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    Chapter 8   
 Effects of Regular Exercise 
on Arterial Stiffness 

             Hirofumi     Tanaka     

      Abbreviations 

   AHA    American Heart Association   
  AI    Augmentation index   
  CVD    Cardiovascular disease   
  NOS    Nitric oxide synthase   
  PWV    Pulse wave velocity   

          Introduction 

 It is well established that cardiovascular disease (CVD) is the number one cause of 
mortality in both men and women in most industrialized countries including the 
United States [ 1 ]. Over 80 % of CVD prevalence can be attributed to the disease of 
blood vessels as coronary artery disease, stroke, and hypertension are all arterial 
diseases. The most prominent change in the blood vessels that can contribute to the 
prevalence of CVD is the stiffening or hardening of arteries. Arterial stiffness is an 
independent predictor of adverse CVD mortality and morbidity [ 2 ,  3 ] and can 
induce a number of subsequent cardiovascular sequela including hypertension, left 
ventricular hypertrophy, coronary ischemia, and stroke [ 4 – 6 ]. 

 The exact cause of arterial stiffening is not well understood, but a number of struc-
tural and functional elements would likely contribute to this process (Fig.  8.1 ) [ 7 – 9 ]. 
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Although epidemiological studies demonstrated relations between arterial stiffening 
(i.e., arteriosclerosis) and arterial wall thickening (i.e., atherosclerosis) [ 10 ], arteries 
undergo stiffening or hardening independent of atherosclerosis. Marked arterial stiff-
ening with advancing age has been observed in rural Chinese populations where the 
incidence and prevalence of atherosclerosis are very low [ 11 ], in a rigorously screened 
population in the United States [ 12 – 14 ], and in beagle dogs that do not develop ath-
erosclerosis [ 15 ]. Arterial stiffening is not a universal change affecting the entire 
arterial tree and manifests much more clearly in central elastic or cardiothoracic 
arteries where the pulsation of pressure pulses must be effectively buffered before it 
reaches the capillary circulation that lacks defense mechanisms for arterial pulsations 
[ 12 ,  16 ]. It is thus likely that the mechanisms inducing arterial stiffening would 
include the interaction between mechanical distension and vasoactive factors.  

    Purposes of This Chapter 

 Since CVD has a very long asymptomatic or latent phase of development, primary 
and secondary prevention is the most effective means to contain the progression and 
manifestation of CVD [ 17 ]. The universal fi rst-line approach for the prevention of 
CVD is lifestyle modifi cations including regular exercise [ 17 ,  18 ]. For this reason, 
there has been increasing interest in evaluating the effects of regular exercise on 
arterial stiffening [ 19 ,  20 ]. Is habitual aerobic exercise capable of reducing arterial 
stiffness that is greatly infl uenced by structural elements in the arterial wall? If so, 
what physiological factors are responsible for such destiffening effects? What about 
the infl uence of resistance training on arterial stiffening? Accordingly, the primary 
objective of this Chapter is to review and synthesize previous research studies to 
address the impact of regular exercise on arterial stiffening as an early marker of 
subclinical CVD.   
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  Fig. 8.1    Causes of arterial stiffening       
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    Key Terminology and Basic Concepts 

 In this Chapter, aerobic (endurance) exercise and resistance (strength) exercise 
training studies are discussed separately as these exercise training modalities appear 
to exert distinct effects on the arterial elasticity. In each section below, cross- 
sectional fi ndings are discussed fi rst followed by interventional fi ndings. 

 Much of the confusion in the area of arterial stiffness arises from the different 
terminologies used to express the elastic properties of arteries. They include arterial 
stiffness, compliance, distensibility, elasticity, and elastic modulus. The terms 
“compliance” and “distensibility” are the inverse of “stiffness” in terms of the direc-
tions for rigidity. Even though there has been an attempt to standardize the termi-
nologies for arterial stiffness [ 21 ], these terms cannot be used interchangeably 
because each term has different meanings derived from different methodologies as 
shown below. 

    Arterial Compliance 

 The absolute vessel diameter change for a given pressure change.  

    Arterial Distensibility 

 The relative diameter vessel change for a given pressure change.  

    Elastic Modulus 

 The pressure change required for 100 % stretch from resting vessel diameter.   

    Methods 

 There are a number of techniques that have been used to estimate arterial stiffness. 
Historically, arterial stiffness has been measured in vitro using excised arteries [ 22 , 
 23 ]. However, results derived from in vitro measurements may not be applicable to 
intact vessels [ 24 ] because of the sympathetic vasoconstrictor tone and hormonal 
milieu that the arteries are exposed to in vivo. One of the most frequently used 
in vivo noninvasive techniques to estimate arterial stiffness is pulse wave velocity 
(PWV) [ 22 ,  25 ,  26 ]. PWV is measured from the “foot” of pressure waves recorded 
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at two points along the path of the arterial pulse wave. The more rapid the pulse 
wave, the more rigid the artery. PWV can be measured at a variety of arterial seg-
ments but the most popular and most established measure of PWV is aortic or 
carotid-femoral PWV. Another approach is to determine the augmentation index or 
AI related to the refl ected systolic blood pressure waveform obtained on arterial 
tonometry [ 27 ]. AI was used frequently in the past as an index of arterial stiffness, 
but more recently it is used as an index of arterial wave refl ection that is indirectly 
related to arterial stiffness. Technological advances in ultrasound imaging have sig-
nifi cantly improved the image resolution of arteries. When combined with 
computer- based image analyses and arterial tonometry on the contralateral artery, 
ultrasound imaging enables robust measurement of arterial distensibility and com-
pliance [ 13 ,  28 ]. 

 In order to review relevant research in this area, a systematic electronic search of 
the literature on the association between habitual exercise and arterial stiffness was 
conducted mainly using PubMed. Additionally, cross-referencing of the identifi ed 
articles was carefully conducted. Although arterial stiffening is clearly an age- 
associated disease, age-associated changes are diffi cult to assess in humans 
 especially in relation to the preventive effects of regular or life-long exercise. 
Accordingly, both cross-sectional and interventional studies were included.  

    Relevant Research 

    Aerobic Exercise Training 

 A number of investigators have reported that arterial stiffness increases during a 
acute single bout of aerobic exercise [ 29 ,  30 ]. The acute increase in arterial stiffness 
seems reasonable given the observation that during graded exercise, systolic blood 
pressure increases markedly while diastolic blood pressure remains unchanged or 
slightly decreases resulting in a large increase in pulse pressure [ 31 ] that is closely 
associated with arterial stiffness. Following exercise, however, arterial stiffness 
appears to fall below the baseline levels [ 32 ]. The acute effects of exercise on arte-
rial stiffness seem to disappear within a few hours following exercise [ 32 ]. Thus, it 
is reasonable to assume that the effects of regular exercise on arterial stiffness, if 
any, are not due to a residual effect of the last bout of exercise but rather due to 
chronic adaptation of cardiovascular system as the measurements are typically per-
formed >24 h after the last bout of aerobic exercise. 

 Middle aged and older men who performed endurance exercise on a regular basis 
demonstrate lower levels of aortic PWV and carotid AI than their sedentary peers 
[ 14 ]. We also reported that signifi cant age-related increases in central arterial stiff-
ness were absent in physically active women and that aerobic fi tness was strongly 
and favorably associated with arterial stiffness [ 12 ]. These cross-sectional fi ndings 
provide support for a role of regular aerobic exercise in the primary prevention of 
arterial stiffening that occurs with advancing age. 
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 Unknown to most, the fi rst intervention study to determine the infl uence of 
 exercise training on arterial stiffness was conducted in Japan (This is in part because 
this paper was published only in Japanese) in 1983. A total of 80 healthy young 
men, who were new recruits for the Japanese self-defense or military school, were 
studied before and after 9 months of physical training incorporating a variety of 
exercise modes, including distance running, calisthenics, soccer, handball, judo, 
and swimming [ 33 ]. At the end of the training period, there was a small but signifi -
cant reduction in aortic PWV, indicating a small reduction in arterial stiffness. We 
have also reported that a relatively brief period (3 months) of aerobic exercise can 
increase central arterial compliance in apparently healthy, middle aged and older 
adults [ 13 ,  28 ]. This improvement was not associated with changes in body weight, 
adiposity, blood pressure, or plasma cholesterol, indicating a direct effect of habit-
ual exercise on arterial compliance. 

 Importantly, this small reduction in arterial stiffness was accomplished with an 
intensity (moderate) and type (walking) of physical activity that can be performed 
by most, if not all, healthy older adults [ 13 ,  28 ]. Interestingly, the benefi cial effect 
of aerobic training involves only central elastic arteries whose elastic properties 
dampen fl uctuations in pressure and fl ow [ 12 ,  13 ]. Additionally, the benefi cial 
effects of regular aerobic exercise on arterial compliance are associated with a 
favorable infl uence on arterial blood pressure and arterial barorefl ex sensitivity [ 20 , 
 34 ,  35 ], indicating that the benefi cial effect of regular exercise would extend to 
sequelae of arterial stiffening. Thus, the benefi cial effects of habitual exercise lead 
not only to arterial destiffening but also to the attenuation of the adverse outcomes 
caused by arterial stiffening. 

 Most of the exercise training studies to date have focused on land-based exer-
cises such as walking [ 13 ,  28 ] and cycling [ 32 ,  36 ]. Swimming is an attractive form 
of exercise as it is easily accessible, inexpensive, and isotonic [ 37 ]. Because of the 
buoyancy of water, compressive stress on joints is small, and orthopedic injury rate 
is low [ 38 ]. Due to cold temperature and increased thermoconductivity of surround-
ing water, heat-related illness is extremely low [ 39 ]. Thus, swimming can be an 
ideal form of exercise for those at elevated risks of vascular disease, including the 
elderly, and people with obesity and/or arthritis [ 37 ]. 

 In the fi rst cross-sectional study to address the effect of swim training on arterial 
elasticity [ 40 ], arterial compliance of middle-aged and older swimmers was com-
pared with those of runners and sedentary controls. Central artery compliance was 
greater in swimmers than in age-matched sedentary controls, and the level of arte-
rial compliance was not different between swimmers and runners, suggesting that 
high levels of regular swimming exercise may prevent arterial stiffening similar to 
land-based exercises. Subsequently, a swimming exercise intervention study involv-
ing previously sedentary middle aged and older adults was conducted. This follow-
 up intervention study allowed us to confi rm the cross-sectional observations by 
demonstrating that regular swimming exercise produced a 21 % increase in arterial 
compliance and a 12 % reduction in the β-stiffness index, a measure of arterial stiff-
ness that adjusts for the effect of alterations in distending pressure on arterial diam-
eter, after 3 months of regular swimming exercise [ 41 ]. In summary, evidence from 
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both cross-sectional and interventional studies collectively indicates that regular 
swimming is benefi cial in improving the elasticity of central arteries in middle-aged 
and older adults. 

 As discussed above, habitual aerobic exercise is an effective lifestyle interven-
tion for preventing and reversing arterial stiffening for healthy adults. When pre-
scribed to patients with essential hypertension, however, short-term (2–4 months) 
aerobic exercise interventions may not be as effective in reducing arterial stiffness 
as in healthy adults. For example, we reported that 3 months of aerobic exercise 
training composed of walking and jogging produced very small reductions in arte-
rial stiffness in postmenopausal women with elevated systolic blood pressure 
[ 35 ]. Similarly, short-term aerobic exercise training was unable to reduce arterial 
stiffness in patients with isolated systolic hypertension [ 42 ] or in older patients 
with Stage I hypertension who had been on antihypertensive medications [ 43 ]. 

 Currently, exercise intervention studies targeting patients with other diseases are 
very limited. In one of these studies, 8 weeks of aerobic exercise training did not 
change aortic PWV and carotid AI in patients with congestive heart failure [ 44 ]. 
Similarly, no changes in PWV were observed after 2 years of exercise training pro-
gram in patients with type 2 diabetes mellitus [ 45 ]. Interestingly, Ikegami et al. [ 33 ] 
observed a trend for the magnitude of reductions in PWV with exercise training to be 
reduced in direct proportion to initial body fat levels, suggesting that the degree of 
destiffening effect of exercise may diminish as the CVD risks of participants increase. 
Clearly, future studies are warranted to investigate the potential effi cacy of long-term 
(>1 year) aerobic exercise intervention on arterial stiffness in populations with 
CVD. For related discussions on the effects of aerobic exercise on other metabolic 
risk factors and vascular function, please see Chap.   5     and the Chapters in Part III.  

    Mechanisms Underlying Exercise-Induced Reductions 
in Arterial Stiffness 

 Considering these fi ndings, the question that emerges is,  If habitual aerobic exercise 
reduces arterial stiffness ,  then what are the physiological mechanisms underlying 
its effects ? There are three primary elements of the arterial wall that determine its 
stiffness (Fig.  8.1 ). They are: (1) quantitative structural elements (e.g., amount/pro-
portion of elastin and collagen); (2) qualitative structural elements (e.g., fracture/
fragmentation of elastic lamellae and the cross-linking of collagen and advanced 
glycation—   sometimes called nonenzymatic glycosylation end-products); and (3) 
functional elements (vasoconstrictor tone exerted by its smooth muscle cells). Any 
favorable infl uences of regular aerobic exercise should involve an attenuation or 
reversal of one or more of the physiological mechanisms contributing to arterial 
stiffening. 

 Structural elements, specifi cally decreased density of the arterial elastin with 
corresponding increases in collagen content in the arterial wall, play a major role in 
increases in arterial stiffness [ 7 ]. Because the elastin-collagen composition of the 
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arterial wall changes over a period of years, it is unlikely that this may be a physi-
ological mechanism underlying reductions in arterial stiffness induced by short- 
term exercise intervention. In fact, using an animal experiment, we have demonstrated 
that the infl uence of regular exercise on arterial stiffness does not appear to be medi-
ated by the quantitative changes in arterial wall elastin and collagen [ 9 ]. The results 
from gene microarray analyses are consistent with this fi nding since the gene 
expression of structural proteins (e.g., various types of collagens and procollagens) 
and enzymes that modulate structural proteins and the extracellular matrix (e.g., 
collagenase, matrix metalloproteinases) did not change signifi cantly with exercise 
training in the rat aorta [ 46 ]. A recent animal study, however, reported that although 
total collagen content did not change with exercise training, some isoforms of col-
lagen and calcifi cations were reduced [ 47 ]. Thus, we cannot exclude the possibility 
that qualitative structural elements, including the shift in collagen subtypes and 
alterations in collagen cross-linking, may play a role in the reductions in arterial 
stiffness resulting from regular exercise. 

 A more likely mechanism contributing to the improvements in the elastic proper-
ties of arteries with aerobic exercise is the reduction in vasoconstrictor tone exerted 
by the vascular smooth muscle cells. Because a number of different and interacting 
vasoactive molecules and peptides could respond to exercise training to infl uence 
the contractile states of the vascular smooth muscle cells, it is diffi cult to elucidate 
underlying mechanisms using traditional approaches (e.g., pharmacological block-
ade). In order to identify and confi ne relevant functional factors responsible for 
exercise training-induced decreases in arterial stiffness, we relied on the DNA 
microarray technique (i.e., multiplex lab-on-a-chip that assays large amounts of bio-
logical material suing high-throughput screening methods). Microarray provides a 
powerful and effi cient tool by which to compare the differential expression of a 
large number of genes in a single reaction and enables a systematic analysis of 
responses of various gene expressions to exercise training. We found that genes 
associated with nitric oxide synthase (NOS) (along with prostaglandins and C-type 
natriuretic peptide) were differentially expressed in the aorta of exercise-trained rats 
[ 46 ]. Because the incidence of false positive fi ndings is very high in the microarray 
analysis, the results were confi rmed subsequently using real-time quantitative poly-
merase chain reaction and protein expressions [ 46 ]. 

 Aside from the NO-mediated vasodilation, another important functional element 
that has been implicated in the pathogenesis of arterial stiffening is sympathetic 
adrenergic vasoconstrictor tone [ 48 ]. The sympathetic nervous system exerts a tonic 
restraint on the compliance of the common carotid artery, and removal of that 
restraint produces an immediate increase in its compliance [ 49 ]. We assessed the 
effects of systemic inhibition of α-adrenergic receptors and NOS on arterial compli-
ance before and after 3 months of aerobic exercise training in middle-aged and older 
adults. Systemic, rather than local, administration of drugs was used in order to 
target the compliance of “central” (cardiothoracic) arteries, which makes the 
 dominant contribution to the elastic reservoir function of the arterial system [ 50 ]. 
The effect of α-adrenergic receptor tone on the carotid artery signifi cantly decreased 
following the aerobic exercise training intervention, as evidenced by a diminished 
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increase in arterial compliance from baseline to phentolamine (i.e., non-specifi c 
α-receptor blocker) administration. The NO-dependent vascular tone, however, did 
not change signifi cantly after aerobic exercise training, as the magnitude of decrease 
in arterial compliance from the phentolamine administration to the combined phen-
tolamine and L-NMMA (i.e., NOS blocker) administration was similar before and 
after exercise training [ 50 ]. 

 We have also determined whether endothelin-1, a potent endothelium-derived 
vasoconstrictor peptide, is involved in the mechanisms underlying the increase in 
arterial compliance with aerobic exercise training [ 51 ]. Systemic endothelin-A/B 
receptor blockade was administered before and after 3 months of exercise training 
involving middle-aged and older adults. The increase in arterial compliance induced 
by regular exercise was associated with a corresponding reduction in plasma endo-
thelin- 1 concentration as well as the elimination of endothelin-1-mediated vascular 
tone [ 51 ]. These results suggest that aerobic exercise training-induced increases in 
arterial compliance are mediated, at least in part, through the removal of chronic 
restraint provided by vasoconstrictor tone and that multiple mechanisms are likely 
involved in the destiffening process.  

    Resistance Exercise Training 

 Prior to 1990, the resistance training modality was emphasized only as a means to 
develop muscular strength, power, and muscle mass [ 52 ,  53 ]. In recent years, how-
ever, statements on physical activity by various health organizations [ 54 – 58 ] have 
recommended resistance training as an essential part of physical activity preventive 
and rehabilitative programs. These recommendations are based primarily on the 
documented impact of resistance training on the attenuation of osteoporosis and 
sarcopenia (i.e., the age-related loss of muscle mass and strength) [ 59 ,  60 ] as well 
as on the evidence indicating associations between resistance training and meta-
bolic risk factors [ 18 ]. Information concerning the impact of resistance training on 
vascular function in general, and arterial stiffness in particular, is limited but is 
emerging. For related discussions on the effects of resistance exercise on other met-
abolic risk factors and vascular function, please see Chaps.   2     and   6     and the Chapters 
in Part III as well. 

 Plasma norepinephrine levels are elevated after a bout of acute resistance exer-
cise, giving rise to the possibility that sympathetic vasoconstrictor tone may also be 
elevated after resistance exercise [ 61 ]. In an attempt to tease out the chronic effects 
of resistance exercise from the acute effects, we determined the effect of one bout 
of acute resistance exercise on central arterial compliance [ 62 ]. We found that cen-
tral arterial compliance was decreased immediately and 30 min after acute resis-
tance exercise. These measures returned to baseline levels within 60 min following 
the bout of resistance exercise. These results suggest that changes in arterial 
 stiffness, if any, that are observed 24–48 h after an exercise bout (typical waiting 
period for most exercise intervention studies) can be attributed to the chronic effects 
of resistance exercise training. 
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 Based on a multitude of benefi ts that resistance training can elicit, it is reasonable 
to hypothesize that regular resistance exercise would be associated with reduced 
arterial stiffness. In the fi rst cross-sectional study to address this hypothesis, 
Bertovic et al. [ 63 ] found that young men who performed resistance training on a 
regular basis demonstrated  lower  levels of systemic arterial compliance than their 
sedentary peers. We also found in a cross-sectional study that strength-trained mid-
dle aged men exhibited  decreased  levels of arterial compliance and that the age- 
associated reduction in arterial compliance was  greater  in the resistance-trained 
groups than in sedentary controls [ 64 ]. These fi ndings from resistance training stud-
ies are in marked contrast to the benefi cial effects of regular aerobic exercise that 
have been observed in the literature    [ 20 ,  13 ,  28 ]. Given the well-known limitation 
of cross-sectional study designs and the confl icting results between aerobic and 
resistance training, interventional studies were needed to draw proper conclusions. 

 In the fi rst intervention study to address this question, we found that several 
months of strenuous resistance training in young men induced a 20 % reduction in 
carotid arterial compliance [ 65 ]. Moreover, in order to isolate the effects of resis-
tance training on arterial compliance as much as possible, a detraining program was 
implemented at the conclusion of the resistance training intervention. If the changes 
in arterial compliance were mediated by resistance training, such changes should 
return to the baseline level when the stimuli of daily resistance exercise were 
removed. Indeed during the detraining period, arterial compliance, which was 
reduced with resistance training, was reversed to the baseline values [ 65 ]. In support 
of these fi ndings, the arterial stiffening effects of strenuous resistance training have 
since been observed in young women [ 66 ] and have been confi rmed by a number of 
other studies [ 67 – 70 ].  

    Mechanisms Underlying the Strenuous Resistance 
Training- Induced Increases in Arterial Stiffness 

 Considering these fi ndings, the question that emerges is,  What are the physiological 
mechanisms underlying the increase in arterial stiffness with strenuous resistance exer-
cise training ? During resistance exercise bouts, arterial blood pressure increases to as 
high as 320/250 mmHg [ 71 ] and arterial walls are exposed to substantial amounts of 
distending pressures. There have been several case reports describing aortic dissection 
during heavy weight lifting exercises [ 72 ,  73 ]. It is possible that arterial stiffening may 
be caused by smooth muscle hypertrophy and synthesis of extracellular matrix stimu-
lated by repeated elevations in local distending pressure [ 74 ] in order to strengthen the 
arterial wall against the risk of aortic rupture. Indeed, central arterial compliance was 
associated with arterial wall thickness in a group of resistance-trained adults [ 64 ]. Other 
potential mechanisms include the formation of collagen cross-linking and advanced 
glycation end products [ 75 ] and the increase in vasoconstrictor tone exerted by vasoac-
tive molecules [ 8 ]. Although there are numerous vasoactive molecules that can affect 
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smooth muscle vasoconstrictor tone, endothelin- 1 does not appear to play a role in arte-
rial stiffening with resistance exercise training [ 76 ]. 

 The aforementioned studies were conducted using strenuous weight training 
regimens in relatively young healthy subjects with high baseline arterial compli-
ance. Whether or not moderate intensity strength training would further reduce the 
already low arterial compliance of middle-aged and older adults is a clinically 
important question. Older individuals are at greater risk for developing CVD as well 
as for experiencing functional disability associated with sarcopenia [ 59 ,  60 ], and 
resistance training is being strongly recommended as a preventive intervention for 
functional capacity with advancing age [ 54 ,  55 ,  57 ,  60 ,  77 ,  78 ]. As such, it is 
 important to understand the interaction between age and resistance training for the 
key cardiovascular function of arterial compliance. 

 To do so, we recruited previously sedentary middle aged and older adults and 
prescribed a resistance exercise program that was consistent with the recommended 
guidelines established by the American Heart Association (AHA) [ 54 ]. We found 
that there was no signifi cant decrease in central arterial compliance with strength 
training in middle-aged and older adults with low baseline arterial compliance [ 79 ]. 
In another study involving healthy postmenopausal women, 18 weeks of a moderate 
resistance training program did not change AI [ 80 ]. Moreover, 12 weeks of leg 
resistance training did not change aortic PWV in older men though maximal mus-
cular power was increased by 16 % [ 76 ]. Collectively, these results suggest that 
older adults can gain the benefi ts of moderate resistance training without experienc-
ing arterial stiffening.  

   Concurrent Training or Cross-Training 

 Arguably, one of the most effective way to maximize benefi ts from both aerobic exer-
cise and resistance exercise appears to be the simultaneous performance of both train-
ing (i.e., concurrent training or cross-training) [ 81 ,  82 ]. Theoretically, the opposing 
effects of aerobic and resistance training exercise on central arterial compliance 
should negate the adverse effects of resistance training on arterial compliance if aero-
bic exercise training effects equals or exceeds the resistance training effects. This 
hybrid approach is consistent with the latest exercise recommendation that more 
inclusive practices of aerobic, resistance, and fl exibility exercise training should be 
recommended as an approach to enhance both overall fi tness and health [ 58 ]. 

 As an initial approach to address this, we performed a cross-sectional study 
involving rowers. Rowing is unique because its training encompasses both endur-
ance and strength training components. Rowers require large muscle strength for 
the acceleration of the boat at the race start and a high endurance capacity to main-
tain this speed during the race [ 83 ]. Likewise, rowers perform a combination of 
endurance and strength training during their usual training regimen as demonstrated 
by their large maximal aerobic capacity and muscle strength [ 83 – 85 ]. In order to 
minimize the weaknesses of the cross-sectional study design and to isolate the 
 infl uence of rowing as much as possible, rowing and sedentary control groups were 
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carefully matched for age, body composition, blood lipids, plasma glucose, blood 
pressure, and dietary sodium intake [ 86 ]. Additionally, to isolate the effect of row-
ing, we excluded individuals for whom rowing was not their primary form of exer-
cise. We demonstrated that central arterial compliance was higher and ß-stiffness 
index was lower in habitual rowers than in age-matched sedentary controls [ 86 ]. 

 The results of subsequent interventional studies are consistent with this cross- 
sectional study. Concurrently-performed endurance training minimized arterial 
stiffening that was accompanied by high-intensity resistance training [ 67 ]. 
Additionally, there was a tendency for arterial compliance to increase with com-
bined endurance and resistance training. Other groups have since confi rmed these 
fi ndings [ 87 ]. In a study involving healthy postmenopausal women, 3 months of 
combined circuit weight training and endurance training reduced PWV [ 87 ]. From 
the standpoint of exercise adherence and compliance, this type of concurrent 
 training is highly benefi cial as it is more enjoyable and breaks the boredom that 
often results from long-term participation in a single exercise mode [ 81 ,  82 ]. Thus, 
stiffening of the large arteries may be avoided if endurance training is incorporated 
into an exercise program that has a strenuous strength training component. For 
related discussions on the benefi ts of concurrent training, please see Chaps.   3    ,   4    , 
  6    , and   13    .   

    Clinical Implications and Importance 

 There are a number of ways that arterial stiffening can contribute to the increased 
incidence of CVD (Fig.  8.2 ). Hypertension is one of the most prevalent risk factors 
for CVD, and the majority of patients with hypertension are classifi ed as having 
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  Fig. 8.2    Clinical and functional sequelae of arterial stiffening.  LV  left ventricle,  BP  blood 
pressure       
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essential hypertension without known causes of elevated high blood pressure. Most 
of these patients develop this health condition as they age as blood pressure, more 
specifi cally systolic blood pressure, increases progressively with advancing age 
[ 88 ]. Arterial stiffness is now thought to be a primary factor mediating the age- 
related increases in blood pressure [ 5 ]. By absorbing a proportion of the energy in 
systole and releasing it in diastole, the aorta and large arteries maintain coronary 
blood fl ow and avoid an increase in left ventricular afterload. Stiffening of central 
elastic arteries would reduce the buffering or cushioning effects translating the pul-
satile effects of the arteries into arterioles and capillaries where there is very limited 
ability to cope with the pulsatile stress. Through the impairment of this buffering 
function, reductions in arterial compliance or increases in arterial stiffness contribute 
to elevations in systolic blood pressure, left ventricular hypertrophy, and coronary 
ischemia [ 4 – 6 ,  89 ]. Indeed, higher arterial stiffness is associated with a greater rate 
of mortality in patients with end-stage renal failure and essential hypertension [ 2 ,  3 ].  

 From a functional standpoint, arterial stiffness is signifi cantly and inversely 
associated with maximal oxygen consumption, one of the most important 
 determinants of exercise capacity as well as a CVD risk factor [ 12 ]. Associations 
between PWV and physical working capacity have also been reported [ 90 ]. 
Stiffening of central elastic arteries could increase aortic impedance and left ven-
tricular afterload, thereby reducing stroke volume and systemic cardiac output, a 
critical determinant of maximal oxygen consumption [ 30 ,  91 ]. Indeed, the adminis-
tration of calcium channel blockers that act to reduce arterial stiffness results in an 
improvement in aerobic exercise performance among older individuals [ 92 ]. 
Through this systemic hemodynamic mechanism, arterial stiffening can contribute 
to the exercise intolerance typically observed in older populations [ 93 ].  

    Conclusion 

 Regular aerobic exercise can reduce arterial stiffness in healthy middle aged and 
older adults and attenuate age-related increases in arterial stiffness. Importantly, 
this can be accomplished with an intensity (moderate) and type (e.g., walking and 
swimming) of physical activity that can be performed by most, if not all, adults. 
The benefi cial effects of regular aerobic exercise on arterial stiffness are associated 
with a favorable infl uence on arterial blood pressure and arterial barorefl ex sensi-
tivity. However, regular aerobic exercise may not be effective in reducing arterial 
stiffness in patients with existing clinical conditions. In contrast to the effects of 
aerobic exercise, an intervention incorporating strenuous resistance training 
increases, rather than decreases, arterial stiffness in young adults. However, the 
arterial stiffening effect appears to be absent when older adults with already 
increased arterial stiffness perform moderate intensity resistance exercise pro-
grams. Simultaneously performed endurance and resistance training or concurrent 
training can elicit benefi cial adaptations without inducing arterial stiffening effects. 
Thus, the effects of exercise training on the elastic properties of arteries depend on 
exercise modes and populations.
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  Key Points and Resources 

•   Regularly-performed aerobic exercise is effective in preventing and reversing 
arterial stiffening that occur with advancing age.  

•   Arterial stiffness increases after strenuous resistance training in young men but 
not in older adults with already increased levels of arterial stiffness.  

•   Concurrently-performed aerobic exercise effectively prevents the arterial stiffen-
ing effects of strenuous resistance training.  

•   Association for Research into Arterial Structure and Physiology 
   http://www.arterysociety.org/      

•   North America Artery Society 
   http://naartery.org/      

•   Seals DR, Desouza CA, Donato AJ, Tanaka H (2008) Habitual exercise and arte-
rial aging. J Appl Physiol 105: 1323–1332 [ 20 ].         
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