
Chapter 12

Inverse Sturm–Liouville Problems

We will need representations of solutions of the Sturm–Liouville equation and
algorithms for recovering its potential q from two of its spectra, corresponding to
two distinct sets of separated boundary conditions. These results are due to [178],
see also [177], [180]. For the convenience of the reader and easy reference we recall
these results from V.A. Marchenko [180], thereby adapting them to our notation
and considering Sturm–Liouville problems on intervals [0, a] with arbitrary a > 0.
Other presentations of the inverse Sturm–Liouville problem can be found, e. g., in
[177], [235], [282], [80].

12.1 Riemann’s formula

This section is a rewrite of [180, Section 1.1]. The main improvement is that we
allow for integrable potentials. This generalization is an exercise in [180] and there
is no proof in [180].

Lemma 12.1.1. Let α < β be real numbers and put

D0 = {(ξ, η, ξ0, η0) : α ≤ η0 ≤ η ≤ ξ ≤ ξ0 ≤ β}.

Let q0 be a locally integrable function on R
2. For f ∈ L∞(D0) define

(Tf)(ξ, η, ξ0, η0) =

∫ ξ0

ξ

∫ η

η0

q0(σ, τ)f(σ, τ, ξ0 , η0) dτ dσ, (ξ, η, ξ0, η0) ∈ D0.

(12.1.1)
Then T is a bounded linear operator on L∞(D0) and I +T is invertible. Denoting
by 1 the function which is identically 1 on D0, it follows that g = (I + T )−11 is
the unique solution of f = 1− Tf on D0. The function g is continuous.

Proof. Clearly, T is a linear operator, and Fubini’s theorem shows that T maps
L∞(D0) into itself. For each M ∈ R, the standard norm on L∞(D0) is equivalent
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346 Chapter 12. Inverse Sturm–Liouville Problems

to the weighted norm given by

‖f‖M = ess sup{|f(ξ, η, ξ0, η0)|e−M((ξ0−ξ)+(η−η0)) : (ξ, η, ξ0, η0) ∈ D0}.

For f ∈ L∞(D0) and (ξ, η, ξ0, η0) ∈ D0 we estimate

|(Tf)(ξ, η, ξ0, η0)|e−M((ξ0−ξ)+(η−η0))

≤
∫ ξ0

ξ

∫ η

η0

|q0(σ, τ)| |f(σ, τ, ξ0 , η0)|e−M((ξ0−ξ)+(η−η0)) dτ dσ

≤
∫ ξ0

ξ

∫ η

η0

|q0(σ, τ)|e−M((σ−ξ)+(η−τ)) dτ dσ ‖f‖M .

Letting χξ,η,ξ0,η0 be the characteristic function of the set {(σ, τ) : η0 ≤ τ ≤ η ≤ ξ ≤
σ ≤ ξ0}, and observing that χξ′,η′,ξ′0,η

′
0
(σ, τ) → χξ,η,ξ0,η0(σ, τ) as (ξ′, η′, ξ′0, η

′
0) →

(ξ, η, ξ0, η0) for almost all (σ, τ), it follows from Lebesgue’s dominated convergence
theorem that the function fM defined by

fM (ξ, η, ξ0, η0) :=

∫ ξ0

ξ

∫ η

η0

|q0(σ, τ)|e−M((σ−ξ)+(η−τ)) dτ dσ

= eM(ξ−η)

∫ ξ0

ξ

∫ η

η0

|q0(σ, τ)|e−M(σ−τ) dτ dσ

is continuous on D0. For (ξ, η), (ξ
′, η′) with η0 ≤ η′ ≤ η ≤ ξ ≤ ξ′ ≤ ξ0 we have

f0(ξ, η, ξ0, η0)− f0(ξ
′, η′, ξ0, η0) ≥

∫ ξ′

ξ

∫ η

η′
|q0(σ, τ)| dτ dσ,

as can be easily seen from the following sketch:

η0

ξ0

η′ η ξ ξ′

η′
η

ξ

ξ′
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Since f0 is a continuous function on the compact setD0, f0 is uniformly continuous,
and it follows that there is δ > 0 such that for all (ξ, η, ξ0, η0), (ξ

′, η′, ξ0, η0) ∈ D0

with 0 ≤ η − η′ ≤ δ and 0 ≤ ξ′ − ξ ≤ δ we have∫ ξ′

ξ

∫ η

η′
|q0(σ, τ)| dτ dσ ≤ 1

4
.

Now let (ξ, η, ξ0, η0) ∈ D0 and put η′ = max{η − δ, η0} and ξ′ = min{ξ + δ, ξ0}.
Denoting the rectangle with opposite vertices (ξ, η0) and (ξ0, η) by D1 and the
rectangle with opposite vertices (ξ, η′) and (ξ′, η) by D2, it follows that σ − ξ ≥ δ
or η − τ ≥ δ for (σ, τ) ∈ D1 \D2. Hence we obtain

fM (ξ, η, ξ0, η0) ≤ 1

4
+

∫ ξ0

ξ

∫ η

η0

|q0(σ, τ)|e−Mδ dτ dσ

≤ 1

4
+ e−Mδ

∫ β

α

∫ σ

α

|q0(σ, τ)| dτ dσ

→ 1

4
as M → ∞.

Hence we may choose M such that

fM (ξ, η, ξ0, η0) ≤ 1

2
, (ξ, η, ξ0, η0) ∈ D0.

Combining the above estimates we have shown that T is a contractive operator.
Hence the operator (I + T ) is invertible, and the unique solution g of f = 1− Tf
has the representation

g = (I + T )−11 =
∞∑
j=0

(−T )j1.

Since clearly T maps continuous function into continuous function, since 1 is con-
tinuous and since the set of continuous functions C(D0) is closed in L∞(D0), it
follows that g is continuous. �
Lemma 12.1.2. Let q0 be a locally integrable function on R2, let η0 and ξ0 be real
numbers with η0 < ξ0 and let D(ξ0, η0) = {(ξ, η) : η0 ≤ η ≤ ξ ≤ ξ0}. Then the
problem

rξη − q0r = 0 on D(ξ0, η0), (12.1.2)

r(ξ0, η) = r(ξ, η0) = 1 for ξ, η ∈ [ξ0, η0], (12.1.3)

has a unique continuous solution r on D(ξ0, η0). Furthermore, rξ, rη, rξη and rηξ
exist and belong to L1(D(ξ0, η0)), and rηξ = rξη. If q0 is continuously differen-
tiable, then r has continuous second derivatives.
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Proof. From Lemma 12.1.1 we know that the integral equation

r(ξ, η) = 1−
∫ ξ0

ξ

∫ η

η0

q0(σ, τ)r(σ, τ) dτ dσ. (12.1.4)

has a solution g, and we write

r(ξ, η) = r(ξ, η; ξ0, η0) = g(ξ, η, ξ0, η0).

The existence of rξ and rξη, their properties, and (12.1.2) and (12.1.3) easily follow
from (12.1.4), so that this r is indeed a solution of (12.1.2) and (12.1.3).

Conversely, if r is a continuous solution r of problem (12.1.2), (12.1.3) where
the partial derivates in (12.1.2) exist, integration of (12.1.2) with respect to η and
taking into account that (12.1.3) implies rξ(ξ, η0) = 0 for all ξ ∈ [η0, ξ0] gives

rξ(ξ, η) =

∫ η

η0

q0(ξ, τ)r(ξ, τ) dτ. (12.1.5)

Integration with respect to ξ and (12.1.3) lead to (12.1.4). With fixed ξ0 and η0,
the operator T from the proof of Lemma 12.1.1 becomes a contraction Tξ0,η0 on
L∞(D(ξ0, η0)), and the uniqueness of the solution r of (12.1.2), (12.1.3) follows.

�

For real x0 and y0 with y0 ≥ 0 let D be the triangular region whose vertices
are (x0, y0), (x0 − y0, 0), (x0 + y0, 0). We put ξ0 = x0 + y0, η0 = x0 − y0 and

q0(ξ, η) =
1

4

[
q1

(
ξ + η

2

)
− q2

(
ξ − η

2

)]
, η0 ≤ η ≤ ξ ≤ x0. (12.1.6)

The linear transformation ξ = x + y, η = x − y, maps the triangle with
vertices (x0, y0), (x0 − y0, 0), (x0 + y0, 0) into the triangle with vertices (ξ0, η0),
(η0, η0), (ξ0, ξ0), that is, it maps the triangle D to the triangle D(ξ0, η0) defined in
Lemma 12.1.2. Then let (ξ, η) �→ r(ξ, η; ξ0, η0) be the solution according to Lemma
12.1.2 and define

R(x, y;x0, y0) = r(x + y, x− y;x0 + y0, x0 − y0), (x, y) ∈ D. (12.1.7)

The following theorem is a generalization of Riemann’s theorem as stated in
[180, Theorem 1.1.1].

Theorem 12.1.3. Let q1 and q2 be locally integrable on R and let ϕ and ψ be
continuous functions on R. Let u ∈ W 2

1 (D) be a solution of

uxx − q1(x)u = uyy − q2(y)u (12.1.8)

such that ux and uy are continuous on D. Assume that u satisfies the initial
conditions

u(x, 0) = ϕ(x), uy(x, 0) = ψ(x), x0 − y0 ≤ x ≤ x0 + y0. (12.1.9)
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Then

u(x0, y0) =
ϕ(x0 + y0) + ϕ(x0 − y0)

2

+
1

2

∫ x0+y0

x0−y0

(
ψ(x)R(x, 0;x0, y0)− ϕ(x)Ry(x, 0;x0, y0)

)
dx. (12.1.10)

Proof. We are going to use the transformation ξ = x+ y, ξ0 = x0 + y0, η = x− y,
η0 = x0 − y0. Expressing u as function ũ in these new variables, i. e., ũ(ξ, η) =
u(x, y), we get

uxx = ũξξ + 2ũξη + ũηη,

uyy = ũξξ − 2ũξη + ũηη.

Observing that the continuity of the partial derivatives of u and hence of ũ gives
ũξη = ũηξ, we obtain

ũξη =
1

4
(uxx − uyy) =

1

4
(q1(x)− q2(y))u = q0ũ. (12.1.11)

We recall from Lemma 12.1.2 that (12.1.2), (12.1.3) with q0 given by (12.1.6)
has a unique solution r. Multiplying equations (12.1.11) and (12.1.2) by r and ũ,
respectively, and then subtracting the second equation from the first equation we
obtain

ũξηr − ũrξη = 0. (12.1.12)

Observing

∂

∂η
(ũξr) = ũξηr + ũξrη,

∂

∂ξ
(ũηr) = ũηξr + ũηrξ,

∂

∂η
(ũrξ) = ũηrξ + ũrξη,

∂

∂ξ
(ũrη) = ũξrη + ũrηξ,

we conclude that

ũξηr − ũrξη =
1

2

(
∂

∂η
(ũξr − ũrξ) +

∂

∂ξ
(ũηr − ũrη)

)
(12.1.13)

Integrating both sides of (12.1.12) over D(ξ0, η0) and taking (12.1.13) into account
we get ∫∫

D(ξ0,η0)

[
∂

∂η
(ũξr − ũrξ) +

∂

∂ξ
(ũηr − ũrη)

]
dξ dη = 0. (12.1.14)
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By Fubini’s theorem we can integrate componentwise, and therefore the left-hand
side is the sum of the two integrals

I1 :=

∫ ξ0

η0

[(ũξ(ξ, ξ)r(ξ, ξ) − ũ(ξ, ξ)rξ(ξ, ξ))

− (ũξ(ξ, η0)r(ξ, η0)− ũ(ξ, η0)rξ(ξ, η0))]dξ

=: I11 − I12,

I2 :=

∫ ξ0

η0

[(ũη(ξ0, η)r(ξ0, η)− ũ(ξ0, η)rη(ξ0, η))

− (ũη(η, η)r(η, η) − ũ(η, η)rη(η, η))]dη

=: I21 − I22.

Here we have used that, e. g., ∂
∂η (ũξr − ũrξ) is integrable with respect to η for

almost all ξ and that ũξr− ũrξ is continuous with respect to η for these ξ in view
of (12.1.5) and the continuity assumption on u and its partial derivatives.

Integrating by parts and observing that r(ξ, η) = 1 if ξ = ξ0 or η = η0 we get

I12 = 2

∫ ξ0

η0

ũξ(ξ, η0)r(ξ, η0) dξ − ũ(ξ0, η0)r(ξ0, η0) + ũ(η0, η0)r(η0, η0)

= 2

∫ ξ0

η0

ũξ(ξ, η0) dξ − ũ(ξ0, η0) + ũ(η0, η0)

= ũ(ξ0, η0)− ũ(η0, η0)

I21 = 2

∫ ξ0

η0

ũη(ξ0, η)r(ξ0, η) dη − ũ(ξ0, ξ0)r(ξ0, ξ0) + ũ(ξ0, η0)r(ξ0, η0)

= 2

∫ ξ0

η0

ũη(ξ0, η) dη − ũ(ξ0, ξ0) + ũ(ξ0, η0)

= ũ(ξ0, ξ0)− ũ(ξ0, η0).

For ξ = η we have x+ y = x− y, so that y = 0 and x = ξ. Hence

I21 − I12 = −2ũ(ξ0, η0) + ũ(ξ0, ξ0) + ũ(η0, η0)

= −2u(x0, y0) + u(x0 + y0, 0) + u(x0 − y0, 0)

= −2u(x0, y0) + ϕ(x0 + y0) + ϕ(x0 − y0). (12.1.15)

From

uy(x, y) = ũξ(x + y, x− y)
∂ξ

∂y
+ ũη(x+ y, x− y)

∂η

∂y

= ũξ(x + y, x− y)− ũη(x+ y, x− y) (12.1.16)
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and the same equation for R defined by (12.1.7) and r we find

I11 − I22

=

∫ ξ0

η0

[ũξ(ξ, ξ)r(ξ, ξ) − ũ(ξ, ξ)rξ(ξ, ξ)− ũη(ξ, ξ)r(ξ, ξ) + ũ(ξ, ξ)rη(ξ, ξ)] dξ

=

∫ ξ0

η0

[ũξ(ξ, ξ)− ũη(ξ, ξ)]r(ξ, ξ) dξ −
∫ ξ0

η0

ũ(ξ, ξ)[rξ(ξ, ξ)− rη(ξ, ξ)] dξ

=

∫ ξ0

η0

uy(x, 0)R(x, 0) dx −
∫ ξ0

η0

u(x, 0)Ry(x, 0) dx

=

∫ x0+y0

x0−y0

ψ(x)R(x, 0) dx −
∫ x0+y0

x0−y0

ϕ(x)Ry(x, 0) dx. (12.1.17)

Recall that I1 + I2 = 0 by (12.1.14). Hence the sum of (12.1.15) and (12.1.17) is
zero, and solving this equation for u(x0, y0) completes the proof. �

For the solution r of (12.1.2), (12.1.3) we have already used the four variable
notation r(ξ, η; ξ0, η0), and rξ will denote the derivative with respect to the first
variable, even if the first variable is denoted by a different symbol.

Corollary 12.1.4. Let q1 and q2 be locally integrable on R and let ϕ be a continuously
differentiable function on R. Let u ∈ W 2

1 (D) be a solution of

uxx − q1(x)u = uyy − q2(y)u (12.1.18)

such that ux and uy are continuous on D. Assume that u satisfies the initial
conditions

u(x, 0) = ϕ(x), uy(x, 0) = ϕ′(x), x0 − y0 ≤ x ≤ x0 + y0. (12.1.19)

Let r be the unique solution of (12.1.2), (12.1.3) with q0 given by (12.1.6). Then

u(x0, y0) = ϕ(x0 + y0)−
∫ x0+y0

x0−y0

ϕ(x)rξ(x, x;x0 + y0, x0 − y0) dx. (12.1.20)

Proof. By Theorem 12.1.3, u has the representation (12.1.10) with ψ = ϕ′. Recall
that R has been defined in (12.1.7), where r is the unique solution of (12.1.2),
(12.1.3) with q0 given by (12.1.6). Since x0 + y0 = ξ0 and x0 − y0 = η0, it follows
that

R(x0 ± y0, 0;x0, y0) = r(x0 ± y0, x0 ± y0;x0 + y0, x0 − y0) = 1.

As we have argued in the proof of Theorem 12.1.3, we may used integration by
parts to arrive at∫ x0+y0

x0−y0

ϕ′(x)R(x, 0;x0, y0) dx = ϕ(x0 + y0)− ϕ(x0 − y0)

−
∫ x0+y0

x0−y0

ϕ(x)Rx(x, 0;x0, y0) dx.
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From (12.1.16) for Ry and the corresponding formula for Rx we see that

Rx(x, 0;x0, y0) +Rx(x, 0;x0, y0) = 2rξ(x, x;x0 + y0, x0 − y0).

Substitution of these identities into (12.1.10) gives (12.1.20). �

12.2 Solutions of Sturm–Liouville problems

Lemma 12.2.1 ([180, Lemma 1.4.3]). Let (ak)
∞
k=−∞ be a sequence of complex num-

bers of the form ak = 2π
a k + b + hk, where b ∈ C and hk = O(k−1) for k → ±∞,

let f ∈ L2(0, a) and let

f̃(λ) :=

∫ a

0

f(x)e−iλx dx

be its Fourier transform. Then

f̃(ak) = f̃

(
2π

a
k + b

)
+ k−1g(k)

with
(
f̃
(
2π
a k + b

))∞

k=−∞
∈ l2 and (g(k))∞k=−∞ ∈ l2.

Proof. From the equality

f̃(ak) =

∫ a

0

f(x)e−i( 2π
a k+b)xe−ihkx dx =

∫ a

0

f(x)e−i( 2π
a k+b)x[1− ihkx+O(h2

k)] dx

it follows that

f̃(ak) = f̃

(
2π

a
k + b

)
+ hkf̃

′
(
2π

a
k + b

)
+O(h2

k) = f̃

(
2π

a
k + b

)
+ k−1g(k),

where

g(k) = khkf̃
′
(
2π

a
k + b

)
+ k−1O(k2h2

k).

Since

f̃

(
2π

a
k + b

)
=

∫ a

0

f(x)e−ibxe−2iπa x dx

and

f̃ ′
(
2π

a
k + b

)
= −i

∫ a

0

f(x)xe−ibaxe−2iπa kx dx

are the Fourier coefficients of the functions x �→ f(x)e−ibx and x �→ −if(x)xe−ibx,
which belong to L2(0, a), Bessel’s inequality implies that

∞∑
k=−∞

∣∣∣∣f̃ (
2π

a
k + b

)∣∣∣∣2 < ∞,

∞∑
k=−∞

∣∣∣∣f̃ ′
(
2π

a
k + b

)∣∣∣∣2 < ∞,

and hence also that
∞∑

k=−∞
|g(k)|2 < ∞, because by assumption, sup

k∈Z

|khk| < ∞. �
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Definition 12.2.2 ([281, Section 2.5]). An entire function ω of exponential type ≤ σ
is said to belong to the Paley–Wiener class Lσ if its restriction to the real axis
belongs to L2(−∞,∞).

Remark 12.2.3. For an entire function ω, let ωe = 1
2 (ω + ω̌) and ωo = 1

2 (ω − ω̌)
be the even and odd parts of ω, where ω̌(λ) = ω(−λ). Clearly, ω belongs to Lσ if
and only if ωe and ωo belong to Lσ. We denote the sets of even and odd functions
in Lσ by Lσ

e and Lσ
o , respectively.

Lemma 12.2.4 (Plancherel’s theorem). The function ω belongs to Lσ if and only
if it is of the form

ω(λ) =

∫ σ

0

ξ(t) cosλt dt+ i

∫ σ

0

ζ(t) sin λt dt, λ ∈ C,

where ξ, ζ ∈ L2(0, σ). Furthermore, lim
|λ|→∞

e−| Imλ|a|ω(λ)| = 0 if ω ∈ La.

Proof. The first statement can be found in [263, Theorems 48 and 50] or [281,
Theorem 2.18], while the second statement easily follows from [180, Lemma 1.3.1].

�
Remark 12.2.5. In the notation of Lemma 12.2.4,

ωe(λ) =

∫ σ

0

ξ(t) cosλt dt, ωo(λ) = i

∫ σ

0

ζ(t) sinλt dt, λ ∈ C.

Consider the Sturm–Liouville equation

y′′ − q(x)y + λ2y = 0 (12.2.1)

on the interval (0, a), where 0 < a < ∞, q ∈ L2(0, a) is a real-valued function and
λ is a complex parameter. Let e0(λ, x) denote the solution of equation (12.2.1)
with initial data

e0(λ, 0) = 1, e′0(λ, 0) = −iλ. (12.2.2)

Theorem 12.2.6 ([180, Theorem 1.2.1]). The solution e0(λ, ·) of the initial value
problem (12.2.1), (12.2.2) admits the representation

e0(λ, x) = e−iλx +

∫ x

−x

K̃(x, t)e−iλtdt, 0 ≤ x ≤ a, (12.2.3)

where
K̃(x, t) = −rξ(t, t;x,−x), 0 ≤ x ≤ a, |t| ≤ x, (12.2.4)

and r is the function defined in Lemma 12.1.2 with

q0(ξ, η) = −1

4
q

(
ξ − η

2

)
. (12.2.5)
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Proof. The function
u(x, y) = e−iλxe0(λ, y)

belongs locally to W 2
2 , is continuously differentiable for −∞ < x < ∞, 0 ≤ y ≤ a,

and solves the Cauchy problem

uxx = uyy − q(y)u (12.2.6)

with initial conditions

u(x, 0) = e−iλx, uy(x, 0) = −iλe−iλx.

Corollary 12.1.4 gives that the value of the function u at (x0, y0) is given by

e−iλx0e0(λ, y0) = e−iλ(x0+y0) −
∫ x0+y0

x0−y0

rξ(x, x;x0 + y0, x0 − y0)e
−iλxdx.

Letting x0 = 0 we get

e0(λ, y0) = e−iλy0 −
∫ y0

−y0

rξ(x, x; y0,−y0)e
−iλxdx.

An obvious change in notation now proves (12.2.3). Since (12.2.6) is equation
(12.1.18) with q1 = 0 and q2 = q, (12.2.5) follows from (12.1.6). �
Proposition 12.2.7.

e0(λ, x) = e−iλx +

∫ x

0

sinλ(x − t)

λ
q(t)e0(λ, t) dt. (12.2.7)

Proof. It is easy to see that

y(x) = e−iλx +

∫ x

0

sinλ(x− t)

λ
g(t) dt (12.2.8)

is the solution of the differential equation y′′ + λ2y = g with g ∈ L2(0, a) subject
to the initial condition y(0) = 1, y′(0) = −iλ. For g = qe0(λ, ·) it follows that y is
the unique solution of (12.2.1), (12.2.2). Since this solution is e0(λ, ·), the equation
(12.2.7) follows. �
Lemma 12.2.8. Let p ∈ N0 and q ∈ W p

2 (0, a). Then K̃ defined in Theorem 12.2.6
is continuous, and for all 0 ≤ x ≤ a and |t| ≤ x,

K̃(x, t) =
1

2

∫ x+t
2

0

q(u) du+

∫ x+t
2

0

∫ x−t
2

0

q(α+ β)K̃(α+ β, α− β) dβ dα. (12.2.9)

Furthermore, ∂p1∂p2

∂xp1∂tp2 K̃(a, ·) ∈ W p+1−p1−p2

2 (−a, a) whenever p1 + p2 ≤ p + 1. If

q is real valued, then also K̃ is real valued.
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Proof. From (12.2.4), (12.1.4) and Lemma 12.1.1 we conclude that K̃ is continu-
ous. If q is real valued, then also q0 given by (12.2.5) is real valued, and hence the
real part of r also satisfies (12.1.4). From the uniqueness of the solution of (12.1.4)
we conclude that r is real valued. Substituting (12.2.3) into (12.2.7) we arrive at∫ x

−x

K̃(x, t)e−iλtdt =

∫ x

0

sinλ(x− t)

λ
q(t)e−iλtdt

+

∫ x

0

sinλ(x− t)

λ
q(t)

∫ t

−t

K̃(t, ξ)e−iλξ dξ dt. (12.2.10)

Next we express the right-hand side of the above equation as a Fourier transform.
Since

sinλ(x− t)

λ
e−iλξ =

1

2

∫ ξ+(x−t)

ξ−(x−t)

e−iλu du, (12.2.11)

it follows that∫ x

0

sinλ(x− t)

λ
q(t)e−iλtdt =

1

2

∫ x

0

q(t)

∫ x

2t−x

e−iλu du dt

=
1

2

∫ x

−x

e−iλu

∫ x+u
2

0

q(t) dt du. (12.2.12)

Using equation (12.2.11) once more, we obtain the equality∫ x

0

sinλ(x− t)

λ
q(t)

∫ t

−t

K̃(t, ξ)e−iλξ dξ dt

=
1

2

∫ x

0

q(t)
( ∫ t

−t

K̃(t, ξ)

∫ ξ+(x−t)

ξ−(x−t)

e−iλu du dξ
)
dt.

Interchanging variables, the inner double integral becomes∫ t

−t

K̃(t, ξ)

∫ ξ+(x−t)

ξ−(x−t)

eiλu du dξ =

∫ x

−x

eiλu
∫ min{t,u+(x−t)}

max{−t,u−(x−t)}
K̃(t, ξ) dξ du.

Consequently,∫ x

0

q(t)

∫ t

−t

K̃(t, ξ)

∫ ξ+(x−t)

ξ−(x−t)

e−iλu du dξ dt

=

∫ x

−x

e−iλu

∫ x

0

q(t)

∫ min{t,u+(x−t)}

max{−t,u−(x−t)}
K̃(t, ξ) dξ dt du.

It follows that∫ x

0

sinλ(x − t)

λ
q(t)

∫ t

−t

K̃(t, ξ)e−iλξ dξ dt (12.2.13)

=
1

2

∫ x

−x

e−iλt

∫ x

0

q(u)

∫ min{−u,t+(x−u)}

max{−u,t−(x−u)}
K̃(u, ξ) dξ du dt.
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Equations (12.2.12) and (12.2.13) show that (12.2.10) leads to∫ x

−x

K̃(x, t)e−iλtdt

=
1

2

∫ x

−x

(∫ x+t
2

0

q(u)du +

∫ x

0

q(u)

∫ min{u,t+(x−u)}

max{−u,t−(x−u)}
K̃(u, ξ) dξ du

)
e−iλt dt.

Taking the inverse Fourier transform, we arrive at

K̃(x, t) =
1

2

∫ x+t
2

0

q(u)du+
1

2

∫ x

0

q(u)

∫ min{u,t+(x−u)}

max{−u,t−(x−u)}
K̃(u, ξ) dξ du. (12.2.14)

Performing the change of variables

u+ ξ = 2α and u− ξ = 2β

in this integral, the region of the double integral,

−u ≤ ξ ≤ u, t− (x − u) ≤ ξ ≤ t+ (x − u), 0 ≤ u ≤ x,

becomes

0 ≤ α, 0 ≤ β, 2β ≤ x− t, 2α ≤ x+ t, 0 ≤ α+ β ≤ x,

where the last condition is redundant since it follows from the first four. Hence
(12.2.9) follows. �

From [180, Corollary after Theorem 1.2.1, Theorem 1.2.2 and (1.2.18)] we
obtain

Theorem 12.2.9.

1. If the potential q of the Sturm–Liouville equation

−y′′(x) + q(x)y(x) = λ2y(x), x ∈ (0, a), (12.2.15)

belongs to L2(0, a), then the solutions of the initial value problems s(λ, 0) = 0,
s′(λ, 0) = 1 and c(λ, 0) = 1, c′(λ, 0) = 0 can be expressed as

s(λ, x) =
sinλx

λ
+

∫ x

0

K(x, t)
sinλt

λ
dt, (12.2.16)

c(λ, x) = cosλx +

∫ x

0

B(x, t) cosλt dt, (12.2.17)

where K(x, t) = K̃(x, t)−K̃(x,−t), B(x, t) = K̃(x, t)+K̃(x,−t), and K̃(x, t)
is the unique solution of the integral equation

K̃(x, t) =
1

2

∫ x+t
2

0

q(s) ds+

∫ x+t
2

0

∫ x−t
2

0

q(s+ p)K̃(s+ p, s− p) dp ds

(12.2.18)
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on the triangular region {(x, t) ∈ [0, a]× [−a, a] : |t| ≤ x}. In particular, it is
true that K(x, 0) = 0 and

B(x, x) = K(x, x) = K̃(x, x) =
1

2

∫ x

0

q(s)ds. (12.2.19)

2. If q ∈ Wn
2 (0, a), then K and B have partial derivatives up to (n+1)th order

which belong to L2(0, a).

Proof. We observe that

s(λ, x) =
e0(−λ, x) − e0(λ, x)

2iλ
(12.2.20)

for all x ∈ [0, a] and all nonzero complex numbers λ since both functions solve
the initial value problem (12.2.15) subject to the boundary condition y(0) = 0,
y′(0) = 1, see (12.2.1) and (12.2.2) for e0. Theorem 12.2.6 shows that

s(λ, x) =
sinλx

λ
+

1

2iλ

∫ x

−x

(
K̃(x, t)eiλt − K̃(x, t)e−iλt

)
dt

=
sinλx

λ
+

1

2iλ

∫ x

0

(
[K̃(x, t)− K̃(x,−t)]eiλt − (K̃(x, t)− K̃(x,−t)e−iλt

)
dt

=
sinλx

λ
+

∫ x

0

[K̃(x, t)− K̃(x,−t)]
sinλt

λ
dt,

which proves (12.2.17). Similarly, (12.2.18) follows from

c(λ, x) =
e0(λ, x) + e0(−λ, x)

2
. (12.2.21)

The properties of K and B now follow immediately from their definition and
Lemma 12.2.8. �

Observe that − sin(j+1) is an antiderivative of sin(j) for all j ∈ N0. We also

note that K is an odd function with respect to t, whence ∂j

∂tj K(a, 0) = 0 and
∂j

∂tj Kx(a, 0) = 0 for all even nonnegative integers. Similarly, since B is an even

function with respect to t, it follows that ∂j

∂tj B(a, 0) = 0 and ∂j

∂tj Bx(a, 0) = 0 for
all odd nonnegative integers. Then integration by parts and differentiation with
respect to x, respectively, followed by n integrations by parts in (12.2.16) and
(12.2.17) leads to
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Corollary 12.2.10. If n ∈ N0 and q ∈ Wn
2 (0, a), then

s(λ, a) =
sinλa

λ
−

n∑
j=0

∂j

∂tj
K(a, a)

sin(j+1) λa

λj+2
+

∫ a

0

∂n+1

∂tn+1
K(a, t)

sin(n+1) λt

λn+2
dt,

(12.2.22)

s′(λ, a) = cosλa+K(a, a)
sinλa

λ
−

n∑
j=1

∂j−1

∂tj−1
Kx(a, a)

sin(j) λa

λj+1

+

∫ a

0

∂n

∂tn
Kx(a, t)

sin(n) λt

λn+1
dt, (12.2.23)

c(λ, a) = cosλa+

n∑
j=0

∂j

∂tj
B(a, a)

sin(j) λa

λj+1
−
∫ a

0

∂n+1

∂tn+1
B(a, t)

sin(n) λt

λn+1
dt,

(12.2.24)

c′(λ, a) = −λ sinλa+B(a, a) cosλa+

n∑
j=1

∂j−1

∂tj−1
Bx(a, a)

sin(j−1) λa

λj

+

∫ a

0

∂n

∂tn
Bx(a, t)

sin(n+1) λt

λn
dt, (12.2.25)

where ∂n+1

∂tn+1K(a, ·), ∂n

∂tnKx(a, ·), ∂n+1

∂tn+1B(a, ·), ∂n

∂tnBx(a, ·) belong to L2(0, a).

Corollary 12.2.11. The entire functions λ �→ λs(λ, a), s′(·, a), c(·, a), and λ �→
λ−1c′(λ, a) are sine type functions of type a.

Proof. The first term of the representation in Corollary 12.2.10 of each of these
functions can be estimated as

1

4
e| Imλ|a ≤ | sinλa| ≤ e| Imλ|a or

1

4
e| Imλ|a ≤ | cosλa| ≤ e| Imλ|a

for sufficiently large | Imλ|, whereas the remaining terms satisfy

O(λ−1)e| Imλ|a.

Hence each of these functions is a sine type function by Proposition 11.2.19. �

12.3 Representations of some sine type functions

Let b and c be real numbers. Then the solution ω of the initial value problem

y′′ +
(
λ2 − 2ibλ− c

)
y = 0, x ∈ (0, a), y(λ, 0) = 0, y′(λ, 0) = 1, (12.3.1)

has the representation ω(λ, x) = τ(λ)−1 sin τ(λ)x, and ω′(λ, x) = cos τ(λ)x, where
τ(λ) =

√
λ2 − 2ibλ− c. Since both ω and ω′ are even functions with respect to

τ , the representation is unambiguous. The next lemma gives an asymptotic rep-
resentation of these two functions in terms of sinλa and cosλa for x = a > 0.
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Lemma 12.3.1. Let b, c ∈ R and a > 0. Then there are R > 0 and analytic
functions fj,k on {z ∈ C : |z| < R−1} for j, k = 1, 2, satisfying fj,k(−z) = fj,k(z),
f1,1(0) = f2,1(0) = cosh ba and −f1,2(0) = f2,2(0) = sinh ba such that for the
solution ω(·, a) of the initial value problem (12.3.1) at x = a and its derivative
ω′(·, a) at x = a we have the representations

ω(λ, a) =
sin τ(λ)a

τ(λ)
= f1,1(λ

−1)
sinλa

λ
+ if1,2(λ

−1)
cosλa

λ
, (12.3.2)

ω′(λ, a) = cos τ(λ)a = f2,1(λ
−1) cosλa+ if2,2(λ

−1) sinλa, (12.3.3)

for |λ| > R.

Proof. Let r > 0 such that 2|b|r + cr2 < 1. Let h1 be the unique analytic branch
of z �→ √

1− 2ibz − cz2 on {z ∈ C : |z| < r} with h1(0) = 1, i. e.,

h1(z) =
∞∑
j=0

(1
2

j

)
(−2ibz − cz2)j , |z| < r. (12.3.4)

Note that h1(z) �= 0 for all |z| < r. For |λ| > R = 1
r we will now choose the branch

of τ such that
τ(λ)

λ
= h1(λ

−1).

For |z| < r we define

h2(z) =
h1(z)− 1

z
. (12.3.5)

Clearly, h2 is analytic with h2(0) = −ib. For |λ| > R we conclude that

τ(λ) − λ = λ

(
τ(λ)

λ
− 1

)
= h2(λ

−1).

It follows that

sin τ(λ)a

τ(λ)
=

cosh2(λ
−1)a

h1(λ−1)

sinλa

λ
+

sinh2(λ
−1)a

h1(λ−1)

cosλa

λ
,

cos τ(λ)a = cosh2(λ
−1)a cosλa− sinh2(λ

−1)a sinλa.

For |z| < r we define

f1,1(z) =
cosh2(z)a

h1(z)
, f1,2(z) = −i

sinh2(z)a

h1(z)
, (12.3.6)

f2,1(z) = cosh2(z)a, f2,2(z) = i sinh2(z)a, (12.3.7)

which proves the representations (12.3.2) and (12.3.3). We also obtain f1,1(0) =
f2,1(0) = cosh2(0)a = cosh ba and −f1,2(0) = f2,2(0) = i sinhh2(0)a = sinh ba.
The symmetry of these functions follows from

h1(−z) =
√
1 + 2ibz − cz2 = h1(z)

and h2(−z) = −h2(z) for |z| < r. �
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Corollary 12.3.2. Under the assumptions of Lemma 12.3.1, for each n ∈ N there
are polynomials fj,k,n of degree ≤ n and entire functions ψj,n ∈ La, j, k = 1, 2,

such that fj,k,n(−z) = fj,k,n(z), fj,1,n(0) = cosh ba, (−1)jfj,2,n(0) = sinh ba,

ψj,n(−z) = (−1)n+jψj,n(z) and such that

sin τ(λ)a

τ(λ)
= f1,1,n(λ

−1)
sinλa

λ
+ if1,2,n(λ

−1)
cosλa

λ
+

ψ1,n(λ)

λn+1
, (12.3.8)

cos τ(λ)a = f2,1,n(λ
−1) cosλa+ if2,2,n(λ

−1) sinλa+
ψ2,n(λ)

λn
. (12.3.9)

Proof. Let fj,k,n, j, k = 1, 2, be the Taylor polynomial about 0 of order n of the
function fj,k from Lemma 12.3.1. Defining the function ψ1,n by (12.3.8), we have

ψ1,n(λ) = λn+1 sin τ(λ)a

τ(λ)
− λnf1,1,n(λ

−1) sinλa− iλnf1,2,n(λ
−1) cosλa

= λn
(
f1,1(λ

−1)− f1,1,n(λ
−1)

)
sinλa+ iλn

(
f1,2(λ

−1)− f1,2,n(λ
−1)

)
cosλa,

where the second identity follows from (12.3.2). The first of these representations
shows that ψ1,n is an entire function with the stated symmetry. Finally, the second
representation shows that ψ1,n is of the form O(|λ|−1) sinλa + O(|λ|−1) cosλa,
and therefore ψ1,n is of exponential type ≤ a and O(|λ|−1) on the real axis. Hence
ψ1,n ∈ La. The proof for ψ2,n is similar. �
Lemma 12.3.3 ([180, Lemma 3.4.2]). For the functions u and v to have the repre-
sentations

u(λ) =
sinλa

λ
− 4π2Aa cosλa

4λ2a2 − π2
+

f(λ)

λ2
, (12.3.10)

v(λ) = cosλa+Bπ2 sinλa

λa
+

g(λ)

λ
, (12.3.11)

where A,B ∈ C, f ∈ La
e , f(0) = 0, g ∈ La

o, it is necessary and sufficient that

u(λ) = a

∞∏
k=1

(
πk

a

)−2

(u2
k − λ2), uk =

πk

a
+

πA

ak
+

αk

k
, (12.3.12)

v(λ) =
∞∏
k=1

(
π

a

(
k − 1

2

))−2

(v2k − λ2), vk =
π

a

(
k − 1

2

)
+

πB

ak
+

βk

k
,

(12.3.13)

where (αk)
∞
k=1 ∈ l2 and (βk)

∞
k=1 ∈ l2.

Proof. We define
ϕs(λ) = iλ2u(λ).

In view of
4π2aλ2

4λ2a2 − π2
− π2

a
=

π4

(4λ2a2 − π2)a
,
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ϕs is an even entire function of the form ϕ as in (7.1.4) with σ = 0, α = 1, M = 0

and N = π2A
a . Then the representation of uk in (12.3.13) follows from part 1 in

Lemma 7.1.3 if we observe that u is even and that we have to omit a double zeros
at 0 from the sequence (λ̃k)

∞
k=−∞,k �=0. Since λ �→ λ sinλa is a sine type function,

it follows from Lemma 11.2.29 that

u(λ) = a′
∞∏
k=1

(
πk

a

)−2

(u2
k − λ2)

with some a′ �= 0. From the product representation of the sine function we infer
that

λu(λ)

sinλa
=

a′

a

∞∏
k=1

(
πk

a

)−2

(u2
k − λ2)

(
1− λ2a2

π2k2

)−1

=
a′

a

∞∏
k=1

u2
k − λ2

π2k2

a2 − λ2

=
a′

a

∞∏
k=1

(
1 +

u2
k − π2k2

a2

π2k2

a2 − λ2

)
.

Since u2
k− π2k2

a2 is bounded with respect to k and since |π2k2

a2 −λ2| ≥ π2k2

a2 for λ on

the imaginary axis, it follows that the right-hand side converges to a′
a as λ → ∞

along the imaginary axis, whereas the corresponding limit on the left-hand side
is 1. Hence a′ = a and we have shown that the function given by (12.3.10) has the
representation (12.3.12).

Conversely, assume that u is given by (12.3.12). Putting λk = πk
a , we have

uk = λk +
π2A

a2
λ−1
k +

παk

a
λ−1
k .

Since (λk)k∈Z is the sequence of the zeros of λ �→ sinλa, it follows from Remark
11.3.16 that

λu(λ) = C0 sinλa

(
1 +

B1

λ

)
− C0

π2A

aλ
cosλa+

f2(λ)

λ
, (12.3.14)

where C0 �= 0, B1 is a constant and f2 ∈ La. Taking into account that u is an even
entire function, we obtain B1 = 0, f2 ∈ La

e and f2(0) = 0. From the first part of
the proof we conclude that C0 = 1. Hence u is of the form (12.3.10).

Similarly, the function defined by

ϕc(λ) = λv(λ)

is an odd entire function of the form ϕ as in (7.1.4) with σ = 1, α = 0, M =
π2B
a and N = 0. Arguing as for ϕs it follows that (12.3.11) and (12.3.13) are

equivalent. �
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Lemma 12.3.4. For the entire functions u and v to admit the representations

u(λ) =
sinλa

λ
− 4π2Aa cosλa

4λ2a2 − π2
+ C

sinλa

λ3
+

f(λ)

λ3
, (12.3.15)

v(λ) = cosλa+Bπ2 sinλa

λa
+D

cosλa

4λ2a2 − π2
+

g(λ)

λ2
, (12.3.16)

where A,B,C,D ∈ C, f ∈ La
o , g ∈ La

e , it is necessary and sufficient that

u(λ) = a

∞∏
k=1

(
πk

a

)−2

(u2
k − λ2), uk =

πk

a
+

πA

ak
+

αk

k2
, (12.3.17)

v(λ) =

∞∏
k=1

(
π

a

(
k − 1

2

))−2

(v2k − λ2), vk =
π

a

(
k − 1

2

)
+

πB

ak
+

βk

k2
,

(12.3.18)

where (αk)
∞
k=1 ∈ l2 and (βk)

∞
1 ∈ l2.

Proof. First assume that (12.3.15) or (12.3.16) hold. We are going to prove that
the representations of the zeros uk and vk given in (12.3.12) and (12.3.13) can be
written in the form (12.3.17) and (12.3.18). In case (12.3.15) we define

χ̃(μ) = μ2u(μ), (12.3.19)

while in case (12.3.16) we define

χ̃(μ) = −μv
(
μ+

π

2a

)
. (12.3.20)

It is easy to see that in either case,

χ̃(μ) = (μ+B2μ
−1) sinμa+A1 cosμa+Ψ1(μ)μ

−1

with Ψ1 ∈ La. Indeed, in case (12.3.15) we have B2 = C and A1 = −π2Aa−1,
while in case (12.3.16) we have B2 = D

4a2 and A1 = −Bπ2a−1. Hence χ̃ is of the
form as considered in Lemma 7.1.5 with n = 1, B0 = 1, B1 = 0, A2 = 0, except
that we do not require that A1 and B1 are real and that Ψn is symmetric. But it
is easy to see that these requirements are only used to guarantee that the zeros
of χ̃ can be indexed properly; the asymptotic representation (7.1.13) of the zeros
holds without these requirements. We therefore conclude from Lemma 7.1.5 that
the zeros of χ̃ have the asymptotic representation

μk =
πk

a
− A1

kπ
+

b
(1)
k

k2
,

where (b
(1)
k )∞k=1 ∈ l2. Observing that uk = μk and vk = μk− π

2a , the representations
(12.3.17) and (12.3.18) follow.
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Conversely, assume that (12.3.17) holds. By the first part of this proof, the

zeros (λ
(0)
k )k∈Z\{0} of the entire function u0 defined by

u0(λ) =
sinλa

λ
− 4π2Aa cosλa

4λ2a2 − π2
(12.3.21)

have the asymptotic behaviour

λ
(0)
k =

πk

a
+

πA

ak
+

α0,k

k2
, (12.3.22)

where (α0,k)
∞
k=1 ∈ l2 and α0,−k = −α0,k for all k ∈ N. Comparing (12.3.22) with

(12.3.17) we obtain

uk = λ
(0)
k +

γk(
λ
(0)
k

)2 ,
where (γk)k∈Z\{0} ∈ l2. It is easy to see that λ �→ λu0(λ) is a sine-type function
of type a. In view of Remark 11.3.16 we obtain

λu(λ) = C0λu0(λ)

(
1 +

B1

λ
+

C

λ2

)
+

f2(λ)

λ2
, (12.3.23)

where C0 �= 0, B1, C are constants and f2 ∈ La. Taking into account that u
and u0 are even functions, we obtain B1 = 0 and f2 ∈ La

o . Since u satisfies the
representation (12.3.10) in Lemma 12.3.3, it follows that C0 = 1. Substituting
(12.3.21) into (12.3.23) and observing C0 = 1 and B1 = 0, we obtain (12.3.15).

Finally assume that (12.3.18) holds. By the first part of this proof, the zeros

(λ
(0)
k )k∈Z\{0} of the entire function v0 defined by

v0(λ) = cosλa+Bπ2 sinλa

λa
(12.3.24)

have the asymptotic behaviour

λ
(0)
k =

π

a

(
|k| − 1

2

)
sgnk +

πB

ak
+

β0,k

k2
, (12.3.25)

where (β0,k)
∞
k=1 ∈ l2 and β0,−k = −β0,k for all k ∈ N. Comparing (12.3.25) with

(12.3.18) we obtain

vk = λ
(0)
k +

γk(
λ
(0)
k

)2 ,
where (γk)k∈Z\{0} ∈ l2. It is easy to see that v0 is a sine-type function of type a.
In view of Remark 11.3.16 we obtain

v(λ) = C0v0(λ)

(
1 +

B1

λ
+

D

4a2λ2

)
+

f2(λ)

λ2
, (12.3.26)

where C0 �= 0, B1, D are constants and f2 ∈ La. Taking into account that v
and v0 are even functions, we obtain B1 = 0 and f2 ∈ La

e . Since v satisfies
the representation (12.3.11) in Lemma 12.3.3, it follows that C0 = 1. Substituting
(12.3.24) into (12.3.26) and observing C0 = 1 and B1 = 0, we obtain (12.3.16). �
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12.4 The fundamental equation

Throughout this section let u and v be as in (12.3.10) and (12.3.11) with A = B
and such that the numbers uk and vk in (12.3.12) and (12.3.13) are real or pure
imaginary for all k ∈ N and satisfy

v21 < u2
1 < v22 < u2

2 · · · .

We consider the entire function χ defined by

χ(λ) = v(λ) + iλu(λ), λ ∈ C. (12.4.1)

Lemma 12.4.1. The function χ is of SSHB class.

Proof. By definition, u and v are even functions, and we can write u(λ) = Q(λ2)
and v(λ) = P (λ2) with entire functions Q and P , where the sets {u2

k : k ∈ N} and
{v2k : k ∈ N} are the sets of the zeros of Q and P , respectively, and all zeros of Q
and P are simple and interlace. Since Q and P have the representations (12.3.12)
and (12.3.13), it is easy to see that Q(v21) is an infinite product of positive numbers,
whereas P ′(v21) is the negative of an infinite product of positive numbers. It follows
that Q′(x)P (x)−Q(x)P ′(x) > 0 for all x ∈ R sufficiently close to v21 . Hence there
are x ∈ R such that P (x) �= 0 and such that θ = Q

P satisfies θ′(x) > 0. Therefore
θ is a Nevanlinna function by Theorem 11.1.6 and Remark 11.1.7. Then θ ∈ N ep

+

by Corollary 5.2.3, and thus χ is of SSHB class by Definition 5.2.6. �

We further define the function ψ by

ψ(λ) = e−iλaχ(λ) (12.4.2)

and the function S by

S(λ) =
ψ(λ)

ψ(−λ)
. (12.4.3)

Proposition 12.4.2. Let κ := #{k ∈ N : v2k < 0}. Then S is meromorphic on C and
analytic on R, and S has exactly κ poles in the open upper half-plane. All poles in
the open upper half-plane are simple and lie on the imaginary axis. Furthermore,
for λ ∈ C such that ψ(λ) �= 0 and ψ(−λ) �= 0 we have

S(−λ) =
ψ(−λ)

ψ(λ)
= S(λ), and

1

S(λ)
=

ψ(−λ)

ψ(λ)
= S(−λ). (12.4.4)

In particular,

S(−λ) = S(λ), |S(λ)| = 1, λ ∈ R. (12.4.5)
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Proof. The function S is the quotient of two nonzeros entire functions and hence
meromorphic on C. Let χ̌(λ) = χ(−λ), λ ∈ C. Since χ and χ̌ do not have common
nonzero zeros, the statement on the poles and the analyticity of S on R \ {0}
immediately follows from Theorem 5.2.9. Furthermore, the possible singularity of
S at 0 is removable since lim

λ→0
S(λ) = −1 if 0 is a (simple) zero of χ. The identities

(12.4.4) and (12.4.5) are immediate consequences of the fact that χ is real on the
imaginary axis. �

For b ≥ 0 we define Sb by

Sb(λ) = 1− S(ib+ λ), λ ∈ C, ψ(−ib− iλ) �= 0. (12.4.6)

Lemma 12.4.3.

1. Let b ≥ 0 such that ib is not a pole of S. Then Sb ∈ L2(R).

2. Let γ ≥ 0 such that S is analytic on {λ ∈ C : Imλ ≥ γ} and define

F (x) =
e−γx

2π

∫ ∞

−∞
Sγ(λ)e

iλx dλ, x ∈ R. (12.4.7)

Then the function F is real valued and independent of γ. Furthermore, the function
x �→ eγxF (x) is the inverse Fourier transform of Sγ and can be represented as
F1 + F2, where F1 ∈ L2(R), F2 ∈ W 1

2 (R) are real-valued functions, F1(x) = 0 for
x > 0, and F2(x) = 0 for x > 2a.

Proof. 1. We conclude from the representations (12.3.10) and (12.3.11) of u and v
that

χ(λ) = eiλa +
Aπ2

a

sinλa

λ
− 4π2iλAa cosλa

4λ2a2 − π2
+

g(λ) + if(λ)

λ
,

which gives

ψ(λ) = 1+
Aπ2

a

sinλa

λ
e−iλa− 4π2iλAa cosλa

4λ2a2 − π2
e−iλa+

g(λ) + if(λ)

λ
e−iλa (12.4.8)

and

1

ψ(−λ)
= 1− Aπ2

a

sinλa

λ
eiλa − 4π2iλAa cosλa

4λ2a2 − π2
eiλa +

g(λ)− if(λ)

λ
eiλa +O(λ−2)

(12.4.9)
for λ in the closed upper half-plane. Therefore, the function S satisfies

S(λ) = 1− 2
Aπ2i

a

sin2 λa

λ
− 8π2iλAa cos2 λa

4λ2a2 − π2
+

2

λ
(g(λ) cosλa− f(λ) sinλa)

+O(λ−2)e2 Imλa.

Observing that
4a2

4λ2a− π2
=

1

λ2
+O(λ−4),
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this representation can be written in the form

1− S(λ) = 2
Aπ2i

λa
− 2

λ
(g(λ) cosλa− f(λ) sin λa) +O(λ−2)e2 Imλa. (12.4.10)

By Proposition 12.4.2 we know that poles of S in the closed upper half-plane
lie on the positive imaginary axis, and from (12.4.10) we thus infer that 1 − S is
analytic and square integrable on each line Imλ = b with b ≥ 0 for which ib is not
a pole of S.

2. Using (12.4.4) we have

Sγ(−λ) = 1− S(iγ − λ) = 1− S(iγ + λ) = Sγ(λ), λ ∈ R,

so that

F (x) =
e−γx

π

∫ ∞

0

Re
(
Sγ(λ)e

iλx
)
dλ, x ∈ R,

which shows that F is real valued. We can write

F (x) =
1

2π

∫ ∞

−∞
(1− S(iγ + λ))ei(iγ+λ)x dλ

=
1

2π

∫
Imλ=γ

(1− S(λ))eiλx dλ =: Fγ(λ).

If we now take γ′ > γ, then it follows from Cauchy’s theorem that

|Fγ′(x) − Fγ(x)| ≤ 1

2π
lim sup
R→∞

(∫ γ′

γ

|(1− S(R+ it))ei(R+it)x|dt

+

∫ γ′

γ

|(1− S(−R+ it))ei(−R+it)x|dt
)

= lim sup
R→∞

O(R−1) = 0,

and therefore the function F is independent of the special choice of γ.

The first term of the representation (12.4.10) of 1 − S has a pole at λ = 0.
But it is easy to see that (12.4.10) can be written as

1− S(λ) =
2Aπ2i

a(λ+ i)
+

ω(λ)

λ+ i
, λ ∈ C,

where ω is analytic in the closed half-plane {λ ∈ C : Imλ ≥ γ}, ω(iγ+ ·) ∈ L2(R),
and λ �→ ω(λ)e−2 Imλa is bounded in that half-plane. We can therefore write
eγxF (x) = F1(x) + F2(x) with

F1(x) =
1

2π

∫ ∞

−∞

2Aπ2i

a(λ + iγ + i)
eiλx dλ, F2(x) =

1

2π

∫ ∞

−∞

ω(λ+ iγ)

λ+ iγ + i
eiλx dλ.
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For x > 0 and R > 0 it follows from Cauchy’s integral theorem and Lebesgue’s
dominated convergence theorem that∫ R

−R

eiλx

λ+ iγ + i
dλ = −

∫ π

0

eRei(θ+
π
2

)x

Reiθ + iγ + i
Reiθ dθ → 0 as R → ∞.

Similarly, for x < 0 and R > γ + 1 we use the residue theorem and Lebesgue’s
dominated convergence theorem to conclude that∫ R

−R

eiλx

λ+ iγ + i
dλ =

∫ 2π

π

eRei(θ+
π
2

)x

Reiθ + iγ + i
Reiθ dθ − 2πi res−iγ−i

eiλx

λ+ iγ + i

→ −2πie(γ+1)x as R → ∞.

Therefore

F1(x) =

{
0 if x > 0,
2Aπ2

a e(γ+1)x if x < 0.

The function F2 is differentiable with

F ′
2(x) =

i

2π

∫ ∞

−∞

λ

λ+ iγ + i
ω(λ+ iγ)eiλx dλ, x ∈ R.

Hence F2 and F ′
2 are inverse Fourier transforms of functions in L2(R), which shows

that F2 ∈ W 1
2 (R). For x > 2a and R > 0 it follows from Cauchy’s integral theorem,

the boundedness of λ �→ ω(λ)e2iλa in the closed half-plane {λ ∈ C : Imλ ≥ γ},
and Lebesgue’s dominated convergence theorem that∫ R

−R

ω(λ+ iγ)

λ+ iγ + i
eiλx dλ = −

∫ π

0

ω(Reiθ + iγ)

Reiθ + iγ + i
eRei(θ+

π
2

)(2a−x)Reiθ dθ → 0

as R → ∞. Therefore, F2(x) = 0 for x > 2a. �

The fundamental equation, see [180, (3,2,10), (3.3.7)] will formally be de-
fined as

F (x+ y) +H(x, y) +

∫ ∞

x

H(x, t)F (y + t) dt = 0, 0 ≤ x ≤ y. (12.4.11)

In order to have the limits of integration independent of x, we substitute y+x for
y and t+ x for t, see [180, (3.3.7′)], and the fundamental equation becomes

F (2x+y)+H(x, x+y)+

∫ ∞

0

H(x, x+t)F (2x+y+t) dt = 0, x, y ≥ 0. (12.4.12)

We observe that in view of F (x) = 0 for x > 2a, the equation (12.4.12) can be
written as

F (2x+ y)+H(x, x+ y)+

∫ 2a−2x−y

0

H(x, x+ t)F (2x+ y+ t) dt = 0, (x, y) ∈ D,

(12.4.13)
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where D = {(x, y) ∈ R2 : 0 ≤ x ≤ a, 0 ≤ y ≤ 2(a − x)} since for any other
values of x, y ≥ 0, H(x, x+ y) = 0 is necessary and sufficient for (12.4.12) to hold.
However, it will be more convenient to use a rectangular region, and therefore we
will consider the region [0, a]× [0, 2a] instead of D.

For 0 ≤ x ≤ a define

(Fxf)(y) =

∫ 2a

0

F (2x+ y + t)f(t) dt, f ∈ L2(0, 2a), y ∈ [0, 2a]. (12.4.14)

The following result is a special case of [180, Lemmas 3.3.1, 3.3.2 and 3.3.3].

Lemma 12.4.4. For 0 ≤ x ≤ a, the operator Fx is a self-adjoint compact operator
in the space L2(0, 2a). If v

2
1 > 0, then I + Fx � 0.

Proof. Since (y, t) �→ F (2x + y + t) is a real-valued and symmetric continuous
function on [0, 2a]× [0, 2a], the operator Fx is self-adjoint and compact, see, e. g.,
[109, p. 240].

Now let v21 > 0. Then S is analytic in the closed upper half-plane, and we
can take γ = 0 in (12.4.7). In particular, F ∈ L2(R). Let f ∈ L2(0, 2a). Putting
f(t) = (Fxf)(t) = 0 for t ∈ R \ [0, 2a] and using the notations f̌(t) = f(−t),
τb(t) = y + b for x, b ∈ R, the right-hand side of (12.4.14) can be written as a
convolution, so that we arrive at

Fxf = (F ◦ τ2x) ∗ f̌ on [0,∞).

Hence there is a function g with support in (−∞, 0] such that

Fxf + g = (F ◦ τ2x) ∗ f̌ on R. (12.4.15)

For y < 0 we have

|g(y)|2 =

∣∣∣∣∫ 2a

0

F (2x+ y + t)f(t) dt

∣∣∣∣2 ≤
∫ 2a

0

|F (2x+ y + t)|2 dt ‖f‖2,

where ‖ · ‖ denotes the norm in L2(R). Hence

‖g‖ =

∫ 0

−∞
|g(y)|2 dy ≤

∫ 0

−∞

∫ 2a

0

|F (2x+ y + t)|2 dt dy ‖f‖2

=

∫ 2a

0

∫ 0

−∞
|F (2x+ y + t)|2 dy dt ‖f‖2 ≤ 2a‖F‖2‖f‖2,

which shows that g ∈ L2(−∞, 0).

Taking the inner product with f in (12.4.15) and observing that gf = 0, we
arrive at

(Fxf, f) = ((F ◦ τ2x) ∗ f̌ , f).
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Let f̂ denote the Fourier transformation of f . Taking the Fourier transforms of
the functions in the above inner product and observing Parseval’s formula gives

((Fxf )̂, f̂) = ((F ◦ τ2x)̂ ˇ̂
f, f̂),

see, e. g., [108, (21.41)]. It is well known and easy to check that f̂ is an entire
function. We observe that for any function h ∈ L2(R) and b ∈ R,

(h ◦ τb)̂(λ) =
∫ ∞

−∞
h(b+ t)e−iλt dt =

∫ ∞

−∞
h(t)e−iλ(t−b) dt = eiλbĥ(λ). (12.4.16)

Since F̂ = 1− S by definition of F in (12.4.7), we conclude that

((Fxf )̂, f̂) =

∫ ∞

−∞
e2iλx(1 − S(λ))f̂(−λ)f̂(λ) dλ.

Again from (12.4.16) and Parseval’s identity we conclude that∫ ∞

−∞
e2iλxf̂(−λ)f̂ (λ) dλ =

∫ ∞

−∞
eiλxf̂(−λ)e−iλxf̂(λ) dλ

=

∫ ∞

−∞
(f ◦ τ−x)(−t)(f ◦ τ−x)(t) dt.

But (f ◦ τ−x)(t) = f(t−x) = 0 if t < 0 since f is zero outside [0, 2a], and therefore
the integrand on the right-hand side is zero. We conclude that

(Fxf, f) =
1

2π
((Fxf )̂, f̂) = − 1

2π

∫ ∞

−∞
e2iλxS(λ)f̂(−λ)f̂(λ) dλ. (12.4.17)

Observing (12.4.5) it follows from the Cauchy–Schwarz–Bunyakovskii inequality
that

(Fxf, f) ≥ − 1

2π

∫ ∞

−∞
|f̂(−λ)| |f̂(λ)| dλ ≥ − 1

2π
‖f̂‖2 = −‖f‖2. (12.4.18)

Altogether, we conclude that

((I + Fx)f, f) ≥ 0 (12.4.19)

for all f ∈ L2[0, 2a]. Hence I + Fx ≥ 0.

Since Fx is compact, I + Fx is a Fredholm operator of index 0, and for
I + Fx � 0 it remains to show that I + Fx is injective. Hence let f ∈ L2(0, 2a)
such that (I + Fx)f = 0. For this f , (12.4.19) becomes and inequality, and hence
also the Cauchy–Schwarz–Bunyakovskii inequality (12.4.18) is an equality. But
this happens if and only if one function in the inner product is a nonnegative
multiple of the other function, i. e., when there is α ≥ 0 such that

−e2iλxS(λ)f̂(−λ) = αf̂(λ), λ ∈ R.
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Observing that S(0) = 1 and that in case f �= 0 the Taylor expansion of the entire

function f̂ about 0 leads to

lim
λ→0

∣∣∣∣∣ f̂(λ)

f̂(−λ)

∣∣∣∣∣ = 1,

it follows that α = 1, and the identity theorem gives

f̂(λ) + e2iλxS(λ)f̂(−λ) = 0, λ ∈ C, S(λ) �= 0, (12.4.20)

which is also trivially true in case f = 0.

First let x = 0. Then (12.4.20) holds with x = 0. Hence all poles of S must

be cancelled by zeros of
ˇ̂
f , and since the poles of S are the zeros of ψ̌, there is an

entire function ω such that
f̂ = ωψ.

Multiplying (12.4.20) by ψ̌ we arrive at

ωψψ̌ = f̂ ψ̌ = − ˇ̂
fψ = −ω̌ψ̌ψ,

which shows that ω is an odd entire function. We have seen at the beginning of
this section that ψ has no zeros in the closed lower half-plane and satisfies the
estimate (12.4.9). Hence 1

ψ is a bounded analytic function in the closed lower

half-plane. Since f̂ is the Fourier transform of a function in L2[0, 2a], also f̂ is
bounded in the closed lower half-plane. Indeed, it is easy to see that the integral

over |f | is such a bound. Hence ω = f̂
ψ is bounded in the closed lower half-plane

and then also bounded in the closed upper half-plane due to the symmetry of ω.
By Liouville’s theorem, ω is constant. But 1

ψ is bounded on R, see (12.4.9), and f̂
is an L2 function on R, so that this constant must be zero. We have shown that
ω = 0, and f̂ = 0 follows. Therefore I + F0 is injective, and I + F0 � 0 is proved.

Now let x > 0. Recall that we consider (I+Fx)f = 0. Since (Fxf)(y) = 0 for
y > 2(a− x), this implies f(y) = 0 for y > 2(a− x). It follows for 0 < h < x that
the function

fh =
1

2
(f ◦ τ−x+h + f ◦ τ−x−h)

has support in [x−h, 2a−x+h], and therefore fh ∈ L2[0, 2a]. In view of (12.4.16)
we conclude that

f̂h(λ) = f̂(λ)e−iλx cosλh. (12.4.21)

A substitution of (12.4.21) into (12.4.20) leads to

f̂h(λ) − S(λ)f̂h(−λ) = 0, λ ∈ R,

which means that ((I + F0)fh, fh) = 0 for 0 < h < a. In view of

((I + F0)fh, fh) = ((I + F0)
1
2 fh, (I + F0)

1
2 fh)

we conclude that (I + F0)fh = 0. But from the case x = 0 we already know that

this implies fh = 0. Then (12.4.21) gives f̂ = 0 and thus f = 0. �
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Lemma 12.4.5. Let v21 > 0. For 0 ≤ x ≤ a, define the operator F0
x as the restriction

of Fx to C[0, 2a]. Then F0
x is a compact operator in the space C[0, 2a], and I +F0

x

is invertible.

Proof. We begin by defining an auxiliary operator T by

((Tg)f)(y) =

∫ 2a

0

g(y + t)f(t) dt, g ∈ L2(0, 2a), f ∈ C[0, 2a], y ∈ [0, 2a].

Here we set g(x) = 0 for x > 2a. Clearly, (Tg)f is a measurable function on [0, 2a]
for all g ∈ L2(0, 2a) and f ∈ C[0, 2a], and

|((Tg)f)(y)| ≤ ‖g‖ ‖f‖ ≤ √
2a‖g‖ ‖f‖0,

where ‖·‖0 is the maximum norm in the Banach spaceC[0, 2a]. This shows that T ∈
L(L2(0, 2a), L(C[0, 2a], L∞(0, 2a))). Clearly, for continuous g with g(2a) = 0, also
(Tg)f is continuous. Observing that the set of such functions g is dense in L2(0, 2a),
that C[0, 2a] is closed in L∞(0, 2a) and that therefore L(C[0, 2a], C[0, 2a]) is closed
in L(C[0, 2a], L∞(0, 2a)), it follows that T ∈ L(L2(0, 2a), L(C[0, 2a])). Further-
more, if g ∈ W 1

2 (0, 2a) with g(2a) = 0, then we can write

g(x) = −
∫ 2a

x

g′(τ) dτ, x ≥ 0,

see, e. g., [189, Proposition 2.1.5], and therefore

((Tg)f)(y) = −
∫ 2a

0

∫ 2a

y+t

g′(τ) dτ f(t) dt = −
∫ 2a

0

∫ 2a

y

g′(τ + t) dτ f(t) dt

= −
∫ 2a

y

∫ 2a

0

g′(τ + t) dt f(t) dτ = −
∫ 2a

y

((Tg′)f)(τ) dτ.

Since (Tg′)f is continuous by what we have already shown, it follows that (Tg)f
is differentiable with continuous derivative ((Tg)f)′ = (Tg′)f . Then the norm of
(Tg)f in C1[0, 2a] is

‖(Tg)f‖0 + ‖((Tg)f)′‖0 = ‖(Tg)f‖0 + ‖(Tg′)f‖0 ≤
√
2a(‖g‖+ ‖g′‖)‖f‖0,

which shows that Tg ∈ L(C[0, 2a], C1[0, 2a]) if g ∈ W 1
2 [0, 2a] with g(2a) = 0.

But since the embedding from C1[0, 2a] into C[0, 2a] is compact, see, e. g., [189,
Proposition 2.1.7 and Lemma 2.4.1], it follows that Tg is a compact operator on
C[0, 2a].

As we have seen in the proof of Lemma 12.4.4, we can take γ = 0 in (12.4.7).
For 0 ≤ x ≤ a we now apply the above auxiliary result to the operators

F
0
x = T (F ◦ τ2x),

which proves that F0
x is a compact operator in C[0, 2a]. Therefore I + F0

x is a
Fredholm operator with index 0. But N(I + F0

x) ⊆ N(I + Fx) and I + Fx is
injective by Lemma 12.4.4. It follows that I + Fx is invertible. �
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Lemma 12.4.6. The operator functions x �→ Fx and x �→ F0
x are differentiable on

[0, a]. The derivative F′
x of x �→ Fx at x is the operator

(F′
xf)(y) = 2

∫ 2a

0

F ′(2x+ y + t)f(t) dt, f ∈ L2(0, 2a), y ∈ [0, 2a], (12.4.22)

and (F0
x)

′ is the restriction of F′
x to C[0, 2a]. For each x ∈ [0, a] and for all f ∈

L2(a, b), the function Fxf is differentiable, and (Fxf)
′ = 1

2F
′
xf .

Proof. Arguing as at the beginning of the proof of Lemma 12.4.4 we see that F′
x is

a bounded operator in L2(0, 2a). For x, x
′ ∈ [0, a] we define the auxiliary operator

Fx,x′ = Fx′ − Fx − (x′ − x)F′
x.

Then it follows for f ∈ L2(0, 2a) and y ∈ [0, 2a] that

(Fx,x′f)(y)

=

∫ 2a

0

[F (2x′ + y + t)− F (2x+ y + t)− 2(x′ − x)F ′(2x+ y + t)]f(t) dt.

Since F ∈ W 1
2 (0, a) by Lemma 12.4.3, we can write

F (2x′ + y + t)− F (2x+ y + t) =

∫ 2x′

2x

F ′(τ + y + t) dτ,

see, e. g., [189, Proposition 2.1.5]. Therefore

(Fx,x′f)(y) =

∫ 2a

0

∫ 2x′

2x

[F ′(τ + y + t)− F ′(2x+ y + t)]f(t) dτ dt.

Let ε > 0. Since the set of continuous functions on [0, 2a] is dense in L2(0, a), there
is a continuous function g on [0, 2a] such that ‖F ′ − g‖ < ε. Then∣∣∣∣∣

∫ 2a

0

∫ 2x′

2x

[(F ′ − g)(τ + y + t)− (F ′ − g)(2x+ y + t)]f(t) dτ dt

∣∣∣∣∣
≤

∣∣∣∣∣
∫ 2x′

2x

∫ 2a

0

|(F ′ − g)(τ + y + t)| |f(t)| dt dτ
∣∣∣∣∣

+

∣∣∣∣∣
∫ 2x′

2x

∫ 2a

0

|(F ′ − g)(2x+ y + t)| |f(t)| dt dτ
∣∣∣∣∣

≤ 4|x′ − x|‖F ′ − g‖‖f‖ < 4ε|x′ − x|‖f‖.

Since g is continuous and therefore uniformly continuous, there exists δ > 0 such
that |g(t) − g(t′)| < ε for all t, t′ ∈ [0, 2a] with |t − t′| < 2δ. Hence it follows for
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|x′ − x| < δ that∣∣∣∣∣
∫ 2a

0

∫ 2x′

2x

[g(τ + y + t)− g(2x+ y + t)]f(t) dt

∣∣∣∣∣ ≤ ε

∣∣∣∣∣
∫ 2x′

2x

∫ 2a

0

|f(t)| dt dτ
∣∣∣∣∣

≤ ε
√
2a|x′ − x|‖f‖.

Altogether, we conclude that

‖Fx,x′f‖∞ ≤ ε(4 +
√
2a)|x′ − x|‖f‖.

This shows that Fx is differentiable as an operator function from L2(0, 2a) to
L∞(0, 2a) with derivative F′

x, see, e. g., [66, Section 8.1]. By the product rule,
see, e. g., [66, 8.3.1], the same is clearly true if these operators are considered
as operators into L2(0, 2a), that is, multiplied by the constant embedding from
L∞(0, 2a) to L2(0, 2a).

The same reasoning as above applies to the operator function x �→ F0
x. We

only have to restrict f to functions in C[0, 2a] and replace ‖f‖ with
√
2a‖f‖0.

In (12.4.14), we can interchange integration and differentiation with respect
to y, and (Fxf)

′ = 1
2F

′
xf is therefore an immediate consequence of (12.4.22). �

Proposition 12.4.7. Let v21 > 0 and let the function F be as defined in (12.4.7).
Then for every x ∈ [0, a], (I + Fx)g = −F ◦ τ2x has a unique solution g = G(x, ·)
in L2(0, 2a). The function G is continuous on [0, a]× [0, 2a] and G(·, y) ∈ W 1

2 (0, a)
for y ∈ [0, 2a].

Proof. As we have seen in the proof of Lemma 12.4.4, we can take γ = 0 in (12.4.7).
The existence and uniqueness of G follows immediately from the invertibility of
I + Fx for all x ∈ [0, a], which was shown in Lemma 12.4.4, and we have

G(x, y) = −((I + Fx)
−1(F ◦ τ2x))(y)

for all (x, y) ∈ [0, a]× [0, 2a]. Since F ◦ τ2x is continuous, Lemma 12.4.5 shows that
we can also write

G(x, y) = −((I + F
0
x)

−1(F ◦ τ2x))(y),
and therefore G(x, ·) is continuous. By Lemma 12.4.6, x �→ F0

x is differentiable
and therefore continuous on [0, a], so that also x �→ (I + F0

x)
−1 is continuous. For

x, x′ ∈ [0, a] we therefore conclude

|G(x′, y)−G(x, y)| ≤ |((I + F
0
x′)−1(F ◦ τ2x′))(y)− ((I + F

0
x)

−1(F ◦ τ2x′))(y)|
+ |((I + F

0
x)

−1(F ◦ τ2x′))(y) − ((I + F
0
x)

−1(F ◦ τ2x))(y)|
≤ ‖(I + F

0
x′)−1 − (I + F

0
x)

−1‖ ‖(F ◦ τ2x′)‖
+ ‖(I + F

0
x)

−1‖ ‖F ◦ τ2x′ − F ◦ τ2x‖
→ 0 as x′ → x.
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In the last step we also have used that F is uniformly continuous. We have thus
shown that G(x, ·) and G(·, y) are continuous for all x ∈ [0, a] and y ∈ [0, 2a], and
a standard argument shows that G is continuous on [0, a]× [0, 2a].

Since x �→ Fx is differentiable by Lemma 12.4.6 and since I +Fx is invertible
for all x ∈ [0, a] by Lemma 12.4.4, x �→ (I +Fx)

−1 is differentiable on [0, a] by the
quotient rule, see [66, 8.3.2], and

d

dx
(I + Fx)

−1 = −(I + Fx)
−1

F
′
x(I + Fx)

−1.

Furthermore, also x �→ F ◦ τ2x is differentiable with derivative 2F ′ ◦ τ2x, and the
product rule, see [66, 8.3.1], gives

∂

∂x
G(x, ·) = (I + Fx)

−1
F
′
x(I + Fx)

−1(F ◦ τ2x)− 2(I + Fx)
−1(F ′ ◦ τ2x). (12.4.23)

Since F ◦ τ2x is continuous, we know from Lemma 12.4.5 that the first summand
can be written as

G1(x, ·) := (I + F
0
x)

−1(F0
x)

′(I + F
0
x)

−1(F ◦ τ2x),
and since

x �→ (I + F
0
x)

−1(F0
x)

′(I + F
0
x)

−1

is a continuous operator function in L(C[0, 2a]), it follows like we have shown for G
above that also G1 is continuous on [0, a]× [0, 2a]. Next we consider the auxiliary
operator G0 defined by

(G0g)(x, ·) := (I + Fx)
−1(g ◦ τ2x), g ∈ L2(0, 2a), x ∈ [0, a].

Again for continuous g, we can replace Fx with F0
x, and the above considerations

show thatG0g is continuous on [0, 2a] and therefore square integrable. We calculate∣∣∣∣∫ a

0

∫ 2a

0

(
(I + Fx)

−1(g ◦ τ2x)
)
(y) dy dx

∣∣∣∣ ≤ ∫ a

0

‖(I + Fx)
−1‖ ‖g‖ dx

≤ a max
x∈[0,a]

‖(I + Fx)
−1‖ ‖g‖.

By continuity, this extends to all g ∈ L2(0, 2a), and we obtain that G0 is a bounded
operator from L2(0, a) to L2((0, a) × (0, 2a)). Therefore, G2 := G0F

′ belongs to
L2((0, a)× (0, 2a)). Finally, let y ∈ [0, 2a]. Then

((I + Fx)G2)(x, ·) = F ′ ◦ τ2x
gives

G2(x, y) = −
∫ a

0

F (2x+ y + t)G2(x, t) dt+ F ′(2x+ y).

Since (x, t) �→ F (2x+y+t)G2(x, t) is a square integrable kernel, it follows that the
function x �→ ∫ a

0 F (2x + y + t)G2(x, t) dt is square integrable on (0, a), see, e. g.,

[109, p. 240]. Altogether, ∂
∂xG(·, y) = G1(·, y)− 2G2(·, y) ∈ L2(0, a) follows. �
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Proposition 12.4.8 ([180, Theorem 3.3.1]). Let v21 > 0 and consider the function
F defined in (12.4.7). Then the fundamental equation (12.4.11) has a unique con-
tinuous solution H on D0 = {(x, y) ∈ R2 : 0 ≤ x ≤ y}. Furthermore, q ∈ L2(0, a),
where

q(x) := −2
d

dx
H(x, x), x ∈ (0, a), (12.4.24)

H and q are real valued, and H satisfies the integral equation

H(x, y) =
1

2

∫ a+ y−x
2

x+y
2

∫ a−|a−τ |

x+|y−τ |
q(σ)H(σ, τ) dσ dτ +

1

2

∫ 2a

x+y
2

q(σ) dσ. (12.4.25)

Proof. As we have seen in the proof of Lemma 12.4.4, we can take γ = 0 in (12.4.7).
Recall that H satisfies the fundamental equation if and only if (x, y) �→ H(x, x+y)
satisfies (12.4.13). But from Proposition 12.4.7 we know that (12.4.13) has a unique
solution G. Hence the fundamental equation has the unique continuous solution
H given by H(x, x + y) = G(x, y) for (x, y) ∈ D0. Since F is real valued, Also
H is real valued. In view of H(x, x) = G(x, 0), q ∈ L2(0, a) is a consequence of
G(·, 0) ∈ W 1

2 (0, a), which was shown in Proposition 12.4.7.

To prove (12.4.25), we first consider the case that F is a twice continuously
differentiable function on (0,∞) with support in [0, 2a] such that I + F0

x has an
inverse for all x ∈ [0, a]. We observe that F0

x depends continuously on x and hence
a compactness argument shows that the norm of (I +F0

x)
−1 is uniformly bounded

for x ∈ [0, a]. In that case, the operator function x �→ F
0
x is twice differentiable and

we can differentiate once more on both sides of (12.4.22). Adapting the proof of
Proposition 12.4.7 to this case we see that Gx and Gxx exist and are continuous.
It is also immediately clear from (12.4.13) that Gy , Gxy and Gyy exist and are
continuous. Furthermore, for x ∈ [0, a], y ∈ [0, 2a] and h ∈ R such that x+h ∈ [0, a]
and y + 2h ∈ [0, 2a] we have

G(x, y + 2h)−G(x, y)

= ((I + F
0
x)

−1(F ◦ τ2x))(y+2h)−((I + F
0
x)

−1(F ◦ τ2x))(y)
= ((I + F

0
x)

−1(F ◦ τ2(x+h)))(y)−((I + F
0
x)

−1(F ◦ τ2x))(y)
= ((I + F

0
x)

−1[F ◦ τ2(x+h) − F ◦ τ2x])(y).

A reasoning as in the proof of Lemma 12.4.6 shows that

Gy(x, y) =
1

2
((I + F

0
x)

−1(F ′ ◦ τ2x))(y).

Arguing as in the proof of Proposition 12.4.7 and as above in this proof we see that
also Gyx exists and is continuous. We have shown that G is twice continuously
differentiable, and therefore also H is twice continuously differentiable.
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Differentiating the fundamental equation (12.4.11) twice with respect to x
and twice with respect to y we obtain

F ′′(x + y) +Hxx(x, y)− d

dx
[H(x, x)F (x + y)]

−Hx(x, x)F (x + y) +

∫ ∞

x

Hxx(x, t)F (y + t) dt = 0

and

F ′′(x+ y) +Hyy(x, y) +

∫ ∞

x

H(x, t)F ′′(y + t) dt = 0.

Integrating by parts twice we have∫ ∞

x

H(x, t)F ′′(y + t) dt = −H(x, x)F ′(x+ y) +Hy(x, x)F (x + y)

+

∫ ∞

x

Hyy(x, t)F (y + t) dt.

Taking now the difference of the two second-order partial derivatives we arrive at

Hxx(x, y)−Hyy(x, y) + q(x)F (x + y)

+

∫ ∞

x

[Hxx(x, t)−Hyy(x, t)]F (y + t) dt = 0.

With y = x+ ỹ this equation becomes

Hxx(x, x+ ỹ)−Hyy(x, x+ ỹ) + q(x)F (2x+ ỹ)

+

∫ ∞

0

[Hxx(x, x + t)−Hyy(x, x + t)]F (2x+ ỹ + t) dt = 0. (12.4.26)

Since the fundamental equation in the form (12.4.12) gives

q(x)(F ◦ τ2x) = −q(x)(I + Fx)H(x, x + ·) = −(I + Fx)(q(x)H(x, x + ·)),
equation (12.4.26) can be written as

(I + Fx)[Hxx(x, x + ·)−Hyy(x, x + ·))− q(x)H(x, x + ·)] = 0.

Defining
ϕ(x, y) = Hxx(x, y)−Hyy(x, y)− q(x)H(x, y),

ϕ(x, x+ ·) is continuous for all x ∈ [0, a] and satisfies

(I + Fx)ϕ(x, x + ·) = 0.

In view of Lemma 12.4.4 we conclude that ϕ = 0.
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Now put ξ = 2a+ x− y and η = 2a− x− y and define

ũ(ξ, η) := H(x, y) = H

(
ξ − η

2
, 2a− ξ + η

2

)
. (12.4.27)

We observe that 0 ≤ x ≤ y ≤ 2a− x gives the domain 0 ≤ η ≤ ξ ≤ 2a for ξ and
η. As in the proof of Theorem 12.1.3 we obtain

ũξη = −1

4

(
Hxx

(
ξ − η

2
, 2a− ξ + η

2

)
−Hyy

(
ξ − η

2
, 2a− ξ + η

2

))
,

and ϕ = 0 leads to

ũξη(ξ, η) = −1

4
q

(
ξ − η

2

)
ũ(ξ, η).

With

U(ξ, η) :=
1

4

∫ 2a

ξ

∫ η

0

q

(
σ − τ

2

)
ũ(σ, τ) dτ dσ

we conclude that
ũξη − Uξη = 0.

Hence there are continuous functions f and g on [0, 2a] such that

ũ(ξ, η) = U(ξ, η) + f(ξ) + g(η), 0 ≤ η ≤ ξ ≤ 2a.

For definiteness, we may assume that g(0) = 0. For ξ ∈ [0, 2a] we have

ũ(ξ, 0) = H

(
ξ

2
, 2a− ξ

2

)
= 0 and U(ξ, 0) = 0,

which shows that f = 0. Similarly,

ũ(2a, η) = H
(
a− η

2
, a− η

2

)
=

1

2

∫ a

a− η
2

q(σ) dσ and U(2a, η) = 0,

which shows that

g(η) =
1

2

∫ a

a− η
2

q(σ) dσ.

Altogether, we have shown that

ũ(ξ, η) =
1

4

∫ 2a

ξ

∫ η

0

q

(
σ − τ

2

)
ũ(σ, τ) dτ dσ +

1

2

∫ a

a− η
2

q(σ) dσ. (12.4.28)

Now let F be defined by (12.4.7). In W 1
2 (0,∞) we can approximate the

restriction of F to [0,∞) by a sequence (Fn)n∈N of twice differentiable functions



378 Chapter 12. Inverse Sturm–Liouville Problems

on [0,∞) with support in [0, 2a]. Consider the corresponding operators F0
n,x, which

converge as n → ∞ and depend continuously on x. Then a compactness argument
shows that we may assume without loss of generality that I + F0

n,x is invertible
for all n ∈ N and x ∈ [0, a]. Furthermore, (I+F

0
n,x)

−1 converges uniformly in x to
(I + F0

x)
−1. Since also Fn → F uniformly as n → ∞, a standard argument shows

that Gn → G uniformly as n → ∞, where the functions Gn are defined as

Gn(x, y) = −((I + F
0
n,x)

−1(Fn ◦ τx))(y).

Hence also Hn → H uniformly as n → ∞ and the corresponding functions ũn de-
fined by (12.4.27) with Hn converge uniformly to ũ as n → ∞. Since the functions
ũn satisfy the integral equation (12.4.28), it follows that also ũ satisfies (12.4.28).
Substituting H for ũ in (12.4.28) shows that H satisfies the integral equation
(12.4.25). Here we have to observe that the region of integration is determined by

2a+ x− y ≤ 2a+ σ − τ ≤ 2a and 0 ≤ 2a− σ − τ ≤ 2a− x− y,

which can be rewritten as

x+ y

2
≤ τ ≤ a+

y − x

2
, τ + x− y ≤ σ ≤ τ, and x+ y− τ ≤ σ ≤ 2a− τ. �

Lemma 12.4.9. Let q ∈ L2(0, a). Then the integral equation

H(x, y) =
1

2

∫ a+ y−x
2

x+y
2

∫ a−|a−τ |

x+|y−τ |
q(σ)H(σ, τ) dσ dτ +

1

2

∫ 2a

x+y
2

q(σ) dσ (12.4.29)

has a unique solution H on {(x, y) ∈ R2 : 0 ≤ x ≤ y ≤ 2a− x}.

Proof. Putting ξ = 2a+ x− y and η = 2a− x− y and

ũ(ξ, η) := H(x, y) = H

(
ξ − η

2
, 2a− ξ + η

2

)
,

we have seen in the proof of Proposition 12.4.8 that the integral equation (12.4.29)
becomes equivalent to the integral equation

ũ(ξ, η) =
1

4

∫ 2a

ξ

∫ η

0

q

(
σ − τ

2

)
ũ(σ, τ) dτ dσ +

1

2

∫ a

a− η
2

q(σ) dσ

for 0 ≤ η ≤ ξ ≤ 2a. From the proof of Lemma 12.1.1 we see that its statement
remains true for fixed ξ0 and η0. Thus the above integral equation can be written as
ũ = −T̃ ũ+ g̃ with invertible operator I + T̃ on C({(ξ, η) ∈ R

2 : 0 ≤ η ≤ ξ ≤ 2a}).
Hence the integral equation for ũ has a unique continuous solution, and it follows
that (12.4.29) has a unique continuous solution H . �
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12.5 Two spectra and the fundamental equation

Lemma 12.5.1. The spectrum of the Sturm–Liouville problem

−y′′ + q(x)y = λy, 0 ≤ x ≤ a, (12.5.1)

y(0) = 0, cosβy(a)− sinβy′(a) = 0, (12.5.2)

with a real potential q ∈ L2(0, a) and β ∈ [0, π] consists of an increasing sequence
of simple real eigenvalues (λk(β))

∞
k=1 which tend to ∞. For 0 < β′ < β ≤ π, the

eigenvalues interlace as follows:

λ1(β
′) < λ1(β) < λ2(β

′) < λ2(β) < · · · .
Proof. The result is well known. Indeed, it is easy to see from Theorems 10.3.5,
10.3.8 and the spectral theorem for compact operators that the spectrum consists
of real eigenvalues which are bounded below and tend to ∞. Since the initial value
problem (12.5.1), y(0) = 0 has a one-dimensional solution space, it follows that all
eigenvalues are simple and that λk(β) �= λj(β

′) for all k, j ∈ N and 0 < β′ < β ≤ π.
From [143, Theorem 4.2, (4.5)] we know that λk(β) depends continuously on β
and is strictly increasing as a function of β for all k, and the stated interlacing
property of the eigenvalues follows. �
Corollary 12.5.2. Let q ∈ L2(0, a) be real valued. Then the spectra of the Sturm–
Liouville problem (12.5.1) subject to the boundary conditions y(0) = y(a) = 0 and
y(0) = y′(a) = 0, respectively, consist of two sequences of real eigenvalues which
interlace as follows:

ζ1 < ξ1 < ζ2 < ξ2 < · · ·
and obey the asymptotic formulae

ξk =
π2k2

a2
− 2

π2A

a2
+ αk, ζk =

π2

a2

(
k − 1

2

)2

− 2
π2A

a2
+ βk, (12.5.3)

where A ∈ R, (αk)
∞
k=1 ∈ l2 and (βk)

∞
k=1 ∈ l2 are real-valued sequences.

Proof. The first part is an immediate consequence of Lemma 12.5.1 with λk(π) =
ξk and λk(

π
2 ) = ζk. For the asymptotic expansion of the eigenvalues we recall from

Corollary 12.2.10 that

s(λ, a) =
sinλa

λ
−K(a, a)

cosλa

λ2
+

f(λ)

λ2
,

s′(λ, a) = cosλa+K(a, a)
sinλa

λ
+

g(λ)

λ

with f, g ∈ La. An application of Lemma 12.3.3 and (12.2.19) proves (12.5.3) with

A = − a

π2
K(a, a) = − a

2π2

∫ a

0

q(x) dx. (12.5.4)

�
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Let q ∈ L2(0, a) and define qa(x) = q(a− x). Clearly, qa ∈ L2(0, a).

Proposition 12.5.3. Let ea be the solution of (12.2.1), (12.2.2) with respect to qa.
For λ ∈ C define

e(λ, x) =

{
e−iλaea(−λ, a− x) if 0 ≤ x ≤ a,

e−iλx if a < x.
(12.5.5)

Then the function e is the Jost solution of (12.2.1) as defined in Section 2.1.

Proof. Clearly, e(λ, ·) satisfies the differential equation (12.2.1) on (0, a) and

e(λ, a) = e−iλaea(−λ, 0) = e−iλa,

e′(λ, a) = −e−iλae′a(−λ, 0) = −iλe−iλa

shows that e is indeed the Jost solution. �

Proposition 12.5.4. Let Ka be the function K̃ from Theorem 12.2.6 with respect
to the potential qa and define

K∞(x, t) =

{
Ka(a− x, a− t) if 0 ≤ x ≤ t ≤ 2a− x,

0 for all other x, t ∈ R.
(12.5.6)

Then K∞ satisfies the integral equation (12.4.29),

e(λ, x) = e−iλx +

∫ ∞

x

K∞(x, t)e−iλt dt, λ ∈ C, x ≥ 0, (12.5.7)

and

K∞(x, x) =
1

2

∫ a

x

q(t) dt, x ∈ [0, a]. (12.5.8)

Proof. With the aid of (12.2.18) we calculate

K∞(x, y) = Ka(a− x, a− y) =
1

2

∫ a− x+y
2

0

q(a− s) ds

+

∫ a− x+t
2

0

∫ y−x
2

0

q(a− s− p)K∞(a− s− p, a− s+ p) dp ds

=
1

2

∫ a+ y−x
2

x+y
2

∫ a−|a−τ |

x+|y−τ |
q(σ)K∞(σ, τ) dσ dτ +

1

2

∫ 2a

x+y
2

q(σ) dσ.
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From Proposition 12.5.3, Theorem 12.2.6 and with the aid of the transfor-
mation τ = a− t we infer for 0 ≤ x ≤ a that

e(λ, x) = e−iλaea(−λ, a− x)

= e−iλaeiλ(a−x) +

∫ a−x

x−a

Ka(a− x, t)eiλte−iλa dt

= e−iλx +

∫ 2a−x

x

Ka(a− x, a− t)e−iλt dt,

and (12.5.7) follows in view of (12.5.6). For x > a, (12.5.7) is obvious. Finally, we
conclude from (12.2.19) that

K∞(x, x) = Ka(a− x, a− x) =
1

2

∫ a−x

0

qa(σ) dσ

=
1

2

∫ a

x

qa(a− τ) dτ =
1

2

∫ a

x

q(t) dt. �

The function

va(λ, ·) := e(λ, ·)eiλa + e(−λ, ·)e−iλa

2

is the solution of (12.2.1) satisfying va(λ, a) = 1 and v′a(λ, a) = 0, whereas the
function

ua(λ, ·) := e(−λ, ·)e−iλa − e(λ, ·)eiλa
2iλ

is the solution of (12.2.1) satisfying ua(λ, a) = 0 and u′
a(λ, a) = 1. Observe that

e(λ, ·) = e−iλa(va(λ, ·) − iλua(λ, ·)). Since x �→ q(a − x) belongs to L2(0, a), va
and ua have a representation like c and −s in Theorem 12.2.9, respectively, with
x replaced by a− x.

Clearly, the zeros of ua(·, 0) are the eigenvalues of (12.5.1) with the boundary
conditions y(0) = y(a) = 0, whereas the zeros of va(·, 0) are the eigenvalues of
(12.2.1) with the boundary conditions y(0) = y′(a) = 0. With ζk and ξk according

to Corollary 12.5.2 we put vk = ζ
1
2

k , uk = ξ
1
2

k for k ∈ Z. Then it follows from
Corollary 12.5.2 that these numbers satisfy the assumptions posed at the beginning
of Section 12.4. Hence the entire function u defined there has exactly the same
zeros as ua(·, 0), and the entire function v defined there has exactly the same
zeros as va(·, 0). The function v has the representation (12.3.11), and by the above
discussion, also va(·, 0) has such a representation, with the same leading term as
v. By Corollary 12.2.11 and its proof, both v and va(·, 0) are sine type functions.
Hence they are multiples of each other by Lemma 11.2.29, and since they have
the same leading terms, va(·, 0) = v follows. A corresponding argument for the
function λ �→ λu(λ) and λ �→ −λua(λ, 0) gives ua(·, 0) = −u.
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Hence the function ψ defined in (12.4.2) satisfies

ψ(λ) = e−iλa(va(λ, 0)− iλua(λ, 0)) = e(λ, 0), (12.5.9)

and it follows that the function S defined in (12.4.3) has the representation

S(λ) =
e(λ, 0)

e(−λ, 0)
, λ ∈ R. (12.5.10)

Lemma 12.5.5 ([180, Lemma 3.1.5]). For λ �= 0 and e(−λ, 0) �= 0,

−2iλs(λ, ·)
e(−λ, 0)

= e(λ, ·) − S(λ)e(−λ, ·).

Proof. The function s(λ, ·) is the solution of (12.2.1) which satisfies the initial
conditions s(λ, 0) = 0, s′(λ, 0) = 1. On the other hand,

ω(λ, ·) := e(−λ, 0)e(λ, ·)− e(λ, 0)e(−λ, ·)

is a solution of (12.2.1) with ω(λ, 0) = 0. It is well known that the Wronskian

W (e(−λ, ·), e(λ, ·)) = e(−λ, ·)e′(λ, ·) − e′(−λ, ·)e(λ, ·)

is constant, and its value at a is −2iλ, so that ω′(λ, 0) = −2iλ. Hence we have
shown that ω(λ, ·) = −2iλs(λ, ·). �

The proof of the following lemma is extracted from [180, pp. 204–206].

Lemma 12.5.6. Let γ ≥ 0 such that S is analytic on {λ ∈ C : Imλ ≥ γ} and define
F by

F (x) =
e−γx

2π

∫ ∞

−∞
Sγ(λ)e

iλx dλ, x ∈ R, (12.5.11)

where Sγ is defined by (12.4.6). Then the fundamental equation

F (x+ y) +K∞(x, y) +

∫ ∞

x

K∞(x, t)F (y + t) dt = 0, 0 ≤ x ≤ y, (12.5.12)

is satisfied.

Proof. In view of Lemma 12.5.5 and (12.5.7) we have

−2iλs(λ, x)

e(−λ, 0)
= e−iλx − eiλx +

∫ ∞

x

K∞(x, t)e−iλt dt−
∫ ∞

x

K∞(x, t)eiλt dt

+ (1− S(λ))

(
eiλx +

∫ ∞

x

K∞(x, t)eiλt dt

)
,
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which can be rewritten as

−2iλs(λ, x)

(
1

e(−λ, 0)
− 1

)
+ 2i(sinλx − λs(λ, x))

=

∫ ∞

x

K∞(x, t)e−iλt dt−
∫ −x

−∞
K∞(x,−t)e−iλt dt

+ (1− S(λ))

(
eiλx +

∫ ∞

x

K∞(x, t)eiλt dt

)
. (12.5.13)

We multiply both sides of (12.5.13) by 1
2π e

iλy, y ∈ R, and integrate along Imλ = γ,
resulting in an identity which we formally write as Il(x, y) = Ir(x, y). Then Ir(x, y)
is the sum of the 4 integrals

I1(x, y) =
1

2π

∫ ∞

−∞

∫ ∞

x

K∞(x, t)e−i(iγ+λ)t dt ei(iγ+λ)y dλ,

I2(x, y) = − 1

2π

∫ ∞

−∞

∫ −x

−∞
K∞(x,−t)e−i(iγ+λ)t dt ei(iγ+λ)y dλ,

I3(x, y) =
1

2π

∫ ∞

−∞
Sγ(λ)e

i(iγ+λ)xei(iγ+λ)y dλ,

I4(x, y) =
1

2π

∫ ∞

−∞
Sγ(λ)

∫ ∞

x

K∞(x, t)ei(iγ+λ)tei(iγ+λ)y dt dλ.

The Fourier inversion formula gives

I1 =
1

2π

∫ ∞

−∞

∫ ∞

x

eγ(t−y)K∞(x, t)e−iλt dt eiλy dλ = K∞(x, y),

and similarly

I2 = −K∞(x,−y) = 0 for y > x.

We further calculate

I3 =
e−γ(x+y)

2π

∫ ∞

−∞
Sγ(λ)e

iλ(x+y) dλ = F (x+ y)

and

I4(x, y) =
1

2π

∫ ∞

x

K∞(x, t)e−γ(y+t)

∫ ∞

−∞
Sγ(λ)e

iλ(y+t) dλ dt

=

∫ ∞

x

K∞(x, t)F (y + t) dt.
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Hence we obtain

Ir(x, y) = K∞(x, y)+F (x+y)+

∫ ∞

x

K∞(x, t)F (y+ t) dt, 0 ≤ x < y. (12.5.14)

To prove the fundamental equation, it remains to prove that Il(x, y) = 0 for
0 ≤ x ≤ a and y > x.

Therefore, let x ∈ [0, a] and y > x. We define the functions g1 and g2 by

g1(λ) = λs(λ, x)

(
1

e(−λ, 0)
− 1

)
eiλy, g2(λ) = (sinλx − λs(λ, x))eiλy . (12.5.15)

The function g2 is an entire function and the function g1 is analytic on the set
{λ ∈ C : Imλ ≥ γ} since the poles of S are the zeros of λ �→ e(−λ, 0). By Lemma
12.2.8 applied to Ka we conclude that ∂

∂tK∞(0, ·) ∈ L2(−a, a). Therefore we have
in view of (12.5.7) that

e(−λ, 0)− 1 =

∫ 2a

0

K∞(0, t)eiλt dt

=
1

iλ

[
K∞(0, 2a)e2iλa −Ka(0, 0)

]− 1

iλ

∫ 2a

0

∂

∂t
K∞(0, t)eiλt dt

= O
(
λ−1

)
for Imλ ≥ 0.

Hence it follows that

1

e(−λ, 0)
− 1 =

1

1 +O(λ−1)
− 1 = O(λ−1) for Imλ ≥ 0. (12.5.16)

From (12.2.16) we conclude that λ �→ λs(λ, x) is bounded on each horizontal line
and that g2(λ) = O(λ−1) for λ on any horizontal line. Together with (12.5.16) we
conclude that g1 and g2 are square integrable on the line Imλ = γ.

Up to a constant factor, Il(x, y) is the difference of the integrals I5(x, y) and
I6(x, y) given by

I4+j(x, y) =

∫ ∞

−∞
gj(λ) dλ, j = 1, 2.

Clearly, Corollary 12.2.11 holds with a there replaced by any x > 0, and we can
conclude in view of Lemma 11.2.6 and (12.5.16) that there are constants M1 > 0
and M2 > 0 such that

|gj(iγ +Reiθ)| ≤ MjR
−1e−R(y−x) sin θ, R > 0, 0 ≤ θ ≤ π, j = 1, 2.

Hence it follows from Cauchy’s theorem and Lebesgue’s dominated convergence
theorem that

Ij = −i lim
R→∞

∫ π

0

gj(iγ +Reiθ)Reiθ dθ = 0, j = 5, 6. �
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12.6 The potential and two spectra

The following result is well known, but for convenience we will present its proof.

Lemma 12.6.1. Let h be a bounded measurable function on [0, 2a] × [0, 2a] and
define

(Hf)(x) =

∫ 2a

x

h(x, t)f(t) dt, f ∈ L2(0, 2a), 0 ≤ x ≤ 2a. (12.6.1)

Then the operator H is a Volterra operator on L2(0, 2a), i. e., H is compact and
its spectral radius is 0.

Proof. With
M = sup{|h(x, t)| : 0 ≤ x, t ≤ 2a},

the estimate ∫ 2a

0

∫ 2a

0

|h(x, t)|2 dt dx ≤ 4aM < ∞

shows that H is an integral operator with L2 kernel and therefore compact, see,
e. g., [109, p. 240].

Since the spectral radius of the adjoint H∗ equals the spectral radius of H,
it suffices to show that the spectral radius of H∗ is 0. For f, g ∈ L2(0, 2a) we
calculate

(H∗f, g) = (f,Hg) =

∫ 2a

0

f(x)

∫ 2a

x

h(x, t) g(t) dt dx

=

∫ 2a

0

∫ t

0

h(x, t)f(x) dx g(t) dt,

which shows that the adjoint H∗ of H has the representation

(H∗f)(t) =
∫ t

0

h(x, t)f(x) dx, f ∈ L2(0, 2a), 0 ≤ t ≤ 2a.

Let m > 0 and define the norm ‖ · ‖m on L2(0, 2a) by

‖f‖2m =

∫ 2a

0

|f(x)|2e−2mx dx, f ∈ L2(0, 2a),

which is clearly equivalent to the standard L2-norm. Then we obtain for each
f ∈ L2(0, 2a) and 0 ≤ t ≤ 2a that

|(H∗f)(t)|2e−2mt =

∣∣∣∣∫ t

0

h(x, t)e−m(t−x)f(x)e−mx dx

∣∣∣∣2
≤

∫ t

0

|h(x, t)|2e−2m(t−x) dx

∫ t

0

|f(x)|2e−2mx dx

≤ M2

2m
‖f‖2m,
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which gives

‖H∗f‖2m ≤ aM2

m
‖f‖2m.

Since the spectral radius of a bounded operator is bounded by the norm of the
operator, it follows that the spectral radius of H∗ is less or equal to M

√
am−1.

But m > 0 was arbitrary, and it follows that the spectral radius of H∗ is 0. �

Theorem 12.6.2 ([180, Theorem 3.4.1, p. 248]). For two sequences (ξk)
∞
k=1 and

(ζk)
∞
k=1 of real numbers to be the spectra of the boundary value problems generated

by the Sturm–Liouville equation

−y′′ + q(x)y = λy on [0, a], (12.6.2)

with a real potential q ∈ L2(0, a) and the boundary conditions y(0) = y(a) = 0
and y(0) = y′(a) = 0, respectively, it is necessary and sufficient that the sequences
interlace:

ζ1 < ξ1 < ζ2 < ξ2 < · · ·
and obey the asymptotic formulae

ξk =
π2k2

a2
− 2

π2A

a2
+ αk, ζk =

π2

a2

(
k − 1

2

)2

− 2
π2A

a2
+ βk,

where A ∈ R, (αk)
∞
k=1 ∈ l2 and (βk)

∞
k=1 ∈ l2. The potential q is uniquely deter-

mined by the sequences (ξk)
∞
k=1 and (ζk)

∞
k=1.

Proof. The necessity of the interlacing property and the asymptotic distribution
of the eigenvalues was shown in Corollary 12.5.2.

Next we are going to show that the potential is uniquely determined by
the two spectra. Let q ∈ L2(a, b) be real valued and let (ξk)

∞
k=1 and (ζk)

∞
k=1 be

the corresponding spectra. Without loss of generality we may assume that ζ1 > 0,
which can be achieved by a shift of the eigenvalue parameter λ in (12.6.2). Putting

uk = (ξk)
1
2 and vk = (ζk)

1
2 for k ∈ N, we consider the two functions S and F

defined by (12.4.3) and (12.4.7). It remains to show that q is uniquely determined
by F . Indeed, in view of (12.5.8), q is uniquely determined by K∞. From Lemma
12.5.6 we know that the function K∞ associated with the potential q satisfies the
fundamental equation (12.5.12), which is the same as (12.4.11). Then it follows
from Proposition 12.4.8 that K∞ is uniquely determined by F . Altogether, we
have shown that the potential is uniquely determined by the two sequences.

Now let two sequences (ξk)
∞
k=1 and (ζk)

∞
k=1 with the required properties be

given. Shifting all elements in these two sequences by the same real number b0 >
−ζ1 if ζ1 ≤ 0, we obtain that ζ1 > 0. With the two sequences (ξk)

∞
k=1 and (ζk)

∞
k=1

we associate the functions S and F defined by (12.4.3) and (12.4.7). By Proposition
12.4.8, there is a unique solution H of the fundamental equation and a potential
q defined by (12.4.24). With this q we associate the two sequences (ξ̃k)

∞
k=1 and
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(ζ̃k)
∞
k=1 representing the Dirichlet spectrum and the Dirichlet–Neumann spectrum,

respectively, of (12.6.2). With these two sequences we can now associate functions
S̃ and F̃ defined by (12.4.3) and (12.4.7). Let K∞ be the function defined in
(12.5.6) with respect to q. By Propositions 12.4.8 and 12.5.4, both H and K∞
satisfy (12.4.29) with the same q. But since the solution of the integral equation
(12.4.29) is unique by Proposition 12.4.8, K∞ = H follows. Let

(Hf)(x) =

∫ 2a

x

H(x, t)f(t) dt, f ∈ L2(0, 2a), x ∈ [0, 2a].

Since I +H is invertible by Lemma 12.6.1, we obtain from the fundamental equa-
tions (12.4.11) and (12.5.12) for y ∈ [0, 2a] that

F ◦ τy = −(I +H)−1H(·, y) = −(I +H)−1K∞(·, y) = F̃ ◦ τy.

Hence F = F̃ , and since the definition of F in (12.4.7) is independent of γ ≥ 0, we
can take the same γ in F and F̃ . But Sγ is the Fourier transform of x �→ eγxF (x),
which show that Sγ and therefore S is uniquely determined by F . Thus we have

that S = S̃.

Next we will show that the sequences (ξk)
∞
k=1 and (ζ)∞k=1 are uniquely de-

termined by S. Indeed, it follows from (12.4.1), (12.4.2), (12.4.3) and the proof of
Lemma 12.4.1 that

P (λ2) + iλQ(λ2)

P (λ2)− iλQ(λ2)
= S(λ)e−2iλa.

The sequences (ξk)
∞
k=1 and (ζk)

∞
k=1 interlace and are the zeros of the entire func-

tions P and Q, respectively, with a corresponding result for the sequences (ξ̃k)
∞
k=1

and (ζ̃k)
∞
k=1 and entire functions Q̃ and P̃ . Hence it follows for λ �= 0 that Q(λ2) =

0 if and only if S(λ)e−2iλa = 1, that P (λ2) = 0 if and only if S(λ)e−2iλa = −1,
that Q̃(λ2) = 0 if and only if S(λ)e−2iλa = 1, and that P (λ2) = 0 if and only
if S(λ)e−2iλa = −1. Since ζ1 > 0, it follows that the two sequences (ξk)

∞
k=1 and

(ζk)
∞
k=1 are indeed uniquely determined by S. Furthermore, the nonzero zeros of P̃

and Q̃ coincide with the nonzero zeros of P and Q, respectively. Hence 0 < ζ1 < ξ1
and 0 ≤ ζ̃1 < ξ̃1, so that ξ̃1 = ξ1 since they are positive and the smallest zeros
of Q̃ and Q, respectively. Now ζ1 is a positive zero of P , and therefore also a
positive zero of P̃ , and ζ̃1 = ζ1 follows. Hence also the two sequences (ξ̃k)

∞
k=1 and

(ζ̃k)
∞
k=1 are uniquely determined by S. We have shown that the two spectra of

the differential equation (12.6.2) with the q given by Proposition 12.4.8, after a
possible backshift by b0, are indeed the two sequences (ξk)

∞
k=1 and (ζk)

∞
k=1. �
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