Chapter 12

Inverse Sturm—Liouville Problems

We will need representations of solutions of the Sturm—Liouville equation and
algorithms for recovering its potential ¢ from two of its spectra, corresponding to
two distinct sets of separated boundary conditions. These results are due to [178§],
see also [177], [180]. For the convenience of the reader and easy reference we recall
these results from V.A. Marchenko [180], thereby adapting them to our notation
and considering Sturm—Liouville problems on intervals [0, a] with arbitrary a > 0.
Other presentations of the inverse Sturm—Liouville problem can be found, e. g., in
[177], [235], [282], [80].

12.1 Riemann’s formula

This section is a rewrite of [180, Section 1.1]. The main improvement is that we
allow for integrable potentials. This generalization is an exercise in [180] and there
is no proof in [180].

Lemma 12.1.1. Let a < 8 be real numbers and put

Do ={(&n,80,m0) e <mo < < €< & < BT

Let qq be a locally integrable function on R?. For f € Lo (Dy) define

o M
(Tf)(g,n7€07770) = L / QO(U, T)f(07 T, 50,770) dr dJ, (5777,507770) S DO~
7o

(12.1.1)
Then T is a bounded linear operator on Lo(Do) and I+ T is invertible. Denoting
by 1 the function which is identically 1 on Dy, it follows that g = (I +T)~'1 is
the unique solution of f =1 —Tf on Dy. The function g is continuous.

Proof. Clearly, T is a linear operator, and Fubini’s theorem shows that 7" maps
Lo (Do) into itself. For each M € R, the standard norm on L (Dy) is equivalent
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to the weighted norm given by
1 £1lar = esssup{| f (&, m, o, mo) e~ M EmOF =m0 - (¢ 1y, €9,1m0) € Do}
For f € Loo(Dy) and (£,1,&,m0) € Do we estimate
(T £) (&7, €0, mo)|e™ M (o=@ Fln=mo))

o
< / g0 (0, 7)| | f (0, T, £0, mo) [e ™M (S0 =8O Fr=m0)) g s
3 no

o m
= / lqo(o, 7)]e” MO dr do | £l ar-
3 10

Letting xe¢,n.¢0,m0 D€ the characteristic function of the set {(o,7) : 1o <7<y < ¢ <

o< 50}7 and observing that Xe' ' & mpy (0,7) = X&m.€0,m0 (0,7) as (5/7 ' 567 776) -
(&,m, &, mo) for almost all (o, 7), it follows from Lebesgue’s dominated convergence
theorem that the function fj; defined by

o
(€51, 80,m0) 12/ / g0 (0, 7)|e M e=OF=7) 47 dg
13 no
o
= eM(E=n) / lqo (o, T)|e*M(U*T) dr do
3

7o

is continuous on Dy. For (£,7),(¢',n') with ng <7’ <n < ¢ <& <& we have

& m
fo(&n,&0,m0) — fo(&', 1, &0y m0) >/5 / 90 (0, 7)| dT do,
,'7/

as can be easily seen from the following sketch:

€o

é‘/

"o 0 n § ¢
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Since fj is a continuous function on the compact set Dy, fo is uniformly continuous,
and it follows that there is 6 > 0 such that for all (£,n,&,n0), (&',1,&0,m0) € Do
with0<n—n'<dand 0 <& — & < § we have

& 1
| [ (ol do <
3 n’ 4

Now let (§,7,&0,m0) € Do and put ' = max{n — d,n0} and £ = min{¢ + 4,&}.
Denoting the rectangle with opposite vertices (£,719) and (§,7) by D1 and the
rectangle with opposite vertices (£,7') and (¢, n) by Do, it follows that o — & > §
orn—7 > ¢ for (o,7) € D1\ D2. Hence we obtain

1 o
T (€:m,80,m0) < +/ / lgo(o, 7)|e "M% dr do
0

4
1
4 M(S/ / lgo(o, 7)| d7 do
1

—>4asM—>oo.

Hence we may choose M such that

f (g 777507770) (57777507770) S D0~

1
2’
Combining the above estimates we have shown that T is a contractive operator.
Hence the operator (I + T') is invertible, and the unique solution g of f =1-Tf
has the representation

oo

g=I+T)""1=) (-T

j=0

Since clearly T maps continuous function into continuous function, since 1 is con-
tinuous and since the set of continuous functions C(Dy) is closed in Lo (D), it
follows that g is continuous. O

Lemma 12.1.2. Let qo be a locally integrable function on R2, let ny and & be real

numbers with ng < & and let D(&o,m0) = {(§&;m) : mo < n < & < &}. Then the
problem

ren —qor =0 on D(&o,m0), (12.1.2)
(&0, n) =7(&m0) =1 for &,n € [€o0. 0], (12.1.3)
has o unique continuous solution r on D(&,n0). Furthermore, r¢, v, Ten and rpe

exist and belong to L1(D(&,m0)), and rpe = 7ey. If qo is continuously differen-
tiable, then r has continuous second derivatives.
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Proof. From Lemma 12.1.1 we know that the integral equation

o
ri&n) =1 —/ / qo(o, 7)r(c, ) dr do. (12.1.4)
§ Mo
has a solution g, and we write

r(&,m) = (& n;80,m0) = 9(§1,80,M0)-

The existence of r¢ and r¢,, their properties, and (12.1.2) and (12.1.3) easily follow
from (12.1.4), so that this r is indeed a solution of (12.1.2) and (12.1.3).
Conversely, if 7 is a continuous solution r of problem (12.1.2), (12.1.3) where
the partial derivates in (12.1.2) exist, integration of (12.1.2) with respect to n and
taking into account that (12.1.3) implies r¢(§,m0) = 0 for all £ € [no, &o] gives

re(§m) = /77 qo (&, m)r(&, 1) dr. (12.1.5)

0

Integration with respect to £ and (12.1.3) lead to (12.1.4). With fixed &, and 7y,
the operator T' from the proof of Lemma 12.1.1 becomes a contraction T¢, ,, on
Loo(D(&0,m0)), and the uniqueness of the solution r of (12.1.2), (12.1.3) follows.

(|

For real zg and yo with yo > 0 let D be the triangular region whose vertices
are (zo,v0), (o — ¥0,0), (zo + yo,0). We put § = xo + Yo, 0 = To — Yo and

%@nn:i[m<£;")—@(f;”>} no <n < €< . (12.1.6)

The linear transformation £ = x + y, n = « — y, maps the triangle with
vertices (2o, y0), (o — ¥0,0), (zo + Yo, 0) into the triangle with vertices (£o,70),
(M0, M0), (£0,&0), that is, it maps the triangle D to the triangle D(&g, 1) defined in
Lemma 12.1.2. Then let (£,7n) — r(&,n; &, 10) be the solution according to Lemma
12.1.2 and define

R(x,y; xOvyO) = T(.’E +Y, —Y;To + Yo, To — y0)7 (xvy) eD. (1217)

The following theorem is a generalization of Riemann’s theorem as stated in
[180, Theorem 1.1.1].

Theorem 12.1.3. Let q1 and g2 be locally integrable on R and let ¢ and 1) be
continuous functions on R. Let u € W2(D) be a solution of

Uz — qL(T)u = tyy — g2(y)u (12.1.8)

such that u, and u, are continuous on D. Assume that u satisfies the initial
conditions

u(z,0) = p(x), uy(zr,0) =v(z), z0—yo <z < 20+ Yo (12.1.9)
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Then
Zo +yo) + @(To —
u(zo,yo) = ©(zo + o) ; ©(xo — Yo)
1 zo+Yo
+ 2/ (w(x)R(x,O;xo,yo)—@(x)Ry(x,O;xo,yo)) dz. (12.1.10)
To—Yo

Proof. We are going to use the transformation £ = x+ 1y, o = xo+yo, n = — ¥,
Mo = To — Yo. Expressing u as function @ in these new variables, i.e., 4(§,n) =
u(z,y), we get

Ugy = Uge + 2Ugn + Uy,

Uyy = Ugg — 2Ugy + Uppy.

Observing that the continuity of the partial derivatives of u and hence of u gives
Ugy = Upe, We obtain

ey = (e =) = 4 (@10) — @29 = aoi (12.1.11)

We recall from Lemma 12.1.2 that (12.1.2), (12.1.3) with go given by (12.1.6)
has a unique solution r. Multiplying equations (12.1.11) and (12.1.2) by r and 4,
respectively, and then subtracting the second equation from the first equation we
obtain

figyr — Tire, = 0. (12.1.12)
Observing
- - - 0 . - -
an (Ugr) = Ugyr + Uery, ¢ (Uyr) = Uper + Uyre,
0 . - . a . . -
877 (UTE) = UpTe + UTey, o¢ (u?“n) = UgTy + UTpe,
we conclude that
1
UgyT — Urgy = 5 (6877 (TQer — are) + gg(ﬂnr — ﬂrn)> (12.1.13)

Integrating both sides of (12.1.12) over D(&g, 19) and taking (12.1.13) into account
we get

{8677 (TUer — are) + aaé_(ﬂnr - ﬂrn)] dé dn = 0. (12.1.14)

D(&0,m0)
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By Fubini’s theorem we can integrate componentwise, and therefore the left-hand
side is the sum of the two integrals

&o
L= / [(e(€, )r(&,€) — A&, E)re(£,€))

- (ﬂﬁ(gv 770)7.(57 770) - ’&,(5, 770)7“5 (57 nO))}dé-

=: I11 — Iho,

&o
L= / (g (€0 1) (€0, 1) — (€0, n)m (E0v)

— (@y(n,m)r(n,n) — w(n,n)ry(n,n))ldn
=: Iy — Ip.

Here we have used that, e.g., 597, (gr — ure) is integrable with respect to n for
almost all £ and that ¢r — tre is continuous with respect to 7 for these £ in view
of (12.1.5) and the continuity assumption on u and its partial derivatives.

Integrating by parts and observing that 7(£,n) = 1if £ = &y or n = 1y we get

o
Ly = 2/ e (&, m0)7(€,m0) d§ — w(€o,m0)7 (80, 10) + @(10,10)7 (10, M0)
)

[¢]

o
= 2/ tig (€,m0) d€ — @(§o0,m0) + @(no,10)
il

0

= (&0, m0) — @(no,M0)

o
I = 2/ Ty (o, m)7r (&0, 1) dn — (€0, 0)7 (0, 0) + (&0, m0)7 (€05 M0)
n

(o]

&o
_ 2/ ii (€0, 1) dip — W0, o) + (€0, 170)
)

0

= ($0,%0) — (&0, M0)-

For ¢ =n we have z + y = x — y, so that y = 0 and « = £. Hence

Iy — Iiz = —20(&0, m0) + @(€o, §0) + @(no,M0)
= —2u(zo, yo) + u(xo + yo,0) + u(xo — yo,0)
= —2u(z0, Yo0) + ¢(o + ¥o) + ¢(zo — Yo)- (12.1.15)
From

. & 0
wy(2.9) = Tela+ 0 =)'yt + o+ .0 - ) )

=tg(z+y,z—y) —Uy(z+y,z—y) (12.1.16)
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and the same equation for R defined by (12.1.7) and r we find
L — I
&o
— [ ael€ 7l €) ~ 26 Ore(€.€) — (€ (€ €) + e, (€. )] e
)

o]

o o
=/ [4g(€,€) — n(&,8)]r(§,8) dE — | (&, §)[re (&, &) —ry(&: )] d€

0] 7o

&o &o
:/ uy(x,O)R(x,O)dx—/ u(z,0)Ry(x,0) dx

0 Mo
To+Yo zo+yo

:/ Y(z)R(z,0) dm—/ o(x)Ry(z,0) du. (12.1.17)
To—Yo Zo—Yo

Recall that Iy + Iz = 0 by (12.1.14). Hence the sum of (12.1.15) and (12.1.17) is
zero, and solving this equation for u(xo,yo) completes the proof. ([l

For the solution r of (12.1.2), (12.1.3) we have already used the four variable
notation (£, n; o, m0), and re will denote the derivative with respect to the first
variable, even if the first variable is denoted by a different symbol.

Corollary 12.1.4. Let q1 and g2 be locally integrable on R and let @ be a continuously
differentiable function on R. Let u € W2(D) be a solution of

Uze — q1(T)U = Uyy — q2(y)u (12.1.18)

such that u, and uy are continuous on D. Assume that u satisfies the initial
conditions

u(z,0) = (), uy(z,0) =¢' (x), x0—1yo <z <20+ Y0 (12.1.19)
Let r be the unique solution of (12.1.2), (12.1.3) with qo given by (12.1.6). Then

zo+Yo

u(wo,yo) = (o + o) — / o(x)re (z, ;20 + Yo, To — Yo) da. (12.1.20)

Zo—Yo

Proof. By Theorem 12.1.3, u has the representation (12.1.10) with ) = ¢’. Recall
that R has been defined in (12.1.7), where r is the unique solution of (12.1.2),
(12.1.3) with g given by (12.1.6). Since x¢ + yo = & and xo — yo = 7o, it follows
that

R(zo £ yo,0; 20, y0) = (0 £ Yo, To £ Yo; To + Yo, To — Yo) = 1.
As we have argued in the proof of Theorem 12.1.3, we may used integration by
parts to arrive at

To+Yo
/ ¢ (x)R(x,0; z0,y0) dz = ©(x0 + y0) — ¢(o — Yo)

0—Yo

To+Yo
- / (@) Ro (2, 0: 20, o) e

0—Yo
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From (12.1.16) for R, and the corresponding formula for R, we see that
R (x,0;20,%0) + Rz (x,0; 20, y0) = 2r¢(x, ;20 + Yo, To — Yo)-
Substitution of these identities into (12.1.10) gives (12.1.20). O

12.2 Solutions of Sturm—Liouville problems

Lemma 12.2.1 ([180, Lemma 1.4.3]). Let (ax)5> _.. be a sequence of complex num-
bers of the form ay = Q;rk + b+ hi, where b € C and hy = O(k™') for k — +o0,
let f € Ly(0,a) and let

f\) = /O ’ f(z)e™™ dx

be its Fourier transform. Then

flaw) =f (2;% + b> +kLg(k)

k=—oc0

with (f(2;k+b)):im € ly and (g(k))=__ € la.

Proof. From the equality

flap) = /Oa f(z)e WD)z o —ihkz gy /Oa f(x)e*i(%Zr K0T — ihgx + O(h2)] dz
it follows that

Flax) = f<2;k+b> e (2;Tk+b> +Oh2) = f<2;k+b> +E k),

where )
g(k) = khy.f' ( ;Tk + b) +ETLO(K2hD).
Since ) "
f:( 7Tk+b> :/ f(x)e*iba:efﬁzlra:dx
a 0
and

~ 2 a ) -
I ( ;T/f —|—b> = —i/ f(x)xe—zbame—zzakm d
0
ibx

are the Fourier coefficients of the functions  — f(z)e™®* and x + —if(z)ze™ ",
which belong to L3(0,a), Bessel’s inequality implies that

3 ‘f(%j/ﬁb) f/<2;k+b>

k=—o
o0
and hence also that > |g(k)|? < oo, because by assumption, sup |khg| < co. [
keZ

k=—o0

2
< 00,

oo

2
< 00, Z

k=—o
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Definition 12.2.2 ([281, Section 2.5]). An entire function w of exponential type < o
is said to belong to the Paley—Wiener class L7 if its restriction to the real axis
belongs to La(—00, 00).

Remark 12.2.3. For an entire function w, let we = J(w + @) and w, = 3 (w — @)

be the even and odd parts of w, where @w(A) = w(—A). Clearly, w belongs to L7 if
and only if w, and w, belong to £7. We denote the sets of even and odd functions
in £7 by £¢ and L7, respectively.

Lemma 12.2.4 (Plancherel’s theorem). The function w belongs to L7 if and only
if it is of the form

w(M) :/ £(t) cos At dt +i/ C(H)sinMdl, AeC,
0 0
where &, ¢ € Ly(0,0). Furthermore, \Allim e ImAla|,(\) =0 ifw e L2,
—00

Proof. The first statement can be found in [263, Theorems 48 and 50] or [281,
Theorem 2.18], while the second statement easily follows from [180, Lemma 1.3.1].

O
Remark 12.2.5. In the notation of Lemma 12.2.4,
we(A) = / E(t)cos Atdt, wo(A) = z/ C(t)sinAtdt, XeC.
0 0
Consider the Sturm-Liouville equation
Y —q(x)y + N2y =0 (12.2.1)

on the interval (0, a), where 0 < a < 00, ¢ € L2(0,a) is a real-valued function and
A is a complex parameter. Let eg(A, ) denote the solution of equation (12.2.1)
with initial data

eo(N,0) =1, e((N,0) = —iA. (12.2.2)

Theorem 12.2.6 ([180, Theorem 1.2.1]). The solution eg(A, ) of the initial value
problem (12.2.1), (12.2.2) admits the representation

eo(\, ) = e 4 K(z,t)e”™dt, 0 <z < a, (12.2.3)

—T

where

K(z,t) = —re(t, bz, —x), 0<z<a, |t <z, (12.2.4)

and r is the function defined in Lemma 12.1.2 with

q0(&,m) Z—iq (5;77). (12.2.5)
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Proof. The function »
u('ra y) = e—l)xmeo()\7 y)

belongs locally to W3, is continuously differentiable for —co < # < 00, 0 <y < a,
and solves the Cauchy problem

Upy = Uyy — ¢(Y)u (12.2.6)
with initial conditions
u(r,0) = ™, (x,0) = —ide A,
Corollary 12.1.4 gives that the value of the function w at (g, yo) is given by
. . Zo+Yo )
e*”\moeo()\,yo) = ¢~ Mzotyo) _ / re(z, z; 20 + Yo, Lo — yo)e*M"”dx.
Zo—Yo
Letting 9 = 0 we get
60(>‘7 yO) = eil/\yo - / ’l"g(x, x5 Yo, _yO)eierdx'
—Yo

An obvious change in notation now proves (12.2.3). Since (12.2.6) is equation
(12.1.18) with g1 = 0 and ¢ = ¢, (12.2.5) follows from (12.1.6). |

Proposition 12.2.7.

o\, z) = e~ 4 / S”“(f = yDeo () dt. (12.2.7)
0
Proof. It is easy to see that
y(x) = e A 4 / sm/\(;\: a t)g(t) dt (12.2.8)
0

is the solution of the differential equation y” + A2y = g with g € L2(0,a) subject
to the initial condition y(0) = 1, y'(0) = —iX. For g = geo(}, -) it follows that y is
the unique solution of (12.2.1), (12.2.2). Since this solution is ey (4, -), the equation
(12.2.7) follows. O

Lemma 12.2.8. Let p € Ny and ¢ € WP(0,a). Then K defined in Theorem 12.2.6
is continuous, and for all0 < x < a and |t| < z,

[N((x,t):;/o B du+/ / g+ B)K(a+B,a—B)dfda. (12.2.9)

Furthermore, 32211‘?;22 K(a,-) € WPH'=P1=P2(_q a) whenever p; 4+ py < p+ 1. If

q is real valued, then also K is real valued.
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Proof. From (12.2.4), (12.1.4) and Lemma 12.1.1 we conclude that K is continu-
ous. If ¢ is real valued, then also ¢o given by (12.2.5) is real valued, and hence the
real part of r also satisfies (12.1.4). From the uniqueness of the solution of (12.1.4)
we conclude that r is real valued. Substituting (12.2.3) into (12.2.7) we arrive at
T ) T gin A —¢ }
K(z,t)e~Mdt = / o (f ) gt
0

—x

. _ t ,
+/ A t)q(t) K(t,&)e"™8dedt.  (12.2.10)
o A —t

Next we express the right-hand side of the above equation as a Fourier transform.
Since o)
inA(z—1t) _, 1 T ;
Sin (:L' )672/\5 _ / 672/\’“ du, (12211)
A 2 Je—(a-1)
it follows that

T : _ . 1 r * 3
/ sSin )\(.13 t) q(t)e_”\tdt — / q(t) / e—zAu du dt
o A 2 Jo 2t—x

z4u

I 2
= 2/ e—”"/ q(t) dt du. (12.2.12)
—x 0

Using equation (12.2.11) once more, we obtain the equality

m““‘”w>ﬂm@—wﬁﬁ

Er—t)
/ / th/ e_“\“dudf) dt
e (a1)

Interchanging variables, the inner double integral becomes
t E+(z—t) min{t,u+(z—t)}
Ko [ v~ [Con | R (1,€) dé du.
—t E—(z—t) —z max{—t,u—(z—t)}
Consequently,

z b E+(z—t)
/ q(t) | K(t,€) / e~ du dE dt
0 —t E—(z—1t)

T ) T min{t,u+(z—t)}
:/ e—m/ q(t)/ K(t,€) dé dt du.
0 I

-z ax{—t,u—(xz—t)}

It follows that

/m bln/\(/\l' - t)q(t) ! K(t g) —iA§ dé dt (12213)
0

min{—u,t+(x—u)} _
/ —ix / / K (u,€) dé dudt.
—z max{—u,t—(z—u)}
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Equations (12.2.12) and (12.2.13) show that (12.2.10) leads to

K(x,t)e”Mdt

—x

1 [ ot z min{u,t+(x—u)} o
- 2/ (/ q(u)du+/ q(u)/ K(u,§) dﬁalu)e_Z tdt.
—x 0 0 max{—u,t—(z—u)}

Taking the inverse Fourier transform, we arrive at
_ 1 3 1/ min{u,t+(z—u)}
K(z,t) = / q(u)du + / q(u)/ K(u,§)dédu. (12.2.14)
2 Jo 2 Jo max{ —u,i—(z—u)}
Performing the change of variables
u+€&=2aand u—§€ =20
in this integral, the region of the double integral,
—u<é<u, t—(r—u)<E<t+(zx—u), 0<u<u,
becomes
0<a, 0<g8, 26<x—t, 2a<z+4+t, 0<a+pg<uz,

where the last condition is redundant since it follows from the first four. Hence
(12.2.9) follows. O

From [180, Corollary after Theorem 1.2.1, Theorem 1.2.2 and (1.2.18)] we
obtain

Theorem 12.2.9.
1. If the potential q of the Sturm—Liouville equation

—y"(z) + q(z)y(z) = Ny(z), =€ (0,a), (12.2.15)

belongs to L2(0,a), then the solutions of the initial value problems s(A,0) = 0,
§'(A,0) =1 and ¢(X,0) =1, ¢/(X,0) =0 can be expressed as

A )\t
s\ ) :Sm * / K(a,)" M, (12.2.16)
c()\,x):cos)\x—i—/ B(z,t) cos At dt, (12.2.17)
0

where K (z,t) = K (z,t)— K (z, —t), B(z,t) = K(z,t)+K (z,—t), and K (z,t)
s the unique solution of the integral equation

’l‘+f
~ 1 2
K(x,t)=2/ ds—|—/ / q(s +p)K(s+p,s —p)dpds
(12.2.18)
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on the triangular region {(z,t) € [0,a] X [—a,a] : [t| < z}. In particular, it is
true that K(x,0) =0 and

B(z,2) = K(z,2) = K(z,2) = ; /Ow q(s)ds. (12.2.19)

2. If g € W}(0,a), then K and B have partial derivatives up to (n+ 1)th order
which belong to L2(0,a).

Proof. We observe that

=\, x) —eg(A, x)

e
s z) = ! %\

(12.2.20)

for all € [0,a] and all nonzero complex numbers A since both functions solve
the initial value problem (12.2.15) subject to the boundary condition y(0) = 0,
y'(0) =1, see (12.2.1) and (12.2.2) for eg. Theorem 12.2.6 shows that

51 1 z ~ . ~ .
5()\7l') _ bln)\)\.r + 22)\/ (K(l‘,t)el/\t _ K(x’t)ef’LAt) dt

_ Sin;x + 2; /0 ' ([f{(x,t) — K(z,—t)]e™ — (K (2,t) — K (z, —t)e*W) dt

_ sin X +/ [f{(x,t) - K’(m, _t)]sm)\t at.
A 0 A

which proves (12.2.17). Similarly, (12.2.18) follows from

O z) = OO +2e°(_A’x). (12.2.21)

The properties of K and B now follow immediately from their definition and
Lemma 12.2.8. ]

Observe that —sin”*1) is an antiderivative of sin®?) for all j € Ng. We also
note that K is an odd function with respect to t, whence g’tjj K(a,0) = 0 and

g,» K,(a,0) = 0 for all even nonnegative integers. Similarly, since B is an even

function with respect to ¢, it follows that gzj B(a,0) = 0 and g; B, (a,0) =0 for
all odd nonnegative integers. Then integration by parts and differentiation with
respect to x, respectively, followed by n integrations by parts in (12.2.16) and

(12.2.17) leads to
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Corollary 12.2.10. If n € Ny and g € W3*(0,a), then

sinda o &7 sint*h \q a gntl sin(™ D) a¢
s(\,a) = \ _FO ot K(a,a) wer o T i athrlK(a,t) et dt,
(12.2.22)
/ _ sinda = 0771 sin® \a
=t Ko™ 5 2 Ko™
‘o sin(™ ¢
T o atnKm(a’t) An+1 dt, (12.2.23)
— sin®) \a @ gntl sin(™ At
C(A’ a) -8 )\a + ]z:;) ath(a,a) )\j+1 o 0 atn+1 a, )\n+1 dtv
(12.2.24)
Ve qnG=1
(A, a) = —\sin \a + B(a, a) cos ,\a_|_z atjle-T a.a sin N a
j=1
a gn Sin(n—i—l) 2\
+/ Bo(a,t) dt, (12.2.25)
o ot A"
where gg}iﬁK(a,% gg; K.(a,-), g::lB(a")7 gt’; By(a,-) belong to Ls(0, a).

Corollary 12.2.11. The entire functions A\ — As(\ a), §'(-,a), c(-,a), and X —
AL (N, a) are sine type functions of type a.

Proof. The first term of the representation in Corollary 12.2.10 of each of these
functions can be estimated as

1
4

for sufficiently large | Im A|, whereas the remaining terms satisfy

O(A—1)€|Im>\|a.

. 1
e\ImMa < |sm/\a\ < €|Im)\\a or 4€|Im>\|a < ‘COS)\CL| < €|Im)\\a

Hence each of these functions is a sine type function by Proposition 11.2.19. [

12.3 Representations of some sine type functions

Let b and ¢ be real numbers. Then the solution w of the initial value problem
y'+ (N =2ibA—c)y=0, z€(0,a), y(A\0)=0, y'(A\0)=1, (12.3.1)

has the representation w(\, z) = 7(A)~!sin7(\)z, and w'(\, ) = cos 7(\)z, where
7(A) = VA2 — 2ib\ — c. Since both w and w’ are even functions with respect to
T, the representation is unambiguous. The next lemma gives an asymptotic rep-
resentation of these two functions in terms of sin Aa and cos Aa for x = a > 0.
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Lemma 12.3.1. Let b,c € R and a > 0. Then there are R > 0 and analytic
functions fjr on {z € C:|z| < R7} for j,k = 1,2, satisfying fjx(—2) = fjr(2),
f1,1(0) = f21(0) = coshba and —f12(0) = f22(0) = sinhba such that for the
solution w(-,a) of the initial value problem (12.3.1) at * = a and its derivative
Ww'(,a) at x = a we have the representations

w(ha) = sin;(’i)) — faO- )bm)\)\a ifa(h- )cos)\)\a7 (12.3.2)
W'\, a) =cosT(N)a = fa1 (A1) cos Aa + i fa0( A7) sin Aa, (12.3.3)
for |A] > R.

Proof. Let r > 0 such that 2|b|r + c¢r? < 1. Let hy be the unique analytic branch
of 2+ V1 —2ibz —cz2 on {z € C: |z| < r} with hy(0) = 1, i.e.,

o 1
hi(z) = ZO (;) (=2ibz — 2, 2] <. (12.3.4)

Note that hy(z) # 0 for all [z| < r. For [\| > R = ! we will now choose the branch
of 7 such that

T(A) -1
= h1(A
) (A7)
For |z| < r we define
-1
ho(z) = hl(z; . (12.3.5)
Clearly, hs is analytic with hy(0) = —ib. For |A| > R we conclude that
) = A=A (T(;) - 1) — hy(A7Y).
It follows that
sint(A)a  cosha(A™)asinAa n sin ho(A~1)a cos Aa
A h(\h) A hi(A71) A
cos T(A)a = cos ha(A"1)a cos Aa — sin ho(A™1)a sin \a.
For |z| < r we define
fia(z) = C%hz( 0 o) = z‘smh?(z)a, (12.3.6)
f2.1(z) = cos hg(z)a, fa.2(2) = isin hg( )a, (12.3.7)

which proves the representations (12.3.2) and (12.3.3). We also obtain f11(0) =
f2.1(0) = coshz(0)a = coshba and —f12(0) = f2,2(0) = isinhhe(0)a = sinh ba.
The symmetry of these functions follows from

hi(— =1+ 2ibz — 22 = h1(2)
and ho(—z) = —ha(z) for |z| <r. O
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Corollary 12.3.2. Under the assumptions of Lemma 12.3.1, for each n € N there
are polynomials f;rn of degree < n and entire functions ¢, € L, j,k = 1,2,
such that fjrn(—2) = fikn(2), fj1,n(0) = coshba, (—1)7 fj2,(0) = sinhba,
VYin(—2) = (=1)"T; ,(2) and such that

sinT(Aa _\sinda _1,€08Aa Y1 (N)
T()\) - f1,17n()\ ) )\ +Zf1,27n(>\ ) )\ + )\n+1 ’ (1238)

- -1 . —1\ - 'll)Q,n()\)
cosT(N)a = fa1n(A" ") cosAa+ifa2,(A77)sinAa + . (12.3.9)

)\n
Proof. Let fjin, 3,k =1,2, be the Taylor polynomial about 0 of order n of the
function f; from Lemma 12.3.1. Defining the function 1 , by (12.3.8), we have

Grn(A) = Anrt zg)“ AN 1A sin NG — i f o0 (A1) cos Aa
T

=\" (fl’l()\il) — fl’l,n(Ail)) sin Aa + A" (f1’2(>\71) — fl’g,n()\il)) cos )\a,

where the second identity follows from (12.3.2). The first of these representations
shows that 11 ,, is an entire function with the stated symmetry. Finally, the second
representation shows that 1y, is of the form O(|]A|™!)sin Aa + O(|A|™!) cos Aa,
and therefore v1 ,, is of exponential type < a and O(|]A\|~!) on the real axis. Hence
¥1,n € L% The proof for s ,, is similar. |

Lemma 12.3.3 ([180, Lemma 3.4.2]). For the functions u and v to have the repre-
sentations

sin\a  4n%Aacosha  f())

= — 12.3.1

uN =y AN -2 T N2 (123.10)
v(\) = cos \a + Br? Sli:a + g(;), (12.3.11)

where A,B € C, f € L2, f(0)=0, g€ LY, it is necessary and sufficient that

oo —2
7k Tk TA oy
A) = P— A\ = 12.3.12
s =aIL(7y) 0= w=T T (12312
= [T 1\ 2 T 1 B B
\) = k- 2 _\? = (k-

’U( ) P <a < 2>> (vk )7 Vg a < 2> + ak + k )

(12.3.13)

where (o), € l2 and (Br)52, € la.

Proof. We define
©0s(A) = iX2u(N).
In view of
4Ar2a)? 2 d

N2 — 72 a (4N —72)a’
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s is an even entire function of the form ¢ asin (7.1.4) witho =0, a =1, M =0
and N = ”ZA. Then the representation of uy in (12.3.13) follows from part 1 in
Lemma 7.1.3 if we observe that u is even and that we have to omit a double zeros
at 0 from the sequence (S\k)zozfooJ#o- Since A — Asin Aa is a sine type function,
it follows from Lemma 11.2.29 that

u(\) = d’ ﬁ (”j) - (u? — A2)

k=1

with some a’ # 0. From the product representation of the sine function we infer

that
(N d (RN . A2a2\ 7!
sin/\a_aH a (ux =A%) 1_7r2k;2
o 9 2
_ a’ H up — A
a 7'r212€2 _ )

I
Q 8

. 2,2 . . . 2,2 2,2
Since uf — ™ 5" is bounded with respect to k and since |, 5" — 2| > ™ X" for A on

the imaginary axis, it follows that the right-hand side converges to ‘ZI as A — oo
along the imaginary axis, whereas the corresponding limit on the left-hand side
is 1. Hence o/ = a and we have shown that the function given by (12.3.10) has the
representation (12.3.12).

Conversely, assume that u is given by (12.3.12). Putting Ay = ™", we have

2

A T
U = A\, + a2 )\];1+ k

AL
a k

Since (Ak)kez is the sequence of the zeros of A — sin Aq, it follows from Remark
11.3.16 that

2
Au(A) = Cpsin Aa <l + Bl) " A cos Aa + fQ(A), (12.3.14)
A a\ A
where Cy # 0, Bj is a constant and fo € £®. Taking into account that u is an even
entire function, we obtain By = 0, fo € L% and f2(0) = 0. From the first part of
the proof we conclude that Cyp = 1. Hence u is of the form (12.3.10).
Similarly, the function defined by

Pc(A) = Av(N)

is an odd entire function of the form ¢ as in (7.1.4) with o = 1, « = 0, M =
™B and N = 0. Arguing as for ps it follows that (12.3.11) and (12.3.13) are

a

equivalent. O
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Lemma 12.3.4. For the entire functions u and v to admit the representations

sin\a  4n%Aacos \a sin \a n f)

w = = O g (12.3.15)
B osin Aa cos \a g(A)
v(A\) = cos \a + Br \a + D4)\2a2 2 + 2 (12.3.16)

where A,B,C,D € C, f € L%, g € L, it is necessary and sufficient that

S A Tk TwA oy
_ 2 _ 2 _
u(N) _ag ( . > (uf =), we=""+ L+ 5, (12.3.17)
= [T 1\ 2 T 1 B B
v(/\)zl_[(a (k;—2>> (vZ — \?), vk=a<k—2>+ak+k2,
k=1
(12.3.18)

where (ag)32, € la and (B)5° € lo.

Proof. First assume that (12.3.15) or (12.3.16) hold. We are going to prove that
the representations of the zeros uy and vg given in (12.3.12) and (12.3.13) can be
written in the form (12.3.17) and (12.3.18). In case (12.3.15) we define

X(w) = pPu(p), (12.3.19)

while in case (12.3.16) we define

() = —po (ot 27;) . (12.3.20)

It is easy to see that in either case,

X(1) = (p + Bap™ ") sin pa + Ay cos pa + Wy (p)p ™"

with ¥; € £ Indeed, in case (12.3.15) we have By = C and A; = —n2Aa™?,
while in case (12.3.16) we have By = 452 and A; = —Bn?a~!. Hence ¥ is of the
form as considered in Lemma 7.1.5 with n = 1, By = 1, B; = 0, A = 0, except
that we do not require that A; and Bj are real and that ¥,, is symmetric. But it
is easy to see that these requirements are only used to guarantee that the zeros
of x can be indexed properly; the asymptotic representation (7.1.13) of the zeros
holds without these requirements. We therefore conclude from Lemma 7.1.5 that
the zeros of xy have the asymptotic representation

kA b

b= g kﬂ'—'_kz7

™
2a’

where (b,(:))zo:l € ls. Observing that uy = py and vy, = pp—
(12.3.17) and (12.3.18) follow.

the representations
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Conversely, assume that (12.3.17) holds. By the first part of this proof, the

Zeros (Aéo))kez\{o} of the entire function ug defined by

sinA\a  4w%Aacos \a

A) = — 12.3.21
uO( ) A 4)\20,2 _ 7'('2 ( )
have the asymptotic behaviour
(0) 7k TA Qo k
= 12.3.22
Ak ak k2 (12.3.22)

where (o), € lo and ap,— = —ag  for all k € N. Comparing (12.3.22) with
(12.3.17) we obtain

_ (0 Tk
up = A, + ()\LO))Q’

where (Vk)rez\ {0y € l2. It is easy to see that A +— Aug()) is a sine-type function
of type a. In view of Remark 11.3.16 we obtain

A A2 A2

where Cy # 0, By, C are constants and fo € L% Taking into account that u
and wug are even functions, we obtain By = 0 and fy € L%. Since u satisfies the
representation (12.3.10) in Lemma 12.3.3, it follows that Cy = 1. Substituting
(12.3.21) into (12.3.23) and observing Cy = 1 and B; = 0, we obtain (12.3.15).
Finally assume that (12.3.18) holds. By the first part of this proof, the zeros

(Aéo))kez\{o} of the entire function vy defined by

Mu(\) = Coug(N) (1 4By C) 4+ 20 (12.3.23)

vo(\) = cos \a + Br? b”;aa (12.3.24)
have the asymptotic behaviour
1 B Box
AD =T (k| = ki ’ 12.3.2
O =T (k= ) seuk+ T 0 (123.25)

where (So,k)52, € l2 and fo,— = —Bo,x for all k£ € N. Comparing (12.3.25) with
(12.3.18) we obtain

_(0) Tk
v = A, + (/\20))2,

where (7&)rez\fo} € l2. It is easy to see that vy is a sine-type function of type a.
In view of Remark 11.3.16 we obtain

B D fa(N)
v(A) = Covp(N) <1+ 5 + 4a2>\2> + 2 (12.3.26)
where Cy # 0, By, D are constants and fy € £ Taking into account that v
and v are even functions, we obtain B; = 0 and fo € L2 Since v satisfies

the representation (12.3.11) in Lemma 12.3.3, it follows that Cy = 1. Substituting
(12.3.24) into (12.3.26) and observing Cy = 1 and B; = 0, we obtain (12.3.16). O
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12.4 The fundamental equation

Throughout this section let u and v be as in (12.3.10) and (12.3.11) with A = B
and such that the numbers u; and v, in (12.3.12) and (12.3.13) are real or pure
imaginary for all k¥ € N and satisfy

vi<ud <vi<udooo.
We consider the entire function y defined by
X(A) =v(A) +idu(r), AeC. (12.4.1)
Lemma 12.4.1. The function x is of SSHB class.

Proof. By definition, u and v are even functions, and we can write u(\) = Q(\?)
and v()\) = P(A\?) with entire functions @ and P, where the sets {u} : k € N} and
{v? : k € N} are the sets of the zeros of @ and P, respectively, and all zeros of
and P are simple and interlace. Since @ and P have the representations (12.3.12)
and (12.3.13), it is easy to see that Q(v) is an infinite product of positive numbers,
whereas P’(v?) is the negative of an infinite product of positive numbers. It follows
that Q'(z)P(z) — Q(x)P'(z) > 0 for all z € R sufficiently close to v?. Hence there
are x € R such that P(z) # 0 and such that 6 = 5 satisfies §'(z) > 0. Therefore
0 is a Nevanlinna function by Theorem 11.1.6 and Remark 11.1.7. Then 6 € N}?
by Corollary 5.2.3, and thus x is of SSHB class by Definition 5.2.6. O

We further define the function i by

P(A) = e X () (12.4.2)
and the function S by
¥(A)
S(A) = BN (12.4.3)

Proposition 12.4.2. Let x := #{k € N : v,% < 0}. Then S is meromorphic on C and
analytic on R, and S has exactly k poles in the open upper half-plane. All poles in

the open upper half-plane are simple and lie on the imaginary axis. Furthermore,
for X € C such that (X) # 0 and (=) # 0 we have

o) S (N

S(=\) =80\, [SN)| =1, reR (12.4.5)
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Proof. The function S is the quotient of two nonzeros entire functions and hence
meromorphic on C. Let x(A\) = x(—=A), A € C. Since x and x do not have common
nonzero zeros, the statement on the poles and the analyticity of S on R\ {0}
immediately follows from Theorem 5.2.9. Furthermore, the possible singularity of
S at 0 is removable since )lg% S(A) = —11if 01is a (simple) zero of x. The identities
(12.4.4) and (12.4.5) are immediate consequences of the fact that x is real on the
imaginary axis. |

For b > 0 we define S; by
Sp(A) =1—=S(ib+)N), XeC, ¢p(—ib—1i)) #£0. (12.4.6)

Lemma 12.4.3.

1. Let b > 0 such that ib is not a pole of S. Then Sy € La(R).
2. Let v > 0 such that S is analytic on {\ € C:Im A\ >~} and define

—yz oo .
Py =° / S,(VePdr, zER. (12.4.7)

Then the function F is real valued and independent of v. Furthermore, the function
x +— e’ F(x) is the inverse Fourier transform of S, and can be represented as
Fy + Fy, where Fy € Ly(R), Fy € W3 (R) are real-valued functions, Fy(z) =0 for
x>0, and Fy(z) =0 for x > 2a.

Proof. 1. We conclude from the representations (12.3.10) and (12.3.11) of w and v

that
ity An?sinAa  4m2%idAacosha  g(A) +if(N)

A) = -
X a A 4)2q2 — 2 A ’
which gives

Ar?sinha _;y, B 472iNAa cos )\aeﬂ»/\a gA) +if(N) p—ira

A =1 12.4.
v a A € 4X\2a? — 72 + A ( 8)
and
1 An?sin\a 4n%idAacos \a gA) —if(N\)
—1— iha _ ia ia -2
B(=N) a A © a2 g2 O T Ao rronT
(12.4.9)

for A in the closed upper half-plane. Therefore, the function S satisfies

Ar?isin® \a  8m%iMAacos® \a 2

—1-2 -

SO a A 4X2a2 — 72 + A
+ O(/\72)e21m /\a.

(g(\) cos Aa — f(N)sin Aa)

Observing that
4a? 1 4
4\2q — 72 )2
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this representation can be written in the form

Ar?i 2
1-5(\) =2 ; L L9 cos Aa = F(N)sin Aa) + O )™ . (12.4.10)
a
By Proposition 12.4.2 we know that poles of S in the closed upper half-plane
lie on the positive imaginary axis, and from (12.4.10) we thus infer that 1 — S is
analytic and square integrable on each line Im A = b with b > 0 for which b is not
a pole of S.

2. Using (12.4.4) we have
Sy(=A)=1-8@y—X) =1-S>GEy+ ) =5,(1), AeR,

so that

e > iz
F(x) = Re (Sy(A\)e) dX, z €R,
0

™

which shows that F' is real valued. We can write

F(zx) = ;ﬂ / (1 = S(iry + \))elr Nz g

1

= — e d\ =: .
- /m_wu SO dA = ()

If we now take v/ > =, then it follows from Cauchy’s theorem that

’

|F’y/ (ZL') - F’y(iL')| < limsup (/ |(]_ — S(R + it))el(R+zt)z|dt
2 R—o0 ~

’Y/ . .
+/ (1 — S(—R+it))e’(R“t)$dt>
vy

=limsupO(R™!) =0,
R—oo
and therefore the function F' is independent of the special choice of ~.
The first term of the representation (12.4.10) of 1 — S has a pole at A = 0.
But it is easy to see that (12.4.10) can be written as

1S\ = 2A7?i w(A)

a0+ Tar M6

where w is analytic in the closed half-plane {A € C: Im A > v}, w(iv+-) € L2(R),
and A — w(N\)e 22 j5 bounded in that half-plane. We can therefore write
eV F(x) = Fy(z) + Fa(x) with

1 [ 24Ar% 1 [ wA+iv) ,
F = (2% F — IAT
(@) 27 [oo a(/\—|—z"y+i)e A, Fa(x) 27 ,Oo)\—ki’y—l—ie dX
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For x > 0 and R > 0 it follows from Cauchy’s integral theorem and Lebesgue’s
dominated convergence theorem that
R ei/\a: T eRei(9+72r)a: )
o dA=— o .. Re®df—0as R— o
_pAFiv+i o Re¥ +iy+i
Similarly, for x < 0 and R > v 4+ 1 we use the residue theorem and Lebesgue’s
dominated convergence theorem to conclude that

R ei/\a: 27 RT3, ) ei)\z
. dA = 0 | - _Re" df — 2mi res_jy—i . .
_pAt+iv+i = Re?® +iy+i A+iy+i
— —27ie(*tD? a5 R — 0.
Therefore
0 ifx >0,
F (l‘) = {2A7r2 e(’y+1)w ifx <0.

The function F5 is differentiable with

i [ A ;
Fi(z) = A +iy)ed\, zeR.
0=y [ e
Hence F, and F) are inverse Fourier transforms of functions in Ly(R), which shows
that F» € W3 (R). For x > 2a and R > 0 it follows from Cauchy’s integral theorem,
the boundedness of A — w(\)e?¢ in the closed half-plane {\ € C : Im \ > ~},
and Lebesgue’s dominated convergence theorem that

R . g 0 ; . P
W(A + Z’Y) ei)\z d\ = — OJ(.IEB + Z’Y)Iel:iet(eJr 2 )(2a7$)R6i0 d9 = 0
_RAFIY+1 o e +iy 41
as R — oo. Therefore, Fy(x) =0 for z > 2a. O

The fundamental equation, see [180, (3,2,10), (3.3.7)] will formally be de-
fined as

F(z+y) + H(z,y) + / H(z t)F(y+t)dt=0, 0<z<y  (12.4.11)

In order to have the limits of integration independent of x, we substitute y 4 x for
y and t + x for ¢, see [180, (3.3.7")], and the fundamental equation becomes

F(2x—|—y)+H(m,m+y)—|—/ H(z,x+t)F(2x+y+t)dt =0, z,y>0. (12.4.12)
0

We observe that in view of F(z) = 0 for > 2a, the equation (12.4.12) can be
written as

2a—2z—y
F<2x+y>+H<m,x+y>+/ H(z,o 4 )FQ+y+8)dt =0, (z.y) € D,
0
(12.4.13)
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where D = {(z,y) € R? : 0 < 2 < a,0 <y < 2(a — )} since for any other
values of z,y > 0, H(x,x+y) = 0 is necessary and sufficient for (12.4.12) to hold.
However, it will be more convenient to use a rectangular region, and therefore we
will consider the region [0, a] x [0, 2a] instead of D.

For 0 < 2 < a define

(IFIf)(y)z/O aF(2x+y+t)f(t)dt, f € Ly0,2a), y€[0,2a]. (12.4.14)

The following result is a special case of [180, Lemmas 3.3.1, 3.3.2 and 3.3.3].

Lemma 12.4.4. For 0 < z < a, the operator F, is a self-adjoint compact operator
in the space Lo(0,2a). If v? > 0, then I +F, > 0.

Proof. Since (y,t) — F(2x + y + t) is a real-valued and symmetric continuous
function on [0, 2a] x [0, 2a], the operator F, is self-adjoint and compact, see, e. g.,
109, p. 240).

Now let v? > 0. Then S is analytic in the closed upper half-plane, and we
can take v = 0 in (12.4.7). In particular, F' € Lo(R). Let f € L3(0,2a). Putting
f(t) = (F.f)(t) = 0 for t € R\ [0,2a] and using the notations f(t) = f(—t),
7(t) = y + b for z,b € R, the right-hand side of (12.4.14) can be written as a
convolution, so that we arrive at

Fof = (Fomy)* f on [0,00).
Hence there is a function g with support in (—oo, 0] such that
Fof +9=(Fory)*fonR. (12.4.15)

For y < 0 we have

2a 2

F2x+y+t)f(t)dt
0

2a
9()? = < / P2z +y + D) dt || f]|2,

where || - || denotes the norm in Lo(R). Hence

0 0 2a
||g\|=/ \g(y)\zdys/ / F@r+y+0) dedy | f|?
2a 0
= [ [ IPessyroPayas <2l PRSP,
0 —00

which shows that g € La(—00,0).
Taking the inner product with f in (12.4.15) and observing that ¢gf = 0, we
arrive at

(wavf):((FoT%:)*fvf)'
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Let f denote the Fourier transformation of f. Taking the Fourier transforms of
the functions in the above inner product and observing Parseval’s formula gives

(Fof), f) = (F o 7] £ ),

see, e.g., [108, (21.41)]. It is well known and easy to check that f is an entire
function. We observe that for any function h € Ly(R) and b € R,

(hom)(A) = /_OO h(b+t)e~ ™ dt = /_OO h(t)e 0 g = ¢MPR(N).  (12.4.16)

Since F' =1 — S by definition of F in (12.4.7), we conclude that

(oo}

(Faf), f) = / 2 (1 — S(N) F(=A)F(A) d.

— 00

Again from (12.4.16) and Parseval’s identity we conclude that

/oo 621)\33.]?(_)\).]5()\) A\ — /OO e’i)\wf(_)\)e_i)\xf(A) dA

— 00 — 00

— [ Geora-feradn
But (for_;)(t) = f(t—z) = 0if t < 0 since f is zero outside [0, 2a], and therefore
the integrand on the right-hand side is zero. We conclude that

1
2

1 . © sixe ; ;
€0 0) = 5 (Efr ) ==y [ ENSOFNiNan 24
Observing (12.4.5) it follows from the Cauchy—Schwarz—Bunyakovskii inequality

that

1

©0.02 -, [ VN0l - 17 =517 (2419

— 00

Altogether, we conclude that
(I +F)f, f) =0 (12.4.19)

for all f € L]0, 2a]. Hence I +F, > 0.

Since F, is compact, I + F, is a Fredholm operator of index 0, and for
I+TF, > 0 it remains to show that I + F, is injective. Hence let f € L2(0,2a)
such that (I +F,)f = 0. For this f, (12.4.19) becomes and inequality, and hence
also the Cauchy—Schwarz—Bunyakovskii inequality (12.4.18) is an equality. But
this happens if and only if one function in the inner product is a nonnegative
multiple of the other function, i.e., when there is « > 0 such that

—eZA SN f(=N) = af(\), AeR.
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Observing that S(0) = 1 and that in case f # 0 the Taylor expansion of the entire
function f about 0 leads to

oy |
7
it follows that @ = 1, and the identity theorem gives
FO) + 2SN f(=N) =0, AeC, S(\)#0, (12.4.20)

which is also trivially true in case f = 0.

First let = 0. Then (12.4.20) holds with 2 = 0. Hence all poles of S must
be cancelled by zeros of f , and since the poles of S are the zeros of 9, there is an
entire function w such that .

f=wy.
Multiplying (12.4.20) by v we arrive at

wpp = [ = —fip =~y
which shows that w is an odd entire function. We have seen at the beginning of

this section that v has no zeros in the closed lower half-plane and satisfies the

estimate (12.4.9). Hence i} is a bounded analytic function in the closed lower

half-plane. Since f is the Fourier transform of a function in L[0,2a], also f is
bounded in the closed lower half-plane. Indeed, it is easy to see that the integral
over |f] is such a bound. Hence w = i is bounded in the closed lower half-plane
and then also bounded in the closed upper half-plane due to the symmetry of w.
By Liouville’s theorem, w is constant. But i} is bounded on R, see (12.4.9), and f
is an Ly function on R, so that this constant must be zero. We have shown that
w =0, and f = 0 follows. Therefore I + Fy is injective, and I 4+ Fy > 0 is proved.

Now let > 0. Recall that we consider (I +F,)f = 0. Since (F,f)(y) = 0 for
y > 2(a — ), this implies f(y) =0 for y > 2(a — z). It follows for 0 < h < z that
the function )

fo= o (foTarn+ foT o)

has support in [z — h, 2a — x + k], and therefore f5 € L3[0, 2a]. In view of (12.4.16)
we conclude that ‘
e~ cos Ah. (12.4.21)

(20) leads to

Fa(N) = SO fn(=X) =0, A€R,

which means that ((I +Fo)fn, fn) = 0 for 0 < h < a. In view of
(T +TFo) fu, fa) = ((I +Fo)? fn, (I + Fo)> fn)

we conclude that (I + Fg)fn, = 0. But from the case x = 0 we already know that
this implies f;, = 0. Then (12.4.21) gives f = 0 and thus f = 0. |

) =f
A substitution of (12.4.21) into (12.4.
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Lemma 12.4.5. Let v% > 0. For 0 < z < a, define the operator Fg as the restriction
of F, to C[0,2a]. Then FY is a compact operator in the space C[0,2a], and I + F?
is invertible.

Proof. We begin by defining an auxiliary operator 7" by

2a
(T9)f)(y) =/O gly+t)ft)dt, g€ L2(0,2a), f € C[0,2a], y € [0,2a].

Here we set g(z) = 0 for > 2a. Clearly, (T'g) f is a measurable function on [0, 2a)
for all g € L3(0,2a) and f € C]0,2a], and

(T W) < gl 11T < v2allgl 11 £,
where ||-||o is the maximum norm in the Banach space C[0, 2a]. This shows that T' €
L(L2(0,2a), L(C|0,2a], Loo(0, 2a))). Clearly, for continuous g with g(2a) = 0, also
(T'g)f is continuous. Observing that the set of such functions g is dense in Ls(0, 2a),
that C[0, 2a] is closed in Lo (0, 2a) and that therefore L(C0, 2a], C10, 2a]) is closed
in L(C0,2a], Ls(0,2a)), it follows that T € L(L2(0,2a), L(C[0,2a])). Further-
more, if g € W3 (0,2a) with g(2a) = 0, then we can write

2a
g(z) = — / J(r)dr, w20,

see, e. g., [189, Proposition 2.1.5], and therefore
2a 2a 2a 2a
@opw=-[ [ gwarsma = [ [ gernari
0o Jy+t 0 Jy

= /:a /:a g (r+t)dt f(t)dr = —/;a((Tg/)f)(T) dr.

Since (T'¢')f is continuous by what we have already shown, it follows that (T'g)f
is differentiable with continuous derivative ((T'g)f)’ = (T'¢’)f. Then the norm of
(Tg)f in C[0,2aq] is

1(Tg) fllo + 1((T9). ) llo = 1T g) fllo + 1(Tg") fllo < vV2alllgll + llg' DI flo.

which shows that Tg € L(C|0,2a],C[0,2a]) if g € W4[0,2a] with g(2a) = 0.
But since the embedding from C'[0,2a] into C[0,2a] is compact, see, e.g., [189,
Proposition 2.1.7 and Lemma 2.4.1], it follows that Tg is a compact operator on
10, 2a).

As we have seen in the proof of Lemma 12.4.4, we can take v = 0 in (12.4.7).
For 0 < z < a we now apply the above auxiliary result to the operators

FO = T(F o 13,),

which proves that FY is a compact operator in C[0,2a]. Therefore I + FC is a
Fredholm operator with index 0. But N(I + F%) C N(I + F,) and I + F, is
injective by Lemma 12.4.4. It follows that I 4+ I, is invertible. O
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Lemma 12.4.6. The operator functions x — F, and x — FO are differentiable on
[0,a]. The derivative !, of x — F, at x is the operator

(FLf)(y) =2 /Oza F'Qe+y+t)f(t)dt, feLy0,2a), y€l0,2a], (12.4.22)

and (FQ)' is the restriction of F’, to C[0,2a]. For each x € [0,a] and for all f €
La(a,b), the function Fyf is differentiable, and (Fyf) = JF.f.

Proof. Arguing as at the beginning of the proof of Lemma 12.4.4 we see that F., is
a bounded operator in Ly (0, 2a). For z, 2’ € [0, a] we define the auxiliary operator

Fm,m’ - Fm’ - Fr - (l’l — ]J)F;

Then it follows for f € L2(0,2a) and y € [0, 2a] that

(Fa,ar f)(y)

= /2a[F(2J:/ +y+t)—FQ2r+y+t)—2a —z)F' 2z +y+t)|f(t)dt.
0

Since F' € W3 (0,a) by Lemma 12.4.3, we can write
2z’

F(2x/+y+t)—F(2x+y+t):/ F'(r +y+t)dr,
2

x

see, e. g., [189, Proposition 2.1.5]. Therefore

2a
(Fou )y //2 Fl(r+y+1) — F'(22 +y+ O] f(t) dr dt.

Let € > 0. Since the set of continuous functions on [0, 2a] is dense in L3(0, a), there
is a continuous function g on [0, 2a] such that ||F’ — g|| < e. Then

2a

9T +y+t)—(F —g)2x +y+t)|f(t)drdt

2x

2a
s/% / (F — g)(r +y +0)| |f(8)| dt dr

z’ 2a
" /2 /0 [(F" = 9)z +y + )| |f(t)| dt dT

< 42’ — zl[|F" = gllIlf]] < dela’ — ||| f]]

Since g is continuous and therefore uniformly continuous, there exists 4 > 0 such
that |g(t) — g(t')] < ¢ for all ¢,t' € [0,2a] with |t —¢'| < 20. Hence it follows for
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|z" — x| < 6 that

<e

/;I/ /:a |f()| dtdr

/Oa/2 ' (9T +y+1)— g2z +y+t)]f(t)dt

< ev2ala’ — a| f].

Altogether, we conclude that
IFo0 flloo < (4 + V2a)la’ — || ]I

This shows that F, is differentiable as an operator function from Ls(0,2a) to
Loo(0,2a) with derivative F/,, see, e.g., [66, Section 8.1]. By the product rule,
see, e.g., [66, 8.3.1], the same is clearly true if these operators are considered
as operators into L2(0,2a), that is, multiplied by the constant embedding from
L+(0,2a) to L2(0, 2a).

The same reasoning as above applies to the operator function x +— F2. We
only have to restrict f to functions in C[0, 2a] and replace || f| with v/2al| f|o-

In (12.4.14), we can interchange integration and differentiation with respect
to y, and (F,.f) = éIF;f is therefore an immediate consequence of (12.4.22). O

Proposition 12.4.7. Let v > 0 and let the function F be as defined in (12.4.7).
Then for every x € [0,a], (I + F;)g = —F o 7oy has a unique solution g = G(z,-)
in L(0,2a). The function G is continuous on [0, a] x [0,2a] and G(-,y) € W3 (0, a)
for y € [0, 2a].

Proof. As we have seen in the proof of Lemma 12.4.4, we can take v = 0in (12.4.7).
The existence and uniqueness of G follows immediately from the invertibility of
I+TF, for all z € [0,a], which was shown in Lemma 12.4.4, and we have

G(z,y) = —((I +Fa)7H(F 0 724))(y)

for all (x,y) € [0, a] x [0, 2a]. Since F o7y, is continuous, Lemma 12.4.5 shows that
we can also write

G(z,y) = —((I +F3) 7' (F o 72)) (),

and therefore G(x,-) is continuous. By Lemma 12.4.6, x — F? is differentiable
and therefore continuous on [0, a, so that also z — (I +F2)~! is continuous. For
z,x’ € [0,a] we therefore conclude

G, y) — Gz, y)| < (I +Fo) ™ (F omae))(y) — (I +Fg) ™ (F o)) (y)|
+ (I +F) " HF o mo0))(y) — (I +F2) ™ H(F 0 792))(v)]
<N +FQ) ™ = (I +FQ) M I(F o o)
I +TFD)THF 0 m2ar — F o 70|
—0asz’ — x.
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In the last step we also have used that F' is uniformly continuous. We have thus
shown that G(z,-) and G(:,y) are continuous for all z € [0,a] and y € [0, 2a], and
a standard argument shows that G is continuous on [0, a] x [0, 2a].

Since x — [, is differentiable by Lemma 12.4.6 and since I + I, is invertible
for all z € [0, a] by Lemma 12.4.4, z +— (I +F,)~! is differentiable on [0, a] by the
quotient rule, see [66, 8.3.2], and

d

dx

Furthermore, also x + F o 7o, is differentiable with derivative 2F" o 79,, and the
product rule, see [66, 8.3.1], gives

0

ox

Since F' o Ty, is continuous, we know from Lemma 12.4.5 that the first summand
can be written as

Gi(,) = (I +Fg) 7 (Fy) (I + F3) 7 (F 0 m2a),

(I4+F,) =T +F,) 'F,(I+F,)!

Gz, )= (T +TF) 'F (I +F,) Y (Fomy,)—2(I +F,) " (F om,). (12.4.23)

and since
z— (I+FO)~YF0) (I +F2)!
]

(
) it follows like we have shown for G

(F;)
is a continuous operator function in L(C[0, 2a
] x [0, 2a]. Next we consider the auxiliary

above that also G is continuous on [0, a
operator G defined by

(Gog)(z,) := (I +F,) " (goma), g€ Ly(0,2a),z € [0,a.
Again for continuous g, we can replace F, with F2, and the above considerations

show that Gog is continuous on [0, 2a] and therefore square integrable. We calculate

2a

((I+ Fe)~'(go T2x)) (y) dy da

g/o (I +F) | [lgll dae
< a max ||[(T+F.)" gl
z€[0,a]

By continuity, this extends to all g € L2(0, 2a), and we obtain that Gy is a bounded
operator from L2(0,a) to L2((0,a) x (0,2a)). Therefore, Go := GoF"’ belongs to
L2((0,a) x (0,2a)). Finally, let y € [0, 2a]. Then

((I + IFI)GQ)(xv ) =F'o T2x
gives

Go(z,y) = / F2x +y+t)Ga(z,t) dt + F' (22 + y).

Since (z,t) — F(2x+y+1t)Ga(x,t) is a square integrable kernel, it follows that the
function x — [/ F(22 + y + t)G2(w,t) dt is square integrable on (0,a), see, e.g.,
[109, p. 240]. Altogether, ? G(-,y) = G1(-,y) — 2G2(-,y) € L2(0,a) follows. O
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Proposition 12.4.8 ([180, Theorem 3.3.1]). Let v > 0 and consider the function
F defined in (12.4.7). Then the fundamental equation (12.4.11) has a unique con-
tinuous solution H on Dy = {(z,y) € R? : 0 < z < y}. Furthermore, q € L2(0,a),
where

q(z) = —QddxH(x,x), z € (0,a), (12.4.24)

H and q are real valued, and H satisfies the integral equation

1 a+Y," a—|a— Tl 1 2a
= 2/ / (a,7’)dod7’—|—2/ q(o)do. (12.4.25)

ey +Hly—| "L

Proof. As we have seen in the proof of Lemma 12.4.4, we can take v = 0in (12.4.7).
Recall that H satisfies the fundamental equation if and only if (x,y) — H(z,x+y)
satisfies (12.4.13). But from Proposition 12.4.7 we know that (12.4.13) has a unique
solution G. Hence the fundamental equation has the unique continuous solution
H given by H(z,z + y) = G(z,y) for (z,y) € Dy. Since F' is real valued, Also
H is real valued. In view of H(z,z) = G(z,0), ¢ € L2(0,a) is a consequence of
G(-,0) € W1(0,a), which was shown in Proposition 12.4.7.

To prove (12.4.25), we first consider the case that F' is a twice continuously
differentiable function on (0,00) with support in [0,2a] such that I + FQ has an
inverse for all z € [0, a]. We observe that FY depends continuously on z and hence
a compactness argument shows that the norm of (I +F%)~! is uniformly bounded
for x € [0, a]. In that case, the operator function z — F? is twice differentiable and
we can differentiate once more on both sides of (12.4.22). Adapting the proof of
Proposition 12.4.7 to this case we see that G, and G, exist and are continuous.
It is also immediately clear from (12.4.13) that Gy, G4, and G, exist and are
continuous. Furthermore, for z € [0, a], y € [0, 2a] and h € R such that z+h € [0, ]
and y + 2h € [0, 2a] we have

G(z,y +2h) — G(x,y)
= (I +TF%) "1 (F o 722))(y+2h)— (I + FO) " (F 0 722))(v)
= (I +F2) " (F o Ta(aqm))(y) = (I + F) "1 (F 0 72,)) (y)
= (I +FQ)[F o marn) — F o 72]) (y).

A reasoning as in the proof of Lemma 12.4.6 shows that
1 0\—1 /
Gy(z,y) = (I +Fo)™ (F 0 72a))(y).

Arguing as in the proof of Proposition 12.4.7 and as above in this proof we see that
also Gy, exists and is continuous. We have shown that G is twice continuously
differentiable, and therefore also H is twice continuously differentiable.
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Differentiating the fundamental equation (12.4.11) twice with respect to x
and twice with respect to y we obtain

F/ (o4 ) + Hea(r,y) — o [, 0)F(z+ )]
— Hy(x,2)F(z +y) + /OO Hyp(z,t)F(y+t)dt =0
and
F'(z+y)+ Hyy(z,y) + /Oo H(x, t)F"(y +t)dt = 0.
Integrating by parts twice we have
/OO H(z, t)F"(y+t)dt = —H(z,z)F'(z +y) + Hy(z,z)F(x + y)

+ / Hyy(z,t)F(y +t) dt.
Taking now the difference of the two second-order partial derivatives we arrive at
Hao(2,y) — Hyy(z,y) + q(2)F(z +y)

b [ UHaalst) = Hyy o, OV G +6) bt =0

With y = x + g this equation becomes
Hypn(z, 2 +9) — Hyy(x, 2 +7) + q¢(2)F(2z + g)

+ / [Hypw(z,2 +t) — Hyy(z, 2 +t)|F2e + g +t)dt =0. (12.4.26)
0

Since the fundamental equation in the form (12.4.12) gives
Q@) (F 0 722) = —q(@)(I + Fa)H (2,2 + ) = —(I + ) (q(e) H(z, 5 + ),
equation (12.4.26) can be written as
(I + F) [Haa (2, + ) — Hyy (2,2 + ) — a(@) H (@, + )] = 0.

Defining
p(,y) = Hea(2,y) — Hyy(z,y) — q(z)H(z,y),

o(x,x + ) is continuous for all z € [0, a] and satisfies
(I+TFy)p(x,z+-)=0.

In view of Lemma 12.4.4 we conclude that ¢ = 0.
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Now put £ = 2a+ x —y and n = 2a — x — y and define
a(e,n) == H(z,y) = H <5;”,2a— 5;”). (12.4.27)

We observe that 0 < z < y < 2a — x gives the domain 0 < 7 < ¢ < 2qa for £ and
7. As in the proof of Theorem 12.1.3 we obtain

ﬂ&n:—i <H:c:c (5;77’2&_ f—;—n) — Hy, <£gnv2a_ f‘|2'77>>7

and ¢ = 0 leads to

lign(&,m) = —iq (5 R 77) (e, ).

U(&m) :le/:a/on(J<U;T>ﬂ(U,T)d7da

Ugy — Ugn = 0.

With

we conclude that

Hence there are continuous functions f and g on [0, 2a] such that

a(€,n) =U(&n) + f(§)+gn), 0<n<E<2a.

For definiteness, we may assume that g(0) = 0. For £ € [0, 2a] we have

3 3

a(g,0)=H<2,2a—2>:o and U(£,0) =0,

which shows that f = 0. Similarly,

_ B ooy _ L[ _
u(2a,n)—H(a g0 2)—2/a nq(a)da and U(2a,n) =0,

which shows that

Altogether, we have shown that

2a a
a(&,m) = ‘11/5 /an (J ; T) (o, 7)dr do + ; /J q(o) do. (12.4.28)

Now let F' be defined by (12.4.7). In W} (0,00) we can approximate the
restriction of F to [0,00) by a sequence (F},)nen of twice differentiable functions
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on [0, 00) with support in [0, 2a]. Consider the corresponding operators IFn »» Which
converge as n — oo and depend continuously on . Then a compactness argument
shows that we may assume without loss of generahty that I 4+ F , is invertible
for all n € N and z € [0, a]. Furthermore, (I —HFO »)~ 1 converges umformly inz to
(I +F2)~!. Since also F,, — F uniformly as n — 00, a standard argument shows
that G, — G uniformly as n — oo, where the functions G,, are defined as

Gu(z,y) = —((I +Fy )~ (Fn 0 72))(y)-

Hence also H,, — H uniformly as n — oo and the corresponding functions @, de-
fined by (12.4.27) with H,, converge uniformly to @ as n — oo. Since the functions
Uy, satisfy the integral equation (12.4.28), it follows that also @ satisfies (12.4.28).
Substituting H for @ in (12.4.28) shows that H satisfies the integral equation
(12.4.25). Here we have to observe that the region of integration is determined by

20+ —y<2a0+0c—-—7<2a and 0<2a—0—-—7<2a—zx—y,

which can be rewritten as

x;—ynga—i—y;x,T—i—x—ygagT, and z+y—7<0<2a—7. O

Lemma 12.4.9. Let q € Lo(0,a). Then the integral equation

+ly—7|

a—|a— ‘r\ 1 2a
/ / H(o,7)dodr + / q(o)do  (12.4.29)
m+y T 2 «v;ry

has a unique solution H on {(x,y) € R?: 0 <z <y < 2a—x}.

Proof. Putting £ =2a+x —y and n = 2a — x — y and

o) = ftep) = (£ 2= €17

we have seen in the proof of Proposition 12.4.8 that the integral equation (12.4.29)
becomes equivalent to the integral equation

2a n o a
n) = L / / q o7 (o, 7)dr do + L / q(o) do

for 0 < n < & < 2a. From the proof of Lemma 12.1.1 we see that its statement
remains true for fixed £y and 7ny. Thus the above integral equation can be written as
i = —Tt+ § with invertible operator I +T on C({(¢,17) € R?: 0 <7 < & < 2a}).
Hence the integral equation for % has a unique continuous solution, and it follows
that (12.4.29) has a unique continuous solution H. O
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12.5 Two spectra and the fundamental equation

Lemma 12.5.1. The spectrum of the Sturm—Liouville problem
-y +q(x)y =Xy, 0<z<a, (12.5.1)
y(0) =0, cosBy(a) — sinBy'(a) =0, (12.5.2)

with a real potential ¢ € L2(0,a) and 8 € [0, 7] consists of an increasing sequence
of simple real eigenvalues (A, (B))52, which tend to co. For 0 < ' < B < 7, the
etgenvalues interlace as follows:

Al(ﬂ/) < )\1(5) < )\2(/8/) < )\2(5) <L el

Proof. The result is well known. Indeed, it is easy to see from Theorems 10.3.5,
10.3.8 and the spectral theorem for compact operators that the spectrum consists
of real eigenvalues which are bounded below and tend to co. Since the initial value
problem (12.5.1), y(0) = 0 has a one-dimensional solution space, it follows that all
eigenvalues are simple and that A, (3) # X\;(8) forallk,j e Nand0 < 8’ < § < .
From [143, Theorem 4.2, (4.5)] we know that A\,(83) depends continuously on S
and is strictly increasing as a function of 8 for all k, and the stated interlacing
property of the eigenvalues follows. O

Corollary 12.5.2. Let q € L2(0,a) be real valued. Then the spectra of the Sturm-—
Liouville problem (12.5.1) subject to the boundary conditions y(0) = y(a) =0 and
y(0) = y'(a) = 0, respectively, consist of two sequences of real eigenvalues which
interlace as follows:

Q<& <@<&E<--

and obey the asymptotic formulae

m2k2 m2A 2 1\? m2A
& = 2 -2 2 +ag, (= 2 <k— 2) -2 2 + Bk, (12.5.3)

where A € R, (ag)52, € l2 and (Br)32, € l2 are real-valued sequences.

Proof. The first part is an immediate consequence of Lemma 12.5.1 with Ag(7) =
&k and A\, (7)) = (k. For the asymptotic expansion of the eigenvalues we recall from
Corollary 12.2.10 that

sin \a cosia  f(N)
S(Aa a) = A - K(av a’) A2 + A2’
in A A
s'(\,a) = cos \a + K (a,a) sm)\ ‘4 g(/\ )
with f,g € L% An application of Lemma 12.3.3 and (12.2.19) proves (12.5.3) with
A=—"K( )——a/a()d (12.5.4)
=- oK(aa)= 27T20q:£ x. 5.

O
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Let g € L2(0,a) and define g4(x) = g(a — x). Clearly, g, € L2(0, a).

Proposition 12.5.3. Let e, be the solution of (12.2.1), (12.2.2) with respect to qq.
For \ € C define

(12.5.5)

e*i/\“ea(—)\,a —z) if0<z<aq,
eh ) = {e‘“‘m ifa <.

Then the function e is the Jost solution of (12.2.1) as defined in Section 2.1.

Proof. Clearly, e(),-) satisfies the differential equation (12.2.1) on (0, a) and

e(N,a) = e P, (=N, 0) = e A
e'(/\,a) — _e—zAa /( A O) )\e—i)\a

shows that e is indeed the Jost solution. O

Proposition 12.5.4. Let K, be the function K from Theorem 12.2.6 with respect
to the potential q, and define

Kola —z,a— f0<z<t<2a—u,
Kool 1) = (a—z,a—1t) f0<z<t<2a—x (12.5.6)
0 for all other xz,t € R.
Then Ko satisfies the integral equation (12.4.29),
e(\,z) = e —|—/ Koo(z,t)e ™™ dt, NeC, >0, (12.5.7)
and
1 a
Ko (2,2) = 2/ o) dt, z€0,a). (12.5.8)
Proof. With the aid of (12.2.18) we calculate
1 a— m;—y
Kenlo) = Kaa=sa-y) =, [ ala=s)ds
0
1+t y—
—|—/ / gla—s—p)Ks(a—s—p,a—s+p)dpds
0 0
a—|a— 'r| 1 2a
/ / Ko (o,7)dodr + / q(o) do.
+u +ly—| 2 m-;—y
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From Proposition 12.5.3, Theorem 12.2.6 and with the aid of the transfor-
mation 7 = a — ¢ we infer for 0 < z < g that

e\ z) = e ey (=N\a— )

a—x
_ e—i)\aei)\(a—:c) + / Ka(a — 2z, t)ei)\te—i)\a dt
T—a
) 2a—x )
= e 4 / Ky (a—z,a—t)e” M dt,
z

and (12.5.7) follows in view of (12.5.6). For z > a, (12.5.7) is obvious. Finally, we
conclude from (12.2.19) that

1 a
Koo(z,z) = Ko(a —z,a — ) = 2/
0

1 [ 1 [
—2/1 qa(a—T)dT—2/I q(t) dt. O

6()\, .)ei)\a + 6(—)\, .)e—i)\a
2

The function
'Ua(>‘7 ) =

is the solution of (12.2.1) satisfying v, (A,a) = 1 and v/,(A\,a) = 0, whereas the
function
e(_>\7 .)e*i/\a _ 6()\, _)ei/\a
21\

is the solution of (12.2.1) satisfying uq(A,a) = 0 and u),(\,a) = 1. Observe that
e(\, ) = e (v (N, -) — idug (A, -)). Since x — g(a — ) belongs to Lo(0,a), va
and u, have a representation like ¢ and —s in Theorem 12.2.9, respectively, with
x replaced by a — x.

Clearly, the zeros of u,(+,0) are the eigenvalues of (12.5.1) with the boundary
conditions y(0) = y(a) = 0, whereas the zeros of v,(-,0) are the eigenvalues of
(12.2.1) with the boundary condltlons y(0) = Y "(a) = 0. With ¢ and &, according

to Corollary 12.5.2 we put vy = Ck, up = fk for k € Z. Then it follows from
Corollary 12.5.2 that these numbers satisfy the assumptions posed at the beginning
of Section 12.4. Hence the entire function u defined there has exactly the same
zeros as ug(+,0), and the entire function v defined there has exactly the same
zeros as Ug(+, 0). The function v has the representation (12.3.11), and by the above
discussion, also v, (+,0) has such a representation, with the same leading term as
v. By Corollary 12.2.11 and its proof, both v and v,(+,0) are sine type functions.
Hence they are multiples of each other by Lemma 11.2.29, and since they have
the same leading terms, v,(-,0) = v follows. A corresponding argument for the
function A — Au(A) and A — —Aug (A, 0) gives uq(-,0) = —u.

ug(A,+) =
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Hence the function ¢ defined in (12.4.2) satisfies
P(A) = e e (N, 0) — idug (X, 0)) = e(), 0), (12.5.9)
and it follows that the function S defined in (12.4.3) has the representation

S(\) = ;(_XOO), A€R. (12.5.10)

Lemma 12.5.5 ([180, Lemma 3.1.5]). For A # 0 and e(—\,0) # 0,

2iAs(A,-)

o) =€) = Se(=A)

Proof. The function s(),-) is the solution of (12.2.1) which satisfies the initial
conditions s(A,0) = 0, s’(A,0) = 1. On the other hand,

w(Aa ) = 6(—)\, 0)6()\, ) - €(A, 0)6(—)\, )
is a solution of (12.2.1) with w(A,0) = 0. It is well known that the Wronskian
W(e(_)‘v ')7 6()\, )) = 6(—)\, -)6/(>\, ) - 6/(_>‘7 ')e()‘7 )

is constant, and its value at a is —2i)\, so that w’(A,0) = —2i\. Hence we have
shown that w(), ) = —2iAs(), ). O

The proof of the following lemma is extracted from [180, pp. 204-206].

Lemma 12.5.6. Let v > 0 such that S is analytic on {\ € C: Im X >~} and define
F by

vz poo 4
F(z) = 62 / S, (Nerdx,  zeR, (12.5.11)
™ —o0
where S- is defined by (12.4.6). Then the fundamental equation
F(z+y)+ Koo(z,y) +/ Koz, )Fly+t)dt =0, 0<z<y, (12.512)

is satisfied.
Proof. In view of Lemma 12.5.5 and (12.5.7) we have

_ 2ids(\, @)

e(—)\,()) — e—iAm _ eiAr +L Koo(l‘,t)e—iAt dt — /I Koo(l',t)ew\t dt

+(1=5(\) (d‘” + /:o Koo(x, t)e dt) ,
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which can be rewritten as
2ixsve) (= 1) 4 2i(sin A — As(\,2))
—2iAs(\, x — i(sin Ax — As(\, x
) (_A 0) )
/ Kooz, t)e™ ™ dt — Koo(x, —t)e M at
+(1-S(\) (e’“ + / Koo(x,t)e”t dt> . (12.5.13)

We multiply both sides of (12.5.13) by 217r ey € R, and integrate along Im A = ,
resulting in an identity which we formally write as I;(z,y) = I,.(z,y). Then I.(z,y)
is the sum of the 4 integrals

5i(z,y) = o / / Koo(x,t)e_l(”‘”)t dt e/ TNY gy
I (x,y) = —27r / / Koo(x’ _t)e—z(z’y-‘r}\)t dt ez(z‘y+>\)y d/\,
1 [ o .
T y) — / SV()\)e'L(Z"/“I’/\)ﬂ?eZ(’L’y«F)\)y d)\,

I(z,y) / S.( / Koo (,1)e TN DY g g\,
The Fourier inversion formula gives

I = 2/ / VK (x,t)e” M dte™ d\ = Koo (z,y),
s

and similarly

Iy =—Ks(z,—y) =0 fory > z.

We further calculate

677(I+y) o i
=" [ S0 = Faty)
and
Ii(z,y) = / Kooz, t)e™ 7(y+t)/ S, (A)eFD g dt

/ Koo(z,t)F(y +t) dt.
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Hence we obtain
I.(z,y) = Koo(x,y)—i—F(x—i—y)—i—/ Koo(z,t)F(y+t)dt, 0<z<y. (12.5.14)

To prove the fundamental equation, it remains to prove that I;(x,y) = 0 for
0<zx<aandy>zx.
Therefore, let z € [0,a] and y > x. We define the functions g; and go by

1

g1(A) = As(\, x) (e(—)\ 0

= 1> e go(N) = (sin Az — As(\, z))e™Y. (12.5.15)
The function g2 is an entire function and the function g; is analytic on the set
{A € C:ImA > ~} since the poles of S are the zeros of A — e(—A,0). By Lemma

12.2.8 applied to K, we conclude that gt K (0,) € Lay(—a,a). Therefore we have
in view of (12.5.7) that

2a
e(—X\,0)—1= Koo(0,t)e™ dt
0

= L [Kael0,20)% — Ko(0,0)] -

=0 ()fl) forIm A > 0.

1 (%9

Koo (0, )™ dt
iXJy Ot (0,2)e

Hence it follows that

1 1

o = - = 71 > . . .
(-0 T 1o OO forlmA >0 (12.5.16)

From (12.2.16) we conclude that A — As(A, x) is bounded on each horizontal line
and that g2(\) = O(A™1) for A on any horizontal line. Together with (12.5.16) we
conclude that g; and g, are square integrable on the line Im A = ~.

Up to a constant factor, I;(x,y) is the difference of the integrals I5(x,y) and
Is(x,y) given by

I4+j('rvy) :/ g]()‘) dAa .7 = 1a2

Clearly, Corollary 12.2.11 holds with a there replaced by any = > 0, and we can
conclude in view of Lemma 11.2.6 and (12.5.16) that there are constants M; > 0
and Ms > 0 such that

|g; (i + Re®)| < MR~ e Ry—®)sind - p~ g 0<fg<mj=1,2

Hence it follows from Cauchy’s theorem and Lebesgue’s dominated convergence
theorem that

™

I; = —i lim g;(iy + Re®®)Re® d) =0, j =5,6. O

R—oo J
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12.6 The potential and two spectra

The following result is well known, but for convenience we will present its proof.

Lemma 12.6.1. Let h be a bounded measurable function on [0,2a] x [0,2a] and
define
2a
(Hf)(x) = h(z,t)f(t)dt, f € L2(0,2a), 0 <z < 2a. (12.6.1)

T

Then the operator H is a Volterra operator on Ls(0,2a), i. e., H is compact and
its spectral radius is 0.

Proof. With
M = sup{|h(z,t)] : 0 < z,t < 2a},

the estimate
2a 2a
/ / |h(z, 1) dt de < 4aM < oo
o Jo

shows that H is an integral operator with Ly kernel and therefore compact, see,
e.g., [109, p. 240].

Since the spectral radius of the adjoint H* equals the spectral radius of H,
it suffices to show that the spectral radius of H* is 0. For f,g € L2(0,2a) we

calculate
2a

(IHI"f,g)=(f,1HIg):/0 af(:r)/ h(x,t) g(t) dt da

- /za /th(x,t)f(x) du g(t) dt,
which shows that the adjoir?t ]HI*O of H has the representation
(H F)(t) = /Oth(x,t)f(x) e, f e La(0,2a), 0 <1< 2.
Let m > 0 and define the norm || - ||, on L2(0,2a) by

2a
1712, = / F@)Pe ™ dr, [ € La(0,2a),

which is clearly equivalent to the standard Ls-norm. Then we obtain for each
f € L2(0,2a) and 0 < t < 2a that
2

‘(H*f) (t)‘Qe—th _ ‘At h(% t)e_m(t—m)f(x)e—mm de

t t
g/ |h(x,t)\2672m<t*$>dx/ |f(z)[2e2™" da
0 0

M? 9
<
<y 713
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which gives
. aM?
1 f17 < 1£17-
m

Since the spectral radius of a bounded operator is bounded by the norm of the
operator, it follows that the spectral radius of H* is less or equal to M+vam~=!.
But m > 0 was arbitrary, and it follows that the spectral radius of H* is 0. (]

Theorem 12.6.2 ([180, Theorem 3.4.1, p. 248]). For two sequences (£)%, and
(Ck)32, of real numbers to be the spectra of the boundary value problems generated
by the Sturm—Liouville equation

—y" +q(z)y = Ay on [0,d], (12.6.2)

with a real potential ¢ € L2(0,a) and the boundary conditions y(0) = y(a) = 0
and y(0) = 3'(a) = 0, respectively, it is necessary and sufficient that the sequences
interlace:

G<&E <@<&E< -

and obey the asymptotic formulae

e
& = o2 _2a2 + ag, Ck=a2 2 + B,

w2k? 2 A 2 (k— 1)2 _271'2A
where A € R, (o), € l2 and (Br)72, € la. The potential q is uniquely deter-
mined by the sequences (£,)%, and (Ck)52 -

Proof. The necessity of the interlacing property and the asymptotic distribution
of the eigenvalues was shown in Corollary 12.5.2.

Next we are going to show that the potential is uniquely determined by
the two spectra. Let ¢ € La(a,b) be real valued and let (£)72, and (k)72 be
the corresponding spectra. Without loss of generality we may assume that ; > 0,
which can be achieved by a shift of the eigenvalue parameter A in (12.6.2). Putting
up = (&)2 and v, = ()2 for k € N, we consider the two functions S and F
defined by (12.4.3) and (12.4.7). It remains to show that ¢ is uniquely determined
by F. Indeed, in view of (12.5.8), ¢ is uniquely determined by K. From Lemma
12.5.6 we know that the function K, associated with the potential g satisfies the
fundamental equation (12.5.12), which is the same as (12.4.11). Then it follows
from Proposition 12.4.8 that K. is uniquely determined by F'. Altogether, we
have shown that the potential is uniquely determined by the two sequences.

Now let two sequences (€))7, and ()52, with the required properties be
given. Shifting all elements in these two sequences by the same real number by >
—(1 if ¢1 <0, we obtain that ¢; > 0. With the two sequences (&;)72; and (¢x)52,
we associate the functions S and F defined by (12.4.3) and (12.4.7). By Proposition
12.4.8, there is a unique solution H of the fundamental equation and a potential
q defined by (12.4.24). With this g we associate the two sequences (é:k)?:l and
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(Ek);gl representing the Dirichlet spectrum and the Dirichlet—Neumann spectrum,
respectively, of (12.6.2). With these two sequences we can now associate functions
S and F defined by (12.4.3) and (12.4.7). Let K, be the function defined in
(12.5.6) with respect to g. By Propositions 12.4.8 and 12.5.4, both H and K
satisfy (12.4.29) with the same g. But since the solution of the integral equation
(12.4.29) is unique by Proposition 12.4.8, K., = H follows. Let

2a
(Hf)(z) = H(xz,t)f(t)dt, f € L2(0,2a), z € [0,2a).
Since I + H is invertible by Lemma 12.6.1, we obtain from the fundamental equa-
tions (12.4.11) and (12.5.12) for y € [0, 2a] that

For, = _(I+H)71H('7y) = —(I+H)71Koo(-,y) = FoTy_

Hence F = F', and since the definition of F in (12.4.7) is independent of v > 0, we
can take the same ~ in F and F. But S, is the Fourier transform of x — " F(z),
which show that S, and therefore S is uniquely determined by F'. Thus we have
that S = S.

Next we will show that the sequences (£)52, and ({)32; are uniquely de-
termined by S. Indeed, it follows from (12.4.1), (12.4.2), (12.4.3) and the proof of

Lemma 12.4.1 that

P(A\?) +iAQ(N\?)

P(X2) — iAQ(V?)
The sequences (€))7, and ((x)72; interlace and are the zeros of the entire func-
tions P and @, respectively, with a corresponding result for the sequences (ék)i“;1
and ((;)?2, and entire functions Q and P. Hence it follows for A # 0 that Q(\?) =
0 if and only if S(\)e~2? = 1, that P(A?) = 0 if and only if S(\)e~ 2 = —1,
that Q(A\2) = 0 if and only if S(\)e~2*¢ = 1, and that P(\?) = 0 if and only
if S(A\)e=2*e = —1. Since ¢; > 0, it follows that the two sequences (£)22, and
(Ck)32, are indeed uniquely determined by S. Furthermore, the nonzero zeros of P
and Q coincide with the nonzero zeros of P and Q, respectively. Hence 0 < ¢; < &
and 0 < (1 < &, so that & = & since they are positive and the smallest zeros
of Q and Q, respectively. Now (; is a positive zero of P, and therefore also a
p051tlve zero of P and Cl = (4 follows. Hence also the two sequences (fk) 72, and
(Ck) 22, are uniquely determined by S. We have shown that the two spectra of

the differential equation (12.6.2) with the ¢ given by Proposition 12.4.8, after a
possible backshift by by, are indeed the two sequences (£x)52, and (k)72 ;. O

= S(\)e e,
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