a stochastic dynamic programming
problem and we can write the Bellman equations for it:

Jr

(
Dr−1

)
= min

xr∈X

Eyr

[
Qρ

(
xr, yr,Dr−1

)
+ Jr+1

(
Dr−1 ∪ (xr, yr)

)]
, r = 1, . . . , N,

where Jr

(
Dr−1

)
is a value function at r-th step and JN+1 ≡ 0. Unfortunately,

this stochastic dynamic programming problem is infinite dimensional and can
not be solved explicitly. That is why in the next section we consider various
one-step look-ahead solutions.

4 One-Step Look-Ahead Solutions

Value function for the last step of the stochastic dynamic programming problem
(4) is given by the following formula:

JN

(
DN−1

)
= min

xN∈X

EyN

[
Qρ

(
xN , yN ,DN−1

)]
.

Thus, the criterion for choosing an optimal one-step look-ahead point has the
form:

xN = arg min
x∈X

Iρ(x), (5)

where Iρ(x) = EyN

[
Qρ

(
x, yN ,DN−1

)]
.

Depending on the choice of the error function ρ(f, f̂) different types of criteria
will follow. We consider the following types of the error function:

1. L2-normof difference between f and f̂N : ρ2(f, f̂N ) = 1
|X|

∫
X
(f(u)−f̂N (u))2du.

2. L1-norm of difference between f and f̂N : ρ1(f, f̂N ) = 1
|X|

∫
X

|f(u)−f̂N (u)|du.

3. L∞-norm of difference between f and f̂N : ρ∞(f, f̂N ) = maxu∈X |f(u) −
f̂N (u)|.

4.1 L2 Error Function

Proposition 2. If the error function is ρ(f, f̂N ) = ρ2(f, f̂N ), then the optimal
one-step look-ahead criterion has the form

Iρ2(x) =
∫
X

(
σ̂2(u|XN−1 ∪ x) − σ̂2(u|XN−1)

)
du.
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We will denote this criterion as IntegratedMseGain. Due to the fact that
σ̂2(u|XN−1) is independent of xN this criterion coincides with the well known
criterion IMSE [10]:

IIMSE(x) =
1

|X|

∫
X

σ̂2(u|XN−1 ∪ x)du.

Proposition 3. Change of the posterior variance at point v after point x is
added to the sample, can be written as:

σ̂2(v|XN−1 ∪ x) − σ̂2(v|XN−1) = −
K̂2

N−1(x,v)
σ̂2(x|XN−1)

.

Corollary 2. The criterion Iρ2(x) can be rewritten as:

Iρ2(x) = − 1
|X|

∫
X

K̂2
N−1(x,v)

σ̂2(x|XN−1)
dv.

This corollary allows to compute Iρ2 more effectively and increase its compu-
tational stability compared to IMSE, as no direct inversion of the covariance
matrix for a full training set (XN−1 ∪ x) is needed.

In some important particular cases the criterion can be computed analyti-
cally. For example, for a widely used in applications weighted exponential covari-
ance function we can state the following preposition.

Proposition 4. Letk(x, x̃) = σ2 exp(−
∑n

i=1 θ2i (xi−x̃i)2), andX =
∏n

i=1[ai, bi].
Define k(x) = {k(x,xi)}N−1

i=1 . Then

Iρ2(x) =
trace

(
k(x)kT (x)C

)
− 2kT (x)c(x) + cNN (x)

|X|σ̂2(x|XN−1)
,

where c(x) =
[
ciN

]N−1

i=1
, C =

[
cij

]N−1

i,j=1
, erf(x) = 2√

π

∫ x

0
e−t2dt,

cij = σ4
n∏

k=1

√
π exp(− 1

2θ2k(xk
i − xk

j )2)
√

8θk(bk − ak)

[
erf

(√
2θk

(
ak −

xk
i + xk

j

2
))

−

−erf
(√

2θk

(
bk −

xk
i + xk

j

2
))]

,

where for the ease of notations we denoted x = xN .

4.2 L1 Error Function

Proposition 5. If the error function is ρ(f, f̂N ) = ρ1(f, f̂N ), then the optimal
one-step look-ahead criterion has the form

Iρ1(x) =
∫
X

√
2
π

(
σ̂(u|XN−1 ∪ x) − σ̂(u|XN−1)

)
du.

To the best of our knowledge this criterion has no analogues in the literature,
but its computation is complicated due to the structure of the formula inside
the integral.
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4.3 L∞ Error Function

Proposition 6. If the error function is ρ(f, f̂N ) = ρ∞(f, f̂N ), then the optimal
one-step look-ahead criterion has the form

Iρ∞(x) = E

[
max
u∈X

∣∣f(u)−f̂(u|DN−1∪(x, yN ))
∣∣−max

u∈X

∣∣f(u)−f̂(u|DN−1)
∣∣
∣∣∣∣DN−1

]
.

Let us note that this criterion can’t be computed analytically. In order to com-
pute it one can use approximation techniques for the distribution of the maxi-
mum of the posterior Gaussian random process. In many common situations the
maximum is proportional to the maximal value of the posterior variance [19],
which justifies usage of the popular criterion Maximum Variance (MaxVar) [10]

IMV (x) = σ̂2(x|XN−1).

5 Towards More Robust Adaptive DoE Criterion

It is of the great importance that the optimization problem (5) is always mul-
timodal and its complexity highly depends on the complexity of the criterion
in question. Some popular criteria as IMSE, have very complicated surface with
multiple narrow local optima, which makes their optimization a hard task. In
this work we consider a simple multiplicative combination of criteria Integrat-
edMseGain and Maximum Variance (IntegratedMseGainMaxVar):

IIGMV (x) =
σ̂2(u|XN−1)

|X|

∫
X

(
σ̂2(u|XN−1 ∪ x) − σ̂2(u|XN−1)

)
du =

=
1

|X|

∫
X

[
k(x,u) − k(x,X)T K−1k(u,X)

]2
du =

1
|X|

∫
X

K̂2
N−1(x,u)du.

This criterion takes into account global behaviour of the function as Integrat-
edMseGain does, but is more numerically stable then IntegratedMseGain and
MaxVar (see behaviours of these criteria for 2D example in Figure 1).

IMSE MaxVar IntegratedMseGain-
MaxVar

Fig. 1. Surfaces of IMSE, MaxVar and IntegratedMseGainMaxVar criteria
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6 Experiments

6.1 Model Experiments

For the experiments we used a big set of artificial functions which are commonly
used for testing optimization algorithms [20–22]. The idea behind such a choice
is that approximation models are very often used as substitutes for real target
functions during surrogate-based optimization process [13].

We performed testing on 10 different functions with 3 and 4 dimensional
inputs. For every function we generated 10 independent initial DoEs with the
size (10 * dimensionality) points. Adaptive DoE was performed starting from
each initial DoE and for each criterion, described in Section 4, except criteria
Iρ1 and Iρ∞ as they are hard to compute even numerically. As a benchmark
we used the method of random sampling and the non-adaptive method which
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Fig. 2. Dolan-More curves for test func-
tions, 30 added points
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Table 1. Input parameters for compression spring design problem

Input parameter d D n hf

Lower bound 0.25 mm 1 cm 70 2.5 cm

Upper bound 5 mm 2 cm 100 100 cm

Fig. 6. Compression spring and its para-
meters

Fig. 7. RMS on the test set depending on
the number of points added to DoE

generates new points maximizing minimum inter-point distance, i.e. provides a
maximum to the following criterion: Iuniform(x) = minv∈XN−1 d(x,v), where
d(x,v) is a Euclidean distance between points x and v.

On every iteration we add to the DoE one point optimizing the criterion in
question and re-estimate parameters of Gaussian process regression using max-
imum likelihood approach. Results are compared by means of the root mean
squared error on big test set of 10000 points. For convenience results are pre-
sented in the form of Dolan-More curves [23]. The higher curve is on the plot,
the better is the quality obtained by the corresponding algorithm. Results are
presented for 30 adaptively added points (see Figure 2) and for 50 adaptively
added points (see Figure 3).

Let us note that IntegratedMseGain criterion provides good results in the
most cases (the value of the Dolan-More curve at zero). However for many test
functions this criterion also shows bad performance due to numerical instability
(the corresponding Dolan-More curve reaches the maximal level with significant
delay compared to the curves for other criteria). IntegratedMseGainMaxVar cri-
terion is more robust and provides better results.

Also let’s consider an example how the error of approximation changes from
iteration to iteration of adaptive DoE process. We consider Michalewicz function
in the domain [0, 1]2. On Figures 4 and 5 we plot the dependence of the approx-
imation error on a number of iteration of the adaptive DoE process (the results
are averaged over 5 initial train samples). It can be easily seen, that adaptive
methods are much better then the random sampling with the error of the best
method 1.7 times smaller then the error, obtained in case the random sampling
is used.
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6.2 Spring Design

We consider a physical model of a compression spring [24]. We wish to construct
a DoE which provides an accurate approximation of a force of the spring at its
pre-load height, h0 = 2.5 cm. The input design parameters are wire diameter
d, coil diameter D, number of coils in the spring n and spring free height hf ,
see Figure 6. We provide parameters bounds in Table 1. The force of a spring is
computed by means of the physical model [24].

We generated two designs: a random design with 200 points and an adaptive
design of the same size, generated using IntegratedMseGainMaxVar criterion
(starting from an initial random design with 100 points). We computed a root
mean squared error on a big test sample for each iteration of a DoE generation
algorithm, see Figure 7. We conclude, that the adaptive design for this test case
ensures decreasing trend for the approximation error and better quality than the
random design.

7 Conclusions

In this work we propose an approach to adaptive design of experiments for a
Gaussian process regression which allows to formulate it as stochastic dynamic
programming problem. Optimal one-step look-ahead solutions of this problem
allow to justify many criteria of adaptive design of experiments, well known
from the literature. Also in this work we introduce new criterion IntegratedM-
seGainMaxVar, which in simple form combines well-known criteria, but achieves
better numerical stability. Experimental results show the benefits of adaptive
designs compared to the random sampling. The proposed criterion provides bet-
ter results then the other criteria. As a direction of future research we plan to
construct solutions of dynamic programming problem with horizon of few steps
and obtain new, more accurate criteria of adaptive design of experiments.
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Abstract. Shapelets have recently been proposed for data series clas-
sification, due to their ability to capture phase independent and local
information. Decision trees based on shapelets have been shown to pro-
vide not only interpretable models, but also, in many cases, state-of-
the-art predictive performance. Shapelet discovery is, however, compu-
tationally costly, and although several techniques for speeding up this
task have been proposed, the computational cost is still in many cases
prohibitive. In this work, an ensemble-based method, referred to as Ran-
dom Shapelet Forest (RSF), is proposed, which builds on the success of
the random forest algorithm, and which is shown to have a lower com-
putational complexity than the original shapelet tree learning algorithm.
An extensive empirical investigation shows that the algorithm provides
competitive predictive performance and that a proposed way of calcu-
lating importance scores can be used to successfully identify influential
regions.

Keywords: Data series classification · Shapelets · Decision trees ·
Ensemble

1 Introduction

In many applications, measurements of some quantity are made over time or
over some other logical ordering. For example, data series have been analyzed
to classify human heart rates [15], to recognize image shapes [10], and to find
anomalies in periodic light curves [20]. Although the measurements are ordered,
the resulting data series are often treated as ordinary feature vectors, allowing for
classification using standard machine learning algorithms, such as support vector
machines [7], random forests [5], and nearest neighbor classifiers (k-NN) [2].
Experimental evidence, however, suggests that treating time series data as one
dimensional series and applying nearest neighbor classifiers with elastic distance
measures, such as dynamic time warping (DTW) [3] or its constrained version
(cDTW) [21], results in state-of-the-art predictive performance [23]. It has also
been observed that the performance of elastic measures converges to that of
using the euclidean distance when the size of the training sets increase [23].

As alternatives to the k-NN classifier, several competitive approaches based
on shapelets have been suggested, such as shapelet-based decision trees [24], log-
ical combinations of shapelets [17], and data pre-processing approaches using
c© Springer International Publishing Switzerland 2015
A. Gammerman et al. (Eds.): SLDS 2015, LNAI 9047, pp. 126–136, 2015.
DOI: 10.1007/978-3-319-17091-6 8
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shapelet transformations [1,13]. A shapelet is a phase-independent subsequence
of a longer data series used as a local primitive for classification. In this set-
ting, the idea is to find the closest matching position within each data series to a
particular shapelet, and use this similarity as a discriminatory feature for classifi-
cation. In the original shapelet classifier [24], the shapelet extraction is embedded
in a decision tree classifier. However, since the search for the most informative
shapelet is a very time consuming task, a significant amount of research has
focused on improving the speed of which shapelets can be explored and utilized.
For example, by early abandoning and entropy pruning [24], by using approxima-
tion methods [19], by random traversal orderings [12] and online normalization
with re-ordered early abandoning [18]. While these approaches make the search
for shapelet candidates more efficient and, hence, shapelet classification usable in
a wider range of applications, decision trees are not the most accurate classifier.
For standard machine learning tasks, it has been observed that single decision
trees are frequently outperformed by more elaborate classifiers such as random
forests [5], neural networks [22], and SVMs [7]. Thus, although shapelet based
classifiers can perform well on many tasks and are able to provide insights that
may help practitioners understand why and how a classification is made [24],
their classification accuracy and training performance are often prohibitive [19].

If the goal is to maximize classification accuracy when using decision trees,
one straightforward and effective approach is to combine a set of single trees
into an ensemble, e.g., using bagging [4]. One of the main reasons for trees being
suitable as ensemble members is due to their variability, i.e., slight changes in the
training sample can result in completely different trees. The idea is that by com-
bining a set of models, all performing better than random and making errors to
some extent independently, the probability of the ensemble making an error will
decrease with the number of ensemble members (trees). One way of achieving
this, popularized by, e.g,, the random forest, is hence to introduce randomness
in the tree generation process [4,5]. The purpose of this study is to describe and
investigate a novel data series classifier building on the idea of random forests to
improve classification accuracy of shapelet trees. The main contributions include
a description the Random Shapelet Forest (RSF) algorithm, an extensive empir-
ical investigation of the classification performance and the description of an
importance score for identifying influential data series regions.

The remainder of this paper is organized as follows. In the next section, we
briefly discuss related work on data series classification. In Section 3, we present
the novel algorithm for generating forests of randomized shapelet trees and dis-
cuss some implementation choices. In Section 4, we present the experimental
setup and the empirical investigation. Finally in Section 5, we summarize the
main findings and point out directions for future work.

2 Background

A data series is an (often temporally) ordered series of data points, sampled using
some specified method, e.g., for time series, sampling is typically made using
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fixed and regular time intervals. Let us denote a dataset of n such data series
as D = {d1, . . . , dn} and assume, similar to many other studies on data series
analysis, that each data series di ∈ D, 〈di1, . . . , dim〉 is of length m. Then given a
vector of class labels y1, . . . , yn ∈ Y , the goal of data series classification (DSC)
is to find a function f : D → Y that as accurately as possible1 approximates the
true function h used to generate the data.

As briefly described in the introduction, a shapelet is any subsequence
extracted from a data series di. More formally, sij,k is a continuous sequence
from di of length k starting at position j. Every subsequence in every data series
in the database is a possible candidate. If the set of all possible candidates of
length k from di is denoted as sik, then all possible candidates of that length are
denoted as sk = {s1

k ∪ s2
k ∪ . . .∪ snk}, and finally the set of all possible candidates

is S = {s1 ∪ s2 ∪ . . . ∪ sm}. Since shapelets must be invariant to scale and offset
to detect localized shape similarities, they are individually z-normalized. Hence,
shapelets are usually extracted in a brute-force manner by searching and nor-
malizing all possible candidates between some pre-defined lengths l (lower) and
u (upper). Let f(p, q) be a function (e.g., the Euclicean distance) used to calcu-
late the distance between two data series p, q of equal length m. The distance
between a data series dj and a shapelet candidate s′

k, can be found by calculating
the distance to all subsequences of length k in di and taking the minimum, i.e.,
fsub(dj , s′

k) = mins∈sjk
f(dj , s). The minimum distance of a candidate s′ and all

data series in D can be used to generate a vector of n distances Ds′ , which in
turn can be used to assess the classification quality of shapelets in terms of, e.g.,
entropy or gini [6,24].

3 Forests of Randomized Shapelet Trees

Random forest is an ensemble classifier consisting of a set of classification (or
regression) trees [5]. The main idea of learning ensembles is to generate suffi-
ciently accurate members which, in the optimal case, make errors independently
from each other. By combining the predictions of these members, the resulting
generalization error can be expected to be smaller than that of the individ-
ual models. In the random forest algorithm, randomization in the generation of
ensemble members are usually injected by employing bagging [4], i.e., randomly
selecting with replacement n examples to include during training; and by sample
a small subset of features to evaluate at each node of the trees [14].

In this study, a related idea is utilized when generating forests of shapelet
trees where randomization is injected both in the selection of data series to
include during training and in the selection of shapelet candidates used during
the construction of each tree, aggregating them to a forest of randomized shapelet
trees. Algorithm 1 presents the main procedure for generating such a forest. The
algorithm expects a database consisting of n data series, D = {d1, . . . , dn}, where
each data series di is a vector of consecutive measurements 〈di1, . . . , dim〉 and

1 Usually assessed by the classification error on an independent validation set.
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each dij ∈ R. Furthermore, the algorithm expects a vector of output variables
y1, . . . , yn ∈ Y from the domain Y and a parameter indicating the number of
random shapelet trees to generate, t.

Given the database of data series, Algorithm 1 draws a random sample of
indices from D. Although, the function Sample can be implemented in a number
of ways, the traditional bootstrap approach [4] described earlier are chosen here.
Hence, Sample returns a vector of n indices drawn with replacement from the
range [0, n]. Using this sample, the algorithm continues by generating the kth
tree (sequentially or in parallel) using the procedure RandomShapeletTree and
the data series included in the sample Ddk

.

Algorithm 1. ShapeletForest(D : database, Y : target, t: trees, l, u, r)
Input : D = {d1, . . . , dn} and class labels y1, . . . , yn ∈ Y .
Output: An ensemble of random shapelet trees T1, . . . , Tt

for k ← 0 to t do
1 dk ← Sample(D);
2 Tk ← RandomShapeletTree(Ddk

, Ydk
, l, u, r);

T ← T ∪ {t′};
return T1, . . . , Tt

The RandomShapeletTree function first samples r shapelet candidates from
the set of all possible candidates S. Instead of sampling candidates from a
pre-calculated database, SampleShapelet is implemented to randomly and uni-
formly select a single data series di ∈ D and extract a shapelet sij,k from di by
uniformly picking a length k in the range k = rand([l, u]) and a start position
in the range j = rand([0,m − k]), where l and u denotes minimum and maxi-
mum shapelet size. This results in a subset S̄ ∈ S of all possible candidates. The
BestSplit function determines which shapelet, s̄ ∈ S̄, and distance threshold,
τ , should be selected as the test condition. The chosen test condition is subse-
quently used to separate the data series into two groups, those with a distance
fsub(d, s̄) ≤ τ and those with a distance fsub(d, s̄) > τ . To efficiently obtain the
threshold τ for a particular shapelet, the distances from the shapelet to all data
series in the database need to be calculated, after which one can sort the exam-
ples according to their distance and select the best threshold from the midpoints
between two adjacent sorted values, analogous to how numeric features are dis-
cretized during tree growth [11]. The utility of a split is then be determined by
an impurity measure such as gini-index or entropy, the latter being selected here.
The entropy is calculated as

∑
y∈Y p(y) log2 p(y), where p(y) denote the fraction

of examples having a particular class label. Using the entropy, the utility of a
split is calculated as the information gain, ΔI, which is the difference between
the sum of entropy at the child nodes, weighted by the fraction of examples at
a particular node, and the entropy at the parent node. To resolve conflicts in
information gain, i.e. two or more thresholds with the same gain, the threshold
that maximizes the separation gap is chosen [19].
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The Distribute function partitions the examples according to the chosen
split point, i.e., left contains the examples with a distance less than or equal to
τ and vice versa for right. If no examples are partitioned to the left or to the
right, a leaf node is created predicting the most probable class. Otherwise the
partitions are subsequently used to recursively build sub-trees. The recursion
continues until there are no more informative shapelets or the node is pure, i.e.,
containing examples from one class only. Even though the original shapelet tree
algorithm [24] has a run-time complexity of O(m3n2 log m3n), the computational
cost is reduced to O(Trn2 log rn) for the shapelet forest algorithm; and, since T
and r are constants, the amortized computational cost is reduced to O(n2 log n).

Algorithm 2. RandomShapeletTree(D: dataset, Y : target, l, u, r)
Input : D = {d1, . . . , dn} and class label y1, . . . , yn ∈ Y .
Output: A randomized shapelet tree, T .

S̄ ← ∅;
for s ← 0 to r do

1 s′ ← SampleShapelet(D, l, u);
2 S̄ ← S̄ ∪ {s′};
end

3 τ, s̄ ← BestSplit(D, Y , S̄);
4 left, right ← Distribute(D, Y , s̄ τ) ;
if Dleft = ∅ or Dright = ∅ then

T ← MakeLeaf(Y );
else

Tleft ← RandomShapeletTree(Dleft, Yleft, l, u, S);
Tright ← RandomShapeletTree(Dright, Yright, l, u, S);
T ← {(τ, s̄, Tleft), (τ, s̄, Tright)};

end
return T

Similar to traditional classification trees, one of the most important contri-
butions introduced in the original shapelet classification algorithm is the ability
to identify important features by manually inspecting the generated trees [24].
In the context of decision trees, Breiman et. al., (1984) [6] showed that this
process could be automated by defining the measure of importance for a given
variable. In a single decision tree, the use of surrogate splits is necessary to
account for masking effects of correlated variables. However, due to randomiza-
tion, masking effects present in single decision trees are decreased for random
forests. Hence, in Breiman (2001) [5] the importance of a variable Xj is calcu-
lated by adding up, for each tree T1, . . . , Tm, the weighted impurity decrease
Nt

N ΔI(ct, t) for all nodes where Xj is used, giving the importance of Xj as
1
M

∑M
m=1

∑
t∈Tm

1(jt = j)Nt

N ΔI(ct, t), where Nt

N is the fraction of examples
reaching node t, and 1(jt = j) is 1 if Xj is used for splitting node t and 0
otherwise. This measure is often denoted as Mean Decrease Impurity (MDI).
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The random shapelet tree-algorithm requires two hyper-parameters to be
tuned, the minimum and maximum length of sampled candidate shapelets.
Hence, one important aspect when optimizing these parameters is to understand
how important different lengths are for predicting Y . One approach, suggested
by Hills et al. (2014) [13], estimates an appropriate shapelet length by randomly
and repeatedly sampling a small subset of data series and, from these, extract-
ing the best shapelets of all possible lengths. The best candidates from each
data series are then merged and sorted by length. The minimum and maximum
lengths are then given by the longest shapelet of the first quartile and shortest
shapelet of the fourth quartile, respectively. For the RSF, another approach is
to calculate the mean decrease in impurity of the shapelet lengths used in the
forests. Hence, the standard MDI can be re-defined to, instead of considering a
particular variable Xj , consider whether or not a particular length k is included
in a split ct.

Since forests of randomized shapelet trees consist of multiple trees, it is dif-
ficult to interpret and identify shapelets important for classifying a particular
data series. For the interval-based time series forest, a measure of importance
based on intervals has been suggested [9]. The entropy for different interval-
based features are added up over all nodes in the forest, giving an importance
score for each position in the data series. In this work, a similar approach is
taken, where each position is given an importance score based on the MDI. The
importance of position p for predicting Y is calculated by summing the weighted
impurity decrease Nt

N
ΔI(cst ,t)

k for all positions included in shapelet s of length k,
i.e. 1

M

∑M
m=1

∑
t∈Tm

1(jt = j)Nt

N
ΔI(st,t)

k .

4 Experiments

4.1 Experimental Setup

The datasets in the UCR Time Series Repository [16] represent a wide range of
different classification tasks varying from image outline classification, e.g., OSU
Leaf, to motion classification, e.g., Gun Point, and sensor reading classification,
e.g., Fatal ECG of different sizes (from 16 to 1800 examples) and lengths (from
24 to 1882 measurements) [16]. Frequently, only a subset of the (current) 45
datasets in this repository is used when estimating the performance of shapelet-
based classifiers due to the computational burden [12,13,19,24]. In contrast, we
will here use all the 45 datasets, thanks to the limited computational cost of the
shapelet forest algorithm.

To evaluate the performance of machine learning models on unseen data, an
independent test set should be employed. If plenty of data are available, one
simple approach is to split the data into two halves, and use one for training the
model and the other one for evaluating its performance. However, when data
is scarce, cross-validation is a viable approach for estimating the performance.
Since already created training and validation sets are provided in the UCR Time
Series Repository [16] together with baseline error estimates, we here opt for
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the former. The baseline error estimates are calculated for 1-nearest neighbors
with Euclidean distance (1-NN), dynamic time warping with optimized warping
windows (1-NN DTW-best) and dynamic time warping with an unconstrained
warping window (1-NN DTW-no) [16]. In this study, the miss-classification rate
(i.e. the fraction of miss-classifications) is used as performance metric, since
this is the most commonly employed metric when comparing the classification
performance on data series classification [12,13,19,24]. However, we note that
other measures, such as the area under ROC curve, can be more suitable in some
cases, e.g., when the class distribution differ between training and testing.

As described in Section 3, the forest of randomized shapelet trees requires a
number of hyper-parameters to be set: the minimum shapelet length l, the max-
imum shapelet length u, the number of shapelets to sample r, and the number
of trees in the forest T . Usually, the optimal parameter settings are found by
repeated k-fold cross-validation, selecting the parameters with the lowest vali-
dation error. However, here we opt for a more ad-hoc approach, selecting 100
shapelets (r = 100) randomly in the range 2 (l = 2) to m (u = m). Furthermore,
to investigate the effect of forest size, an increasing number of trees is generated.
The considered forest sizes are 10, 25, 50, 100, 250 and 500; where forests of the
largest size are to be compared with the baseline approaches. Since the forest
generating algorithm is stochastic, changes in the random shapelet candidates
can affect predictive performance. However, the number of grown trees is rather
large and this risk is therefore neglected here. Finally, to detect if there are any
significant deviations in predictive performance between the forest of random-
ized shapelet trees and the baseline approaches, as measured by the error rate,
a Friedman test followed by a Nemenyi post-hoc test is performed [8].
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Fig. 1. Error rates for the random shapelet forest (RSF) with 500 trees compared to
the baseline approaches. For every point above the diagonal, RSF has a lower error.
Each point represents one dataset from the UCR Time Series Repository [16].

4.2 Empirical Results

The error rates for the Random Shapelet Forest with 500 trees and the baseline
approaches are shown in Fig. 1 and Fig. 2. In Fig. 2, where the error rates for
different forest sizes together with the baselines are provided, it can be seen that
the average error rate for the RSF slowly converges after 100 trees have been
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added. Moreover, in Fig. 1, the error rates for all datasets are represented as
points, where the x-axis represents the RSF and the y-axis the error rate for the
baseline approaches. Hence, the diagonal line represents equal error rates and
for every point above this line, the RSF classifier has a lower error estimate than
the corresponding baseline classifier. Although Fig. 1 shows the absolute error
rates for each algorithm and dataset, statistical tests for determining whether
differences in predictive performance are significant are computed using the per-
formance ranks of the algorithms [8].
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Fig. 2. Error rate for each forest size, averaged over every dataset, compared to the
average error rate of the baseline approaches

As seen in Fig. 1, RSF performs better than the baseline approaches on a
majority of the datasets. A Friedman test confirms that the observed differences
in error ranks deviate significantly (p < 0.01) from what can be expected under
the null hypothesis. To detect if there are any significant pair-wise deviations
between the RSF and the baseline approaches, a post-hoc Nemenyi test is per-
formed, which reveals that there is a significant (p < 0.01) difference in error
rank between the RSF and the 1-NN, and between RSF and the unconstrained
1-NN DTW (p < 0.01). However, no significant differences can be detected for
the constrained 1-NN DTW. The latter can perhaps be explained by the fact
that no parameter optimizations where conducted for the RSF. Interestingly,
RSF beats the baselines with a large margin for the image outline classification
tasks, e.g., for Swedish Leaf and OSU Leaf, RSF have an error rate of 0.09 and
0.157 compared to 0.157 and 0.384 for the best baseline respectively.

To explore the proposed importance measure, two datasets where the RSF
algorithm performs especially good are explored in greater detail. The chosen
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Fig. 3. Length and Position importance for the Gun Point dataset
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datasets are Gun Point and ECG five Days, where the former concerns the
prediction of human motion and the latter the prediction of human heart beats
[16]. The data series and their corresponding importance scores are shown in
Fig. 3 and Fig. 4 respectively. As seen in Fig. 3 (center), the most informative
lengths for the Gun Point dataset seem to be somewhere between 30–70 data
points, which by ocular inspection of Fig. 3 (left) seems rather intuitive. Similarly
to the shapelet identified by Ye and Keogh (2009), the most important region
seems to be around positions 40 and 120 [24]. The error rate for this dataset
is 0.0, which, to the best of our knowledge, is better than the best reported
result in the literature. In the second example, the ECG Five Days dataset,
extracted from PhysioNet.org [16,19], is shown in Fig. 4 (left). According to the
positional importance score, the elevation at around time-point 80 carries the
most significant shapes for classifying the ECG series, which is also confirmed in
[19]. Finally, the random shapelet forest is able to achieve 100% accuracy, which
again is better than the best result reported for this dataset [19].
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Fig. 4. The time-series in the ECG five days dataset with the respective length and
positional importance scores

5 Concluding Remarks

In this study, a novel randomization-based ensemble algorithm, RSF, for clas-
sifying data series based on shapelets was introduced and empirically evalu-
ated against state-of-the-art methods based on constrained and unconstrained
dynamic time warping. The results show that there is a significant difference in
predictive performance as measured by error rate. The main conclusion from the
investigation is that the algorithm provides competitive predictive performance
while being computationally efficient and simple to parallelize. Furthermore,
even though the RSF contains multiple trees and is hence difficult to interpret,
the introduced positional importance score provides insights into the structure
of the data series, making the opaque forest more interpretable.

One important direction for future work is to investigate the effect of the
chosen values for the hyper-parameters, e.g., the number of inspected shapelets
could be chosen similar to the number of features in a random forest. Of particu-
lar interest would be to study their effect on the average predictive performance

PhysioNet.org
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of the trees in the ensemble and their diversity, by decomposing the mean square
error of the forest. Another, related, direction for future work is to investigate
how the shapelet sampling algorithm affects the predictive performance. For
example, since shapelets are local primitives, one might benefit from weighting
the sampling procedure towards shorter subsequences. Finally, another possi-
ble direction for future work is to incorporate other, randomized, data series
primitives to support additional ways of defining similarity.
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Abstract. The paper deals with applying the strong aggregating algo-
rithm to games with asymmetric loss function. A particular example of
such games is the problem of time series forecasting where specific losses
from under-forecasting and over-forecasting may vary considerably. We
use the aggregating algorithm for building compositions of adaptive fore-
casting algorithms. The paper specifies sufficient conditions under which
a composition based on the aggregating algorithm performs as well as
the best of experts. As a result, we find a theoretical bound for the loss
process of a given composition under asymmetric loss function. Finally
we compare the composition based on the aggregating algorithm to other
well-known compositions in experiments with real data.

Keywords: Aggregating algorithm · Time series forecasting · Asym-
metric loss function

1 Introduction

In this paper we consider the following situation. Suppose we are given an out-
come space Ω and a prediction space Γ . There is a loss function λ : Ω × Γ →
[0,+∞]. The triple 〈Ω,Γ, λ〉 is called game [1]. Suppose we are also given a set
of experts A and a learner. The learner and the experts try to predict a sequence
x1, . . . , xT ∈ ΩT according to the following protocol:

at each step t = 0, 1, . . . , T

1. each expert A ∈ A makes a forecast x̂A
t+1 ∈ Γ of the next element xt+1 ∈ Ω;

2. the learner makes its own prediction x̂t+1 ∈ Γ based on the forecasts of the
experts;

3. the actual value xt+1 ∈ Ω is observed;
4. the experts incur the loss λ

(
xt+1, x̂

A
t+1

)
and the learner incurs the loss

λ (xt+1, x̂t+1).

The loss process of expert A is the sum of its losses at each step: LossA
T =∑T

t=1 λ(xt, x̂
A
t ). The loss process of the learner is LossT =

∑T
t=1 λ(xt, x̂t). The

goal is to suggest a method for the learner to be able to predict as close as
c© Springer International Publishing Switzerland 2015
A. Gammerman et al. (Eds.): SLDS 2015, LNAI 9047, pp. 137–146, 2015.
DOI: 10.1007/978-3-319-17091-6 9
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Data: (x1, . . . , xT ) — a sequence from ΩT ;
A1, . . . , AM — experts;
β ∈ (0, 1) — parameter of learning rate;
ρ0 ∈ R

M — initial expert weights distribution;
S : RΩ → Γ — substitution function;
Result: γt+1 — forecast of the next element of the sequence at each step

t = 1, . . . T .

for t = 1 to T do
for j = 1 to M do

x̂j
t+1 = Aj(x1, . . . , xt);

gt(x) = logβ

(∑M
j=1 pj

t · βλ(x,x̂
j
t+1)
)
;

pj
t+1 = pj

t · βλ(xt+1,x̂
j
t+1);

pj
t+1 =

p
j
t+1

∑M
k=1 pk

t+1
;

γt+1 = S (gt(x)).
end

end
1: Aggregating Algorithm

possible to the best expert in terms of loss process. A more general statement of
the problem is formulated in [2].

As a strategy for the learner V. Vovk suggested the (strong) aggregating
algorithm 1 in [3,4].

Function gt(x) is called generalized action [4]. Substitution function S defines
a forecast value x̂t+1, based on generalized action gt(x) by the following condi-
tion:

∀x ∈ Ω λ(x, x̂t+1) ≤ c(β) · gt(x). (1)

V. Vovk proved in [3] that in many games where the aggregating algorithm
is used as a learner on a finite set of experts A =

{
A1, . . . , AM

}
the following

upper bound holds:

LossT ≤ c(β) · LossA
T + a(β) · ln(M), ∀A ∈ A. (2)

It was shown that in such games c(β) ≥ 1, and a(β) = c(β)/ ln(1/β) and
that upper bound (2) cannot be improved. A game in which for some β ∈ (0, 1)
c(β) = 1 is called β-mixable game. A game is called mixable if it is β-mixable
for some β ∈ (0, 1).

1.1 Time Series Forecasting

A particular case of the situation above is the time series forecasting problem.
This problem has the following characteristics.

First, the outcome space and the prediction space are equal and are subsets
of the real axis Ω = Γ = [Y1, Y2] ⊂ R. Let us call a sequence of elements
XT = x1, . . . , xT ∈ Ω ordered by time a time series.
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Next, the loss function is asymmetric and often can be described as a function
of difference x − x̂

λ(x, x̂) =

{
k1 · (x̂ − x)p , x < x̂,

k2 · (x − x̂)p , x ≥ x̂,
(3)

where k1 > 0, k2 > 0, p > 1. Parameters k1 and k2 describe the difference
between specific losses from under-forecasting and over-forecasting. The power
p designates dependence of the losses on the difference x − x̂. Henceforward we
will call the game with Ω = Γ = [Y1, Y2] and loss function (3) an asymmetric
game. We do not consider the situation where p = 1 because such game is not
mixable [1,5].

Finally, the experts in the time series forecasting problem are usually simple
adaptive algorithms like exponential smoothing model, Holter-Winters model,
or Theil-Wage model [6]. In this paper we explore the aggregating algorithm
for building compositions under finite set A = {A1, . . . , AM} of simple adaptive
algorithms, hereinafter base algorithms1, in the asymmetric loss game.

We proceed as follows. In the first part, some theoretical results about mix-
ability of an asymmetric game are presented. We also discuss conditions for
parameters of the aggregating algorithm under which inequality (2) will be sat-
isfied. In the second part, we provide some practical results about compositions
based on the aggregating algorithm. We conclude with a description of experi-
ments that compare the aggregating algorithm to other well–known approaches
to building compositions of time series forecasting algorithms.

2 Mixability of Asymmetric Games and Parameters
of the Aggregating Algorithm

This section derives theoretical conditions on the parameters of the aggregating
algorithm for an asymmetric game to be mixable.

2.1 Mixability of the Asymmetric Game

Lemma 1 from [5] gives a general expression of the necessary and sufficient
conditions on the learning rate β for an asymmetric game due to [8]:

β ≥ exp

⎛
⎝ (p − 1)(Y2 − Y1)

p · max
γ∈[Y1,Y2]

(
k2(Y2 − γ)p(γ − Y1) + k1(γ − Y1)p(Y2 − γ)

)
⎞
⎠ .

Since Y1, Y2 and p are given, the bound for β follows from the solution of the
maximization task:

max
γ∈[Y1,Y2]

(
k2(Y2 − γ)p(γ − Y1) + k1(γ − Y1)p(Y2 − γ)

)
. (4)

For some p it can be easy to find.
1 In this paper we define experts as base algorithms. However, there are other ways to

select experts for the aggregating algorithm in the time series forecasting problem [7].
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Theorem 1. For p = 2 the asymmetric game is mixable if and only if

β ≥ exp

(
− 1

2 · K · (Y2 − Y1)2

)
, (5)

where K = 2k1−k2−k∗
3(k1−k2)

· k1−2k2+k∗
3(k1−k2)

· k1+k2+k∗
3 , k∗ =

√
(k1 − k2)

2 + k1 · k2.

Mixability conditions of a symmetric game can be easily derived from Theorem 1.
A symmetric loss function is obtained from (3) under conditions k1 → k, k2 →
k. In this case K → k

4 and the condition of mixability (5) converts to β ≥
exp

(
−2/

(
k · (Y2 − Y1)2

))
. This result complies with Lemma 2 from [3] when

k = 1, Y1 = −1, Y2 = 1.
However, solving problem (4) at each step t of aggregating algorithm 1

involves time consuming calculations. The following estimation is more appro-
priate in practical cases (sufficient condition).

Theorem 2. An asymmetric game is β-mixable if β lies significantly close to 1:

β ≥ exp

⎛
⎜⎜⎝− 2(p − 1)(

max{k1, k2}
(

2p
p+1

)p+1

+ p · min{k1, k2}
)

· Ŷ p

⎞
⎟⎟⎠, (6)

where Ŷ = Y2−Y1
2 .

Proof. The proof lies in solving maximization task (4). Let us estimate the max-
imum of the function

F (γ) =
(
k2 · (Y2 − γ)p(γ − Y1) + k1 · (γ − Y1)p(Y2 − γ)

)

First of all we notice that F (Y2) = F (Y1) = 0, therefore

max
γ∈[Y1,Y2]

F (γ) = max
γ∈(Y1,Y2)

F (γ) =

= max
γ∈(Y1,Y2)

(
k2(Y2 − γ)p(γ − Y1) + k1(γ − Y1)p(Y2 − γ)

)
=

= max
y∈(−Ŷ ,Ŷ )

(
k2(Ŷ − y)p(y + Ŷ ) + k1(y + Ŷ )p(Ŷ − y)

)
=

= max
y∈[−Ŷ ,Ŷ ]

(
k2f2(y) + k1f1(y)

)
,

where Ŷ = Y2−Y1
2 , f1(y) = (Ŷ − y)(y + Ŷ )p, f2(y) = (Ŷ − y)p(y + Ŷ ).

It is easy to see that f1(y) = f2(−y) and

arg max
y∈(−Ŷ ,Ŷ )

f1(y) = − arg max
y∈(−Ŷ ,Ŷ )

f2(y) =
(1 − p)Ŷ

p + 1
,

so

max
y∈(−Ŷ ,Ŷ )

f1(y) = max
y∈(−Ŷ ,Ŷ )

f2(y) =
1
p

(
2p

p + 1

)p+1

· Ŷ p+1.
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A more detailed analysis of the first derivative of f1(y) shows that f1(y)
monotonically decreases from (1−p)·Ŷ

p+1 to Ŷ , and f2(y) monotonically increases

from −Ŷ to (p−1)·Ŷ
p+1 . Consequently

1
p

(
2p

p + 1

)p+1

· Ŷ p+1 > f1(0) = f2(0) = Ŷ p+1.

Summarizing all points above we obtain:

max
γ∈[Y1,Y2]

F (γ) = max
y∈[−Ŷ ,Ŷ ]

(
max{k1, k2} · f2(y) + min{k1, k2} · f2(−y)

)
<

< max{k1, k2} · max
y∈[−Ŷ ,Ŷ ]

(
f2(y)

)
+ min{k1, k2} · f2(0) ≤

≤
(

max{k1, k2}
p

(
2p

p + 1

)p+1

+ min{k1, k2}
)

· Ŷ p+1.

2.2 Parameters ρ0 and S(x)

If the conditions of Theorem 2 are met, there exists an initial distribution of
expert weights ρ0 and a substitution function S(x) such that inequality (2)
holds for c (β) = 1. The choice of parameters ρ0, and S(x) of the aggregating
algorithm should be based on the following lemma:

Lemma 1. Let the conditions of Theorem 2 be fulfilled. Inequality (2) will hold
with c(β) = 1 if the following sufficient conditions are met:

1. the initialdistributionρ0 = {ρ10, . . . , ρ
M
0 }ofbasealgorithmsA =

{
A1, . . . , AM

}
is such that min

j=1,...,M
ρj
0 > 0.

2. substitution function S(g) takes such values that

λ
(
Y1, S(g)

)
∈ [0, g(Y1)]; λ

(
Y2, S(g)

)
∈ [0, g(Y2)]. (7)

This lemma is a simple modification of Lemma 3 from [1] for the case of a finite
set of experts A.

The second condition has a clear geometric interpretation. If we display a
curve

(
λ (Y1, x̂) , λ (Y2, x̂)

)
, where x̂ ∈ [Y1, Y2], on a Cartesian plane the substi-

tution function should take only such values out of [Y1, Y2] that correspond to
the points of the curve within the rectangle [0, g(Y1)]×[0, g(Y2)]. The illustration
of this interpretation is provided in Figure 1 (see the experimental section).

S1 (g) =
Y2

p
√

k2g(Y1) + Y1
p
√

k1g(Y2)
p
√

k2g(Y1) + p
√

k1g(Y2)
. (8)
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2.3 Loss Process Bound

Having applied a uniform initial distribution of expert weights ρj
0 = 1/M for j =

1, . . . , M and substitution function (8), we obtain composition AA1. Theorem 2,
Lemma 1 and inequality (2) result in the upper bound of the loss process of this
composition.

Corollary 1. Under conditions of Theorem 2, for every set of experts A ={
A1, . . . , AM

}
in an asymmetric game the loss process of AA1 is estimated as

LossAA1
T ≤ min

i=1,...,M
LossAi

T +

+
(Y2 − Y1)p

(p − 1)

(
max{k1, k2}

(
p

p + 1

)p+1

+
p

2p+1
min{k1, k2}

)
· ln(M).

(9)

Therefore, the loss process of composition AA1 amplifies at a speed not
greater than that of the loss process of the best base algorithm. Since the loss
process is defined as the loss accumulated by the point of time T , the marginal
addition of the second item to the sum of inequality (9) declines over time. Time-
complexity of composition AA1 has a linear dependency on the number of base
algorithms M and the length of the time series T : O(M · T ).

3 Experiments

The experiments were conducted on sales data of a retailer Lama (Tomsk, Russian
Federation). Each time series describes daily sales of SKU (Stock Keeping Unit)
in one shop of the retail chain from 2005/01/01 to 2010/01/01. Some time series
contain clear trend and seasonality, but it is not the case for the whole data set.
Since a lot of time series are not stationary, ARMA and ARIMA models cannot be
applied. Many time series have NaN (not–a–number) values, the number of which
varies from 50 to 1500 per time series. There are 1913 different time series in total,
however, only subsets are used for test purposes and each experiment is conducted
on a different subset.

Sales forecasting in retail chains requires an asymmetric loss function. The
asymmetry is justified by substantially different losses under over- and under-
forecast. Over-forecast occurs when the forecasted value is larger than the actual
value of the time series and leads to overstock, larger logistic costs, a greater
portion of expired goods, and stock depreciation. Under-forecast, in turn, leads
to a market share loss and a decrease in stock rotation. The difference between
over- and under-forecasted values depends greatly on the kind of goods under
consideration. In the present experiments we used an asymmetric loss function
with various values for k1 and k2 in loss function (3). We describe only the
experiments run on p = 2 for the sake of briefness and clarity. However, we also
carried out the experiments for other values for p and obtained similar results.
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3.1 Base Algorithms

We use the following models as base algorithms: exponential smoothing (ES)
with smoothing parameter α, adaptive exponential smoothing model (AES) with
parameter of adaptation γ according to Trigg-Leach approach, linear Brown
model (BL) with discount parameter β, and seasonal model of Theil-Wage (TW)
with parameter of mean α1, parameter of trend α2 and parameter of seasonality
α3 [6]. Approaches to generalize ES, BL and TW for the time series forecasting
problem under asymmetric loss function are described in [9]. Let us note that
time-complexity of all these models is linear along the length of time series.

3.2 Compositions Based on the Aggregating Algorithm

Compositions of base algorithms are built using the aggregating algorithm with
the following parameters. The parameter of learning rate β is tuned on 250
representative time series, the optimal value of β is in range [0.90, 0.99]. The
initial expert weights distribution is uniform. Substitution function (8) is used
in composition AA1 and the following function is used in composition AA2.

S2 (g) =
k2Y1 − k1Y2

k1 − k2
−

√
k2k1(Y1 − Y2)2 + g(Y1) − g(Y2)

k1 − k2
. (10)

Figure 1 shows that forecast values γ∗
1 and γ∗

2 correspond to substitution func-
tions (8) and (10) respectively and comply with Lemma 1.
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Fig. 1. Forecasts for S1 and S2

3.3 Comparison with Base Algorithms

In this experiment we investigate how well forecast composition AA1 performs
compared to base algorithms. The asymmetric loss function (3) has parameters
p = 2 and k1 = 1, k2 = 2. Seven algorithms are used as experts: A1, A2 are ES
with different parameters of smoothing, A3 is BL, A4–A7 are TW with different
parameters of level, trend and seasonality.
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Figure 2 contains graphs of time-averaged loss processes MSE = 1
T · LossT

of composition AA1 and base algorithms for a sample time series. We see that
between steps 400 and 500 a change of the best base algorithm occurs. It is
interesting that AA1 captures that change and starts to outperform even the
best expert. Figure 3 shows time-averaged and time series-averaged loss processes
on 1000 time series where composition AA1 performs as well as the best base
algorithm and at the end outperforms the best expert.

We also find that for sufficiently large time spaces (over 100 points) theo-
retical bound (9) exceeds the actual loss process of the composition AA1 by no
more than 30% (Figure 4).
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Fig. 2. MSE of composition AA1 and base algorithms on one time series
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Fig. 3. MSE of composition AA1 and base algorithms on 1000 time series

Table 1 shows MSE of AA1, its theoretical bound (TB) and MSE of the best
expert (BE) at different values k1 and k2 on 1000 time series.
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Fig. 4. MSE of composition AA1 and its theoretical bound on 1000 time series

Table 1. MSE of AA1 and the best expert

k1

/
k2 1 2 5 10 15 20

AA1 21.69 32.24 57.33 80.96 110.7 139.9
BE 22.05 32.63 58.24 81.79 111.5 140.6
TB 25.16 38.2 71.80 99.44 141.1 179.7

3.4 Comparison with Other Compositions

The quality of the suggested compositions is now compared with the composi-
tions built with standard methods. In our previous work [7] we compared AA1

and AA2 with such compositions as AFTER [10], InverseWeights [11] and some
other models under symmetric loss function (k1 = k2 = 1). There we showed
that AA1 and AA2 outperformed other compositions by 3%–5%.

Here we present the comparison of compositions AA1, AA2 with the quantile
regression (QR) [12] under asymmetric loss function with different values of
parameters k1, k2 and p = 2 (Table 2). As we can see both AA1 and AA2 show
better results than QR. This can be explained by the fact that QR optimizes an
absolute instead of square loss function.

Table 2. The loss process of compositions at different values k1 and k2

k1

/
k2 AA1 AA2 QR

2 2344 2375 2804
10 2694 2863 4978

100 7700 8605 12223
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4 Conclusion

The first part of the paper presents the results concerning mixability of an asym-
metric loss game. We obtain sufficient condition on β–parameter of the aggregating
algorithm for a game with asymmetric loss function to be mixable. As a corollary
resultwe obtain anupper boundof loss process of a composition based on the aggre-
gating algorithm.

When it comes to experimental results, the suggested compositions for the
asymmetric loss game generally perform better than the base algorithms and
even better than some of the well-known compositions. Moreover, algorithmic
complexity of the suggested methods is linear along the length of time series.
Therefore, the compositions based on the aggregating algorithm can be applied
in practice for time series forecasting in the case of asymmetric loss functions.

Acknowledgments. I am grateful to Yury Kalnishkan and my advisor Konstantin
Vorontsov for providing information and recommendations.
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Abstract. Beanplot time series have been introduced by the authors as
an aggregated data representation, in terms of peculiar symbolic data, for
dealing with large temporal datasets. In the presence of multiple beanplot
time series it can be very interesting for interpretative aims to find useful
syntheses. Here we propose an extension, based on PCA, of the previous
approach to multiple beanplot time series. We show the usefulness of our
proposal in the context of the analysis of different financial markets.

Keywords: Beanplots · Symbolic data analysis

1 The Statistical Problem

In the presence of large temporal datasets, the authors [4,6] have already shown
the relevance of introducing beanplot data for visualizing and interpreting use-
fully the data structure. In particular, the visualization and the analysis of these
representations can be very interesting in the identification of intra-period pat-
terns (intra-day by example) and their inter-period changes.

In this work, we propose an extension, based on PCA, of this approach to
multiple beanplot series. Our aim is to find and to show patterns in the data
to construct composite indicators on multiple time series, and to easily identify
change points. This paper is organized as follows: in section 2 some remarks on
the beanplot time series data approach are reported, showing this representation
for the Dow Jones time series index. Section 3 presents a parameterization of the
beanplots useful for the research of a synthesis in the presence of multiple time
series. In section 4, the PCA based approach to multiple time series is presented.
Section 5 reports an application on real financial time series data. Some remarks
on possible perspectives conclude the paper.

2 Beanplot Time Series

Traditional time series do not faithfully describe phenomena showing a high
degree of variability or where the variable is observed at a given frequency but,
c© Springer International Publishing Switzerland 2015
A. Gammerman et al. (Eds.): SLDS 2015, LNAI 9047, pp. 147–155, 2015.
DOI: 10.1007/978-3-319-17091-6 10
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the interest is in the lower frequency analysis. In these situations, temporal
aggregations based on observed distributions have been introduced [2,4].

Beanplots [8] are representations obtained by a combination of a 1-dimensional
scatterplot and a density trace. In this sense a density trace at time t with t =
1 . . . T can be defined as:

BK
t =

1
nh

n∑
i=1

K(
x − xi

h
) (1)

where K is a kernel function, h is a smoothing parameter defined as a band-
width and n is the number of xi intra-period observations.

Various kernels (K) can be generally chosen (Gaussian, uniform, Epanech-
nikov, triweight, exponential, cosine between others) in order to represent ade-
quately the observed density function. In fig.1 [1] we show an example of a
beanplot shape obtained by using a combination of several Gaussian kernels.

Fig. 1. Beanplot based on Gaussian kernel function

For the bandwidth choice, we can consider: low, high bandwiths, or the
Sheather-Jones approach [11]. With low bandwidths we tend to show many
bumps and to maximize the number of bumps by beanplot, while with high
bandwidths more regular shape of the density traces are obtained. However the
risk with a high bandwidth is to lose interesting information. Finally, by using
the Sheather Jones method, the bandwidth changes beanplot by beanplot, so
the bandwidth becomes an indicator of variability.

A beanplot time series can be defined as an ordered sequence of beanplot
data over the time.

In fig.2 [5] we show, as an example, a beanplot time series related to the
Dow Jones Index from 1996 to 2010. The chosen temporal aggregation interval
in this example is only instrumental to show the potential of this tool in the
visualization of particular financial aspects.
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Fig. 2. Beanplot Time Series: Dow Jones Index 1996-2010

We highlight that the beanplot time series easily show: structural changes (for
example in 2008) expressed by changes in the mean, the intra-period variability
expressed by the size of the different beanplots, and the equilibria levels of the
series expressed by the different bumps of the beanplot shape.

In general we can detect some typical taxonomies in the beanplots: unimodal-
ity (data tend to gather over one mode in a regular way as in fig.2 the beanplot
observed for 2005), multimodality (data tend to gather over two modes as in
fig.2 for the year 2002) and break (data tend to gather in two modes but there
is at least one break between the observations).

Therefore the visualization of a beanplot time series can be useful for descrip-
tive aims; in fact the beanplots capture interesting aspects relating to the struc-
tural changes of the original series.

The different temporal aggregations can have relevant impacts on the shapes
of the beanplots. By choosing higher aggregation we tend to lose some relevant
features of the time series like cycles. As well it is possible to lose relevant
information related to the intra-period structural changes. Otherwise with lower
aggregation we can obtain too many beanplots which can be redundant and not
significant. Therefore a problem of this approach consists in the identification of
a significant aggregation interval. Here we choose the interval only by using an
empirical criteria based on the the aim of the analysis.

3 Model-Based Beanplots: Parameterization

The nonparametric approach based on beanplot representations is very useful
for the visualization of univariate large temporal datasets. In the presence of
multivariate large time series, and for clustering or forecasting aims, it could be
appropriate to search a density function of which the beanplot can be considered
the graphical representation. By considering the nature of beanplots and how the
shape of a beanplot is computed, we choose to estimate it with a finite mixture
density. The J individual distributions, called mixture components fj(x) that
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are combined to form the mixture distribution (j = 1...J), are characterized by
weights (pj) and moments, like means and variance and so on.

Therefore in a beanplot time series for each beanplot, at time t (t = 1..T ),
we calculate the following mixture density function:

B∗
t =

J∑
j=1

pjf(x|θj) (2)

where:
0 ≤ pj ≤ 1 (3)

and
p1 + p2 + · · · + pJ = 1. (4)

In the case of mixture of normal distributions (equation 2) is completely
defined by weights, means (μJ) and variances (σ2

j ). In our approach we limit our-
selves to consider only mixture based on Gaussians distributions. The parameters
of these distributions have an interesting interpretation in the financial context:

– Each μj represents the intra-period mean, for example price values of a stock
gathered over time. Changes in the μj can occur in the presence of structural
changes and relevant events.

– Each σj represents the intra-period variability, as in financial terms, volatil-
ity. Changes in σj can occur in presence of financial news (higher or lower
intra-period volatility).

– Each pj represent the weight of each component. Changes in pj can be seen
as intra-period structural changes.

Various approaches have been proposed in literature in order to select the
number of components in a mixture (see for example [7,10]).

In the financial context, the different components seem to show different
financial behaviours. Therefore, considering the applicative aim of our approach,
we decide to choose the number of components on the basis of empirical simu-
lations. Here we perform some simulations with the aim of showing that large
temporal series, observed on a finer scale, are well approximated by mixtures of
two Gaussian components. We perform 900 simulations of time series with 3500
observations. We decide to take in to account, in the experimental design, three
different levels of volatility, structural changes and seasonality, typical character-
istics of financial data. For each simulation, we represent the aggregated beanplot
based on the all 3500 observations and in fig.3, we show the different types of
obtained beanplots. In particular, we obtain nine types of different beanplots
representing the different levels of simulated financial characteristics (different
levels of volatility in the first row, different levels of structural changes in the sec-
ond row, different levels of seasonality in the third row). We calculate a mixture
distribution for each simulated time series ([9]). We consider a mixture distri-
bution based on two Gaussian components. We measure the goodness of fit of
each mixture distribution on the basis of the index presented in Du ([7]). The
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results show that in about 90% of the cases of the data in the first row, the null
hypothesis of the adequacy of the models cannot be refused; in about 80% in
second row, the null hypothesis cannot be refused, in about 70% of the cases in
the third row the null hypothesis cannot be refused.

Fig. 3. Beanplot Data: Simulation

We highlight that, in general, in applicative contexts, the choice of number
of components seems to be a compromise between comparability, simplicity and
usability.

4 Multiple Beanplot Time Series

Multiple Beanplot time series can be defined as the simultaneous observation of
more than one Beanplot time series. We can observe, for example, the beanplot
time series related to more than one financial time series.

We start to consider n beanplots time series for t = 1..T . At each time t,
we parametrize each of the n beanplot by the approach proposed in section 3
and derive a vector of parameters for each beanplot. If we consider only three
parameters and J components, for each beanplot, we have a vector with J × 3
columns and 1 row.

Therefore we can observe the time series of the vector of parameters for each
of the n series.

We now search for each time, t a synthesis of these vectors for the n series,
in order to obtain a unique vector of parameters. Our aim is to find an “average
beanplot” called a “prototype beanplot”. The time series of this prototype can
be considered for analyzing the global dynamics of the series.

Aiming to obtain a syntesis of the n series, we define for each time t, the
following matrix:

The data matrix Yt(n, 3J) is organized as follows: in the rows, we have the
different n series while in the columns, we have the 3×J different parameters. In
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Yt=

p1 p2 · · · pJ m1 m2 . . . mJ s1 s2 . . . sJ

1
... · · · · · ·

...

2
... · · · · · ·

...
3
...

...
...

...
...

n
...

... · · ·
...

particular, in each cell, we have the value of each parameter, for each component,
in each series. It is important to note that the matrix Yt is characterized by an
equal number of J components for each series.

The parameters of the “prototype” could be obtained by a simple average of
the columns of the matrix Y . In particular, we can calculate the partial average
of the columns related to the same parameter and the same component and,
successively, for each parameter a total average.

Here, we decide to obtain a weighted average, because the series could weight
differently on their synthesis.

For assigning these weights to the different n series we perform an PCA on
the transposed matrix of Yt, called Ht.

Therefore we obtain k ≤ n eigenvectors associated to the k eigenvalues of the
matrix H

′
tHt.

We weight the original variables of the matrix Ht with the elements of the
eigenvectors and finally we obtain k vectors of synthesis. In these syntheses we
have the parameters of k “prototypes”.

In order to define the most significant “prototypes”, it is possible to consider
the percentage of variance explained:

λi/

n∑
i=1

λi (5)

If we consider, for each time t the vector of the parameters associated to the
highest eigenvalue, we can derive t different mixture models based on J Gaussian
components. For to represent the different t models with t different “prototype”
beanplots, we simulate data described by the parameters of these models.

5 Application on Real Data

The aim of this application is to visualize multiple financial time series by means
of beanplots and to obtain the prototype time series. We examine the closing
prices of 7 different markets representative of the Euro-American and Asia zone
(France, Mexico, Argentina, Germany, Switzerland, Singapore and Taiwan). The
data are extracted from Yahoo Finance. The observations are related to the
period 1-1-2001 to 31-12-2008. Data are collected daily, the single beanplot is
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Table 1. PCA Explained Variance (EV) by the first PC (column 2), normalized eigen-
vectors (columns 3-9), PCA beanplot parameters (columns 10-15)

t EV FCHI MXX MERV GDAXI SSMI STI TWII P1 P2 M1 M2 S1 S2

1 99.92 0.16 0.20 0.01 0.19 0.23 0.06 0.16 0.59 0.41 5149 6014 457 279
2 99.92 0.14 0.24 0.01 0.15 0.21 0.06 0.19 0.25 0.75 4731 5215 242 622
3 99.78 0.13 0.26 0.03 0.12 0.20 0.06 0.20 0.46 0.54 4258 5107 207 351
4 99.77 0.11 0.31 0.03 0.12 0.17 0.06 0.19 0.72 0.28 6233 6493 551 115
5 99.91 0.11 0.36 0.04 0.12 0.16 0.06 0.16 0.50 0.50 7788 8917 311 664
6 99.90 0.10 0.40 0.03 0.12 0.16 0.05 0.13 0.55 0.45 11225 12682 421 1063
7 99.97 0.09 0.45 0.03 0.11 0.14 0.05 0.13 0.42 0.58 16382 17835 754 659
8 99.62 0.08 0.48 0.04 0.11 0.12 0.04 0.13 0.25 0.75 16078 16388 1075 2606
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Fig. 4. PCA Beanplot Prototype Time Series. (beanplot 1 corresponds to 2001)

built yearly. In order to define a ”prototype” of the overall market, we apply the
approach proposed in section 4.

We highlight that in this application, we fix J = 2 Gaussian components of
the mixture models by taking in to account the results of the empirical simula-
tions proposed in section 3. Furthermore, as in column 2. of table 1. is shown,
we choose for each time t only the parameters associated to the first eigenvalue
(which explains in each time t about 99% of the variance).

In particular, in column 3-9 of table 1., we can observe the different weights
calculated for the different markets in each time. We note that the Mexican
market (MXX) seems to weight more than other markets over the time. France
(FCHI), Germany (GDAXI), Switzerland (SSMI) seem to be similar in their
behavior. The prototype parameters are shown in columns 9-15. The results of
the different eigenvectors impacted on the final prototype obtained. In this sense
the Mexico and Argentina series influenced the impact of each component on the
final prototype. It is possible to interpret the prototype parameters in terms of
structural growth and volatility: the parameters M1 and M2, show the growth
of the markets over the period 2004-2008. In the years 2005-2009, it is possible
to see an increase in the variability (parameters S1 and S2).

Finally in 2007 there is a relevant change-point (as shown by the parameters
p1 and p2). In 2008 there is the financial crisis and the economic cycle tends to
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change and markets fall. In fig.4 we show the beanplot prototypes time series.
The beanplots structure for the years 2005 and 2006 shows similarities, which
can be interpreted as economic stability in these years. The beanplot structure
for 2008 is very different from the others, as we expected. The change in the
structure for 2007-2008 is well visualized in the beanplot prototype time series.
The stability structure for the first three beanplots corresponds to a stability of
the market in the associated years.

6 Conclusions

In this work we propose an approach for dealing with multiple time series by
means of beanplot tools. The use of a new data type like a beanplot has the
advantage of allowing us to represent the intra-period structure of the data at
time t. The research of the density function of which the beanplot can be con-
sidered a graphical representation allows us to keep the relevant information.
The parameters of these functions can be used in order to build beanplot ”pro-
totypes” time series. The application proposed in this paper is only an example
for showing the proposed approach. The main development is to consider an
application on daily aggregation where our approach seems to show more sig-
nificant results in capturing the intra period variability. In future developments
we will consider more in depth the problem of the adequacy of the used mod-
els to the data. Furthermore we will extend our work to the case of different
components and distributions than those used.

Acknowledgments. The authors thanks the two anonymous referees for their helpful
comments and suggestions.
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Abstract. The new method for incremental learning of SVM model incorporating 
recently proposed TEDA approach is proposed. The method updates the widely re-
nowned incremental SVM approach, as well as introduces new TEDA and RDE 
kernels which are learnable and capable of adaptation to data. The slack variables 
are also adaptive and depend on each point’s ‘importance’ combining the outliers 
detection with SVM slack variables to deal with misclassifications. Some sugges-
tions on the evolving systems based on SVM are also provided. The examples of 
image recognition are provided to give a ‘proof of concept’ for the method. 

Keywords: SVM · TEDA · Incremental learning · Evolving system 

1 Introduction 

Nowadays, there are plenty of models for object classification. Some of them are 
aimed on off-line classification, which takes all the samples at once, other are aimed 
for the incremental classification, which work sample-by-sample. Those which do not 
require to hold all the sample set, are referred as ‘online’. Finally, ‘evolving’ models 
are designed to change the structure of the system taking into account recent changes 
and forget those patterns which occurred long ago.  

The problem stated in the article is raised by different approaches: SVM models, 
novel TEDA data analysis concept, and evolving systems. 

SVM was first proposed as Generalised Portrait Algorithm by Vapnik and Lerner 
in 1963 [1], with some works together with Chervonenkis [2], but was not widely 
used until the beginning of the 1990-s, when new contributions by Vapnik and other 
authors were proposed [3], [4]. Now, the SVM family contains a huge number of 
different algorithms, capable of most widely known machine learning problems (clus-
tering[5], outlier detection[6], structured learning[7]). 

TEDA approach has recently emerged and gives promising results on data outlier 
detection[8], classification [9] and other machine learning problems [10]. It is based 
on data and provides attractive concept of learning the parameters by data, not by 
some pre-defined constraints.  

Evolving systems describe the ability of structural adaptation “from scratch” to 
consider the changes in the data stream[11], [12]. The distinctive feature of such a 
system is that it takes into consideration more recent patterns in data, forgetting those 
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that happened many time ago and hence may be not relevant, by changing the struc-
ture of the classifier and forgetting the patterns which are not relevant. One of the 
popular applications of such systems is classification [13], [14], [15]. Such methods 
are based on fuzzy systems, as well as neural networks [16]. 

The outline of the article is as follows: 

─ first, the SVM systems are reviewed; 
─ second, the TEDA background and TEDA SVM statement is given; 
─ third, the  novel TEDA kernel is proposed; 
─ fourth, incremental update procedure is formulated; 
─ fifth, the new samples incremental update procedure is proposed; 
─ sixth, the experimental results are discussed. 

The article is finalised by conclusion, describing the research results. 

2 SVM Model Formulation 

Here the accurate statement of the supervised learning problem is performed. Let us 
have some object set, which we designate as , and a finite space of object classes, 
referred as Υ. Then, let us have a subset, , named training set, for each the 
following function is defined: : Υ.  The problem is to build a function : Υ, approximating the function  on the set . The assumption is that  
will be a good mapping for further objects,  where the index  denotes validation. 

; , . The method we propose has its roots in the SVM problem 
statement [4, 17]. Here we introduce the basic formulation of SVM problem with 
slack variables and notation we further use. Consider a two class classification prob-
lem, where  , , … , , Υ 1, 1 , , 1 … . (1)

Here  is the number of the data samples.  
Here we state the problem for overlapping classes (C-SVM) [17] ∑ Ξ min , , ,  (2)

w.r.t. following constraints: 1 Ξ , Ξ 0, 1 … . (3)

Here Ξ  are so-called ‘slack variables’,  is the so-called ‘box constraint’ parameter 
[17]. This problem statement allows some misclassification of the training set for 
hardly-divisible data, and , where ,  are the parameters of the 
hyperplane. This formulation is widely used [4, 17,18]. If we write down Lagrangian, 
differentiate it and find an extremum [17], we get the dual problem 
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12 min, , 
0 , ∑ 0.  

(4)

Then, we can consider another problem ( -SVM) [18]: ∑ Ξ min , , ,   (5)

w.r.t. the following constraints: Ξ , Ξ 0, 1, … , , (6)

The parameter  gives a lower bound for the fraction of support vectors, as well as 
an upper bound for the fraction of margin errors in case of 0. This formulation 

can be proven to be equivalent to C-SVM with , if 0 [18]. 

Then we can denote a kernel function , , where ·  
is some mapping function, taken from the (possibly infinite) mapping functions space.   
It can be recognised as a replacement to the ordinary scalar product, introducing non-
linearity into the model. The widely known kernels are: linear, Mahalanobis [19], 
cosine [20], Gaussian [21], histogram intersection [22] or survival [23] kernels). One 
can also restore it based on the data using metric learning techniques. Hence, the fea-
ture transformation (for finite or infinite space) can be replaced by changing the dis-
tance metric, given by the kernel. 

3 TEDA Approach Summary 

TEDA framework provides a novel systematic method of a “per point” online data 
analysis [8], [9].   

Consider that we have object space Ω  containing data samples, where  is 
the data dimensionality. This space is equipped with some distance (i.e. Euclidean, 

, cosine or any others). Further we refer this distance as , . We can pick data 
samples sequence from this object space: , … … , Ω, , (7)

where  is a sequence number of the object which can be represented as the instant 
of time, when the data sample has arrived. For this reason, index  will be referred 
to as time instant further for simplicity. We can construct sum distance to some par-
ticular point Ω, for each  element up to the -th one [8], [10]: ∑ , , 1.  (8)

Based on this definition, we define the eccentricity at the time instant : 

∑ 2 ∑ ,∑ ∑ , , 2, ∑ 0.  (9)
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The complement of eccentricity, typicality is defined as: 1 . (10)

The eccentricity and typicality are both bounded [8], [10]: 0 1, ∑ 2, 2, ∑ 0.  (11)0 1, ∑ 2, 2, ∑ 0.  (12)

Normalised eccentricity and typicality can also be defined as [8], [10]:  , ∑ 1, 2, ∑ 0.  (13)

, ∑ 1, 2, ∑ 0.  (14)

The method’s capability of online problems resolution follows from existence of the 
formulae of the incremental update [8], [9]. There exist convenient formulae for in-
cremental calculation for Euclidean and Mahalanobis distance [19], but here we do 
not discuss it. Generally, for any distance, we can use the formula      d ,  and calculate all other quantities based on it.  

4 The TEDA SVM Statement 

In the classical formulation of SVM given above we aim to give an upper bound of 
the fraction of margin errors. But here we are targeting aiming to make it dependent 
on the ‘importance’ of each of the support vectors, i.e. make more ‘typical’ support 
vectors penalised more for being out of boundaries, rather than ‘anomalous’. In other 
words, we care less for anomalous data samples and more for typical ones to be cov-
ered well by the classifier; we do not try to cover all data sample equally, but propor-
tionally to their typicality. 

Here, the “local” typicality in regards to each of the classes is proposed as a weight 
for each of the support vectors. For each class  we define typicality [8] 

 1 2 ∑ ,∑ ∑ , , , , С, с С\с .   (15)

Here  denotes the objects with labels from the set , which we build here by the 
scheme ‘one versus the rest’. For each of the classes we build the following model: 12  0 Ξ 0 Ξ min, ,   (16)

w.r.t. following constraints: 1 Ξ , Ξ 0, 1 … .   (17)
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We can see that this model preserves the upper boundary property γ for the margin 

errors [1817], where , 0, as the upper boundary is known:  ,.  But what we gain additionally is possibility to control the ‘importance’ of each 
data samples. The algorithm takes into account our desire to ‘sacrifice’ the correct 
recognition only for the most ‘anomalous’ data. The more typical is data in the model, 
the higher will be the box constraint for it because of higher typicality. Opposite case, 
when the object is more anomalous, is penalised less due to lower typicality in order 
to avoid fitting the model to anomalous cases.  

5 TEDA Kernel 

Further to TEDA formulation, we propose also novel formulation of a kernel within 
the TEDA framework. We define the following TEDA-like kernel: , , , , , ∑ , ∑ ,∑ ∑ , , ∑ ∑ , 0.  

(18)

Here  is a normalised data eccentricity, γ 0 is some parbameter, showing the 
data eccentricity involvement. It helps us to take into account not only scalar product 
itself, but also the importance of each of the points. The interpretation of the kernel is 
to increase the kernel values for the ‘anomalous’ points, and at the same time de-
crease the kernel values between ‘typical’ points, bringing it closer in the data space. 

To be the kernel,  should meet the following requirements: 

1. , , . 
2.  is positive semi-definite, i.e. , , … Ω, , , … Ω,  where Ω 

is a Hilbert space, the matrix , ,  is non-negative defi-
nite, that is for any  0. 
Proof sketch:  

1.  , , ∑ , ∑ ,∑ ∑ , , ∑ , ∑ ,∑ ∑ ,  , . 
2. For Euclidean distance, it can be proven to be equivalent to: 

 , , ,  (19)

where  is the mean over , , … ,  is a variance over , , … which 
depend on the data set and are the values derived from data. It can be proven to be a 
particular case of the polynomial kernel multiplied on the linear kernel. 

The scalar product can be replaced here by any kernel  , , to get this  
expression:  
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, , ,  (20)

We can also make the similar statement via RDE [12]: , 1/ 1 Σ . (21)

It is equivalent to Cauchy kernel [12] (up to the multiplier), and Cauchy kernel itself 
can be proven to be a proper kernel, hence it is also a kernel: , / , 0.  (22)

6 TEDA SVM Incremental Update 

Here the standard problem of the incremental update is stated.  
Let us have a training data sequence , … , … ,  which arrives one-by 

one, where  is an order number of the data element. For each  there is a label Υ. Up to the -th element we have the problem (16). 
Then, the 1 -th element arrives, and the problem is re-formulated as 12  0 Ξ 0 Ξ min, ,   (23)

w.r.t. following constraints: 1 Ξ , Ξ 0, 1 … 1. (24)

Also, we should take into account that , (25)

as it was mentioned before, and  is a feature mapping. Hence, we should also 
update the feature mapping . Generally, it is not feasible as the mapping can be 
set on functional spaces including infinite-dimensional ones. It can be shown, that 
dual problem transition allows us to express  in terms of the kernel ,    (this notation denotes scalar product, although the mapping can be 
given in infinite-dimensional space). Hence we need to update the kernel matrix N N only, where , .  

Then we can see, that the incremental update consists of several stages: 

─ kernel update (section 6.2); 
─ solution update for the updated kernel (section 6.2); 
─ solution update for the updated box constraints (section 6.3); 
─ solution update incorporating the new data (section 6.1).  

Then we can write down the dual problem as  
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∑ ∑ ∑ ∑   ∑ ∑  , ∑ ∑ min ,  ,  0 , 1, , ∑ 0.  

(26)

Differentiating the dual problem, we obtain Karush-Kuhn-Tucker conditions 
(KKT): ∑ , 1 1,  

0, 0, 0,0, 00, . . (27)

Let us denote all the training set as . This set is divided onto three disjoined sets: 
margin vectors , for which 0, error support vectors  , for which  0, and the rest of the vectors vectors , for which 0, which are 
not included into the existing solution. 

6.1 Adding new Samples 

The incremental learning method for SVM was first described in [24].  
Apart of this previously proposed method, here we do not choose one global box 

constraint  for every element of the SVM problem, but use its own box constraint 
for every object. More, we do not even make it constant, but update it from data.  

When transferring from the problem (26) for  elements to the problem for 1 
elements, we should ensure, that the data is in equilibrium, i.e. the conditions of the 
problem are satisfied.  

Let us denote for notation simplicity     1. 
We denote as   , . 
Then, we begin to change the new vector’s coefficient  until the configuration 

within the system changes: Δ Δ ∑ Δ Δ , ,  0 Δ ∑ Δ .  
(28)

Then, we can define  

Θ 0 ………  (29)

and write the KT conditions changing equations  in the vector form as 
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Θ Δ Δ … Δ … TΔ   (30)

for the support vector set. 
Then we can continue with Δ Δ , (31)Δ Δ , . (32)… Θ …   (33)

for all support vectors, and 0  \ . 
Then  Δ Γ Δ ,  ; Γ ∑ , .  (34)

After that, we find the maximal increment until the following event occur: 

- 0, with  joining   when 0; 
- 0,with  joining  when 0; 
- 0 ,   with 0 when -th vector transfers from  to , and 

 when transferring from  to ;  
- 0,  , with 0 when -th vector transfers from  to ; 
- 0, ,  with 0 when  -th vector transfers from  to . 

After this procedure, the new support vectors should be added to the matrix Θ . 
It can be proven that  Θ Θ 00 … 0  

… 1 … 1 .  

(35)

This formula allows us to add a vector into S.  
The procedure is repeated until no transition between subsets , , and  occurs. 

Also, it should be noticed, that the procedure is proven to be reversible [24]. The 
process of deletion data during the learning process is referred as decremental learn-
ing [24].  

6.2 Updating the Kernel 

Here we address the learnable kernel update problem in SVM: 12 , min, . (36)

The problem is replaced by one with the new kernel  
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12 , min,  (37)

Again, the problems are constrained as in (26). 
Therefore, the problem differs in kernel we use. As before, we denote    , , , . (38)

Let us denote also Δ .  (39)

Then we consider  Δ Δ Δ Δ Δ , Δ 0. (40)

Here 0 1. The problem is to express the corrections of Δ  as a function of 
some coefficient 0, 1 . 

Here we denote Θ as in (29) and 

Θ 0 0 … 00 Δ … Δ
0 Δ … Δ . (41)

Then Θ Θ Δ Δ … Δ Θ … . (42)

In this case Δ Δ … Δ Θ Θ Θ …  … Θ Θ Θ . . . (43)

The maximal increment condition is the same as for the new data update, but addi-
tionally we should mind 0, 1 . The update of the matrix is performed the same 
way like  Θ.  

6.3 Updating Box Constraints 

In this case, we use the same update equations, as the standard update for the new 
data, but here we check if the KKT constraints are violated on the first stage due to 
the change of the box constraints. 

We remember, that for each of the objects we have (27) with the old constraints. 
For the stage 1 we should have 



 Recursive SVM Based on TEDA 165 

0, 0,0, 0 ,0, .  (44)

but for some of the vectors  the conditions can be broken: .  Also, 
because generally , some transitions between  sets  and  may occur. 
Hence, we need to correct the solution w.r.t. all the vectors violating the conditions.  

The procedure is proposed in a following way. For each vector , violating the 
KKT conditions, we perform the procedure exactly the same way as for the new vec-
tor, considering that it is a newly-added vector to -vector SVM problem with train-
ing set \  and new   . For the sets  and , the vector should be preliminarily 
deleted by decremental learning procedure should be as [24]. 

7 Suggestions on the Method Implementation 

Additionally, even despite the given method is not ‘evolving’ but ‘online’, as it does 
not discard the previous data samples, the decremental learning procedure can be 
proposed, as the incremental procedure for SVM is reversible. The following simplest 
method can be considered: 

─ for each sample , update its within-class typicality  ; 
─ inspect all the samples which appeared in the train sequence up to the newest ele-

ment :  , … , … , . If their typicality is lower than some given 
threshold , we can state, that the sample should be rejected. 

─ For the sample set elements to be rejected, perform decremental learning, analo-
gous to that described in [24]. 

Using this modification, we can employ all the benefits of evolving systems, such as 
possibility to adopt to the changes on the data neglecting those patterns that appeared 
long ago, but base it on the SVM framework, rather than fuzzy systems or neural 
networks. Usage of the SVM framework, instead of fuzzy rule-based evolving sys-
tems, gives us an opportunity of using strict optimisation problem statements, which 
gives benefits of better generalisation of the method.   

8 Demonstrations for the Experimental Data 

For the proof of concept, an example of human activities images classification was 
provided (Fig. 1, data set [25]). The feature transformation method was exactly bor-
rowed from the previous research described in [13] and is composed from Haar and 
gist [26] features. 
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Fig. 1. Human activities data samples 

 

Fig. 2. Results of the recognition for different methods (left picture is SVM with histogram 
intersection kernel, accuracy rate is 79%, right picture is SVM with TEDA kernel, combined 
with histogram intersection kernel, and TEDA box constraints, accuracy rate is 81%). 

For the experiments, the following methods were compared: 

─ SVM with Gaussian kernel with 34.4725,  30. 
─ SVM with TEDA kernel, combined with Gaussian kernel, with 34.4725, 2,   30, and TEDA weights. 
Here the Gaussian kernel is  , exp / 2 . (45)

In contrast to Gaussian distribution probability density, the multiplier is neglected, 
just because the solution will be the same for any constant. 

By TEDA kernel combined with Gaussian kernel we denote 

TEDA ,  , .  (46)

No other modifications are introduced into the model except the TEDA kernel and 
TEDA weights.  Therefore, we suppose that the improvement in the kernel and box 
variables leads to the increase of the quality of the recognition. 

The training data set contains 200 items, 40 images for each of the classes. The 
testing data set consists of 100 items, 20 images per class. Although the method was 
initially designed for handwritten symbol images, it can be also applied to describe 
any other images as well. 
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The results are given as it is depicted in Fig. 2. On the left part of the image, the re-
sults for Gaussian kernel are proposed. At the right part of the image, SVM was  
augmented with TEDA ‘box constraints’ and uses TEDA kernel, combined with 
Gaussian kernel. One can see, that the results were (slightly) improved. However, the 
method has more perspectives, as it makes the model more flexible giving different 
values to the ‘box constraints’ and enabling kernel learning ‘from scratch’. 

9 Conclusion 

In this paper, the new modification of the SVM with slack variables for classification 
was proposed which changes slack variables independently for each of the data sam-
ples taking into account the ‘typicality’ of each data sample and forcing more ‘anoma-
lous’ data to be misclassified sooner than typical ones. For this purpose, the novel 
‘box constraints’ update model was developed based on the recently proposed TEDA 
framework, and the novel learnable kernels based on TEDA and RDE were proposed. 
The incremental SVM was modified to take into account changes of the box variables 
during the training process, as well as learnable kernels. Though the model, proposed 
here, is not evolving yet, the ideas were described how to make the model ‘evolving’. 
In the experimental section, a few examples were given to approve the ideas of SVM 
with new learnable box constraints.  
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1 Introduction

A general dataset may contain elements with particular features that are consid-
erably different from the other elements. This type of element is called outlier.
Outlier detection is a statistical problem that is applicable in several research
areas, such as military surveillance of enemy activities, intrusion detection in
cyber security, fraud detection for credit cards, insurance or health care and
fault detection in safety critical systems [1].

Considering a discrete signal from an industrial plant, an outlier may repre-
sent a process abnormality. Sometimes, such abnormality indicates an occurring
fault, which can cause severe problems to the process, such as unexpected stop-
pages, production losses, reduction of equipment lifetime and accidents with envi-
ronmental or human life consequences [2]. Therefore, fault detection in industrial
processes is a problem that has been widely researched in recent years [22,23].

For this type of application, it is imperative that the data be monitored in
real time. Thus, one needs to use a fast processing data analysis technique in
order to follow complex signal dynamics. The algorithm, then, must work with
low computational effort and memory usage.

The idea of the RDE calculation was introduced by Angelov & Buswell [3],
first named in Angelov et al. [6] and its latest version is a part of a patent
application [4]. The general idea was broadly used in many different applications,
such as object tracking [6] and novelty detection [7] in video streams, flight data
analysis [8] and, more recently, on industrial fault detection [19–21].

The main concept is based on the Cauchy kernel, that has similar properties
as Gaussian function, however does not need to follow any pre-defined distribu-
tions and can be recursively updated. This particular feature means that only
a very small amount of data are required to be stored in the memory, which is
essential for real-time applications and limited computational resources. There-
fore, RDE allows an infinite (theoretical) amount of data to be processed exactly
in real-time, very fast.

However, in its original formulation RDE has conservative characteristics,
which may not be the most suitable for some kinds of applications, such as
industrial processes analysis. In this type of application, data is analyzed for
long time periods, resulting in a large amount of data. Thus, the RDE can not
provide a fast response to changes in process dynamics. To solve this problem,
we present a new RDE formulation, called RDE with forgetting.

The remainder of this paper is organized as follows: Section 2 describes the
RDE algorithm. In section 3, RDE with forgetting formulation is present as a
new alternative to traditional RDE. In section 4, DAMADICS benchmark, which
is used as case of study for this proposal, is presented. Section 5 presents the
results obtained using RDE with forgetting in comparison to traditional RDE.
Finally, section 6 presents some brief conclusions on RDE with forgetting.



RDE with Forgetting: An Approximate Solution for Large Values 171

2 Recursive Density Estimation

By definition, “let all measurable physical variables from the vector, x ∈ Rn are
divided into clusters. Then, for any input vector x ∈ Rn, its Λ-th cluster density
value is calculated for Euclidean type distance as” [5]:

dΛ =
1

1 + 1
NΛ

+
NΛ∑
i=1

‖xk − xi‖2
(1)

where dΛ denotes the local density of cluster Λ; NΛ denotes the number of data
samples associated with the cluster Λ. For general purposes, xk represents the
feature vector with values for the instant k.

Distance is, then, calculated between the input vector xk and other vectors
that belong to the same cluster as x (measured at previous time instances).
Equation 1 can be used to calculate the local density of clusters in off-line mode.
However, in real-time applications, the calculation must be on-line. This equa-
tion 1, then, can be derived as an exact (not approximated or learned) quantity
as [5]:

D(xk) =
1

1 + ‖xk − μk‖2 + Xk − ‖μ‖2 (2)

where both the mean, μk, and the scalar product, Xk, can be updated recursively
as follows:

μk =
k − 1

k
μk−1 +

1
k

xk, μ1 = x1 (3)

Xk =
k − 1

k
Xk−1 +

1
k

‖xk‖2, X1 = ‖x1‖2 (4)

For real-time applications, the input data is collected continuously, in on-
line mode, from the source, which, depending on the application, may be an
industrial plant, a video camera, a microphone and so on. Some of the new data
reinforce and confirm the information contained in the previous data and other
data, however, bring new information, which could indicate a change in operating
conditions, a novelty, a fault or simply a more significant change in the dynamic
of the process [6]. The value of the information that they bring is closely related
to the information from the data collected so far. The informative potential
of the new data depends on the spatial proximity to the already existing data
cluster, that represents the value of “normality”.

In order to detect outliers within a data stream, one first need to select a set
of features that, when assuming an “invariant” value, it represents the normal
behavior of the system. The term “invariant” means, thus, a data sample that is
not considerably oscillatory but, obviously, may vary within the operating regime
boundaries for a real industrial system. The input vector xk is an n-dimensional
vector, composed of the values of the n selected features.

The feature extraction (or feature selection) task can be classified as either
quantitative, such as principal component analysis (PCA) [9], partial least squares
(PLS) [10], linear discriminant analysis (LDA) [11], or qualitative, for example
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expert systems [12] or trend modeling methods [13]. For more information on the
use of feature extraction methods, the reader is referred to Anzanello [14], Levine
[15] and Liu et al [16].

3 Recursive Density Estimation with Forgetting

Although very powerful, the RDE algorithm is susceptible to a few problems,
specially when dealing with real applications. In that case, the amount of data
samples can grow considerably over time. The problem occurs when the value
of k, which represents the index of the current sample, grows indefinitely.

Analyzing the equations 3 and 4 of the algorithm (mean and scalar product
calculations), one can understand that the terms (k − 1)/k and 1/k are used as
weight coefficients: while the first referred term is the weight of the past values,
the second one is the weight of the current data sample in all equations.

Since k varies from 1 to an indefinite value, it is possible to see that, when the
value of k is high, the term 1/k becomes nearly irrelevant, thus, a considerably
eccentric recently read data sample will have no interference at all on the mean
calculation, for example. This characteristic may cause important distortions on
the calculated terms.

As an example, let us consider a general process with a sampling period of 1s.
As one can see in table 1, after less than two minutes, the term (k−1)/k already
possesses a weight of 99% in the equation. Furthermore, as k grows, the referred
term tends to 100% given the limited computer numerical representation.

Table 1. Evolution of k and weights on RDE equations over time

Timestamp k k−1
k

1
k

00:00:01 1 0 1
00:00:10 10 0.9 0.1
00:00:50 50 0.98 0.02
00:01:40 100 0.99 0.01
00:16:40 1000 0.999 0.001
02:46:40 10000 0.9999 0.0001

...
...

...
...

24:00:00 86400 � 1 � 0

We, then, propose in this paper a slight change in the RDE algorithm, named
RDE with forgetting. This update consists of using a forgetting factor α in the
equations 3 and 4, replacing the weights (k − 1)/k and 1/k. Thus, the equations
can be rewritten as:

μk = αμk−1 + (1 − α)xk, μ1 = x1 (5)

Xk = αXk−1 + (1 − α)‖xk‖2, X1 = ‖x1‖2 (6)
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where α is the forgetting factor, with 0 ≤ α ≤ 1.
The use of a forgetting factor enables static weights over time, since the first

value of k until its maximum value. Using the same previous example, the values
of weights during a day for α = 0.9 are shown in table 2.

Table 2. Evolution of k and weights on RDE with forgetting equations over time

Timestamp k α 1 − α

00:00:01 1 0.9 0.1
00:00:10 10 0.9 0.1
00:00:50 50 0.9 0.1
00:01:40 100 0.9 0.1
00:16:40 1000 0.9 0.1
02:46:40 10000 0.9 0.1

...
...

...
...

24:00:00 86400 0.9 0.1

4 Case of Study

The study and validation of the proposed approach was performed on the fault
detection benchmark DAMADICS. It is one of the most used benchmarks for
fault detection and diagnosis applications and is advantageous in the sense of
enabling to perform the experiments using real industrial data and serving as a
fair basis of comparison to other techniques.

DAMADICS is the acronym for Development and Applications of Methods
for Actuator Diagnosis in Industrial Control Systems, first introduced in Bartys
et al. [17]. It is an openly available benchmark system, based on the industrial
operation of the sugar factory Cukrownia Lublin SA, Poland. The benchmark
considers many details of the physical and electro-mechanical properties of a real
industrial actuator valve, figure 1 operating under challenging process conditions.

With DAMADICS, it is possible to simulate nineteen abnormal events, along
with the normal operation, from three actuators. A faulty state is composed
by the type of the fault followed by the failure mode, which can be abrupt
or incipient. Moreover, the benchmark also provides a set of off-line data files,
each one containing the data from 24-hour use of the plant, including artificial
insertion of faults in specific hours.

5 Experiment and Results

In this section we present the results obtained from the application of RDE with
forgetting to a set of off-line data files from DAMADICS benchmark. The set
of data provides, among others, the following measured variables: CV (process
control variable), PV (output process variable) and X (rod displacement of the
servo motor).
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(a) (b)

Fig. 1. Actuator model of DAMADICS benchmark [18]: (a) external view e (b) internal
schema

Each of these variables has a total of 86400 samples, which corresponds to a
sampling period of 1s. In the following results we use the signals CV, PV and
X resulting in the input vector x = {CV,PV,X}. In this case, according to the
proposal of the RDE, each input x either belongs or not to the “normal” cluster.
The charts of Figure 2 show the behavior of these three variables during the first
12 hours of a given day, which is considered the fault-free period.

Fig. 2. Signals CV, PV e X during the first 12 hours of a given day

Using the same data, the density and mean density were calculated using the
RDE algorithm for the same period of time, again, considering only the fault-free
case. The mean of density is calculated by:

Dk =
k − 1

k
Dk−1 +

1
k

Dk, D1 = D1 (7)

The results obtained are shown in Figure 3.
By analyzing the chart of Figure 3(a) one can observe that the mean density

signal is not able to follow the density when there is a considerably density
drop. This is due to the fact that the value of k is high enough to prevent
that the current data sample have a considerable influence on the density mean
calculation, as shown in equation 7. For a specific group of applications, that
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(a)

(b)

Fig. 3. density and mean density of x for the first 12 hours of a given day using (a)
RDE and (b) RDE with forgetting

behavior may not be adequate, specially when dealing with real-time problems,
where the response to oscillations should be immediate.

The same experiment was performed using RDE with forgetting algorithm
with a forgetting factor α = 0.99. The mean density, in this case, is calculated
by:

Dk = (1 − α)Dk−1 + αDk, D1 = D1 (8)

The results are shown in Figure 3(b). Note that, the signal of mean is able
to quickly cope with density oscillations.

We observe, then, that RDE with forgetting is suitable for applications where
one needs to detect abrupt changes in the behavior of a system. As case of
study, thus, in this work we are using a fault detection of an industrial process
application as basis of comparison to RDE traditional approach.

By analyzing the last 12 hours of the day, we are able to identify 3 different
faults. The algorithms RDE and RDE with forgetting were used to calculate the
density of data from that period. A forgetting factor α = 0.99 was used in RDE
with forgetting. The results for both approaches are shown in Figure 4.

By analyzing the charts on Figure 4 one can observe that the results obtained
are very similar and both approaches present considerable density changes dur-
ing the faults. These alterations occur both in amplitude and in frequency, which
demonstrates that RDE with forgetting can be used successfully in fault detec-
tion applications. In relation to the processing time, the two algorithms also
obtained very similar results. It is important to highlight that a complementary
signal processing technique must be associated with RDE or RDE with forget-
ting in order to determine the beginning and end of the faults, as those presented
in Costa et al. [19–21], for example.

After repeating the experiments with a diferent fault provided by the bench-
mark and using the variables X and CV as input, the obtained results are shown
in Figure 6. Notice that, the input signals, after the second vertical dashed bar,
do not return to the previous “zone of normality” (prior to the first vertical
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(a)

(b)

Fig. 4. density calculated for the last 12 hours of a given day using (a) RDE e (b)
RDE with forgetting

dashed bar), which results in lack of detection of the end of the fault by RDE.
RDE with forgetting, on the other hand, is sensitive to the status change and,
after a while, is able to rise the calculated density, resulting in a more proper
detection of the end of the referred fault.

(a)

(b)

Fig. 5. (a) input data and (b) density calculated using RDE and RDE with forgetting

6 Conclusion

In this work we proposed a new algorithm, called RDE with forgetting, to be used
as an alternative to the traditional and well known RDE technique in specific
applications that require fast response to dynamic process changes. The pro-
posal was developed aiming to improve the weight coefficient calculations used
in traditional RDE, maintaining one of its most important features - recursivity
-, which enables practical on-line and real-time applications.
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The proposed algorithm uses a parameter α, which represents the desired for-
getting factor. This parameter value may be estimated according to the desired
weight for the current data item. In presented results, we use a fixed value for ,
but a complementary study is required to estimate the best choice of values for
this parameter in each application. In future work, a study can be done in such a
way that this parameter can be updated adaptively, according to the read data.
The greater the value of , the closer RDE with forgetting is to traditional RDE
in concern to the slow response to system changes.

It is important to highlight that the traditional RDE is a powerful tool to
on-line data analysis, however, may not be suitable for very specific applications,
where systems require fast response to changes even when there is a substantial
amount of historical data read so far.

The new technique was successfully applied to a real set of fault data from
a very well known fault detection benchmark, however it is generic and can be
used to other outlier and novelty detection applications.
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Abstract. This paper examines the application of machine-learning techniques 
to human movement data in order to recognise and compare movements made 
by different people.  Data from an experimental set-up using a sit-to-stand 
movement are first collected using the Microsoft Kinect input sensor, then nor-
malized and subsequently compared using the assigned labels for correct and 
incorrect movements. We show that attributes can be extracted from the time 
series produced by the Kinect sensor using a dynamic time-warping technique. 
The extracted attributes are then fed to a random forest algorithm, to recognise 
anomalous behaviour in time series of joint measurements over the whole 
movement. For comparison, the k-Nearest Neighbours algorithm is also used on 
the same attributes with good results. Both methods' results are compared using 
Multi-Dimensional Scaling for clustering visualisation.  

Keywords: Machine-learning · Movement recognition · Kinect · Sit-to-stand 

1 Introduction 

The use of computers to collect, analyse and interpret human movement is becoming 
increasingly popular. In particular, we are witnessing the development of natural in-
terfaces that allow users to interact with computers while performing ordinary move-
ments. Key to such interfaces is the detection, categorisation and analysis of body 
movements made by people with different body shapes and physical characteristics.  

Because of their intuitive and ordinary application, natural user interfaces can only 
be expected to increase in prevalence, especially with the introduction of cheaper 
hardware providing input sensing and supporting enhanced processing techniques. A 
case in support of this position is the introduction of motion sensing devices such as 
the Microsoft Kinect [1], which are conveniently used by a wide audience in their 
home environment.   

Although there may be a multitude of uses for which it is necessary to process mo-
tion capture data for further analysis, we are motivated by applications such as that 
proposed by Bragaglia et al [2], who discuss an architecture based on Kinect to rec-
ognise home exercises by people, including fall recognition for elderly patients. We 
are particularly interested in applications that would support people who are suffering 
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from back pain. Low back pain has recently been estimated as the number one rank-
ing cause of daily disability worldwide [3] and there is a great incentive for patients to 
be able to carry out rehabilitation in their homes.  

However, there are expected complications with the use of input devices such as 
Kinect, in particular those arising from noisy data and variability between examples 
of a similar action. In a real world example, noise can be due to background move-
ments and inaccurate interpretation of body parts by the capturing software. Variabili-
ty can be due to differing distances from the capturing device, different body shapes, 
determination of the start of a motion and duration of the motion.  

To address these issues we aim to create an experiment for collecting human 
movement data with emphasis on compromised movement due to back pain. Our 
objective is to apply machine-learning to analyse the data and to create enough human 
movement data from different subjects to be able to effectively apply an algorithm for 
comparison and to identify anomalies. To make the discussion concrete, we study the 
movement of standing up from a seated position with a view to categorising the same 
motion performed by various participants.  

One benefit of bringing this kind of movement analysis into the home is that it will 
allow people with medical problems to be monitored and treated remotely, saving 
hospital care time and resources. It also has the potential of allowing physiotherapy 
exercises from home with expert feedback. Such feedback would either be asyn-
chronous feedback from a physiotherapist examining the data after collection or di-
rectly from the machine-learning algorithm whereby the anomaly can be identified by 
means of a trained computer model.  

The work provides a framework whereby movement data based on sit-to-stand 
movements are extracted from a dataset based on joint behaviour. The main contribu-
tion underlying subsequent data analysis is the production of the warp distance matrix 
as a new application of Dynamic Time Warping to human motion data. The matrix 
produced eliminates the time dimension in the data. This new approach is shown to 
produce good results when used as input for all of the machine- learning techniques 
applied. We also show how a bagging implementation of k-Nearest Neighbours 
(kNN) can average the results over a large number of out-of-bag validations, at the 
same time producing a kNN distance matrix allowing the use of Multi-Dimensional 
Scaling for cluster visualisation.  

The paper is structured as follows. Section 2 discusses the background work, other 
work in related fields, the history of movement recognition, different purposes for its 
use and methods of analysis employed. Section 3 describes the framework of our 
approach including a description of the set-up, general approach to the boundaries of 
the work, data structures set up for use in evaluation code, visualization tools and 
explanations of data analysis algorithms used. Section 4 is the main evaluation,  
presenting the intermediate processes applied to the data, results of the various tech-
niques used including graphical representations to demonstrate outcomes of the ana-
lytical procedures, explanations of results and values of error rates attained.  Finally 
section 5 provides discussion and conclusions of the attained results including a 
summary of the achievements of the project as well as an outline of further work. 
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2 Movement Recognition: Analysis and Models 

Motion capture and movement recognition using computational techniques starting 
with Marker Based Systems (MBS) was described in early work of Cappozzo et al 
[4]. MBS set-ups such as Vicon use sophisticated stereophotogrammetrics and actors 
with carefully placed markers on key body joints or anatomical landmarks. This is 
necessarily carried out in a specialised environment with expensive equipment and 
requires time consuming preparation. The system cost alone is US$96-120k according 
to Han et al [5]. Recent developments have seen low cost Markerless Motion Capture 
(MMC) devices becoming available including Sony Playstation Eye, Prime Sense 
Sensor, Intel's Creative Camera and Microsoft Kinect. With these depth cameras and 
Natural User Interface libraries such as Kinect SDK, OpenNI/NITE, Evoluce SDK 
and others (Shingade & Ghotkar [6]), motion recognition can be carried out in a non-
specialised environment.  

 

 

Fig. 1. Kinect sensor 

The Microsoft Kinect sensor is an RGB-D camera costing about US$200. It 
records colour video and uses an Infra-red emitter, projecting a structured IR light 
onto the scene in order to calculate depth measurements. The sensor was launched in 
2010 with a description of use by Shotton et al [7]. Microsoft's Natural User Interface 
for Kinect web page [1] contains documents describing skeletal tracking using Kinect. 
The cost effectiveness of setting up MMC systems has led to increased use in many 
areas such as motion capture for games and films (Sinthanayothin et al [8]), NUI us-
ing hand gestures (Elgendi et al [9]), and chronic pain rehabilitation using 'serious 
games' (Schonauer et al [10]). A few studies have compared the two methods (MBS 
and MMC) for relative accuracy. Studies by Bonnechere et al [11] on static body 
segment recognition concluded that Kinect is very reliable if measurements are cali-
brated. Linear regression was used to equate measurements from the Vicon MBS with 
Kinect data. The MBS data is taken as a gold standard. The same group performed 
another study [12] to compare motion analysis, considering body angles as well as 
body segment lengths during a deep squat action. This time the conclusion was that 
the angles at large joints i.e. shoulder, hip and knee were reliable after regression 
analysis in comparison with MBS. Limb end segments and angles were found not to 
be reliable; in particular hands feet, forearm and elbow. 

Machine-learning techniques were researched for this problem because the data is 
multi-dimensional. Recognising patterns over the whole data context including over 
time is extremely complicated and adding to that variation in body shapes and other 
factors augments the complexity. Machine-learning techniques can be used to reduce 
the dimensionality and the variability of the data. Data sample alignment is necessary 
in order to compare like portions of the movement data. Okada & Hasegawa [13] 
described Data Time Warping (DTW) for this purpose, minimizing Euclidean dis-
tance between datasets by warping in the time domain.  
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Dynamic Time Warping allows two time series that are similar but locally out of 
phase to align in a non-linear manner. According to Ratanamahatana & Keogh [14], 
DTW is the best solution known for time series problems in a variety of domains. 
Their work gives a good insight into bounding constraints and distance metrics when 
configuring DTW. Han et al [5] use the result of the DTW calculation as a measure of 
similarity between data-sets. Action recognition is performed on Kinect data in order 
to compare results with a Vicon (MBS) set-up. The results of this calculation would 
be applicable to a k-Nearest Neighbours (kNN) algorithm for example. 

Herzog et al [15] describe a variation of DTW tailored to account for their Parame-
trised Hidden Markov Model (PHMM) which considers the hidden state. PHMM is 
discussed in the following subsection describing Models.  Chandola et al [16] suggest 
two ways to tackle anomaly detection in time series. One is to reduce the contextual 
anomaly detection problem to a point anomaly detection problem. This may be done 
using rigid or elastic alignment of time series for example DTW. The second is to 
model the structure in the data and use the model to detect anomalies. Modelling the 
structure effectively means reducing dimensions and Han et al [5] use Kernel Princip-
al Component Analysis for this purpose. 

Brandao et al [17] presented a comparative analysis of three algorithms applied to 
human pose recognition using RGB-D images from a Kinect sensor with Kinect SDK. 
The static pose is represented by coordinates in a bounding box with sides of between 
8 and 64 units in different trials. The algorithms used for comparison were C4.5 Gain 
Ratio Decision Tree, Naive Bayes Classifier, and k-Nearest Neighbour Classifier and 
were implemented in the data mining tool Weka. The conclusion was that the best 
classifier was found to be kNN although the Decision Tree Classifier was almost as 
good; the larger the number of cells used to describe the body part positions, the bet-
ter the prediction although 8x8 was almost as good as 64x64; and the pose predictions 
were greater than 90% even when using participants with different body shapes for 
the data capture.  

Herzog et al [15] detail the implementation of Parametric HMM models for recog-
nition of movement using Gaussian output distributions and considering transition 
probabilities between states which follow each other in the action; the other transition 
probabilities being zero. The probabilities are calculated using Baum/Welch expecta-
tion maximization (EM) for a given training set. As mentioned in the previous sec-
tion, they used a modified DTW for data alignment to account for the hidden state, 
first setting up a global HMM model using the whole training set and secondly train-
ing local HMMs aligning with reference to the global HMM. This uses the idea that 
HMMs are temporally invariant.  

Random forests are successfully used for human pose recognition by many authors 
(Shotton et al [18], Rogez et al [19]). Classification of a depth image from a static 
pose is predicted with random forests grown using a large training dataset.    

3 Experimental Set-Up and Framework 

Data collection experiments were performed in a controlled environment in order to 
minimize noise and external factors. Window blinds were closed to maintain constant 
lighting. A plastic based swivel chair without castors was placed at a fixed distance 
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3.1 Data Visualization 

We have developed a Reanimator Tool to visualize a full joint data set over the dura-
tion of a given example. Any data example can be replayed as a 3-d animation (see 
Fig. 3). Reviewing the animated data is helpful in determining the start of the action 
and any anomalies or corruptions in the captured data up to the start of the action. 

 

 

Fig. 3. A data frame taken from the Reanimator Tool 

Any joint can be plotted against its warped plot and the reference plot using a func-
tion written for this visualisation. The reverse warp from the reference plot to the 
example is also plotted for comparison. This demonstrates the effect of dynamic time 
warping with respect to a reference data example on a given example, for a given 
joint in axis x, y or z. The figure below shows an example of warp plots. 

 

Fig. 4. Warp plot function output  

Any joint can be plotted in a given axis consecutively for each participant. This 
gives an idea of the form of the joint's movement over time for various examples and 
can be applied to the excised data from the start or to the whole data sample.  
Any abnormal examples can be spotted. Fig. 5 shows a joint plot of 4 successive  
participants. 
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Fig. 5. Head joint plots with time for different participants 

3.2 Analysis 

It is necessary to determine the start and end points of the action by applying recog-
nisable conditions in the data. Similarly it will be useful to determine a finite number 
of intermediate key points during conditional recognisable actions in the data to ena-
ble alignment. Using DTW allows continuous realignment of data over time mea-
surement intervals as well as providing a way of calculating an averaged distance 
metric with respect to a reference dataset. This distance is useful as a metric in any 
classification technique. The principal of DTW will be discussed here and its applica-
tion to the data is discussed in the Evaluation section.  

To compare two similar vectors of time series data of lengths m and n, dynamic 
time warping algorithm creates an mxn matrix of distances between all elements of 
each vector. The lowest cost contiguous path from the starting point to the end point 
is the chosen path whereby indices of the two vectors are mapped effectively dilating 
and compressing the time line to produce the best fit. Various configurations can be 
chosen for the distance metric and matrix path.  

 

Fig. 6. Three views of a warp between sternum plots of an example and a reference example 

Plotting the warp is a good way of determining the configurations producing the 
most appropriate warp. The 3 plots in Fig. 6 show different representations of the 
warp of example 26 against example 20. The chosen step configuration is asymmetric 
which is why the density plot is missing the upper left corner. 
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Having carried out pre-processing on the raw data, further work is necessary to fit 
a model to categorise movement types. Broadly, there are two approaches for catego-
rising the motion; the first being clustering based on likeness or otherwise to other 
labelled data and the second being to create models representing proper and improper 
movements. Both methods would involve the analysis of a sequence of events, each 
event having a context i.e. time series with a number of independent parameters such 
as body segment angles. The difficulty is to identify anomalies in a set of contexts and 
for this reason it is necessary to reduce or eliminate the time dimension. 

The less complicated approach is to use transduction to categorise by association 
though it may not supply intuitive reasons for improper movements, which limits the 
usefulness of a diagnosis. Clustering algorithms use similarity or difference measure-
ments between data points to classify points into groups. There are many different 
possibilities for the way of measuring similarity. Euclidean distance is a commonly 
used metric. kNN is the transductive method chosen based on the background reading 
and its implementation is described in section 4.6. 

Using induction to create a model is more complicated but may give more informa-
tion about the reasons for an improper movement. A method used in some studies is 
Hidden Markov Model for which transition matrices could be determined for proper 
and improper movements transitioning between the key intermediate stages of the 
action. However this requires the identification of those key 'hidden states'. Janssen et 
al [20] discuss four phases of the sit-to-stand motion identified by Shenkman et al 
[21] but note the major influence in characteristics of a sit-to-stand action in a range 
of studies where chair heights and types varied. 

Decision trees have the advantage of giving an intuitive explanation of the reason for a 
prediction model, the most important attribute being at the top of the tree. However, deci-
sion tree models may vary widely with different data sets so random forests are appropri-
ate particularly with small data sets. Random forests are formed by applying decision 
trees on bootstrapped examples chosen from the data pool. Averaging the results leads to 
lower variance and this method known as bagging maximises the use of the available 
data for producing a model and validating it. Random forests can be configured in vari-
ous ways, using randomly chosen subsets of attributes up to the full complement and can 
be averaged over any number of sample selections without causing over-fitting. 

The data sets available in this project are limited and any prediction method should 
be tested using data examples and comparing real outcomes with predictions. This 
may be achieved using cross-validation or bagging methods. The advantage of bag-
ging is that the model can be averaged over a large number of random samples thus 
making the most of labelled data and also reducing variance.   

4 Evaluation 

4.1 Extracting Action Data 

The Data collected includes in most cases standing in front of the sensor while wait-
ing for Kinect to recognize the body joints, then assuming the seated position before 
carrying out the action of standing up. There may then be trailing actions which, 
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4.3 Classification 

For the purpose of this study, all actions performed by normal participants were in-
itially labelled as not faulty. The examples 1-12 corresponding to the 3 participants 
who performed faulty standing actions are labelled as FALSE, and examples 13-105 
are labelled as TRUE. Although some of the normal participants were assessed with 
minor faults, the training algorithms will use the more exaggerated faults in the crea-
tion of models with the hope of assessing the other examples. 

4.4 Decision Trees 

The decision trees built with all of the data from each of the two data sets give only one 
classification error for the face-on data tree and none for the other tree. These trees show 
the important attributes used to match the trees to the data and distinguish actions la-
belled faulty. The values however are only relevant to the data set produced against the 
reference example and have no meaning as absolute values. The closer the value to 0, 
the more alike that attribute is to that of the reference example after normalization. The 
figure below shows the trees built from the two sets of data with attribute values at deci-
sion points described by axis and joint location. These trees model the full data sets but 
are not validated and it can be assumed that that the data is over-fitted.  

 

Fig. 8. Decision tree plots showing dimension and joint of decision splits 

Rather than using k-fold cross-validation and averaging error estimation, the ran-
dom forest algorithm is a better method for prediction and evaluation using decision 
trees. Random forest results follow this sub-section. 

4.5 Random Forests 

Random forests were grown with the parameters: maximum number of nodes, number 
of attributes for decision trees, and number of trees to grow. Best results were  
obtained with trees of size 3. All attributes from the frames were used which includes 
10 joints in x and y axes for face-on data and all 3 axes for 45o data. 
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The confusion matrices show out-of-bag prediction error rates of 6.7% and 4.8% 
respectively for the two data sets, almost all of the errors coming from the FALSE 
classifications. In this case, error rates for false positive classification (classifying a 
FALSE result as TRUE) were 58% and 33% respectively. These results may vary 
using different seeds as the process is stochastic. In fact the 45o data set consistently 
showed better classification of faulty actions. Given the high rate of correct classifica-
tion of non-faulty actions, greater than 50% correct classification of faulty actions 
results in the low overall out-of-bag prediction error rates stated (see tables below). 

Table 1. Face-on random forest results 45o random forest results 

 FALSE TRUE error  FALSE TRUE error 

FALSE 5 7 0.58333 FALSE 8 4 0.33333 

TRUE 0 92   0 TRUE 1 91 0.01087 

 
Using proximity matrices produced by the random forest algorithm which is a square 

matrix of distances between every pair of examples, a multi-dimensional scaling plot 
can be produced which graphically demonstrates distances of examples where most are 
clustered closely. This shows a trend in the faulty examples because the random forest 
was able to distinguish them successfully; but also some examples of the non-faulty 
trials which lie outside of the main cluster.  The 45o data shows good clustering of a 
group of faulty trials some distance from the main cluster of non-faulty examples.  

 

Fig. 9. Labelled Multi-Dimensional Scaling plots of Random Forest distances 

In the face-on plot in Fig. 9 the 11 examples in the top left are outside of the normal 
cluster, identified in the plot by their data example numbers. In the 45o plot the 3 exam-
ples in the bottom centre are outside of the normal cluster. These represent examples 
labelled as normal which show some abnormalities according to the algorithm. 

4.6 K-Nearest Neighbours with Bagging 

The k-Nearest Neighbours algorithm was used on the scaled attribute data with a 
bagged sample over 500 sample selections and the out-of-bag predictions averaged to 
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produce a confusion matrix. The implementation stores predicted results for out-of-
bag samples on each bag selection. After 500 selections each example is awarded a 
classification based on which classification was predicted more often for that exam-
ple. The following error rates are produced with k=2 giving 1.9% and 0 out-of-bag 
prediction error rates respectively. 

Table 2. Face-on kNN results, k=2 45o kNN results, k=2  

 
The actions of a single user may be expected to be close to one another so using a 

higher value of k may give a more realistic error rate. Using k=5 implies a majority of 
3 neighbours in the training set determine the result of the test set. Table 3 shows the 
results with k=5, giving 4.8% and 0.96% error rates. 

Table 3. Face-on kNN results, k=5 45o kNN results, k=5 

 FALSE TRUE error  FALSE TRUE error 

FALSE 7 5 0.41667 FALSE 11 1 0.083333 

TRUE 0 92 0 TRUE 0 92 0 

 
kNN uses a distance matrix between every example set of attributes and every oth-

er to calculate the nearest neighbours. This can be plotted using multi-dimensional 
scaling  

 

Fig. 10. Labelled Multi-Dimensional Scaling plot of kNN distances 

Dynamic time warp distances are used as the attributes and each example has a 
TRUE or FALSE label. The plot shown in Fig. 10 shows why the results for kNN 
bagging prediction error are so low, particularly for the 45o experiments. The clusters 
for faulty and non-faulty actions are well defined.  

 FALSE TRUE error  FALSE TRUE error 

FALSE 11 1  0.083333 FALSE 12 0 0 

TRUE 1 91   0.010870 TRUE 0 92 0 
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5 Discussion and Conclusions 

We have presented an experiment for collecting human movement data using the 
Kinect depth sensor motion camera with emphasis on variation in movement due to 
back pain. Various machine-learning techniques were used to analyse the data and 
effectively applied to identify anomalies. A general method of comparing data sets 
acquired from experiments was devised. Results show that attribute sets created using 
a technique based on dynamic time warping can be successfully used in machine- 
learning algorithms to identify anomalous actions. Results using random forests and 
using k-Nearest Neighbours with bagging showed good clustering and good out-of-
bag validation results with overall error rates below 7%. Best results were obtained on 
the 45o experiments which when analysed using kNN with k=5 give an overall error 
rate of <1% and false positive rate of only 8% meaning 92% of the anomalous actions 
were identified. Classification predictions could be made using the models created 
against new examples of the same action. Multi-dimensional scaling techniques were 
used to visualize distance matrices produced by the two methods.  

Further work could use machine-learning methods to detect the action within a full 
data set. This is an important part of the overall process. It is important to build a 
larger database of experimental data including clinical participants with back pain. In 
such a case the heuristic approach we used to identify the offset of the action within a 
data set becomes less feasible. While matching a part of the overall action using ma-
chine-learning, the same process based on dynamic time warping could be used to 
identify anomalies. In this case, the dynamic time warp would have to be free to 
match the start rather than anchored to the start of the data. Using a non-anchored 
configuration with dynamic time warping was not found to be satisfactory so a new 
approach to the DTW algorithm could be considered. Other models such as Hidden 
Markov Models could also be considered for this approach. 
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Abstract. Probabilistic topic modeling of text collections is a power-
ful tool for statistical text analysis. Determining the optimal number
of topics remains a challenging problem in topic modeling. We propose
a simple entropy regularization for topic selection in terms of Additive
Regularization of Topic Models (ARTM), a multicriteria approach for
combining regularizers. The entropy regularization gradually eliminates
insignificant and linearly dependent topics. This process converges to the
correct value on semi-real data. On real text collections it can be com-
bined with sparsing, smoothing and decorrelation regularizers to produce
a sequence of models with different numbers of well interpretable topics.

Keywords: Probabilistic topic modeling · Regularization · Probabilis-
tic latent sematic analysis · Topic selection · EM-algorithm

1 Introduction

Topic modeling is a rapidly developing branch of statistical text analysis [1].
Topic model reveals a hidden thematic structure of the text collection and finds
a highly compressed representation of each document by a set of its topics. From
the statistical point of view, a probabilistic topic model defines each topic by
a multinomial distribution over words, and then describes each document with
a multinomial distribution over topics. Such models appear to be highly useful
for many applications including information retrieval, classification, categoriza-
tion, summarization and segmentation of texts. More ideas and applications are
outlined in the survey [2].

Determining an appropriate number of topics for a given collection is an
important problem in probabilistic topic modeling. Choosing too few topics
results in too general topics, while choosing too many ones leads to insignifi-
cant and highly similar topics. Hierarchical Dirichlet Process, HDP [3,4] is the
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most popular Bayesian approach for number of topics optimization. Nevertheless,
HDP sometimes gives very unstable number of topics and requires a complicated
inference if combined with other models.

To address the above problems we use a non-Bayesian semi-probabilistic app-
roach — Additive Regularization of Topic Models, ARTM [5,6]. Learning a topic
model from a document collection is an ill-posed problem of approximate stochas-
tic matrix factorization, which has an infinite set of solutions. In order to choose
a better solution, we maximize the log-likelihood with a weighted sum of regular-
ization penalty terms. These regularizers formalize additional requirements for
a topic model. Unlike Bayesian approach, ARTM avoids excessive probabilistic
assumptions and simplifies the inference of multi-objective topic models.

The aim of the paper is to develop topic selection technique for ARTM based
on entropy regularization and to study its combinations with other useful regu-
larizers such as sparsing, smoothing and decorrelation.

The rest of the paper is organized as follows. In section 2 we introduce a gen-
eral ARTM framework, the regularized EM-algorithm, and a set of regularizers
including the entropy regularizer for topic selection. In section 3 we use semi-real
dataset with known number of topics to show that the entropy regularizer con-
verges to the correct number of topics, gives a more stable result than HDP, and
gradually removes linearly dependent topics. In section 4 the experiments on real
dataset give an insight that optimization of the number of topics is in its turn
an ill-posed problem and has many solutions. We propose additional criteria to
choose the best of them. In section 5 we discuss advantages and limitations of
ARTM with topic selection regularization.

2 Additive Regularization of Topic Models

Let D denote a set (collection) of texts and W denote a set (vocabulary) of all
terms that appear in these texts. A term can be a single word or a keyphrase.
Each document d ∈ D is a sequence of nd terms (w1, . . . , wnd

) from W . Denote
ndw the number of times the term w appears in the document d.

Assume that each term occurrence in each document refers to some latent
topic from a finite set of topics T . Then text collection is considered as a sample of
triples (wi, di, ti), i = 1, . . . , n drawn independently from a discrete distribution
p(w, d, t) over a finite space W ×D×T . Terms w and documents d are observable
variables, while topics t are latent variables. Following the “bag of words” model,
we represent each document as a subset of terms d ⊂ W .

A probabilistic topic model describes how terms of a document are generated
from a mixture of given distributions φwt = p(w | t) and θtd = p(t | d):

p(w | d) =
∑
t∈T

p(w | t)p(t | d) =
∑
t∈T

φwtθtd. (1)

Learning a topic model is an inverse problem to find distributions φwt and θtd

given a collection D. This problem is equivalent to finding an approximate rep-
resentation of frequency matrix F =

(
ndw

nd

)
W×D

with a product F ≈ ΦΘ of two



Additive Regularization of Topic Models 195

unknown matrices — the matrix Φ = (φwt)W×T of term probabilities for the
topics and the matrix Θ = (θtd)T×D of topic probabilities for the documents.
Matrices F , Φ and Θ are stochastic, that is, their columns are non-negative, nor-
malized, and represent discrete distributions. Usually |T | � |D| and |T | � |W |.

In Probabilistic Latent Semantic Analysis, PLSA [7] a topic model (1) is
learned by log-likelihood maximization with linear constrains:

L(Φ,Θ) =
∑
d∈D

∑
w∈d

ndw ln
∑
t∈T

φwtθtd → max
Φ,Θ

; (2)

∑
w∈W

φwt = 1, φwt ≥ 0;
∑
t∈T

θtd = 1, θtd ≥ 0. (3)

The product ΦΘ is defined up to a linear transformation ΦΘ = (ΦS)(S−1Θ),
where matrices Φ′ = ΦS and Θ′ = S−1Θ are also stochastic. Therefore, in a
general case the maximization problem (2) has an infinite set of solutions.

In Additive Regularization of Topic Models, ARTM [5] a topic model (1) is
learned by maximization of a linear combination of the log-likelihood (2) and r
regularization penalty terms Ri(Φ,Θ), i = 1, . . . , r with nonnegative regulariza-
tion coefficients τi:

R(Φ,Θ) =
r∑

i=1

τiRi(Φ,Θ), L(Φ,Θ) + R(Φ,Θ) → max
Φ,Θ

. (4)

The Karush–Kuhn–Tucker conditions for (4), (3) give (under some technical
restrictions) the necessary conditions for the local maximum in a form of the
system of equations [6]:

ptdw =
φwtθtd∑

s∈T φwsθsd
; (5)

φwt ∝
(

nwt + φwt
∂R

∂φwt

)
+

; nwt =
∑
d∈D

ndwptdw; (6)

θtd ∝
(

ntd + θtd
∂R

∂θtd

)
+

; ntd =
∑
w∈d

ndwptdw; (7)

where (z)+ = max{z, 0}. Auxiliary variables ptdw are interpreted as conditional
probabilities of topics for each word in each document, ptdw = p(t | d,w).

The system of equations (5)–(7) can be solved by various numerical methods.
Particularly, the simple-iteration method is equivalent to the EM algorithm,
which is typically used in practice. The pseudocode of Algorithm 2.1 shows its
rational implementation, in which E-step (5) is incorporated into M-step (6)–(7),
thus avoiding storage of 3D-array ptdw.

The strength of ARTM is that each additive regularization term results in
a simple additive modification of the M-step. Many models previously developed
within Bayesian framework can be easier reinterpreted, inferred and combined
using ARTM framework [6], [8].
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Algorithm 2.1. The regularized EM-algorithm for ARTM
Input: document collection D, number of topics |T |;
Output: Φ, Θ;

1 initialize vectors φt, θd randomly;
2 repeat
3 nwt := 0, ntd := 0 for all d ∈ D, w ∈ W , t ∈ T ;
4 for all d ∈ D, w ∈ d
5 p(w | d) :=

∑
t∈T φwtθtd;

6 increase nwt and ntd by ndwφwtθtd/p(w | d) for all t ∈ T ;

7 φwt ∝
(
nwt + φwt

∂R
∂φwt

)

+
for all w ∈ W , t ∈ T ;

8 θtd ∝
(
ntd + θtd

∂R
∂θtd

)

+
for all t ∈ T , d ∈ D;

9 until Φ and Θ converge;

To find a reasonable number of topics we propose to start from a wit-
tingly large number and gradually eliminate insignificant or excessive topics
from the model. To do this we perform the entropy-based sparsing of distribu-
tion p(t) =

∑
d p(d)θtd over topics by maximizing KL-divergence between p(t)

and the uniform distribution over topics [8]:

R(Θ) =
n

|T |
∑
t∈T

ln
∑
d∈D

p(d)θtd → max .

Substitution of this regularizer into the M-step equation (7) gives

θtd ∝
(
ntd − τ

n

|T |
nd

nt
θtd

)
+
.

Replacing θtd in the right-hand side by its unbiased estimate ntd

nd
gives

an interpretation of the regularized M-step as a row sparser for the matrix Θ:

θtd ∝ ntd

(
1 − τ

n

|T |nt

)
+
.

If nt counter in the denominator is small, then all elements of a row will be set
to zero, and the corresponding topic t will be eliminated from the model. Values
τ are normally in [0, 1] due to the normalizing factor n

|T | .
Our aim is to understand how the entropy-based topic sparsing works and to

study its behavior in combinations with other regularizers. We use a set of three
regularizers — sparsing, smoothing and decorrelation proposed in [6] to divide
topics into two types, T = S 	 B: domain-specific topics S and background top-
ics B.

Domain-specific topics t ∈ S contain terms of domain areas. They are sup-
posed to be sparse and weakly correlated, because a document is usually related
to a small number of topics, and a topic usually consists of a small number of
domain-specific terms. Sparsing regularization is based on KL-divergence maxi-
mization between distributions φwt, θtd and corresponding uniform distributions.
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Decorrelation is based on covariance minimization between all topic pairs and
helps to exclude common lexis from domain-specific topics [9].

Background topics t ∈ B contain common lexis words. They are smoothed
and appear in many documents. Smoothing regularization minimizes KL-
divergence between distributions φwt, θtd and corresponding uniform distri-
butions. Smoothing regularization is equivalent to a maximum a posteriori
estimation for LDA, Latent Dirichlet Allocation topic model [10].

The combination of all mentioned regularizers leads to the M-step formulas:

φwt ∝
(
nwt − β0 βw[t∈S]︸ ︷︷ ︸

sparsing
specific
topic

+ β1βw[t∈B]︸ ︷︷ ︸
smoothing
background

topic

− γ [t∈S] φwt

∑
s∈S\t

φws

︸ ︷︷ ︸
topic decorrelation

)
+
; (8)

θtd ∝
(
ntd − α0 αt[t∈S]︸ ︷︷ ︸

sparsing
specific
topic

+ α1αt[t∈B]︸ ︷︷ ︸
smoothing
background

topic

− τ [t∈S]
n

|T |
nd

nt
θtd

︸ ︷︷ ︸
topic

selection

)
+
; (9)

where regularization coefficients α0, α1, β0, β1, γ, τ are selected experimentally,
distributions αt and βw are uniform.

3 Number of Topics Determination

In our experiments we use NIPS dataset, which contains |D| = 1740 English
articles from the Neural Information Processing Systems conference for 12 years.
We use the version, preprocessed by A. McCallum in BOW toolkit [11], where
changing to low-case, punctuation elimination, and stop-words removal were per-
formed. The length of the collection in words is n ≈ 2.3 · 106 and the vocabulary
size is |W | ≈ 1.3 · 104.

In order to assess how well our approach determines the number of topics,
we generate semi-real (synthetic but realistic) datasets with the known number
of topics. First, we run 500 EM iterations for PLSA model with T0 topics on
NIPS dataset and generate synthetic dataset Π0 = (n0

dw) from Φ,Θ matrices of
the solution: n0

dw = nd

∑
t∈T φwtθtd. Second, we construct a parametric family

of semi-real datasets Πα = (nα
dw) as a mixture nα

dw = αndw + (1 − α)n0
dw, where

Π1 = (ndw) is the term counters matrix of the real NIPS dataset.

From synthetic to real dataset. Fig. 1 shows the dependence of revealed number
of topics on the regularization coefficient τ for two families of semi-real datasets,
obtained with T0 = 50 and T0 = 25 topics. For synthetic datasets ARTM reliably
finds the true number of topics for all τ in a wide range. Note, that this range
does not depend much on the number of topics T0, chosen for datasets generation.
Therefore, we conclude that an approximate value of regularization coefficient
τ = 0.25 from the middle of the range is recommended for determining number
of topics via our approach.
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Fig. 1. ARTM for semi-real datasets with T0 = 50 (left) and T0 = 25 (right)

However as the data changes from synthetic Π0 to real Π1, the horizontal part
of the curve diminishes, and for NIPS dataset there is no evidence for the “best”
number of topics. This corresponds to the intuition that real text collections
do not expose the “true number of topics”, but can be reasonably described by
models with different number of topics.

Comparison of ARTM and HDP models. In our experiments we use the imple-
mentation1 of HDP by C. Wang and D. Blei. Fig. 2(b) demonstrates that the
revealed number of topics depends on the parameter of the model not only for
ARTM approach (Fig. 1, α = 1 case), but for HDP as well. Varying the concen-
tration coefficient γ of Dirichlet process, we can get any number of topics.

Fig. 2(a) presents a bunch of curves, obtained for several random starts of
HDP with default γ = 0.5. Here we observe the instability of the method in two
ways. Firstly, there are incessant fluctuations of number of topics from itera-
tion to iteration. Secondly, the results for several random starts of the algorithm
significantly differ. Comparing Fig. 2(a) and Fig. 2(c) we conclude that our app-
roach is much more stable in both ways. The numbers of topics, determined by
two approaches with recommended values of parameters, are similar.

Elimination of linearly dependent topics. One more important question is which
topics are selected for exclusion from the model. To work it out, we extend the
synthetic dataset Π0 to model linear dependencies between the topics. 50 topics
obtained by PLSA are enriched by 20 convex combinations of some of them; and
new vector columns are added to Φ matrix. The corresponding rows in Θ matrix
are filled with random values drawn from a bag of elements of original Θ, in order
to make values in the new rows similarly distributed. These matrices are then
used as synthetic dataset for regularized EM-algorithm with topic selection to
check whether original or combined topics remain. Fig. 2(d) demonstrates that
the topic selection regularizer eliminates excessive linear combinations, while
more sparse and diverse topics of the original model remain.
1 http://www.cs.princeton.edu/∼chongw/resource.html.

http://www.cs.princeton.edu/~chongw/resource.html.
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Fig. 2. ARTM and HDP models for determining number of topics

4 Topic Selection in a Sparse Decorrelated Model

The aim of the experiments in this section is to show that the proposed topic
selection regularizer works well in combination with other regularizers. The topic
model quality is evaluated by multiple criteria.

The hold-out perplexity P = exp
(
− 1

nL(Φ,Θ)
)

is the exponential average of
the likelihood on a test set of documents; the lower, the better.

The sparsity is measured by the ratio of zero elements in matrices Φ and Θ
over domain-specific topics S.

The background ratio B = 1
n

∑
d∈D

∑
w∈d

∑
t∈B ndwp(t | d,w) is a ratio of

background terms over the collection. It takes values from 0 to 1. If B → 0
then the model doesn’t distinguishes common lexis from domain-specific terms.
If B → 1 then the model is degenerated, possibly due to excessive sparsing.

The lexical kernel Wt of a topic t is a set of terms that distinguish the topic t
from the others: Wt = {w : p(t |w) > δ}. In our experiments δ = 0.25. We use
the notion of lexical kernel to define two characteristics of topic interpetability.

The purity
∑

w∈Wt
p(w | t) shows the cumulative ratio of kernel in the topic.

The contrast 1
|Wt|

∑
w∈Wt

p(t |w) shows the diversity of the topic.

The coherence of a topic C k
t = 2

k(k−1)

∑k−1
i=1

∑k
j=i PMI(wi, wj) is defined as

the average pointwise mutual information over word pairs, where wi is the i-th
word in the list of k most probable words in the topic. Coherence is commonly
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Fig. 3. Baseline: LDA topic model
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Fig. 4. Combination of sparsing, decorrelation, and topic selection
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Fig. 5. Sequential phases of regularization

used as the interpretability measure of the topic model [12]. We estimate the
coherence for top-10, top-100, and besides, for lexical kernels.

Finally, we define the corresponding measures of purity, contrast, and coher-
ence for the topic model by averaging over domain-specific topics t ∈ S.

Further we represent each quality measure of the topic model as a function
of the iteration step and use several charts for better visibility. Fig. 3 provides
such charts for a standard LDA model, while Fig. 5 and Fig. 4 present regularized
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models with domain-specific and background topics. We use constant parameters
for smoothing background topics |S| = 10, αt = 0.8, βw = 0.1.

The model depicted in Fig. 4 is an example of simultaneous sparsing, decorre-
lating and topic selection. Decorrelation coefficient grows linearly during the first
60 iterations up to the highest value γ = 200000 that does not deteriorate the
model. Topic selection with τ = 0.3 is turned on later, after the 15-th iteration.
Topic selection and decorrelation are used at alternating iterations because their
effects may conflict; in charts we depict the quality measures after decorrelating
iterations. To get rid of insignificant words in topics and to prepare insignificant
topics for further elimination, sparsing is turned on staring from the 40-th iter-
ation. Its coefficients αt, βw gradually increase to zeroize 2% of Θ elements and
9% of Φ elements each iteration. As a result, we get a sequence of models with
decreasing number of sparse interpretable domain-specific topics: their purity,
contrast and coherence are noticeably better then those of LDA topics.

Another regularization strategy is presented in Fig. 5. In contrast with the
previous one, it has several sequential phases for work of different regularizers.
Firstly, decorrelation makes topics as different as possible. Secondly, topic selec-
tion eliminates excessive topics and remains 80 topics of 150. Note, that in spite
of small τ = 0.1, many topics are excluded at once due to the side effect of the
first phase. The remained topics are significant, and none of them manage to be
excluded later on. The final phase performs both sparsing and decorrelating of
the remained topics to successfully improve their interpretability.

It is curious that the number of topics 80, determined by this strategy, corre-
sponds to the results of the previous strategy quite well. In Fig. 4 we observe two
regions of perplexity deterioration. The first one concerns Θ sparsing; after that
the perplexity remains stable for a long period till the 150-th iteration, when
the number of topics becomes less than 80. This moment indicates that all the
remained topics are needed and should not be further eliminated.

5 Conclusions

Learning a topic model from text collection is an ill-posed problem of stochastic
matrix factorization. Determining the number of topics is an ill-posed prob-
lem too. In this work we develop a regularization approach to topic selection in
terms of non-Bayesian ARTM framework. Starting with excessively high number
of topics we gradually make them more and more sparse and decorrelated, and
eliminate unnecessary topics by means of entropy regularization. This approach
gives more stable results than HDP and during one learning process generates a
sequence of models with quality measures trade-off. The main limitation, which
should be removed in future work, is that regularization coefficients are not opti-
mized automatically, and we have to choose the regularization strategy manually.
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Abstract. There has been an increasing interest recently in examin-
ing the possible relationships between emotions expressed online and
stock markets. Most of the previous studies claiming that emotions have
predictive influence on the stock market do so by developing various
machine learning predictive models, but do not validate their claims rig-
orously by analysing the statistical significance of their findings. In turn,
the few works that attempt to statistically validate such claims suffer
from important limitations of their statistical approaches. In particular,
stock market data exhibit erratic volatility, and this time-varying volatil-
ity makes any possible relationship between these variables non-linear,
which tends to statistically invalidate linear based approaches. Our work
tackles this kind of limitations, and extends linear frameworks by propos-
ing a new, non-linear statistical approach that accounts for non-linearity
and heteroscedasticity.

1 Introduction

According to the investment theory, stock market is operating under the Efficient
Market Hypothesis (EMH), in which stock prices are assumed to incorporate and
reflect all known information. Sprenger et al. [15] strongly disagree with EMH
by saying that the market is inefficient and therefore abnormal returns can be
earned. In search for abnormal earning, researchers now ‘listen’ to news and
mine online aggregated social data all in the course for these attractive profits.

Schumaker and Chen [14] are among the early researchers to investigate
whether emotions can predict the stock market. Machine learning algorithms
such as SVM, Naive Bayes, etc, are utilised to develop predictive models used
to claim that financial news have a statistically significant impact on the stock
market. Bollen et al. [4] present an interesting machine learning based approach
to examine if emotions influence stock prices. Their results support the claim
that emotions do influence the stock market.

The linear Granger causality analysis is employed by Gilbert and Karahalios
[8] as a method to illustrate that web blog contained sentiment has predictive

c© Springer International Publishing Switzerland 2015
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information on the stock market, but this method proved to have clear limita-
tions as explained later in this paper. A linear model and the Granger causality
test are used also by Mao et al. [12] to examine the influence of social blogs on
the stock market. The authors do raise some concerns about the possible non-
linear nature in the relationship, but such concerns are not further explored.
The non-linear Granger causality test, which relies on a Self-Organising Fuzzy
Neural Network model, is unpopular in this area of work as it is thought not
to be strong enough to capture volatile stock market movements, as revealed
by Jahidul et al. [10]. Mittal and Goel [13] use machine learning algorithms to
investigate if stock blogs, as a proxy for news, can predict this complex financial
movement. Their findings make the same claim that stock blogs can be used to
predict stock prices, and they use some level of accuracy of the predictive models
to support their results.

Stock market is highly volatile. Therefore, capturing its movement and identi-
fying relationships between stock prices and possible predictive variables require
the use of appropriate approaches. These approaches should normally meet two
requirements. The first requirement is to generate models for prediction, and the
second requirement is to rigorously prove the models’ predictive value.

As illustrated earlier in this section, there is a growing research work trying
to establish that online expressed emotions have predictive information on the
stock market. Most of these works fulfill the first requirement by devising and
proposing various predictive models, but very few works attempt to fulfill also
the second requirement by rigorously / statistically proving the predictive value
of these models. Gilbert and Karahalios [8] are among the very few that do
consider both requirements, by proposing a statistical approach, which is based
on the Granger causality analysis and Monte Carlo simulations. We recognise
the large interest and potential generated by [8] in inspiring further research
that demonstrates the link between the online expressed emotions and the stock
market. Our work builds upon the approach presented in [8], and does so by
critically analysing it, by clearly identifying its drawbacks and limitations, by
tackling these limitations and by extending the approach and the results pre-
sented in the paper. As such, we establish our findings on data which has been
obtained from the [8] ’s authors website.

The remainder of this paper is organized as follows. Section 2 briefly revisits
the empirical analysis of Gilbert and Karahalios [8]. In particular it presents
the data, and the Anxiety Index’s building process. In addition, we discuss the
essential limitations of the approach of [8], and provide and discuss the results of
our alternative Monte Carlo simulations. Section 3 presents our new statistical
based approach which captures efficiently the stock market volatility, and the
predictive information relationship direction between stock prices and emotion.
Section 4 entails our findings and conclusion.

2 Discussion on the Web Blog Based Anxiety Index

Four stationary daily time series variables were explored in Gilbert and Kara-
halios [8]: the Anxiety Index (AI), the stock return, and two control variables
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which are the trading volume and the stock volatility. All the variables were
generated from the stock market data S&P 500, except for the Anxiety Index
AI.

[8] introduced the Anxiety Index using 20 million posts and blogs from Live-
Journal, that had been gathered within three periods of 2008: January 25th
to June 13th; August 1st to September 30th, and November 3rd to December
18th. Two sets of linguistic classifiers trained with a LiveJournal mood corpus
from 2004 were employed to build the Anxiety Index metric. First, a corpus
of 624,905 mood-annotated LiveJournal posts from Balog et al. [3] was used.
12,923 posts that users tagged as ‘anxious’, ‘worried’, ‘nervous’ or ‘fearful’ were
extracted. Then two classifiers were trained to distinguish between ‘anxious’ and
‘non anxious’ posts. The first classifier C1, which was a boosted decision tree, as
introduced by Yoav and Robert [16], used the most informative 100 word stems
as features. The second classifier C2 consisting of a bagged Complement Naive
Bayes model [11], used 46,438 words obtained from the 2004 corpus mentioned
above. C1t and C2t were defined as the standard proportions of posts classified
as ‘anxious’ by C1 and C2, respectively, during the closing trading day t. C1t

and C2t were integrated in the series C defined by Ct = max(C1t, C2t). The
Anxiety Index was finally defined as the series At = log(Ct+1) − log(Ct). 174
values were generated for this series from the available data.

The S&P 500 index was used as a proxy for the stock market, and was
employed to generate three variables participating in the development of pre-
dictive models, namely the stock market acceleration metric denoted as M , the
return volatility denoted as V , and the volume of stock trading denoted as Q. The
stock return at time t was defined as Rt = log(SPt+1) − log(SPt), where SP is
the closing stock price. The stock market acceleration metric was obtained from
the stock return as Mt = Rt+1 − Rt. The stock return volatility was expressed
as Vt = Rt+1 ∗Rt+1 −Rt ∗Rt, and finally Qt was expressed as the first difference
of the lagged trading volume.

2.1 Findings and Limitations

The two OLS models employed by Gilbert and Karahalios in [8] are:

M1 : Mt = α + Σ3
i=1βiMt−i + Σ3

i=1γiVt−i + Σ3
i=1δiQt−i + εt (1)

M2 : Mt = α + Σ3
i=1βiMt−i + Σ3

i=1γiVt−i + Σ3
i=1δiQt−i+

Σ3
i=1ηiAt−i + εt

(2)

The models M1 and M2 were used to measure the influence of the Anxiety
Index on stock prices. The difference in the models is that M1 does not include
the Anxiety Index variable, it only uses the lagged market variables mentioned
above in this section. M2 adds the lagged Anxiety Index to the M1’s variables.
If M2 performs better than M1, one could conclude that the Anxiety Index has
predictive information on the stock market. The first two columns of Table 1
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show that M2, with the Anxiety Index included in the analysis, would outper-
form M1, judging from the Granger causality F statistics F3,158 = 3.006, and
the corresponding p-value pGranger = 0.0322.

Table 1. Granger Causality results and Monte Carlo Simulation. MCpGausskern,
MCpinv and MCpboot are the p-values of the simulations using a Gaussian kernel
assumption, the inverse transform sampling, and bootstrap sampling respectively.

F3,158 pGranger MCpGausskern MCpinv MCpboot

3.006 0.0322 0.045 0.045 0.045

The main disadvantage of the approach of Gilbert and Karahalios [8] was
that the Granger causality analysis’s linear models M1 and M2 were actually
not valid from a statistical point of view. In particular these models suffered
of major shortcomings as for instance residuals were non-normally distributed,
and they presented a heterogeneity of the variance. As such, although the p-
value pGranger < 0.05 suggests that the Anxiety Index adds significantly some
predictive information on the stock market, such a conclusion is not supported
by a valid statistical reasoning.

Due to the mentioned pitfalls, [8] proposed also a Monte Carlo simulation
with a Gaussian kernel distribution assumption for the Anxiety Index, in an
attempt to retrieve the same conclusion as in the non-statistically supported
Granger causality analysis. The authors generated 1 million sets of samples for
the Anxiety Index. These new series were used in (2) by iterating 1 million
times to generate the same number of F statistic values, and then to classify
these values based on if any F statistic is at least 3.01. The total number of
F statistic’s values that were at least 3.01 was then divided by the number
of iteration to obtain the Monte Carlo experimental p-value, MCpGausskern =
0.045, shown in Table 1.

Although MCpGausskern < 0.05 seemed to confirm the conclusion of the
Granger causality analysis, the Monte Carlo simulation suffered at its turn of the
issue of retrieving a significantly different experimental p-value with respect to
pGranger. This issue seemed to be the consequence of another issue, consisting of
the fact that the empirical distribution of the F-statistic computed in the Monte
Carlo experiments significantly deviated from the expected F-distribution, as
confirmed by the Kolmogorov-Smirnov test, i.e. D = 0.0337, p < 0.001 [8].

This realization constitutes a nontrivial reason to question the Monte Carlo
estimates, and a natural question which arises is: would the assumption of the
Gaussian kernel distribution for the Anxiety Index have possibly introduced a bias
in the simulation? To answer the question, we apply other non-parametric Monte
Carlo simulation methods based on the inverse transform sampling method using
the continuous version of the empirical distribution function corresponding to the
original Anxiety Index’s sample, and bootstrap sampling. We follow the same pro-
cedure as that used in [8]. Our Monte Carlo p-values are presented in the columns
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four and five of Table 1, where MCpinv and MCpboot denote p-values issued from
the use of the inverse transform sampling and the bootstrap sampling methods.
Both simulations led to a similar value of 0.045. Moreover, in both cases the empir-
ical distribution of the F-statistic computed in the Monte Carlo experiments is dif-
ferent from the expected F-distribution. These shortcomings confirm once again
that proving the relationship between the Anxiety Index and stock prices is prob-
lematic if linear models are involved.

To this end we propose a new statistical approach to solve the limitations in
[8] and to also reveal the relationship direction between the variables of interest.

3 Anxiety Index’s Predictive Information on the Stock
Market, Revisited

We follow the guidelines from Diks and Panchenko [6] ( see [7] for detailed
explanation and software) to examine the line of Granger causality between the
variables involved in our analysis. The idea of the non-parametric statistical
technique for detecting nonlinear causal relationships between the residuals of
linear models was proposed by Baek and Brock [2]. It was later modified by
Hiemstra and Jones [9] and this has become one of the most popular techniques
for detecting nonlinear causal relationships in variables.

Consider two series Xt and Yt as follows: let the Lx and Ly be the lag length
of the lag series XLx

t and Y Ly
t of Xt and Yt respectively, and let us denote the

k-length lead vector of Yt by Y k
t . In other words,

Y k
t ≡ (Yt, Yt+1, ..., Yt+k−1), k = 1, 2, ..., t = 1, 2, ..,

Y Ly
t ≡ (Yt−Ly, Yt−Ly+1, ..., Yt−1), Ly = 1, 2, ..., t = Ly + 1, Ly + 2, ...,

XLx
t ≡ (Xt−Lx,Xt−Lx+1, ..., Yt−1), Ly = 1, 2, ..., t = Lx + 1, Lx + 2, ...,

(3)

Given arbitrary values for k, Lx, Ly ≥ 1 and ε > 0, then Xt does not strictly
nonlinearly Granger cause Yt if:

Pr(‖ Y k
t − Y k

s ‖< ε | ‖ Y Ly
t − Y Ly

s ‖< ε, ‖ XLx
t − XLx

s ‖< ε)

= Pr(‖ Y k
t − Y k

s ‖< ε | ‖ Y Ly
t − Y Ly

s ‖< ε)
(4)

where Pr(A | B) denotes the probability of A given B, ‖ · ‖ is the maximum
norm, i.e. for a vector V ≡ (v1, v2, . . . , vm), ‖ V ‖= max{v1, . . . , vm}, s,t =
max(Lx,Ly) + 1, . . . , N − k + 1, N is the length of the time series and ε is
N -dependent and typically has values between 0.5 and 1.5 after normalising the
time series to unit variance. The left hand side in (4) is the conditional probability
which implies that two arbitrary k-length lead vectors of Yt are within a distance
ε, given that two associating Lx- length lag vector of Xt and two associating
Ly-length lag vector of Yt are within a distance of ε. The right hand side in
(4) is the probability that two arbitrary k-length lead vectors of Yt are within
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a distance of ε, given that the two corresponding Ly-length lag vector of Y are
within the distance of ε.

Eq.(4) can be rewritten using conditional probabilities in terms of the ratios
of joint probabilities as follows:

CI(k + Ly,Lx, ε)
CI(Ly,Lx, ε)

=
CI(k + Ly, ε)

CI(Ly, ε)
(5)

The joint probabilities are defined as:

CI(k + Ly,Lx, ε) ≡ Pr(‖ Y k+Ly
t − Y k+Ly

s ‖< ε, ‖ XLx
t − XLx

s ‖< ε),

CI(Ly,Lx, ε) ≡ Pr(‖ Y Ly
t − Y Ly

s ‖< ε, ‖ XLx
t − XLx

s ‖< ε),

CI(k + Ly, ε) ≡ Pr(‖ Y k+Ly
t − Y k+Ly

s ‖< ε),

CI(Ly, ε) ≡ Pr(‖ Y Ly
t − Y Ly

s ‖< ε)

(6)

The Correlation-Integral estimators of the joint probabilities expressed in Eq.
(6) measure the distance of realizations of a random variable at two different
times. They are proportions defined as the number of observations within the
distance ε to the total number of observations. Let us denote the time series of
realizations of X and Y as xt and yt for t = 1, 2, ..., N and let yk

t , yLy
t and xLx

t

denote the k-length lead, and Lx-length lag vectors of xt and the Ly-length lag
vectors of yt as defined in (3). In addition, let I(Z1, Z2, ε) denote a kernel that
equals 1 when two conformable vectors Z1 and Z2 are within the maximum-norm
distance ε of each other and 0 otherwise. The Correlation-Integral estimators of
the joint probabilities in equation (6) can be expressed as:

CI(k + Ly,Lx, ε, n) ≡ 2
n(n − 1)

∑∑
t<s

I(yk+Ly
t , yk+Ly

s , ε) · I(xLx
t , xLx

s , ε),

CI(Ly,Lx, ε, n) ≡ 2
n(n − 1)

∑ ∑
t<s

I(yLy
t , yLy

s , ε) · I(xLx
t , xLx

s , ε),

CI(k + Ly, ε, n) ≡ 2
n(n − 1)

∑ ∑
t<s

I(yk+Ly
t , yk+Ly

s , ε),

CI(Ly, ε, n) ≡ 2
n(n − 1)

∑∑
t<s

I(yLy
t , yLy

s , ε),

(7)

where t, s = max(Lx,Ly) + 1, ..., N − k + 1, n = N + 1 − k − max(Lx,Ly).
Given that two series, X and Y , are strictly stationary and meet the required

mixing conditions mentioned in Denker and Keller [5], under the null hypothesis
that X does not strictly Granger cause Y , the test statistics T is asymptotically
normally distributed and it follows that:

T =
√

n
(CI(k + Ly,Lx, ε, n)

CI(Ly,Lx, ε, n)
−CI(k + Ly, ε, n)

CI(Ly, ε, n)

)
∼ N

(
0, σ2(k, Ly, Lx, ε)

)
(8)
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where n = N + 1 − k − max(Lx,Ly) and σ2(·), the asymptotic variance of the
modified Baek and Brock test statistics, and an estimator for it are defined in
the Appendix in Hiemstra and Jones [9].

To test our variables for a possibly non-linear relation, we start by introducing
the general framework of our models. Consider a regression modeling with a
constant conditional variance, V AR(Yt | X1,t, ...,Xm,t) = σ2

ε . Then regressing
Yt on X1,t, ...,Xm,t can be generally denoted as:

Yt = f(X1,t, ...,Xm,t) + εt, (9)

where εt is independent of X1,t, ...,Xm,t with expectation zero and constant
conditional variance σ2

ε . f(·) is the conditional expectation of Yt | X1,t, ...,Xm,t.
Eq.(9) can be extended to include conditional heteroscedasticity as follows:

Yt = f(X1,t, ...,Xm,t) + σ(X1,t, ...,Xm,t)εt (10)

where σ2(X1,t, ...,Xm,t) is the conditional variance of Yt | X1,t, ...,Xm,t and
εt has the mean 0 and the conditional variance 1. Since σ(X1,t, ...,Xm,t) is a
standard deviation, it is captured using a non-linear non-negative function in
order to maintain its non-negative structure. This leads us to GARCH models.
Comparing Eq.(9) and Eq.(10), the first part of the right hand side of Eq.(9) is
the same with that of Eq.(10). This is a linear model. The second part of the
right hand side of Eq.(9) are residuals of the linear process. They represent the
second part of the right hand side of Eq.(10). Eq.(9) can finally be presented in
the VAR framework as:

Mt = c + Σ3
i=1hiMt−i + Σ3

i=1γiVt−i + Σ3
i=1δiQt−i+

Σ3
i=1ηiAt−i + at

(11)

At = c + Σ3
i=1hiMt−i + Σ3

i=1γiVt−i + Σ3
i=1δiQt−i+

Σ3
i=1ηiAt−i + at

(12)

Following the second part of the right hand side of Eq.(10), the residuals at from
Eq.(11) and Eq.(12) are presented in GARCH(1,1) as:

at = σtεt (13)

where σt =
√

w + α1a2
t−1 + β1σ2

t−1, in which w, α1 and β1 are constants. We
finally derive the GARCH(1,1)-filtered residuals, standardized residuals, as

εt =
at

σt
(14)

We obtain the residuals from the VAR model in Eq. (11) and (12). The
test statistic in Eq. (8) is then applied to these residuals to detect the causal
relation between the Anxiety Index and stock prices. Diks and Panchenko [6]
provide some important improvement to the Non-linear Granger Causality test.
[6] demonstrates that the value to be arbitrarily assigned to the distance ε is
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highly conditional on the length n of the time series. The larger the value n, the
smaller the assigned value for ε and, the better and more accurate the results.

Most of the related works choose k = Lx = Ly = 1. The length of the series
we are analysing is less than 200, so choosing ε=1.5 conforms with Table 2.
Given ε = 1.5, k = Lx = Ly = 1, the results from the test are presented in
Table 3.

Table 2. Assigning values to ε, as of Diks and Panchenko [6]

n 100 200 500 1000 2000 5000 10,000 20,000 60,000

ε 1.5 1.5 1.5 1.2 1 0.76 0.62 0.51 0.37

Our first result in this framework seems to support the idea that the Anxiety
Index has predictive information on the stock market, as this is based on the
p-value of 0.017 shown in the first row of Table 3. Some re-considerations are
necessary though.

Hiemstra and Jones [9] state that the non-linear structure of series is related
to ARCH errors. Anderson [1] proves that the volatility of time series contains
predictive information flow. But Diks and Panchenko [6] warn that the presence
of conditional heteroscedasticity in series could produce spurious results. To
avoid any possible bias in our results, the residuals are applied to Eq.(13) to
filter out any conditional heteroscedasticity in the residuals of the VAR models.
We also rely on the GARCH(1,1)-filtered residuals to re-establish our findings.

We are able to identify, using the GARCH(1,1) results, that at from Eq.(11)
is a GARCH process with εt being a Gaussian white noise (having the p-values
α = 0.003, β < 0.001 and Shapiro-Wilk = 0.383) and that at from Eq.(12)
does not contain significant heteroscedasticity except that εt is an i.i.d. white
noise with a heavy-tailed distribution (having the p-values α = 0.136, β = 0.454
and Shapiro-Wilk = 0.018). We obtain GARCH(1,1)-filtered residuals and the
test statistic in Eq.(8) is re-applied to three sets of residuals: OLS residuals
from Eq.(11) and Eq.(12); GARCH(1,1)-filtered residuals of stock returns and
OLS residuals from Eq.(12); and GARCH(1,1)-filtered residuals from both stock
returns and Anxiety Index. The results we present in rows 2 and 3 of Table 3
show p-values > 0.05 and thus confirm that our earlier result presented in row
1 of Table 3 is biased by the presence of heteroscedasticity in the residuals. We
are thus able to show that the Anxiety Index does not possess any significant
predictive information on the stock market.

In view of our results above, we therefore claim that the conclusion from
Gilbert and Karahalios [8] according to which the Anxiety Index has predictive
information on the stock market is not valid, which is supported also by the fact
that the statistical conditions to validate their results are not met.
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Table 3. Non-linear Granger non-causality test

AI => SP SP => AI

Lx=Ly=1 p Lx=Ly=1 p

Before filtering 0.017 Before filtering 0.182
GARCH(1, 1)SP 0.349 GARCH(1, 1)SP 0.922
GARCH(1, 1)SP,AI 0.718 GARCH(1, 1)SP,AI 0.685

4 Conclusion

This paper proposes a new approach to statistically demonstrating the predictive
information relationship direction between stock prices and emotions expressed
online. In particular it proves that the Anxiety Index introduced by Gilbert and
Karahalios [8] does not possess predictive information with respect to S&P 500.
Our work does so by addressing the statistical limitations present in, and by
extending the approach of [8].

The main drawback of the approach in [8] to proving the existence of the
predictive information of the Anxiety Index with respect to the stock market
was that this approach used a Granger causality analysis based on producing
and assessing predictive linear models, which were actually not valid from a
statistical point of view. In particular these models suffered of major shortcom-
ings as for instance residuals were non-normally distributed, and they presented
a heterogeneity of the variance. In an attempt to partially correct the above
shortcomings, the Monte Carlo simulation performed by assuming a Gaussian
kernel based density for the Anxiety Index, was also biased as the empirical
distribution of the employed F statistic significantly deviated from the expected
F-distribution [8].

We note that Monte Carlo simulations using the Gaussian kernel density
approach have their own bandwidth selection problem, which may bias the sim-
ulations - see Zambom and Dias [17]. We therefore re-designed the Monte Carlo
simulation presented in [8] by using bootstrap samples of the Anxiety Index first,
and the inverse transform sampling based on the continuous version of the empir-
ical distribution function corresponding to the original Anxiety Index sample.
The results showed no improvement. This re-confirms the non-linear nature in
the relationship between the stock market and emotion, and the erratic volatil-
ity in the variables. Linear models appear to be too ‘basic’ to capture these
complexities.

We have therefore extended the approach of [8] by proposing a more capable
framework based on the non-linear models introduced in [6]. Our first result, based
on a p-value of 0.017 obtained in the non-linear Granger non-causality test, cap-
turing the predictive information of the Anxiety Index with respect to S&P 500, is
biased by the presence of heteroscedasticity. We filtered out the heteroscedasticity
in the residuals using Eq. (13) and our GARCH(1,1)-filtered residuals were used
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with the test statistic in Eq. (7). Our results, based on p-values > 0.05, express the
true non-causality relationship of Anxiety Index with respect to S&P 500.

Although our work has established that the Anxiety Index does not have
predictive information with respect to the stock market, by proposing a new
approach which is statistically sound and more conclusive, there are still some
concerns on how the Anxiety Index was built, based on incomplete data, non-
specific LiveJournal posts, corpus challenges, non-representative data sample,
among others. Further refining the process of defining the Anxiety Index by
addressing the above mentioned concerns, may help to fine-tune our empirical
results and provide us with a more reliable predictive model.
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Abstract. ChIP-sequencing experiments are routinely used to study
genome-wide chromatin marks. Due to the high-cost and complexity
associated with this technology, it is of great interest to investigate
whether the low-cost option of microarray experiments can be used in
combination with ChIP-seq experiments. Most integrative analyses do
not consider important features of ChIP-seq data, such as spatial depen-
dencies and ChIP-efficiencies. In this paper, we address these issues by
applying a Markov random field model to ChIP-seq data on the protein
Brd4, for which both ChIP-seq and microarray data are available on the
same biological conditions. We investigate the correlation between the
enrichment probabilities around transcription start sites, estimated by
the Markov model, and microarray gene expression values. Our prelimi-
nary results suggest that binding of the protein is associated with lower
gene expression, but differential binding across different conditions does
not show an association with differential expression of the associated
genes.

Keywords: Protein binding · Gene regulation · Markov random field

1 Introduction

The development and maintenance of any organism is regulated by a set of
chemical reactions that switch specific loci of the genome off and on at strategic
times and locations. Epigenetics is the study of these reactions that control gene
expression levels and the factors that influence them. Although the relationship
between epigenetics and phenotypes is not always straightforward, studying tis-
sues of affected and unaffected subjects and maintaining the study prospective
may help identify the differences between causal associations and non-causal
associations [1]. DNA microarray and ChIP-seq technologies play a crucial role
c© Springer International Publishing Switzerland 2015
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in understanding this relationship, by investigating structural and functional
characteristics of genomes. DNA microarray technology, which enables measure-
ment of the expression level of a large number of genes simultaneously, has been
used in functional genomic studies, system biology, epigenetic research and so on.
ChIP-seq, which is a comparatively new technology, has been used to describe
the locations of histone post-translational modifications and DNA methylation
genome-wide in many studies and to study alterations of chromatin structure
which influence gene expression levels.

Next generation sequencing has undoubtedly several advantages over microar-
ray experiments and it is often the choice for many studies. However, microarray
experiments still have a place in bioinformatics, due to the cost-effectiveness and
relative simplicity of this technique [2]. Hurd et al. [3] have predicted that in the
near future, these two technologies may also complement each other and form a
symbolic relationship. Integration of results from these two technologies might
open new doors for epigenetic research.

Several attempts have been made to combine protein binding and mRNA
expression data over the years. Markowetz et al. [4] have explored how histone
acetylation around Transcription Start Sites (TSSs) correlates with gene expres-
sion data. In their study, ChIP-ChIP is used for measuring acetylation levels.
Qin et al. and Guan et al. [5,6] have proposed a web-based server to analyse
interactions between transcription factors and their effect on gene expression, by
using information on bound and non-bound regions. Other attempts have also
been made to infer relationships between gene expression and histone modifica-
tion where absolute tag counts around a feature, such as promoter, is considered.
Hoang et al. [7] have shown how, incorporating the spatial distribution of enrich-
ment in the analysis, can improve the result. In general, it is absolutely vital to
measure the level of acetylation and probability of enrichment accurately in order
to find possible relationships between ChIP-seq and gene expression data. There
are several characteristics of ChIP-seq data that are needed to be considered
while modelling such data before we attempt to combine it with gene expression
data.

In a typical ChIP-seq experiment, an antibody is used in the immunopre-
cipitation step to isolate specific DNA fragments that are in direct physical
contact with a protein of interest. Figure 1 [14] gives an overview of how ChIP-
seq technology works. Those fragments are called reads/tags. The reads are then
mapped back to the reference genome and the resulting mapped reads are further
analyzed to find out peaks or enriched regions where the protein in question is
actually bound. It is common to divide the genome into fixed sized windows/bins
and then summarize the counts per bin. Finally, a statistical model is used to
detect the windows with a significant number of counts, that is the regions that
are bound by the protein in question. While generating the data, some random
DNA sequences are also collected with the bound sequences. These are usually
scattered across the genome and form a background noise. Due to the partic-
ular antibody used and to the difficult protocol that each experiment needs to
follow, it is common to observe varying background to signal ratios for different
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Fig. 1. Schematic representation of ChIP-seq technology. 1: Cell nucleus 2: A protein
of interest is cross-linked with DNA sites it binds to in an in vivo environment. 3: The
DNA is sheared by sonication or other mechanism. 4: Antibody is added 5: Crosslinked
DNAs are filtered out with antibody by the immunoprecipitation technique 6: These
DNA fragments are sequenced, forming reads, and are mapped back to the genome.

experiments. This poses an issue when multiple ChIP-seq experiments need to be
modelled together and when comparative analyses with other data sources need
to be carried out. Bao et al. [8] have proposed a mixture model where multiple
experiments can be modelled together while taking into account the efficiency
of individual experiments. However, there are other issues related to ChIP-seq
data. Due to an often ad-hoc division of the genome in fixed-size windows, it
is possible for an enrichment profile to cross neighbouring regions. This induces
spatial dependencies in the count data, which is often observed for ChIP-seq
data. All these issues are addressed in the approach proposed by Bao et al.
[9]. In this proposed approach, a Markov random Field (MRF) model has been
implemented that accounts for the spatial dependencies in ChIP-seq data as well
as the different ChIP-seq efficiencies of individual experiments. In this paper, we
have applied this model to the analysis of ChIP-seq data for the Brd4 protein.

Investigating enrichment around a feature in the genome such as promoter,
TSS etc is very common while studying relationships between binding of a pro-
tein/TF and gene regulation. TSS is where transcription of the genes into RNA
begins, therefore it is often considered in comparative analyses of binding and
expression data. After analysing the ChIP-seq data using the MRF model, we
have used the estimated probability of enrichment around the transcription start
(TS) and performed comparative analysis on the associated gene expression data
generated in the same biological condition.

In Section 2, we describe the data that has been used for this paper. We
also give a brief overview of the MRF model for ChIP-seq data and how the
parameters are estimated, as well as the differential expression analysis of the
microarray data. In Section 3, we show our current results in comparing ChIP-
seq and microarray data. Finally, we draw some conclusions in Section 4.
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2 Data and Methods

2.1 Description of the Data

In this study, we have used the ChIP-seq data for the Brd4 protein provided by
Nicodeme et al. [11]. Illumina beadarray technology was also used to collect gene
expression data on the same experimental conditions as ChIP-Seq. The data was
collected from samples that are treated with a synthetic compound (I-BET) that,
by ’mimicking’ acetylated histones, disrupts chromatin complexes responsible for
the expression of key inflammatory genes in activated macrophages (Drug data)
and also from sample simulated with lipopolysaccharide (LPS) (control data).
The ChIP-seq data was collected at three time points: 0, 1 and 4 hours (0H,
1H, 4H) and microarray data at four time points (0H, 1H, 2H and 4H). For
the ChIP-seq data, one replicate is available for each condition, whereas three
replicates per condition are available in the microarray study.

2.2 Analysis of ChIP-seq Data

The ChIP-seq reads are aligned against the mouse genome (version mm9) using
bowtie [10] and only uniquely mapped reads were retained for further analysis.
The reference genome was obtained from UCSC Genome Browser. The percent-
age of reads that are aligned ranges from 60.86% to 78.03%. In this experiment,
for simplicity, we have considered only Chromosome 1. So, we have selected only
those reads that are found in Chromosome 1 of the mouse genome. We have
divided the length of Chromosome 1 into 200bp windows and generated count
data per windows. These count data are then supplied as the input for MRF
model, described in the next section.

2.3 A Brief Description of MRF Model

We have followed the methodology proposed by Bao et al. [9] for the analysis of
ChIP-seq data. Given the data, the model associates to each window a probabil-
ity of being enriched or not. Additional information such as enrichment informa-
tion of neighbouring regions is also considered while calculating this probability.
A brief overview of the model is given below.

Let M be the total number of bins and Ymcr the counts in the mth bin, m =
1, 2, . . . ,M , under condition c and replicate r. In our case, the condition c stands
for a particular protein and/or a particular time point, and r = 1, . . . , Rc is the
number of replicates under condition c. The counts Ymcr are either drawn from
a background population (non-enriched region) or a from a signal population
(enriched region). Let Xmc be the unobserved random variable specifying if the
mth bin is enriched (Xmc = 1) or non-enriched (Xmc = 0) under condition c. A
mixture model for Ymcr is defined as follows [8]:

Ymcr ∼ pcf(y|θScr) + (1 − pc)f(y|θBcr),
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where pc = P (Xmc = 1) is the mixture portion of the signal component and
f(y, θScr) and f(y, θBcr) are the signal and background densities for condition c
and replicate r, respectively. An attractive feature of this model is the fact that
the probability pc of a region being enriched does not depend on ChIP efficiencies.
However the parameters, signal and background distributions θScr and θBcr depend
on ChIP efficiencies of replicates r. This allows to combine multiple ChIP-seq
experiments, while accounting for the individual ChIP efficiencies.

As the signal and background densities can take any form, the signal can be
modelled using Poisson or Negative Binomial and their zero-inflated extensions
to account for the excess number of zeros typical of this type of data. So for the
mixture components f(y, θScr) and f(y, θBcr), we consider:

Ymc|Xmc = 0 ∼ ZIP (πc, λ0c) or ZINB(πc, μ0c, φ0c),

Ymc|Xmc = 1 ∼ Poisson(λ1c) or NB(μ1c, φ1c)

In our study, we have used zero inflated negative Binomial for modelling the
background and Negative binomial for modelling the signal for all our ChIP-seq
datasets.

In order to account for spatial dependencies, the latent variable Xmc, which
represents the binding profile, is further assumed to satisfy one-dimensional first
order Markov properties. Given the adjacent bins states, Xm−1, c = i, and c = j,
with i, j ∈ {0, 1}

Ymcr|Xm−1,c = i,Xm+1,c = j ∼ pc,ijf(y, θScr) + (1 − pc,ij)f(y, θBcr)

Thus, the enrichment of a region depends on the state of the two adjacent regions.
All the parameters in this model are estimated using a Bayesian approach, which
is implemented in the R package enRich. The method returns the posterior
probability of enrichment for each region of the genome.

Finally to decide whether a region is enriched or not, a threshold is set
on these probabilities. Different criteria can be used to set this cut-off. In our
study, we set a cut-off corresponding to a chosen FDR. If D is the set of declared
enriched regions corresponding to a particular cut-off on the posterior probabil-
ities, then the estimated false discovery rate for this cut-off is given by

̂FDR =

∑
m∈D

P̂ (Xmc = 0|Y)

|D| .

In our study, we used this approach for all 200bp regions in Chromosome 1. We
then further refine the output to only consider the regions that contain TSs.

2.4 Analysis of Microarray Data

Microarray data have been preprocessed using the R package beadarray [12].
Then the processed data has been normalised and analysed for differential expres-
sion using the package limma [13]. This returns an adjusted p-value for differen-
tial expression between drug and control using an empirical Bayes method. We
use these p-values to select the differentially expressed genes.
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2.5 TSS Selection

We have downloaded TSS information of the mouse genome (chromosome 1)
using NCBI mm9 assembly. Each txStart (Transcription start) and txEnd (Tran-
scription end) coordinates are then linked with the associated genes. Many genes
have several TSSs, and also some txStarts are at the same co-ordinate and others
may reside within 200 bp regions to each other. Firstly, we remove the dupli-
cate TSSs from the list. As we select enrichment probability within regions of
200bp, for each gene we select only one TSS within this window. From UCSC we
downloaded 55419 TSSs and retained 38156 after this selection. As we consider
only transcription start point for this experiment, we then retrieve the estimated
probability of enrichment from the ChIP-seq analysis per TS.

3 Results and Discussion

3.1 ChIP-seq Analysis

We have analysed the ChIP-seq data with both the latent mixture model [8] and
the MRF model [9]. For each condition, Table 1 shows the number of regions
bound by Bdr4 at 5% FDR. The efficiency for each experiment estimated by the
model is also given in the fourth column.

Table 1. Comparison of mixture model and MRF model in terms of number of regions
bound by Brd4 at 5% FDR

Conditions MRF model Mixture model IP efficiency

0H control 3394 1475 0.8201

0H drug 3185 930 0.8501

1H control 3161 614 0.8937

1H drug 3265 926 0.8937

4H control 3354 1345 0.8347

4H drug 2810 281 0.7809

At 5% FDR, the MRF model produces more enriched regions for each con-
dition than the mixture model. By inspection of the regions detected by MRF
but not by the mixture model, we have found out that MRF can assign a high
probability to a region that has relatively low tag counts but has neighbouring
regions with a large number of counts, as it incorporates spatial dependency in
the model. On the other hand, the mixture model will assign a very low enrich-
ment probability to those regions, thus discarding potentially useful information.
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3.2 Expression Data versus Enrichment Probability

Nicodeme et al. [11] suggests that the impact of the drug I-BET on LPS-inducible
gene expression is highly selective and it has no effect on the expression of
housekeeping genes. Our key interest has been to investigate whether differential
binding or differential enrichment of the protein Brd4 around TSS between drug
and control data is associated with differential expression of the corresponding
genes.

Fig. 2. Investing correlation between differential binding with differential expression
result. (Left) At time point 4H and for the drug condition, TS regions with very high
probabilities of enrichment are plotted versus the corresponding gene expression (log2)
values. (Right) The low expressed genes found in the left plot are investigated in control
data to check the effect of differential binding on regulation of genes.

At time point 4H, we select the TSs that have high probabilities of enrichment
in the drug condition (at 5% FDR) and isolate 115 regions. The left plot in Figure
2 shows the gene expression values (in the log scale) versus the probabilities of
enrichment for these regions. The plot shows a cluster of 84 genes in the bottom
right corner that have very low expression values (below the median overall
expression of 6.22). This was observed also at different time points. To find out
whether binding of Brd4 in those regions play any role in the down-regulation of
genes, we consider the binding and expression of these genes on the control data.
The Right plot in Figure 2 shows that there is a small number of non-bound
regions. However, these genes do not have a significantly higher expression value
than in the drug samples. Thus, in this study, we found that differential bindings
did not play a direct role in down-regulation of genes between drug and control
experiments.

To investigate whether differential acetylation levels is associated with differ-
ential expression, we have selected differentially expressed genes at 4H between



Exploring the Link Between Gene Expression and Protein Binding 221

drug and control with a 1% cutoff on the adjusted p-values. We have subtracted
expression values (log2) of control data from drug data (i.e. taking log ratios) and
have done the same with enrichment probabilities. In Figure 3, Left plot shows
the differential expression versus differential probability. Overall, few changes
are found in the probabilities of enrichment between different conditions, sug-
gesting that the genes are bound or not bound in both conditions and that the
probabilities are either close to 0 or close to 1. Therefore, the plot does not show
any association between differential probabilities of enrichment and differential
expression. However, we are considering using different measures of acetylation
levels than posterior probabilities. Similar results were obtained when comparing
two time points (1H and 4H, respectively), as shown in the right plot of Figure
3. Here there are some regions with different probabilities of enrichment, but
with no associated down or up regulation.

Fig. 3. Investing correlation between differential probability with differential expres-
sion result. (Left) Plot for differential probability versus differential expression(log2)
between drug and control data at 4H. (Right) Plot for differential probability versus
differential expression(log2) between 4H and 1H for drug data.

4 Conclusion

In this study, we have investigated a possible association between gene expression
and protein binding data, from mRNA microarray and ChIP-seq data respec-
tively. We have emphasized the need to account for important features of ChIP-
seq data in the detection of the enriched regions and have therefore opted for
the use of a Markov random field model for the analysis of ChIP-seq data. Our
results show that protein binding is associated with lower expression values,
but that differential binding between different conditions, e.g. drug and control
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or different time points, is not associated with up or down regulation of the
corresponding genes.

A number of steps will be considered in the future to consolidate the research
in this study. Firstly, we will extend the analysis from Chromosome 1 to the
whole genome, to check whether the results generalise to this case, as well as to
different proteins (the data in [11] is for five proteins). Secondly, we will consider
different ways of measuring acetylation levels, while still considering the issue
of different ChIP efficiencies of individual experiments. Finally, we will consider
other chromatin markers, such as promoters, to explore a possible association
between these and gene regulation, as well as possible combinatorial patterns
between chromatin markers and gene regulation.

Acknowledgments. This work is supported by EPSRC and GlaxoSmithKline [Indus-
trial CASE Award (EP/J501864/1)].
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Abstract. Domain Generation Algorithm (DGA) has evolved as one of the 
most dangerous and “undetectable” digital security deception methods. The 
complexity of this approach (combined with the intricate function of the fast-
flux “botnet” networks) is the cause of an extremely risky threat which is hard 
to trace. In most of the cases it should be faced as zero-day vulnerability. This 
kind of combined attacks is responsible for malware distribution and for the in-
fection of Information Systems. Moreover it is related to illegal actions, like 
money mule recruitment sites, phishing websites, illicit online pharmacies, ex-
treme or illegal adult content sites, malicious browser exploit sites and web 
traps for distributing virus. Traditional digital security mechanisms face such 
vulnerabilities in a conventional manner, they create often false alarms and they 
fail to forecast them. This paper proposes an innovative fast and accurate evolv-
ing Smart URL Filter (eSURLF) in a Zone-based Policy Firewall (ZFW) which 
uses evolving Spiking Neural Networks (eSNN) for detecting algorithmically 
generated malicious domains names.   

Keywords: Domain generation algorithm · Fast-Flux · Evolving spiking neural 
network · Botnet · Feed forward neural network · Particle swarm optimization 

1 Introduction 

The most common malware types, aim for the recovery of communication with the 
Command & Control (C2RS) remote servers and its retention on a regular basis. This 
is done in order for the botmasters to gather or distribute information and upgrades 
towards the undermined devices (bots). This communication is usually achieved with 
the use of hardcoded address or with pool addresses which are controlled by the mal-
ware developer or by the botmaster. Modern programming techniques offer malware 
developers, the chance to use thousands alternating IP addresses of different subnet in 
order to communicate with the C2RS. However it is easy for the network engineers to 
trace these IPs, to put them in blacklists.    

It is a fact that most recent malware generations use new extremely complicated 
and smarter ways to communicate with the C2RS under the framework of botnets. 
More specifically, the communication is achieved by the use of custom distributed 
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dynamic DNS services which are executed in high port numbers. This is done in order 
to avoid to be traced by security programs located in the gateway of networks. In this 
way fast-flux botnets are created, whose target is the mapping of a fully qualified 
domain name to hundreds of  IP addresses. These IPs are interchanged too fast, with a 
combination of random IP addresses and a very small Time-To-Live (TTL) for each 
partial DNS Resource Record. In this way a domain name can change its correspond-
ing IP address very often (e.g. every 3 minutes). Another usual approach is the blind 
proxy redirection (BPR) technique. The BPR continuously redirects the applications 
received by frontend systems to backend servers, in order to spoil the traces and the 
data that designate an attack. In this way the complexity of the botnets increases [1]. 

DGA or “Domain Fluxing” is the most recent and smarter technique used by the 
creators of sophisticated malware. This method increases the complexity of the net-
works exponentially. Its algorithm creates a big number of domain names with specif-
ic specification characteristics that can be traced only by their creator. Some of these 
domains are the actual contact points with the C2RS of the botnets and they are used 
on a temporal basis and for minimum time intervals. This makes them much more 
difficult to be spotted. For example the following algorithm 1 creates domains accord-
ing to a DGA perspective, where each domain is determined based on a date.  

 
Algorithm 1. Generates a domain by the current date [2] 

1. defgenerate_domain(year, month, day): 

2.       """Generates a domain by the current date""" 

3.       domain = "" 

4. for i in range(32): 

5.       year = ((year ^ 8 * year) >> 11) ^ ((year &amp; 0xFFFFFFF0) << 17) 

6.       month = ((month ^ 4 * month) >> 25) ^ 9 * (month &amp; 0xFFFFFFF8) 

7.       day = ((day ^ (day << 13)) >> 19) ^ ((day &amp; 0xFFFFFFFE) << 12) 

8.       domain += chr(((year ^ month ^ day) % 25) + 97) 

9.       domain += '.com' 

10. return domain 

E.g., on June 18th, 2014, this method would generate the following domain names: 
 

 

k.com 

ka.com 

kaf.com 

kafp.com 

kafph.com 

kafpho.com 

kafphog.com 

kafphogv.com 

kafphogvi.com 

kafphogvif.com 

kafphogvifa.com 

kafphogvifah.com 

kafphogvifahu.com 

kafphogvifahut.com 

kafphogvifahutb.com 

kafphogvifahutbl.com  

 

Every time that the botmaster wishes to contact the bots in a predefined strike-time, 
it creates the proper DNS records for one of the newly created names in the C2RS. In 
the above example, the strike time is the 18th of June 2014. At this point DNS records 
are activated only for the domain name kafphogvifah.com. Some minutes before the 
strike-time the C2RS are activated in order to establish communication. Right after-
wards, the botmaster deletes the registrations of the DNS service and deactivates the 
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C2RS. The thousands domains created by the DGA algorithm daily, the huge  com-
plexity of the fast-flux botnets and the distributed function of the C2RS for some 
minutes per day, make designation of these servers a very tedious task [3].     

This research paper proposes the development of an innovative system, capable of 
protecting from fast-flux botnets that use domain names created with the DGA me-
thodology. Existing methods focus in DNS traffic analysis [4] [5] [6]. This paper 
proposes an Evolving Smart URL Filter in a Zone-based Policy Firewall for detecting 
Algorithmically Generated Malicious Domains Names. It is a biologically inspired 
Artificial Intelligence (AI) security technique as it uses evolving Spiking Neural Net-
works. The eSNN are the third generation neural networks, emulating the function of 
the human brain in the most efficient way. This research effort is an enhancement of 
previous [7] [8] [9] [10].  The efficiency of the proposed eSURLF approach has been 
compared to other evolving and bio-inspired learning methods, namely: Feed Forward 
Neural Networks using Particle Swarm Optimization (FNNPSO) technique and Gene 
Expression Programming (GEP). 

1.1 Literature Review 

Gu et al. (2007) [11] proposed a method to detect the infection and coordination di-
alog of botnets by matching a state-based infection sequence model. Based on URL 
extraction from spam mail Ma, et al. [12], studied a number of machine learning me-
thods for classification web site. Characteristics, such as IP addresses, whois records 
and lexical features of phishing URLs have been analyzed by McGrath and Gupta 
[13]. Xie et al [14] in focus on detecting spamming botnets by developing regular 
expression based signatures from a dataset of spam URLs. Etienne, et al. [15] pro-
posed a technique for the detection and mitigating botnet infection on a network. 
They use multiple features from DNS queries such as A and NS Records, IP ranges, 
TTL and alphanumeric characters from domains. In their experiment, they applied 
Naive Bayesian. Nhauo et al. [16] proposed a method for Classification of Malicious 
Domains using Support Vector Machine and Bi-gram algorithm using only domain 
names and their results showed that features extracted by bi-gram were performing a 
lot better than single alphanumeric character. Antonakakis et. al. [17] uses a combina-
tion of clustering and classification algorithms to detecting the DGA-Based Malware. 
Zhao et al. [18] select a set of attributes from the network flows and then applies a 
Bayes network and a decision tree algorithm to classify malicious traffic. Also, a 
number of approaches have been studied in [19] [20] [21] [22] which use the spam 
emails as the primary information source, for detecting fast-flux domains.  

2 URL Filtering 

URL filtering is a technique which controls network traffic, by allowing or forbidding 
access to specific websites based on the information contained in the requested URL. 
Filters can be applied in various ways such as software, proxy servers, DNS services 
and firewalls. The ZFW method is an advanced technique used in modern firewalls. It 
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functions in a flexible way employing control zones. Each zone controls traffic based 
on the IP and the redirection of the requests from one zone to the other, according to 
the rules that have been defined for each security level by the system administrator 
[23]. ZFW offers URL filtering in the following manner:  

• Local URL List which can include URLs or ΙΡ addresses that have been traced as 
risky (black list records) and URLs in which the user wishes to have access 
(white list records). Before the use of a URL it is checked if it is included in one 
of the black or white lists and access is forwarded or stopped. The difficulty in 
regular updating this lists and the non-spotting of zero-day threats are the main 
disadvantages.   

• URL Filter Servers containing information related to the malware content, which 
are updated regularly. Before using a URL an HTTP request is sent to the URL 
filter server in order to be checked and to allow or restrict access. If the URL fil-
ter server is not responding the next one is searched. A serious drawback is the 
potential that filter servers do not respond whereas there is no mechanism for 
tracing zero-day threats.  

• Local URL lists with URL filter servers. It is a hybrid model of the above two 
cases that combines advantages and disadvantages.  

3 Datasets 

Two datasets namely the dga_timestamp and the dga_dictionary were constructed and 
used for testing. As legit domains 100,000 domain names were used. They were cho-
sen randomly from the database with the 1 million most popular domain names of 
Alexa [24]. For the malicious domains the updated list of the Black Hole DNS data-
base was used [25]. This list includes 16,374 records from domains that have been 
traced and characterized as dangerous. More over in the dga_time stamp dataset 
15,000 domain name records were added labeled as malicious. They were created  
based on the time stamp DGA algorithm, with length from 4 to 56 characters of the 
form 18cbth51n205gdgsar1io1t5.com.  In the dga_dictionary dataset 15,000 domain 
name records were added labeled as malicious, which were created with the use of 
words of phrases coming from an English dictionary. Their length varied from 4 to 56 
characters of the form hotsex4rock69burningchoir.com. In both of the cases the cha-
racteristics used as independent parameters were: length (the length of the strings of 
the domains) entropy (the entropy of each domain as degree of uncertainty, with the 
higher values met in the DGA domains), alexa_grams (the degree of coherence be-
tween the domain and the list of domains originating from Alexa. This is done with 
the technique of the probability linguistic model for the forecasting of the next n-gram 
element), word_grams (the degree of coherence between the domain and a list of 
479,623 words or widely used characters. It is estimated with the same method as in 
the previous one), differences (the difference between the values of alexa_grams and 
word_grams). The depended variable was the class of the domain (legit or malicious) 
[26]. Duplicate records and records with incompatible characters were removed. Also 
the outliers and the extreme values spotted were removed based on the Inter Quartile 
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Range (IQR) technique [27]. After this preprocessing operation the dga _time stamp 
dataset was left with 116,756 records from which the 90,338 are class legit and the 
rest 26,418 are class dga, whereas the dga_dictionary dataset includes 116,071 
records from which the 90,445 are class legit and the rest 25,626 class malicious. 

4 Methods and Materials 

4.1 Evolving Spiking Neural Network 

The eSNNs based on the “Thorpe” neural model [28] are modular connectionist-based 
systems that evolve their structure and functionality in a continuous, self-organized, 
on-line, adaptive, interactive way from incoming information [29]. In order to classify 
real-valued data sets, each data sample, is mapped into a sequence of spikes using the 
Rank Order Population Encoding (ROPE) technique [30] [31].  In this encoding 
method neurons are organized into neuronal maps which share the same synaptic 
weights. Whenever the synaptic weight is modified, the same modification is applied 
to the entire population of neurons within the map. Inhibition is also present between 
each neuronal map. If a neuron spikes, it inhibits all the neurons in the other maps 
with neighboring positions. This prevents all the neurons from learning the same 
pattern. When propagating new information, neuronal activity is initially reset to zero. 
Then, as the propagation goes on, each time one of their inputs fire, neurons are 
progressively desensitized. This is making neuronal responses dependent upon the 
relative order of firing of the neuron's afferents [32] [33]. Also in this model the 
neural plasticity is used to monitor the learning algorithm by using one-pass learning 
method. The aim of this learning scheme is to create a repository of trained output 
neurons during the presentation of training samples [34].  

4.2 Feed Forward Neural Networks and Heuristic Optimization Methods 

A common form of ANN are the feed forward ones (FNN) with three layers (Input, 
Hidden and Output). A typical training process includes the following steps [35]:  

• The weighted sums of the inputs are calculated based on function (1): 
 

sj= ∑ WijXi θj     j=1,2,…,hn
i=1                                        (1) 

 

where n,h,m are the number of input, hidden and output nodes respectively and Wij is 
the connection weight from the ith node of the input layer to the jth node of the hid-
den layer. Also θj is the bias (threshold).  

• The output for each hidden node is estimated with the following equation (2): 
 

Sj=sigmoid sj
= 1

1+exp sj
j=1,2,…,h                                  (2) 

 

• The final output is estimated based on the equations (3) and (4) below: 



228 K. Demertzis and L. Iliadis 

ok= ∑ WjkSj θ'
k    k=1,2,…,m    h

j=1                                    (3) 

 

Ok=sigmoid ok
= 1

1+exp ok
k=1,2,…,m                                (4) 

 

Various heuristic optimization methods have been used to train FNNs such as Ge-
netic Algorithms (GAs) and Particle Swarm Optimization (PSO) algorithms. General-
ly, there are three heuristic approaches used to train or optimize FNNs. First, heuristic 
algorithms are used to find a combination of weights and biases which provide the 
minimum error for a FNN. Second, heuristic algorithms are employed to find the op-
timal architecture for the network related to a specific case. The last approach is to 
use an evolutionary algorithm to tune the parameters of a gradient-based learning 
algorithm, such as the learning rate and momentum [36]. In this research effort PSO 
has been employed to provide the optimal FNN model.  

4.2.1   Particle Swarm Optimization 
PSO is an evolutionary computation technique which is proposed by Kennedy and 
Eberhart. It was inspired by social behavior of bird flocking or fish schooling. PSO 
shares many similarities with evolutionary computation techniques such as GA. The 
system is initialized with a population of random solutions and searches for optima by 
updating generations. However, unlike GA, PSO has no evolution operators such as 
crossover and mutation. In PSO, the potential solutions, called particles, fly through 
the problem space by following the current optimum particles. Each particle keeps 
track of its coordinates in the problem space which are associated with the best solu-
tion (fitness) it has achieved so far. (The fitness value is also stored.) This value is 
called “pbest”. Another "best" value that is tracked by the particle swarm optimizer is 
the best value obtained so far by any particle in its neighbors. This location is called 
“lbest”. When a particle takes all the population as its topological neighbors, the best 
value is a global best and is called “gbest”. According to the PSO at each time step 
there is a change in the velocity (acceleration) of each particle toward its pbest and 
lbest locations (local version of PSO). Acceleration is weighted by a random term, 
with separate random numbers being generated for acceleration toward pbest and 
lbest locations. PSO was mathematically modeled as follows [36]: 

 

vi
t+1=wvi

t+c1× rand× pbesti xi
t +c2×rand× gbest-xi

t                 (5) 
    

 xi
t+i=xi

t+vi
t+i                                                      (6) 

 

Where  is the velocity of particle i at iteration t, w is a weighting function, cj is an 
acceleration coefficient, rand is a random number between 0 and 1,  is the current 
position of particle i at iteration t, pbesti is the pbest of agent i at iteration t, and gbest 
is  the  best  solution  so  far. Where  ,  provides  exploration  ability for  PSO, the 

c1× rand× pbesti xi
t +c2×rand× gbest-xi

t                                 (7) 
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represent private thinking and collaboration of particles. The PSO starts by randomly 
placing the particles in a problem space. During each iteration, the velocities of par-
ticles are calculated using equation (5). After defining the velocities, the positions of 
particles can be calculated as shown in equation (6). The process of changing par-
ticles’ positions continues until an end criterion is met.  

4.3 Gene Expression Programming 

The GEP is an evolutionary algorithm that uses populations of individuals and choos-
es the optimal ones based on a fitness function. Then it imports new individuals or 
potential solutions in the population, by using one or more genetic operators. The 
substantial difference between the GEP and the GA and Genetic Programming (GP) is 
in the nature of the individuals. Specifically, GA uses a sequence of symbols of stable 
length whereas GP uses nonlinear entities (parse trees) of various length and shape. 
GEP employs both above forms of individuals. Initially they are encoded like linear 
strings of stable length (genotype of chromosome) and then they are expressed as 
expression trees (EXTR) with different shape and size (phenotype). The correlation 
between the chromosomes and the EXTR in GEP declares an exclusive translation 
system from the language of the chromosomes to the one of the EXTR. The set of the 
genetic operators applied to GEP and import new individuals they always create syn-
tactically correct EXTR [37]. 

5 Description of the Proposed Method  

The proposed herein methodology uses an eSNN classification approach in order to 
detect and verify the DGA domain names. The topology of the developed eSNN is 
strictly feed-forward, organized in several layers and weight modification occurs on 
the connections between the neurons of the existing layers. The encoding is per-
formed by ROPE technique with 20 Gaussian Receptive Fields (GRF) per variable. 
The data are normalized to the interval [-1, 1] and so the coverage of the Gaussians is 
determined by using i_min and i_max. Each input variable is encoded independently 
by a group of one-dimensional GRF. The GRF of neuron i is given by its center μi by 
equation (8) and width σ by equation (9)  
 

μi = Imin  
n +  

2i-3
2

Imax  
n -  Imin

n

M-2
                                                  (8) 

 

σ=1
β

Imax
n Imin

n

M-2
                                                          (9) 

 

where 1≤β ≤2 and the parameter β directly controls the width of each Gaussian recep-
tive field. When a neuron reaches its threshold, it spikes and inhibits neurons at 
equivalent positions in the other maps so that only one neuron will respond at any 
location. Every spike triggers a time based Hebbian-like learning rule that adjusts the 
synaptic weights. For each training sample i with class label l which represent a legit 
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domains, a new output neuron is created and fully connected to the previous layer of 

neurons, resulting in a real-valued weight vector  with  denoting the 

connection between the pre-synaptic neuron j and the created neuron i. In the next 
step, the input spikes are propagated through the network and the value of weight  is computed according to the order of spike transmission through a synapse  

 

j: wj
(i)=(ml)order(j)                                                        (10) 

 

where j is the pre-synaptic neuron of i. Function order(j) represents the rank of the 
spike emitted by neuron j. The firing threshold  of the created neuron i is defined 
as the fraction R, 0 < < 1, of the maximal possible potential 

umax
(i) : θ i  ← clumax

i                                                        (11) 
 

   umax
(i)  ← ∑ wj

(i)
j (ml)order(j)                                                           (12) 

The weight vector of the trained neuron is compared to the weights corresponding 
to neurons already stored in the repository. Two neurons are considered too “similar” 
if the minimal Euclidean distance between their weight vectors is smaller than a spe-
cified similarity threshold sl.  Both the firing thresholds and the weight vectors were 
merged according to equations (13) and (14): 

   wj
(k) ← 

   wj
(i)+Nwj

(k)

1+N
                                                 (13) 

 

θ k  ← θ
i +Nθ k

1+N
                                          (14) 

Integer N denotes the number of samples previously used to update neuron k. The 
merging is implemented as the average of the connection weights, and of the two 
firing thresholds. After merging, the trained neuron i is discarded and the next sample 
processed. If no other neuron in the repository is similar to the trained neuron i, the 
neuron i is added to the repository as a new output. 

6 Results 

The performance of the employed algorithms for the case of the dga_dictionary data-
set has been quite high as the obtained correlation shows. On the other hand, in the 
dga_timestamp dataset there was quite a lot of noise, due to the unstructured text of 
domain names that cannot be easily understood by machines. Regarding the overall 
efficiency of the methods, the results show that the eSNN has much better generaliza-
tion performance and more accurate classification output. The accuracy comparison 
of the evolving algorithms with 10-fold cross validation is shown in table 1 and the 
confusion matrices in tables 2, 3 and 4 
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Table 1. Accuracy (ACC) Comparison between FFNN PSO, GEP and eSNN 

 dga_dictionary dataset dga _timestamp dataset 

Classifier ACC ACC 
FNNPSO 95.5% 91.9% 

GEP 92.1% 90.6% 
eSNN 95.8% 92.4% 

 

Table 2. Confusion matrix for FNNPSO 

CONFUSION MATRIX FOR FFNNPSO 

 dga_dictionary dataset dga _timestamp dataset 

 Legit  DGA  Accuracy Legit  DGA  Accuracy 

Legit  86556 3889 95,7% 84105 6233 93,1% 

DGA  1204 24422 95,3% 2457 23961 90,7% 

 Overall Accuracy 95.5% Overall Accuracy 91.9% 

 

Table 3. Confusion matrix for GEP 

CONFUSION MATRIX FOR GEP 

 dga_dictionary dataset dga _timestamp dataset 

 Legit  DGA  Accuracy Legit  DGA  Accuracy 

Legit  83933 6512 92,8% 81666 8672 90,4% 

DGA  2204 23422 91,4% 2430 23988 90,8% 

 Overall Accuracy 92.1% Overall Accuracy 90.6% 

  

Table 4. Confusion matrix for eSNN 

CONFUSION MATRIX FOR eSNN 

 dga_dictionary dataset dga _timestamp dataset 

 Legit  DGA  Accuracy    

Legit  87732 2713 97% 84647 5691 93,7% 

DGA  1384 24242 94,6% 2351 24067 91,1% 

 Overall Accuracy 95.8% Overall Accuracy 92.4% 

7 Discussion – Conclusions 

An innovative biologically inspired artificial intelligence computer security technique 
has been introduced in this paper. An evolving Smart URL Filter in a Zone-based 
Policy Firewall proposed for detecting Algorithmically Generated Malicious Domains 
Names. It performs classification by using eSNN for the detection of DGA with high 
accuracy and generalization. The classification performance and the accuracy of the 
eSNN model were experimentally explored based on different datasets and compared 
with other evolving algorithms and reported very promising results. In this way it 
adds a higher degree of integrity to the rest of the security infrastructure of a ZFW. 
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As a future direction, aiming to improve the efficiency of the proposed method, it 
would be essential to try feature minimization using Principal Component Analysis or 
other existing approaches. Also additional computational intelligence methods could 
be explored and compared on the same security task. Finally the eSURLF could be 
improved towards a better online learning with self-modified parameter values. 
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Abstract. We present a lattice-theoretic approach to version spaces in
multicriteria preference learning and discuss some complexity aspects. In
particular, we show that the description of version spaces in the prefer-
ence model based on the Sugeno integral is an NP-hard problem, even
for simple instances.

1 Motivation

We consider an instance of supervised learning, where given a set X of objects
(or alternatives), a set L of labels (or evaluations) and a finite set S ⊆ X× L of
labeled objects, the goal is to predict labels of new objects.

In the current paper, our motivation is found in the field of preference mod-
eling and learning (prediction). We take the decomposable model to represent
preferences over a set X = X1 × · · · × Xn of alternatives (e.g., houses to buy)
described by n attributes Xi (e.g., price, size, location, color). In this setting,
preference relations � are represented by mappings U : X → L valued in a scale
L, and called “overall utility functions”, using the following rule:

x � y if and only if U(x) ≤ U(y).

In other words, an alternative x is less preferable than an an alternative y if
the score of x is less than that of y. This representation of preference relations
is usually refined by taking into account “local preferences ” �i on each Xi,
modeled by mappings ϕi : Xi → L called “local utility functions”, which are
then merged through an aggregation function p : Ln → L into an overall utility
function U :

U(x) = p (φ(x)) = p
(
ϕ1(x1), . . . , ϕn(xn)

)
. (1)
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Loosely speaking, p merges the local preferences in order to obtain a global
preference on the set of alternatives. In the qualitative setting, the aggregation
function of choice is the Sugeno integral that can be regarded [10] as an idem-
potent lattice polynomial function, and the resulting global utility function (1) is
then called a pseudo-polynomial function. This observation brings the concept of
Sugeno integral to domains more general than scales (linearly ordered sets) such
as distributive lattices and Boolean algebras. Apart from the theoretic inter-
est, such generalization is both natural and useful as it allows incomparability
amongst alternatives, a situation that is most common in real-life applications.

In this setting, we consider the learning scenario where given a training set
consisting of pairs of alternatives together with their evaluations, we would like
to determine all models (1) that are consistent with it. Formally we consider the
following supervised learning task :

– Given:
• a distributive lattice L (evaluation space)
• a training set T of pairs (x, lx) ∈ X × L

– Find: all pseudo-polynomials U : X → L s.t. U(x) = lx for all (x, lx) ∈ T .

In other words, we would like to describe the version space (see, e.g., [1,11]) in
this qualitative setting, which asks for all lattice polynomial functions p : Ln → L
and all local utility functions ϕi : Xi → L, i ∈ [n] := {1, . . . , n}, such that for
every (x, lx) ∈ T , x = (x1, . . . , xn), we have p (φ(x)) = lx.

Remark 1. This task of describing the version space was formalized mathemat-
ically in [3,5] as an interpolation problem. In this sense, we assume that the
function fT determined by T (i.e., fT (x) = lx for each (x, lx) ∈ T ) is well-
defined.

Remark 2. We would like to stress the fact that, despite motivated by a problem
rooted in preference learning (see [7] for general background and a thorough
treatment of the topic), our setting differs from the standard setting in machine
learning. This is mainly due to the fact that we aim to describing utility-based
preference models that are consistent with existing data (version spaces) rather
than aiming to learning utility-based models by optimization (minimizing loss
measures and coefficients) such as in, e.g., the probabilistic approach of [2] or
the approach based on the Choquet integral of [12], and that naturally accounts
for errors and inconsistencies in the learning data. Another difference is that,
in the latter, data is supposed to be given in the form of feature vectors (thus
assuming that local utilities over attributes are known a priori), an assumption
that removes the additional difficulty that we face, namely, that of describing
local utility functions that enable models based on the Sugeno integral that are
consistent with existing data. It is also worth noting that we do not assume any
structure on attributes and that we allow incomparabilities in evaluation spaces,
which thus subsume preferences that are not necessarily rankings.

The complete description of the version space in the multicriteria setting still
eludes us, but using some lattice-theoretic techniques developed in [3] (recalled
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in Section 2), we present in Section 3 explicit descriptions of version spaces when
the local utility functions ϕi : Xi → L are known a priori.

2 When the Local Utility Functions are Identity Maps

Recall that a polynomial function over a distributive lattice L is a mapping
p : Ln → L that can expressed as a combination of the lattice operations ∧ and
∨, projections and constants. In the case when L is bounded, i.e., with a least
and a greatest element denoted by 0 and 1, resp., Goodstein [8] showed that
polynomial functions p : Ln → L coincide exactly with those lattice functions
that are representable in disjunctive normal form (DNF for short) by

p(x) =
∨

I⊆[n]

(
cI ∧

∧
i∈I

xi

)
, where x = (x1, . . . , xn) ∈ Ln. (2)

In fact he provided a canonical DNF where each cI is of the form p(1I), where
1I denotes the “indicator function” of I ⊆ [n].

Recall that the Birkhoff-Priestley representation theorem [6] states that we
can embed L into a Boolean algebra B. For the sake of canonicity, we assume
that L generates B, so that B is uniquely determined up to isomorphism. We
also denote the boundary elements of B by 0 and 1. The complement of an
element a ∈ B is denoted by a′.

In [3], we showed that the version space when the local utility functions are
identity maps (i.e., Xi = L and the models are lattice polynomial functions)
can be thought of as an interval lower and upper bounded by polynomials p−

and p+, resp., defined as follows. Let T be a training set as above and consider
the corresponding function fT : D → L (D comprises the first components of
couples in T ). Define the following two elements in B for each I ⊆ [n]:

c−
I :=

∨
a∈D

(
fT (a) ∧

∧
i/∈I

a′
i

)
and c+I :=

∧
a∈D

(
fT (a) ∨

∨
i∈I

a′
i

)
.

and let p− and p+ be the polynomial functions over B given by:

p−(x) :=
∨

I⊆[n]

(
c−
I ∧

∧
i∈I

xi

)
and p+(x) :=

∨
I⊆[n]

(
c+I ∧

∧
i∈I

xi

)
.

Theorem 1 ([3]). Let p : Bn → B be a polynomial function over B given by
(2) and let D be the set of the first components of couples in a training set T .
Then p|D = fT if and only if c−

I ≤ cI ≤ c+I (or, equivalently, p− ≤ p ≤ p+).

Remark 3. From Theorem 1 it follows that a necessary and sufficient condition
for the existence of a polynomial function p : Bn → B such that p|D = fT is
c−
I ≤ c+I , for every I ⊆ [n]. Moreover, if for every I ⊆ [n], there is cI ∈ L such

that c−
I ≤ cI ≤ c+I , then and only then the version space over L is not empty.



Lattice-Theoretic Approach to Version Spaces 237

3 When the Local Utility Functions are Known A Priori

We now assume that the local utility functions ϕi : Xi → L are known a priori.
So given a training set T ⊆ X × L, our goal to find all polynomial functions p
over L such that the pseuo-polynomial function U given by (1) is consistent with
T , i.e., U |D = fT . Let us consider an arbitrary polynomial function p over B in
its disjunctive normal form (2). The corresponding pseudo-polynomial function
U = p (ϕ1, . . . , ϕn) verifies U |D = fT if and only if p|D′ = fT ′ where D′ is the
set of first components of couples in T ′ = {(φ(x), fT (x)) : (x, fT (x)) ∈ T}. Using
the construction of Section 2 for T ′, we define coefficients c−

I,φ and c+I,φ for every
I ⊆ [n] as follows:

c−
I,φ :=

∨
a∈D

(
fT (a) ∧

∧
i/∈I

ϕi(ai)′) and c+I,φ :=
∧
a∈D

(
fT (a) ∨

∨
i∈I

ϕi(ai)′).

Denoting the corresponding polynomial functions by p−
φ and p+φ , Theorem 1

yields the following explicit description of version spaces.

Theorem 2. Let T ⊆ X × L and D as before. For any ϕi : Xi → L (i ∈ [n])
and any polynomial function p : Bn → B given by (2), we have that U = p (φ)
verifies U |D = fT if and only if c−

I,φ ≤ cI ≤ c+I,φ for all I ⊆ [n] (or, equivalently,
p−

φ ≤ p ≤ p+φ ).

Remark 4. Note that if there exist couples (a, fT (a)), (b, fT (b)) ∈ T such that
fT (a) 	= fT (b) but φ(a) = φ(b), then the corresponding version space in the
current multicriteria setting is void. We invite the reader to verify that this
situation cannot occur if the condition of Theorem 2 is satisfied.

4 Concluding Remarks and Further Directions

Theorem 2 describes the version space for given local utility functions ϕi : Xi →
L. It still remains an open problem to determine all such local utility functions
for which an interpolating polynomial function exists. Looking for interpolating
polynomials over B, this amounts to solving the system of inequalities c−

I,φ ≤
c+I,φfor the unknown values ϕi (ai). As the following example illustrates, this is
a computationally hard problem, even in the simpler case of quasi-polynomial
functions, where it is assumed that X1 = · · · = Xn = X and ϕ1 = · · · = ϕn = ϕ.

Example 1. We define an instance of our interpolation problem for any finite
simple graph G = (V,E). Let L = {0, 1} be the two-element chain, let X =
V ∪̇ {s, t}, let D = {(u, v) : uv ∈ E}∪{(t, s) , (s, s) , (t, t) , (s, t)}, and let fT (t, s) =
1, fT (s, s) = 0, fT (t, t) = fT (s, t) = 1 and fT (u, v) = 1 for all uv ∈ E. Since
there are only 4 polynomials over L (namely 0, 1, x1 ∧ x2 and x1 ∨ x2), it is
easy to verify that p (ϕ (x1) , ϕ (x2)) interpolates fT if and only if p = x1 ∨ x2,
ϕ (s) = 0, ϕ (t) = 1 and {v ∈ V : ϕ (v) = 1} is a covering set of the graph G.
Hence, already in this simple case, it is an NP-hard problem to describe the
whole version space, as it involves finding all covering sets (in part., all minimal
covering sets) in a graph.
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Despite the above example, the corresponding decision problem (is there
an interpolating pseudo-polynomial?) might be tractable. Also, in some special
cases, such as when all the sets Xi as well as L are finite chains and one considers
only order-preserving local utility functions ϕi : Xi → L (which is the case in
many applications), it might be feasible to construct the full version space. These
problems constitute topics of further research of the authors.
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Abstract. The property of calibration of Multi-Label Learning (MLL)
has not been well studied. Because of the excellent calibration property
of Conformal Predictors (CP), it is valuable to achieve calibrated MLL
prediction via CP. Three practical implementations of Multi-Label Con-
formal Predictors (MLCP) can be established. Among them are Instance
Reproduction MLCP (IR-MLCP), Binary Relevance MLCP (BR-MLCP)
and Power Set MLCP (PS-MLCP). The experimental results on bench-
mark datasets show that all three MLCP methods possess calibration
property. Comparatively speaking, BR-MLCP performs better in terms
of prediction efficiency and computational cost than the other two.

Keywords: Multi-Label Learning · Threshold calibration · Conformal
predictor · Nonconformity measure · K nearest neighbors

1 Introduction

Multi-Label Learning (MLL) is a different machine learning classification prob-
lem with traditional machine learning, where each instance is always assigned to
multiple labels simultaneously and the predictor predicts a set of labels (labelset).
An MLL classifier tries to construct a confidence function to measure the confi-
dence of each label being a true label. Given a predefined threshold, a set of labels
with confidence scores higher than the threshold can be collected to establish
the predicted labelset [9]. A representative work is ML-KNN (K-Nearest Neigh-
bors) algorithm, which computes the posterior probability of each label as the
confidence measurement, and selects those labels whose posterior probability
is larger than 0.5 to construct the region prediction[10]. However, it is always
difficult to figure out the prior distribution of a dataset properly in machine
learning literature. Consequently, the posterior probability always cannot pro-
vide valid confidence for MLL prediction. Few studies have involved the cali-
bration property of prediction labelset which guarantees its error rate hedged
by the corresponding threshold. In a previous study, we applied Conformal Pre-
dictors (CP) to produce calibrated MLL prediction[8]. Recently, Papadopoulos
c© Springer International Publishing Switzerland 2015
A. Gammerman et al. (Eds.): SLDS 2015, LNAI 9047, pp. 241–250, 2015.
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also proposed another method of using CP to provide MLL predictions [5]. CP
is a confidence machine that predicts a well-calibrated prediction for traditional
single-label test instance [7]. CP has been applied to many real-world problems
in different machine learning settings, including classification, regression, and
clustering[1]. Because of the excellent calibration property of CP, it is valuable
to extend CP to MLL setting to achieve calibrated prediction. The implementa-
tion of calibrated MLL via CP constructs a general framework, i.e., Multi-Label
Conformal Predictors (MLCP). This study is to consider three practical imple-
mentations of MLCP, i.e., Instance Reproduction MLCP(IR-MLCP), Binary
Relevance MLCP(BR-MLCP) and Power Set MLCP(PS-MLCP). The calibra-
tion properties of the three different implementations of MLCP are then inves-
tigated, as well as the prediction efficiencies and computational complexities are
analyzed.

2 Related Work

2.1 Multi-Label Learning

The learning setting of MLL can be described as follows: the learning data is
given as (x,Y) , where x is the instance and Y ⊆ Y = {1, 2, ..., Q} is the labelset
while Y is the whole set of labels containing Q labels. An MLL classifier tries
to learn a real valued function f(x, y), y ∈ Y which measures the confidence of
y being the proper label of x. Thus, given a specified threshold t(x) , the MLL
classifier outputs the predicted labelset : h(x) = {y|f(x, y) > t(x), y ∈ Y} , where
h(x) obviously is a region prediction.

A large variety of algorithms have been proposed to construct the confidence
measure f(x, y). Generally, existing MLL algorithms can be divided into two
groups using the categorization scheme of transformation method[6]. One is Pat-
tern Transformation (PT), which splits the multi-label examples straightforward
into single-label examples and then applies single-label machine learning algo-
rithms to tackle the multi-pattern recognition problem. Among the PT methods,
only three approaches are really valuable, including decomposing a multi-label
example into several single-label examples or into several independent binary
classification problems, or wrapping independently each labelset as a new single-
label class. And the other is Algorithmic Adaption(AA) method, which adapts
traditional single-label algorithms for the multi-label example and constructs
corresponding MLL classifier. Nevertheless, most AA approaches in essence are
in conjunction with the PT methods [3]. Therefore, we adopt three PT methods
as the underlying algorithm for CP, and then construct three implementations
of MLCP respectively.

2.2 Conformal Predictor

Given a training example sequence Z(n) = (z1, z2, ..., zn) and a testing instance
xn+1, CP applies transductive inference to incorporate the test instance to
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learn the predicted label. Specifically, CP iterates through each possible label
y ∈ {1, 2, ..., C} , where C is the number of labels, to establish a respective
testing example zy

n+1 = (xn+1, y). Then the test example is incorporated with
the training data Z(n) to construct the corresponding testing data sequence,
i.e., z1, z2, ..., zn, zy

n+1. After that, CP executes the algorithmic randomness test
to evaluate the fitness of testing data sequence being i.i.d.. In order to fit the
multi-dimensional data, a compromise is reached on that uses a particular non-
conformity function Λ to map the testing data sequence into a sequence of real
score, i.e,

αi = Λ(�z1, . . . , zi−1, zi+1, . . . , zn, zy
n+1�, zi) (1)

As a necessity, each score αi reflects the nonconformity of the example zi

with the rest examples. Next, a smoothed p-value is computed as follows,

py
n+1 =

∣∣{i = 1, 2, ..., n + 1 : αi > αy
n+1}

∣∣ + λ ·
∣∣{i = 1, 2, ..., n + 1 : αi = αy

n+1}
∣∣

n + 1
(2)

where λ is a random value in [0, 1].
In the end, given a predefined significance level ε, CP outputs the prediction

set as follows:
τε
n+1 = {y : py

n+1 > ε, y = 1, 2, ..., C} (3)

The virtue of CP is that the error rate has been theoretically proved to be
bounded by the significance level ε, i.e.,

P{yn+1 /∈ τε
n+1} ≤ ε (4)

where yn+1 is the true label of the test instance xn+1. The formality of Equation
(4) is well known as the calibration property of CP.

3 The Implementations of Multi-Label Conformal
Predictor

Consider the learning setting of MLCP : given a training example sequence
Z(n) = ((x1, Y1), (x2, Y2), ..., (xn, Yn)), the task is output a labelset for the testing
instance xn+1. With three PT methods being the underlying algorithms of CP,
three implementations of MLCP, i.e., Instance Reproduction MLCP (IR-MLCP),
Binary Relevance MLCP (BR-MLCP) and Power Set MLCP (PS-MLCP) can
be constructed respectively.

IR-MLCP and PS-MLCP have been introduced in recent two papers[5,8], and
BR-MLCP is the new one firstly proposed in this paper. All three algorithms
are described in detail as follows.

3.1 Instance Reproduction MLCP

The implementation of IR-MLCP has been proposed in our previous study[8].
The pseudo-code of IR-MLCP is demonstrated in Algorithm 1.
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Algorithm 1. Instance Reproduction MLCP
Data: training set Z(n), testing instance xn+1

Result: predicted labelset Ŷn+1

initialization;

1. Z(n) → Z(n′) where n′ ≥ n representing the size of enlarged single-label dataset.
for i = 1 to n do

– given Yi={h1, h2, ..., hli}, where {h1, h2, ..., hli} ⊆ {1, 2, ..., Q} and li is the
size of the labelset Yi. The instance xi is replicated (li − 1) times to
propagate li identical instances.

– each pair of (xi, hj), j = 1, 2, ..., li is added to the new single-label dataset

end

2. the test instance xn+1 is committed to the new dataset Z(n′) for prediction.
3. applying basic procedure of conformal prediction, i.e., Equation (1) and (2), to

output a region prediction as follows,

τε
n+1 = {q : pq

n+1 > ε, q = 1, 2, ..., Q} (5)

4. using τε
n+1 as the prediction labelset Ŷn+1

It is worth noting that MLL classifier, as well as IR-MLCP, is essentially a
region predictor. Consequently, many evaluation metrics rather than accuracy
rate have been studied. The performance of IR-MLCP has been studied using
some MLL-specified evaluation criteria, i.e., Hamming loss,one-error,etc.[8]. Fur-
thermore, in order to explore the calibration property of IR-MLCP, a definition
of error is needed. In this scenario, an error occurs if the label in true labelset
Yn+1 is not present in the prediction τε

n+1 ,

errhj

n+1 =

{
1 hj /∈ τε

n+1, hj ∈ Yn+1

0 otherwise
(6)

Therefore, IR-MLCP is valid if it satisfies the calibration property

P{errn+1 ≤ ε} ≤ ε (7)

where errn+1 = 1
|Yn+1|

∑
hj∈Yn+1

err
hj

n+1.

3.2 Binary Relevance MLCP

The implementation of BR-MLCP is a new method first proposed in this paper.
The underlying PT method is using one-against-all method to convert Q single-
label datasets into the binary classification problem. The pseudo-code of BR-
MLCP is given in Algorithm 2.

It’s worth noting that a label is chosen to be a predicted result with its
p-value greater than ε/Q instead of ε. It is derived from the integrating effect
of multiple p-values which possess the valid property,i.e., P{p ≤ ε} ≤ ε [4].
Actually, BR-MLCP also outputs a labelset. An error occurs if the true labelset
Yn+1 is not a subset of the prediction set τε

n+1 . Therefore, BR-MLCP is valid
if it satisfies the theorem as follows:
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Algorithm 2. Binary Relevance MLCP
Data: training set Z(n), testing instance xn+1

Result: predicted labelset Ŷn+1

initialization;

1. Z(n) → {Z(n)q = (zq
1 , zq

2 , ..., zq
n), q = 1, 2, ..., Q}

for q = 1 to Q do

– construct a binary dataset Z(n)q with the example like zq
i = (xi, bi), where

bi ∈ {q, −q} with bi = q if q ∈ Yi and −q otherwise.
– the test instance xn+1 is committed to the new dataset Z(n)q for prediction.
– applying basic procedure of conformal prediction, i.e., Equation (1) and (2),

to output the confidence measure, i.e., p-value pq
n+1

end
2. Collecting all Q p-values, i.e., pq

n+1, q = 1, 2, ..., Q to output a region prediction, as
follows,

τε
n+1 = {q : pq

n+1 > ε/Q, q = 1, 2, ..., Q} (8)

3. using τε
n+1 as the prediction labelset Ŷn+1

Theorem 1. BR-MLCP satisfies the following validity property:

P{Yn+1 �⊂ τε
n+1} ≤ ε (9)

Proof. The event Yn+1 �⊂ τε
n+1 may happen if there exists at least one q ∈

{1, 2, ..., Q}, such that q ∈ Yn+1 but q /∈ τε
n+1. In terms of a binary problem, this

means: zq
n+1 = q but pq

n+1 ≤ ε/Q. By validity of two-class CP, the probability of
this is at most ε/Q for each q. So the overall probability is at most ε.

P{Yn+1 �⊂ τε
n+1} ≤ ε (10)

3.3 Power Set MLCP

PS-MLCP has been proposed by Papadopoulos [5]. The pseudo-code of PS-
MLCP is demonstrated in Algorithm 3.

Obviously, the deficiency of PS-MLCP is the sophisticated output, which
contains a set of labelsets. Generally, the output of PS-MLCP is not the final
result. It usually should be further submitted to practitioner for clarification. An
error occurs if the true labelset Yn+1 is not in the predicted labelsets. Obviously,
due to the consistence with ordinary conformal prediction, PS-MLCP should be
valid.

4 Experimental Results

Two of the most commonly used benchmark datasets in MLL, i.e., scene and
yeast, were used in the experiments. Both datasets can be downloaded from
the benchmark sources of MLL (http://mulan.sourceforge.net/datasets.html).

http://mulan.sourceforge.net/datasets.html
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Algorithm 3. Power Set MLCP
Data: training set Z(n), testing instance xn+1

Result: predicted labelsets
initialization;

1. Z(n) → Z
′(n)

for i = 1 to n do

– (xi,Yi) is transform to be (xi,γi) where the new class γi is in the label
power-set space, i.e., γi ∈ {1, 2, ..., 2Q}

end
2. the test instance xn+1 is committed to the new single-label dataset

Z′(n) = ((x1, γ1), (x2, γ2), ..., (xn, γn)) for prediction.
3. applying basic procedure of conformal prediction, i.e., Equations (1) and (2), to

output a predicted labelsets as follows,

τε
n+1 = {γ : pγ

n+1 > ε, γ = 1, 2, ..., 2Q} (11)

4. using τε
n+1 to be a set of labelsets as the prediction result for xn+1

The first data set, scene, is an image dataset that assigns each image with
one or more labels, coming from the whole set of six labels, i.e., beach, sun-
set, field, fall-foliage, mountain, and urban. The index of Label Cardinality (LC)
which computes the average number of labels per example is quite low 1.08 in
scene. Furthermore, many labelsets (e.g. mountains+sunset +field) are extremely
rare. So the number of Actual Labelsets(AL) is far less than that of Bound of
Labelsets(BL). In addition, the index of Labelsets Diversity (LD) which is used
to describe the proportion of distinct Labelsets appeared in scene, is 23%. The
second data set, yeast, is a biomedical data set that represents each gene with
several gene functions (labels) coming from a complete set of 14 labels. The
characteristics of yeast as well as scene are summarized in Table 1.

Table 1. Characteristics of datasets

#examples #attributes #labels BL AL LD LC

scene 2407 294 6 64 15 23% 1.08
yeast 2417 103 14 2417 198 8% 4.25

According to Algorithms 1-3, the common phase in three different implemen-
tations of MLCP is the basic procedure of conformal prediction, which requires
a design of nonconformity measure to compute the sequence of nonconformity
scores in Equation (1). For the sake of consistency and comparability, we chose
the same nonconformity measure in each algorithm. Specially, we used the widely

known KNN-based nonconformity measure, i.e., αi =
∑K

j=1 D
yi
ij

∑K
j=1 D

−yi
ij

, i = 1, 2, ...,

where αi is the nonconformity score of the example in terms of (xi, yi). Notably,
the set of classes containing yi and −yi is diversity, i.e., Q classes for IR-MLCP,
2 classes for BR-MLCP and 2Q classes for PS-MLCP. And Dyi

ij and D−yi

ij is the
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jth shortest distance between instance xi and the instances labelled same and
differently from xi respectively. And K is the number of nearest neighbours. In
our experiments, the parameter K was set to be K = 3, and Euclidean distance
was used to obtain the distance between two instances. All the three algorithms
were executed in online mode.

4.1 Comparisons of Calibration Property

In this subsection, we present the empirical exploration of the calibration prop-
erty of three MLCP implementations. The distributions of error rate against
significance level are depicted in Fig. 1 for IR-MLCP, in Fig. 2 for BR-MLCP
and in Fig. 3 for PS-MLCP respectively.
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Fig. 1. The test calibration of IR-MLCP
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Fig. 2. The test calibration of BR-MLCP
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Fig. 3. The test calibration of PS-MLCP

It can be seen in Fig. 1, the baseline serves as ideal property, i.e., exact cali-
bration, where the error rate is exactly equal to the predefined significance level.
Obviously, the distributions of IR-MLCP in both cases of scence and yeast are
all lower than their corresponding base calibration lines, i.e., the error rates are
always smaller than the corresponding significance levels, which shows that IR-
MLCP performs conservative calibration. Fig. 2 shows that the distributions of
BR-MLCP is also under the baselines, which illustrates the property of conser-
vative calibration. While for PS-MLCP in Fig. 3, the calibration lines are closely
attached to the baseline, which demonstrates excellent calibration property.
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In conclusion, all the three implementations of MLCP, i.e, IR-MLCP, BR-
MLCP and PS-MLCP, are valid. It manifests that calibrated MLL prediction
via conformal predictors is feasible. In return, it reveals that conformal predic-
tion preserves effective ways of adapting its framework to MLL. Therefore, the
implementations of IR-MLCP, BR-MLCP and PS-MLCP can provide calibrated
prediction to make the error rate bounded by the predefined significance level.

4.2 Comparisons of Prediction Efficiency

Except for the test calibration property, the prediction efficiency is another main
consideration of MLCP methods. According to CP, there are two kinds of effi-
ciency criteria: ε-dependent efficiency criteria and ε-free efficiency criteria[2]. The
two sets of criteria can accordingly be transplanted into MLCP, but need some
modifications. Due to the page limit, we used two criteria chosen from each of the
sets of criteria and modified them for MLCP. The modified criteria are OEMLL

and OFMLL in our experiments. In case of OEMLL, it is defined the percentage
of false labels in the prediction labelset. Respectively, it mean the number of
false labels in prediction labelset over Q for IR-MLCP and BR-MLCP, and over
Actual Labelsets for PS-MLCP. While for OFMLL, it means the average of all
p-values for false labels for a test instance. Consequently, the averaged OFMLL

and OEMLL across the whole dataset were calculated in Table 2.

Table 2. Comparison of prediction efficiency for three MLCP methods

Criteria Method
scene yeast

ε = 0.05 ε = 0.1 ε = 0.2 ε = 0.05 ε = 0.1 ε = 0.2

OEMLL

IR-MLCP 0.8933 0.6236 0.2621 0.9801 0.9596 0.9183
BR-MLCP 0.2436 0.1806 0.1196 0.5689 0.5266 0.4615
PS-MLCP 0.1559 0.0873 0.0392 0.6508 0.3502 0.1743

OFMLL

IR-MLCP 0.1653 0.737
BR-MLCP 0.0215 0.1027
PS-MLCP 0.0363 0.1174

Note that the smaller of OEMLL or OFMLL , the better is. As shown in
Table 2, in both cases of scene and yeast, PS-MLCP performs the best in terms
of OEMLL, with the gap between PS-MLCP and the others is enlarged when ε is
large. While BR-MLCP illustrates its better efficiency in terms of OFMLL. The-
oretically, high prediction efficiency of MLCP methods stems from two aspects,
i.e., the effectiveness of multi-label transformation and the effectiveness of con-
formal prediction. Obviously, PS-MLCP owes to its ability of attracting com-
plete potential correlations among labels. While PS-MLCP may dramatically
worsen when it handles with a large amount of classes in conformal prediction.
While the factor of effective conformal prediction contributes to the superior-
ity of BR-MLCP. Because conformal prediction tends to be successful in the
binary classification tasks. Furthermore, the KNN-based nonconformity mea-
sure also promotes the superiority of BR-MLCP, because it always deals well
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with class-imbalance when K is small. When it comes IR-MLCP, the relatively
poor efficiency might be due to the ignorance of label correlations and the large
amount of multiple classes in conformal prediction.

4.3 Comparisons of Computational Complexity

From the comparative respective, computational complexity is an important
issue. The computational cost of MLCP method depends on the computational
complexity of multi-label data transformation method and the basic procedure of
conformal prediction. Especially, by using the same KNN-based nonconformity
measure in different MLCP methods, the computational complexity of conformal
prediction is similar. That is, suppose the number of train data is n, the number
of features is p and the number of labels is Q, the computational cost of KNN-
based conformal prediction is O(Q · n · p). However, the actual value of O(Q · n ·
p) is determined by the computational complexity of different multi-label data
transformation methods.

For IR-MLCP, the computational cost is O(Q ·n′ ·p). The expansion of train
dataset Z(n) → Z(n′) makes up a great portion of computational cost when the
label cardinality is large. For BR-MLCP, the basic conformal prediction must be
executed Q times. So there is a multiplier Q for the time complexity. However,
each basic conformal prediction consists of binary labels. Consequently, the com-
putational cost is O(Q ·2 ·n ·p). For PS-MLCP, the labelset transformation from
Yi to γi ∈ {1, 2, ..., 2Q} contributes to the computation burden. In extreme cases,
the computational cost of PS-MLCP is O(2Q · n · p), while the computational
burden can reduce when labelsets diversity is small.

Table 3. Averaged execution time (Sec-
ond) of three MLCP methods

dataset IR-MLCP BR-MLCP PS-MLCP

scene 145.61 339.97 275.39
yeast 4802.69 529.61 3426.05

Besides the theoretical complexity analysis, we recorded the averaged time
of 10 runs of three MLCP methos in Table 3. From Table 3 we can see IR-
MLCP runs fastest in scene dataset and BR-MLCP runs almost ten times more
quickly than the other two MLCP methods in yeast dataset. While BR-MLCP
is the slowest for scene dataset, IR-MLCP is the slowest in yeast dataset. Obvi-
ously, the label cardinality factor determines the performance of IR-MLCP in the
experiments. Consider BR-MLCP in the case of yeast with 14 labels, it obtains
excellent performance when the number of labels is large. While for PS-MLCP,
it does not have an advantage in terms of computation efficiency.
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5 Conclusion

This paper presents the first summary of three implementations of multi-label
conformal predictors, i.e., IR-MLCP, BR-MLCP and PS-MLCP, which illus-
trated and compared in detail the respective pros and cons of each method.
The experimental results showed that all the three methods have calibration
property that guarantees theoretical reliability in prediction. Comparatively, in
case of prediction efficiency, BR-MLCP always benefits from effective conformal
prediction, while PS-MLCP can take advantage of attracting complete potential
correlations among labels. While in terms of computational cost, both IR-MLCP
and BR-MLCP have advantages. Further work should establish additional imple-
mentation of MLCP for multi-label learning task. Furthermore, the adaption of
traditional single-label nonconformity measures to fit the multi-label example
would also be crucial for the success of multi-label conformal prediction. In addi-
tion, the reduction of computational burden of PS-MLCP could be investigated
when the union of the outputted labelsets is informative.
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Abstract. The original definition of a p-value in a conformal predic-
tor can sometimes lead to too conservative prediction regions when the
number of training or calibration examples is small. The situation can be
improved by using a modification to define an approximate p-value. Two
modified p-values are presented that converges to the original p-value as
the number of training or calibration examples goes to infinity.

Numerical experiments empirically support the use of a p-value we
call the interpolated p-value for conformal prediction. The interpolated
p-value seems to be producing prediction sets that have an error rate
which corresponds well to the prescribed significance level.

1 Introduction

Conformal predictors [6] provide an excellent way of generating hedged predic-
tions. Given a prescribed significance level, ε, they make errors when predicting
new examples at a rate corresponding to ε. The conformal predictor is said
to be a valid predictor. This property is attained by predicting sets of pos-
sible labels rather than individual labels which is often the case for standard
machine-learning methods. However, all conformal predictors are conservatively
valid which means that the error rate usually is smaller than the required sig-
nificance level. Conservative validity leads to less or non-optimal efficiency for
a predictor and the ideal situation would be for any conformal predictor to be
exactly valid, not only because the relation to efficiency but also because we
do not want the predictions to deviate from our expectation with respect to the
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error rate. Reduced efficiency has been observed when using inductive conformal
predictors on typical regression datasets from the drug-discovery domain [4]. The
observation was that for predictions at low significance levels, prediction ranges
sometimes exceeded the observed label range, which could be perceived by users
of such predictors as the conformal prediction theory is not very useful. In ongo-
ing work where we use trees for inductive conformal predictions and condition on
examples in end leaves of the trees, we observe a similar pattern [5]. In both these
examples the problem seems to originate from a limited number of calibration
examples leading to an insufficient resolution in p-values.

Given that the exchangeability assumption is fulfilled, the main vehicle for
achieving improved efficiency is through improved definitions of the nonconfor-
mity scores. This is an area of active research and there are many different ways
to construct nonconformity scores through for example using different machine-
learning algorithms as part of the definition of nonconformity scores. This is a
trial and error process. Another possibility would be to see if there are alterna-
tive ways of using the nonconformity scores when computing p-values. We are
not aware of any previous approaches and this is why we will attempt to put
forward suggestions for alternative definitions of p-values.

The organization of this paper is the following. In the next section we propose
another definition of a p-value and also a more generally described p-value. We
show that they converge to the p-value suggested in [6] as the number of training
examples goes to infinity. Then, in section 3, we empirically study validity and
efficiency of all three types of p-values. We conclude the paper in the last section
discussing the results.

2 Modifications of the P-value

We are considering a set of examples {z1, . . . , zn}. A general definition of a
smoothed conformal predictor is given in [6], however in this section we will
study a non-smoothed p-value or its modifications without loss of generality.
The definition of a non-smoothed p-value can be expressed as

p =
|{i = 1, . . . , n : αi ≥ αn}|

n
, (1)

and we will refer to this as the original p-value. In this case αn is the noncon-
formity score of a new example zn. This example can be predicted using a set
predictor

Γ ε(z1, . . . , zn−1) : {z|p > ε}, (2)

and the nonconformity scores are defined by

(α1, . . . , αn) := A(z1, . . . , zn), (3)

where A is a nonconformity function producing nonconformity scores for zi under
the exchangeability model. In (1) the nonconformity score αn, corresponding to
the new example zn, is assumed to belong to the same probability distribution as
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the nonconformity scores of the previously observed examples and is included in
the distribution when its relative position (based on size) is determined. Since all
different αi that we have observed are random discrete variables, we can define
a probability density function

f(t) =
n∑

i=1

1
n
δ(t − αi), (4)

where δ is the Dirac delta function. Furthermore, assume αi ∈ [αmin, αmax] and
αmin, αmax ∈ R. Then

F (αn) := Pr(t ≥ αn) =
∫ αmax

αn

n∑
i=1

1
n
δ(t − αi)dt

=
1
n

n∑
i=1

(
θ(αmax − αi) − θ(αn − αi)

)
, (5)

where θ is the Heaviside step function. If we assume that all αi are different and
that αmin < αn < αmax then (5) becomes

F (αn) =
1
n

n∑
i=1

(
1 − θ(αn − αi)

)
. (6)

With θ(0) := 0 we get F (αn) ≡ p and since all αi are exchangeable the proba-
bility that the set predictor Γ ε will make an error is ε as n → ∞.

Let us consider an alternative view where we exclude αn from the distribution
of random discrete variables. After all, given the set of previous observations
{z1, . . . , zn−1} we want to assess how nonconforming zn is. All examples are still
equally probable and we do not change the assumption of exchangeability. The
probability density function with zn excluded is

f̃(t) =
n−1∑
i=1

1
n − 1

δ(t − αi), (7)

corresponding to (5) a modified p-value can be defined as

p̃ := F̃ (αn) =
1

n − 1

n−1∑
i=1

(
1 − θ(αn − αi)

)
. (8)

To see what effect our alternative view has we form the difference between the
original and modified p-value

p − p̃ =

(
1
n

−
1

n − 1

)
n−1∑
i=1

(
1 − θ(αn − αi)

)
+

1
n

=
1 − F̃ (αn)

n

=
1 − p̃

n
. (9)
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Rearranging this last expression leads to p̃ = (np − 1)/(n − 1) and as n → ∞
the modified p-value converges to the original p-value. Thus, we have shown the
following proposition.

Proposition 1. A conformal predictor based on the p-value in (8) is asymptot-
ically conservatively valid.

An alternative way of representing the modified p-value is

p̃ =
|{i = 1, . . . , n − 1 : αi ≥ αn}|

n − 1
, (10)

and smoothing can be applied similarly to how it is applied to the original p-
value, since smoothing is a way to ensure that p-values ultimately are distributed
uniformly even though there are two or more nonconformity scores that are
identical. It is interesting to observe that, given that the nonconformity scores are
sorted and renumbered in increasing order, for one particular i then αi−1 < αn <
αi where i = 2, . . . , n − 1. For any αn within these bounds the p-value will be
constant. In the following in addition to sorted nonconformity scores, also assume
that 0 ≤ t ≤ 1 and t ∈ R. Furthermore, let there exist a monotonically increasing
function g(t) with known values g(t0 := 0) = αmin, g(tn−1 := 1) = αmax,
g(tn) = αn and g(ti) = αi for i = 1, . . . , n − 2. The corresponding probability
density function is

fg(t) =
n−1∑
i=1

g(t)
(
θ(t − ti−1) − θ(t − ti)

)
, (11)

with a p-value defined as

pg := Fg(tn) = Pr(t ≥ tn) =

∫ 1

tn
fg(t)dt∫ 1

0
fg(t)dt

. (12)

NB we do not have to explicitly compute this expression as long as p̃ ≤ pg

and this is obviously true for any αn and i such that αi−1 < αn < αi where
i = 1, . . . , n − 1. Hence, we only need to estimate tn to get pg. To conclude this
section, we have now shown the following proposition.

Proposition 2. A conformal predictor based on the p-value in (12) is asymp-
totically conservatively valid.

3 Empirical Results of Modified P-values

In this section we will empirically study the validity and efficiency of conformal
predictors based on the three different p-values described in the previous section.
We are particularly interested in the case of small calibration sets. But first we
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will define a p-value corresponding to (12). Given that the nonconformity scores
of the already learnt examples are sorted in increasing order with respect to their
index, that is αi < αi+1, find a k = 0, . . . , n−2 such that αk < αn < αk+1. Then
an alternative expression to (12) based on determining tn by linear interpolation
using g(tk), g(tk+1) and g(tn) is,

pg =
|{i = 1, . . . , n − 1 : αi ≥ αn}| − 1

n − 1
+

1 −
αn − αk

αk+1 − αk

n − 1
. (13)

The second term comes from the linear interpolation and we remark that other
approximations can be used to more accurately describe g(tn) as long as they
are monotonically increasing. Even for this p-value, smoothing can be applied
in exactly the same way as it is applied for the original p-value. We will in the
remainder of this paper refer to the p-value in (1) as the original p-value, to (10)
as the modified p-value and finally to (13) as the interpolated p-value.

For the numerical experiments, we have used both binary classification res-
ponses and regression responses. We used the random forest implementation of
the scikit-learn package [1] with default parameters and always 100 trees. The
nonconformity scores for classification was defined as

α = 1 − P̂ (y | h(x)), (14)

and for regression it was

α =
|h(x) − y|

σ(x)
, (15)

where h(x) is a prediction of an object x and y the object’s label. P̂ is what
scikit-learn denotes probability. In the case of regression, we trained a second
model on log-residual errors and the corresponding prediction of an object is
σ(x). The prediction sets for classification were calculated using (2) and in the
regression case the following expression was used to compute the prediction range
for a given significance level ε

Ŷ ε = h(x) ± αεσ(x), (16)

and the midpoint of the range, y = h(x). The datasets used in the empirical
study are listed in Table 1. All datasets were taken from UCI [3] except anacalt,
which was taken from KEEL [2]. The response variables of the regression datasets
were linearly scaled to have values in the range [0, 1] and the objects were not
scaled. The procedure we followed to generate the empirical results is outlined
in Algorithm 1.
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Table 1. Datasets

(a) Classification

Dataset Features
balance-scale 4
diabetes 8
mushroom 121
spambase 57
tic-tac-toe 27

(b) Regression

Dataset Features
abalone 8
anacalt 7
boston 13
comp 12
stock 9

for iter ∈ {1, 20} do
for dataset ∈ datasets do

for calibrationSize ∈ {29, 49, 99} do
trainX, testY = dataset.drawrandom(200)
testX, testY = dataset.drawrandom(100)
calX, calY = dataset.drawrandom(calibrationSize)
model = train(trainX, trainY)
nonconformityScores = calibrate(model, calX, calY)
predict(testX, model, nonconformityScores, original)
predict(testX, model, nonconformityScores, modified)
predict(testX, model, nonconformityScores, interpolated)

end
end

end
Algorithm 1. This represents how the numerical experiments were conducted.
The function dataset.drawrandom(n) randomly draws, without replacement,
a subset of size n from dataset.

The results for classification and regression were calculated averaging the
results for each individual dataset and they are presented in Figures 1 and 2,
respectively and are shown for significance levels from 0 to 0.2. The main observa-
tion is that for both types of labels, in terms of error rate as well as for efficiency,
the interpolated p-value seems to be upper bounded by the original p-value and
lower bounded by the modified p-value. Also, the interpolated p-value changes
smoothly as opposed to the other two that have a saw-toothed shape. The order
of the p-values in terms of increasing efficiency is original, to interpolated and
then to modified. In terms of increasing error rate the order is reversed.



Modifications to p-Values of Conformal Predictors 257

(a) Errors, 29 calib. examples. (b) Size, 29 calib. examples.

(c) Errors, 49 calib. examples. (d) Size, 49 calib. examples.

(e) Errors, 99 calib. examples. (f) Size, 99 calib. examples.

Fig. 1. Classification error rates (left) and prediction sizes (right, average number of
classes per prediction) for original p-values (red), modified p-values (blue), interpolated
p-values (cyan)
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(a) Errors, 29 calib. examples. (b) Size, 29 calib. examples.

(c) Errors, 49 calib. examples. (d) Size, 49 calib. examples.

(e) Errors, 99 calib. examples. (f) Size, 99 calib. examples.

Fig. 2. Regression error rates (left) and prediction sizes (right, average portion of the
label space covered per prediction) for original p-values (red), modified p-values (blue),
interpolated p-values (cyan)
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4 Discussion

We have introduced a new type of p-value which is based on interpolated noncon-
formity scores. The interpolated p-value is shown to be asymptotically conser-
vatively valid and empirically more close to being exactly valid than the original
p-value proposed in [6]. We remark that these differences are only observed when
the learnt distribution of calibrations examples are relatively small i.e. under 100
examples. For larger samples there does not seem to be a difference and our the-
oretical analysis show that all p-values covered in this paper converge to the
same value for one particular set of examples as the example size goes to infin-
ity. The computational complexity of the interpolated p-value is of the same
order as the original p-value. In future work, we will try to compare the original
p-value to the interpolated p-value when applied to different datasets and also
with different nonconformity functions.
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Abstract. Cross-Conformal Prediction (CCP) is a recently proposed
approach for overcoming the computational inefficiency problem of Con-
formal Prediction (CP) without sacrificing as much informational effi-
ciency as Inductive Conformal Prediction (ICP). In effect CCP is a
hybrid approach combining the ideas of cross-validation and ICP. In
the case of classification the predictions of CCP have been shown to be
empirically valid and more informationally efficient than those of the
ICP. This paper introduces CCP in the regression setting and examines
its empirical validity and informational efficiency compared to that of
the original CP and ICP when combined with Ridge Regression.

Keywords: Conformal prediction · Cross-validation · Inductive confor-
mal prediction · Prediction regions · Tolerance regions

1 Introduction

Conformal Prediction (CP) is a machine learning framework for extending con-
ventional machine learning algorithms and producing methods, called Conformal
Predictors (CPs), that produce prediction sets satisfying a given level of confi-
dence. These sets are guaranteed to include the correct labels with a probability
equal to or higher than the required confidence level. To date many CPs have
been developed and have been shown to produce valid and useful in practice set
predictions; see e.g. [2,4,5,8,9,11]. The main drawback of the methods developed
following the original version of the CP framework is that they are much more
computationally inefficient than the conventional algorithms they are based on.
A modification of the framework, called Inductive Conformal Prediction (ICP),
overcomes this problem by using different parts of the training set for the two
stages of the CP process. This however, has the undesirable side-effect of losing
some of the informational efficiency of the original version of the framework. That
is the resulting prediction sets are larger than those produced by the original
framework.

In an effort to get the best of both worlds a new modification of the frame-
work was proposed in [12], called Cross-Conformal Prediction (CCP), which
combines the idea of ICP with that of cross-validation. In [12] CCP was studied
c© Springer International Publishing Switzerland 2015
A. Gammerman et al. (Eds.): SLDS 2015, LNAI 9047, pp. 260–270, 2015.
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in the Classification setting and was shown to produce empirically valid confi-
dence measures with higher informational efficiency than those of the ICP. This,
combined with its comparable to ICP computational efficiency makes CCP the
best option when the computational time required by the original CP is too
much.

This paper introduces CCP in the case of regression and examines its empiri-
cal validity and informational efficiency. The particular method examined in this
work is based on the well known Ridge Regression algorithm, which is the first
algorithm to which regression CP has been applied and one of the only two algo-
rithms for which the original version of CP was developed (the second algorithm
is Nearest Neighbours Regression). However the approach described here can be
followed with any regression algorithm. This is actually an additional advantage
of CCP and ICP over the original CP as the latter can only be combined with
particular algorithms in the case of regression. Furthermore unlike the original
CP, CCP can be used with all normalized nonconformity measures (see [7,8]),
which were shown to improve the informational efficiency of ICP.

The rest of this paper starts with a description of the CP framework and its
inductive version in Section 2. Then Section 3 details the CCP approach and
explains the way it can be followed in the case of Regression. Section 4 gives the
definition of a normalized nonconformity measure, first proposed in [7] for the
Ridge Regression ICP, which was used in the experiments performed. This is
followed by the experimental examination of CCP and its comparison with the
original CP and ICP in Section 5. Finally Section 6 gives the concluding remarks
and future directions of this work.

2 Conformal and Inductive Conformal Prediction

We are given a training set of l observations {z1, . . . , zl}, where each zi ∈ Z is
a pair (xi, yi) consisting of an object xi ∈ X and an associated label yi ∈ Y
(dependent variable). We are also given a new object xl+1 and our aim is to
produce a prediction set, or region that will contain the correct label yl+1 with a
predefined confidence with the only assumption that all zi ∈ Z are exchangeable.

CP assumes every possible label ỹ ∈ Y of xl+1 in turn and calculates the
nonconformity scores

αỹ
i = A({z1, . . . , zi−1, zi+1, . . . , zl, z

ỹ
l+1}, zi), i = 1, . . . , l, (1a)

αỹ
l+1 = A({z1, . . . , zl}, zỹ

l+1), (1b)

where zỹ
l+1 = (xl+1, ỹ) and A(Si, zj) is a numerical score indicating how strange

it is for the example zj to belong to the examples in the set Si ⊂ Z. In effect
the function A, called the nonconformity measure of the CP, uses a conventional
machine learning algorithm, called the underlying algorithm of the CP, to assess
the nonconformity of zj to the set Si. The resulting nonconformity scores can
then be used to calculate the p-value of ỹ as

p(z1, . . . , zl, z
ỹ
l+1) =

|{i = 1, . . . , l : αỹ
i ≥ α

zỹ
l+1

l+1 }| + 1
l + 1

, (2)
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also denoted as p(ỹ). The p-value function (2) guarantees that ∀δ ∈ [0, 1] and
for all probability distributions P on Z,

P ỹ{((x1, y1), . . . , (xl, yl), (xl+1, yl+1)) : p(yl+1) ≤ δ} ≤ δ, (3)

where yl+1 is the true label of xl+1; a proof can be found in [13]. After calculating
the p-value of all possible labels ỹ ∈ Y, the CP outputs the prediction set, or
prediction region (PR) in the case of regression,

{ỹ : p(ỹ) > δ}, (4)

which has at most δ chance of being wrong, i.e. of not containing yl+1.
Of course in the case of regression it would be impossible to explicitly consider

every possible label ỹ ∈ IR. A procedure that makes it possible to compute the
PR (4) with Ridge Regression for the standard regression nonconformity measure

αi = |yi − ŷi| (5)

was proposed in [5]. The same idea was followed in [13] and [8] for the k-nearest
neighbours regression algorithm. Still however this approach has two important
drawbacks

1. it is very computationally inefficient compared to the algorithm the CP is
based on, and

2. it cannot be followed with all regression algorithms.

Inductive Conformal Prediction (ICP) overcomes these problems by dividing
the training set into two smaller sets, the proper training set with m examples
and the calibration set with q = l −m examples. The proper training set is then
used for training the underlying algorithm of the ICP and only the examples in
the calibration set are used for calculating the p-value of each possible classifica-
tion for every test example. More specifically, ICP calculates the p-value of each
possible classification ỹ of xl+1 as

p(ỹ) =
|{i = m + 1, . . . , m + q : αi ≥ αỹ

l+1}| + 1
q + 1

, (6)

where

αi = A({z1, . . . , zm}, zm+i), i = 1, . . . , q, (7a)

αỹ
l+1 = A({z1, . . . , zm}, zỹ

l+1), (7b)

and zỹ
l+1 = (xl+1, ỹ).

As with the original CP approach in the case of regression it is impossible
to explicitly consider every possible label ỹ ∈ IR and calculate its p-value. How-
ever, in this case both the nonconformity scores of the calibration set examples
αm+1, . . . , αm+q and the underlying algorithm prediction ŷl+1 are not affected
by the value of ỹ, only the nonconformity score αl+1 is affected. Therefore p(ỹ)
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changes only at the points where αỹ
l+1 = αi for some i = m + 1, . . . , m + q. As a

result, for a confidence level 1 − δ we only need to find the biggest αi such that
when αỹ

l+1 = αi then p(ỹ) > δ, which will give us the maximum and minimum
ỹ that have a p-value bigger than δ and consequently the beginning and end of
the corresponding PR. More specifically, we sort the nonconformity scores of the
calibration examples in descending order obtaining the sequence

α(m+1), . . . , α(m+q), (8)

and output the PR
(ŷl+1 − α(m+s), ŷl+1 + α(m+s)), (9)

where
s = �δ(q + 1)�. (10)

3 Cross-Conformal Prediction for Regression

As ICP does not include the test example in the training set of its underlying
algorithm, the latter needs to be trained only once and in the case of regression
the approach can be combined with any underlying algorithm. However the fact
that it only uses part of the training set for training its underlying algorithm and
for calculating its p-values results in lower informational efficiency, i.e. looser
PRs. Cross-Conformal Prediction, which was recently proposed in [12], tries
to overcome this problem by combining ICP with cross-validation. Specifically,
CCP partitions the training set in K subsets (folds) S1, . . . , SK and calculates
the nonconformity scores of the examples in each subset Sk and of (xl+1, ỹ) for
each possible label ỹ as

αi = A(∪m �=kSm, zi), zi ∈ Sk, m = 1, . . . , K, (11a)

αỹ,k
l+1 = A(∪m �=kSm, zỹ

l+1), m = 1, . . . , K, (11b)

where zỹ
l+1 = (xl+1, ỹ). Note that for zỹ

l+1 K nonconformity scores αỹ,k
l+1, k =

1, . . . , K are calculated, one with each of the K folds. Now the p-value for each
possible label ỹ is computed as

p(ỹ) =

∑K
k=1 |{zi ∈ Sk : αi ≥ αỹ,k

l+1}| + 1
l + 1

. (12)

Again in the case of regression the possible labels ỹ ∈ IR are infinite. Still
though, like in the case of the ICP, only the nonconformity score of zl+1 is affected
by changes to the value of ỹ. As a result p(ỹ) can change only at the values of
ỹ for which αỹ

l+1 = αi for some i = 1, . . . , l. Note that in this case however we
have K different predictions ŷ1

l+1, . . . , ŷ
K
l+1, where ŷk

l+1 was produced by training
the underlying algorithm on ∪m �=kSm, m = 1, . . . , K. Specifically nonconformity
measure (5) in this case for an example zi ∈ Sk is actually

αi = |yi − ŷk
i |; (13)
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for αỹ,k
l+1 replace yi with ỹ. As a result, each ỹ is associated with K nonconformity

scores αỹ,1
l+1, . . . , α

ỹ,K
l+1 and each αỹ,k

l+1 is compared with the nonconformity scores
of the examples in Sk. So in order to find the values for which p(ỹ) > δ we map
each nonconformity score αi to the ỹ values for which αỹ

l+1 = αi generating the
lists

νi = ŷk
l+1 − αi, zi ∈ Sk, i = 1, . . . , l, (14a)

ξi = ŷk
l+1 + αi, zi ∈ Sk, i = 1, . . . , l. (14b)

Now p(ỹ) changes only at the points where ỹ = νi or ỹ = ξi for some i =
1, . . . , l. So if ỹ1, . . . , ỹ2l are the values ν1, . . . , νl, ξ1, . . . , ξl sorted in ascending
order and if ỹ0 = −∞ and ỹ2l+1 = ∞, then p(ỹ) remains constant in each interval
(ỹ0, ỹ1), (ỹ1, ỹ2), . . . , (ỹ2l, ỹ2l+1).

The p-value in each interval (ỹi, ỹi+1) can be calculated as

pi =
|{i = 1, . . . , l : νi ≤ ỹi}| − |{i = 1, . . . , l : ξi ≤ ỹi}| + 1

l + 1
. (15)

Consequently for any confidence level 1 − δ the resulting PR is:
⋃

i:pi>δ

[ỹi, ỹi+1]. (16)

Note that these PRs may have ‘holes’ in them. This however should happen very
rarely, if ever, for the low values of δ we are interested in.

Although CCP needs to train its underlying algorithm K times as opposed
to just one for ICP, it is still much more computationally efficient than the
original CP. It also can be combined with any underlying algorithm in the case
of regression. In comparison with ICP it generates its PRs based on a much
richer set of nonconformity scores, resulting from all training examples rather
than just the calibration examples. Furthermore, in most cases (depending on K)
the underlying algorithm of the CCP is trained on a larger training set compared
to the proper training set of the ICP.

4 Normalized Nonconformity Measures

In addition to the typical nonconformity measure (5) some additional nonconfor-
mity measures for regression have been proposed in [6–8] for Ridge Regression,
Nearest Neighbours Regression and Neural Networks Regression. These mea-
sures normalize (5) by the expected accuracy of the underlying algorithm being
used. The intuition behind this is that if two examples have the same nonconfor-
mity score as defined by (5) and the prediction ŷ of the underlying algorithm for
one of them was expected to be more accurate than the other, then the former
is actually less conforming than the latter. This leads to PRs that are larger for
the examples which are more difficult to predict and smaller for the examples
which are easier to predict.
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Almost all such nonconformity measures however, cannot be used in con-
junction with TCP, with the exception of only two out of the six such measures
proposed in [8]. This is an additional advantage of CCP over TCP, since the
former, like ICP, can be combined with any nonconformity measure.

As this work focuses on Ridge Regression (RR) as underlying algorithm,
this section will describe the nonconformity measure proposed in [7] for this
algorithm. This measure is defined as

αi =
|yi − ŷi|
exp(μi)

, (17)

where μi is the RR prediction of the value ln(|yi − ŷi|). Specifically, after training
the RR algorithm on the training set we calculate the residuals ln(|yj − ŷj |) for
all training examples and train a linear RR on the pairs (xj , ln(|yj − ŷj |)). The
use of the logarithmic instead of the direct scale ensures that the estimate is
always positive.

The resulting PRs in the case of CCP can be generated by calculating νi and
ξi as

νi = ŷk
l+1 − αi exp(μi), zi ∈ Sk, i = 1, . . . , l, (18a)

ξi = ŷk
l+1 + αi exp(μi), zi ∈ Sk, i = 1, . . . , l, (18b)

and following the steps described in Section 3.

5 Experiments and Results

Experiments were performed on four benchmark data sets of different sizes from
the UCI [1] and DELVE [10] repositories: Boston Housing, Concrete Compressive
Strength, Abalone and Pumadyn (the 8nm variant). Table 1 lists the number of
examples and attributes comprising each data set together with the width of the
range of its labels. The aim was to examine the validity and informational effi-
ciency of Cross-Conformal Prediction with Ridge Regression as underlying algo-
rithm using nonconformity measures (5) and (17). The informational efficiency
was assessed in comparison to those of the corresponding original (Transduc-
tive) and Inductive Ridge Regression Conformal Predictors [5,7] under exactly
the same setting.

Evaluation was performed on the results obtained from 10 random runs of a
cross-validation process. Based on their sizes the two smaller data sets (Boston
Housing and Concrete Compressive Strength) were split into 10 folds, whereas
the Abalone data set was split into 5 folds and the Pumadyn data set was
split into 2 folds; this cross-validation process was for generating the training
and test sets the algorithms were evaluated on, not to be confused with the
internal cross-validation of CCP. The input attributes of each data set were
normalized setting their mean value to 0 and their standard deviation to 1.
An RBF kernel was used in the Ridge Regression underlying algorithm, while
the kernel parameter (σ) and ridge factor (a) were optimized on each data set
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Table 1. Main characteristics and experimental setup for each data set

Housing Concrete Abalone Pumadyn

Examples 506 1030 4177 8192
Attributes 13 8 8 8

Label range 45 80.27 28 21.17
Folds (evaluation) 10 10 5 2

Calibration size 99 299 1099 1299

Table 2. PR tightness and empirical validity on the Boston Housing data set

Method/ Mean Width Median Width Errors (%)
Measure 90% 95% 99% 90% 95% 99% 90% 95% 99%

ICP
(5) 9.199 12.435 28.469 9.194 12.170 25.743 10.32 5.24 0.97
(17) 9.099 12.178 26.804 9.037 11.790 24.556 9.82 5.38 1.15

CCP K = 5
(5) 9.511 12.573 25.713 9.351 12.420 25.241 8.10 3.52 0.75
(17) 9.385 12.220 24.936 9.143 11.913 24.457 7.92 3.70 0.61

CCP K = 10
(5) 9.044 12.000 24.496 8.991 11.915 24.242 9.19 4.15 0.83
(17) 8.965 11.583 23.508 8.801 11.336 22.971 9.05 4.23 0.79

CCP K = 20
(5) 8.834 11.673 24.194 8.821 11.647 23.909 9.62 4.47 0.85
(17) 8.742 11.239 22.982 8.592 11.039 22.586 9.64 4.45 0.79

TCP (5) 10.524 13.448 24.810 7.829 10.036 18.536 9.72 4.80 0.79

by minimizing the radius/margin bound for the first three data sets and (due
to its size) the validation error on half the training set for the Pumadyn data
set using the gradient descent approach proposed in [3] and the corresponding
code provided online1. In the case of ICP the calibration set size in was set to
q = 100n − 1, where n was chosen so that q was the closest value less than one
third of the training set; i.e. n = � l

300�, where l is the training set size. Along
with the characteristics of each data set Table 1 gives the number of folds it was
split into and calibration set size q used with ICP.

In order to assess the informational efficiency of the Ridge Regression Cross-
Conformal Predictor (RR-CCP) Tables 2–5 report the mean and median widths
of the PRs produced by RR-CCP with K set to 5, 10 and 20 for the 90%, 95% and
99% confidence levels, along with those produced by the original Transductive
version of CP (TCP) and those produced by ICP for each data set. In the case
of CCP and ICP the widths obtained with both nonconformity measures (5)
and (17) are reported. However with TCP only nonconformity measure (5) can
be used. The same Tables report the percentage of errors made by each method
1 The code is located at http://olivier.chapelle.cc/ams/

http://olivier.chapelle.cc/ams/
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Table 3. PR tightness and empirical validity on the Concrete data set

Method/ Mean Width Median Width Errors (%)
Measure 90% 95% 99% 90% 95% 99% 90% 95% 99%

ICP
(5) 18.720 24.879 46.303 18.650 24.784 45.503 9.94 5.03 0.94
(17) 18.079 23.853 47.210 17.921 23.570 43.691 9.81 4.87 0.92

CCP K = 5
(5) 18.516 24.251 41.612 18.082 23.776 41.154 7.06 2.97 0.45
(17) 17.910 22.990 40.094 17.305 22.236 39.089 7.07 2.55 0.50

CCP K = 10
(5) 17.324 22.643 38.411 17.061 22.319 38.134 8.46 3.68 0.54
(17) 16.675 21.231 36.954 16.255 20.579 36.078 8.39 3.53 0.61

CCP K = 20
(5) 16.780 21.878 37.289 16.706 21.700 36.795 9.10 4.14 0.65
(17) 16.142 20.408 35.610 15.753 19.866 34.752 9.33 4.33 0.76

TCP (5) 19.513 24.593 38.254 14.176 17.881 27.632 9.82 5.15 0.97

Table 4. PR tightness and empirical validity on the Abalone data set

Method/ Mean Width Median Width Errors (%)
Measure 90% 95% 99% 90% 95% 99% 90% 95% 99%

ICP
(5) 6.700 9.090 14.883 6.682 9.064 14.848 10.06 4.99 1.02
(17) 6.385 8.380 13.469 6.379 8.370 13.405 10.10 5.01 1.01

CCP K = 5
(5) 6.750 9.038 14.961 6.721 9.017 14.983 9.43 4.73 0.93
(17) 6.425 8.307 13.437 6.404 8.275 13.388 9.48 4.63 0.93

CCP K = 10
(5) 6.698 8.994 14.901 6.684 8.980 14.919 9.67 4.85 0.96
(17) 6.368 8.210 13.276 6.330 8.160 13.193 9.71 4.73 0.96

CCP K = 20
(5) 6.673 8.971 14.875 6.660 8.971 14.883 9.80 4.92 0.98
(17) 6.343 8.152 13.172 6.298 8.088 13.082 9.82 4.87 0.97

Table 5. PR tightness and empirical validity on the Pumadyn data set

Method/ Mean Width Median Width Errors (%)
Measure 90% 95% 99% 90% 95% 99% 90% 95% 99%

ICP
(5) 4.153 5.139 7.355 4.159 5.128 7.337 10.17 5.10 1.02
(17) 4.148 5.099 7.210 4.137 5.076 7.186 10.16 5.14 1.00

CCP K = 5
(5) 4.182 5.167 7.312 4.162 5.148 7.319 8.57 4.11 0.76
(17) 4.174 5.146 7.196 4.145 5.118 7.163 8.59 3.96 0.69

CCP K = 10
(5) 4.070 5.033 7.138 4.064 5.026 7.121 9.26 4.55 0.90
(17) 4.053 5.012 7.017 4.032 4.990 6.990 9.32 4.43 0.83

CCP K = 20
(5) 4.020 4.974 7.049 4.007 4.964 7.025 9.56 4.76 0.98
(17) 4.006 4.944 6.926 3.986 4.925 6.901 9.66 4.68 0.91
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Fig. 1. PR width distribution

for every confidence level to evaluate the empirical validity of the corresponding
PRs.

Figure 1 complements the information reported in Tables 2-5 by displaying
boxplots for each data set showing the median, upper and lower quartiles and
2nd and 98th percentiles of the PR widths produced by each method for the three
confidence levels. The mean widths are also marked with a circle. For CCP the
widths obtained with K = 10 were used here. In the case of the TCP with the
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99% confidence level the 98th percentile of the obtained widths extends much
higher than the maximum value displayed in the plots.

In terms of empirical validity the error percentages displayed in Tables 2–5
demonstrate that the error rates of the PRs produced by CCP are always lower
than the required significance level. The change of K, at least up to K = 20,
does not seem to affect validity. In many cases the PRs of CCP seem more
conservative than those of the two other methods, since the error percentages of
the latter are nearer to the corresponding significance levels. This suggests that
there might be room for further improvement.

By comparing the mean and median widths of the PRs produced by CCP
with the three different values of K, it seems that increasing K improves infor-
mational efficiency. However it is not clear if much larger values of K will still
have the same effect. Also the extent of improvement is not always significant.
In comparing the widths of the PRs produced by CCP with those of the ICP
with the same nonconformity measure, one can see that in all cases, with the
exception of the abalone data set with nonconformity measure (5), CCP with
K set to 10 and 20 gives overall tighter PRs. In the case of the TCP it seems
that while most of its PRs are tighter than those of the CCP and ICP, some are
extremely loose and result in a mean width that is higher than that of the CCP.

6 Conclusion

This work introduced Cross-Conformal Prediction in the case of regression and
examined its empirical validity and informational efficiency when combined with
Ridge Regression as underlying algorithm. CCP does not suffer from the com-
putational inefficiency problem of the original CP approach while it makes a
more effective use of the available training data than ICP. Additionally, on the
contrary to the original CP it can be combined with any conventional regression
algorithm and any regression nonconformity measure.

The experimental results presented show that the PRs produced by CCP are
empirically valid while being tighter than those of the ICP. Although the PRs of
the original CP approach are tighter for the majority of cases, for some examples
they become extremely loose, thing that does not happen with CCP.

A first future direction of this work is to examine the empirical validity
and performance of CCP when using one-sided nonconformity measures and
combining the resulting upper and lower prediction rays to obtain the overall
PR. This makes the computation of the PRs simpler and it is interesting to see
if the resulting PRs are also tighter. Moreover it would be interesting to study
how the performance of CCP is affected in comparison to that of the TCP and
ICP as the size of the data set in question increases. Finally the application of
CCP to real world problems where the provision of valid PRs is desirable is an
important future aim.
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Abstract. In inductive conformal prediction, calibration sets must con-
tain an adequate number of instances to support the chosen confidence
level. This problem is particularly prevalent when using Mondrian induc-
tive conformal prediction, where the input space is partitioned into inde-
pendently valid prediction regions. In this study, Mondrian conformal
regressors, in the form of regression trees, are used to investigate two
problematic aspects of small calibration sets. If there are too few cali-
bration instances to support the significance level, we suggest using either
extrapolation or altering the model. In situations where the desired sig-
nificance level is between two calibration instances, the standard proce-
dure is to choose the more nonconforming one, thus guaranteeing validity,
but producing conservative conformal predictors. The suggested solution
is to use interpolation between calibration instances. All proposed tech-
niques are empirically evaluated and compared to the standard approach
on 30 benchmark data sets. The results show that while extrapolation
often results in invalid models, interpolation works extremely well and
provides increased efficiency with preserved empirical validity.

1 Introduction

A conformal predictor outputs prediction sets instead of point predictions. For
regression, which is the focus of this study, the prediction sets become predic-
tion intervals. A conformal predictor is always valid [11], i.e., the error rate,
on novel data, is bounded by a preset significance level. Conformal predictors
rely on nonconformity functions that measure the strangeness (the nonconfor-
mity) of an instance. When used for predictive modeling, conformal prediction
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often utilizes nonconformity functions based on an underlying machine learning
model. In regression, the most commonly used nonconformity function is simply
the absolute error made by the model on a specific instance.

Inductive conformal prediction (ICP) [6,11] can be applied on top of any
predictive model, but requires a set of instances, called the calibration set, that
was not used for the training of the model. The nonconformity function is applied
to all instances in the calibration set, thus producing a set of nonconformity
scores. In regression, the boundaries of the prediction intervals can be obtained
immediately from this set of nonconformity scores. More specifically, we would
first order the nonconformity scores and then simply pick the one corresponding
to the desired significance level [6,8,11]. As an example, if we have exactly 4
nonconformity scores, and the significance level is ε = 0.2, we would pick the
highest nonconformity score, expecting that, in the long run, exactly 20% of test
instances would be at most as nonconforming. When using absolute error as the
nonconformity function, the resulting prediction interval thus becomes the point
prediction from the model ± the nonconformity score, and we can expect this
to be valid in the long run.

There are, however, a couple of subtleties involved when using ICP. First of
all, the calibration set must be large enough to support the chosen significance
level. If the calibration set contains too few instances, it is simply not granular
enough, thus making it impossible to pick an instance corresponding to the
desired significance level. As an example, ε = 0.2 requires 4 instances, while
ε = 0.05 requires 19 instances. In general, the minimum number of required
calibration instances is ε−1−1. Another potential problem is that even if there are
enough calibration instances to support the significance level, there might be no
specific instance corresponding exactly to the significance level, i.e., one instance
is too pessimistic and the next too optimistic. In the general formula, this is
handled by always picking the more nonconforming instance, thus preserving
the validity guarantee. The resulting interval will, however, be unnecessarily
large. For instance, if we for ε = 0.2 have 7 calibration instances, we would still
pick the most nonconforming instance to create the prediction interval, but this
interval is overly conservative; as a matter of fact, the expected error rate is as
low as 1/7 ≈ 0.143. In general, we need exactly kε−1 − 1 calibration instances,
where k is an arbitrary integer, for an inductive conformal regressor to remain
exactly valid.

Both problems described above apply mainly to small data sets when using
standard ICP. However, another situation where calibration sets may become
small, even if the data set is large to begin with, is when Mondrian ICP (MICP)
[11] is used. An MICP is, simply put, an ICP where the problem space is somehow
divided into subspaces. If individual sets of instances, each belonging to a specific
subspace, are used for calibration, the resulting MICP will be valid for each and
every subspace.

The overall purpose of this paper is to suggest and evaluate techniques for
handling the problems associated with small calibration sets. In the experimen-
tation, regression trees are used as the underlying model for MICP. With this
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setup, every leaf, which corresponds to a rule expressed as the path from the
root to that leaf, will be valid, but the price paid is that different calibration
sets must be used for each leaf.

2 Background

2.1 Conformal Prediction

An inductive conformal regressor [6] utilizes an arbitrary real-valued measure of
strangeness, called a nonconformity function, together with a statistical test to
construct statistically valid prediction intervals, meaning that, given a signifi-
cance level ε, the resulting prediction interval contains the true target value with
probability 1−ε. In predictive modeling, nonconformity functions are often based
on the prediction error of a traditional machine learning model — if the model
makes a large prediction error on a certain instance, this instance is deemed
stranger than one for which the model makes a smaller prediction error. A stan-
dard nonconformity function for regression problems [7,8] is

A(xi, yi, h) = |yi − h(xi)| , (1)

where h is the underlying model of the conformal regressor, i.e., a regression
model trained on the regression problem at hand.

An inductive conformal regressor is trained using the following procedure:
1. Divide the training data Z into two disjoint subsets:

– a proper training set Zt and
– a calibration set Zc.

2. Train the underlying model h on Zt.
3. Use the nonconformity function to measure the nonconformity of the

instances in Zc, obtaining a list of calibration scores α1, ..., αq, where
q = |Zc|, sorted in descending order.

For a new test instance xk+1, a prediction region is constructed as

Ŷ ε
k+1 = h(xk+1) ± αp, (2)

where p = �ε(q + 1)�.
While each prediction made by an inductive conformal regressor contains the

true output with probability 1 − ε, it is still possible that errors are distributed
unevenlywithin the problem space. For example, if the underlyingmodel is a regres-
sion tree, it is possible that some leaf nodes in the tree make more errors than
expected, while other leaf nodes make fewer errors than expected [5]. Mondrian
conformal predictors [12] resolve this by dividing the problem space into several
disjoint subcategories κ1, ..., κm and providing a confidence 1− ε for each κj sepa-
rately. As an example, for classification, each κj can be mapped to a possible class
label, thus ensuring that errors are not unevenly distributed over the classes. Sim-
ilarly, the problem space can be divided w.r.t. to the feature space, and then all
the corresponding conformal predictors, i.e., one for each feature sub-space, will be
valid. To construct a Mondrian conformal regressor, αp is selected, not from the full
set of calibration scores, but froma subset {αi : αi ∈ α1, ..., αq ∧ κ(xi)=κ(xk+1)}.
The rest of the procedure is unchanged.
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2.2 Regression Trees as MICPs

The popularity of decision tree learning is due to its fairly high accuracy cou-
pled with an ability to produce interpretable models. Furthermore, generating
a decision tree is relatively fast and requires a minimum of parameter tuning.
The two most famous decision tree algorithms are C4.5/C5.0 [9] and CART
[4]. Building a decision tree consists of recursively splitting the data set on the
independent variables. At the root node, all possible ways of splitting the entire
data set are evaluated using some purity gain measure. The purity gain is the
difference in impurity between the original data set and the resulting subsets, if
that split is chosen. The split resulting in the highest purity gain is selected, and
the procedure is then repeated recursively for each subset in this split, until a
terminal condition is met. The final nodes are called leaf nodes, and represent the
predictions produced by the model. The impurity measure used varies between
different decision tree algorithms; C4.5 uses entropy while CART optimizes the
Gini index. In regression trees, which is the focus of this study, a typical leaf node
simply contains a value, which is the mean or median of the training instances
falling in that leaf.

Fig. 1 below shows an induced regression tree for the Laser data set. Training
parameters were set to produce a very compact tree, but despite this, the tree is
fairly accurate with a test set rmse of 0.11 and a correlation coefficient1 of 0.78.

Fig. 1. Sample regression tree for Laser data set

If we apply MICP to a regression tree, not only the entire model, but also all
leaves, each corresponding to a rule with conditions obtained by following a path
from the root node to that leaf, will be valid. In Fig. 2 below, an MICP based
on the regression tree from Fig. 1 above is shown. In this MICP, two different
1 The Pearson correlation between the true output values of the test set and the

predictions made by the regression model.
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prediction intervals are presented for each leaf, obtained from two different con-
fidence levels; 80% and 95%, respectively. Note that the use of two levels here
is for the purpose of illustration only; in practice, just one level would be used.
It can be seen that for the 95% confidence level, most intervals are quite wide.
Still, it must be noted that the MICP operates as expected, since interval sizes
vary between leaves. For standard ICP, all intervals would have the same size.

Fig. 2. Sample MICP for Laser data set

3 Method

In this section, we first consider alternative ways of handling the problem of
small calibration sets, which, as pointed out in the introduction, may result in
overly conservative predictions. Then, the setup for the empirical investigation
of the alternative approaches is described.

3.1 Suggested Solutions to Small Calibration Sets

In this paper, we investigate three different techniques aimed at handling the
problem with few calibration instances and evaluate these techniques on MICPs
built on top of regression trees.

The first technique works by ensuring that there are enough calibration
instances to support the significance level, without the need for extrapolation.
More specifically, a regression tree is first generated in standard fashion using
training data. After this, the resulting tree is pruned until each leaf contains
enough calibration instances to support the chosen significance level. It must be
noted that although this strategy uses the calibration instances when producing
the final tree, their targets are not revealed, and hence this procedure does not
violate the demand that calibration instances must constitute a fresh data set.
The second technique proposed uses standard interpolation to find a nonconfor-
mity score exactly matching the desired significance level. The third investigated
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technique employs extrapolation in case the number of calibration instances is
lower than the required 1/ε − 1 2.

3.2 Experimental Setup

All experimentation was performed in MatLab with regression trees built using
the MatLab version of CART, called rtree. All parameter values were left at
their defaults. Pruning was implemented separately, and operates iteratively by
first calculating the number of calibration instances falling in each leaf; if this is
smaller than the required number necessary to support the chosen significance
level, that leaf node, and all its siblings, are pruned. This is repeated until no
leaf node contains too few instances. For both interpolation and extrapolation,
the built-in option in MatLab called interp1, setting the mode to ’spline’, i.e., a
cubic spline interpolation, is used.

The first experiment compares the standard procedure, i.e., rounding down
and picking a slightly pessimistic calibration instance, to the proposed method of
using interpolation. In this experiment, the two techniques operate on identical
pruned trees, so the only difference is whether interpolation is used or not. In
the second experiment, we investigate the option of extrapolating, again using
the cubic spline method in MatLab. This method requires at the very least 4
instances, but different values are tried by setting them as goals for the pruning
procedure. Naturally, there is a trade-off here, since larger trees are expected to
be more accurate. The question is thus if valid, but more efficient MICPs, can be
obtained by using extrapolation and fewer calibration instances than required
by the significance level. In the experiments, 30 publicly available medium-sized
data sets were used, ranging from approximately 1000 to 9500 instances. All data
sets are from the UCI [2], Delve [10] or KEEL [1] repositories. For the actual
experimentation, standard 10-fold cross-validation was used. For each fold, the
training data was divided 2 : 1 into a true training set and a calibration set.

The three variants of MICP used in the experimentation are:

MICP-std — standard MICP
MICP-ip — MICP using interpolation
MICP-ip-ep — MICP using interpolation and extrapolation

4 Results

Table 1 below shows the results from Experiment 1. Looking first at the tree
sizes, we see that the pruning, as expected, produced more compact trees when
the significance level is lowered. Specifically, when ε = 0.01 some trees are excep-
tionally small; for some data sets even a single node. Comparing error rates, it is
obvious that the standard approach is indeed quite conservative, while the app-
roach using interpolation achieves empirical error rates very close to the chosen
significance level.
2 We investigate interpolation of nonconformity scores further in the paper Modifica-
tions to p-values of Conformal Predictors, also presented at COPA 2015.
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Table 1. Error rates of MICPs with and without interpolation

ε = 0.2 ε = 0.1 ε = 0.05 ε = 0.01
treeSize std ip treeSize std ip treeSize std ip treeSize std ip

abalone 131 .180 .195 74 .092 .101 46 .042 .050 11 .008 .010
airfoil 103 .164 .194 36 .092 .102 19 .043 .055 4 .008 .011
anacalt 32 .182 .217 10 .101 .110 3 .053 .058 1 .004 .012
bank8fh 221 .188 .201 124 .090 .099 83 .042 .049 19 .008 .010
bank8fm 409 .175 .204 202 .086 .100 109 .041 .049 22 .009 .012
bank8nh 173 .188 .198 90 .099 .107 60 .048 .053 11 .010 .010
bank8nm 331 .179 .199 165 .085 .095 92 .040 .046 21 .008 .010
comp 275 .184 .201 141 .087 .099 81 .043 .050 4 .010 .010
concrete 55 .168 .196 27 .080 .096 14 .036 .041 1 .004 .007
cooling 56 .147 .178 25 .087 .111 13 .025 .036 3 .005 .010
deltaA 146 .191 .201 66 .093 .098 35 .042 .045 10 .009 .010
deltaE 227 .185 .196 121 .089 .097 69 .044 .049 22 .007 .009
friedm 62 .166 .189 35 .093 .113 19 .038 .048 3 .006 .009
heating 55 .188 .214 21 .107 .117 11 .048 .053 3 .012 .012
kin8fh 461 .174 .207 231 .083 .103 130 .041 .052 27 .007 .011
kin8fm 551 .162 .191 265 .078 .098 134 .037 .047 28 .007 .011
kin8nh 337 .180 .201 180 .086 .100 98 .039 .046 23 .006 .008
kin8nm 405 .181 .204 194 .090 .103 96 .045 .053 23 .008 .010
laser 39 .196 .209 20 .092 .103 14 .042 .047 2 .004 .009
mg 70 .188 .211 32 .084 .096 18 .040 .044 3 .006 .009
mortage 67 .174 .199 33 .071 .084 16 .038 .046 1 .008 .008
puma8fh 236 .182 .196 122 .087 .098 81 .041 .050 27 .009 .010
puma8fm 383 .172 .197 220 .080 .096 126 .037 .049 29 .008 .011
puma8nh 278 .178 .198 153 .090 .101 101 .043 .053 21 .010 .012
puma8nm 465 .170 .197 249 .079 .099 129 .041 .048 23 .007 .009
stock 45 .174 .191 19 .097 .106 10 .041 .051 1 .006 .014
treasury 57 .172 .195 33 .073 .087 18 .041 .052 1 .013 .014
wineRed 42 .175 .194 26 .082 .105 15 .032 .039 2 .006 .007
wineWhite 67 .190 .197 33 .097 .105 24 .045 .050 7 .007 .009
wizmir 97 .173 .201 50 .092 .110 24 .035 .049 4 .010 .012

Mean 196 .178 .199 100 .088 .101 56 .041 .049 12 .008 .010
#Invalid 0 0 0 0 0 0 0 0
#Conserv. 22 0 17 0 18 0 4 0

In order to analyze the results further, standard binomial tests are employed
to compare the obtained results against the significance levels. More specifically,
we tested, at the significance level α = 0.05, whether the results are consistent
with the chosen ε-values. For this analysis, we performed one series of tests with
the null hypothesis that the technique does not produce conservative MICPs,
and another series of tests with the null hypothesis that the technique results
in valid MICPs. Since a large number of statistical tests are performed, the
correction procedure recommended by Benjamini and Yekutieli [3] is employed.
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The last two rows in Table 1 show the number of data sets where the specific
technique produced conservative or invalid MICPs, respectively. As expected, the
standard approach often resulted in conservative MICPs. Actually, the MICPs
are significantly conservative on a majority of all data sets, for all significance
levels but ε = 0.01. Notably, there are no statistically significant invalid MICPs.
Turning to Experiment 2, Table 2 below shows aggregated results over all 30
data sets.

Table 2. MICPs without interpolation and extrapolation (MICP-std), with just inter-
polation (MICP-ip) and with both interpolation and extrapolation (MICP-ip-ep)

ε = 0.2
Req. inst. treeSize rmse r intSize err. rate #Cons. #Invalid

MICP-std 4 196 .085 .832 .218 .178 22 0
MICP-ip 4 196 .085 .832 .204 .199 0 0

ε = 0.1
Req. inst. treeSize rmse r intSize err. rate #Cons. #Invalid

MICP-std 9 100 .090 .822 .297 .088 17 0
MICP-ip 9 100 .090 .822 .280 .101 0 0
MICP-ip-ep 4 196 .085 .832 .273 .110 0 9
MICP-ip-ep 7 122 .088 .826 .277 .103 0 1

ε = 0.05
Req. inst. treeSize rmse r intSize err. rate #Cons. #Invalid

MICP-std 19 56 .097 .798 .406 .041 18 0
MICP-ip 19 56 .097 .798 .382 .049 0 0
MICP-ip-ep 4 196 .085 .832 .341 .085 0 30
MICP-ip-ep 10 92 .091 .820 .358 .053 0 2
MICP-ip-ep 15 67 .094 .810 .369 .050 0 0

ε = 0.01
Req. inst. treeSize rmse r intSize err. rate #Cons. #Invalid

MICP-std 99 12 .140 .579 .827 .008 4 0
MICP-ip 99 12 .140 .579 .798 .010 0 0
MICP-ip-ep 4 196 .085 .832 .459 .104 0 30
MICP-ip-ep 30 39 .104 .789 .621 .017 0 20
MICP-ip-ep 50 25 .116 .731 .672 .011 0 2
MICP-ip-ep 75 17 .126 .672 .718 .011 1 0

Starting with the underlying regression tree models, the first column shows
the number of instances required in each leaf node before the pruning stopped.
The second column shows the resulting tree sizes, and the next two columns
present predictive performance, as rmse and correlation coefficient. As expected,
the general pattern is that larger trees are also more accurate. Examination of
interval sizes and error rates reveals that while the techniques using extrapolation
are more efficient (produce smaller prediction intervals), there is a clear risk
that using extrapolation results in invalid MICPs. Inspecting the last column,
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which shows the number of data sets where the technique produced MICPs with
empirical error rates significantly higher than the desired significance level, it is
seen that extrapolation requires a fairly high number of calibration instances.
For smaller calibration sets, extrapolation often results in invalid MICPs. Having
said that, the corresponding prediction intervals are always smaller, mostly due
to the fact that the underlying model is larger and thus more accurate. On many
data sets, the difference is substantial, especially when ε = 0.01. Looking at the
different significance levels one by one, we first note that when ε = 0.2, there is
no point in using extrapolation (at least not the method employed here) since
four points (instances) are still required. For ε = 0.1, requiring four points is
not enough. Even requiring seven points fairly often results in invalid MICPs.
With this in mind, our recommendation is to require at least nine points, making
extrapolation unnecessary. When ε = 0.05, using 15 instances and extrapolation,
instead of the nominally required 19 instances, seems to produce valid and more
efficient MICPs. Finally, for ε = 0.01, using fewer than the required instances
and extrapolation appears to be the best choice. Specifically, requiring either 50
or 75 calibration instances will lead to larger and more accurate trees, while the
resulting MICPs are generally still empirically valid.

5 Concluding Remarks

When having a small set of calibration instances, something which is common
for Mondrian conformal predictors in particular, there is a risk of being too
conservative, if the chosen instance in the calibration set for determining the
size of the output prediction region does not perfectly correspond to the per-
centile that is prescribed by the chosen significance level. Moreover, for very
small calibration sets, or low significance values, there may not even be a suf-
ficient number of instances to guarantee validity. To address the first problem,
an approach which employs interpolation among the calibration instances was
proposed. Furthermore, using extrapolation was identified as an option when the
second problem occurs. Results from an extensive empirical investigation were
presented, comparing the interpolation approach to the standard, possibly con-
servative approach, and also in a separate experiment, investigating the effect
of using extrapolation. The empirical results clearly show the benefit of employ-
ing the interpolation approach; for the 30 investigated data sets, the standard
approach generated intervals that were statistically significant conservative in
22 cases, while this was not the case for any of the data sets when using inter-
polation. This was achieved without sacrificing validity and hence the study
presents strong evidence in favor of employing interpolation when having small
data sets. The second experiment shows that although substantial improvements
in efficiency, i.e., smaller output interval sizes, can be obtained by performing
extrapolation, this comes at the cost of frequently violating validity. Extrapola-
tion should hence be used with care.

One direction for future work is to investigate what guarantees can be pro-
vided for interpolation to be not only efficient and valid in practice, but also in
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theory. Other directions involve considering alternative approaches to reducing
conservatism, e.g., sampling approaches, and studying other Mondrian confor-
mal predictors, in which the problem of handling small calibration sets occurs
frequently.
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Abstract. The paper investigates the problem of anomaly detection in
the maritime trajectory surveillance domain. Conformal predictors in this
paper are used as a basis for anomaly detection. A multi-class hierarchy
framework is presented for different class representations. Experiments
are conducted with data taken from shipping vessel trajectories using data
obtained through AIS (Automatic Identification System) broadcasts and
the results are discussed.

1 Introduction

Detecting anomalous behaviour in the maritime domain is an important task
since it involves the safety and security of ships. Automated methods for such
detection are highly beneficial as they can lower operator workload, freeing up
the operator’s time to address tasks which cannot be automated. There has been
a large amount of research conducted in the Anomaly Detection domain [1]. In
this paper we use the terms ‘anomalies’,‘abnormalities’ or ‘outliers’ to describe
some patterns in the data that do not conform to typical behaviour. We use the
term ‘normal’ to describe patterns that do conform to typical behaviour.

We focus on the anomaly detection of trajectories. A trajectory is a journey
between two different points, for example between two harbours.

Some examples of ‘anomalous’ trajectories include: travelling to unusual loca-
tions, taking unfamiliar routes and sudden changes of speed or direction.

Conformal Anomaly Detection [9] is an application of Conformal Predictors
[4] for Anomaly Detection. The key advantage of conformal predictors is their
provably valid confidence measures that are provided alongside their predictions.
The only assumption they make is that the data is independently and identically
distributed (i.i.d.);

In our problem we have some previous trajectories z1, z2, ..., zn, and we
assume all ‘normal’ trajectories come from the same probability distribution
P . Conformal predictors make no further assumptions about the distribution.

Conformal Anomaly Detection is based on Hawkin’s definition of an out-
lier [2]: “An outlier is an observation which deviates so much from the other
c© Springer International Publishing Switzerland 2015
A. Gammerman et al. (Eds.): SLDS 2015, LNAI 9047, pp. 281–290, 2015.
DOI: 10.1007/978-3-319-17091-6 23
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observations as to arouse suspicions that it was generated by a different mech-
anism”. Therefore conformal prediction relies on using a ‘normal’ class and we
calculate the likelihood of a new object (trajectory) originating from the same
distribution.

One of the main advantages of Conformal Anomaly Detection over most
anomaly detection techniques is that they allow the calibration of the false-
positive rate. It can be essential in real-world applications to control the number
of false positives.

Several previous papers have studied anomaly detection with conformal pre-
dictors [6–10]. Typically they use all the previous data in a single class of ‘nor-
mal’, throughout this paper we will call this the the global class. Most previous
papers [6,8–10] predict the likelihood of a new trajectory having originated from
the global class. One of the previous papers [7] solely uses classes based on the
vessel type (Passenger/Cargo/Tanker), but no comparison to the global class is
presented.

In this paper we propose putting all the trajectories into a three-level artificial
hierarchy of classes as seen in Fig 1. The global class contains all the previous
data of the ‘normal’ class at the top layer, this is split as we progress down the
hierarchy. At the next layer, the data is split into type classes, one for each
vessel type. The final layer of the data is separated into local classes, one for
each vessel.

Global class

Type 1: Passenger

Vessel 1 Vessel 2

Type 2: Cargo

Vessel 4

Type 3

Vessel 5 Vessel 6 Vessel ...

Type ..

Fig. 1. Visualisation of the multi-class hierarchy

Our approach of having multiple ‘normal’ classes adds more complexity to
the problem, and in this paper we investigate if in practice any benefits can be
gained by using the different classes.

2 Method

The Conformal Anomaly Detection technique calculates the likelihood that a
new object zn was produced by the same distribution as the previous objects
z1, z2, ..., zn−1. The outputted p-value pn is that likelihood. The standard Con-
formal Anomaly Detection algorithm [6] is as follows:

When producing predictions it is useful to use a level of significance ε. Accord-
ing to the validity property [4], if all the data objects z1, . . . , zn are really gen-
erated by the same distribution, then the probability that pn ≤ ε is at most ε.
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Conformal Anomaly Detection

Input : Non-Conformity Measure A, significance level ε, training objects
z1, z2, ..., zn−1 and new object zn

Output: P-value pn, boolean variable Anomaly

D = {z1, ..., zn}
for i ← 1 to n do

αi ← A(D \ zi, zi)
end
τ ← U(0, 1)

pn ← |{i:ai>an}|+τ |{i:ai=an}|
n

if pn < ε then
Anomaly ← true

else
Anomaly ← false

end

In the context of anomaly detection this means that if zn is not an anomaly, it
will be classified as anomaly with probability at most ε. This allows the false
positive rate to be calibrated with the significance parameter ε [9], it should be
noted that this is only guaranteed for the online case when the true type of a
predicted vessel becomes known soon after the prediction.

The Non-Conformity Measure (NCM) A is a type of information distance
between an object and a bag of objects. In the experiments in this paper we
focus on the k-nearest neighbour Hausdorff distance non-conformity measure [6]
to compare a trajectory against a bag of trajectories. In particular we use the
one nearest neighbour non-conformity measure, using the symmetrical Haus-
dorff distance metric as the one nearest neighbour algorithm has shown good
performance compared to others in [10].

Multi-class Hierarchy

In previous applications of applying conformal anomaly detection to trajecto-
ries, typically one global class of ‘normal’ is used to encompass all previous
data. However with vessel trajectories there exists an information hierarchy as
introduced earlier in Fig 1.

In trajectory data some vessels such as passenger vessels will make the same
repeated journeys, for these vessels it is normal to make repeated trips along a
route and ‘abnormal’ if they deviate from these routes. This leads to the idea of
treating every vessel as its own local class. The immediate benefit is that it is
likely that a vessel only conducts a subset of journeys from the global class and
that a more focused set of previous examples could be used to save computational
resources.

The vessel type classes may be beneficial as they contain more data than
local classes, but will not contain all the trajectories. In our data the observed
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vessels come from 16 types of vessel including passenger, cargo, pleasure, tankers,
dredgers, pilot vessels and many others.

By comparison the global class is the simplest to implement. It allows pre-
dictions to be made for trajectories belonging to vessels that have no prior data
in the training set. The global class is also better suited if there is no informa-
tion available on the type of the vessel. One weakness of the global class is that
is unable to distinguish between vessels of different types and will not be able
to detect if a passenger vessel starts conducting journeys similar to that of a
military vessel. There are also vessels that due to their nature may not follow
any previous trajectories, such as search and rescue vessels conducting searches.
These ‘deviations’ are considered as typical behaviour for such vessels and in
this case the global class may perform worse.

The main advantage of producing multiple p-values like this is to attempt to
better understand trajectories that are classified as ‘anomalous’. The trajectory
may be anomalous in the global context, but ‘normal’ for its local context and
vice versa. We could determine under which class the trajectories are ‘anomalous’
or ‘normal’ and use this to gain insight.

To use this in practice we shall generate a p-value to indicate the likelihood of
the trajectory belonging to each of its three associated classes these being: pglobal,
ptype and plocal. In the pglobal case all prior trajectories are used regardless of
which vessel they come from. ptype is calculated from using previous trajectories
from the same type of vessel. plocal is calculated from using previous trajectories
from the same vessel. In practice this requires extra processing and in this paper
we restrict the task to the case when all vessels’ types and IDs are known.

In Figure 2 filter is a function for filtering the previous trajectories for
either vessels of the same type or trajectories from the same local vessel. In the
case of type it will only return objects that match the type of the new object, in
the case of self it will only return trajectories that belong to the same vessel.

Note in the multi-class algorithm Figure 2 the decision rule
min(pglobal, ptype, pself ) < ε is used, and we predict that the object is ‘anomalous’
if any of its p-values indicate that it is anomalous, we shall later investigate this
rule in our experiments. Aggregating the p-values in this manner does affect
the property of a well-calibrated false positive rate. Instead of the decision rule
being bounded by ε, it is bounded by min(3ε, 1); this is because each p-value
may contribute ε false-positives and the maximum false-positive rate is 1.

3 Experiments and Data

In our data for all trajectories we know both the vessel type and ship IDs.
Automated Identification System (AIS) is a system for tracking vessels, vessels
that use AIS are fitted with a transceiver that broadcasts the position of the
vessel (acquired from an on-board GPS unit), and the vessel ID alongside a time-
stamp and other information every few seconds. Not all vessels are mandated to
use AIS but all passenger and tanker vessels and vessels weighing 300 gross tons
or more are required to do so under the International Maritime Organisation’s
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Conformal Anomaly Detection: Multi-Class Hierarchy

Input : Non-Conformity Measure A, significance level ε, training objects
z1, z2, ..., zn−1 and new object zn

Output: P-values: pglobal, ptype and pself , Boolean variable Anomaly

D = {z1, ..., zn}
for i ← 1 to n do

αglobal,i ← A(D \ zi, zi)
end
τ ← U(0, 1)

pglobal ← |{i:aglobal,i>aglobal,n}|+τ |{i:aglobal,i=aglobal,n}|
n

D = filter(D, type, zn);
N ←= |D|
for j ← 1 to N do

αtype,j ← A(D \ zj , zj)
end

ptype ← |{j:atype,j>atype,N}|+τ |{j:atype,j=atype,N}|
N

D = filter(D, self, zn);
N ←= |D|
for m ← 1 to N do

αself,k ← A(D \ zm, zm)
end

pself ← |{m:aself,m>aself,N}|+τ |{m:aself,m=aself,N}|
N

if min(pglobal, ptype, pself ) < ε then
Anomaly ← true

else
Anomaly ← false

Fig. 2. Conformal Anomaly Detection: Multi-Class Hierarchy algorithm

regulations [3]. We use AIS data collected from Portsmouth on the south coast
of England during 2012.

In this paper we represent trajectories as a sequence of discrete 4D points
(x, y, xvelocity, yvelocity) in a similar method to [7]. The original broadcasts are
linearly interpolated such that they are spaced at 200m intervals to reduce the
problem of over and under-saturation of data as a single receiver may not be
able to capture all broadcasts due to a variety of factors such as range, weather
and obstacles.

The algorithm for splitting the broadcasts into trajectories is similar to [6].
If a vessel leaves the observation area for a period of 10 minutes or more, or if
the vessel is stationary for a period of 5 minutes or more we consider this as
the end of a trajectory. Therefore a trajectory is a sequence of 4D points which
are moving and can have any length. The 4D points are normalised such that
x, y ∈ [0, 1] and xvelocity, yvelocity ∈ [−1, 1].
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In our experiments we consider trajectories generated over a several week
time period. All the experiments are conducted using a batch offline mode in
which the data is split into training and test sets. The testing and training sets
being chosen from a randomly shuffled set of trajectories. Most of the experi-
ments are comparing p-values, in these cases the decision rule is that a trajectory
is classed as ‘anomalous’ if pvalue < ε otherwise it is classed as ‘normal’. Recall
that we use 16 different types of vessel in our experiments as introduced in the
method section.

We also do not investigate the possibility of ‘anomalies’ existing in the train-
ing set. This would lead to a different distribution being represented in the
training set.

Anomaly Generation: Random Walks

One of the big challenges is that there is a lack of real-world labelled anomalous
datasets for AIS trajectories - at the time of writing the authors are unaware
of any publicly available AIS dataset with labelled anomalies. Therefore it is
necessary for empirical purposes to create artificial anomalies.

One previously suggested approach [6] is to select a pre-existing trajectory,
pick a random point on the trajectory and simulate a random walk for a specified
distance. It can be argued that randomness may not truly represent real world
anomalies however it does give an indication of ability to distinguish trajectories
generated from a different distribution. In this paper random walks are generated
to a distance of 600m. Once generated the random walk trajectories will report
the same vessel ID as the vessel ID from the pre-existing trajectory.

Wrong Type Behaviour Anomalies

In our study of using type and local classes it is useful to demonstrate the
property that using a global class does not distinguish if a trajectory is ‘normal’
for in the context of a particular vessel. Wrong type anomalies are designed to
represent this problem. To generate wrong type anomalies we choose a trajectory
and assign it a new random vessel ID matching another in our database. The
anomalous trajectory will then be compared against the same type as the one,
the new vessel ID came from. This emulates a vessel behaving in a manner
possibly unexpected for itself.

3.1 Experiment 1: Comparing pglobal, plocal and ptype Directly

In this experiment we seek to directly compare pglobal, plocal and ptype when they
are all given the same data. In this experiment we filter the available trajectories
to only those of vessels with at least 600 trajectories leaving us with 16 vessels.
We then use 200 trajectories from each vessel in the training set and 200 in the
testing set. We add 100 artificial random-walk anomalies to the testing set. This
leads to a testing set of 3300 trajectories and a training set of 3200 trajectories.
For each trajectory we then compute each of the 3 p-values using its given type
and vessel ID.
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3.2 Experiment 2: Maintaining Computational Cost

In this experiment we examine what happens in the case in which we have limited
computational resources and can only compare a new trajectory against a fixed
number of previous trajectories. This is tested by comparing the performance of
the plocal, ptype and pglobal p-values using the same number of previous trajecto-
ries when calculating all p-values. We will only use the 11 vessels with the most
trajectories in our dataset that such that there are at least 1000 trajectories
available from each vessel. We first split the trajectories such that there are 500
trajectories from each vessel in both the training and testing set for calculating
plocal, the same testing set throughout this experiment. The training set used
for calculating each ptype is created by selecting 500 trajectories randomly from
the training sets used for calculating plocal of matching vessel type.

In the case of the global class the training set is generated by adding 50
trajectories for each vessel, leading to a training set of 550 trajectories when
calculating pglobal, this is slightly higher than the size of the training sets of
ptype and plocal but not that separating trajectories by type and vessel ID requires
more processing.

Finally we generate 100 random walk anomalies using any the trajectory in
the training and test sets as a starting point from the random walks and these
random walk ‘anomalous’ trajectories are then added to the testing set.

3.3 Experiment 3: Wrong Behaviour Type Anomalies

In this experiment we aim to test how robust the different p-values are to a
vessel acting in a manner that is peculiar for itself or its type, yet similar to
other vessels.

To do this we create a training set from the 13 most active vessels in our
dataset using 110 trajectories from each vessel. The testing set consists of a
further 110 trajectories from each vessel alongside a total of 100 random walk
anomalies and a total of 100 wrong type behaviour anomalies. We then generate
p-values for all trajectories in the testing set.

3.4 Experiment 4: Hybrid Rule

This experiment investigates what happens if we merge all the three p-values
together with a decision rule such that a trajectory is predicted as an anomaly if:
min(pglobal, ptype, pself ) < ε. This experiment uses the same training and testing
sets from experiment 1.

4 Results

Below are the tables of the results gathered from the experiments mentioned
in the previous section. The tables show the number of true positives (tp) (i.e.
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Table 1. Results of experiment 1: Direct comparison

pglobal pglobal ptype ptype plocal plocal

ε tp fp tp fp tp fp

0.01 71% 0.8 % 85 % 0.8 % 73 % 0.8%

0.02 86% 1.6 % 91 % 1.9 % 88 % 1.5%

0.03 93% 3.0 % 93 % 2.7 % 94 % 2.2%

0.05 94% 4.3 % 94 % 4.2 % 94 % 3.9%

0.10 96% 8.5 % 97 % 9.6 % 97 % 9.5%

Table 2. Results of experiment 2: Comparison with the same computational cost

pglobal pglobal ptype ptype plocal plocal

ε tp fp tp fp tp fp

0.01 49 % 0.5 % 71 % 0.9 % 76 % 0.7%

0.02 54 % 0.8 % 80 % 2.5 % 86 % 1.8%

0.03 60 % 1 % 89 % 3.7 % 90 % 2.9%

0.05 84 % 4.1 % 91 % 4.9 % 96 % 5.0%

0.10 89 % 8.9 % 94 % 10% 97 % 10.4%

Table 3. Results of experiment 3: Wrong type behaviour anomalies

ptype ptype plocal plocal

ε tp fp tp fp

0.01 54 % 1.3 % 52.5 % 0.9%

0.02 76 % 2.4 % 68.5 % 1.5%

0.03 78 % 3.5 % 77.5 % 2.4%

0.05 81 % 5.9 % 80 % 4.5%

0.10 85 % 10.1 % 89 % 10.8%

Table 4. Results of experiment 4: Hybrid rule

ε hybrid tp hybrid fp ε
3

hybrid tp hybrid fp

0.01 93% 1.8 % 0.01
3

75 % 0.4 %

0.02 96% 3.6 % 0.02
3

87 % 1.3 %

0.03 99% 5.5 % 0.03
3

93 % 1.8 %

0.05 99% 8.4 % 0.05
3

95 % 2.8 %

0.10 99% 15.8% 0.10
3

99 % 5.8 %

anomalies captured) and the number of false positives (fp) - (i.e. ‘normal’ tra-
jectories mis-classified as anomalies). A bold font has been used to denote the
p-value that captures the most true anomalies for a given significance level ε.

In table 1 we see that when using all the information together ptype generally
better captures the anomalies than the other p-values. For significances 0.03,
0.05 and 0.10 the performance offered by all them is rather similar (within 1%
difference). plocal also outperforms pglobal at the lower significances 0.01,0.02.
This reveals that it is clear that with large amounts of training data ptype and
plocal are capable of out performing pglobal, and if a vessel’s ID is unavailable
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knowing its type is enough in most cases. ptype performs better than plocal for
the lower significances of 0.01 and 0.02 where arguably performance is most
important. However plocal consistently has a lower number of false positives than
all other the p-values indicating the best performance for significances 0.03, 0.05
and 0.10.

Table 2 shows the performance of the p-values for experiment 2, the case
where we consider equal computational resources. It is clear that plocal outper-
forms ptype, and ptype outperforms pglobal at identifying a superior number of
anomalies for all ε, this indicates that having a more focused history of prior
examples improves classification performance.

Experiment 3 shows that the type class performs well at detecting ‘anomalies’
of vessels demonstrating behaviour from other types .

Experiments 1-3 in most cases show that the significance parameter ε does
provide a well-calibrated false-positive rate in most cases, even though there is
no guarantee of this in the offline mode that is used.

Experiment 4 shows that the hybrid rule performs far better at detecting
the random walk anomalies than any of the single p-values in experiment 1. It
is important to note that ε doesn’t calibrate the number of false-positives close
to ε as the other p-values do on their own. The hybrid rule adds false positives
from the 3 p-values possibly tripling the number of false-positives relative to ε
but it is clear there is an overlap of the false-positives from each p-value. In
addition, we carried out experiments using ε

3 to take into account that the false
positive rate of the hybrid rule is expected to be below min(3ε, 1). This allows
fair comparison to the false positives rates seen in experiment 1. Comparing
table 1 and the right side of table 4, we see that the hybrid method shows the
best true positive results for ε = 0.03 and ε = 0.05 when preserving the same
false-positive rate bound.

5 Conclusion

Past approaches using conformal prediction for anomaly detection typically focus
on using a global class, or split the classes with little overlap. In this paper we
have proposed a new multi-class hierarchy framework for the anomaly detection
of trajectories. We have also presented a study of this approach showing that
there are several benefits from using alternative classes to the global class. We
generate three p-values pglobal, ptype and plocal for new trajectories. We have
discussed the pros and cons of each of the p-values.

We demonstrated that in practice using these extra p-values can lead to the
detection of more anomalies for less false-positives.

We have also shown it is possible to combine all the p-values by taking a
hybrid approach using the minimum p-value of pglobal, ptype and plocal. Exper-
iment 3 showed that it is possible to detect more anomalies when using this
approach than when using individual p-values. This highlights that each p-value
is able to detect different anomalies better than the others.

Local classes perform better at detecting anomalies when provided with the
same amount of previous trajectories as both the global and type classes. This
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indicates that local classes are a better option when computational cost is con-
sidered.

The multi-class hierarchy framework could potentially be reused for other
anomaly detection problems that involve a class hierarchy.

In future work it would be interesting to investigate further the multi-class
hierarchy of trajectory data as there are still many unanswered questions. A
particularly interesting problem is attempting to predict the type or vessel ID
of a new trajectory and to answer whether a trajectory with unknown type/ID
of vessel is an ‘anomaly’ or not. Also it may be interesting to attempt to find
similar vessels.
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Abstract. The Conformal Prediction framework guarantees error cal-
ibration in the online setting, but its practical usefulness in real-world
problems is affected by its efficiency, i.e. the size of the prediction region.
Narrow prediction regions that maintain validity would be the most use-
ful conformal predictors. In this work, we use the efficiency of conformal
predictors as a measure to perform model selection in classifiers. We pose
this objective as an optimization problem on the model parameters, and
test this approach with the k-Nearest Neighbour classifier. Our results
on the USPS and other standard datasets show promise in this approach.

Keywords: Conformal prediction · Efficiency · Model selection · Opti-
misation

1 Introduction

The Conformal Predictions (CP) framework was developed by Vovk, Shafer and
Gammerman [1]. It is a framework used in classification and regression which
outputs labels with a guaranteed upper bound on errors in the online setting.
This makes the framework extremely useful in applications where decisions made
by machines are of critical importance. The framework has grown in its awareness
and use over the last few years, and has now been adapted to various machine
learning settings such as active learning, anomaly detection and feature selec-
tion [2]. It has also been applied to various domains including biometrics, drug
discovery, clinical diagnostics and network analysis in recent years.

The CP framework has two important properties that define its utility: valid-
ity and efficiency, as defined in [1]. The validity of the framework refers to
its error calibration property, i.e, keeping the frequency of errors under a pre-
specified threshold ε, at the confidence level 1−ε. The efficiency of the framework
corresponds to the size of the prediction (or output) sets: smaller the size of the
prediction set, higher the efficiency. While the validity of the CP framework
is proven to hold for any classification or regression method (assuming data is
exchangeable and a suitable conformity measure can be defined on the method)
[3], the efficiency of the framework can vary to a large extent based on the
choice of classifiers and classifier parameters [4]. The practical applicability of
c© Springer International Publishing Switzerland 2015
A. Gammerman et al. (Eds.): SLDS 2015, LNAI 9047, pp. 291–300, 2015.
DOI: 10.1007/978-3-319-17091-6 24
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the CP framework can be limited by the efficiency of the framework; satisfying
the validity property alone may cause all class labels to occur in predictions thus
rendering the framework incapable of decision support.

The study of efficiency of the framework has garnered interest in recent years
(described in Section 2). Importantly, efficiency can be viewed as a means of
selecting model parameters in classifiers, i.e. the model parameter that provides
the most narrow conformal prediction regions, while maintaining validity, would
be the best choice for the classifier for a given application. We build upon this
idea in this work. In particular, we explore the use of the S-criterion of efficiency
(average sum of p-values across classes), as defined by Vovk et al. in [5], of the
CP framework for model selection in different classifiers. This model selection is
posed as an optimisation problem, i.e. the objective is to optimise the value of the
S-criterion metric of efficiency, when written in terms of the model parameters.
Such an approach gives us the value of the parameters which maximise the
performance of the classifier. We validate this approach to model selection using
the k-Nearest Neighbour (k-NN) classifier [6].

The remainder of the paper is organised as follows. Section 2 reviews earlier
works that have studied efficiency or model selection using conformal predictors.
Section 3 describes the proposed methodology of this paper including the crite-
rion of efficiency used, the formulation of the objective function and the solution
(model parameter) obtained by solving the ranking problem derived from the
objective function. Section 4 details the experiments and results of applying this
method to different datasets. Section 5 summarises the work and also mentions
possible future additions and improvements to this work.

2 Related Work

Earlier works that have studied efficiency in the CP framework or model selection
using conformal predictors can broadly be categorised into three kinds: works
that have attempted to improve the efficiency of the framework using appropriate
choice of model parameters; another which studies a closely related idea on
model selection using conformal predictors, specifically developed for Support
Vector Machines (SVM); and lastly, a recent work that has performed a detailed
investigation of efficiency measures for conformal predictors. We describe each
of these below.

Balasubramanian et al. [4] proposed a Multiple Kernel Learning approach
to learn an appropriate kernel function to compute distances in the kernel k-
NN classifier. They showed that the choice of the kernel function/parameter in
kernel k-NNs can greatly influence efficiency, and hence proposed a maximum
margin methodology to learn the kernel to obtain efficient conformal predictors.
Pekala and Llorens [7] proposed another methodology based on local distance
metric learning to increase the efficiency of k-NN based conformal predictors. In
their approach, they defined a Leave-One-Out estimate of the expected number
of predictions containing multiple class labels (which is a measure of efficiency of
CPs), which they minimised by formulating a distance metric learning problem.
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Yang et al. [8] studied a very similar idea to learn distance metrics that increase
the efficiency of conformal predictors using three different metric learning meth-
ods: Large Margin Nearest Neighbours, Discriminative Component Analysis, and
Local Fisher Discriminant Analysis. While each of these methods can be con-
sidered complementary to the proposed work, none of these efforts viewed their
methods as one of model selection, which we seek to address in this work.

Hardoon et al. [9] [2] proposed a methodology for model selection using non-
conformity scores - in particular, for SVMs, and had an objective similar to the
proposed work. However, in their approach, K models, each with different model
parameters, are trained on a given dataset, and the error bound ε is decided at
run-time for each test point by choosing the error bound (called εcritical) of the
model (among all the K trained models) that results in a singleton prediction
set. In contrast, here we seek to develop a model selection approach that selects
the unique value of a given model parameter that provides maximal classifier
performance on a test set (in terms of accuracy) using an optimisation strategy.

Vovk et al. recently investigated different metrics for measuring the efficiency
of conformal predictors in [5], which we build on in this work. Among the differ-
ent criteria of efficiency are the S-criterion, which measures the average sum of
the p-values of the data points, the N-criterion, which uses the average size of
the prediction sets, the U-criterion, which measures the average unconfidence,
i.e. the average of the second largest p-values of the data points, the F-criterion,
which measures the average fuzziness, or the sum of all p-values apart from the
largest one, of the data points, the M-criterion, which measures the percentage
of test points for which the prediction set contains multiple labels, and the E-
criterion, which measures the average amount by which the size of the prediction
set exceeds 1. [5] also introduced the concept of observed criteria of efficiency,
namely, OU, OF, OM and OE. These criteria are simply the observed counter-
parts of the aforementioned prior criteria of efficiency. A detailed explanation
of each of the different criteria of efficiency can be found in [5]. We develop
our model selection methodology using the S-criterion for efficiency, which we
describe in Section 3.

3 Proposed Methodology

In this paper, we propose a new methodology for model selection in classifiers by
optimising the S-criterion measure of efficiency of conformal predictors [5]. We
validate our methodology on the k-NN classifier by formulating an optimisation
problem, and choosing that value for k which minimises the S-criterion measure.
We view the optimisation formulation as a ranking problem, and select the k
that minimises the objective function score. We found, in our experiments, that
this value of k also provides very high performance of the classifier in terms of
accuracy of class label predictions. Our methodology is described below.

Let {(x1, y1), (x2, y2), . . . , (xn, yn)} be a sequence of data point-class label
pairs, where x corresponds to the data, and y corresponds to the class labels.
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Given a new test point xn+1, the p-value for this test point with respect to the
class y is defined as:

pyn+1 =
count

{
i ∈ {1, . . . , n + 1} : αy

i ≤ αy
n+1

}
n + 1

(1)

where αy
n+1 is the conformity measure1 of xn+1, assuming it is assigned the class

label y. The S-Criterion of efficiency, introduced in [5], is defined as the average
sum of the p-values, as follows:

1
n

n∑
i=1

∑
y

pyi (2)

where n is the number of test data points and pyi are the p-values of the ith data
point with respect to the class y.

Smaller values are preferable for the S-criterion, as given in [5]. This means
that we would like all p-values to be low, which in turn ensures that the size of
the prediction set, given by {y|py > ε}, is small. In other words, for an incoming
test point, we want as small a number of training data points to have a lesser
conformity score than the test point as possible. To put it another way, we want
most of the training data points to have a higher conformity score than the test
point. This roughly translates to saying that we want a small value for each
of the expressions (αi − αj) for each test point xi and training point xj . By
extension, we would like a small value for the sum of differences between the
conformity scores of the incoming test points and the training data points, given
by the following expression:

n∑
i=1

m∑
j=1

(αi − αj) (3)

Here n is the number of test data points and m is the number of training data
points.

For a k-NN classifier, the conformity score for a test point xi is given as
follows [1][2]:

k∑
j=1

D−y
ij

k∑
j=1

Dy
ij

(4)

which is the ratio of the sum of the distances to the k nearest neighbours belong-
ing to classes other than the hypothesis y (denoted by D−y

ij ), against the sum
of the distances to the k nearest neighbours belonging to the same class as the
hypothesis y (denoted by Dy

ij). Considering that we want to find the value of

1 We use the term conformity measure in this work similar to the usage in [5]. Note
that the conformity measure is simply the complement of the typical non-conformity
measure terminology used in earlier work in this field.
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the parameter k which minimises the S-criterion measure of efficiency, we write
equation (3) in terms of k. Doing so allows us to formulate an objective function
in terms of k. This leads us to the following objective function:

argmin
k

(
n∑

i=1

m∑
j=1

( k∑
l=1

D−y
il

k∑
l=1

Dy
il

−

k∑
l=1

D−y
jl

k∑
l=1

Dy
jl

))
(5)

In this work, we treat the aforementioned formulation as a score ranking
problem, and arrive at the solution for the model parameter k by scoring the
objective function value for various values of k and choosing the one which
minimises the objective function value. The value of k is varied from 1 to 25 and
that k is chosen which results in the least value of the objective function. We
note here that there may be more efficient methods to solve this optimisation
formulation, which we will attempt in future work. Our objective in this paper
is to establish a proof-of-concept that such an approach can be useful in model
selection. We now validate this approach through our experiments in Section 4.

4 Empirical Study

We tested the proposed model selection methodology for k-NN on four different
datasets, which are described in Table 12. The experiments were carried out

Table 1. Description of datasets

Dataset Num of
Classes

Size of
Training
Set

Number of
Training
Points

Number of
Validation
Points

Size of Test
Set

USPS Dataset 10 7291 5103 2188 2007

Handwritten Digits Dataset
(from UCI repository [10])

10 3823 2676 1147 1797

Stanford Waveform Dataset 3 300 210 90 500

Stanford Vowel Dataset 11 528 370 158 462

by randomly dividing the training set into training and validation subsets of
sizes in a 70 : 30 ratio. To compute the objective function value as in Equation
5, the validation set was considered as the test set, and the conformity scores
were computed for validation and training data points. These scores were then
plugged into the objective function to finalise on a value for the parameter k.
The value of k was varied from 1 to 25 and the objective function was evaluated
using the same. The procedure was repeated 5 times to neutralise any impact
of randomness bias, and the results shown in this paper have been averaged
2 http://archive.ics.uci.edu/ml/

http://statweb.stanford.edu/∼tibs/ElemStatLearn/data.html

http://archive.ics.uci.edu/ml/
http://statweb.stanford.edu/~tibs/ElemStatLearn/data.html
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over these 5 trials. We then tested the performance of the k-NN classifier, on
independent test sets (different from the validation sets used to compute the
objective function), with the same k values, and noted the accuracy obtained
with each of these models. Our results are illustrated in Figures 1, 2, 3 and 4.
For each dataset, the left sub-figure plots the values of the objective function
against the values of the parameter k using the validation set. The value of k
that provides the minimum objective function value is chosen as the best model
parameter. The right sub-figure plots the accuracy obtained by the classifier on
the test set, against all values of k. We observe that, in general, the value of
the objective function (left sub-figures) is negatively correlated with accuracy
(right sub-figures), which suggests the effectiveness of this methodology. The
correlation coefficient ρ is calculated for each of the sub-figures, corroborating
this point.

(a) k vs Objective Function
value (Validation set) ρ = 0.8589

(b) k vs Accuracy (Test set
ρ = -0.9271

Fig. 1. Results on the USPS Dataset

(a) k vs Objective Function
value (Validation set) ρ = 0.7338

(b) k vs Accuracy (Test set)
ρ = -0.8744

Fig. 2. Results on the Handwritten Digits Dataset

While we studied the performance of the classifier on the test set (in terms of
accuracy) in the above experiments, we also performed a separate experiment to
study if the final value of k obtained using our methodology results in efficient
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(a) k vs Objective Function
value (Validation set) ρ =
-0.6501

(b) k vs Accuracy (Test set) ρ
= 0.7989

Fig. 3. Results on the Stanford Waveform Dataset

(a) k vs Objective Function
value (Validation set) ρ =
0.1086

(b) k vs Accuracy (Test set) ρ
= -0.6673

Fig. 4. Results on the Stanford Vowel Dataset

conformal predictions on the test set. Figures 5 and 6 show the size of the
prediction sets, averaged over all the test points, plotted against the k values,
for the Stanford Waveform and the USPS datasets, respectively.

While one approach to model selection would be to maximise accuracy on the
validation set, this does not always result in the best performance of the classifier.
As evidenced in Figure 7, maximising accuracy on the validation set results in
k = 1 (left sub-figure), while the best performance on the test set is obtained
when k = 6 (right sub-figure). However, in saying this, we concede that this
approach, of maximising accuracy on the validation set, does not always falter
in giving the optimum k which also maximises accuracy on the test set. Figure 8
shows that both approaches, one that maximises accuracy on the validation set
and the other which is the proposed method for model selection (minimising an
objective function which is essentially a proxy for the S-criterion of efficiency),
result in the same value for the model parameter k.
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(a) k vs Objective Function
value (Validation set)

(b) k vs Average Size of the Pre-
diction Set at 80% confidence
(Test set)

Fig. 5. Study of efficiency of k-NN conformal predictors on the test set of the Standard
Waveform dataset (this dataset contains data from 3 classes)

(a) k vs Objective Function
value (Validation set)

(b) k vs Average Size of the Pre-
diction Set at 80% confidence
(Test set)

Fig. 6. Study of efficiency of k-NN conformal predictors on the test set of the USPS
dataset (this dataset contains data from 10 classes)

(a) k vs Accuracy (Validation
set)

(b) k vs Accuracy (Test set)

Fig. 7. Using accuracy on validation set for model selection on the Stanford Vowel
Dataset
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(a) k vs Accuracy (Validation
set)

(b) k vs Accuracy (Test set)

Fig. 8. Using accuracy on validation set for model selection on the Handwritten Digits
Dataset

5 Conclusions and Future Work

The Conformal Prediction framework has been gaining popularity as a robust
methodology to associate measures of confidence with prediction outcomes in
classification and regression settings. While the framework can be proved to
be valid under any suitable definition of a conformity measure, its efficiency
- the measure of narrowness of its prediction regions - can vary with different
classification methods and different model parameters. In this paper, we propose
a new methodology to use the efficiency of conformal predictors to perform
model selection in classification methods. In particular, we use the S-criterion
of efficiency to derive an objective function that can be minimised to obtain the
model parameter k in the k-NN classifier. Our results with different standard
datasets show promise in this approach.

In futurework,we plan to incorporate othermeasures of efficiency (as described
in [5]) to develop on the proposed idea. Besides, while we transformed the optimi-
sation formulation into a score ranking problem, we believe that it is possible to
solve this (or a related) optimisation problem more efficiently using known meth-
ods with performance bounds (such as, submodular optimisation). We intend to
pursue these efforts in our ongoing and future work. We will also consider general-
ising this approach to other classifiers in the near future.
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Abstract. Conformal predictors, introduced by [13], serve to build pre-
diction intervals by exploiting a notion of conformity of the new data
point with previously observed data. In the classification problem, con-
formal predictor may respond to the problem of classification with reject
option. In the present paper, we propose a novel method of construction
of confidence sets, inspired both by conformal prediction and by classifi-
cation with reject option. An important aspect of these confidence sets is
that, when there are several observations to label, they control the pro-
portion of the data we want to label. Moreover, we introduce a notion of
risk adapted to classification with reject option. We show that for this
risk, the confidence set risk converges to the risk of the confidence set
based on the Bayes classifier.

Keywords: Classification · Classification with reject option · Confor-
mal predictors · Confidence sets · Plug-in confidence sets

1 Introduction

Prediction is one of the main tasks people have to deal with in machine leaning.
Indeed, based on a collection of n labelled observations (xi, yi), i = 1, . . . , n, the
statistician’s interest is to build a rule which will be used for new and unlabeled
observations. In this paper, we focus on prediction in the binary classification
problem, that is, we aim at assigning a class beyond, says, 0 and 1, to each
new covariate. However, it is not assumed that a covariate x fully determines
the label y. Indeed, in difficult setting, such as when the conditional probability
η(x) = P(Y = 1|X = x) ((X,Y ) is the generic data-structure) is close to 1/2, the
covariate x might be hard to classify. Those cases rise the question of studying
classification methods which allow to not classify observations when the doubt is
too important; in such framework, we talk about classification with reject option.
This problem is particularly relevant in some applications where a misclassifi-
cation may lead to big issues: it is better to not assign a label than to assign
one which is not confident. A great amount of authors have focus their effort
in this problem in the machine learning community, see between many others
[3,7,10] and references therein. On the other hand, in the statistical community,

c© Springer International Publishing Switzerland 2015
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an almost exhaustive list is [2,5,8,15]. These papers provide a deep understand-
ing of some statistical aspects of the prediction in the classification problem with
reject option in several contexts. However there is much to do yet. The present
paper introduces a new way to tackle this problem: the classification rules rely
on the transduction methodology as described in [11]. That is, we use the unla-
beled data to improve the classification rule based on local arguments [6]. Here
the labeled and the unlabeled data are part of the construction of the classifier
(see for instance [14] for an example of such methods).

In the present paper, we introduce the confidence set which is a transductive
rule that responds to the classification problem with reject option. An important
feature of this work is to establish the connexion between such approach and
the promising approach named conformal prediction presented in the references
[12,13]. The methodology of conformal prediction relies on two key ideas: one
is to provide a confidence prediction (namely, a confidence set containing the
unobserved label with high probability) and the other is to take into account
the similarity of an unlabeled covariate with the labeled covariates based on
a so-called non conformity measure, cf. Chapter 2 in the book by [13]. While
this method can be used in general frameworks, we observe that, applied to
the classification problem, it appears to respond (in a transductive way) to the
prediction with reject option task. On the other hand, even if the methodology
of conformal prediction is clear, its statistical counterpart is not well understood.
In the present paper, we aim at lighting some blurred points in the framework of
conformal prediction. Draw ours inspiration from the works by Wegkamp and his
various co-authors in the prediction with reject option problem [8,15], we propose
in the same time a statistical founding to some kind of conformal predictors.
However, our approach is different from the one introduced by Wegkamp and
his co-authors in several aspects that will be detailed in Section 2.3.

The rest of the paper is organized as follows: in the Section 2, we introduce the
confidence set based on the Bayes classifier and state some of its properties. We
illustrate its performance in the Gaussian mixture model as well. The notion and
the convergence of plug-in confidence sets are presented in Section 3. Section 4
is devoted to numerical experiments. The proof of the main result is postponed
in Appendix.

2 General Framework

This section is devoted to the definition and the important properties of the confi-
dence sets. We first introduce some useful notations and definitions in Section 2.1.
The general definition of a confidence set is given in Section 2.2. We define the
confidence sets that we consider in our work in Section 2.3 and apply it to
Gaussian mixture models in Section 2.4.

2.1 Notations

In this section, we introduce the main notations and recall the background of
the supervised classification.
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Let (X,Y ) be the generic data-structure taking values in X × {0, 1} with
distribution P. Let (X•, Y•) be a random variable independent from (X,Y ) but
with the saw law. We assume that we only observe X• (and not the true label
Y•). Hereafter, we recall some basics about supervised classification. The goal in
classification is to predict the label Y• for the observation of X•. A classifier (or
classification rule) s is a function which maps X onto {0, 1}. Let S be the set of
all classifiers. The misclassification risk R associated to s ∈ S is defined as

R(s) = P(s(X) �= Y ).

The minimizer of R over S is the Bayes classifier, denoted by s∗ and characterized
by

s∗(·) = 1{η(·) ≥ 1/2},

where η(x) = P(Y = 1|X = x) for x ∈ X . One of the most important quantities
in our methodology is the function f defined by f(·) = max{η(·), 1−η(·)}. It will
play the role of some kind of score function. Throughout this paper, we assume
that the random variable η(X) is continuous: ∀x ∈ (0, 1), P(η(X) = x) = 0.
This implies that the cumulative distribution function of f(X) is continuous.

2.2 General Definition of a Confidence Set

Hereafter, we give the general definition of a confidence set and of the corre-
sponding notion of risk. A confidence set Γs, associated to a classifier s ∈ S,
is defined as a function which maps X onto {{0}, {1}, {0, 1}}, such that for an
instance X, the set Γs(X) can be either {s(X)} or {0, 1}. We decide to classify
the observed data X, according to the label s(X), if card (Γs(X)) = 1. In the
case where Γs(X) = {0, 1}, we decide to not classify that observed data X. Let
s ∈ S and Γs be a confidence set associated to s. The former rule makes natural
the following definition of the risk associated to Γs:

R (Γs) = P (Y /∈ Γs(X)|card (Γs(X)) = 1)
= P (s(X) �= Y |card (Γs(X)) = 1) . (1)

The risk R (Γs) evaluates the misclassification error risk of s conditional on the
set where X is classified. In this work, we investigate general but reasonable
ways to construct confidence sets in the sense that we ask the confidence set to
satisfy the following Improvement Risk Property (IRP):

Property 1 (IRP). The considence set Γs associated to the classifier s is such
that

R (Γs) ≤ R(s).

The former condition is a quite natural since it avoids to consider constructions
of confidence sets that make the misclassification risk R(s) worse. The following
proposition provides a necessary and sufficient condition to get the IRP satisfied.
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Proposition 1. Let s ∈ S and Γs the associated confidence set. The confidence
set Γs satisfies the IRP iff

P (card (Γs(X)) = 1|s(X) �= Y ) ≤ P (card (Γs(X)) = 1|s(X) = Y ) .

The proof of this result is straightforward and is then omitted. Before going
in further considerations and, in the way the confidence sets are constructed,
let us mention that the definition of the risk R, given by (1), depends on the
probability of classifying a covariate:

P (Γs) := P (card (Γs(X)) = 1) . (2)

Then, it is important to evaluate the risk R while keeping under control the
probability of classifying (2). This is partly the scope of the next paragraph.

2.3 ε-Confidence Set

In this section, we introduce a class of confidence set referred as ε-confidence
sets. They rely on the Bayes classifier s∗ and on the function f . The name ε-
confidence sets reflects the fact that we exactly control the probability (2) of
classifying a covariate by ε, where ε ∈ (0, 1) is a previously fixed.

Definition 1. Let ε ∈ (0, 1), the ε-confidence set is defined as follows

Γ•
ε(X•) =

{
{s∗(X•)} if Ff (f(X•)) ≥ 1 − ε

{0, 1} otherwise,

where Ff is the cumulative distribution function of f(X) and f(·) = max{η(·),
1 − η(·)}.

The main feature of the ε-confidence set is that it assigns a label to a new
data X• if the corresponding score f(X•) is large enough; more precisely, if it is
larger than a proportion ε of f(X) evaluated on former instances X for which the
label is observed. In this sense, the ε-confidence set can be seen as a conformal
predictors, cf. [13]. Indeed, its construction is based on the function f with can
be seen as a conformity measure. This will be made clearer in Section 3 when we
consider the empirical counterpart of this set. On the other hand, note that the
ε-confidence sets is to be linked to the classifier with reject option introduced in
[8]. Indeed, for ε ∈ (0, 1), we have

Ff (X•) ≥ 1 − ε ⇐⇒ f (X•) ≥ F−1
f (1 − ε),

where F−1
f denotes the generalized inverse of Ff . Let α = F−1

f (1 − ε). Then
α ∈ (1/2, 1) and the classifier with reject option introduced in [8] provides the
following confidence set:

ΓW
α (X•) =

{
{s∗(X•)} if f(X•) ≥ α

{0, 1} otherwise.
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Hence, the covariate X• is classified if f(X•) is larger than the parameter α.
Large values of α make us expect that a covariate X• such that f(X•) ≥ α
is correctly classified. Nevertheless, the counterpart is that the probability of
classifying the covariate is small. So, the choice of the parameter α is crucial.
This is the main difference with the ε-confidence set. Indeed, the introduction
of this approach is motivated by the fact that the definition of ε-confidence set
ensures that we are able to control exactly the probability of assigning a label.
This is reflected by the following equality

P(Γ•
ε) = P(Ff (f(X•)) ≥ 1 − ε) = ε. (3)

which holds since Ff (f(X•)) is uniformly distributed.
The rest of this section states two properties of the ε-confidence set. First,

the ε-confidence set satisfies the IRP. Moreover, since ε ≤ ε′ ⇒ F−1
f (1 − ε) ≥

F−1
f (1 − ε′), one shows that ε 	→ R(Γ•

ε) is increasing. Finally we can set that
the ε-confidence sets are optimal in the following sense:

Proposition 2. Fix ε ∈ (0, 1). Let s ∈ S and Γs an associated confidence set
such that P(Γs) = ε. Then

P(Γs) = P(Γ•
ε) = ε and

R(Γs) ≥ R(Γ•
ε).

2.4 ε-Confidence Set for Gaussian Mixture

In this section, we apply the ε-confidence set introduced in Definition 1 with
the Bayes classifier to the particular case of Gaussian mixture model. We set
X = R

d with d ∈ N \ {0}. Let us assume that the conditional distribution of X
given Y is Gaussian and that, for simplicity, the marginal distribution of Y is
Bernoulli with parameter 1/2. To fix notation, we set

X|Y = 0 ∼ N (μ0,Σ)
X|Y = 1 ∼ N (μ1,Σ)

where μ0 and μ1 are vectors in R
d and Σ is the commun covariance matrix. We

assume that Σ is invertible. The following theorem establishes the classification
error of the ε-confidence set Γ•

ε in this framework.

Theorem 1. For all ε ∈ (0, 1), we have

R(Γ•
ε(X•)) =

PZ (φ (Z) + φ (Z + ‖μ1 − μ0‖Σ−1) ≤ ε)
ε

where Z is normally distributed and φ is the normal cumulative distribution
function.

The proof of this theorem brings into play heavy but simple computations.
It is then omitted in this paper. Note that in the particular case where ε = 1.
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It turns out that the ε-confidence set does not differ from the ’classical’ Bayes
classification rule, and then we get back

R(Γ•
1(X•)) = R(s∗) = PZ

(
Z ≥ ‖μ1 − μ0‖Σ−1

2

)
.

3 Plug-in ε-Confidence Set

In the previous section, the ε-confidence set relies on η which is unknown. We
then need to build an ε-confidence set bayed on an estimator of η. To this end, we
introduce a first dataset D(1)

n , which consists of n independent copies of (X,Y ),
with n ∈ N \ {0}. The dataset D(1)

n is used to estimate the function η (and
then the functions f and s∗ as well). Let us denote by f̂ and ŝ the estimators
of f et s∗ respectively. Thanks to these estimations, an empirical version of the
ε-confidence set can be

Γ̃•
ε(X•) =

{
{ŝ(X•)} if Ff̂ (f̂(X•) ≥ 1 − ε

{0, 1} otherwise,

where Ff̂ is the cumulative distribution function of f̂(X) with f̂(·) = max{η̂(·),
1 − η̂(·)} and ε ∈ (0, 1). Hence, we observe that Γ̃•

ε(X•) invokes the cumulative
distribution function Ff̂ which is also unknown. We then need to estimate it.

Let N be integer and let D(2)
N = {(Xi, Yi), i = 1, . . . , N} be a second dataset

that is used to estimate the cumulative function Ff̂ . We can now introduce the
plug-in ε-confidence set:

Definition 2. Let ε ∈ (0, 1) and η̂ be any estimator of the η, the plug-in
ε-confidence set is defined as follows:

Γ̂•
ε(X•) =

{
ŝ(X•) if F̂f̂ (f̂(X•)) ≥ 1 − ε

{0, 1} otherwise,

where f̂(·) = max{η̂(·), 1 − η̂(·)} and F̂f̂ (f̂(X•)) = 1
N

∑N
i=1 1{f̂(Xi)≤f̂(X•)}.

Remark 1. Samples sizes] The dataset D(1)
n and D(2)

N can be constructed from an
available dataset the statistician has in hand. The choice of n relies on the rate
of convergence of the estimator η̂ of η. Note that D(2)

N is used for the estimation
of a cumulative distribution function.

Remark 2. Connexion with conformal predictors] Definition 2 states that we
assign a label to X• if 1

N

∑N
i=1 1{f̂(Xi)≤f̂(X•)} ≥ 1 − ε, in other words, if X• is

conform up to a certain amount. This approach is exactly in the same spirit as
the construction of the conformal predictor for binary classification. Indeed, the
construction of conformal predictors relies on a so-called p-value which can be
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seen as the empirical cumulative function of a given non-conformity measure.
This is the counterpart of the empirical cumulative function of the score f̂(X•)
in our setting (note that f̂(·) is our conformity measure). In this point of view,
conformal predictors and confidence sets differ only on the way the score (or
equivalently the non-conformity measure) is computed. In our methodology, we
use a first dataset to estimate the true score function f and a second one to
estimate the cumulative distribution function of f . On the other hand, in the
setting of conformal predictors , the non-conformity measure is estimated by
Leave-One-Out cross validation. This makes the statistical analysis of conformal
predictors more difficult, but they have the advantage of using only one dataset
to construct the set of labels.
Furthermore, there is one main difference between confidence sets and conformal
predictors. These last allow to assign the empty set as a label. which is not the
case of the confidence set. In our setting, both of the outputs ∅ and {0, 1} are
referred as the rejecting of classifying the instance.

The rest of this section is devoted to establish the empirical performance of
the plug-in ε-confidence set. The symbols P and E stand for generic probability
and expectation. Before setting the main result, let us introduce the assumptions
needed to establish it. We assume that

η̂(X) → η(X) a.s, when n → ∞,

which implies that f̂(X) → f(X) a.s. We refer to the the paper [1], for instance,
for examples of estimators that satisfy this condition. Moreover, we assume that
Ff̂ is a continuous function.

Let us now state our main result:

Theorem 2. Under the above assumptions, we have

R
(
Γ̂•

ε(X•)
)

− R (Γ•
ε(X•)) → 0, n,N → +∞,

where R
(
Γ̂•

ε(X•)
)

= P
(
ŝ(X•) �= Y•|F̂f̂ (f̂(X•)) ≥ 1 − ε

)
.

The proof of this result is postponed in the Appendix. Theorem 2 states that if
the estimator of η is consistent, then asymptotically the plug-in ε-confidence set
performs as well as the ε-confidence set.

4 Numerical Results

In this section we perform a simulation study which is dedicated to evaluating the
performance of the plug-in ε-confidence sets. The data are simulated according
to the following scheme:

1. the covariate X
L= (U1, . . . , U10), where Ui are i.i.d from a uniform distribu-

tion on [0, 1];
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2. conditional on X, the label Y is drawn according a Bernoulli distribution
with parameter η(X) defined by logit(η(X)) = X1 − X2 − X3 + X9, where
Xj is the jth component of X.

In order to illustrate our convergence result, we first estimate the risk R of the
ε-confidence set. More precisely, for each ε ∈ {1, 0.5, 0.1}, we repeat B = 100
times the following steps:

1. simulate two data sets D(2)
N1

and D•
K according to the simulation scheme with

N1 = 1000 and K = 10000;
2. based on D(2)

N1
, we compute the empirical cumulative distribution of f ;

3. finally, we compute, over D•
K , the empirical counterpart RN1 of R of the ε-

confidence set using the empirical cumulative distribution of f instead of Ff

From these results, we compute the mean and standard deviation of the empirical
risk. The results are reported in Table 1. Next, for each ε ∈ {1, 0.5, 0.1}, we
estimate the risk R for the plug-in ε-confidence set. We propose to use two
popular classification procedures for the estimation of η: the random forest and
logistic regression procedures for instance. We repeat independently B times the
following steps:

1. simulate three dataset D(1)
n1 ,D(2)

N2
,D•

K according to the simulation scheme.
Note that the observations in dataset D•

K play the role of (X•, Y•);
2. based on D(1)

n1 , we compute an estimate, denoted by f̂ , of f with the random
forest or the logistic regression procedure;

3. based on D(2)
N2

, we compute the empirical cumulative distribution of f̂(X);
4. finally, over D•

K , we compute the empirical counterpart RK of R.

From these results, we compute the mean and standard deviation of the
empirical risk for different values of n1. We fix n2 = 100 and K = 10000. The
results are reported in Table 2.

Table 1. Estimation of R for ε-confidence set. The standard deviation is provided
between parenthesis.

ε RN1

1 0.389 (0.005)
0.5 0.324 (0.006)
0.1 0.238 (0.013)

First of all, we recall that for ε = 1, the measure of risk of confidence sets
match with the misclassification risk of the procedure we use to estimate η. Next,
several observations can be made from the study: first, the performance of the
Bayes classifier, illustrated in Table 1 when ε = 1 (RN1 ≈ 0.389) reflects that
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Table 2. Estimation of R for plug-in ε-confidence set. The standard deviation is
provided between parenthesis.

ε n1 random forest logistic regression

1 100 0.45 (0.02) 0.43 (0.02)
1 1000 0.42 (0.01) 0.40 (0.01)

0.5 100 0.42 (0.02) 0.39 (0.02)
0.5 1000 0.37 (0.01) 0.34 (0.01)
0.1 100 0.38 (0.04) 0.34 (0.05)
0.1 1000 0.32 (0.02) 0.25 (0.02)

the classification problem is quite difficult. Second, we can make two general
comments: i) all the methods observe their risk diminishes with ε, regardless the
value of n1. This behavior is essentially expected since the methods classify the
covariates for which they are more confident; ii) the performance of the methods
are better when n1 increases. This is also expected as the quality of estimation of
the regression function η increases with the sample size. It is crucial to mention
that our aim is not to build a classification rule that does not make errors.
The motivation when introducing the plug-in ε-confidence set is only to improve
and make more confident a classification rule. Indeed, since the construction of
the confidence set depends on the estimator of η, poor estimators would lead
to bad plug-in ε-confidence sets (even if the misclassification error is smaller).
As an illustration we can see that the performance of the plug-in ε-confidence
based on logistic regression are better than those of the plug-in ε-confidence
based on random forest. Moreover, we remark that the logistic regression is
completely adapted to this problem since its performance gets closer and closer
to the performance of the Bayes estimator when n1 increases (regardless the value
of ε). Our final observation concerns some results we chose to not report: we note
that, independently of the value of n1, the proportion of classified observations
is close to ε which is conform to our result (3).

5 Conclusion

Borrowing ideas from the conformal predictors community, we derive a new
definition of a rule that responds to the classification with reject option. This
rule named ε-confidence set is optimal for a new notion of risk we introduced in
the present paper. We illustrate the behavior of this rule in the Gaussian mixture
model. Moreover, we show that the empirical counterpart of this confidence set,
called plug-in ε-confidence set is consistent for that risk: we establish that the
plug-in ε-confidence set performs as well as the ε-confidence set. An ingoing work
is to state finite sample bounds for this risk.
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Appendix

Proof (Theorem 2). Let us introduce some notation for short: we note U•, Û•
and ˆ̂

U• the quantities Ff (f(X•)), Ff̂ (f̂(X•)) and F̂f̂ (f̂(X•)) = 1
N

∑N
i=1

1{f̂(Xi)≤f̂(X•)}. We have the folowing decomposition

1{ŝ(X•) �=Y• ,
ˆ̂
U•≥1−ε} − 1{s∗(X•) �=Y• , U•≥1−ε} =

{
1{ŝ(X•) �=Y• ,

ˆ̂
U•≥1−ε} − 1{ŝ(X•) �=Y• , Û•≥1−ε}

}

+
{
1{ŝ(X•) �=Y• , Û•≥1−ε} − 1{s∗(X•) �=Y• , U•≥1−ε}

}

=: A1 + A2. (4)

Since,

|P
(
ŝ(X•) �= Y• ,

ˆ̂
U• ≥ 1 − ε

)
−P ({s∗(X•) �= Y• , U• ≥ 1 − ε) | ≤ |E [A1]| + |E [A2]| ,

we have to prove that |E [A1]| → 0 and |E [A2]| → 0.

A2 =
(
1{ŝ(X•) �=Y•} − 1{s∗(X•) �=Y•}

)
1{U•≥1−ε}+1{ŝ(X•) �=Y•}

(
1{Û•≥1−ε} − 1{U•≥1−ε}

)
,

so, we have

|E [A2]| ≤ 2E [|η̂(X•) − η(X•)|] + E
[∣∣∣1{Û•≥1−ε} − 1{U•≥1−ε}

∣∣∣
]
. (5)

Next, combining the fact that, for any δ > 0,
∣∣∣1{Û•≥1−ε} − 1{U•≥1−ε}

∣∣∣ ≤ 1{|U•−(1−ε)|≤δ} + 1{|Û•−U•|>δ},

and that

|Û• − U•| =
∣∣∣Ff̂ (f̂(X•)) − Ff (f̂(X•)) + Ff (f̂(X•)) − Ff (f(X•))

∣∣∣
≤

∣∣∣Ff̂ (f̂(X•)) − Ff (f̂(X•))
∣∣∣ +

∣∣∣Ff (f̂(X•)) − Ff (f(X•))
∣∣∣

≤ sup
t∈[1/2,1]

∣∣∣Ff̂ (t) − Ff (t)
∣∣∣ +

∣∣∣Ff (f̂(X•)) − Ff (f(X•))
∣∣∣ ,

we deduce, using Markov Inequality and (5), that

|E [A2]| ≤ 2E [|η̂(X•) − η(X•)|] + 2δn +
√

βn, (6)

where βn = E
(∣∣∣Ff (f̂(X•)) − Ff (f(X•))

∣∣∣
)

and δn is set depending on n as

follows: δn = αn +
√

βn with αn = supt∈[1/2,1]

∣∣∣Ff̂ (t) − Ff (t)
∣∣∣.
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By assumption, η̂(X•) → η(X•) a.s. Moreover |η̂(X•) − η(X•)| ≤ 1, so
E [|η̂(X•) − η(X•)|] → 0. Since f̂(X•) → f(X•) a.s. when n → ∞ and Ff is
continuous and bounded on a compact set, βn → 0. Moreover, Dini’s Theorem
ensures that αn → 0. Therefore, we obtain with Inequality (6)

|E [A2]| → 0.

Next, we prove that |E [A1]| → 0. For any γ > 0,

|1{ ˆ̂
U•≥1−ε} − 1{Û•≥1−ε}| ≤ 1{|Û•−(1−ε)|≤γ} + 1{| ˆ̂U•−Û•|≥γ}. (7)

We have, for all x ∈ (1/2, 1), Ff̂ (x) = ED(1)
n

[
P

(
f̂(X) ≤ x|D(1)

n

)]
. But, condi-

tional onD(1)
n , F̂f̂ (x) is the empirical cumulative distribution ofP

(
f̂(X) ≤ x|D(1)

n

)

where f̂ is view as a deterministic function. Therefore, the Dvoretzky–Kiefer–
Wolfowitz Inequality (cf. [4,9]) yields

E
[
1{| ˆ̂U•−Û•|≥γ}

]
≤ 2e−2Nγ2

, for γ ≥
√

log(2)
2N

.

So, using (7) and choosing γ = γN =
√

log(N)
2N , we obtain

E [|A1|] → 0,

which yields the result. Now, it remains to prove that P
( ˆ̂
U• ≥ 1 − ε

)
→ ε. By

assumption, P
(
Û• ≥ 1 − ε

)
= ε. Since, we have proved that

E
[
|1{ ˆ̂

U•≥1−ε} − 1{Û•≥1−ε}|
]

→ 0.

This ends the proof of the theorem.
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Abstract. The paper describes an application of a novel clustering
technique based on Conformal Predictors. Unlike traditional clustering
methods, this technique allows to control the number of objects that
are left outside of any cluster by setting up a required confidence level.
This paper considers a multi-class unsupervised learning problem, and
the developed technique is applied to bot-generated network traffic. An
extended set of features describing the bot traffic is presented and the
results are discussed.

Keywords: Information security · Botnet · Confident prediction ·
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1 Introduction

Within the past decade, security research begun to rely heavily on machine learn-
ing to develop new techniques to help in the identification and classification of
cyber threats. Specifically, in the area of network intrusion detection, botnets are
of particular interest as these often hide within legitimate applications traffic.
A botnet is a network of infected computers controlled by an attacker, the bot-
master, via the Command and Control server (C&C ). Botnets are a widespread
malicious activity among the Internet, and they are used to perform attacks
such as phishing, information theft, click-jacking, and Distributed Denial of Ser-
vice (DDoS). Bots detection is a branch of network intrusion detection which
aims at identifying botnet infected computers (bots). Recent studies, such as [9],
rely on clustering and focus their analysis on high level characteristics of net-
work traffic (network traces) to distinguish between different botnet threats.
We take an inspiration from this approach, and apply Conformal Clustering,
a technique based on Conformal Predictors (CP) [10], with an extended set of
features. We produce clusters from unlabelled training examples; then on a test
set we associate a new object with one of the clusters. Our aim is to achieve
a high intra-cluster similarity in terms of application layer protocols (http, irc
and p2p).
c© Springer International Publishing Switzerland 2015
A. Gammerman et al. (Eds.): SLDS 2015, LNAI 9047, pp. 313–322, 2015.
DOI: 10.1007/978-3-319-17091-6 26



314 G. Cherubin et al.

In previous work [4,5,8] the conformal technique was applied to the problem
of anomaly detection. It also demonstrated how to create clusters: a prediction
set produced by CP was interpreted as a set of possible objects which conform to
the dataset and therefore are not anomalies; however the prediction set may con-
sist of several parts that are interpreted as clusters, where the significance level
is a “trim” to regulate the depth of the clusters’ hierarchy. The work in [8] was
focused on a binary (anomaly/not anomaly) unsupervised problem. This paper
generalizes [8] for a multi-class unsupervised learning problem. This includes the
problem of clusters creation, solved here by using a neighbouring rule, and the
problem of evaluating clusters accuracy, solved by using Purity criterion. For
evaluating efficiency we use Average P-Value criterion, earlier presented in [8].

In our approach we extract features from network traces generated by a
bot. Then we apply preprocessing and dimensionality reduction with t-SNE; the
use of t-SNE, previously used in the context of Conformal Clustering in [8], is
here needed for computational efficiency, since the way we here apply Conformal
Clustering has a time complexity increasing as Δ×�d, where Δ is the complexity
to calculate a P-Value and varies respect to the chosen non-conformity measure,
� is the number of points per side of the grid, and d is the number of dimensions.
This complexity can be reduced further for some underlying algorithms. The
dataset is separated into training and test sets, and clustering is applied to
training set. After this the testing objects are associated with the clusters.

An additional contribution made by this paper is related to feature collection:
an algorithm based on Partial Autocorrelation Function (PACF) to detect a
periodic symbol in binary time series is proposed.

2 Data Overview

The developed system is run on network traces produced by different families of
botnets. A network trace is a collection of network packets captured in a certain
window of time. A network trace can be split into network flows (netflows), a
collection of packets belonging to the same communication. A netflow contains
high level information of the packet exchange, such as the communicating IP
addresses and ports, a timestamp, the duration, and the number and size of
exchanged packets (transmitted, received and total). As [9] suggested, a system
using only netflows, thus not modelling the content of the packets, is reliable
even when the traffic between bot and C&C is encrypted.

In the dataset creation phase we extract a feature vector from every network
trace. A feature vector is composed of the following 18 features: median and
MAD (Mean Absolute Deviation) of netflows duration, median and MAD of
exchanged bytes, communication frequency, use percentage of TCP and UDP
protocols, use percentage of ports respectively in three ranges1, median and
MAD of transmitted and received bytes considering the bot as source, median
and MAD of transmitted and received bytes considering the connection initiator
1 We base these ranges on the standard given by IANA: System Ports (0–1023), User

Ports (1024–49151), and Dynamic and/or Private Ports (49152–65535).
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as source. Duration of netflows, transmitted received and total exchanged bytes
have been used in past research for bots detection [9]; these quantities were
usually modelled by their mean value. We model them here by using median
and MAD, since normal distribution is not assumed; furthermore, median is
invariant in non-linear rescaling.

Since, as others observed [9], in most botnet families bots communicate peri-
odically, we introduce the feature frequency which takes into account the period
of communication, if any. We can detect the period of communication by looking
at the netflows timestamps, and constructing a binary time series yt as:

yt =

{
1, if flow occurred at time t

0, if no flow occurred at time t
for t in {0,1,...}, (1)

where time t is measured in seconds.
For a period T we then define the feature frequency to be:

frequency =

{
0, if T = ∞(no period)
1/T, otherwise

for T > 0.

which is consistent whenever a period is found or not. Later in this section we
introduce a novel approach for detecting periodicity within a binary time series
defined as in Eq. 1.

The dataset we use contains traffic from 9 families of botnets and we will
group them with respect to the application layer protocol they are based on. We
hence define three classes of botnets: http, irc and p2p based. Our goal is to
produce clusters containing objects from the same class. In this paper objects
and feature vectors refer to the same concept; example refers to a labelled object.

2.1 Periodicity Detection Based on PACF

Equation (1) defines a binary time series yt, such that yt = 1 when some event
has happened at time t, yt = 0 otherwise. Our goal is to check whether the time
series contains a periodic event, and if so we want to determine the period T
of this event. The study [1] calls this task ‘Symbol Periodicity’ detection. Past
studies in bots detection, such as [9], approached the problem by using Power
Spectral Density (PSD) of the Fast Fourier Transform of the series.

We propose an algorithm based on Partial Autocorrelation Function (PACF)
for achieving this goal, which is simple to implement, well performing under noisy
conditions2, and which may be extended to capture more than one periodic event.

Given a generic time series ut, the PACF of lag k is the autocorrelation
between ut and ut−k, removing the contribution of the lags in between, t − 1 to
t − k + 1. The PACF coefficients φkk between ut and ut−k, are defined as [2]:
2 By noise we mean events which can happen at any time t; let W=Integer(L ∗ ν),

where L is the length of yt and ν ∈ [0, 1] the percentage of noise (noise level), we
simulate noise in our artificial time series by setting yt = 1 for a number W of
positions t uniformly sampled in [1, L].
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φ11 = ρ1

φ22 = (ρ2 − ρ21)/(1 − ρ21)

φkk =
ρk −

∑k−1
j=1 φk−1,jρk−j

1 −
∑k−1

j=1 φk−1,jρj

, k = 3, 4, 5, ...

where ρi is the autocorrelation for lag i, and φkj = φk−1,j − φkkφk−1,k−j for
j = 1, 2, ..., k − 1.

Fig. 1. PACF over a binary time series with one periodic event of periodicity T = 23
exhibits a peak at lag k = 23

From our experiments on artificial binary time series with one periodic event
we noticed that PACF on them presents a high peak at the lag corresponding to
the period T . For instance, Fig. 1 is the PACF over an artificial binary time series
of 104 elements, having a periodic event with period T = 23. This fact holds true
even under noisy conditions. We run our experiments on artificial binary time
series of length 104, testing all the periods in {3, 4, ..., 100}, inserting different
percentages of white noise and computing PACF over 150 lags. The period is
estimated as the lag at which PACF is maximum, and checked if equal to the
true period. The experiments show that for a time series of length L = 104 the
accuracy remains 1 for the noise level ν = 0.05 and becomes 0.83 for ν = 0.2. If
L = 105, then it is pure for up to ν = 0.1, while for noise level ν = 0.2 it is 0.96.

So far we assumed to know that a periodicity existed in yt. In case, as for our
dataset, we do not assume a priori a periodicity exists, we can use a threshold
for performing detection. We noticed that relevant peaks in PACF are larger
than 0.65. Hence we compute PACF, get the maximum of it, and consider its
lag to be a valid period only if its value is larger than a threshold ϑ = 0.65;
otherwise, we consider the time series to be aperiodic.



Conformal Clustering and Its Application to Botnet Traffic 317

3 Conformal Clustering Approach

We perform the following steps on a dataset X created as in Sect. 2:

1. Preprocessing of X;
2. Dimensionality reduction with t-SNE (produces Z);
3. Z is split into training (100) and test (34) set;
4. Conformal Clustering on training set;
5. Test objects are associated to the clusters following a neighbouring rule.

After this, evaluation criteria Average P-Value (APV) and Purity are computed.

3.1 Preprocessing and Dimensionality Reduction

We apply log-transformation to bytes-related features of the dataset because
they take values in a large range. t-SNE requires the dataset to be consistently
normalized before application. We apply normalization in [0, 1] to all features u:

u01 =
u − min(u)

max(u) − min(u)
,

Our application of Conformal Clustering requires to compute �d P-Values,
where � is the number of points per grid side and d is the number of features.
We use t-SNE, as [8] did before, as a dimensionality reduction algorithm before
clustering.

T-SNE [6] is originally developed as a visualization algorithm for high dimen-
sional data. However, thanks to its ability of keeping far in the low dimensional
projection dissimilar objects of the high dimensional data, and vice versa for
similar objects, it reveals to be a good dimensionality reduction algorithm. We
can trim a few parameters of it, such as perplexity and distance metric. Perplex-
ity may be viewed as the number of effective neighbours each object has in high
dimensional space; distance metric is a similarity measure between objects in
high and low dimensional space. For our experiments we used Euclidean Dis-
tance as a distance metric, and trimmed the value of perplexity. By applying
t-SNE to our preprocessed dataset we obtain Z = {z1, z2, ..., zN}, a 2-D projec-
tion of it.

3.2 Conformal Clustering

CP allows to have a confidence measure on predictions. Given a bag of obser-
vations D = �z1, .., zn−1�, zi ∈ Z, a new object z and a significance level ε, CP
allows to determine if z comes from D with an error on the long run of at most
ε. The only property required by CP is that �z1, .., zn−1� are exchangeable. Note
that exchangeability property is weaker than iid, since:

iid =⇒ exchangeable.
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We define a non-conformity measure A : Z(∗) × Z �−→ R, to be a function
which accepts a bag of objects and an object zi, and returns a scalar representing
how much zi is conform to the other objects. The result of CP is a P-Value pn

and a boolean answer indicating if the new object is conform to D. Follows a
description of the algorithm.

Data: Bag of objects D = �z1, .., zn−1�, non-conformity measure A,
significance level ε, a new object z

Result: P-Value pn, True if z is conform to training objects

Set provisionally zn = z and D = �z1, .., zn�
for i ← 1 to n do

αi ← A(D \ zi, zi)
end
τ = U(0, 1)
pn = #{i:αi>αn}+#{i:αi=αn}τ

n
if pn > ε then

Output True
else

Output False

Algorithm 1. Conformal Prediction using new examples alone

In the algorithm, τ is sampled in Uni(0,1) to obtain a smoothed conformal
predictor, as suggested by [3]. Smoothed conformal predictor is exactly valid,
which means that the probability of error equals ε on the long run. Confidence
level is defined as 1 − ε, which is the probability for a new example generated
by the same distribution to be covered by the prediction set.

Conformal Clustering uses CP to create a set of predictions Γε, which con-
tains the new objects which are conform to old objects in D. These objects are
then clustered by using a neighbouring rule. Follows a description of the algo-
rithm. A d-dimensional grid of � equally spaced points per side is created within
the feature values range; d is the number of features. P-Values are computed
using CP for each point of the grid considering them as new objects z respect
to the bag of training observations Z. Conform points are predicted respect to
a significance value ε. These points are then clustered by using a neighbouring
rule: two points zi, zj are in the same cluster if they are neighbours on the
grid. In this context, significance level ε can be used as a trim to regulate the
depth of the clusters (see Fig. 2). In fact, ε is responsible for the percentage of
instances left outside any clusters; the more of them there are, the less connected
to each other are the remaining ones, which leads to a deeper level of hierarchical
clustering.

Once created the clusters, test objects are associated to them by using the
rule: a test object is from a cluster if its distance from one of the cluster point
is smaller or equal to the grid unit. If a point is associated to more than one
clusters, these clusters are merged.
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Fig. 2. Trimming significance level ε on P-Values grid. Non-conformity measure k-NN
with k = 1 (left) and KDE with h = 0.1 (right) are used. Coloured points are the
predicted ones with respect to a significance level.

3.3 Non-conformity Measures

A non-conformity measure is a function A : Z(∗) × Z → R, where Z(∗) is the
set of possible bags over Z. CP is valid for every non-conformity measure, but
some of them are more efficient; efficiency is later presented in this document as
a performance criterion. In our experiments we used non-conformity measures
k-Nearest Neighbours (k-NN) and Kernel Density Estimation (KDE).

Ai, k-NN non-conformity measure for object zi, given δij to be the j-th
smallest distance between zi and the objects in �z1, ..., zn � \zi, is:

Ai =
k∑

j=1

δij ,

where k is the chosen number of neighbours.
Ai, KDE non-conformity measure for a kernel function K : Rd → R, where

d is the number of features, is:

Ai = −

⎛
⎝ 1

nhd

n∑
j=1

K

(
zi − zj

h

)⎞
⎠ ,

where h is the kernel bandwidth. We here use a Gaussian kernel:

K(u) =
1
2π

e− 1
2u2

.

4 Results

We measure the performances of our system by using two criteria: Purity and
Average P-Value (APV). Purity is an accuracy criterion which measures the
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homogeneity of clusters. It is the weighted sum, for all the clusters, of the per-
centage of objects from the most frequent class respect to the cluster cardinality.
Purity [7] is formally defined as:

Purity(Ω, C) =
1
n

∑
k

max
j

#{ωk ∩ cj},

where Ω = {ω1, ..., ωK} is the set of clusters, and C = {c1, ..., cJ} is the set of
classes. For a parameter set we compare Purity for a fixed ε. The use of Purity is
usually avoided for evaluating clustering algorithms such as K-Means or Hierar-
chical Clustering, because it is highly conditioned by the number of clusters. We
although employ this criterion here because the way we trim Conformal Cluster-
ing parameters does not essentially influence the number of clusters for the same
ε. APV is an efficiency criterion introduced by [8]; efficiency in CP measures the
size of the prediction set Γε. APV is defined to be the mean of P-Values of the
P-Values grid. We want this parameter to be as small as possible.

Table 1. Conformal Clustering respectively with k-NN trimming k (above) and KDE
gaussian kernel trimming bandwidth h (below)

k 1 2 3 4 5 6 7 8 9 10

APV 0.129 0.139 0.141 0.147 0.160 0.167 0.176 0.183 0.189 0.193
Purity (ε = 0.2) 0.990 0.970 0.970 0.960 0.960 0.960 0.960 0.940 0.920 0.920

h 0.001 0.005 0.01 0.05 0.1 0.2 0.3 0.4 0.5 1.0

APV 0.404 0.332 0.299 0.165 0.130 0.138 0.146 0.155 0.165 0.211
Purity (ε = 0.2) 1.000 0.980 1.000 0.990 0.990 0.990 0.970 0.970 0.950 0.920

In our first experiment we apply Conformal Clustering to a t-SNE projection
with perplexity 50. Table 1 shows the results of using non-conformity measures
k-NN and KDE trimming their parameters. The significance level was set to
ε = 0.2. We notice that KDE manages to achieve perfect Purity, with the penalty
of a larger APV. Non-conformity measure k-NN obtains its best Purity and APV
for the value k = 1. K-NN also gets for this value the best APV overall. Further
we will see from Fig. 3 that it is more robust on perplexity than KDE. KDE
efficiency quickly fails for small bandwidth (h < 0.05), which may be due to high
computational precision required by this method. Figure 2 shows k-NN and KDE
predictions on P-Values grid respect to the significance level.

In the second experiment we inspect how t-SNE perplexity influences the
results. We experiment with many values of perplexity, apply Conformal Clus-
tering with k-NN (k = 1) and KDE (bandwidth h = 0.1) non-conformity mea-
sures, and measure APV and Purity. Figure 3 shows the results for k-NN and
KDE non-conformity measures. The trends for Purity are both ascendant as per-
plexity increases, and after approximately 20 they get on average very close to
perfect Purity. As for the efficiency, while for k-NN APV does not look strictly
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Fig. 3. Trimming t-SNE perplexity and evaluating Conformal Clustering for non-
conformity measures KDE (gaussian kernel, bandwidth h = 0.1) in dashed brown
line, and k-NN (k = 1) in blue line. We evaluate criteria APV (left) and Purity (right).

correlated to perplexity (despite a slow increasing trend as perplexity grows),
for KDE APV decreases, which indicates that for KDE perplexity value can be
set larger to get better performances. These results indicate k-NN to be a better
candidate than KDE as a non-conformity measure for Conformal Clustering, but
further experiments on different training sets should investigate this.

5 Conclusions and Future Work

We described here a novel clustering technique called Conformal Clustering,
extending previous research for a multi-class unsupervised learning setting. We
presented its application for clustering network traffic generated by bots. A neigh-
bouring rule was introduced for creating clusters from a prediction set of objects.
Purity and APV criteria were used for evaluating clustering performances. We
also proposed a novel algorithm based on PACF for detecting a single periodicity
in a binary time series.

For future research we plan to develop various criteria of accuracy and effi-
ciency. Our aim is also to reduce the computational complexity of Conformal
Clustering. If the problem does not require reduction of dimensionality then
an application of t-SNE can be avoided. In high dimension a potential alterna-
tive to t-SNE is using an irregular (random) grid instead of the current one,
but this would need some revision of the clustering definition. The methodol-
ogy was shown on the example of two non-conformity measures, each having
two parameters (including perplexity), and we compared their quality. Using
more data, this can be extended further to find the best approach. We also plan
to develop new non-conformity measures related to underlying algorithms like
BotFinder [9]. The experiments for the proposed periodicity detection algorithm
computed PACF for a number of lags close to the period to detect; future studies
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may investigate its performance when using a different number of lags. PACF-
based periodicity detection can be also extended for detecting more than one
period in an instance.

From a security perspective, our dataset contained only network traces from
infected computers. One more direction is to consider extending this approach
to model family-based clusters of botnets and on assessing its ability to detect
bot-infected machines by monitoring real-world unknown network traffic.
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Abstract. We present a method for interpretation of conformal predic-
tion models. The discrete gradient of the largest p-value is calculated
with respect to object space. A criterion is applied to identify the most
important component of the gradient and the corresponding part of the
object is visualized.

The method is exemplified with data from drug discovery relating
chemical compounds to mutagenicity. Furthermore, a comparison is made
to already established important subgraphs with respect to mutagenic-
ity and this initial assessment shows very useful results with respect to
interpretation of a conformal predictor.

1 Introduction

In drug discovery a huge amount of data is generated to understand the effect
of compounds interacting with biological targets. This data is usually generated
for compounds that are synthesized and progressed in the drug discovery pro-
cess. However, to decide which compounds to synthesize and aid in the design
of new compounds, modeling of data generated from experiments is required.
In drug discovery this type of modeling is often referred to as Quantitative
Structure-Activity Relationship (QSAR). QSAR models are applied to predict
properties such as solubility or specific toxicity of chemical compounds using
machine learning and are widely used within the pharmaceutical industry to
prioritize compounds for experimental testing or to alert for potential toxicity
during the drug-discovery process [9,11]. The requirements for building a QSAR
model is a set of compounds and a property that has been determined experi-
mentally. The compounds are represented by objects that relatively easily can
be calculated from the chemical structure of the compound, like for example by
viewing the compounds as graphs and counting subgraphs of particular types.
The experimental property is used as the label to be learned. The models need
to allow for ranking of the compounds but it is also important that a measure of
c© Springer International Publishing Switzerland 2015
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the associated risk can be obtained. For these reasons the conformal prediction
framework [12,16] is well suited for this type of modeling and is gaining popu-
larity. To influence the design of new compounds the model should also provide
information about possible changes to a compound that is likely to affect the
biological activity. In comparison to machine learning in general this amounts to
determining important components of the objects. The determination of these
components can be done with two different views, one where we consider what
is of global importance, what is important considering all examples we have
observed, and the other of local importance, what is important for a specific
example that we have predicted. Conformal prediction [12,16] is a method that
use existing data to determine valid prediction regions for new examples. Thus
instead of giving a point estimate, a conformal prediction model gives a predic-
tion region that contains the true value with probability equal to or higher than
a predefined level of confidence. Such a prediction region can be obtained under
the assumption that the observed data is exchangeable [16].

It is of great utility to have models that allow for interpretation of the pre-
diction. Ideally a chemist should get information on what parts of a compound
that could be removed or replaced to get closer to the property of interest of that
particular compound. To be able to perform such actions is of general interest in
machine learning. Given a prediction for a new example it would in most cases be
valuable to understand if slight changes to the object can alter the prediction to
something more favorable. This is what we, somewhat loosely, define as a model
being interpretable. A method to interpret machine-learning models, where the
objects are compounds, has been proposed by Carlsson et. al. [4]. The idea there
was to view the model as function that maps the objects to the labels, that
is in the drug-discovery setting, the compounds to the corresponding property.
By computing the gradient of the function with respect to the components of
the object, suggestions of possible changes to the objects are made that would
change the label in a more favorable fashion. In the case of classification the
function for which the gradient was computed is real valued, for example for
SVM it was the decision function and for RandomForest the fraction of votes
for one class.

Tremendous manual effort has been put into defining subgraphs of com-
pounds that are highly correlated to the binary experimental properties muta-
genic or non mutagenic. The procedure is based on manual inspection of the
chemical compounds to define subgraphs. For each subgraph, all compounds in
the data set are tested for the presence of the subgraph. This results in a con-
tingency table with mutagenic or non mutagenic versus subgraph present or no
subgraph present. A statistical test, usually based on standard scores, is then
performed using the contingency table. The subgraphs are subsequently modi-
fied and re-tested in an iterative fashion until a sufficient number of subgraphs
are identified that can be used to identify mutagenic compounds at a given level
of significance. The manually derived subgraphs are commonly used as rules that
provide both prediction and interpretation and an example of this procedure can
be found in [10].
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The remainder of this paper is organized as follows. In the next section we
present how a component in an object of a particular prediction can be identified
that would allow for a change in the credibility of a prediction. Next, we show
results when the procedure is applied to fictitious data and to Ames mutagenicity
data. In the last section we conclude the paper.

2 Method

Any machine-learning model is an approximation of a relationship between an
object and its label, like a compound and its biological activity, and can be
viewed as a mathematical function. The gradient of a function at a point in
object space explains how this function behaves in the local neighborhood to
that specific object and it can be calculated for any sufficiently smooth func-
tion. By computing the gradient of a label a local linear approximation, a trun-
cated Taylor series expansion, is obtained and this enables the exploration of
the function in that local neighborhood of the object space without an explicit
differentiable analytical expression of the model.

In this work we focus on the component of an object that results in the
largest change locally, by magnitude, of the function. We remark that one could
also evaluate a set of the most important components of an object, defined by
an arbitrary cutoff, either on the size of the components of the gradient or by
taking a predefined number of the largest components of an object sorted in
descending order by the size of the corresponding components of the gradient.
This can be adjusted to the problem at hand. We will proceed in describing the
proposed method assuming that we only need to consider one component of the
gradient, without loss of generality.

Consider a set of examples {xk, yk} where the object for the kth example is
denoted xk and the corresponding label is yk, which can be either discrete or
continuous. The number of components of an object x is M . These examples are
used to train a model and we can regard this relationship as a function y = f(x).
In the case of conformal prediction, the interest is not primarily in the label itself
but rather the change in the p-value, similarly to how a decision function value
can be used when the underlying modeling algorithm is SVM, thus rather than
looking at f(x) we look at pc(x) = p(x, c), where c indicates the class label to
be considered of all relevant labels, C. Since a conformal predictor produces a
p-value for each possible label, we propose to calculate the gradient in object
space for the most credible label, ĉ : maxc{pc(x)}, c ∈ C1. Assuming a sufficiently
smooth function describing the p-values and the objects in metric spaces, then
the jth component of a discrete gradient can be defined as a one-sided finite
difference

p
′ĉ
j (x) =

pĉ(x + hj) − pĉ(x)
h

, (1)

where hj denotes that the jth component of the otherwise all zeros vector is set to
h. The step length, h, can also be allowed to vary for varying j based on knowledge
1 This is equivalent to the definition of Credibility in [16]
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about the distribution of objects, perhaps in what is observed from a training set.
For a given object x to be predicted, we assume all possible class labels. This is
identical to the procedure of a regular conformal predictor classification. When we
have determined the most credible class, we proceed to compute the gradient of the
corresponding p-value. We remark that the complexity of the proposed method in
addition to the regular conformal predictor isM evaluations of pĉ(x). We also note
that the definition of a p-value, in most uses of conformal predictors, is piecewise
constant and discontinuous as a function of the nonconformity score. However,
wider finite-difference schemes can be used for smoothing of the discrete gradient,
but they would be more computationally costly to evaluate. Another possibility
is to use an interpolated p-value2. A pseudo code representation of the proposed
method is described in Algorithm 1.

for c ∈ C do
pc(x) = p(x, c)

ĉ : maxc p(x, c)
ĵ = 1
p̂ = 0.0
for j ∈ 1 . . .M do

p
′ĉ
j (x) =

pĉ(x + hj) − pĉ(x)
h

if p̂ < p
′ĉ
j (x) then

ĵ = j
p̂ = p

′ĉ
j (x)

if p̂ > 0.0 then
ĵ is an important component of x

else
no important component of x

Algorithm 1. This shows pseudo code for the proposed method. When a
component of the gradient is positive the largest component, ĵ, is identified. If
the most credible p-value is at a local maxima in object space, no component
is identified.

3 Results

To evaluate the proposed method of interpreting conformal prediction models
by computing the largest component of the gradient we will conduct two exper-
iments. The first one will be on fictitious data and the second on a data set
describing activities (labels) of compounds in the Ames mutagenicity test [3].

2 A continuous p-value is defined in the paper Modifications to p-values of Conformal
Predictors, also presented at COPA 2015
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3.1 Experimental Results on Fictitious Data

Here we will use categorical data defined by the function

f(x1, x2) =
{

0, if x1 < 0,
1, if x1 ≥ 0, (2)

where the object x1, x2 ∈ [−0.5, 0.5]. The intention is to examine how our proce-
dure behaves at and in a neighborhood to a transition between different values of
a label. We randomly sampled 400 objects from a uniform distribution to create
a training set with labels according to (2) and a corresponding test set of 1000
examples. A transductive Mondrian conformal algorithm was used to create a
model, where calibration was done for each type of label. The algorithm was
implemented using C-SVC in libsvm [5] with the cost coefficient (C in libsvm)
set to 50.0 and the width of the kernel function, (g in libsvm) to 0.002. The
nonconformity scores were defined by the Lagrangian multipliers and p-values
were calculated by using the definition in [16, p. 27], a smoothed p-value. All
predictions were carried out without updating the training set by learning from
predicted examples. We chose h = 0.01, to avoid extremely large components of
the gradient. The choice was based on assuming that the distribution of training
objects could be represented by a uniformly spaced grid of the size 20 × 20 in
object space and then assigning a slightly smaller value. Results showing p-values
and components of the discrete gradient are shown in Figures 1 and 2. The most

Fig. 1. The p-values for the label 1 are represented by red dots and those for the label
0 with blue dots. The vertical axis shows the value of the p-values and horizontal axes
show values of x1 and x2.
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Fig. 2. The plots show partial derivatives of the p-values with respect to x1 (left) and
x2 (right). The coloring corresponds to the coloring in Figure 1.

credible p-value corresponds to label 0 for x < 0 and otherwise it corresponds to
label 1. We can see that a large proportion of the gradient components colored
red in the left plot of Figure 2, for x1 > 0 are larger by magnitude than the cor-
responding gradient components in the plot to the right. In Figure 1, the value
of p-values colored red is increasing as x1 is increasing for x1 > 0. The results
are consistent for p-values representing label 0 although the sign of the gradient
components is opposite that of the gradient components based on label 1.

3.2 Experimental Results on Ames Data

For the Ames data there is a well established link between subgraphs of com-
pounds and mutagenicity. The standard comparator here is a manual curation
of compound subgraphs, encoded as SMARTS [1], by Kazius et. al. [10]. Using
subgraphs to describe the underlying problem has another advantage in that it
is easy to visually highlight the subgraphs on to the original compounds.

The object used when applying the proposed method to Ames mutagenic-
ity data is the signature [7,8] descriptor. The signature descriptor describes a
compound by a set of strings, representing subgraphs of the compound, and the
associated counts. Each string is a canonical representation of a subgraph writ-
ten as a directed acyclic graph. Signature descriptors are calculated for all atoms
in a compound. The neighboring atoms are added layer by layer limited by a
predefined distance threshold, called height. Each incrementation of the height
adds all atoms reached by traversing an additional bond away from the originat-
ing atom. At height zero, the signature descriptors are simply an enumeration
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of atom types in a compound with their corresponding counts. The number of
unique strings depends on the number of unique atom types and their neighbor-
ing atom types, see Figure 3 and Table 1. Table 1, originally presented in Eklund
et. al. [6] and modified here represents the height zero and one signatures for
the drug compound paracetamol. The lower part of the table shows the sig-
nature descriptors, as unique strings with corresponding counts. The signature
descriptor represents very sparse objects with limited overlap between non-zero
components of objects especially at high heights. The signature descriptors used
in this work were generated by CDK [14].

In the evaluation of the proposed method inductive Mondrian conformal
prediction has been applied using support vector machines with a radial basis
function kernel as described in [6]. The Mondrian taxonomy was based on the
individual labels (non mutagenic and mutagenic), thus ensuring class specific

Fig. 3. Paracetamol is a drug compound for treatment of pain and fever. The atom
numbers are displayed in this figure.

Table 1. The signatures of height zero and one for paracetamol. The atom number is
denoted by w and the height by l.

w l = 0 l = 1

1 [C] [C]([C]=[C])

2 [C] [C]([C]=[C])

3 [C] [C]([C]=[C][N])

4 [C] [C]([C]=[C][O])

5 [C] [C]([C]=[C])

6 [C] [C]([C]=[C])

7 [C] [C]([C])

8 [C] [C]([C][N]=[O])

9 [O] [O](=[C])

10 [N] [N]([C][C])

11 [O] [O]([C])

Count Signature

8 [C]

1 [N]

2 [O]

4 [C]([C]=[C])

1 [C]([C]=[C][N])

1 [C]([C]=[C][O])

1 [C]([C])

1 [C]([C][N]=[O])

1 [O](=[C])

1 [N]([C][C])

1 [O]([C])
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Table 2. Examples of highlighted subgraphs by the proposed method in the second
column from left, by a set of manually created SMARTS in the third column. The
fourth column shows the predictions of the compounds when the subgraph identified
as making the most change in the unfavorable direction is altered. The left column
shows the experimental activity of the AMES mutagenicity test. The subgraphs were
colored in red for predictions where the credibility is based on the p-value for the
mutagenic label and in blue for the non-mutagenic label. If we were to chose one
label from the conformal prediction without specifying a significance level it would be
the most credible label. The SMARTS only predict the mutagenic label and this is
also indicated by a red coloring of the important atoms. The figures predicted by the
proposed method were visualized using Bioclipse [13] and the ones predicted by the
manually created SMARTS using oechem [2].
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Table 2. (continued)
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N H2
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mutagenic

validity. Furthermore, libsvm [5] was used to implement the Mondrian conformal
predictor where the nonconformity scores were defined as the decision function
values of the C-SVC algorithm. The cost coefficient (C in libsvm) was set to
50.0, the width of the kernel function, (g in libsvm) to 0.002 and the signature
descriptor heights were 0, 1, 2 and 3 leading to M = 23226. For any prediction
made, only the non-zero components were considered when determining the most
important component of an object. The reason for this limitation is that the
objects are very sparse and that it is of higher interest, in a drug-discovery
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setting, to suggest changes to subgraphs present in the predicted compound.
The gradient of the credible p-value was calculated using h = 1 due to the
nature of the signature descriptor.

The interpretation of conformal predictors is demonstrated using the AMES
mutagenicity data set described in Kazius et al. [10], as a training set. This
set consisted of 4254 examples and was randomly divided in to a calibration
and a proper training set. The calibration set contained 99 examples of each
class and the remainder was used as a proper training set. Evaluation examples
have been selected out of 880 compounds reported by Young et al. [17]. The
compounds present in both data sets have been removed from the external val-
idation set. We remark that this is an early investigation and that we here only
show a few examples of how the interpretation of the conformal predictor can be
applied to data from the drug-discovery domain. The compounds in Table 2 dis-
play highlighted subgraphs using the proposed method and the Kazius SMARTS
along with Ames mutagenicity classification. All atoms belonging to the signa-
ture descriptor representing the most important component of the object were
colored based on the label defining the credible p-value. If it was a mutagenic
label then the atoms were colored red, otherwise they were colored blue. These
examples show that the proposed method retrieves similar subgraphs as the
Kazius SMARTS which is encouraging. Furthermore, the Modified Compound
Conformal Prediction column shows examples where a change has been made
to the highlighted part of the original compound. This shows that a change in
the compound, affecting the predicted most important component, can change
the prediction all together. This is of great importance when applying this type
of predictors in the drug-discovery setting.

4 Discussion

By computing the gradient of the p-value as a function of the objects in a confor-
mal prediction model it is possible to describe the behavior in a local neighbor-
hood to a prediction. We can not always expect the model to be smooth or even
have non-zero gradient components in object space as can be seen by our exper-
iment using fictitious data. But, the experiment qualitatively showed that by
understanding what the model looks like in a local neighborhood to an object is
useful for understanding how changes to the object would change the p-value for
the newly created object. When applied to mutagenicity data described by the
signature descriptor, this method shows very nice correspondence to previously
published Kazius SMARTS. Some of the changed compounds even completely
changed in predicted activity upon a change of the most important subgraph of
the initially predicted compound. For example, the compound in the first row
of the Table 2 is predicted mutagenic and the substructure highlighted in red is
indicated as the most important one. When changing the nitrogen (N) to a car-
bon and removing the highlighted oxygen (O) a new compound is formed. This
new compound, showed in the modified compound column, is predicted to be
non mutagenic which is known to be correct experimentally. For the remainder
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of the compounds we do not have this information but this highlights the value
that the method can provide. The proposed method can be used with any type
of conformal prediction based model, however the result may not have such a
readily accessible visual representation. In the drug-discovery setting, a chemist
using a QSAR model can often anticipate what some changes of compounds
would lead to in terms of change in biological activity. Finally, additional infor-
mation that the components of the gradient gives might improve the utility of
the proposed method. When applied to problems with labels represented by real
numbers, it should be possible to use the same approach at least when predict-
ing with inductive conformal predictors as in [6]. In this case the midpoint of
the predicted range can be used as the function to calculate the gradient of in
object space. In future work, we plan a more exhaustive and rigorous evaluation
on both fictitious data and data from the drug-discovery domain, similar to the
work done in [15], as well as looking at regression problems. It is also of great
interest if there could be a way of determining h based on a training set and
verify this on data of general interest to the machine-learning community and
not only the drug-discovery community.

Acknowledgments. The authors greatly appreciate the feedback given by the review-
ers. The feedback helped clarifying several important aspects of the proposed method
and the conducted experiments as well as identifying weaknesses.
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Abstract. The L-H transition is a remarkable self-organization phenomenon 
that occurs in Magnetically Confined Nuclear Fusion (MCNF) devices. For re-
search reasons, it is relevant to create models able to determine the confinement 
regime the plasma is in by using, from the wide number of measured signals in 
each discharge, just a reduce number of them. Also desirable is that a general 
model, applicable not only to one device but to all of them, is reached. From a 
data-driven modelling point of view it implies the careful —and hopefully, 
automatic— selection of the phenomenon’s related signals to input them into an 
equation able to determine the confinement mode. Using a supervised machine 
learning method, it would also require the tuning of some internal parameters. 
This is an optimization problem, tackled in this study with Genetic Algorithms 
(GAs). The results prove that reliable and universal laws that describe the L-H 
transition with more than a ~98,60% classification accuracy can be attained us-
ing only 3 input signals. 

Keywords: L-H transition · Nuclear fusion · SVM · Genetic algorithms 

1 Introduction 

Harnessing controlled fusion reactions through MCNF is an ambitious goal the scien-
tific community has pursuit during the best part of the last 70 years. Up to now, the 
most promising type of MCNF configuration is the one called ‘tokamak’ and it is the 
one chosen for the reference next step machine, ITER.  

Beyond the technical difficulties still unsolved, the considerable advances in the 
field have cleared the path towards the future devices in which stable burning condi-
tions with high gain factors are expected to be reached. If so, one of the main burdens 
affecting the mankind will be lightened or —let’s be positive— even solved: safe, 
cheap, abundant and non-polluting energy could be released and collected for its use 
in industries and daily life. 

MCNF has been under study from ~1950’s with modest results until around 20 years 
ago, when one of the major breakthroughs in the field was attained in ASDEX [1]. It was 
observed that once an input heating power threshold was surpassed, pronounced gra-
dients in the temperature and density profiles appeared and a considerable improvement 
of the energy confinement time of a factor ~2 was evidenced. The particle transport was 
significantly reduced in a fascinating self-organization phenomenon. This transport  
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barrier, formed almost spontaneously in the plasma edge, is a clear signature of an en-
hanced confinement. The regime, extensively replicated later in several devices, was 
called High confinement mode or simply H-mode [2]. Even now, the underlying physic 
of the L-H transition is not fully understood. Then, theoretical models [3, 4, 5, 6] and 
data-driven techniques [7, 8, 9, 10] aimed at shading some light upon the phenomenon’s 
inner mechanisms are continuously created and discussed.  

For research purposes, it is relevant to distinguish the plasma regime (L or H) of a 
running discharge by inspecting just few plasma measurements. This can lead to un-
weave the complex and non-linear relationships among different parameters for each 
state.  From a data-driven perspective, the operational mode recognition can be seen 
as a binary classification problem, being the possible categories ‘L mode’ and ‘H 
mode’. Yet, the optimal combination of input signals (if it is possible a reduced num-
ber of them to ease the interpretability of the results) is up to be properly chosen from 
a wide set of available plasma quantities. Also, in case the classification technique is 
based on a supervised system1, some internal parameters tuning2 are required to 
achieve reliable results. 

In this study general models that satisfactorily fulfil all the above-mentioned re-
quirements are developed. A wide international database collected from 19 different 
tokamaks containing several measurements of discharges at L and H mode is used to 
train and test the classification systems.  

GAs are applied to automatically select a combination of a reduced number of in-
puts and appropriately adjusting the kernel parameters values to create the final mod-
els, whose testing accuracies overpass the 98,60%. 

2 The International ITPA L-H Database 

To get a model universally applicable to different tokamaks using supervised data-
driven systems it is necessary to feed a machine learning engine with inputs from all 
these devices. For this specific study, an international L-H database has been ad-
dressed [11].  

This particular database provides a broad diversity of measurements (156 plasma 
parameters from 19 different tokamaks) but it burdens the considerable problem of 
empty entries. Depending on the device the data came from, some of the parameters 
can be in blank.  

Specifically, the database contents 9980 entries. Each entry is an n-dimensional 
row vector with n=156=number of parameters (i.e. 1x156 vector), labelled as belong-
ing to L or H mode3. Still, only complete vectors are useful for the development of the 
models. Incomplete vectors must be deleted4 and consequently the database suffers a 
                                                           
1  In this article it is SVM with an RBF kernel. 
2  In this article they are the slack variable C and the parameter γ . 
3  Other regimes (as Ohmic or ELMy H) are also specified in the database. For pragmatic 

reasons in this study only ‘L’ mode and ‘H’ mode classes have been considered. 
4  Some imputation techniques can be applied to solve the problem of missing values but their 

application is out of the scope of this study. 
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reduction. In some cases, using exactly the same initial database, its final size has 
been drastically reduced by this ‘cleaning’ of empty entries, as in [9], where only 800 
vectors were kept.  

In this study a compromise was reached. Only 15 relevant parameters were kept, 
having in mind their relevance and availability.  

The parameters are: 1) the effective atomic mass; 2) the plasma geometrical major 
radius; 3) the major radius of the magnetic axis; 4) the horizontal plasma minor ra-
dius; 5) the area of plasma cross section; 6) the plasma volume; 7) the minimum dis-
tance between the separatrix flux surface and either the vessel wall or limiters; 8) the 
toroidal magnetic field; 9) the plasma current; 10) the safety factor at 95%; 11) the 
line integrated density; 12) the neutral beam power in watts that is lost from the plas-
ma; 13) the electron temperature at the magnetic axis; 14) the plasma energy in joules 
as determined from the diamagnetic loop; 15) the estimated Loss Power not corrected 
for charge exchange and unconfined orbit losses. 

To improve the further inclusion in the SVM classifier, each one of the signal val-
ues has been normalized according the standard formula: 

 
Signal value - min

Normalized signal value=
max min−

 

where: 
min= the minimum value of the signal (in all the database). 
max= the maximum value of the signal (in all the database). 
As consequence, the maximum and minimum values of the signals are bounded be-

tween 0 and 1. 
 
The final database, with normalized vectors without any empty value, contains a 

total of 3580 entries (2176 H-mode and 1404 L-mode samples). 

3 The Computational Problem 

The main aim of this study is to obtain a good (hopefully the best) combination of 
plasma signals and RBF Kernel values to discriminate between L and H modes. 

The possible combinations (without permutations) are ruled by: 
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where: 
n =number of possible values and i =possible groupings. 
Assuming that 15 signals are going to be included (15 values) and 10 different val-

ues will be tested for C and for γ (a total of 20 values), then n=i=35. 
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The estimated time required to exhaustively explore all these combinations (assum-
ing that each one, that includes the train and test of a SVM system, would take an 
gross estimated time of ~1 ms) is more than one year. It is obvious than an alternative 
technique is required for the computation of the models and that is the main reason of 
the application of GAs to accelerate the calculations. 

4 The GAs Driven Models 

4.1 Brief Introduction to GAs 

GAs [12] emulates nature, where better adapted individuals have higher chances to 
survive and breed descendants. In this context, adaptation means to reach, among 
others, the objectives of survival and reproduction. The adapted ones are able to trans-
fer to the next generation their genetic material and their offspring will inherit a com-
bination of “well-adapted” parents’ genes. Oppositely, individuals unable to survive 
and reproduce will not pass to the following generations their characteristics and 
therefore their configuration is destined to extinction. 

Given a problem, GAs creates a population of solutions/individuals. Each individ-
ual is represented by a code (it can be imagined as a simplified version of DNA) that 
defines the characteristics of each solution/individual.  

To measure which individuals are better solving a particular problem, a metric 
called Fitness Function (FF), that scores individuals performances, is applied. Accord-
ing the FF score, a higher possibility to mate and have descendants is assigned to 
individuals/solutions with better values. Descendants are created as a combination of 
parents characteristics/genes (i.e. interchanging the bits of the vectors).  

Finally, and since descendants are a combination of promising genes (bits), it is 
expected that newer generations outperform the former ones.  

The procedure can be summarized in few steps: 

1- Creation of a population of individuals. Each individual represents a possible so-
lution to a problem. They are codified as vectors (to provide them the future possibili-
ty of crossing their bits with other vectors/individuals to create offspring). 

2- Evaluation of each individual of the population according the objectives of the 
problem. This requires defining a metric to test how good each individual is solving 
the problem (i.e. the FF). 

3- Selection of parents (a higher probability to be chosen as parent is assigned to 
those individuals with higher FF values). 

4- Creation of children as a combination of parents’ genes/bits (using genetic oper-
ators as crossover, mutation, reproductor).    

5- Unless an ending condition is satisfied, iterate from step 2, where the new popu-
lation (created in step 4) is evaluated. 

6- Selection of the best solution. Once the ending condition has been fulfilled, the 
best individual of all generations (highest FF value) is chosen as the final model. 

The power of GA to reduce computational times in problems underlies in these ba-
sic principles. Instead of exploring all the possible combinations, the most promising 
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ones are chosen and crossed to create new solutions prone to overmatch the former 
ones. 

4.2 GAs Application to the Problem 

Codification 
An ad hoc GA was programmed to simultaneously select a reduced set of inputs 
(from the 15 available) and to tune the parameters C and γ  for a SVM using a RBF 

kernel. 
The codification of each individual of the GA was assigned as follows: 

• A binary number to represent the inclusion (‘1’) or not (‘0’) of each one of the 15 
signals.  

• The possible assignations for the slack variable were: C {0,01; 0,5; 1; 5; 10; 50; 
100; 103; 104; 106}. 

• The possible values for γ were: { 10-5 ; 10-4 ; 10-3 ;  0,005; 0,01; 0,1; 0,5; 1; 10}.  

By this way, each individual is represented by a 1x17 vector where their 15 first 
values are ‘0’ or ‘1’, the 16th value is one of the above mentioned possible for C and 
the 17th value one of the above mentioned possible for γ . An example individual 

could be: {0; 1; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 5;  10}. This codification means that 
the individual will be a SVM system trained using only the signal number 2 (plasma 
geometrical major radius in the list given at Section 2) with the slack variable C=5 
and a γ value of the RBF kernel of 10. 

The total number of individuals per population was set as 2 times the length of 
each individual (17)=34, according with [13].  

The initial population is created assigning random values to each individual. Then, 
it evolves automatically following the basic steps stated in Section 4.1. 

Fitness Function 
It was necessary to define a robust criterion to evaluate the performance (Fitness 
Function) of each one of the individuals. Then, a 2-fold cross validation algorithm 
was repeated 3 times for each individual. The mean of these 6 results is computed and 
assigned as FF value. This severe evaluation favours results with high generalization 
capabilities, since the individuals are repeatedly trained and tested with different sets 
of samples. 

Other sub-objective was to create models as simple as possible due to two main 
reasons. The first is because simpler models normally have higher generalization 
capabilities. The second is because the interpretability of the models (which is rele-
vant in physics) is clearer if the amount of involved variables is limited. 

 It was necessary, then, to somehow ‘steer’ the course of the evolutionary proc-
esses of the GAs towards solutions that include fewer signals. To do it, a ‘reward’ of 
an extra 1% of their FF value was assigned to those individuals that require fewer 
signals than the mean (number of signals) of the population in the evaluated iteration.  
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Parents Selection, Mutation Probability, Ending Condition 
Parents were chosen using the roulette method. It consists of sorting all the individu-
als according their FF value and assigning a higher score (maximum equal to 1) to the 
ones with higher FF values and lower ones (minimum equal to 0) to the ones with 
lower FF values. A virtual roulette is spun and it randomly selects a number between 
1 and 0 (e.g. 0,56). Those individuals with a score superior to the roulette’s number 
are selected as parents.  

To create children, parent’s bits have to be mixed. A 2 points cross-over method 
has been chosen since this technique has proven to attain solutions in faster times than 
the conventional 1 point-crossover [14]. The method consists on randomly selecting 2 
points in the parent’s vectors (see Fig. 1) and to interchange the sections defined by 
these points to form 2 children. 

The mutation probability (the chance of randomly changing a bit value) was stan-
dardly set as a 0.05%. After some testing runs it was seen that 50 iterations/generation 
was sufficient to achieve good results.  

 

 

Fig. 1. Example of the 2-point cross-over method 

5 Results 

5.1 Temperature Related Results 

One important quantity for the comprehension of the phenomenon is the electron 
temperature. The parameter, however, might not be the one that evidences more 
clearly the regime a discharge is in and therefore there are considerable chances that 
the GA does not select it for the final model. One of the advantages of the GA-driven 
optimization is that it allows conditioning the evolutionary process by modifying the 
codification of the individuals/solutions. Specifically in this case, the bit correspond-
ing to the electron temperature (13th one) has been ‘forced’ to be always activated  
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(i.e. equal to ‘1’). This means that the final solution has, mandatorily, to include the 
electron temperature in the model. 

After 50 generations, the best individual/solution obtained by the algorithm in-
cluded only three plasma signals (one of them, of course, the ‘forced’ electron tem-
perature). The separating hyperplane, represented in Fig. 2, is a smooth dome-shaped 
solution that accurately isolates samples from L and H modes.  

Notice that the axes in the figure are bounded between 0 and 1. This is due to the 
normalization performed over the signals.  

A 98,63% of the samples are correctly classified by this model. 

 

Fig. 2. A smooth dome-shaped hyperplane separates L mode and H mode samples. Values have 
been normalized between 0 and 1. 

5.2 Power Related Results 

Possibly the most studied models to understand the underlying physics that makes the 
L-H transitions occur are the ones that involve the input power or some derived 
measure of it. This is reasonable: the firsts observations of the phenomenon were 
directly related to the input power. Besides, it is a variable that can be externally con-
trolled during the machine operation and it can be used to provoke the transition.  

 Therefore, it was interesting for this study to take advantage, one more time, of the 
‘forcing’ mechanism that GAs permit to include one plasma power quantity into the 
final solution. In this case, the signal set to ‘1’  was the Loss power (Ploss), defined as 
the total input power minus the time rate of change of the total plasma stored energy. 
This signal has been also used in other studies related to the L-H transition [15, 16].  
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In the results plotted in Fig. 3, attained by the same methodology explained in the 
previous Section 5.1. with a limit of 50 generation, it is clear that samples at higher 
Ploss are prone to have transited to the H-mode. This was the expected outcome. 
However, it is possible to notice a significant cluster of samples that, even at low 
Ploss, have transited to H-mode. This always occurs at ~0,5 plasma minor radiuses 
values. Also strikes the attention a grouping of isolated L-mode samples in the corner 
near the origin, correctly covered by a separate ‘wing’ of the hyperplane.  

In this case, the solution accurately classified the 98,60% of the samples. 
 

 

Fig. 3. Requiring again only 3 plasma signals, a consistent solution that accurately separates the 
operational regimes was reached. Values have been normalized between 0 and 1. 

5.3 Computational Cost 

The mean time required to train and test the SVM classifiers (each time for a cross-
validation) was 9 ms per individual, nine times higher than the initially estimated one 
(see Section 3). An exhaustive analysis contemplating all possible combinations 
would have required around 9 years (instead of the initially estimated 1 year) using 
the same PC (Intel i7-3770, 3,40 GHz, 16 GB RAM memory).  

Each one of the two results provided in this article took a total of ~8 minutes of 
computational time, attaining robust and high accuracy models and simultaneously 
allowing setting restrictions to force the inclusion of phenomenon-relevant variables. 

Free licenced SVM-light software [17] with its MATLAB extensions [18, 19] was 
used for the calculations. 
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6 Discussion 

In this article, a data-driven method has been applied to create models able to distin-
guish L and H mode samples from a wide number of tokamaks.  

The approach faced a multi-objective optimization problem. The combination of 
the most adequate set of plasma measurement and the SVM parameters values was 
automatically selected to obtain accurate models. The technique also allowed the 
inclusion of some desirable constraints, as ‘forcing’ the presence of some physics-
relevant plasma quantities into the models and to ‘reward’ those solutions that include 
fewer signals. 

All the calculations have been performed using a public international database. It 
contains samples from 19 tokamaks placed around the world. This database provides 
the opportunity of creating universal models applicable to all these machines. Never-
theless, the variety of the data sources was counterproductive at the time of applying 
them into the main algorithm due to empty entries. The signals were not always 
measured in all devices and therefore a revision of the data had to be performed for its 
use as input vectors. This selection was conditioned by the number of samples it was 
necessary to retain. This number depended on the amount of plasma signals to include 
in the final database, having in mind that the larger the amount of variables, the higher 
the probability of having an unfilled entry (and therefore the higher the chances to 
discard that sample from the database). As final compromise it was decided to con-
sider 15 signals. The consequence was the reduction of the original database from 
9880 to 3580 entries. The decision is reasonable, especially taking into account other 
studies with the same database and considerably more radical sample eliminations [9].  

Two models were developed, both of them attaining high accuracies (above 
98,60% of correct classifications), each one of them requiring only three signals. The 
reduced number of parameters allowed drawing the separating hyperplanes into three-
dimensional plots, which helps the understanding of the relationship among the in-
volved measurements by simple visual inspections. 

Another very important aggregate the GAs supplied was a drastic reduction of the 
computational times. An analogue procedure, using instead of GAs an exhaustive 
analysis, would have taken around 9 years with the same PC and software. 

A noteworthy aspect of the achieved results is that the solutions, even if they are 
obviously non-linear, present a smooth shape, which suggests a high generalization 
power. This point was reinforced by the several (3, exactly) repetitions of a 2-fold 
cross-validation training/testing method to evaluate each one of the individuals in the 
main GA code. Finally, it is interesting to notice that regardless the 2 solutions are 
very different (not even one plasma signal is shared in the 2 models) they have con-
verged into remarkably similar and high accuracy results.  
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Abstract. Symbolic regression via genetic programming has become a very 
useful tool for the exploration of large databases for scientific purposes. The 
technique allows testing hundreds of thousands of mathematical models to find 
the most adequate to describe the phenomenon under study, given the data 
available. In this paper, a major refinement is described, which allows handling 
the problem of the error bars. In particular, it is shown how the use of the geo-
desic distance on Gaussian manifolds as fitness function allows taking into ac-
count the uncertainties in the data, from the beginning of the data analysis 
process. To exemplify the importance of this development, the proposed me-
thodological improvement has been applied to a set of synthetic data and the re-
sults have been compared with more traditional solutions. 

Keywords: Genetic programming · Symbolic regression · Geodesic distance · 
Scaling laws 

1 Introduction  

One of the main objectives of data analysis in scientific applications consists of the 
task of extracting from the data mathematical expressions for the problem at hand, to 
be compared with theoretical models and computer simulations. In the last years, 
symbolic regression (SR) via genetic programming (GP) has proved to be a very use-
ful approach to this task.  The method allows exploring the available databases and 
identifying among the mathematical expressions produced, the Best Unconstrained 
Empirical Model Structure (BUEMS) to describe the phenomena of interest. The 
main advantage of the proposed approach consists of practically eliminating any as-
sumption about the mathematical form of the models. The obtained equations are 
therefore data driven and not hypothesis driven. The basic elements of symbolic re-
gression via genetic programming are covered in Section 2. 
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In the last years, SR via GP has been successfully applied in various fields and has 
obtained significant results even in the analysis of very complex systems such as high 
temperature plasmas for the study of thermonuclear fusion [1]. On the other hand, the 
methodology is still in evolution and would benefit from upgrades aimed at increasing 
both its versatility and the quality of its results.  

In this paper, an approach to handle the error bars in the measurements is proposed, 
to increase the scientific relevance of the method. Indeed in many scientific studies, 
such as the extraction of scaling laws from large data sets, very often the measure-
ments are taken as perfect or at least the consequence of their uncertainties is not 
properly evaluated. In this work, it is shown how the error bars of the measurements 
can be taken into account in a principled way from the beginning of the data analysis 
process using the concept of the Geodesic distance on Gaussian Manifolds (GD). The 
idea, behind the approach proposed, consists of considering the measurements not as 
points, but as Gaussian distributions. This is a valid assumption in many physics ap-
plications, because the measurements are typically affected by a wide range of noise 
sources, which from a statistical point of view can be considered random variables.  
Each measurement can therefore be modelled as a probability density function (pdf) 
of the Gaussian type, determined by its mean μ and its standard deviation σ. The dis-
tance between the measurements and the estimates of the various models can there-
fore be calculated using the GD using the Rao formula (see Section 4). This distance 
can be used as fitness function in the SR code to converge on the most suitable model 
taking into account the error bars of the measurements in a principled way, since the 
beginning of the data analysis process. 

With regard to the structure of the paper, SR via GP is introduced in the next sec-
tion. The mathematical formalism of the GD on Gaussian manifolds is presented in 
Section 3. The potential of the proposed technique to tackle the uncertainties in the 
data is illustrated with a series of numerical tests using synthetic data. Some examples 
of application are described in detail in Section 4. Summary and directions of future 
activities are the subject of the last section of the paper.  

2 The Basic Version of Symbolic Regression via Genetic 
Programming  

As mentioned in the previous section, this paper describes the refinement of advanced 
statistical techniques for the extraction of mathematical expressions from large data-
bases to investigate the behaviour of scientific phenomena. The main advantage of the 
basic tools consists of practically eliminating any assumption about the form of the 
models. This section describes briefly the mathematical basis of the tools imple-
mented to perform the analysis presented in the rest of the paper.  
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Table 1. Types of function nodes included in the symbolic regression used to derive the results 
presented in this paper, xi and xj are the generic independent variables 

Function class List 
Arithmetic c (real and integer constants),+,-,*,/ 
Exponential exp(xi),log(xi),power(xi, xj), power(xi,c) 
Squashing logistic(xi),step(xi),sign(xi),gauss(xi),tanh(xi), erf(xi),erfc(xi) 

 
To derive the results presented in this paper, the Akaike Information Criterion 

(AIC) has been adopted [4] for the FF. The AIC, is a well-known model selection 
criterion that is widely used in statistics, to identify the best models and avoid overfit-
ting. The AIC form used in the present work is: 2 ln /                                            (1) 

where RMSE is the Root Mean Square Error,  is the number of nodes used for the 
model and  the number of entries in the database (DB). The AIC allows rewarding 
the goodness of the models, by minimizing their residuals, and at the same time pena-
lising the model complexity by the dependence on the number of nodes. The better a 
model, the smaller its AIC.  

Having optimised the models with non-linear fitting, what remains is the qualifica-
tion of the statistical quality of the obtained scaling laws. To this end, a series of sta-
tistical indicators have been implemented. They range from model selection criteria, 
such as the Bayesian Information Criterion (BIC), to statistical indicators, such as the 
Kullback-Leibler divergence (KLD) [5,6].  

3 Geodesic Distance to Include the Effects of the Error Bars 
and Application to Scaling Laws 

As seen in the previous sections, the goal of SR via GP is to extract the most appro-
priate formulas to describe the available data. To achieve this, typically the RMSE of 
the distances between the data and the model predictions is used in the FF. In this 
way, SR is implicitly adopting the Euclidean distance. The (dis)similarity between 
data points and predictions is measured with the Euclidean distance, which has a pre-
cise geometrical meaning and a very long historical pedigree. However, it implicitly 
requires considering all data as single infinitely precise values. This assumption can 
be appropriate in other applications but it is obviously not the case in science, since 
all the measurements typically present error bars. The idea is to develop a new dis-
tance between data, which would take into account the measurement uncertainties. 
The additional information provided by this distance should hopefully render the final 
results more robust. In particular, using the GD the final equations are more general 
and less vulnerable to the detrimental effects of outliers (see Section 4).  

The idea, behind the approach proposed in this paper, consists of considering the 
measurements not as points, but as Gaussian distributions. This is a valid assumption 
in many scientific applications, because the measurements are affected by a wide 
range of noise sources, which from a statistical point of view can be considered ran-
dom variables.  Since the various noises are also typically additive, they can be  
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expected to lead to measurements with a global Gaussian distribution around the most 
probable value, the actual value of the measured quantity. Each measurement can 
therefore be modelled as a probability density function (pdf) of the Gaussian type, 
determined by its mean μ and its standard deviation σ: | , √                                               (2) 

In this work, having in mind applications to experimental data, it is assumed that 
the measured values are the most likely ones, within the probability distribution 
representing the measurement errors. In the case of Gaussian distributions, the most 
likely value is the mean. Therefore, the individual measurements are assumed to be 
the means of the Gaussian distributions representing their uncertainties. This is the 
typical hypothesis adopted in the application of the GD. 

Modelling measurements not as punctual values, but as Gaussian distributions, re-
quires defining a distance between Gaussians. The most appropriate definition of 
distance between Gaussian distributions is the geodesic distance (GD), on the proba-
bilistic manifold containing the data, which can be calculated using the Fischer-Rao 
metric [7]. For two univariate Gaussian distributions | ,  and p x|µ , σ , 
parametrized by their mean  and standard deviations 1,2 , the geodesic dis-
tance GD is given by: 

GD p ||p √2ln 2√2 tanh δ , where δ µ µµ µ         (3) 

In the case of multiple independent Gaussian variables, it is easy to prove that the 
square GD between products of distributions is given by the sum of the squared GDs 
between corresponding individual distributions. 

The last thing required consists of inserting the GD into the SR. To this end, a good 
solution has proved to be to insert the GD in the FF according to the following formula: 2 ∑                                                       (4) 

Where the symbols have the same meaning as in formula (1) and the index i runs 
over the entries of the database. 

4 Example of Application: Scaling Laws  

To exemplify the flexibility and power of the techniques described in the previous 
section, they are applied to the problem of deriving scaling laws from the data. Sec-
tion 4.1 contains an introduction to the problem of data driven scaling laws. In  
Section 4.2 the capability of the upgraded methodology to identify also scaling laws is 
proven using synthetic data.  

4.1 Scaling Laws  

In various fields of science, such as Magnetic Confinement Nuclear Fusion, many 
systems to be studied are too complex to allow a treatment on the basis of first  
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principle physical models. Therefore, to overcome the gap between theoretical under-
standing and data, in order to profit from the deluge of experimental measurements of 
the last decades, data driven models have become quite popular. They are particularly 
useful to assessing how system properties scale with dimensions or other parameters.   
One major hypothesis is implicitly accepted in the vast majority of the most credited 
scaling laws reported in the literature [9,10]: the fact that the scaling laws are in form 
of power law monomials. Indeed the available databases have typically been studied 
using traditional log regression. This implies that the final scaling laws are assumed 
“a priori” to be power law monomials of the form: … … ; where 
the capital letters represent physical quantities [11]. This assumption on the form of 
these scaling equations is often not justified neither on theoretical nor on experimental 
grounds. Moreover, the use of log regression to analyse the data typically does not 
take into account the uncertainties in the measurements properly. The two develop-
ments described in the previous sections overcome these limitations. SR via GP 
allows the freedom to identify scaling laws of very different mathematical forms and 
the GD can take properly into account the error bars in the measurements. The profit 
of combining these two approaches (SR via GP and a Gaussian manifold based me-
tric) in the proposed tool are shown in the next Section using synthetic data.  

4.2 Numerical Results 

Synthetic databases have been generated to test the Euclidean metric and Geodesic 
metric as fitness function for SR via GP. Four formulas have been investigated , each 
one composed of two terms with three independent variables and one dependent vari-
able, as showing the equations (5), (6), (7), (8). The range of variation of the three 
independent variables is also reported 0.015, 3.9 , 0.044, 1.97 , 0.268, 2.178 . Values are randomly generated, uniformly distributed within the vari-
ation range of the independent variables, in relation to the size of the database. The 
study is performed by choosing the number of entries in the DB, then checking if the 
genetic algorithm, with the different metrics, gives in output the formulas used to 
generate the data. cos · sin .                                            (5) cos 2 · 1 1 0.8 ·⁄                             (6) 

. · 0.5 · . · cos                                     (7) · · 2                                                    (8) 

After the choice of the formula and the size of the inputs, it is possible to choose 
the type of noise to be applied to the analytical formulation: Uniform, Gaussian and 
Asymmetric. In the case of uniform noise, it is possible to set the percentage of noise 
compared to the average value of the chosen analytical formulation. Hence, a random 
uniform vector is generated, including values between +/- the percentage of the mean 
value of the used formula. This noise vector is then applied to the dependent variable 
to generate the noise-affected database. In the case of Gaussian noise, the standard 
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deviation of the distribution of the noise can be selected. This way, a random noise of 
Gaussian distribution, which has zero mean and standard deviation equal to a percen-
tage of the average value of the chosen analytical formulation, is generated. After 
that, this noise vector is applied to the dependent variable to generate the noise-
affected database. The last type of noise is asymmetric. It consist of two random 
Gaussian distributions, in which the user can choose the standard deviations of the 
two distributions, always equal to a percentage of the average value of the analytical 
formulation. And more, the weight of the first distribution can be chosen, while the 
second is complementary to the first. The first Gaussian distribution always has zero 
mean, while the second has mean equal to two times the sum of the two standard dev-
iations. Also, in this case the noise vector is then applied to the dependent variable to 
generate the noise-affected database.  

Once the noise-affected databases are generated, as described before, Symbolic 
Regressions adopting the Euclidean metric and the Geodesic metric (introduced in 
section3) are used to study the behaviour of the algorithm. In all the cases in which 
the noise distributions are Gaussian noise or Uniform noise, the two metrics have 
provide exactly the same results. This is true for independently from the size of the 
databases. On the other hand, when the database contains outliers there is a significant 
improvement in the results of the Geodesic metric compared to the Euclidean metric. 
Table II shows the results of the SR conducted to database of 50 inputs (very few). 
This is challenging scenario to check which metric gives the best results in relation 
the presence of outliers (asymmetric database). In the columns the table shows the 
characteristic parameters of the asymmetric noise (described previously), the metric 
used and the standard deviations (for GD metric).The accuracy of algorithm in finding 
the right formula is shown in the last column. The results that can be found are classi-
fied as follows: Global, the algorithm finds perfectly the formulation expected; (1/2) 
the algorithm finds, at least, the first term of the formulation; (2/2) the algorithm 
finds, at least, the second term of the formulation; Negative, when the algorithm does 
not find any terms of the formulation. 

Table 2. Summary table of tests carried out on the database of 50 inputs (where there are five 
points outliers) to the equations from (5) to (8), containing details of all the noise information 
and the metric listed in this section 

Type Noise Eq. 
 I Gauss 

[%mean 
value] 

 II Gauss
[%mean 
value] 

Weight I 
Gauss 

[0,1] 
Metric 

GD
 data 
[%] 

GD
 model 
[%] 

Goals 

Asymmetric (5) 15 30 0.9 EUC --- --- (1/2) 

Asymmetric  (5) 15 30 0.9 GD 20 0.1 Global 

Asymmetric (6) 10 50 0.9 EUC --- --- Negative 

Asymmetric  (6) 10 50 0.9 GD 20 0.1 (1/2) 

Asymmetric (7) 15 30 0.9 EUC --- --- (1/2) 

Asymmetric  (7) 15 30 0.9 GD 10 0.1 (1/2) 

Asymmetric (8) 10 50 0.9 EUC --- --- Negative 

Asymmetric  (8) 10 50 0.9 GD 10 0.1 Global 
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5 Discussion and Conclusions  

In this paper, symbolic regression via genetic programming has been tested on different 
custom noise-affected databases to check the most challenging scenarios in relation to the 
fitness function (FF) of the algorithm. In the study, many variations of the parameters of 
the noise have been carried out on all four formulas presented. The obtained results dem-
onstrate that the two metric, Euclidean and Gaussian, return the same performance, for all 
levels of Gaussian noise and dimensions of the database investigated. On the other hand, 
when the Geodesic distance is used, the method is significantly more robust to the pres-
ence of outliers because the GD tends to discriminate the data too far from the main 
trend. 

So, to summarise, in the case of databases affected by Gaussian noise, SR via GP per-
forms equally well irrespective of the fact the Euclidean or the Geodesic distance is used. 
In these cases, the using the GD simply provides an alternative way to double-check the 
quality of the results as it can be seen in Table III. In the case of small databases, affected 
by a significant percentage of outliers, the use of the GD improves the resilience and the 
reliability of the results compared to the RMSE. In these situations, as in the case of clas-
sification as reported in [12], the use of the GD provides a competitive advantage com-
pared to the traditional RMSE based on the Euclidean distance. 

Table 3. Summary table of tests carried out on the database of 50 or 500 inputs with Gaussian 
noise, using the formulations from (5) to (8), containing details of all the noise information and 
the metric listed in this section. Results show how both metric can be used as a double check of 
the quality of the results. 

Inputs DB Eq. 
 I Gauss 

[%mean value] 
Metric 

GD 
 data [%] 

GD
 model 
[%] 

Goals 

50 (5) 30 EUC --- -- (1/2) 

50 (5) 30 GD 30 0.1 (1/2) 

50 (6) 30 EUC --- --- (1/2) 

50 (6) 30 GD 30 0.1 (1/2) 

50 (7) 30 EUC --- --- (1/2) 

50 (7) 30 GD 30 0.1 (1/2) 

50 (8) 30 EUC --- --- (2/2) 

50 (8) 30 GD 30 0.1 (2/2) 

500 (5) 20 EUC --- --- Global 

500 (5) 20 GD 20 0.1 Global 

500 (6) 20 EUC --- --- (1/2) 

500 (6) 20 GD 20 0.1 (1/2) 

500 (7) 20 EUC --- --- (1/2) 

500 (7) 20 GD 20 0.1 (1/2) 

500 (8) 20 EUC --- --- Global 

500 (8) 20 GD 20 0.1 Global 
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Abstract. This manuscript describes the application of four forecasting
methods to predict future magnitudes of plasma signals during the dis-
charge. One application of the forecasting could be to provide in advance
signal magnitudes in order to detect in real-time previously known pat-
terns such as plasma instabilities. The forecasting was implemented for
four different prediction techniques from classical and machine learning
approaches. The results show that the performance of predictions can get
a high level of accuracy and precision. In fact, over 95 % of predictions
match the real magnitudes in most signals.

Keywords: Forecasting · Signals · SVR · ARIMA

1 Introduction

Every experiment in a nuclear fusion device produces thousands of signals with
enormous amounts of data. For instance, in JET (the biggest world fusion device)
every discharge of about tents of seconds, can generate 10GB of acquired data.
ITER (the international nuclear fusion project) could storage until 1 TByte per
shot. Bolometry, density, temperature, and soft X-rays are just some examples of
the thousands of data acquired during a discharge. Huge databases, with enor-
mous amount of data, are a common situation in experimental fusion devices.

During last years, a great effort has been done in order to apply pattern
recognition and machine learning techniques to speed up the processing and
perform automatic analysis of the massive fusion databases. Some examples of
this work can be found in [1–3]. Despite of these advances, there is still a room
for improvements. In particular, this work proposes the use of several techniques
to perform forecasting in real-time of six different waveforms (temporal evolution
signals) of the experimental fusion device TJ-II.

Forecasting plasma behaviour requires appropriate models to capture the
dynamics of this physical phenomenon. Once the model is obtained, it can be
used to predict a signal n samples ahead into the future by using the current and

c© Springer International Publishing Switzerland 2015
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past values of acquired data. To this end, large fusion databases can be useful
to build suitable data-driven models in order to perform predictions.

Such predictions could be used in order to anticipate off-normal plasma
behaviour during a discharge. A suitable forecasting system could in theory
predict plasma well-known patterns such as disruptions[3] with enough antici-
pation to mitigate or even avoid the disruptive event. Late detection of these
plasma instabilities can affect the integrity of plasma-facing components, which
could imply unexpected non-operation periods of the device[4].

The paper is structured as follows. Section 2 introduces the waveforms con-
sidered in this work. Section 3 describes how to perform forecasting by means
classical and machine learning approaches. The criteria to assess the performance
of the forecasting and the main results of the work are described in Section 4.
Finally, Section 5 summaries the main results and discusses future works.

2 TJ-II Fusion Database

The CIEMAT, and specially the association EURATOM/CIEMAT for magnetic
confinement fusion, have obtained through many different experiments a large
number of signals in the nuclear fusion device TJ-II (see Fig. 1).

Fig. 1. TJ-II fusion device stellerator

TJ-II[5] is a medium sized stellarator fusion device (Heliac type, magnetic
field B0 = 1.2T , average major radius R(0) = 1.5m, average minor radius ≤
0.22m) located at CIEMAT (Madrid, Spain) that can explore a wide rotational
transform range. TJ-II plasmas are produced using electron cyclotron resonance
heating (ECRH) (two gyrotrons, 300 kW each, 53.2 GHz, second harmonic, X-
mode polarization) and additional neutral beam injection (NBI, 300 kW).
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Fusion devices generate massive databases and typically, thousands of sig-
nals with a high number of samples are collected per discharge. In the case
of TJ-II, there are over one thousand digitization channels for experimental
measurements. Each signal describes a particular measurement of a physical
characteristic of the plasma. Most measurements that these sensors provide are
univariate time-series data. Discharges last between 150-250ms, with a repetition
frequency of about 7 minutes. Depending on the sampling rate, the number of
samples could be in the range of 4000-16000 per discharge. In order to show the
application of forecasting methods to the TJ-II database, 6 signals have been
considered here. Table 1 shows the name and description of each signal. Fig. 2
depicts the plots of the signals for a typical shot.

Table 1. Selected signals of TJ-II

Signal Description

S1 Spectroscopic signal (CV line)
S2 Bolometer signal
S3 Line averaged electron density
S4 Electron cyclotron emission
S5 Hα emission
S6 Soft X-ray emission

S1 S2 S3

S4 S5 S6

Fig. 2. Plots of signals for a typical discharge

3 Approaches to Forecasting

Before applying forecasting techniques, a pre-processing mechanism has been
applied in order to reduce the number of samples of the signals. The sampling
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period of TJ-II raw signals is normally 0.01 ms. However, in order to make
predictions from a practical point of view, a resampled version of the time serie
is required. To this end, one sample of the resampled signal corresponds to the
average of one hundred samples of the original version, reducing the sampling
rate from 105 to 103 samples per second.

In this Section two kind of approaches will be briefly described: classical and
machine learning techniques. In classical approach, the exponential smoothing
(EXS)[6] and the autoregressive integrated moving average model (ARIMA)[6]
are considered. On the second approach, the intelligent techniques and the train-
ing algorithm are introduced here. Experiments, testing and results are shown
in next Section.

3.1 Forecasting with Classical Techniques

Prediction of future samples could be performed by considering old or past val-
ues of time serie. Classical approaches try to find mathematical relationships
to make forecasting. Examples of that are the techniques such as moving aver-
age (MA), where the past observations are weighted equally, or exponential
smoothing, where weights decrease exponentially over time. Equation 1 shows
the mathematical relation of EXS models, where 0 < α < 1, and the variables
y(t) and ŷ(t) represent the actual and predicted magnitudes. A big issue with
the EXS models is to find a suitable value of α for all discharges of a signal.

ŷ(t) = αy(t − 1) + (1 − α)ŷ(t − 1) (1)

On the other hand, ARIMA considers a temporal evolution signal as a
stochastic process. ARIMA models are represented as ARIMA(p, d, q), where the
parameters p, d, and q indicate the order of the components autorregresive(AR),
integrated(I) and moving average(MA) respectively. ARIMA is usually applied
to stationary signals in both mean and variance in order to get a model. In the
case of non-stationary signals these are transformed before fitting the ARIMA
model. In our case, since the data are non-stationary signals, we performed some
pre-processing algorithms for normalization, logarithm transformation, and dif-
ferentiation. Normalization is needed to set the range of the magnitudes from 0
to 1. To this end, the minimum and maximum magnitude for all discharges are
computed. Thus, the minimum is subtracted from each sample of the signal. The
result is divided by the subtraction between the maximum and the minimum.
The steps for logarithm transformation and differentiation are required to get a
signal with both variance and mean constants. Note that, these last steps could
be applied as many times as required.

The whole process to get stationary time series data is shown in Fig. 3. After
pre-processing, the order of the ARIMA model (p, d, and q) can be identified
by using for instance, the autocorrelation function (AC) and the partial auto-
correlation function (PACF). Once the model order is identified, all discharges
of a given signal are concatenated in order to adjust the coefficients of each
component of the ARIMA model.
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Normalization
Pre-processed

data

Logarithmic
transformation Differentiation Data

concatenation

Model order
identification

(p, d, q)

ARIMA
coefficients

fitting

ARIMA
model

(p, d, q)

Fig. 3. Flowchart for ARIMA model fitting

3.2 Forecasting with Machine Learning Approaches

In the context of nuclear fusion databases, the main issue of classical approaches
is to find an analytical mathematical expression that makes suitable predictions,
which could be very hard and a very time consuming task. The process to iden-
tify the order of the ARIMA model is normally not straightforward, and the
performance of the model depends strongly on the selection of the parameters
and coefficients.

Rather than to find out a mathematical expression to forecast future samples,
we could try to apply machine learning techniques[7] to train a data-driven model
for a particular signal by considering all discharges of a campaign. To this end,
we can use a scatter plot called here autoregressive map (AM), which relates
past and future magnitudes of a signal (AMs are very similar to phase portrait
or Forrester diagrams[8]). Fig. 4 shows an example of an autoregressive map.
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Fig. 4. A time serie and its autoregressive map for the relation y(t) → y(t + 1)

In this case, left plot is a time serie of 10 samples. We can build the relation
y(t) → y(t+1) between current y(t) and future sample y(t+1) of the time serie,
which is depicted on the right plot of Fig. 4. Note that the relation can take into
account more past magnitudes such as y(t − 1) and y(t − 2) in order to avoid
multi-valued functions of past and future samples.
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Fig. 5 shows an example of an AM for the relation [y(t), y(t − 1)] → y(t + 1)
of a particular shot of signal S2. Note that to predict future sample y(t + 1) we
required the samples y(t) and y(t − 1). Take into account also that a suitable
predicting model for any signal should be trained considering not just one shot,
but all discharges of a campaign.
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Fig. 5. An autoregressive map for the relation [y(t), y(t − 1)] → y(t + 1) of S2

Once we get the AM that relates past and future samples of a signal, we can
use it to train a predicting model. Thus, when a new discharge is available, we
can take the corresponding past values of the signal to feed the trained model and
to perform forecasting. In this work, two regression techniques are considered
from machine learning approach with the objective to predict future samples of
a signal: artificial neural networks (ANN)[7] and support vector machines for
regression (SVR)[9,10].

4 Experimental Results

Four techniques are tested to perform forecasting with the TJ-II database:
exponential smoothing (EXS), autoregressive integrated moving average models
(ARIMA), artificial neural networks (ANN), and support vector machines for
regression (SVR).
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4.1 Experimental Setup of Forecasting Methods

Before building the models, we need to define the structure of each model. Thus,
in the case of EXS it was necessary to set the weights of past samples. In the
case of ARIMA, the order of p, q, and d was obtained by inspection of the
PACF and ACF. After several experiments, it was concluded that a suitable
structure should be ARIMA(5,1,1). Regarding to ANN, the structure includes
for simplicity only one hidden layer with seven neurons. Input and output layer
have five and one neuron respectively. The activation function of the output layer
is the identity function, the rest of layers uses the sigmoid function. Finally, the
kernel function of SVR was radial basis function (RBF). The parameters of the
kernel and the regularization cost were set to γ = 0.007 and C = 10. The loss
function used is the ε-insensitive with the parameter ε = 0.001. Finally, in all
cases five past values were considered to predict.

The training set includes 40 discharges, and the test set includes 27. The
experiments were carried out under cross-validation methodology, which requires
to select the discharges of the training and test sets randomly. The results shown
in this work consider the average of 100 experiments.

4.2 Performance Assessment of Forecasting

To assess the performance of each forecasting method the criteria of accuracy
and precision were selected. Both criteria are mathematically computed by using
Equation 2 and Equation 3 respectively, where N denotes the number of samples
of the time serie. Note that the accuracy tries to determine how close is the
prediction ŷ(t) to the real value y(t). Regarding to the precision, it intents to
asses how repeatable and reproducible are the predictions (i.e., the standard
deviation of predictions). The difference between both concepts can be observed
in the example of Fig. 6.

MAPE =
1
N

N∑
t=1

|y(t) − ŷ(t)| (2)

σ =

√√√√ 1
N

N∑
t=1

||y(t) − ŷ(t)| − MAPE|2 (3)

4.3 Results

Table 2 and Table 3 show the accuracy and precision for the forecasting methods
ANN, SVM, EXS and ARIMA (ARI for short). The assessment is done for 1, 3
and 5 samples ahead, i.e., y(t + 1), y(t + 3), and y(t + 5) respectively. Texts in
bold are the best performance of each horizon of prediction.

Observing the assessment for accuracy and precision, we can conclude that
both SVR and ARIMA are suitable techniques to perform forecasting with TJ-II
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Accuracy : 98.3%

Precision : 89.7%
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Fig. 6. Difference between accuracy and precision

Table 2. Forecasting accuracy in percentage

ANN SVR EXS ARI

Signal 1 3 5 1 3 5 1 3 5 1 3 5

S1 96 95 93 98 96 94 94 92 88 98 97 95
S2 92 89 91 98 96 94 94 91 88 99 98 97
S3 97 96 94 98 96 94 94 92 88 99 98 97
S4 95 92 90 96 93 90 92 91 89 99 98 97
S5 95 93 92 96 94 92 94 92 88 97 96 96
S6 95 93 92 98 95 93 93 90 86 98 96 94

Table 3. Forecasting precision in percentage

ANN SVR EXS ARI

Signal 1 3 5 1 3 5 1 3 5 1 3 5

S1 95 94 92 98 95 92 91 89 87 98 97 96
S2 95 93 92 98 94 92 91 90 90 99 97 96
S3 95 94 91 97 93 89 91 89 88 99 98 97
S4 93 90 87 96 91 88 90 89 89 99 98 97
S5 94 92 90 96 93 89 91 89 88 97 96 94
S6 94 92 90 98 93 90 91 88 86 98 96 94

signals. In both cases the accuracy and precision is over 90% for most signals. As
it was expected, EXS is the worst option to make predictions. The results also
shown that forecasting is much easier for 1 sample ahead than 3 or 5, no matter
which method is selected. Note also that the best performance is obtained by
the signal S3 and the worst performance is obtained by the signal S4, which is
probably due to the noisy nature of this signal (see Fig. 2).
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Fig. 7 shows the forecasting of signal S2 by using the prediction techniques
SVR and ARIMA. Both plots depicts the complete predictions of the signal.The
horizons of prediction are three and five samples ahead. Note that methods use
five past magnitudes (lags) of the signal.
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Fig. 7. SVR and ARIMA forecasting for 3 and 5 samples ahead of a signal S2

5 Summary and Future Works

This article describes the application and assessment of four different techniques
to perform forecasting. Two techniques from classical approaches and two other
methods from a machine learning approach. Six signals of the TJ-II databases
have been selected. The results show that almost all predictions to five samples
ahead reach a performance of accuracy and precision over 90% independently of
the signal and the technique.

The signal S3 has the best performance (97% of accuracy and precision with
ARIMA when predicting five samples ahead) and the S4 the worst (under 90%
in four cases). Best predicting models were obtained in almost all cases with
ARIMA, second best cases were found with SVR.

Regarding to the implementation of both ARIMA and SVR techniques, it is
necessary to indicate that finding suitable ARIMA coefficients is a much more
difficult task than training SVR model, this is because ARIMA needs first to
identify correctly the orders p, d, and q of each component before fitting the
model. In both cases, the computational costs are high, specially when involving
massive databases.

Future works will focus on three big issues. Firstly, exhaustive searching could
be applied in order to find better parameters (e.g. kernels, sigma, etc. in SVR
or number of neurons and hidden layers in ANN) for building models. Secondly,
testing other well-known techniques for prediction such as Bayes[11] theory and
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Kalman filter, and finally to perform forecasting in order to detect in real time
some well-known behaviours of plasma during a discharge.
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Abstract. This article shows the computational efficiency of an image classifier 
based on a Venn predictor with the nearest centroid taxonomy. It has been ap-
plied to the automatic classification of the images acquired by the Thomson 
Scattering diagnostic of the TJ-II stellarator. The Haar wavelet transform is 
used to reduce the image dimensionality. The average time per image to classify 
1144 examples (in an on-line learning setting) is 0.166 ms. The classification of 
the last image takes 187 ms. 

Keywords: Venn predictors · Image classifier · Multi-class classifier · Thomson 
Scattering · Nuclear fusion 

1 Introduction 

The Thomson Scattering (TS) diagnostic is an essential measurement system in  
nuclear fusion research. It allows the simultaneous determination of two radial pro-
files: electron temperature and electron density. In the case of the TJ-II stellarator [1], 
a charge-coupled device (CCD) camera collects the light from a pulsed ruby laser that 
is scattered by the free electrons of the plasma. The images are two-dimensional spec-
tra [2, 3] with the horizontal and vertical axes displaying respectively scattered wave-
length and position along a plasma chord. In TJ-II, there are five different classes of 
images depending on the kind of measurement (fig. 1). Each class implies a different 
processing of the image data. 

To automate the TS data processing after an image acquisition, a pattern classifier 
is required. A first automatic classifier [4] was based on a 5-class Support Vector 
Machine (SVM) predictor with the one-versus-the-rest approach (the terms predictor 
and classifier are used with the same meaning in this article). The TJ-II TS images 
have 385x576 pixels, i.e. 221760 possible attributes. To gain computational efficiency 
in the training process but without losing prediction efficiency, the number of attrib-
utes is reduced by means of a Haar wavelet transform [5, 6]. 

The classifier that is described in [4] produces non-qualified estimates, i.e. the  
accuracy and reliability of the predictions are not provided. After this, a specific clas-
sifier [7] based on conformal predictors [8] was developed to provide together with 
the image prediction, a couple of values (confidence and credibility) to show the  
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quality of the prediction. This specific classifier is based on the creation of a hash 
function [9] to generate several ‘one-versus-the-rest’ classifiers for every class and, 
finally, SVM is used as underlying algorithm. This predictor system is utilized in an 
on-line learning setting, i.e. examples are presented iteratively in a random order and, 
as images are classified, they are added to the training set with their real labels. After 
the classification of 600 images (whose dimensionality is reduced through the use of a 
Haar wavelet transform at level 4 of decomposition), the average computational time 
per image is 3750 ± 65 ms. 

 

Fig. 1. Image patterns in the TJ-II Thomson Scattering. From left to right: CCD camera back-
ground (BKG), stray light without plasma or in a collapsed discharge (STRL), electron cyclo-
tron heating (ECH) discharge, neutral beam injection (NBI) heating discharge and, finally, 
discharge after reaching the cut off density during ECH heating (COFF). The first two types of 
images are used for the diagnostic calibration and the rest are used for plasma analysis. 

To significantly decrease the computation time per image, the previous conformal 
predictor was modified to use an SVM incremental training approach as underlying 
algorithm. In this case, [10], the average computational time per image after 1000 
classifications is about 500 ms with a standard deviation around 20 ms. Again, the 
images are represented by their Haar wavelet transform at level 4. 

The present article tackles the same 5-class prediction problem to automate the 
data analysis of the TJ-II TS diagnostic after the capture of an image. The objective is 
twofold. On the one hand, the computational time of the classifications will be drasti-
cally decreased. On the other hand, the predictions will be qualified with a probabilis-
tic criterion. To accomplish both objectives, Venn predictors with the nearest centroid 
(NC) taxonomy will be used. Venn predictors with the NC taxonomy have shown not 
only a high computational efficiency but also a good predictive efficiency in several 
nuclear fusion applications [11, 12, 13]. 

Section 2 briefly describes the theory of Venn predictors. Section 3 presents the 
image pre-processing performed in this article. Section 4 shows the results with 15 
different predictors and section 5 is devoted to briefly discussing the results. 
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2 Venn Predictors 

In the general formulation of a classification problem with J classes, the training set is 

made up of pairs ( ), , 1,...,i iy i n=x  where ix  is a feature vector with d attributes 

and { }1 2, ,...,i Jy Y Y Y∈  is the label of its corresponding class. Given a new feature 

vector 1n+x  to be classified into one (and only one) of the J classes, the objective of a 

Venn predictor is to estimate the probability of belonging to the class. 
Venn predictors are a particular type of conformal predictors whose output can be 

interpreted as a probability interval that the prediction is correct. The Venn prediction 

framework assigns each one of the possible classifications , 1,...,jY j J=  to 1n+x  

and divides all examples ( ) ( ) ( ){ }1 1 1, ,..., , , ,n n n jy y Y+x x x  into a number of cate-

gories. To carry out this division, Venn machines use a taxonomy function 

,nA n ∈ , which classifies the relation between a sample and the set of the other 

samples: 

( ) ( ) ( ) ( ){ } ( )( )1 1 1 1 1 1 1 1 1, ,..., , , , ,..., , , , .i n i i i i n n i iA y y y y yτ + − − + + + += x x x x x  

Values iτ  are called categories and are taken from a finite set 

{ }1 2, ,..., TT τ τ τ= . Equivalently, a taxonomy function assigns to each sample 

( ),i iyx  its category iτ , or in other words, it groups all examples into a finite set of 

categories. This grouping should not depend on the order of examples within a se-
quence. 

Categories are formed using only the training set. In each non-empty category τ , 
it is possible to compute empirical probabilities of an object to have a label 'y  within 

category τ  as 

      ( ) ( )''
N y

P y N
τ

τ
τ

=   

where Nτ  is the total number of examples from the training set that are assigned to 

category τ  and ( )'N yτ  is the number of examples within category τ  having label 

'y  . 

At this point, given a new example 1n+x  with unknown label 1ny + , it has to be as-

signed to the most likely category of those already found using only the training set. 

Let this category be *τ . The empirical probabilities ( )* 'P yτ  are considered as 
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probabilities of the object 1n+x  to have a label 'y . The theory of conformal predic-

tors [8] allows constructing several probability distributions of a label 'y  for a new 

object. First it is considered the hypothesis that the label 1ny +  of a new object 1n+x  is 

equal to y , ( )1ny y+ = . Then, the pair ( )1,n y+x  is added to the training set and the 

taxonomy function A  is applied to the extended sequence of pairs. This groups all 

the elements of the sequence into categories. Let ( )1* ,n yτ +x  be the category con-

taining the pair ( )1,n y+x . Now, for this category, it is possible to calculate as pre-

viously the values *Nτ , ( )* 'N yτ  and the empirical probability distribution 

          ( ) ( ) ( )
1

*
* ,

*

'
' .

n y

N y
P y N

τ
τ

τ+
=x   

This distribution depends implicitly on the object 1n+x  and its hypothetical label 

y . Trying all possible hypothesis of the label 1ny +  being equal to y , a set of distri-

butions ( ) ( ) ( )
1* ,' '

ny yP y P yτ +
= x  for all possible labels y  are obtained. In general, 

these distributions will be different since when the value of y  is changed, it is also 

changed (in general), firstly the grouping into categories, secondly the category 

( )1* ,n yτ +x  containing the pair ( )1,n y+x  and, finally, the numbers *Nτ  and 

( )* 'N yτ . Therefore, the output of a Venn predictor is made up of as many distribu-

tions as the number of possible labels. 

In other words, in a multi-class problem with J possible classes { }1 2, ,..., JY Y Y , J 

different probability distributions are obtained. Each one is a row vector with J ele-

ments ( ) ( ) ( )( )1 2, ,...,
K K Ky Y y Y y Y JP Y P Y P Y= = =  that are the probabilities of the sev-

eral labels 1 2, ,..., JY Y Y  into the category *τ  with the assumption that Ky Y= . In 

this way, a square matrix of dimension J is obtained: 

      

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

1 1 1

2 2 2

1 2

1 2

1 2J J J

y Y y Y y Y J

J y Y y Y y Y J

y Y y Y y Y J

P Y P Y P Y

P P Y P Y P Y

P Y P Y P Y

= = =

= = =

= = =

 
 
 =
 
 
 

  

From this matrix, the Venn predictor outputs the prediction ˆ
bestn jy Y= , where 
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       ( )
1,...,

arg maxbest
j J

j p j
=

=   

and ( ), 1,...,p j j J=  is the mean of the probabilities obtained for label 

, 1,...jY j J=  among all probability distributions (i.e. the mean of every column of 

matrix JP ). In words, the prediction is the label of the column with the maximum 

mean value. The probability interval for the prediction ˆ
bestn jy Y=  is 

( ) ( ),
best bestj jL Y U Y 

  , where ( )
bestjU Y  and ( )

bestjL Y  are respectively the maxi-

mum and minimum probability of the column bestj . 

In this article, as mentioned in the introduction, the selected taxonomy has been the 
nearest centroid taxonomy [14]. Owing to the fact that there are five different types of 
images, the number of categories in the NC Venn taxonomy is also 5. This means that 
the NC taxonomy sets the category of a pair  equal to the label of its nearest centroid. 
The mathematical formulation of the NC taxonomy is 

( ) ( ) ( ) ( ){ } ( )( )1 1 1 1 1 1, ,..., , , , ,..., , , ,i n i i i i n n i i jA y y y y y Yτ − − + += =x x x x x  

where 

     
1,2,...,5

arg min ,i j
j

j
=

= −x C   

jC  are the centroids of the five classes and ||.|| is a distance metric. In this article, the 

Euclidean distance has been chosen. 
For the reader convenience, it is important to mention other types of taxonomies 

that can be used with multi-class problems in the Venn prediction framework. Five 
different taxonomies are analyzed in [15], where the Venn predictors are based on 
neural networks. Lambrou et al. [16] shows an application of inductive conformal 
predictors to develop an inductive Venn predictor with a taxonomy derived from a 
multi-class Support Vector Machine classifier. Nouretdinov et al. [17] describes the 
logistic taxonomy, which is created from the method of logistic regression. 

3 Image Pre-processing 

As it was mentioned previously, the objective of this article is to develop a new auto-
matic classification system for the TJ-II TS images to both reduce the classification 
computational time and obtain a prediction probability interval. To this end, Venn 
predictors with the NC taxonomy in an on-line learning setting are used. But it is 
well-known that any conformal predictor in an on-line learning setting can be very 
expensive from a computational point of view. In the present case, the images have 



Computationally Efficient Five-Class Image Classifier Based on Venn Predictors 371 

221760 possible attributes and, therefore, a first attempt to reduce the computational 
time is to decrease the signal dimensionality without losing essential information. 

Analysis of bi-dimensional signals is getting great improvements by using Wavelet 
based methods. Due to the fact that the wavelet decomposition is multi-scale, images 
can be characterized by a set of approximation coefficients and three sets of detailed 
coefficients (horizontal, vertical and diagonal). The approximation coefficients  
represent coarse image information (they contain the most part of the image energy), 
whereas the details are close to zero (but the information they represent can be rele-
vant in a particular context). Therefore, the initial TJ-II TS images (221760 attributes) 
have been decomposed with the Haar wavelet transform at different levels (from level 
2 to level 6) and several combinations of approximation and vertical details coeffi-
cients have been taken into account (table 1). Due to the particular patterns of the TJ-
II TS diagnostic, horizontal and diagonal detail coefficients are not useful for a proper 
discrimination of the classes. 

Table 1. A total number of 15 Venn predictors with the NC taxonomy have been developed to 
analyse the effect of the decomposition level and the selection of coefficients on the prediction 
reliability and computational time. The last and last but one columns indicate de wavelet 
coefficients (approximation or vertical details) taken into account with each predictor. When 
both coefficients are set, the attributes are the sum of the approximation and vertical details 
coefficients. 

#predictor Haar decomposition level Approximation 
coefficients 

Vertical detail 
coefficients 

1 2 (13968 attributes/image) x  
2 3 (3528 attributes/image) x  
3 4 (900 attributes/image) x  
4 5 (234 attributes/image) x  
5 6 (63 attributes/image) x  
6 2 (13968 attributes/image)  x 
7 3 (3528 attributes/image)  x 
8 4 (900 attributes/image)  x 
9 5 (234 attributes/image)  x 
10 6 (63 attributes/image)  x 
11 2 (13968 attributes/image) x x 
12 3 (3528 attributes/image) x x 
13 4 (900 attributes/image) x x 
14 5 (234 attributes/image) x x 
15 6 (63 attributes/image) x x 

 
It should be noted the high dimensionality reduction carried out with the wavelet 

transform. According to table 1, the reduction with regard to the initial images goes 
from 93.70% (level 2) to 99.97% (level 6). 
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4 Results 

A dataset of 1149 images has been used. The number of images corresponding to  
the five classes BKG, STRL, ECH, NBI and COFF is respectively 107, 205, 461, 334 
and 42. 

As mentioned, the Venn predictors with the NC taxonomy are tested in an on-line 
learning setting. The initial training set contains just one image of each type. The rest 
of images (1144) are randomly chosen and classified one by one. After the prediction, 
each image is added to the training set with each real class (the predicted class could 
be different from the real one). 

Fig. 2 shows the results of predictors 1-5, which correspond to use as attributes the 
approximation coefficients of the wavelet transform at the selected decomposition 
levels. The plots illustrate the cumulative success rate (CSR), the upper success prob-
ability curve (USPC) and the lower success probability curve (LSPC) after the classi-
fication of 1144 images. 
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Fig. 2. Evolution of CSR, USPC and LSPC with the number of examples classified and using 
as attributes the approximation coefficients of the Haar wavelet transform 

The CSR is computed as 
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1

1 n

n i
i

CSR succ
n =

=    

where 1isucc =  if the example is correctly classified at trial i and 0isucc =   oth-

erwise. In the same way, the LSPC and the USPC respectively follow 

     
1

1 n

n i
i

LSPC l
n =

=    

     
1

1 n

n i
i

USPC u
n =

=    

where il  and iu  define the probability interval of the prediction at trial i: [ ],i il u . 

Table 2. Average computational time of Venn predictors and the NC taxonomy in the on-line 
learning setting 

Wavelet transform 
decomposition level 

Computation time 
(ms/example) 

2 2.404 
3 0.614 
4 0.166 
5 0.051 
6 0.013 

 

 
Fig. 3. Semilogarithmic and linear plots of the computational times with the Venn predictors 
and the NC taxonomy in the on-line learning setting 
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The plots at the different decomposition levels show that the probabilities provided 
by the Venn predictors are ‘well calibrated’. This means that these probabilities have 
a frequentist justification because they contain the cumulative success rate in all cas-
es. Also, it is important to note how the probability interval becomes narrower as 
more examples are included in the training set. In other words, the effect of the learn-
ing process produces more efficient predictions, i.e. narrower probability intervals. 

The right-most bottom plot summarizes the result of example 1144 at the different 
decomposition levels. This last example result should be interpreted as a summary of 
the maximum knowledge acquired by each respective predictor (they have both the 
largest training set and the narrowest prediction interval). The predictors at levels 2, 3 
and 4 can be considered equivalent since the probability prediction intervals are com-
parable. The preferred predictor is the one obtained at level 4 because it shows higher 
prediction efficiency, i.e. the tightest prediction interval. 

Predictors 6-10 use only the vertical detail coefficients and provide very wide 
probability intervals at decomposition levels 2 and 3. In general, their predictions are 
worse than the ones obtained with predictors 1-5. The results with predictors 11-15, 
which use as attributes the sum of approximation and vertical detail coefficients, do 
not show better predictions, in spite of including a combination of predictors 1-10. 

From the analysis of these predictors, it is possible to conclude that the best ones 
use the approximation coefficients as attributes and, in particular, the corresponding 
to a decomposition level of 4 (predictor #3 of table 1) allows obtaining the best  
predictive efficiency. It is important to emphasize that these predictors use just one 
example per class in the initial training set. 

Finally, fig. 3 shows the computation time evolution as the number of training ex-
amples is increased. Of course, the highest times correspond to the case with higher 
number of attributes per image (Haar wavelet decomposition at level 2). It should be 
noted the linear behavior of the computational time with the number of examples. 
Table 2 presents the average times per image at different decomposition levels of the 
wavelet transform. The standard deviations are below tens of microseconds. These 
times are two orders of magnitude below the ones obtained in [10]. 

5 Discussion 

Venn predictors with the nearest centroid taxonomy, on the one hand, allow for high 
success rates with narrow probability prediction intervals in the classification of the 
TJ-II TS images. On the other hand, the average computational time is orders of mag-
nitude below previous results. In the case of the predictor #3 in table 1, the average 
computational time is 0.166 ms and the absolute time to classify the example #1144 is 
187 ms. 
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Abstract. Discovering the most important variables is a crucial step for
accelerating model building without losing potential predictive power
of the data. In many practical problems is necessary to discover the
dependant variables and the ones that are redundant. In this paper an
automatic method for discovering the most important signals or char-
acteristics to build data-driven models is presented. This method was
developed thinking in a very high dimensionality inputs spaces, where
many variables are independent, but existing many others which are
combinations of the independent ones. The base of the method are the
SOM neural network and a method for feature weighting very similar to
Linear Discriminant Analysis (LDA) with some modifications.

Keywords: Linear regression · Feature election · SOM · Artificial neu-
ral networks · Weighted euclidean distance

1 Introduction

A fundamental problem in signal processing and data analysis is to find out the
linear combinations among the variables and to weight the importance of each
signal or variable. It could be used, for instance, to reduce the amount of data
to process, which is often a key factor in determining the performance of the
information processing system.

Dimensionality reduction can be a very critical issue in the data analysis of
the extremely large databases of fusion devices. For example, JET is the largest
fusion device in the world and collects tens of thousands of signals per discharge
(which means over 10 Gbytes of data per discharge). ITER, the next genera-
tion fusion device that is under construction, will acquire about five hundred
c© Springer International Publishing Switzerland 2015
A. Gammerman et al. (Eds.): SLDS 2015, LNAI 9047, pp. 376–385, 2015.
DOI: 10.1007/978-3-319-17091-6 32
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thousand signals per discharge and this will correspond to over 1 Tbyte of data
per discharge. This massive amount of data are necessary to model the plasma
behaviour that is ruled by highly complicated and extremely non-linear interac-
tions. Therefore, the availability of intelligent methods for data reduction is a
key aspect in nuclear fusion.

A linear regression is a way for modelling the relationship between a depen-
dent variable and one or more independent variables. Given i independent vari-
ables X and the linear dependent variable Y , the linear regression problem can
be defined like follows, using next matrices of data sets:

V ariables =

⎛
⎜⎜⎜⎝

X1,1 X1,2 · · · X1,i Y1

X2,1 X2,2 · · · X2,i Y2

...
...

. . .
...

...
Xn,1 Xn,2 · · · Xn,i Yn

⎞
⎟⎟⎟⎠ (1)

The linear model takes the form

Yi = θ1Xi,1 + θ2Xi,2 + ... + θnXn,1 + εi i = 1, ..., n (2)

Where εi is the error or disturbance term.
Written in a matrix form:

Y = Xθθθ + εεε (3)

Where X is the sub-matrix of X ′s in (1), and

θ =

⎛
⎜⎜⎜⎝

θ1
θ2
...

θn

⎞
⎟⎟⎟⎠ ε =

⎛
⎜⎜⎜⎝

ε1
ε2
...

εn

⎞
⎟⎟⎟⎠

Nowadays with the advent of Big Data and sophisticated data mining tech-
niques, the number of variables encountered is often tremendous making variable
selection or dimension reduction techniques imperative to produce models with
acceptable accuracy and generalization.

Artificial Neural Networks have been used for feature extraction, [1] and [2],
and for feature selection [3]. In this paper a method based on well known Koho-
nen’s Self Organized Maps (SOM) [4] and weighting features is presented. For
weighting features a method similar to Linear Discriminant Analysis (LDA) [5]
is used. A larger ratio value means it is a significant feature or signal and, on
the contrary, a smaller value indicates it is an insignificant feature or a signal
that we can discard, for example, in the creation of models for prediction or
classification. The proposed method will be applied to an experiment using syn-
thetic data where exist many independent and non-gaussian signals, and other
ones with are the result of linear and nonlinear combination of the independent
signals. The method has to find out not only the signals that show some type of
correlation among them but also the signals with larger weights.
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This paper is organized in the following: a briefing about the variable reduc-
tion and de Self Organized Maps are presented in the next two sections. The
proposed feature weighting method is described in section 4, in section 5 some
experimental results are presented. Finally future works and conclusions of this
technique for weighting characteristics are showed in section 6.

2 Variable Reduction

Variable reduction is a crucial step for accelerating model building without los-
ing potential predictive power of the data. The temptation to build a model
using all available information (i.e., all variables) is hard to resist. But ana-
lytical limitations require us to think carefully about the variables we choose to
model. Moreover the number of a parameters of a model (i.e., neuronal predictive
model) depends of the number of inputs. A high number of parameters usually
cause problems of over-fitting. In section 4 the method for automatic discover
the importance of the variables is presented. In this section is described the clas-
sical approximation to discover the importance of variables and the relationship
among them.

Before to describe different methods for discovering the relationship among
variables is necessary to define two different concepts: variable independence and
uncorrelated variables.

To define the concept of independence, consider two scalar-valued random
variables y1 and y2. Basically, the variables y1 and y2 are said to be independent
if information on the value of y1 does not give any information on the value of
y2 and vice-versa. Independence can be defined by the probability densities. Let
us denote by ψ(y1, y2) the joint probability density function (pdf) of y1 and y2.
Let us further denote by ψ1(y1) the marginal pdf of y1, i.e. the pdf of y1 when
it is considered alone:

ψ1(y1) =
∫

ψ(y1, y2)dy2 (4)

and similarly for y2. Then we define that y1 and y2 are independent if and only
if the joint pdf is factorizable in the following way:

ψ(y1, y2) = ψ1(y1)ψ2(y2) (5)

This definition extends naturally for any number n of random variables, in which
case the joint density must be a product of n terms.

The definition can be used to derive a most important property of indepen-
dent random variables. Given two functions, h1 and h2, we always have

E{h1(y1)h2(y2)} = E{h1(y1)}E{h2(y2)} (6)

After the definition of independence, is necessary to define the term of correlated
or uncorrelated variables. A weaker form of independence is uncorrelatedness.
Two random variables y1 and y2 are said to be uncorrelated, if their covariance
is zero:

E{y1y2} − E{y1}E{y2} = 0 (7)
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If the variables are independent, they are uncorrelated, which follows directly
from 6, taking y1(y1) = y1 and h2(y2) = y2. But uncorrelatedness does not imply
independence. For example, assume that (y1, y2) are discrete valued and follow
such a distribution that the pair are with probability 1/4 equal to any of the
following values: (0,1),(0,21),(1,0),(21,0). Then y1 and y2 are uncorrelated, as
can be simply calculated. On the other hand,

E{y2
1y

2
2} = 0 �= 1

4
= E{y2

1}E{y2
2} (8)

so the condition in 6 is violated and the variables cannot be independent.
The variables can have redundant information because they are not indepen-

dent and then we can eliminate some of these variables.
There are different traditional methods to find out redundant variables:

– Graphical representation. Is simple: representation of each variable vs each
other. If we have n variables, we need represent this one with the n−1 others
variables. So we need n(n − 1)/2 graphics. With the graphical representation
we know if two variables are related if the points follow a defined function (in
this case the variables are correlated), or they are dispersed (the variables
are not correlated).

– Variable exploration using a tree (quasi brute-force). The method consists
in to explore the possible combinations of the variable in the input vector of
a model. The begining is generate models which have all the variables and
models which have a one less variable. The model who has the minimum
increase of error indicates the variable less useful. This variable is eliminated
and the process begin again with a variable less.
The figure 1 shows the process of election of variables. The variable combina-
tion is codified using ones and zeros. The position of the one or zero indicates
the variable. One indicates that the variable is used and zero indicates the
not used variable in the input vector. In each step of the process (horizontal
row) the variable that will be discarded in next steps. That variable is indi-
cated for the model which produce minor errors. The process finish when
the errors grow up significantly.

Fig. 1. Variable exploration using a tree
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– Linear correlation coefficients. Using the correlation matrix we can check the
close or not of each point is to a line. This matrix is calculated using the
equation 9. The correlation coefficients are between 0 and 1. 1 indicates that
the variables are perfectly correlated linearly.

corrcoef(i, j) = ‖
∑n

k=1(x(i)k − x̄(i))(x(j)k − x̄(j))√∑n
k=1(x(i)k − x̄(i))2

∑n
k=1(x(j)k − x̄(j))2

‖ (9)

We are interested in very high dimensionality problems. With many variables or
signals the graphical representation is not practical, variable exploration using
a tree is complex and need very time and CPU resources. The correlation coef-
ficients only discover linear correlated variables. In section 4 is explained our
method for discovering the important variables in a very high dimension prob-
lems, through weighting features using like first step a Self Organized Maps. For
that reason in the next section we give a brief explanation about SOM.

3 Self Organized Maps

In the feature weighted method presented, the SOM neural networks is used to
“distribute” the input vectors in different classes. The feature method is a mod-
ification of a k-NN clasification problem presented in [6]. In every classification
problem we need to classify input vectors into a pre-defined classes, in our case
the classes will be the neurons of the SOM. In the next section we described
the weighted features method in deep. Now we only need to know that the first
step of the method is to create a SOM. And this method is not only limited
to classification problems, it can be applied to interpolation problem too. The
finality is to discover the most important features or signals independent of the
problem that we will use these features.

Kohonens self-organizingmap (SOM) was originally devised by Kohonen in
1982, to model a biological phenomena called retinotopy, a process of self-
organisation of the neural links between the visual cortex and the retina cells
when excited by a succession of independent stimulus. One of the advantages of
this algorithm in practical terms is its easy implementation, which is as follows.

There all a total of N neurons labelled with 1, ..., N . Each neuron k has
as associated position vector Ik = (ik1, ik1, ..., ikM ) ∈ N

M , which describes the
position of the neuron in an M -dimensional grid. This position vector does not
change. The number of neurons B in any column of the neuron grid is the same.

The neuron weight vector for neuron i at iteration t is denoted by Xi(t) ∈ R
D,

and where it only makes sense if M � D. Neuron weight j of neuron i is denoted
Xij . The neuron weights are initialised randomly or taking any of the input
vectors like the first weighted vectors, and then the algorithm proceeds as follows.
At iteration t an input vector ξ(t) ∈ [0, 1]D is presented to the network. The
winner neuron ν is chosen such that

‖ξ(t) − Xν(t)‖ � ‖ξ(t) − Xi(t)‖∀i (10)
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In the ease where there is more than one possible choice of winner (‖ξ(t) −
Xr(t)‖ = ‖ξ(t) − Xs(t)‖ < ‖ξ(t) − Xi(t)‖∀i �= r, s) then a predefine rule is used
to choose the winner, for example in the one-dimensional case the neuron with
the smallest index could be chosen. The neuron weights are then updated as,

Xi(t + 1) = Xi(t) + α(t)h(d(Ii, Iν)){ξ(t) − Xi(t)} (11)

The function h is a “neighbourhood” function h : R+ → R
+. In practice it is a

decreasing function about zero, such that for |a| � |b| ∈ R
+ then h(a) � h(b).

The function α(t) is a gain α(t) ∈ (0, 1). α(t) could be constant or α(t) →
0, t → ∞. The function d is a metric function which gives a measure of the
distance between Ii and Ij .

An important characteristic of de Kohonen’s Self Organized Maps versus
other competitive networks or self-organized is the SOM keep the neighbour rela-
tionships among the input data and represent the regions with an high dimen-
sionality in the input signals over the equivalent topological structure of the
network.

The main applications of the SOM are the 2D visualizations of N-Dimensional
data and the clustering.

4 Feature Weighting Method Based on SOM

Our objective is to weight the different features, that is, each signal in the input
space. We present a generalization of the approach in [6]. In this paper the
authors improve a k-NN classifier by change the method for training a Self
Organized Maps.

They proposed a revised version of SOM using weighted Euclidean metric in
the learning phase.

First of all the weighted Euclidean metric have been calculated with the
inputs vectors and the class what belongs that inputs vectors.

Using this new weighted Euclidean metric the SOM is generated. The next
step is mapping, that is, draw all test samples to be projected to the SOM, and
use the k-NN classifier in the two dimensional mapping samples.

A significant variation is proposed: the SOM is the first step for calculating
the weights of the features. In our approach the SOM is the way for discovering
the important features; and the focus is not only in classification problems, it
could be applied to a prediction problems too.

The proposed procedure for discovering the most important signals and which
are combinations of the others ones is:

1. Generate a SOM with all the signals configured as inputs vectors. An input
vector is formed for the sampled signals in a time t. The winner neuron is
calculated using the “non-modified” Eculidean distance (see 10).

2. Considerate each neuron in the SOM like a class in a classification problem.
Applied the feature weighted method using the trained SOM.
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3. The signals with are linear or nonlinear combinations of others will be an
high weight. The independent signals will be the lower one.

The FeatureWeightingMethod is:
Let ξj

i = [ξj
i1, ξ

j
i2, ..., ξ

j
id], i = 1, ..., Nj and j ∈ (1, ..., Nn), be the d-

dimensional training sample of class or neuron j. Where Nn is the number of
classes (is equal of the number of the SOM neurons). N =

∑Nn

j=1 Nj is the total
number of training samples. In order to measure the difference among features,
the global mean of total training samples of feature υ is calculated by

mυ =
1
N

Nj∑
i=1

Nn∑
j=1

ξj
iυ, (υ = 1, ..., d) (12)

and local mean of class j of feature υ is

uj
υ =

1
Nj

Nj∑
i=1

ξj
iυ, (υ = 1, ..., d) (13)

The way to estimate the weights of features is adapted from LDA, the
between-class variance SB

υ of the feature υ which is defined by the following
formulation:

SB
υ =

1
Nc

Nc∑
j=1

(mυ − uj
υ)2, (υ = 1, ..., d) (14)

Similarly, the within class variance SJ
υ of the feature υ is computed by

SJ
υ =

Nn∑
j=1

PjSjυ, (υ = 1, ..., d) (15)

where Pj = Nj

N is the prior probability of class j, and Sjυ is the variance of class
j of feature υ. Finally, the weighting feature Ψυ is acording to the ratioi of hte
between-class variance SB

υ to the within-class variance SJ
υ , that is

Ψυ =
SB

υ

SJ
υ

, (υ = 1, ..., d) (16)

According to this rule, if the value of variance of between classes is large, it
implies that the distributions of classes are separate, and this feature is helpful
for classification. On the hand, if the value of SJ

υ is small, it indicates that inter
class samples are closed. Therefore, a larger weight should give to this feature.

5 Experimental Results

We use a synthetic data set. 110 signals have been generated, and 10.000 values
of each signal or variable.
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The first 100 variables are uniformed distributed random values, and the next
10 are linear and nonlinear combinations of the first 100. There are 8 variables
which are linear combination, and 2 which are nonlinear combination

We have generate the next matrices of signals and parameters:

Signals =

⎛
⎜⎜⎜⎝

X1,1 X1,2 · · · X1,100 Y1,1 Y1,2 · · · Y1,10

X2,1 X2,2 · · · X2,100 Y2,1 Y2,2 · · · Y2,10

...
...

. . .
...

...
...

. . .
...

Xn,1 Xn,2 · · · Xn,100 Yn,1 Yn,2 · · · Yn,10

⎞
⎟⎟⎟⎠

θ′s =

⎛
⎜⎜⎜⎝

θ1,1 θ1,2 · · · θ1,10

θ2,1 θ2,2 · · · θ2,10

...
...

. . .
...

θ100,1 θ100,2 · · · θ100,10

⎞
⎟⎟⎟⎠

Where n = 1...10000 and

θ1,j ...θ90,j ∈ [0, 1] and θ91,j ...θ100,j ∈ [50, 100]; j = 1...10 (17)

The linear combinations are:

Y1,1 =
∑100

i=1 θi,1X1,i

Y1,2 =
∑100

i=1 θi,1X2,i

. . .

Y2,1 =
∑100

i=1 θi,2X1,i

. . .

We can express the combinations before as:

Yt,k =
100∑
i=1

θi,tXk,i (18)

Where t = 1...8 and k = 1...10.

The nonlinear combinations are:

Yt,k =
100∑
i=1

θi,t sin(Xk,i) (19)

Where t = 9, 10 and k = 1...10 .

Using the synthetic data in the matrix signals we check the performance of
the proposed method for reducing the number of variables, or finding out the
most relevant variables. And discover the qualitative weight of the independent
variables X ′s in the linear and nonlinear combinations.

The execution time of proposed method is in seconds using a computer with
a Xenon processor at 1.86 GHz and 6 GB of memory. For instance, using the
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Fig. 2. Weights of the 110 features using a
SOM of 100 neurons (10x10)
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Fig. 3. Weights of the 100 first features
using a SOM of 100 neurons (10x10)
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Fig. 4. Weights of the 110 first randomly
permutation features
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Fig. 5. Zoom: weights of the 110 first ran-
domly permutation features

synthetic data set generated and a SOM with 100 neurons, the training time
of the SOM is about 40 seconds and only 1,5 seconds for calculating the 110
weights.

The figure 2 shows the big difference among the last ten weights and the first
one hundred weights, that is, the Y s and the rest. Y s are the linear and nonlinear
combinations of the first 100 independent variables (18 and 19). Moreover the
proposed method also can identifies the most relevant independent variables in
the linear and nonlinear combinations 3. This figure is a zoom of the first 100
features, and the 91 to 100 features are the features with a greater θ (see 17)
in the combinations that produces the signals Y s. The method for weighting
features preponderate the variables which are the results of the combinations
of the others. That are the signals which represent the most quantity of the
information in the problem. And also the method discover which variables X ′s
are most important in the Y ′s signals.
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The capability of discover the important signal which is combination of the
other ones no depend of the order of the variables in the input vectors. In the
figure 4 is observed the 10 dependant variables which have been randomly per-
muted in their position in the input vector. And the figure 5 is a zoom of the
former figure 4 in wich we can see the 10 variables with a greater θ in the linear
and nonlinear combinations.

6 Conclusion and Aplicabilities

In this paper we have presented a method for discovering dependant variables
which are the result of linear and nonlinear combination of the independent
variables. This method also discovers the importance of the variables in the linear
regression and in the nonlinear combinations. We can use the SOM networks
for a first step for “splitting” the input vectors in the neurons and after this,
to calculate the weight of each signal depending on their “within-class” and
“between-class” variances.

This method can be applied to improve many areas, we will highlight two: in
classification and visualization problems using a weighted euclidean distance for
training a SOM; and applied this method to deep-learning techniques, in order
to discover the most relevant characteristics for representation of a problem.
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Abstract. In a Euclidean ascending hierarchical clustering (ahc,
Ward’s method), the usual method for allocating a supplementary object
to a cluster is based on the geometric distance from the object-point
to the barycenter of the cluster. The main drawback of this method is
that it does not take into consideration that clusters differ as regards
weights, shapes and dispersions. Neither does it take into account suc-
cessive dichotomies of the hierarchy of classes. This is why we propose
a new ranking rule adapted to geometric data analysis that takes the
shape of clusters into account. From a set of supplementary objects, we
propose a strategy for assigning these objects to clusters stemming from
an ahc. The idea is to assign supplementary objects at the local level of
a node to one of its two successors until a cluster of the partition under
study is reached. We define a criterion based on the ratio of Mahalanobis
distances from the object–point to barycenters of the two clusters that
make up the node.

We first introduce the principle of the method, and we apply it to
a barometric survey carried out by the cevipof on various components
of trust among French citizens. We compare the evolution of clusters of
individuals between 2009 and 2012 then 2013.

Keywords: Geometric data analysis · Correspondence analysis and dou-
bling coding · Ascending hierarchical clustering · Mahalanobis distance ·
Survey data

1 Assignment by Dichotomies to a System of Classes

Let I be a set of n objects, and C a set1 of C classes c ∈ C defining a partition
of I. We suppose that we have a nested system, providing a hierarchy of classes
and more precisely a dichotomic hierarchical clustering represented by a binary
tree.

The end elements of the hierarchy are the classes c ∈ C, that we call “primary
classes”. The n objects of I are divided into the C primary classes, the absolute
1 As a general convention, we denote the cardinalities of finite set as the sets them-

selves, except for set I.
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frequencies of classes are denoted (nc)c∈C (with n =
∑

nc). The classes of the
hierarchy are denoted c� with � going from 1 to C for the primary classes, and
from C +1 to 2C −1 for the classes associated with the nodes of the hierarchical
tree. The top node c�=2C−1 is the set I of all objects.

As an example, take the following hierarchy with four terminal elements:
C = {c1, c2, c3, c4}.

c�1 c�2 c�3 c�4

c�7

c�6

c�5

(c1) (c2) (c3) (c4)

The assignment of a supplementary object is will be made downwards as
follows:

– we first decide to which of the two immediate successors (here c�6 or c�5) of
the top node (c�7) we assign the supplementary object is;

– once the assignment to a node � is made (say here c�6), we decide to which
of the two immediate successors (c�3 or c�4) of this node (c�5) we assign the
supplementary object is;

– and so on until we reach a primary class.

In the sequel, we suppose that objects are represented by points in a Euclidean
space. We apply a Euclidean clustering to the cloud of points, that is, an ascend-
ing hierarchical clustering using the variance criterion (Ward’s method) [7].

2 Distance from Object to Class

We suppose that the space is referred to an orthonormal basis, for instance the
basis associated with the principal axes of the cloud. We denote c� the column–
vector of the coordinates of the mean point of class c� and V� its covariance
matrix. If y denotes the column–vector of the coordinates of object i, the prox-
imity index between object i and class c� [2], denoted κ�(i), is equal to the
Mahalanobis distance [6] from object–point i to the center of class c�. One has:

κ2
�(i) = (y − c�)�V

−1

� (y − c�)

Comment
If, as an proximity index, we take the geometric distance from object–point

i to the center of the class c�, that is
(
(y − c�)�(y − c�)

)1/2, we do not take
into account the fact that the classes differ in weight, shape and dispersion. Now
it seems natural that a point that is equidistant from the center of a highly
concentrated class and from the center of a very dispersed class will be assigned
to the latter one. Hence, it is preferable to choose the κ-norm as a proximity
index from a point to a class, since it takes into account the shape of the class.
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3 Assignment Criterion

In order to decide if a supplementary object is is assigned to class c� or to class
c�′ , we will compare the ratio ρ(�,�′)(is) = κ2

�(is)/κ2
�′(is) to a threshold α(�,�′).

is is assigned to class c� if ρ(�,�′)(is) < α(�,�′) and to c�′ if not2.

Among the possible thresholds, we will choose the one, denoted α̂(�,�′), for
which, if we assign the nc�

+ nc�′ basic objects i ∈ c� ∪ c�′ according to the
preceding rule, the number of errors (misclassified objects) is minimum ([1], [3]).

We denote:

– N�(α) the number of basic objects i belonging to class c� that are misclassi-
fied at level α, that is, the number of i ∈ c� with ρ(�,�′)(i) > α(�,�′);

– N�′(α) the number of objects belonging to class c�′ that are misclassified at
level α, that is, the number of i ∈ c�′ with ρ(�,�′)(i) < α(�,�′);

– N(�,�′)(α) = N�(α) + N�′(α) the number of objects of the two classes c� and
c�′ misclassified at level α.

The threshold α̂(�,�′) is the value α corresponding to the minimum of
N(�,�′)(α).

Calculation Algorithm. To calculate α̂(�,�′), the values ρ(�,�′)(i) are ranked in
ascending order, hence the sequence indexed by j (with 1 ≤ j < nc�

+ nc�′ ),
with:

ρ(�,�′)(1) ≤ . . . ≤ ρ(�,�′)(j) ≤ . . . ≤ ρ(�,�′)(nc�
+ nc�′ )

– If α < ρ(�,�′)(1), then all basic objects are assigned to class c�′ , hence there
are nc�

errors.
– If ρ(�,�′)(j) < α < ρ(�,�′)(j + 1) (j ≥ 2), there is one less error if the basic

object corresponding to j belongs to class c� and one additional error if it
belongs to class c�′ , and so on.

We denote jmin the rank corresponding to the minimum of N(�,�′)(α), i.e. the
rank of the object for which the ratio ρ is taken as threshold.

4 Application to the Survey Data of Trust Barometer
(CEVIPOF)

4.1 Data Set

The data come from surveys initiated by cevipof (Centre de Recherches Poli-
tiques de Sciences-Po Paris) that take account of several, and sometimes hetero-
geneous, components of trust. The aim of these surveys is to measure changes
in trust between 2009 and 2012 then 2013 in France.
2 If ρ(�,�′)(is) = α(�,�′), the more numerous class is chosen.
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Six waves of on–line surveys has been conducted each year since 2009 by
the research center cevipof in partnership with the Pierre Mendès France
Institute and the Conseil Economique, Social et Environnemental. The sam-
ples (about 1,500 persons) are designed to be representative of the French
citizens registered to vote, by using the quota method (gender, age, CSP)
and categorization by type of agglomeration and size of the home town. The
data are collected by “OpinionWay” polling institute using a cawi (Computer
Assisted Web Interview) system (See www.cevipof.com/fr/le-barometre-de-la-
confiance-politique-du-cevipof/).

4.2 Structure of the Space of Trust

In order to measure changes in trust [4], we take as a reference the 2009 sur-
vey (intermediate date between 2007 and 2012 presidential elections). In the
analyses, the 1,375 individuals of Wave 1 (2009) are put as active elements, all
individuals in the other two waves are put as supplementary [2].

In order to construct the space of trust and to make a typology of the French
citizens registered to vote according to trust [4], we retained five components of
trust measured by 24 questions:

1. Political trust : trust in political roles (7 questions: presidential institution,

Prime Minister; your member of parliament (mp), mayor, general councillor; polit-

ical parties, European Union);
2. Institutional trust : trust in large public or private institutions (5 questions:

hospital, police, medias, Trade Unions, wto);
3. Economic trust : trust in organizations of the economic world (4 questions:

banks, public firms, private firms, trust/control firms);
4. Interpersonal trust (5 questions: trust in neighbors, people, foreigners, etc.);
5. Individual trust (3 questions: feeling of personal happiness, personal respons-

ability, trust in one’s own future):.

Almost all questions are in the same format: a four–level Likert scale (with
levels: much trust, some trust, not much trust, no trust at all). In order to
construct the space of trust, we use a procedure called doubling, that is, we
attribute two scores per individual instead of a single score [6]. We respectively
coded the four levels (3,0), (2,1), (1,2) and (0,3) for four–level scales and by
(1,0), (0,1) for the two levels of the three dichotomous questions. Then the table
is doubled with a “trust pole” and a “distrust pole” for each individual. We
performed a correspondence analysis of the table with 2× 24 columns and 1,375
rows. In the correspondence analysis display of this table, we obtain two points
for each question and one point for each individual. The line joining two poles
of one question goes through the origin (as shown in figure 1 for the question
about “trust in police”).

Furthermore, trust components have a different number of questions. Thus,
each question is weighted by the inverse of the number of questions the com-
ponent contains. Thus the components are roughly balanced in the analysis.
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Their contributions to the cloud variance are respectively 22%, 19%, 21%, 23%
and 15%.

The first axis is more important than the second. We will give the interpre-
tation of the first two axes3.

Table 1. Variances of axes λ (for λ > to the mean λ) and decreasing curve

axis
vaiance

(λ)
cumulated

rate

1 0.0721 23.80
2 0.0310 34.04
3 0.0229 41.59
4 0.0210 48.52
5 0.0162 53.88
6 0.0125 58.02 0.0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0 1 2 3 4 5 6

Interpretation of Axes. Axis 1 is an axis of trust/distrust: it opposes the trust
poles of the questions (black markers) to the distrust poles (white markers). The
political, then the economic components of trust account for 34% and 25% of
the variance of axis 1.

For axis 2, the interpersonal component is predominant with a contribution
of 63%, then the economic component contributes to 27%. It opposes, on the
one hand (bottom in figure 1), interpersonal trust (neighbors, foreigners, people
met for the first time, etc.) and distrust in banks, firms, and on the other hand,
the opposite poles of these questions.

4.3 Clustering of Individuals

On the cloud of individuals, we perform a Euclidean clustering, precisely an ahc
with variance criterion (Ward’s method [7]).

We can distinguish four groups of individuals as regards trust. The superior
hierarchical tree associated with the partition in four clusters is given in Figure
3 and the concentration ellipses represented in the plane 1-2 of the space of trust
in Figure 4.

Interpretation of Classes. Class c1 (nc1 = 402) groups the “hyper-trusters”;
class c2 (nc2 = 396) groups the “moderate trusters”; class c3 (nc3 = 267)
groups the “moderate distrusters” and class c4 (nc4 = 311) groups the “hyper-
distrusters”.

3 For more details and the interpretation of axis 3 see [3].
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axis 1
λ1 = 0.072

axis 2
λ2 = 0.031
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Political trust
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Economic trust
Interpersonal trust

Individual trust

Fig. 1. Cloud of questions with their two poles: the trusted one with black markers and
the distrusted one with white markers (the size markers are proportional to weights)

4.4 Assignment of Individuals of Waves 4 and 5

To complement this study, we use the procedure described above to assign the
individuals of the other waves to the classes defined by the ahc of individuals of
Wave 1 (2009). The percentages of individuals in each class for waves 1 (2009),
4 (2012) and 5 (2013) are given in table 2.

Table 2. Percentages of individuals in each class for the 3 waves

classes Dec 2009 Dec 2012 Dec 2013

c1 hyper–trusters 29 29 28
c2 moderate trusters 29 20 17
c3 moderate distrusters 19 31 34
c4 hyper–distrusters 23 20 21
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Fig. 2. Cloud of individual in plane 1-2 (the graphical scale is equal to three quarter
of that of figure 1)
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Fig. 3. Superior hierarchical tree and diagram of level indexes

Comment : The level of trust diminishes. The method used here enables us
to specify the changes: from the above percentages, we can say there exists an
important shift in moderate trust towards moderate distrust, and there is a little
change in extreme classes.
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Fig. 4. Concentration ellipses of the 4 classes in plane 1-2 of the ca

5 Conclusion

As we have seen, this method is of particular interest for the study of data
tables indexed by time, that is for longitudinal studies. It can also be used in the
case of a cloud of individuals equipped with structuring factors, for instance for
comparing, as Pierre Bourdieu says, “positions in the field and position taking”.

A calculation algorithm program was written in R, and it is invoked from
SPAD software4.
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Abstract. We semantically map out the flow of the narrative involved
in a United States Supreme Court case. Our objective is both the static
analysis of semantics but, more so, the trajectory of argument. This
includes consideration of those who are involved, the Justices and the
Attorneys. We study therefore the flow of argument. Geometrical (metric,
latent semantic) and topological (ultrametric, hierarchical) analyses are
used in our analytics.

Keywords: Data analytics · Multivariate data analysis · Correspon-
dence analysis · Latent semantic analysis · Hierarchical clustering · Met-
ric and ultrametric mapping

1 Introduction

In this work, we examine the argumentation used in US Supreme Court cases.
We have at our disposal about 500 such cases. Future work will carry out com-
parative analyses of the trajectories of argument, and cross-argument, implying
also cross-case, analysis. Our objectives will include both legal content and also
a data-driven, contextually-based, and semantics-enabled analysis of this par-
ticular form of discourse. In this paper we examine one such case. The Annex
to this paper provides details of the Supreme Court cases that we are using,
and it provides some aspects also on the particular case at issue in this initial
work. See this Annex for those involved, that included the plaintiff, the defen-
dant, the amicus curiae (i.e., “friend of the court”, an accepted role providing
public policy perspective), and the Justices from the Supreme Court, including
the Chief Justice. Furthermore, in the Annex, it is noted how this court case was
one where the state of Kansas brought an action against the states of Nebraska
and Colorado. This case was heard in late 2014.

In this work we use the Correspondence Analysis platform [9], together
with chronological hierarchical clustering [1,8]. Background on many aspects
can be found in [5,6]. The Correspondence Analysis methodology was intro-
duced to mainstream legal and jurisprudence domains by Harcourt [4]. As a
methodology, this offers a latent semantic analysis that is well integrated with
c© Springer International Publishing Switzerland 2015
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importance-based selection of observables and their attributes (for us in this
paper, speech elements and the words used), with chronological aspects of the
dynamics involved, with visualizations, to which we can add the statistically
significant terms.

In [1], there is an in depth discursive analysis of the closing speech for the
prosecution in a murder trial. The trajectory of the argument is studied using
Correspondence Analysis and chronological hierarchical clustering. See e.g. [8]
where this integrated toolset, for semantic analysis of the data and its dynamical,
or chronological, aspect is applied to film script. In [1] the objective is to analyze
the progression of the arguments. The broader objective is to understand what
constitutes effectiveness, through the ability to map the flow of argument, and
later to use such perspectives for teaching and training.

A starting point is the units of discourse that are used. Let us consider
how thinking, and the expression of such thought in language, can be utilized.
Chafe [2], in relating and establishing mappings between memory and story, or
narrative, considered the following units.

1. Memory expressed by a story (memory takes the form of an “island”; it is
“highly selective”; it is a “disjointed chunk”; but it is not a book, nor a
chapter, nor a continuous record, nor a stream).

2. Episode, expressed by a paragraph.
3. Thought, expressed by a sentence.
4. A focus, expressed by a phrase (often these phrases are linguistic “clauses”).

Foci are “in a sense, the basic units of memory in that they represent the
amount of information to which a person can devote his central attention at
any one time”.

The “flow of thought and the flow of language” are treated at once, the latter
proxying the former, and analyzed in their linear and hierarchical structure as
described in other essays in the same volume as Chafe [2] and in [3].

In section 2, we describe the data, the discourse chronology, and character-
izing terms. We apply McKee’s ([7], p. 252) dictum that text is the “sensory
surface” of the underlying semantics. In section 3, the semantic analysis is car-
ried out. This includes semantic mapping and visualizing, and clustering of the
personages involved, the Justices and Attorneys. In section 4, we segment the
overall argument or discourse. We provide an initial visualization of the trajec-
tory of this Supreme Court argument.

2 Data Preprocessing

The Annex describes the particular court case argument that we use, as a model
case.

In this initial analysis, due to our objective of mapping the semantics of the
discourse, we remove all punctuation, and we set all upper case to lower case.
The widespread presence of “–”, indicating a cut or a break in speaking, comes
within the scope of our excluded punctuation.
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In terms of the structure of the text, we have the following. A speaker is
one of: the Chief Justice, the 7 other Justices, the 3 Attorneys (cf. Annex for
their names). Each speaker name precedes a statement that consists of up to a
number of successive sentences.

To begin with then, we have 567 sentences, arranged in 213 statements, with
the text comprising 1396 words. By removing common grammatical words that
are on a stopword list (from the SMART information retrieval system, in the
R package, tm), the word set used decreases to 1063. Since we will take into
consideration the speaker as well as what is said, and given the fact that there
are 11 speakers, our analysis will be carried out on the statements. A further
data preprocessing step is to remove words that are rare. We define rare words as
words that appear in fewer than 10 statements, and also words that are used less
than 10 times in the full argument. Such rare words are removed because we are
less interested here in exceptionally occurring instances, but rather instead we are
interested in underlying trends and patterns expressed by the speaking. Rare can
also become important for Correspondence Analysis, due to their exceptionality
(so they will have a small mass, but they will be at a great distance from the
centre of gravity of the cloud of words, with the result that they will be of large
inertia). Rare words may well determine some of the factors, in the output, latent
semantic factor space. For these reasons, therefore, we remove such words. We
are left with 59 words (from the previous 1063 words).

Because the Justice and Attorney names are of particular interest to us, we
separate these from other words used, for the purposes of our analysis in the next
section. We carry out our semantic analysis on the cloud of words that do not
have these names. That analysis, i.e. determining the latent semantic, Euclidean
metric, factor space, is simultaneously the analysis of the cloud of statements.
Then we project the Justice and Attorney names into the factor space. In this
way, we position them semantically in the factor space, as a function of the
words they use in the statements expressed by them, and as a function of the
statements they make.

3 Semantic Mapping Through Correspondence Analysis
and Classificatory Analysis

Figure 1 displays the relative positioning of the plaintiff, Stephen R. McAllister,
representing Kansas, and the defendant, David D. Cookson, from Nebraska. As
is typical for such sparse input data, the inertia explained by the factors or axes,
and therefore the corresponding eigenvalue, is small.

The Justices, plaintiff and defendant, and one term, “honor”, were supple-
mentary elements. That is to say, they were entered into the analysis following
the construction of the factors. In the case of this term, “honor” (often used
in the expression “Your Honor”), in an initial analysis, it influenced strongly
the first two factors. Therefore, because of its exceptionality, it was put as a
supplementary term.
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With one exception, Justice Kagan, all other Justices are in the upper left
quadrant of Figure 1. We left, for the present, the function words “you’re” and
“didn’t” (through our preprocessing, written as “youre” and “didnt”, respec-
tively). While Figure 1 distinguishes, on the vertical axis, the issue of contention
from the legal debate, we will flag some issues as deserving of further study,
later. One such issue is why Justice Kagan is separately located from the other
Court Justices. Due to limited statements, and hence limited interventions here,
the Justices Alito, Ginsburg and Kennedy had insufficient data to be retained
in these analyses.

Fig. 1. The principal factor plane, where the first and second axes (“Dim 1”, “Dim
2”) explain 11.04% of the inertia. The 20 words that contribute most to the definition
of the factors, are displayed. Words that are not displayed are located at the fainter
pink triangle symbols. The names of just plaintiff McAllister and defendant Cookson
are shown. In the upper left quandrant, the grey triangles are the locations of Justices:
Roberts, Scalia and Sotomayor, and (closer to the origin) Breyer. Kagan and (amicus
curiae) O’Connell are located in the lower left quadrant. The labelling of the axes is
concluded from the words that are displayed.

Figure 2 shows that the plaintiff and defendants, McAllister and Cookson,
together with the amicus curiae, O’Connell, are quite close semantically. This
is an expression of the core discussion revolving around what they had to say.
It is interesting to find how much Chief Justice Roberts differs, semantically,
from other Justices.
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Fig. 2. From their semantic coordinates in the full dimensionality factor space, the
hierarchical clustering uses Ward’s minimum variance agglomerative criterion. This is
also a minimum inertia criterion for equiweighted points, endowed with the Euclidean
metric that is defined in the latent semantic factor space.

4 Towards the Trajectory of Argument

We have already noted Chafe’s description of the options for considering the
segmentation of the flow of narrative and/or of thought. Here, we have multiple
speakers. Using the semantic mapping provided by the Correspondence Analysis,
in the full dimensionality space, we will apply a chronological clustering. That
is to say, we use a clustering of the statements. (As noted in section 2, before
our data preprocessing, we started out with 213 statements, that comprised the
succession of 567 sentences. Each statement was a mini-speech by a Justice or
by an Attorney.)

Such clustering uses the complete linkage agglomerative clustering criterion,
in order to have a well-defined hierarchy. This has been used in [1,8]. The hier-
archy that is determined in this way is displayed in Figure 3. From the 213
statements that comprise the entire court argument, there are 195 that did not
become empty of words, when the word corpus used was reduced as described
in section 2.
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Fig. 3. From their semantic coordinates in the full dimensionality factor space, and
taking the chronology into account, this contiguity constrained agglomerative hierar-
chical clustering uses the complete link cluster criterion (guaranteeing a well-formed
hierarchy). 189 successive statements are clustered here. As described in the text, we
implement an approach to select statistically significant cluster segments from this
hierarchy.

We proceed as follows on the basis of Figure 3. Through permutation assess-
ment of the statistical significance of cluster formation, or rejection of such a
hypothesis associated with each and every agglomeration in the hierarchy build-
ing process, we arrive at a set of segments of the chronological sequence. See in
particular [1] for application of the segmentation approach. Using a significance
threshold of 15% and 5000 randomizations, we arrive at statistically permitted
agglomerations that give rise to 26 successive segments. These are segments (in
sequence, which implies chronological) of the 189 statements covering the entire
discourse.

From these 26 segments, we carry our a semantic mapping analysis of the seg-
ments, crossed by the 59 terms that we have retained. These terms are the names
of Justices and Attorneys and 51 other words. What we found as the more impor-
tant words were displayed in Figure 1. In Figure 4, it can be seen that segments
1, 2, 3, 4 are somewhat outlying (not greatly so, of course, cf. the later segment
9). These segments are respectively statements 1–8, 9–13, 14–18, 19–29. Then the
main part of the argument flow in this case, comprising segments 10 through to
21, are fairly centrally located in this planar map of the argument flow. These
segments are defined from statements 60 to 149. We also note the semantic posi-
tioning of the Attorneys and Justices here.
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Fig. 4. Factor plane of factors 1 and 2, using 26 successive segments in the chronology
of statements, crossed by 51 words used and the names of Justices and Attorneys. The
longer segments, therefore being the most dominant, are traced out with connecting
lines. These segments are: segments 4, 8, 9, 10, 15, 19 and 26. Visual proximity of
any named individual and any segment of statements indicates an influence (by the
individual on the semantic content of the segment of successive statements).

The segments are of differing lengths. Some are even of length 1, being just
one single statement, by one Justice or Attorney, in the Court case transcript.
We looked at all segments which had 10 or more statements, in order to have
a set of sufficiently dominant or important segments. This was the case for the
segments 4, 8, 9, 10, 15, 19 and 26, which had, respectively, the following number
of statements: 11, 11, 10, 10, 18, 10, 26. Because we are taking these as dominant
segments, there are connected with lines in Figure 4. This is our way, therefore,
to display the general and overall trajectory of this Supreme Court case.

5 Conclusion

In this initial work, we have taken one Supreme Court case. We used the tran-
script of this session. It involved the plaintiff and defendant, the amicus curiae,
the Chief Justice, and the four Supreme Court Justices (together with three



404 F. Murtagh and M. Farid

other Justices who were not included in our analysis since they did not say
much during this particular case).

We have mapped the underlying semantics and sought out a statistically
approved segmentation of the argument flow. In this one Supreme Court case,
we have examined classificatory relationships between the Justices and the Attor-
neys.

It remains now to generalize and extend this work to all other Supreme Court
arguments that are available to us. With around 500 of these, we will be in a
position to compare argument structures; to note relationships between those
involved and themes that are at issue; and most of all, we can make use of the
underlying semantics, that includes both static views and unfolding development
of themes and of arguments that manipulate these themes.

Annex

The Supreme Court of the United States provides Argument Transcripts, that
are transcripts of oral arguments heard by the Court. These are from the year
2000. There about 500 cases to date. These Argument Transcripts are at the fol-
lowing address, where it is noted that: “The Court’s current Courtroom reporter,
Alderson Reporting Company, provides transcripts of oral arguments that are
posted on this Web site on the same day an argument is heard by the Court.”

http://www.supremecourt.gov/oral arguments/argument transcript.aspx
In our initial study of these arguments, we took the following case, Case No.
126:

http://www.supremecourt.gov/oral arguments/
argument transcripts/126,%20orig heim.pdf
This case is the following. “State of Kansas, Plaintiff v. State of Nebraska

and State of Colorado”, Washington, D.C., Tuesday, October 14, 2014.
This session, that we analyze in this article, started at 10:04 a.m. Appear-

ances were: Stephen R. McAllister, on behalf of the plaintiff; Ann O’Connell, as
amicus curiae; David D. Cookson, on behalf of the defendants; then there was
a rebuttal argument by Stephen R. McAllister. Chief Justice Roberts concluded
the session, with submission of the case, at 11:03 a.m.

This transcript is in double spacing, it has sequence numbers on all lines,
pages 3–56 contain the court presentation and discussion. Pages 57–68 contain
an index of all terms (including years and other numerical terms), with their
page and line numbers.

Justices present are as follows, and representatives of the plaintiff and defen-
dants.

1. Stephen R. McAllister, Esq., Solicitor General of Kansas, Topeka, Kansas;
on behalf of the plaintiff.

2. Ann O’Connell, Esq., Assistant to the Solicitor General, Department of Jus-
tice, Washington, D.C.; on behalf of United States, as amicus curiae.

3. David D. Cookson, Esq., Chief Deputy Attorney General, Lincoln, Nebraska;
on behalf of defendants.

http://www.supremecourt.gov/oral_arguments/argument_transcript.aspx
http://www.supremecourt.gov/oral_arguments/
argument_transcripts/126,%20orig_heim.pdf
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4. Chief Justice Roberts
5. Justice Scalia
6. Justice Kagan
7. Justice Sotomayor
8. Justice Breyer
9. Not included in our analysis due to limited involvement: Justice Ginsburg,

Justice Alito, Justice Kennedy

For background on this case, the following may be referred to.
No. 126, Original, In The Supreme Court of the United States, State of Kansas,
Plaintiff, versus State of Nebraska and State of Colorado, Defendants.
“Final Report of the Special Master with Certificate of RRCA Groundwater
Model”, Vincent L. McKusick, Special Master, One Monument Square, Portland,
Maine 04101, USA. September 17, 2003.

For this, see http://www.supremecourt.gov/specmastrpt/orig126 102003.pdf.
It may be noted that the RRCA Groundwater Model is the Republican River
Compact Administration Ground Water Model, for the Republican River Basin,
developed for Colorado, Kansas and Nebraska.

References
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Abstract. An overview of data models suitable for smart cities is given.
CityGML and G-maps implicitly model the underlying combinatorial
structure, whereas topological databases make this structure explicit.
This combinatorial structure is the basis for topological queries, and
topological consistency of such data models allows for correct answers
to topological queries. A precise definition of topological consistency in
the two-dimensional case is given and an application to data models is
discussed.

1 Introduction

Electronic government, planning systems, and citizen participation require data
models suitable for performing such tasks. Geographic Information Systems
(GIS) for smart cities are used for assessing transportation and mobility, urban
risk management and GIS-assisted urban planning, including noise-mapping and
solar energy issues [17].

In order to be useful for more than visualisation purposes, data models must
be topologically consistent, meaning that the underlying combinatorial and geo-
metric models must be compatible. The reason is that it is usually more efficient
to use the combinatorial model for topological queries. The precise definition
of topological consistency varies considerably in the literature. E.g. in [9], 3D-
meshes via one-dimensional finite elements are considered. Their consistency rule
is that line segments intersect only in boundary points. With this, they achieve
self-correction of inconsistent meshes. In [3], topological-geometric consistency
means that the interiors of 1-cells resp. 2-cells may not intersect. However, no
statement about cells of different dimensions is made. The authors of [18] use
only the geometric model for determining topological relations, and then make
corrections of violations against topological integrity constraints. According to
[1], a surface is consistent if and only if it is a valid 2D-manifold. In [8], the
topological consistency of simplifications of line configurations is treated with-
out defining topological consistency. The authors of [14] discuss arbitrary con-
figurations of points, line segments and polygons in the plane, as well as their
extrusions to 3D. Their consistency rules are that line segments may intersect
only in their boundary points, and the interior of a polygon may not intersect
any other object. Nothing is said about the intersection of a point with another
c© Springer International Publishing Switzerland 2015
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object, or how the boundaries of objects intersect. For [12], a surface in IR3 is
consistent if it is a so-called 2.8D map. Gröger & Plümer extend this consistency
rule by not allowing the interiors of points, lines, areas and solids to intersect
[10,11]. An efficiently verifiable list of local consistency rules then requires a
tesselation of IR3. This excludes e.g. free or exterior walls, i.e. polygons which
border at most one solid.

In the following section, we will discuss some data models for smart cities,
namely CityGML, G-maps and topological databases. The next section gives
some examples of queries involving topology in smart cities. This is followed by
a section in which our point of view on topological consistency is made into a
precise definition, and some consequences are discussed.

2 Data Models for Smart Cities

CityGML is an XML-based format for virtual 3D city models based on the Geo-
graphic Markup Language (GML). It is an international standard issued by the
Open Geospatial Consortium (OGC) [13]. In essence, it models a configuration
of points, line segments, polygons with holes, and solids together with a semantic
structure by representing the thematic properties, taxonomies and aggregations.
Solids and line segments are given by their boundary representations, and poly-
gons with holes by their cycles of vertices under the tag gml:LinearRing. The
combinatorial structure can be extracted from the xlink-topology together with
the coordinate lists.

A generalized map (or short: G-map) is a topological model designed for
representing subdivided objects in any dimension, and is an implicit boundary
representation model. The definition of a G-map is given in [15] as

Definition 1. An n-G-map is an (n + 2)-tuple G = (D,α0, . . . , αn) such that

– D is a finite set of points called darts
– α0, . . . , αn are involutions on D, i.e. αi ◦ αi is the identity map on D
– αi ◦ αj is an involution if i + 2 ≤ j with i, j ∈ {0, . . . , n}

The combinatorial structure is given by i-cells which in turn are defined as
G-maps whose underlying darts are an orbit of the group generated by the
involutions other than αi. G-maps can depicted in the following way:

– A dart is depicted as • �

– An orbit under the group 〈α0〉 generated by the involution α0 is depicted as
• � � •

– An orbit under the group 〈αi〉 generated by αi with i > 0 is depicted by
connecting darts with i strokes. E.g. for i = 1 : � • • �

An example of a G-map with two 2-cells, five 1-cells and four 0-cells is given in
Figure 1 (left). The 2-cells are the orbits of 〈α0, α1〉 which are the upper and
lower triangles of Figure 1 (right); the 1-cells are the orbits of 〈α0, α2〉 which are
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Fig. 1. Left: A G-map with two 2-cells, five 1-cells, and four 0-cells. Right: The cell
complex associated with the G-map

the sides; and the 0-cells are the orbits of 〈α1, α2〉 which are the vertices of the
figure. Notice that involution α2 leaves some darts fixed, i.e. has fixed points.

One problemwithG-maps is their verbosity, especially in higher dimensions [6].
This means that it takes very many darts to describe a cell complex with relatively
few cells. The reason is that a dart corresponds uniquely to a cell tuple which is
a maximal sequence of cells (cn, . . . , c0) with ci a face of ci+1. The number of cell
tuples is in general exponential in the number of cells for n large. The review article
[7] contains some examples of urban models generated with G-maps.

A topological database [5,16] is mathematically given by a set of objects
together with a binary relation on this set. As a relational database, it can be
realised by two tables: one X for the objects, and one R for the relation. It is
well known that a binary relation defines a topology on a set, and every finite
topological space has a relation which defines the topology [2]. The table R
can then be interpreted as the relation “bounded by” from which connectivity
queries can be made.

It follows that in a topological database, the combinatorial structure is explic-
itly modelled. Additional orientation information yields an algebraic structure
which turns R into a (partial) matrix, and under the condition R2 = 0 this is
a relational form of a chain complex with boundary operator R, important for
some topological computations (e.g. Betti numbers). Figure 2 shows a cell com-
plex with oriented cells and its relational boundary operator as a partial matrix.
The orientation of the areas A,B is fixed here to be counter clockwise.

3 Topological Queries in Smart Cities

Once the combinatorial model underlying the data model has been established,
topological queries can be made. A large class of topological queries are path
queries: Is there a path A → B? under some constraints. These constraints can
be of geometric or of semantic nature. For example, the objects passed along a
path must have a certain minimum size (geometric constraint) or the path must
be inside a building (semantic constraint). Combinations of different types of
constraints are also possible.
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Fig. 2. Left: A cell complex with oriented cells. Right: Its relational boundary operator
as a partial matrix

A particular type of path queries makes use of the adjacency graph. On a
2D-manifold, this is the area adjacency graph: the nodes are the polygons, and
the edges are given by polygons adjacent along a common line segment. In 3D, it
is the volume adjacency graph. Here, the nodes are the solids, and two solids are
connected by an edge iff they share a common polygon at their boundaries. The
advantage of the adjacency graph is that it does not use the complete dataset.
However, it is quite common to have available only 2-dimensional data for city
models. Then, in order to compute the volume adjacency graph of a complex
building with many rooms, it is first necessary to fill all the shells surrounded by
polygons with solids. This is a homology computation: the shells are the second
homology. Homology computations are in essence algebraic computations, for
which a chain complex derived from the data becomes useful. The number of
shells is thus the second Betti number. The first homology is given by the loops,
(window-like) openings, “inner courts”, “tunnels” and “passages” of buildings.
The first Betti number is their count. Consequently, the topological database
enhanced with orientation information (i.e. the relational chain complex) has
everything needed for homology queries.

4 Topological Consistency

As we have seen, topological queries exploit the combinatorial (or algebraic)
model underlying the data model. This approach prefers the use of topological
databases or relational chain complexes over data models which do not explicitly
code the combinatorial structure. From CityGML or G-maps, a topological data-
base can be extracted. In order for topological queries to yield correct answers,
the geometric and combinatorial models must be compatible. This form of topo-
logical consistency means that both models must realise the same cell complex
structure of the data. In other words, the data comprising of points, line seg-
ments and polygons must form a valid cell complex geometrically, and this is
the combinatorial model underlying the data model. In Geographic Information
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Systems, polygons may have holes. Such polygons are in general not cells, and
we call these quasi-cells. A quasi-cell complex is obtained by sewing quasi-cells
along their boundaries iteratively into the one-skeleton of the previously obtained
quasi-cell complex. A one-dimensional quasi-cell complex is a cell complex. This
generalises our notion of topological consistency:

Definition 2. A finite set consisting of points, line segments, polygons with
holes, together with the sides of each element is topologically consistent if its
elements are closures of (quasi-)cells of a quasi-cellulation of the union of all
elements in IR3.

A quasi-cellulation of a space is the quasi-cell complex obtained from a partition
of the space into (quasi-)cells. The combinatorial quasi-cell complex associated
with a configuration as in Definition 2 is the quasi-cell complex obtained by
sewing each element along its boundary with each side as it occurs along the
boundary. Such a configuration is topologically consistent if and only if the
quasi-cellulation from Definition 2 coincides with the combinatorial quasi-cell
complex associated with this configuration. Checking topological consistency
amounts to computing pairwise intersections of elements. Such an intersection
must then be a disjoint union of boundary elements plus possibly the interior of
an element. Figure 3 shows an example of a consistent configuration. It consists

•
A

•

• •

Fig. 3. A consistent configuration consisting of a square A, four line segments and four
points

of a square, and the line segments and points at its boundary. These cells form
a natural cellulation of the square, and coincide with the combinatorial cell
complex associated with this configuration.

In [4], we prove the following intersection criterion:

Theorem 1. A configuration as in Definition 2 is topologically consistent if
and only if the intersection of any two distinct maximal elements A and B is
the (possibly empty) disjoint union of boundary elements of A and B.

An immediate consequence of Theorem 1 is that if an urban model is built
up of polygons (with or without holes), topological consistency can be checked
by computing the intersections of pairs of polygons. Line segments and points
need not be intersected in this case. Figures 4–6 represent possible topological
inconsistencies. Notice that in Fig. 5, the boundary vertices of polygon A are
depicted as ◦ and �, whereas those of polygon B are • and �.
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Fig. 4. A topologically inconsistent configuration where A∩B is not a union of objects
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Fig. 5. Left: A topologically inconsistent configuration where A ∩ B is a non-disjoint
union of objects. Right: The combinatorial cell complex associated with the configura-
tion to the left contains a loop-hole.
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Fig. 6. A topologically inconsistent configuration where A ∩ B is a point which is not
a boundary element of both A and B

5 Conclusions

We have discussed data models for smart cities: CityGML, G-maps and topo-
logical databases. The first two indirectly model the combinatorial structure
underlying the data, whereas topological databases explicitly model it, and can
be enhanced with orientation information on the individual building blocks.
This combinatorial model can then be exploited to retrieve answers to topo-
logical queries which are correct if the model is topologically consistent, i.e.
the underlying combinatorial and geometric models are compatible. Topological
consistency can be checked through computing intersections of maximal building
blocks which are polygons with holes or line segments in 3D. It is well known that
this can be done in polynomial time. Applications of topological consistency are
also beyond purely topological queries: for example, our results can lead to more
efficient GIS-assisted urban planning systems, transportation and noise manage-
ment, or improved management and evaluation of Smart Cities and public Open
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Linked Data repositories, exploiting the advantages of topological consistency in
data. Examples of possible applications could include airport terminal buildings,
or commercial application of flying robots, e.g. the logistics and delivery drones
that are used in some warehouses. A validator for CityGML data is work in
progress. Future research will include the extension of the notion of topological
consistency to higher dimensions and to the case where objects may be contained
in higher-dimensional objects, like e.g. points or line segments inside a polygon.
This is relevant for applications in Geographic Information Systems: for example
a town in a region should be consistently represented as a point inside a polygon
in certain levels of detail.

Acknowledgments. The author would like to thank Fionn Murtagh for suggesting
to write about topological consistency in the context of smart cities, and also him and
the anonymous referees for suggestions leading to a better exposition of this paper.
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Abstract. The paper presents a new geometrically motivated method for non-
linear regression based on Manifold learning technique. The regression problem 
is to construct a predictive function which estimates an unknown smooth map-
ping f from q-dimensional inputs to m-dimensional outputs based on a training 
data set consisting of given ‘input-output’ pairs. The unknown mapping f de-
termines q-dimensional manifold M(f) consisting of all the ‘input-output’ vec-
tors which is embedded in (q+m)-dimensional space and covered by a single 
chart; the training data set determines a sample from this manifold. Modern 
Manifold Learning methods allow constructing the certain estimator M* from 
the manifold-valued sample which accurately approximates the manifold. The 
proposed method called Manifold Learning Regression (MLR) finds the predic-
tive function fMLR to ensure an equality M(fMLR) = M*. The MLR simultaneous-
ly estimates the m×q Jacobian matrix of the mapping f. 

Keywords: Nonlinear regression · Dimensionality reduction · Manifold learn-
ing · Tangent bundle manifold learning · Manifold learning regression 

1 Introduction 

The general goal of Statistical Learning is finding a predictive function based on data 
[1-3]. We consider a regression task which is as follows. Let f be an unknown smooth 
mapping from a set X ⊂ Rq to m-dimensional Euclidean space Rm. Given a training 
data set {(xi, ui = f(xi)), i = 1, 2, … , n} consisting of the input-output pairs, to con-
struct the learned function f*(x) which maps the input to the output and can be used to 
predict output f(x) from future input x with small error.  

There are various approaches and methods for a reconstruction of an unknown 
function from the training data, such as least squares technique (linear and nonlinear), 
artificial neural networks, kernel nonparametric regression and kriging, SVM-
regression, Gaussian processes, Radial Basic Functions, Deep Learning Networks, 
Gradient Boosting Regression Trees, Random Forests, etc. [3-10]. Many methods 
(kernel nonparametric regression, kriging, Gaussian processes) use kernels that are 
typically stationary. However, as indicated in many studies [3, 8, 11], these methods 
have serious drawbacks for the functions with strongly varying gradients; thus, it is 
necessary to use non-stationary kernels with adaptive kernel width.  

Statistical Learning, which is a part of Machine Learning, can be considered as a gen-
eral problem to extract previously unknown information from a given data set; thus, it is 
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supposed that information is reflected in the structure of the data set which must be dis-
covered from the data (‘Machine learning is about the shape of data’ [12]). Therefore, 
various geometric methods, which are used for finding of the geometrical and topological 
structure in data and based on topological data analysis, computational geometry and 
computational topology [13-14], have now become the central methodology for Machine 
Learning, including Statistical learning, tasks.  

One of the emerging directions in the Geometric Data Analysis is the Manifold 
Learning (ML) which is based on an assumption that the observed data lie on or 
near a certain unknown low-dimensional data manifold (DM) M embedded in an 
ambient high-dimensional space [15-17]. A motivation for this assumption is that, 
typically, the real-world high-dimensional data lie on or near a certain unknown low-
dimensional manifold embedded in a high-dimensional ‘observation’ space.  

In general, the goal of the ML is to find the unknown DM M from the training ma-
nifold-valued data; thus, ML is a part of dimensionality reduction problems under the 
‘manifold assumption’.  

In this paper, the ML is used to solve the regression task as follows. An unknown 
smooth function f: X ⊂ Rq → Rm determines a smooth q-dimensional manifold  

 M(f) = {Z = F(x) = 
xf x  ∈ Rq+m: x ∈ X ⊂ Rq} (1) 

which is embedded in an ambient space Rp, p = q + m, and covered (parameterized) 
by a single chart F: x ∈ X ⊂ Rq → Z = F(x) ∈ M(f) ⊂ Rp. Its Jacobian  

 







=

(x)J

I
(x)J

f

q
F  (2) 

is a (q+m)×q matrix which is split into q×q unit matrix Iq and m×q Jacobian matrix 
Jf(x) of the mapping f(x). The q-dimensional linear space spanned by columns of the 
Jacobian JF(x) (2) is the tangent space to the DM M(f) at a point F(x) ∈ M(f). 

Arbitrary learned function f*: X → Rm also determines a manifold M(f*) with use 
of the function f*(x) in the formula (1) instead of f(x). The proposed ML-approach to 
the regression task is as follows: to find the learned function f* to ensure small Haus-
dorff distance dH(M(f*), M(f)) between the manifolds M(f*) and M(f). 

This approach is realized as follows. The manifold M(f) is considered as an un-
known data manifold, and  

 Zn = {Zi = F(xi) = 
xu  , i = 1, 2, … , n} ⊂ M(f) (3) 

is a p-dimensional training data set sampled from the DM M(f).  
The Grassmann&Stiefel Eigenmaps (GSE) algorithm [18-20] allows accurate re-

construction of the DM M(f) and its tangent spaces from the sample Zn (3). The GSE-
solution determines a q-dimensional reconstructed manifold (RM) MGSE in Rp which 
also is parameterized by a single chart and ensures the manifold proximity property 
dH(MGSE, M(f)) ≈ 0. For an infinitely increasing sample size n, the GSE has optimal 
convergence rate [21] coinciding with the asymptotically minimax lower bound for 
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the Hausdorff distance between the DM and the arbitrary estimator for the DM [22]. 
The learned function f* is constructed as a solution of the equation M(f*) = MGSE. 

This ML-based approach to the regression can be called the Manifold Learning 
Regression (MLR). The constructed tangent spaces to the RM MGSE allow accurate 
estimating of the Jacobian Jf(x) also.  

Note that an idea to solve the regression tasks using certain dimensionality reduc-
tion technique was earlier proposed in [23], but the idea could have been effectively 
realized only after creating of methods that allow sample-based reconstructing of the 
DM and its differential structure (the tangent spaces). 

This paper is organized as follows. There is no generally accepted definition for 
the ML, and Section 2 contains a brief review of various formulations of the ML-
problems including the Tangent bundle manifold learning (TBML) problem consist-
ing in accurate reconstruction of both the unknown DM and its tangent spaces from 
the sample. The TBML-solution (the GSE algorithm) is briefly described in Section 3. 
Section 4 gives the proposed MLR-solution of the regression task. Results of numeri-
cal experiments are presented in Section 5. 

2 Manifold Learning 

2.1 Conventional Manifold Learning Setting 

The conventional formulation of the ML called the Manifold embedding is as follows: 
Given a data set Zn = {Z1, Z2, … , Zn} sampled from the DM M, construct an em-
bedding mapping h of the DM M to the Feature space (FS) Y = h(M) ⊂ Rq, q < p, 
which produces a low-dimensional parameterization (low-dimensional coordinates) of 
the DM and preserves specific properties of the DM. The manifold embedding is 
often limited to the construction of the mapping h only for the sample points and is to 
find an ‘n-point’ mapping h(n) of the sample Zn to a q-dimensional dataset Yn = 
h(n)(Zn) = {y1, y2, … , yn} (feature sample) which faithfully represents the sample Zn. 
The corresponding problem can be called the Sample embedding; thus the embedding 
h is an extension of the embedding h(n) for the Out-of-Sample points Z ∈ M \ Zn. 

The terms ‘faithfully represents’ and ‘preserves’ are not formalized in general, and 
in different methods they can be different due to choosing an optimized cost function 
reflecting specific data properties to be preserved; as it is pointed out in [24], a gener-
al view on dimensionality reduction can be based on the ‘concept of cost functions’. 

2.2 Manifold Learning as Manifold Reconstruction Problem 

We consider the ML problem in which the term ‘preserves specific properties’ has a 
specific meaning ‘to preserve as much available information contained in the high-
dimensional data as possible’, which is determined by the possibility for reconstruct-
ing the initial vector Z ∈ M from the feature y = h(Z) with small reconstruction error 
[24-25]. This formulation assumes the availability of a reconstruction mapping g from 
the FS Y to the ambient space Rp; the average reconstruction error EP|Z – g(h(Z))| is 
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an adequate evaluation measure (‘universal quality criterion’) in this problem [24-25], 
here P is the probability measure on the DM M according to which the data are sam-
pled. In some applications, in which the ML is the first step for reducing the initial 
‘high-dimensional’ task to the learning procedures in the low-dimensional FS, one has 
to reconstruct a point Z ∈ M from its feature y = h(Z) which does not belong to the 
feature sample (y ∈ Y \ Yn); such features arise as solutions of certain reduced prob-
lem in the FS (such as the examples that are contained in [19-20]). 

A strict problem definition is as follows: Given an input data set Zn randomly sam-
pled from the DM M, to construct a solution θ = (h, g) consisting of an embedding 
mapping h: M → Yθ = h(M) ⊂ Rq and a reconstruction mapping g: Yθ → Rp which 
ensure the approximate equality rθ(Z) ≈ Z for all Z ∈ M; here the reconstructed value 
rθ(Z) = g(h(Z)) of a vector Z is a result of successively applying the embedding and 
reconstruction mappings to the vector Z. The reconstruction error δθ(Z) = |Z - rθ(Z)| is 
a measure of the quality of the solution θ at the point Z ∈ M. 

The solution θ determines a q-dimensional manifold  

 Mθ = {Z = g(y) ∈ Rp: y ∈ Yθ ⊂ Rq} (4) 

in Rp called the Reconstructed manifold (RM) which is parameterized by a single 
chart g defined on the FS Yθ. Small reconstruction error means the manifold proximi-
ty property Mθ ≈ M (determined by Hausdorff distance dH(Mθ, M)) meaning that the 
RM Mθ = rθ(M) accurately reconstructs the DM M from the sample. Therefore, the 
formulated problem can be called the Manifold reconstruction problem. 

There are some (though a limited number of) methods for reconstructing the DM 
from the sample; such mappings are constructed in a natural way in the PCA (princip-
al components analysis) and the nonlinear auto-encoder neural networks. Certain 
reconstruction procedures are proposed in [26] for the Locally Linear Embedding 
(LLE) [27]; Local Tangent Space Alignment (LTSA) technique [28] also provides 
certain reconstruction of original high-dimensional vectors from their features.  

2.3 Manifold Learning as Tangent Bundle Manifold Learning 

The reconstruction error δθ(Z) can be directly computed at sample points Z ∈ Zn; for 
the Out-of-Sample point Z ∈ M \ Zn, it describes the generalization ability of the solu-
tion θ at the specific point Z.  

Local lower and upper bounds for the maximum reconstruction error in a small 
neighborhood Uε(Z) = {Z′ ∈ M: |Z′ – Z| ≤ ε} of an arbitrary point Z ∈ M are obtained 
in [19]; these bounds are defined in terms of certain distance d2(L(Z), Lθ(rθ(Z))) be-
tween the tangent spaces L(Z) and Lθ(rθ(Z)) to the DM M and the RM Mθ at the 
points Z and rθ(Z), respectively; here Lθ(rθ(Z)) is the linear space Span(Jg(h(Z))) 
spanned by columns of the Jacobian matrix Jg(y) of the mapping g at a point y = h(Z). 

Considering L(Z) and Lθ(rθ(Z)) as elements of the Grassmann manifold 
Grass(p, q) consisting of all q-dimensional linear subspaces in Rp, the distance d2 is 
the projection 2-norm metric [29] on the Grassmann manifold.  
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It follows from the bounds that the greater the distances between these tangent 
spaces, the lower the local generalization ability of the solution. Thus, it is natural to 
require that the solution θ ensures not only the manifold proximity but also the tan-
gent proximity L(Z) ≈ Lθ(rθ(Z)) for all Z ∈ M in selected metric on the Grassmann 
manifold. This requirement means a preserving of the differential structure of the 
DM and arises also in various applications.  

The set TB(M) = {(Z, L(Z)): Z ∈ M} composed of points Z of the manifold M 
equipped by tangent spaces L(Z) at these points is known in manifold theory as the 
tangent bundle of the manifold M. Thus, the amplification of the ML consisting in 
accurate reconstruction of both the DM M and its tangent spaces from the sample can 
be referred to as the Tangent bundle manifold learning (TBML).  

The below described GSE algorithm [18-20] solves the TBML and gives also new 
solutions for the Sample embedding, Manifold embedding and Manifold reconstruc-
tion problems.  

3 Grassmann & Stiefel Eigenmaps 

3.1 Structure of the GSE 

The GSE consists of three successively performed steps: tangent manifold learning, 
manifold embedding, and tangent bundle reconstruction.  

In the first step, a sample-based family H = {H(Z)} consisting of p×q matrices 
H(Z) smoothly depending on Z is constructed to meet the relations LH(Z) ≈ L(Z) for 
all Z ∈ M; here LH(Z) = Span(H(Z)) are q-dimensional linear spaces in Rp spanned by 
columns of the matrices H(Z). The mappings h and g will be built in the next steps in 
such a way as that the linear space LH(Z) will be the tangent space Lθ(rθ(Z)) to the 
further constructed RM Mθ at the point rθ(Z), which yields the tangent proximity. 

In the next step, given the family H already constructed, the embedding mapping 
h(Z) is constructed to meet the relations Z′ – Z ≈ H(Z) × (h(Z′) – h(Z)) for near points 
Z, Z′ ∈ M; the FS Yθ = h(M) is also determined in this step.  

In the final step, given the family H and the mapping h already constructed, the 
mapping g(y), y ∈ Yθ, is constructed to meet the relations Jg(h(Z)) ≈ H(Z) and, then, 
g(h(Z)) ≈ Z (the tangent and manifold proximities, respectively). 

3.2 GSE: Preliminaries 

The tangent space L(Z) at a point Z ∈ M is estimated by the q-dimensional linear 
space LPCA(Z) spanned by the PCA principal vectors corresponding to the q largest 
eigenvalues which are a result of the PCA applied to sample points from an ε-ball 
Uε(Z), here ε is a small parameter of the GSE. If the DM M is ‘well sampled’ and ε is 
small enough (in future, ε = εn = O(n-1/(q+2))) then LPCA(Z) ≈ L(Z) [30]. 

Introduce the data-based kernel K(Z, Z′) = KE(Z, Z′) × KG(Z, Z′) on the DM M, 
where KE(Z, Z′) = I{Z′ ∈ Uε(Z)} × exp{- t × |(Z - Z′)|2} is the ‘heat’ Euclidean kernel 
[31] and KG(Z, Z′) = KBC(LPCA(Z), LPCA(Z′)) is the ‘Grassmann’ kernel, here t > 0 is a 
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GSE parameter and KBC is the Binet-Cauchy kernel on the Grassmann manifold [29]. 
This aggregate kernel reflects not only ‘geometrical’ Euclidean nearness between the 
points Z and Z′ but also ‘tangent’ nearness between the linear spaces LPCA(Z) and 
LPCA(Z′), which yields nearness between the tangent spaces L(Z) and L(Z′). 

3.3 GSE: Tangent Manifold Learning Step 

The matrices H(Z) will be constructed to meet the relations LH(Z) = LPCA(Z), which 
yields the proximity LH(Z) ≈ L(Z). To provide smooth dependence of LH(Z) on Z (to 
align the linear spaces LPCA(Z)), the matrices H(Z) are chosen as a solution of two 
optimizing problems for the cost functions defined below: the tangent space align-
ment problem and the kernel interpolation problem. 

In the tangent space alignment part, a matrix set Hn consisting of p×q matrices Hi 
which meet the constraints Span(Hi) = LPCA(Zi), i = 1, 2, … , n, is constructed to mi-

nimize the quadratic form ∑ K Z , Z Z Z F,  under the normalizing condi-

tion K ∑ K Z HT H I required to avoid a degenerate solution; here 

K(Z) =  ∑ K Z, Z , K = ∑ K Z  and · F is the Frobenius matrix norm. The 
exact solution of this minimizing problem is obtained in the explicit form as a solu-
tion of specified generalized eigenvector problems. The optimized cost function is an 
extension of the ‘Laplacian’ cost function in the Laplacian eigenmaps [31], and the 
proposed solution differs from the alignment problem solution in the LTSA [28]. 

In the kernel interpolation part, given the matrix set Hn already constructed, the 
matrix H(Z) for an arbitrary point Z ∈ M is chosen to minimize the quadratic form ∑ K Z, Z H Z Z F under the conditions LH(Z) = LPCA(Z). A solution to 

this problem is given by H(Z) = π(Z) × K Z ∑ K Z, Z H , here π(Z) is the pro-

jector onto the linear space LPCA(Z).  
This Step gives a new nonparametric solution for a problem of estimating of the 

tangent spaces L(Z) in the form of a smooth function of the point Z ∈ M [32-33]. 

3.4 Manifold Embedding Step 

This step consists of two parts which give the new solutions for the Sample embed-
ding problem and the Manifold embedding problem, respectively. 

First, given the matrices H(Z), a preliminary vector set hn = {h1, h2, … , hn} is con-
structed as a standard least squares solution which minimizes the residual ∑ K Z , Z Z Z H Z h h,  under the natural normalizing con-
dition h1 + h2 + … + hn = 0. This set hn is a new solution in the Sample embedding. 

Then, given the set hn, the value h(Z) for an arbitrary point Z ∈ M is given by 

 h(Z) = hKNR(Z) + V Z K Z ∑ K Z, Z Z Z  , (5) 
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where V(Z) is the explicit written q×p matrix and hKNR(Z) = K Z ∑ K Z, Z h   is 

the standard Kernel nonparametric regression estimator for h(Z) based on the prelimi-
nary values hj ∈ hn of the vectors h(Zj) at the sample points Zj, j = 1, 2, … , n. The 

value (5) minimizes the residual ∑ K Z, Z Z Z H Z h h  over 
h and gives the new solution for the Manifold embedding problem. 

3.5 Tangent Bundle Reconstruction Step 

This step which gives a new solution for the Manifold Reconstruction problem and 
consists of several sequentially executed stages. 

First, the data-based kernel k(y, y′) on the FS Yθ = h(M) is constructed to satisfy 
the approximate equalities k(h(Z), h(Z′)) ≈ K(Z, Z′) for near points Z, Z′ ∈ M. The 
linear space L*(y) ∈ Grass(p, q) depending on y ∈ Yθ which meets the condition 
L*(h(Z)) ≈ LPCA(Z) is also constructed in this stage. 

Then, a p×q matrix G(y) depending on y ∈ Yθ is constructed to meet the conditions 
G(h(Z)) ≈ H(Z). To do this, the p×q matrix G(y) for an arbitrary point y ∈ Yθ, is cho-

sen to minimize over G the quadratic form ∑ k y, y G H X F under the 

constraint Span(G(y)) = L*(y). A solution to this problem is given by the formula 

 G(y) = π*(y)× ∑ k y, y H X , (6) 

here, π*(y) is the projector onto the linear space L*(y) and k(y) = ∑ k y, y .  
Finally, the mapping g is built to meet the conditions g(h(Z)) ≈ Z and Jg(y) = G(y) 

which provide the manifold and tangent proximities, respectively. To do this, the 
vector g(y) for an arbitrary point y ∈ Yθ is chosen to minimize over g the quadratic 

form ∑ k y, y Z g G y y . The solution to this problem is 

 g(y) = ∑ k y, y Z G y y  ∑ k y, y y  , (7) 

the first term is the standard kernel nonparametric regression estimator for g(y) based 
on the values Zj of the vector g(y) at the sample feature points yj, j = 1, 2, … , n. 

4 Solution of the Regression Task 

Consider the TBML problem for the unknown manifold M = M(f) (1) considered as 
the data manifold in which the data set Zn ⊂ M (3) is the sample from the manifold. 
Applying the GSE to this problem, we get the embedding mapping h(Z) (5) from the 
DM M to the FS Y = h(M), the reconstruction mapping g(y) (7) from the FS Y to the 
RP and its Jacobian G(y) = Jg(y) (6).  
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A splitting of the p-dimensional vector Z = 
ZZ  on the q-dimensional vector Zx 

and the m-dimensional vector Zu implies the corresponding partitions g(y) = 
g yg y  

and G(y) = 
G yG y  of the vector g(y) ∈ Rp and p×q matrix G(y); the q×q and m×q 

matrices Gx(y) and Gu(y) are the Jacobian matrices of the mappings gx(y) and gu(y).  

From the representation Z = 
xf x  follows that the mapping h*(Z) = Zx = x de-

termines a parameterization of the DM. Thus, we have two parameterizations of the 
DM: the GSE-parameterization y = h(Z) (5) and the parameterization x = h*(Z) which 
are linked together by an unknown one to one ‘reparameterization’ mapping y = ϕ(x). 

After constructing the mapping ϕ(x) from the sample, the learned function 

 fMLR(x) = gu(ϕ(x))  (8) 

is chosen as a MLR-solution of the regression task ensuring proximity fMLR(x) ≈ f(x); 
the matrix Jf,MLR(x) = Gu(ϕ(x)) × G  x  is an estimator of the Jacobian Jf(x). 

The simplest way to find ϕ(x) is the choice the mapping y = ϕ(x) as a solution of 
the equation gx(y) = x; the Jacobian matrix Jϕ(x) of this solution is (Gx(ϕ(x)))-1. By 
construction, the values ϕ(xj) = yj and Jϕ(xj) = G y  are known at the input points 
{xj, j = 1, 2, … , n}; the value ϕ(x) for an arbitrary point x ∈ X is chosen to minimize 

over y the quadratic form ∑ KE x, x y y G y x x , here 
KE(x, x′) is the ‘heat’ Euclidean kernel in Rq. The solution of this problem is 

ϕ(x) = KE X ∑ KE x, x y G y x x  ,   KE(x) =  ∑ KE x, x . 

Denote y  = yj + Δj, where Δj is a correction term, then g(y ) ≈ g(yj) + G(yj) × Δj. 
This term is chosen to minimize the principal term |g(yj) + G(yj) × Δj – Zj|2 in the 
squared error |g(y ) – Zj|2, and Δj = G-(yj) × (Zj – g(yj)) is the standard least squares 
solution of this minimization problem, here G-(yj) = (GT(yj) × G(yj))

-1 × GT(yj).  
The another version of the reparameterization’ mapping  

 ϕ(x) = KE X ∑ KE x, x y G y Z g y G y x x  

is determined by the choice of the points y  as the values of the function ϕ(x) at the 
input points xj, j = 1, 2, … , n.  

5 Results of Numerical Experiments 

The function f(x) = sin(30×(x – 0.9)4) × cos(2(x – 0.9)) + (x – 0.9)/2, x ∈ [0, 1], (Fig. 
1(a)), which was used in [34] to demonstrate a drawback of the kernel nonparametric 
regression (kriging) estimator with stationary kernel (sKNR) fsKNR, was selected to 
compare the estimator fsKNR and the proposed MLR estimator fMLR (8). The kernel 
bandwidths were optimized for both methods. 
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Abstract. For high dimensional clustering and proximity finding, also
referred to as high dimension and low sample size data, we use random
projection with the following principle. With the greater probability of
close-to-orthogonal projections, compared to orthogonal projections, we
can use rank order sensitivity of projected values. Our Baire metric,
divisive hierarchical clustering, is of linear computation time.

Keywords: Big data · Ultrametric topology · Hierarchical clustering ·
Binary rooted tree · Computational complexity

1 Introduction

In [18], we provide background on (1) taking high dimensional data into a consen-
sus random projection, and then (2) endowing the projected values with the Baire
metric, which is simultaneously an ultrametric. The resulting regular 10-way tree
is a divisive hierarchical clustering. Any hierarchical clustering can be considered
as an ultrametric topology on the objects that are clustered.

In [18], we describe the context for the use of the following data. 34,352 pro-
posal details related to awards made by a research funding agency were indexed
in Apache Solr, and MLT (“more like this”) scores were generated by Solr for the
top 100 matching proposals. A selection of 10,317 of these proposals constituted
the set that was studied.

Using a regular 10-way tree, Figure 1 shows the hierarchy produced, with
nodes colour-coded (a rainbow 10-colour lookup table was used), and with the
root (a single colour, were it shown), comprising all clusters, to the bottom. The
terminals of the 8-level tree are at the top.

The first Baire layer of clusters, displayed as the bottom level in Figure 1,
was found to have 10 clusters (8 of which are very evident, visually.) The next
Baire layer has 87 clusters (the maximum possible for this 10-way tree is 100),
and the third Baire layer has 671 clusters (maximum possible: 1000).

In this article we look further at the use of random projection which empowers
this linear hierarchical clustering in very high dimensional spaces.

c© Springer International Publishing Switzerland 2015
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DOI: 10.1007/978-3-319-17091-6 37
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Fig. 1. The mean projection vector of 99 random projection vectors is used. Abscissa:
the 10118 (non-empty) documents are sorted (by random projection value). Ordinate:
each of 8 digits comprising random projection values. A rainbow colour coding is used
for display.

1.1 Random Projection in Order to Cluster High Dimensional Data

In [3] we show with a range of applications how we can (1) construct a Baire
hierarchy from our data, and (2) use this Baire hierarchy for data clustering. In
astronomy using Sloan Digital Sky Survey data, the aim was nearest neighbour
regression such that photometric redshift could be mapped into spectrometric
redshift. In chemoinformatics using chemical compound data, we first addressed
the problem of high dimensional data by mapping onto a one-dimensional axis.
When this axis was a consensus of rankings, we found this approach, experimen-
tally, to be stable and robust.

We continue our study of this algorithm pipeline here. Our focus is on the
random projection approach, which we use. In this article, having first reviewed
the theory of random projection, we note that the conventional random projec-
tion approach is not what we use. In brief, the conventional random projection
approach is used to find a subspace of dimension greater than 1. In the con-
ventional approach, the aim is that proximity relations be respected in that low
dimensional fit to the given cloud of points. In our random projection approach,
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we seek a consensus 1-dimensional mapping of the data, that represents relative
proximity. We use the mean projection vector as this consensus.

Since we then induce a hierarchy on our 1-dimensional data, we are relying
on the known fact that a hierarchy can be perfectly scaled in one dimension. See
[11] for the demonstration of this. Such a 1-dimensional scaling of a hierarchy
is not unique. This 1-dimensional scaling of our given cloud of ponts is what
will give us our Baire hierarchy. The mean of 1-dimensional random projections
is what we use, and we then endow that with the Baire hierarchy. We do not
require uniqueness of the mean 1-dimensional random projection.

Relative to what has been termed as conventional random projection (e.g.,
in [13]), our use of random projection is therefore non-conventional.

2 Dimensionality Reduction by Random Projection

It is a well known fact that traditional clustering methods do not scale well in
very high dimensional spaces. A standard and widely used approach when dealing
with high dimensionality is to apply a dimensionality reduction technique. This
consists of finding a mapping F relating the input data from the space R

d to a
lower-dimension feature space R

k. We can denote this as follows:

F (x) : Rd → R
k (1)

A statistically optimal way of reducing dimensionality is to project the data
onto a lower dimensional orthogonal subspace. Principal Component Analysis
(PCA) is a very widely used way to to do this. It uses a linear transformation to
form a simplified dataset retaining the characteristics of the original data. PCA
does this by means of choosing the attributes that best preserve the variance of
the data. This is a good solution when the data allows these calculations, but
PCA as well as other dimensionality reduction techniques remain computation-
ally expensive. Eigenreduction is of cubic computational complexity, where, due
to the dual spaces, this is power 3 in the minimum of the size of the observation
set or of the attribute set.

Conventional random projection [2,5–8,13,14,23] is the finding of a low
dimensional embedding of a point set, such that the distortion of any pair of
points is bounded by a function of the lower dimensionality.

The theoretical support for random projection can be found in the Johnson-
Lindenstrauss Lemma [9], which is as follows. It states that a set of points in
a high dimensional Euclidean space can be projected into a low dimensional
Euclidean space such that the distance between any two points changes by a
fraction of 1 + ε, where ε ∈ (0, 1).

Lemma 1. For any 0 < ε < 1 and any integer n, let k be a positive integer such
that

k ≥ 4(ε2/2 − ε3/3)−1 ln n. (2)

Then for any set V of any points in R
d, there is a map f : Rd → R

k such that
for all u, v ∈ V ,
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(1 − ε) ‖ u − v ‖2 ≤ ‖ f(u) − f(v) ‖2 ≤ (1 + ε) ‖ u − v ‖2.

Furthermore, this map can be found in randomized polynomial time.

The original proof of this lemma was further simplified by Dasgupta and
Gupta [4], also see Achlioptas [1] and Vempala [23].

We have mentioned that the optimal way to reduce dimensionality is to have
orthogonal vectors in R. However, to map the given vectors into an orthogonal
basis is computationally expensive. Vectors having random directions might be
sufficiently close to orthogonal. Additionally this helps solving the problem of
data sparsity in high dimensional spaces, as discussed in [19].

Thus, in random projection the original d-dimensional data is projected to a
k-dimensional subspace (k � d), using a random k×d matrix R. Mathematically
this can be described as follows:

XRP
k×N = Rk×d Xd×N (3)

where Xd×N is the original set with d-dimensionality and N observations.
Computationally speaking random projection is simple. Forming the random

matrix R and projecting the d × N data matrix X into the k dimensions is of
order O(dkN). If X is sparse with c nonzero entries per column, the complexity
is of order O(ckN). (This is so, if we use an index of the nonzero entries in X.)

3 Random Projection

Random mapping of a high dimensional cloud of points into a lower dimensional
subspace, with very little distortion of (dis)similarity, is described in [12]. Kaski in
thisworkfinds thata100-dimensional randommappingof 6000-dimensionaldata is
“almost as good”. The background to this is as follows. Consider points g, h ∈ R

ν ,
i.e. ν-dimensional, that will be mapped, respectively, onto x, y ∈ R

m, by means
of a random linear transformation with the following characteristics. We will have
m � ν. Random matrix, R, is of dimensions m × ν. Each column, rj ∈ R

m

will be required to be of unit norm: ‖rj‖2 = 1 ∀j. We have: x = Rg, and we
have x =

∑ν
j=1 gjrj where gj is the jth coordinate of g ∈ R

ν , in this mapping
of Rν → R

m. While by construction, the space Rν has an orthonormal coordinate
system, there is no guarantee that all x, y ∈ R

m that are mapped in this way are in
an orthonormal coordinate system. But (Kaski cites Hecht-Nielsen), the number of
almostorthogonaldirections inacoordinate system, that isdeterminedat randomin
ahighdimensional space, is verymuchgreater than thenumber of orthogonal direc-
tions.Consider thecaseofrj ∈ R

ν beingorthonormal forj.ThenX = RG for target
vectors in matrix X, and source vectors in matrix G. Therefore R′X = R′RG = G
(where R′ is R transpose), and hence X ′X = G′R′RG = G′G. Since invariance
of Euclidean distance holds in the source and in the target spaces, this is Parseval’s
relation. (For theParseval invariance relation, see e.g. [20], p. 45.) Since the rj ∈ R

ν
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will not form an orthonormal system, we look instead, [12], at the effect of the lin-
ear transformation, given by R, on similarities (between source space vectors and
between target space vectors).

For g, h ∈ R
ν mapped onto x, y ∈ R

m, consider the scalar product: x′y =
(Rg)′(Rh) = g′R′Rh. Looking at the closeness to orthonormal column vectors in
R makes us express: R′R = I +ε where εij = r′

irj , i 	= j, and εii = 0 because ri ∈
R

ν are of unit norm. The diagonal of R′R is the identity: diag(R′R) = {r2i , 1 ≤
i ≤ ν} = I. Now, take components of each rj , call them rjl, 1 ≤ l ≤ m. Our
initial choice of random R used (in its vector components): rjl ∼ iid N (0) (i.e.
zero-mean Gaussian). Then normalization implies (vectors): rj ∼ iid N (0, 1).
It follows that the orientation is uniformly distributed. We have E[εij ] = 0,∀i, j
where E is the expected value. Recalling that εij = r′

irj and ri, rj are of unit
norm, therefore εij is the correlation between the two vectors.

If the dimensionality m is sufficiently large, then εij ∼ N (0, σ2
ε ), with σ2

ε ≈
1/m. This comes from a result (stated in [12] to be due to Fisher), that 1/2 ln(1+
εij)/(1 − εij) ∼ N with variance = 1/(m − 3) if m is the number of samples in
the estimate. If the foregoing is linearized around 0, then σ2

ε ≈ 1/m for large m.
Further discussion is provided by Kaski [12].

In summary, the random matrix values are Gaussian distributed, and the
column vectors are normalized. This makes the column vectors to be Gaussian
vectors with zero mean and unit standard deviation. Distortion of the vari-
ances/covariances, relative to orthogonality of these random projections, has
approximate variance 2/m, where m is the random projection subspace (or the
number of random projections). With a sufficient number of random projections,
i.e. a sufficiently high dimensionality of the target subspace, the distortion vari-
ance becomes small. In that case, we have close to orthogonal unit norm vectors
being mapped into orthogonal unit norm vectors in a much reduced dimension-
ality subspace.

In [13], the use of column components rj in R that are Gaussian is termed
the case of conventional random projections. This includes rj in R being iid
with 0 mean and constant variance, or just iid Gaussian with 0 mean. The latter
is pointed to as the only necessary condition for preserving pairwise distances.
There is further discussion in [13] of 0 mean, unit variance, and fourth moment
equal to 3. It is however acknowledged that “a uniform distribution is easier to
generate than normals, but the analysis is more difficult”. In taking further the
work of [1], sparse random projections are used: the elements of R are chosen from
{−1, 0, 1} with different (symmetric in sign) probabilities. In further development
of this, very sparse, sign random projection is studied by [13].

While we also use a large number of random projections, and thereby we also
are mapping into a random projection subspace, nonetheless our methodology
(in [3,17], and used as the entry point in the work described in this article) is
different. We will now describe how and why our methodology is different.
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4 Implementation of Algorithm

In our implementation, (i) we take one random projection axis at a time. (ii) By
means of maximum value of the projection vector (10317 projected values on a
random axis), we rescale so that projection values are in the closed/open interval,
[0, 1). This we do to avoid having a single projection value equal to 1. (iii) We
cumulatively add these rescaled projection vectors. (iv) We take the mean vector
of the, individually rescaled, projection vectors. That mean vector then is what
we use to endow it with the Baire metric. Now consider our processing pipeline,
as just described, in the following terms.

1. Take a cloud of 10317 points in a 34352-dimensional space. (This sparse
matrix has density 0.285%; the maximum value is 3.218811, and the mini-
mum value is 0.)

2. Our linear transformation, R, maps these 10317 points into a 99-dimensional
space. R consists of uniformly distributed random values (and the column
vectors of R are not normalized).

3. The projections are rescaled to be between 0 and 1 on these new axes. I.e.
projections are in the (closed/open) interval [0, 1).

4. By the central limit theorem, and by the concentration (data piling) effect of
high dimensions [10,21], we have as dimension m → ∞: pairwise distances
become equidistant; orientation tends to be uniformly distributed. We find
also: the norms of the target space axes are Gaussian distributed; and as
typifies sparsified data, the norms of the 10317 points in the 99-dimensional
target space are distributed as a negative exponential or a power law.

5. We find: (i) correlation between any pair of our random projections is greater
than 0.98894, and most are greater than 0.99; (ii) correlation between the first
principal component loadings and our mean random projection is 0.9999996;
and the correlation between the first principal component loadings and each
of our input random projections is greater than 0.99; (iii) correlations between
the second and subsequent principal component loadings are close to 0.

In summary, we have the following. We do not impose unit norm on the
column vectors of our random linear mapping, R. The norms of the initial coor-
dinate system are distributed as negative exponential, and the linear mapping
into the subspace gives norms of the subspace coordinate system that are Gaus-
sian distributed. We find very high correlation (0.99 and above, with just a few
instances of 0.9889 and above) between all of the following: pairs of projected
(through linear mapping with uniformly distributed values) vectors; projections
on the first, and only the first, principal component of the subspace; the mean
set of projections among sets of projections on all subspace axes. For computa-
tional convenience, we use the latter, the mean subspace set of projections for
endowing it with the Baire metric.

With reference to other important work in [12,21,22] which uses conventional
random projection, the following may be noted. Our objective is less to determine
or model cluster properties as they are in very high dimensions, than it is to
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extract useful analytics by “re-representing” the data. That is to say, we are
having our data coded (or encoded) in a different way. (In [15], discussion is
along the lines of alternatively encoded data being subject to the same general
analysis method. This is as compared to the viewpoint of having a new analysis
method developed for each variant of the data.)

Traditional approaches to clustering, [16], use pairwise distances, between
adjacent clusters of points; or clusters are formed by assigning to cluster centres.
A direct reading of a partition is the approach pursued here. Furthermore, we
determine these partitions level by level (of digit precision). The hierarchy, or
tree, results from our set of partitions. This is different from the traditional
(bottom-up, usually agglomerative) process where the sequence of partitions of
the data result from the hierarchy. See [3] for further discussion.

To summarize: in the traditional approach, the hierarchy is built, and then
the partition of interest is determined from it. In our new approach, a set of
partitions is built, and then the hierarchy is determined from them.

5 Conclusions

We determine a hierarchy from a set of – random projection based – partitions.
As we have noted above, the traditional hierarchy forming process first deter-
mines the hierarchical data structure, and then derives the partitions from it.
One justification for our work is interest in big data analytics, and therefore
having a top-down, rather than bottom-up hierarchy formation process. Such
hierarchy construction processes can be also termed, respectively, divisive and
agglomerative.

In this article, we have described how our work has many innovative features.
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Abstract. Based on the notion of mutual information between the com-
ponents of a discrete random vector, we construct, for data reduction rea-
sons, an optimal quantization of the support of its probability measure.
More precisely, we propose a simultaneous discretization of the whole
set of the components of the discrete random vector which takes into
account, as much as possible, the stochastic dependence between them.
Computationals aspects and example are presented.

Keywords: Divergence · Mutual information · Correspondence
analysis · Optimal quantization

1 Introduction and Motivation

In statisticsanddataanalysis, it isusual to take intoaccount simultaneously, agiven
numberofdiscrete randomvariablesordiscrete randomvectors.This isparticularly
thecase insurveys,censuses,datamining,etc.butalsowhensomemultidimensional
discrete probabilistic models seem well suited to the phenomenon under study. In
this context, one often wants to use data to adjust some statistical forecasting mod-
els or simply to account for the stochastic dependence between random variables
or random vectors. For example, in the non-parametric framework, descriptive and
exploratory models of data analysis as, among others, correspondence analysis, are
dedicated to determining the stochastic dependence between random variables or
random vectors, by means of their associations between their respective categories.
Similarly, the parametric framework of usual discrete multidimensional distribu-
tions, leads to the estimation of the parameters of the joint distribution in order to
estimate the stochastic dependence between random variables or vectors. However
for various reasons (easy use, clearness of results and graphical displays, confiden-
tiality of the data, etc.), one has in practice to create for each random variable or
components of a random vector, new categories by grouping old ones. For instance,
educational level such as “Primary”, “Secondary”, “College” and “University” is
more often used than the exact number of years of studies.

For this purpose, one creates usually classes for each variable, regardless of
the stochastic dependence that may exist between them. This approach however,
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although very widespread, deprives the statistician of information that could
be crucial in a predictive model since, in doing so, it degrades arbitrarily the
information on the stochastic relationship between variables which could conse-
quently, affect the quality of the forecast. To alleviate this problem, we propose
to adapt to the discrete case, the approach introduced in the continuous case, by
Colin, Dubeau, Khreibani and de Tibeiro [7], which is based on the existence of
an optimal partition of the support of the probability measure of a random
vector, corresponding to a minimal loss of mutual information between its com-
ponents resulting from data reduction.

2 Theoretical Framework

2.1 Generalities

We briefly present hereafter the theoretical frame relative to determining a finite
optimal partition of the support SP of the probability measure of a discrete
random vector. Let (Ω,F , μ) be any probability space, where Ω is a given set,
where F is a σ-field of subsets of Ω and where the probability measure μ is
supposed to be absolutely continuous with respect to a reference measure. Let
X = (X1,X2, ...,Xk) be a random vector defined on (Ω,F , μ) with values in a
countable set X , usually identical to N

k, N

∗k

= (N ∪ {0})k or Z

k. If P is the
probability measure image of μ under the mapping X, one has:

P(x1, x2, ..., xk) = P(X1 = x1,X2 = x2, ...,Xk = xk)
= μ {ω ∈ Ω : X1(ω) = x1,X2(ω) = x2, ...,Xk(ω) = xk}

where x = (x1, x2, ..., xk) ∈ X . Finally, PX1 , PX2 , ..., PXk
denote respectively the

marginal probability measures of the components X1,X2, ...,Xk of the random
vector X.

2.2 Mutual Information

As defined in the continuous case, the mutual information Iϕ (X1,X2, ...,Xk)
between the random variables X1,X2, ...,Xk is nothing else than the
ϕ-divergence Iϕ

(
P,⊗i=k

i=1PXi

)
between the probabiliy measures P and ⊗i=k

i=1PXi

given by:

Iϕ (X1,X2, ...,Xk) = Iϕ

(
P,⊗i=k

i=1PXi

)
,

=
∑

x∈X
[
ϕ

(
P(x)

⊗i=k
i=1PXi

(x)

)
⊗i=k

i=1PXi
(x)

]
,

= E

⊗i=k
i=1PXi

[
ϕ

(
P(X)

⊗i=k
i=1PXi

(X)

)]
.

where ϕ is a convex function from R+\{0} to R (see Csiszár[10], Aczél and
Daróczy[1], Rényi[20] for details). It is easy to check, using some elementary
calculations, that all the properties of divergence and mutual information, as
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set out in the continuous framework, are also valid in a discrete setting (as
positivity if ϕ(1) ≥ 0, convexity with respect to the joint probability measure,
independence of components, etc.) and, in particular, the one relating to the
loss of information arising from a transformation of the random vector X. This
property, known as “data-processing theorem”, states that it is not possible to
strictly increase the mutual information between random variables or random
vectors using a transformation on these last (see [1], [9], [10], [23]).

3 Optimal Partition

3.1 Mutual Information Explained by a Partition

Without loss of generality, and for sake of simplicity, it is assumed that, for i =
1, 2, ..., k, each component Xi of the random vector X, is a random variable with
value in N

∗. Moreover, for every i = 1, 2, ..., k, we denote by ηili ∈ N

∗ any integer
value of the random variable Xi, where li ∈ N

∗. Given k integers n1, n2, ..., nk, we
consider for every i = 1, 2, ..., k a partition Pi of the support SPXi

of the random
variable Xi, obtained by using a set {γiji

} of ni intervals of the form:

γiji
= [xi(ji−1), xiji

[ where ji = 1, 2, ..., ni − 1 and γini
= [xi(ni−1),∞[

where the bounds of the intervals are real numbers such that: 0 = xi0 < xi1 <
xi2 < ... < xi(ni−1) < ∞.

Remark: the choice for real bounds for the half-open intervals γiji
follows from

the fact that it is not a priori excluded that one of the elements of the optimum
partition be a single point x of N

∗k

.
The “product partition” P of the support SP in n = n1 × n2 × ... × nk cells,

is then given by:
P = ⊗i=k

i=1Pi = { ×i=k
i=1 γiji

}
where ji = 1, 2, ..., ni, for i = 1, 2, ..., k. If σ(P) is the σ-algebra generated by P
(the algebra generated by P in the present case), the restriction of P to σ(P) is
given by:

P

(
×i=k

i=1γiji

)
for every j1, j2, ..., jk

and for which it follows easily that the marginal probability measures are given
for i = 1, 2, ..., k, by: PXi

(γiji
) where ji = 1, 2, ..., ni.

The mutual information, denoted by Iϕ(P), explained by the partition P of
the support SP is then defined by:

Iϕ(P) =
∑

j1,j2,...,jk

ϕ

(
P

(
×i=k

i=1γiji

)
∏i=k

i=1 PXi
(γiji

)

)∏i=k
i=1 PXi

(γiji
)

and the loss of the mutual information arising from data reduction due to the
partition P, is given by:

Iϕ (X1,X2, ...,Xk) − Iϕ(P)

which is positive due to the “data-processing theorem”.
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3.2 Existence of an Optimal Partition

For any given sequence n1, n2, ..., nk of integers and for every i = 1, 2, ..., k, let
Pi,ni

be the class of partitions of SPXi
in ni disjoint intervals γiji

, as introduced
in the previous subsection, and let Pn be the class of partitions of SP of the form:

Pn = ⊗i=k
i=1Pi,ni

where n is the multi-index (n1, n2, ..., nk) of size |n| = k.
We define an optimal partition P as a member of Pn for which the loss of

mutual information Iϕ (X1,X2, ...,Xk)−Iϕ(P) is minimum. Therefore, we have
to solve the following optimization problem:

min
P∈Pn

(Iϕ (X1,X2, ...,Xk) − Iϕ(P))

or equivalently, the dual optimization problem:

max
P∈Pn

Iϕ(P) = max
P∈Pn

∑
j1,j2,...,jk

ϕ

(
P

(
×i=k

i=1γiji

)
∏i=k

i=1 PXi
(γiji

)

)∏i=k
i=1 PXi

(γiji
)

which is, in turn, equivalent to the problem of finding the real bounds xiji
of the

intervals γiji
for every i = 1, 2, ..., k and for every ji = 1, 2, ..., ni. If the support

SP is finite, we have a finite number of members of Pn so an optimal partition
automatically exists, while if the support SP is denumerably infinite, the set Pn

is denumerable. In that case, the countable set of the real numbers Iϕ(Pn) where
Pn ∈ Pn for all n ∈ N

∗, may be ordered according to a non-decreasing sequence,
bounded above by Iϕ (X1,X2, ...,Xk). So in this case, the existence of an upper
bound for the sequence (Pn)n≥0 ensures the existence of an optimal partition or
possibly the existence of a “quasi optimal” partition, if the upper bound is not
attained by a member of Pn.

As an example, let X = (X1,X2) be a bivariate discrete random vector with
a finite support SP = [0, 1, 2, ..., p]×[0, 1, 2, ..., q]. If n1 and n2 are respectively the
given numbers of elements of the partitions P1 and P2 of the sets {0, 1, 2, ..., p}
and {0, 1, 2, ..., q}, then P = P1⊗P2 is a “joint” partition of the set [0, 1, 2, ..., p]×
[0, 1, 2, ..., q] ⊆ N

∗2
with exactly n1 × n2 non-empty cells. It is easy to check that

the finite number of elements of the set Pn where n = (n1, n2), is given by:

card(Pn) =
(

p

n1 − 1

)(
q

n2 − 1

)

In order to find the optimal partition, it is sufficient to consider all possible
values of Iϕ(Pn) where Pn ∈ Pn, for all n = 1, 2, ..., card(Pn). If the support SP

is unbounded, it is possible for numerical reasons, to bring back the problem to
one with a bounded support by the means of the transformation:

T =
{

U = F (X1)
V = G(X2)
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from N

∗ × N

∗ in Im(F ) × Im(G) ⊂ [0, 1] × [0, 1], where F and G are respectively
the cumulative distribution functions of the random variables X1 and X2. One
can check easily that for such transformation, one has:

Iϕ (X1,X2) = Iϕ (U, V )

In other words, T is a “mutual information invariant” transformation.

4 Computational Aspects

4.1 Example

In order to illustrate the process to determining the optimal quantization, let
us consider the following contingency table N = {nij}, involving two random
categorical variables X1 and X2:

Table 1. Contingency table involving two random categorical variables

X1�X2 1 2 3 4 5 6 7 8 9 10

1 80 36 87 47 99 42 23 28 11 58

2 60 20 89 61 60 21 19 10 11 4

3 168 74 185 127 137 112 96 53 21 62

4 470 191 502 304 400 449 427 164 45 79

5 236 99 306 187 264 188 93 56 36 87

6 145 52 190 91 133 65 70 30 20 54

7 166 64 207 194 193 33 94 23 28 129

8 160 60 160 110 110 51 29 20 21 80

9 180 60 211 111 194 97 79 30 27 49

10 125 55 187 115 53 82 43 17 15 41

from which we can easily deduce a joint probability measure P = {pij} by
dividing each entry by n =

∑10
i=1

∑10
j=1 nij . Let us suppose that we want to find

an optimal partition of the support of this discrete probability measure in 3 × 3
elements. To this end, let {[1, α1[, [α1, α2[, [α2, 10]} and {[1, β1[, [β1, β2[, [β2, 10]}
be respectively the elements of the partitions of the support of the probability
measures PX1 and PX2 , where α1, α2, β1 and β2 are of the form: k + 1

2 with
k = 1, 2, ..., 9. Let us suppose that function ϕ is the χ2-metrics given by:

ϕ(t) = (1 − t)2

where:
t =

pij

pi•p•j

The mutual information is then given by:

Iϕ (X1,X2) = Iϕ

(
P,⊗k=2

k=1PXk

)
=

∑10
i=1

∑10
j=1

(
1 − pij

pi•p•j

)2

pi•p•j

=
∑10

i=1

∑10
j=1

p2
ij

pi•p•j
− 1 = .0650
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For every choice of α = (α1, α2) and β = (β1, β2) (there are exactly 36 × 36 =
1296 possible choices) resulting in a 9-cells {Clk, l, k = 1, 2, 3} partition Pα,β of
the support SP of the probability measure P, we have to calculate, using standard
notations, the following probabilities:

πlk =
∑

(i,j)∈Clk
pij , πl• =

∑3
k=1 πlk and π•k =

∑3
l=1 πlk

It follows that:

Iϕ (Pα,β) =
∑3

l=1

∑3
k=1

(
1 − πlk

πl•π•k

)2

πl•π•k

and we have to solve the following optimization problem:

max
α,β

Iϕ (Pα,β)

For this elementary example, methods of exhaustion allow to find easily a solu-
tion (α∗, β∗) which satisfy the equality:

Iϕ (Pα∗,β∗) = max
α,β

[∑3
l=1

∑3
k=1

(
1 − πlk

πl•π•k

)2

πl•π•k

]

In the present case, using an enumeration algorithm1, we have found:

α∗ = (3.5, 4.5) and β∗ = (5.5, 8.5)

for which the partitions of the supports PX1 and PX2 are repectively given by:

({1, 2, 3}, {4}, {5, 6, 7, 8, 9, 10}) and ({1, 2, 3, 4, 5}, {6, 7, 8}, {9, 10})

Furthermore, the ratio of the initial mutual information explained by Pα∗,β∗ is
given by:

Iϕ (Pα∗,β∗)
Iϕ (X1,X2)

=
.0326
.0650

≈ .51

Similarly, for an optimal partition of SP in 4 × 4 cells, we obtain respectively for
α∗ = (α∗

1, α
∗
2, α

∗
3) and β∗ = (β∗

1 , β∗
2 , β∗

3):

α∗ = (3.5, 4.5, 9.5) and β∗ = (4.5, 5.5, 8.5)

for which the corresponding partitions of the supports PX1 and PX2 are repec-
tively given by:

({1, 2, 3}, {4}, {5, 6, 7, 8, 9}, {10}) and ({1, 2, 3, 4, }, {5}, {6, 7, 8}, {9, 10})

Moreover:
Iϕ (Pα∗,β∗)
Iϕ (X1,X2)

=
.0380
.0650

≈ .59

For the resolution of the optimization problems arising from the examples pre-
sented thereafter, some more sophisticated numericals methods are needed. For
example, we have to invoke in these cases some combinatorial algorithms (see
B. Korte and J. Vygen [17]) or metaheuristics methods (see J. Dréo et al. [11]
or T. Ibakari, K. Nonobe and M. Yagiura [15]).
1 MathLab programs are available on request at the address: fran-
cois.dubeau@usherbrooke.ca
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4.2 Some Usual Multivariate Distributions

Multinomial Distribution: One says that the random vector X = (X1,X2, ...,
Xk) is distributed as a multinomial distribution, denoted by Mn(n; p1, p2, ..., pk),
with parameters n, p1, p2, ..., pk, if its probability density function, is expressed
in the following form:

P (X1 = x1,X2 = x2, ...,Xk = xk) =
(

n

x1, x2, ..., xk

)

×
∏k

i=1 pxi
i I{SP⊆[0,1,2,...,n]k}(x1, x2, ..., xk)

where (
n

x1, x2, ..., xk

)
=

n!
x1!x2!...xk!

where 0 ≤ pi ≤ 1 for all i = 1, 2, ..., k with
∑k

i=1 pi = 1 and where SP ⊆
[0, 1, 2, ..., n]k = {(x1, x2, ..., xk) :

∑k
i=1 xi = n}. In this case, each member of Pn

has exactly
∏k

i=1

(
n

ni−1

)
non-empty cells.

Multivariate Poisson Distribution:

Multivariate Poisson distribution of type I : Given two independent random vari-
ables X1 and X2 distributed as two Poisson distribution P(λ) and P(μ) with
parameters λ and μ, one says that the bivariate random vector X = (X1,X2) is
distributed as a bivariate Poisson distribution of type I P(λ, μ; γ), with param-
eters λ, μ and γ, if its cumulative distribution function H(x1, x2) is given by:

H(x1, x2) = F (x1)G(x2) [1 + γ (1 − F (x1)) (1 − G(x2))]

where −1 ≤ γ ≤ 1, and where F and G are respectively the cumulative distri-
bution functions of X1 and X2.

Multivariate Poisson distribution of type II : According to Johnson, Kotz and
Balakrishnan [16] , one says that the random vector X = (X1,X2, ...,Xk) is
distributed as a multivariate Poisson distribution of type II P(λ1, λ2, ..., λk),
with parameters λ1, λ2, ..., λk, if its probability density function is given by:

P

(
∩k

i=1{Xi = xi}
)
=

[∏k
i=1

e−λi λ
xi
i

xi!

]
×

exp

⎧⎨
⎩

∑
i

∑
j λijC(xi)C(xj)

+
∑

i

∑
j

∑
l λijlC(xi)C(xj)C(xl)

+... + λ12...kC(x1)C(x2)...C(xk)

⎫⎬
⎭ I

N∗k(x1, x2, ..., xk)

where λi > 0 for all i = 1, 2, ..., k, where C(•) is a Gram-Charlier polynomial of
type B (see [16]) and where

λijl... = E [XiXjXl...]

for all i, j, l, ... ∈ 1, 2, ..., k. See also Holgate [13],[14], Campbell [6], Aitken and
Gonin [3], Aitken [2], Consael [8], for more details.



Optimal Coding for Discrete Random Vector 439

Multivariate Hypergeometric Distribution: This distribution arises from
random sampling (without replacement) in a population with k categories. The
random vector X = (X1,X2, ...,Xk) is said to have a multivariate hyperge-
ometric distribution, denoted by HM(n;m;m1,m2, ...,mk), with parameters
n,m,m1,m2, ...,mk, if its probability density function is given by:

P (X1 = n1,X2 = n2, ...,Xk = nk) =

∏k
i=1

(
mi

ni

)
(
m
n

)

where one has:
∑k

i=1 mi = m;
∑k

i=1 ni = n and 0 ≤ ni ≤ min(n,mi) ∀i =
1, 2, ..., k. Moreover, each marginal distribution is a univariate hypergeometric
distribution H(n,m).

Negative Multinomial Distribution: The random vector X = (X1,X2, ...,
Xk) is distributed as a negative multinomial distribution, noted by MN(p0, p1, p2
, ..., pk), with parameters p0, p1, p2, ..., pk, if its probability density function is
given by:

P (X1 = n1, X2 = n2, ..., Xk = nk) =
Γ (n +

∑k
i=1 ni)

n1!n2!...nk!Γ (n)
pn
0
∏k

i=1 pni
i I

N∗k (n1, n2, ..., nk)

where 0 < pi < 1 for i = 1, 2, ..., k and where
∑k

i=0 pi = 1. For more details and
applications of this distribution one can see : Bates and Neyman [5], Sibuya,
Yoshimura and Shimizu [21], Patil [18], Neyman [19], Sinoquet and Bonhomme
[22], Guo [12], Arbous and Sichel [4].

5 Conclusions

Let X = (X1,X2, ...,Xk) be a discrete random vector defined on a probability
space (Ω,F , μ) with values in a countable set X (usually N

k, N

∗k

= (N ∪ {0})k

or Z

k), and with a joint probability measure P absolutely continuous with
respect to a counting measure. For a given measure of mutual information
Iϕ (X1,X2, ...,Xk) between the components of X, we have shown, using a crite-
rion based on minimization of the mutual information loss, that there exists for
given integers n1, n2, ..., nk, an optimal partition of the support SP of P in

∏k
i=1 ni

elements, given by the Cartesian product of the elements of the partitions of the
support of each components X1,X2, ...,Xk in, respectively, n1, n2, ..., nk classes.
This procedure allows to retain the stochastic dependence between the ran-
dom variables (X1,X2, ...,Xk) as much as possible and this may be significantly
important for some data analysis or statistical inference as tests of independence.
As illustrated by an example, this optimal partition performs, from this point
of view, better than any others having the same number of classes. Although
this way of carrying out a quantization of the support of a probability measure
is less usual than those associated with marginal classes of equal “width” or of
“equal probabilities”, one thinks that practitioners could seriously consider it, at
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least, in the case where the conservation of the stochastic dependence between
the random variables seems to be important. Finally, from a practical point of
view, we have paid attention to some semiparametric cases for which one can
assume the probability measure P is a member of a given family depending on
the unknown parameter θ.
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