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Abstract. Vision-basedmarkerless hand trackinghasmanyapplications,
for instance in virtual prototyping, navigation in virtual environments,
tele- and robot-surgery and video games. It is a very challenging task, due
to the real-time requirements, 26 degrees-of-freedom, high appearance
variability, and frequent self-occlusions. Because of that, and because of
the many desirable applications, it has received increasing attention in the
computer vision community of the past years. A lot of approaches have
been proposed to (partially) solve the problem, but no system has been
presented yet that can solve the full-DOF hand pose estimation problem
robustly in real-time.

The purpose of this article is to present an overview of the approaches
that have been presented so far and where future research of hand tracking
probably will go.

First, we will explain the challenges in more detail. Second, we will clas-
sify the approaches; third, we will describe the most important approaches,
and finally we will show the future directions and give a short overview of
our current work.

1 Motivation and Applications

The task of vision-based hand tracking is to estimate the human hand pose based
on one or multiple cameras. The scientific interest in this task is very high, and
the importance of hand tracking is larger than ever due to the increasing interest
in natural user interfaces.

The applications for hand tracking are manifold. On the one hand, there are
a lot of professional applications such as assembly simulation, motion capture,
virtual prototyping, navigation in virtual environments, and rehabilitation. Hand
tracking also has a high potential in medical applications, e.g. for sterile inter-
action with patient related data or tele-surgery. On the other hand, the interest
in hand gesture driven game control is increasing strongly. For example, human
motion tracking found its way to the consumer market through Nintendo Wii,
Sony Move, and Microsoft Kinect. The goal of all three products is to track the
human body. The Kinect is the first markerless vision-based consumer product.
It is able to track the whole body with fairly high accuracy. The next consequent
step is the precise tracking of the human hand, which can significantly improve
the interaction with many game genres and desktop applications. The most recent
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Fig. 1. (a) The left figure illustrates the degrees of freedom (DOF) of the human
hand. The valid hand poses form a manifold in the 20-dim space. (b) The right figure
illustrates five different hand shapes we captured from our group and some students.
Any hand pose recognition approach has to take into account this shape variability.

application with strongly increasing interest in hand tracking are mobile devices
to improve the natural interaction with them.

These are only a few of the numerous applications for hand tracking. Obvi-
ously, most of them need the hand to be tracked precisely and in real-time.
Thus, algorithms to achieve this are an enabling technology. But robust hand
detection and recognition in uncontrolled environments is still a challenging task
in computer vision, especially on mobile devices due to their limited hardware
resources.

1.1 Challenges of Hand Tracking

The main challenges of camera-based hand tracking are the high-dimensional
hand configuration space, the high appearance variation, the limitations of cam-
eras, and the potentially disturbing environment. In the following, the challenges
are described in detail.

High-dimensional Configuration Space: The problem dimension to estimate the
full-DOF hand pose is very high. Figure 1a illustrates the articulations. Each
finger has 4 degrees of freedom (DOF) which yield in 20 local DOF for the
hand pose. Often, an additional DOF for axial rotation is modeled the thumb.
With the 6 DOF for the global position and orientation the problem space has
26 dimensions.

Hand Motion and Appearance Variation: The human hand to be tracked varies
strongly from person to person. The skin color for example depends on the ethnic
origins and the skin browning. The geometry of the hands are also very different,
e.g. thickness and length of the fingers, and width of the hand to mention only
some of the varying parameters. Even the kinematic can vary slightly between
human beings.

Additionally, the appearance variability of the hand is very high, and thus, it
is challenging to detect the hand in an input image because neither its appear-
ance nor its position are known in advance.
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Fig. 2. Hand tracking approaches can be classified into appearance and model-based
approaches. Appearance-based approaches use direct mapping techniques. In contrast,
model-based approaches fit a hand model to the input image to estimate the pose. Pose
estimation can be formulated as function optimization (the hand pose is the parameter
set to be optimized) or nearest-neighbor search (find the hand pose most similar to the
observed hand).

Unconstrained Background: To be able to detect the hand in an input image, one
first has to identify the image region corresponding to the hand by applying a
segmentation algorithm (e.g. skin color segmentation or background subtraction)
or extract features whose distribution on the hand and the background are suf-
ficiently different (e.g. edges). The more complex the background the less likely
those features can be used to discriminate between hand and background. For
example skin colored regions in the background will heavily disturb a skin color
segmentation. Moving object in the background are an error source for back-
ground subtraction and textured regions (consider for example a keyboard) will
produce a lot of edges in the background that heavily disturbs any edge-based
matching.

Camera Limitations: Current camera technology is limited in its capturing capa-
bility. In most real setups there are over- and/or underexposed regions due to the
low dynamic range of the cameras. Even HDR-cameras have a by some orders
of magnitude lower dynamic range than the human eye has. Furthermore, most
cameras capture only the usual three color channels and not the whole spectrum
of light.

Real-time Tracking Condition: Most hand tracking applications need the hand
to be tracked in real-time i.e. at least 25 full pose estimations per second. This is
a very strong condition in particular due to the high dimensional search space.
This condition is particularly challenging for tracking on mobile devices.

2 Classification and Overview of Approaches up to Now

Due to the aforementioned challenges, hand tracking is a very interesting and
active research area. A lot of approaches have been presented in the past, using
different algorithms, ranging from neural networks over hashing to hand pose
hierarchies. The motivation of this article is to give an overview and classification
of the various approaches. We hope to help both new researchers in this area,
who want to get familiar with hand tracking, and advanced researchers, who
want to get a different point of view on the research area.
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In the following, we will first classify the approaches and then explain many
approaches in more detail.

There are several ways to categorize hand tracking approaches [1,2] e.g. ges-
ture of full-DOF pose recognition, approaches that need automatic or manual
initialization and so forth. The most popular categorization is: appearance-based
vs model-based (Fig. 2). The term model-based means that a 3D hand model is
fitted somehow against the input image. Model-based approaches can either
be formulated as optimization or nearest neighbor search. The idea behind the
optimization is simple: based on a initial match, the model is adapted and fitted
again until convergence. The nearest neighbor formulation considers a database
with all possible hand poses, which have to be tracked. Then, the goal is to find
the most similar hand pose and the corresponding position in the input image.

By contrast, appearance-based approaches try to learn a direct mapping from
the input image to the hand pose space. Most of them use fairly low-level fea-
tures (e.g. edges or color blobs) or even no features at all (e.g. artificial neural
networks). Thus, such approaches do not need to search the whole configuration
space because the information of the hand poses is encoded in the learned map-
ping. This typically makes them computationally less expensive. On the other
hand, they suffer from accuracy and stability due to poor handling of noise and
partial occlusion in the input image. Of course, appearance-based approaches
need to contain the information about the hand model in some way, too. For
example, in a neural network-based approach, which maps the image pixels to
the pose, a hand model is implicitly stored in the neural network itself. Figure 3
visually compares the idea of model- and appearance-based approaches.

Appearance-Based Approaches. A typical appearance-based approach is
used in [3,4] to detect the hand position in a gray-scale image. In a training step,
multiple hand poses are trained. During tracking, “attention images” are used
for segmentation. Basically, the image pixels are directly used as input vector
and a principal component analysis (PCA) is applied for dimension reduction.
A hand pose is successfully segmented by validating a training image to be close
enough in the low-dimensional space. Nearest neighbor search is performed using
a Voronoi diagram. The hand segmentation probability is evaluated using kernel
density estimation.

A set of specialized mappings is trained based on data obtained by a Cyber-
glove in [5]. After a skin segmentation, moment-based features are computed and
used as weak mapping functions. This mapping functions are combined to get a
strong classification function.

Another classical appearance-based approach for hand tracking is used in [6].
They used a so-called Eigentracker to be able to detect a maximum of two hands.
Color and motion cues are used for initialization. The eigenspace is updated
online to incorporate new viewpoints. Illumination variations are handled by a
neural network.

In [7] skin-colored blobs are detected to localize the hand position. Next,
the hand pose is estimated by detecting the finger tips. The blobs are detected
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Fig. 3. Model-based approaches (left) use an object model (here the human hand) and
match the templates, each representing a hand pose, to the input image. In contrast,
appearance-based approaches (right) try to learn a direct mapping from the image space
to the pose space.

using a Bayesian classifier. Color changes during time are handled by an iterative
training algorithm.

Wang et al. [8] detect the hand position in the image using Camshift. A con-
tour in Fourier space is computed to obtain a scale and rotation invariant hand
descriptor. After locating the hand position, the finger tips are determined by a
semicircle detector. Particle filtering is used to find finger tip location candidates.
A k-means clustering is applied to the candidates. The cluster centers (proto-
types) are used as the final finger positions.

One of the main disadvantages of appearance-based approaches is their high
sensitiveness to noise, feature extraction errors, and partial occlusion. For exam-
ple, if a finger tip is occluded, but not necessarily the remainder of the finger, the
above approaches will fail to detect the finger. It is not even easy to determine
which fingers are occluded. A promising alternative are model-based approaches.

Model-Based Approaches. Model-based approaches search in the large con-
figuration space to find the best matching hypothesis. Basically, a descriptor,
optimized for fast and accurate matching, is defined first. Then for all hand poses
to be tracked, the corresponding template is generated. During tracking, the hand
poses are compared to the input image by computing the similarity between the
corresponding templates and the (preprocessed) input image. Depending on the
needs of the approach the templates are precomputed or generated online during
tracking. The main differences between the approaches is the method to com-
pute the similarity between hypothesis and input image, how to compute each
similarity evaluation as fast as possible, and acceleration data structures to avoid
as many similarity measure evaluations as possible.

The advantage of model-based approaches compared to appearance-based
approaches is that arbitrary hand poses can be modeled including self occlusion.
Partial occlusion by other objects can be handled robustly as well because the
similarity measure between a hypothesis and an input image is only affected by
a limited amount.
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Fig. 4. Similarity measures for hand pose estimation can be categorized into four differ-
ent types. The categorization is based on the input modality used for matching. Most
often used are edges, color (segmentation) and depth images. Edge and color segmen-
tation likelihood can either be used directly for matching or binarized before matching.
Area-based features also allows to use the shape hypothesis directly without applying
a segmentation. Depth images can be used for segmentation or direct matching.

In the next section, we will first provide an overview of the different cate-
gories of similarity measures. In the section following that we will categorize and
describe the acceleration data structures.

2.1 Similarity Measures

In the area of hand tracking the most often used features in the past are skin color
and edges. Edges and silhouette area (e.g. extracted using skin color) are com-
plementary features and often combined into a single measure using weighting
functions. In the recent years, depth cameras (e.g. Kinect, Mesa SR 4000) became
available and popular. The hand (and other objects) can more easily be distin-
guished from other objects. Depth images, in some way, provide area information
(continuously changing depth values) and edge information (strongly changing
depth values). Thus, depth images became very popular in the area of hand track-
ing in the most recent years. Volume reconstruction-based approaches [9–12]
directly work on a 3D volume, but these approaches need a lot of cameras and
get a very coarse volumetric representation of the hand. Only a few approaches
exist using volume reconstruction. Due to space limitations, we will not present
any such approaches in detail. Figure 4 gives an overview of the different similarity
measure classes.

We will first present approaches using classical area based similarity measures
based on color images, then approaches using depth images, and finally, depth
image based approaches.

Silhouette Area-Based Similarity Measures. Silhouette-area based simi-
larity measures are very effective and fast for articulated object tracking. The
measure is continuous with respect to changes in pose space and robust to noise.
Basically, the segmented silhouette of the input image is compared to a hypoth-
esis (also represented by its silhouette area). The more similar both silhouettes
are, the higher the matching probability is.
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Silhouette area-based approaches can be divided into two categories. The first
category needs a binary silhouette of both the model and the query image. The
second category compares the binary model silhouette area with the likelihood
map of the query image. To our knowledge there are no approaches using a
non-binary model silhouette. All approaches presented use a fixed hand model
and the hand model contains no noise, thus there is no information gain using a
non-binary representation.

A simple method belonging to the first class is proposed in [13]. They assume
that the hand is in front of a homogeneous, uniformly colored background. First,
they apply skin segmentation to extract the foreground. Based on the segmented
region, hand size, center, and differences between particular pixels on the bound-
ary are used to detect the hand position. This information is used to recognize
some simple gestures, e.g. an open hand or a fist.

A more robust approach is proposed in [14,15]. First, the difference d between
the model silhouette and the segmented foreground area in the query image is
computed. Then, the exponential of the negative squared difference is used as
silhouette matching probability P i.e. P = exp(−d2). A slightly different measure
is used by Kato et al. [16]. First, they define the model silhouette area AM , the
segmented area AI and the intersecting area AO = AI ∩ AM . The differences
AI − AO and AM − AO are integrated into the overall measure in the same way
as described above.

In [17], the non-overlapping area of the model and the segmented silhouettes
are integrated into classical optimization methods, e.g. Levenberg-Marquardt or
downhill simplex. Nirei et al. [18] first compute the distance transform of both
the input image and the model silhouettes. Regarding the distance transformed
images as vectors, they compute the normalized scalar product of these vectors.
Additionally, the model is divided into meaningful parts. Next, for each part,
the area overlap between the part and the segmented input image is computed.
Then, a weighted sum of the quotient between this overlap and the area of the
corresponding model part is computed. The final similarity is the sum of the
scalar product and the weighted sum.

All the aforementioned approaches have the same drawback: to ensure that
the algorithms work, a binary segmentation of the input image of high quality is
a pre-requisite. Binarization thresholds are often difficult to determine, and even
an optimal threshold often yields a loss of important information about pixel-
belonging-to-hand probabilities. To overcome this problem, approaches have
been presented that work directly on the segmentation likelihood map. In [19]
the skin color likelihood is used. For further matching, new features, called like-
lihood edges, are generated by applying an edge operator to the likelihood ratio
image. However, in many cases, this leads to a very noisy edge image.

In [20–22], the skin color likelihood map is directly compared to the hand sil-
houette. Given a hypothesis, the silhouette foreground area of the corresponding
hand pose and the neighboring rectangular background of a given size are used
to compute the similarity measure. In the skin likelihood map, the joint match-
ing probability for foreground and background are computed and combined into
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one similarity measure. Stenger et al. [20,21] proposed a method to compute the
joint probability in linear time w.r.t. the contour length.

Mohr et al. [23] further reduced the computational complexity to compute
the joint probability as similarity measure proposed by [20,21] from linear to
near-constant time. Consequently the computation of a similarity is resolution-
independent. For this purpose they used the integral image and a novel represen-
tation of silhouette-areas based on axis-aligned rectangles.

Segmentation-based approaches have two main drawbacks. The first one is
the segmentation itself: it is an error-prone step because the segmentation is
based on an assumption about the color distribution of the foreground. The
second drawback of segmentation-based approaches is the silhouette area, which
is a projection of the 3D hand to 2D and, thus, a lot of important information
about the hand shape is lost.

Mohr et al. [24] proposed a novel similarity measure that does not need any
kind of segmentation at all. The idea is to compute the color distributions in the
input image that correspond to the shape of the hand and the corresponding
background described by the template. They used the rectangle-based template
representation from [23] to be able to compute the similarity measure efficiently.
A further advantage of this similarity measure is that it trivially can be extended
from color images to other input modalities such as range images.

The most important disadvantage of area-based approaches in general, and
using a monocular camera in particular, is that several hand poses can be hardly
distinguished. The reason is that the silhouettes are too similar from a specific
point of view, i.e., a silhouette-based representation introduces a lot of ambigu-
ities. Such cases are, for example, fingers in front of the palm with a moderate
flexion, as shown in Fig. 5.

Edge-Based Similarity Measures. Edge gradient features are complemen-
tary to silhouette area-based features. While the silhouettes information utilizes
the hand foreground and background, the idea of edge features is the border

Fig. 5. Silhouette area-based similarity measures cannot resolve all ambiguities. Two
example hand poses (left) illustrate the problem. Using the silhouette-area as feature
does not allow to distinguish between both poses because the difference area (middle
image, light blue area) is by far to small. In contrast, edge features allows us to dis-
tinguish both poses because the edges significantly change (right, highlighted by a red
ellipsoid) between the two poses(Color figure online).
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between fore- and background and even more important the separation of the
fingers from the palm. The idea is to disambiguate hand poses that are unable
to be distinguished using the silhouette. A further advantage of edge features is
that they are fairly robust against illumination changes and varying object color.
However, edges are not completely independent of illumination, color, texture,
and camera parameters. Therefore, smart algorithms are still essential.

Most of the edge-based approaches need binary edges, i.e. an edge extraction
is applied to both a projection of the hand model and the input image. Next,
a distance measure between the edges is defined to compute the similarity between
a hypothesis and the input image. As distance measures, for example the Haus-
dorff distance can be used. But much more popular is the Chamfer distance [25,26]
C, which is a modification of the Hausdorff distance. Chamfer matching for track-
ing of articulated objects is, for example, used by [16,20,22,27–31]. A disadvan-
tage of the chamfer distance is its sensitivity to outliers.

Both, chamfer and Hausdorff distance can be modified to take edge orienta-
tion into account, albeit with limited accuracy. One way to do this is to split
the template and query images into several separate images, each containing
only edge pixels within a predefined orientation interval [20,32]. To achieve some
robustness against outliers, [20] additionally limited the nearest neighbor dis-
tance from template to image edges to a predefined upper bound. A disadvan-
tage of these approaches is, of course, the discretization of the edge orientations,
which can cause wrong edge distance estimations.

Olson et al. [33] integrated edge orientation into the Hausdorff distance. They
modeled each pixel as a 3D-vector. The first two components contain the pixel
coordinates, the third component the edge orientation. The maximum norm
is used to calculate the pixel-to-pixel distance. Sudderth et al. [22] presented
a similar approach to incorporate edge position and orientation into chamfer
distances.

Edge orientation information is also used by [34] as a distance measure bet-
ween templates. They discretized the orientation into four intervals and then
generated an orientation histogram. Because they do not take the edge intensity
into account, the weight of edge orientations resulting from noise is equal to that
of object edges, which results in a very noise sensitive algorithm.

In [35] the templates are stored as a set of line segments, each line contains
information of its position, orientation, and length. In the input image, the line
extraction thresholds are set such that most lines belonging to the target object
are found. This results in very low thresholds, which has the disadvantage that
many edges caused by noise are extracted, too. Consequently, the image becomes
highly cluttered. Matching is formulated as finding the best correspondences
between template and input lines. Because a large number of edges, produced
by noise, are processed in the line matching step, the probability of false matching
is highly dependent on the input image quality and background.

Mohr et al. [36] avoided thesholding or discretization of the edge gradient. For
this purpose they first mapped the edge gradients such that they can directly
be compared using scalar product by keeping invariance with respect to the
sign of the gradient. The similarity measure can be formulated as convolution
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and its computation time further reduced using Fourier transform. The simi-
larity measure is designed to behave robust in noisy regions by integrating the
edge gradient of the neighborhood of the template edges. But, as most other
approaches, they still have to cope with varying edge intensities of important
object edges.

The general problem with edge-based approaches is that they depend on the
edge detection operators quality. There always is a trade-off between high clutter
and missing object edges, i.e. often, the hand pose cannot be uniquely identified
or not detected at all. Thus, if the input images have a cluttered background,
edges is not the best choice. An additional problem are edge responses of wrinkles
on the hand itself. They are hard to be modeled correctly by the artificial hand
model, typically used for matching. Thus, they have to be treated as noise, and
disturb edge-based similarity measures.

Depth images do not have the problems of false positive edges due to hand
wrinkles or texture. Additionally, they do not need any color segmentation, which
often is error prone. In the following, we will present approaches using depth
images.

Depth Images Based Similarity Measures. Gudmundsson et al. [37] used
projective geometry to match the hand template to the depth image. First, a part
of the 26-dimensional configuration space was sampled and a dimension reduction
using PCA performed. A particle filter in the low-dimensional space was used to
find the hand pose in the next frame. Their distance measure between the hand
hypothesis and the input image uses both image coordinates and depth informa-
tion.

In [38], the hand pose is estimated using a ToF camera. The depth infor-
mation was primarily used to segment the hand from the background. Features
like finger tips, finger-likeness and palm candidates are extracted. A graph is
built based on the features and the candidates/nodes best meeting some specific
conditions are considered as finger tips and palm. Additionally, the knowledge
of the palm pose in the previous frame is taken into account. The approach is
able to detect two hands simultaneously.

Oikonomidis et al. [39] integrated the Kinect into their hand tracking algo-
rithm. The hand is localized conventionally through skin segmentation. Hand
pose estimation is formulated as an optimization problem. The difference-of-
the-depth-values between the hypotheses and the Kinect data are added to the
objective function. They use Particle Swarm Optimization (PSO) as optimiza-
tion function. In [40] they extended the approach to track two interacting hands.

A tracking by classification approach is proposed by [41]. They adapt the
method of human body tracking [42] to hand tracking. In [42], the body is parti-
tioned into 31 parts. Then, they train a decision forest to be able to classify each
part. They use a simple but effective difference-of-two-depth-values classifier for
each node in the trees. The feature is inspired by [43]. After classification of each
position in the depth image, they compute the body part positions by the mean
shift algorithm. Keskin et al. [41] argue that for hand poses the random forests
will become too large. To overcome this problem, they subdivided the hand pose
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estimation into two sub-problems. First, random forests for several hand poses
are trained. Second, for each hand pose individual random forests for the finger
parts are learned. Matching is performed by first classifying the hand pose and
then detecting the finger poses for the most probable hand pose.

With the great advances in range cameras over the past years, depth images
based matching seems to facilitate the most promising avenues for future research.
One advantage is that the depth can be used to compute the size of the hand in
image space. Additionally, a partial volume representation of the hand can be com-
puted, which is a very useful information a color image does not provide. Further-
more, current depth cameras have their own NIR light source, and thus, are less
dependent from the environmental lighting conditions. This yields a much more
stable image, except in direct sunlight where depth cameras always fail due to the
high amount of NIR light the sun emits. One drawback of depth images is that they
cannot differentiate between a real hand (skin colored) and an artificial hand (e.g.
made of plastic). But for practical use this is rarely relevant.

Similarity measures, in general, are often expensive and have to be computed
very often for each frame due to the large hand shape variability (which yields a
large number of templates). Thus, acceleration strategies are essential to achieve
real-time hand pose estimation.

2.2 Fast Template Search Strategies

So far, we have discussed similarity measures for efficient hypothesis testing using
template matching. The similarity measure, basically, is responsible for the quality
of the pose estimation. For full-DOF hand tracking application, a huge number of
templates have to be matched. To be able to perform hand pose estimation and
tracking in real-time, one has to avoid as many similarity measure computations
as possible to save computation time. For this purpose, several acceleration data
structures for template matching have been proposed, which will be described in
the following section.

Many approaches avoid the problem of simultaneous object detection and
pose estimation by a manual initialization, or they assume a perfect image seg-
mentation. Manual initialization, however, means that the approach needs to
know the object location and pose from the previous frame.

In [44], an approach is proposed that needs both, manual initialization and a
perfect segmentation. They convert the hand silhouette into a descriptor, which is
used to compare the query silhouette against the database. Local PCA is applied
to further reduce the dimension of the descriptor. To avoid an exhaustive search,
they assume an initial guess and search for the best match in the low-dimensional
neighborhood.

Manual initialization is also needed in [22]. They use nonparametric belief
propagation, which is able to reduce the dimension of the posterior distribu-
tion over hand configurations. They integrate edge and color likelihood features
into the similarity measure, and consequently, they do not need the hand to be
perfectly segmented.

Similar preconditions are needed in [45,46]. The similarity measure is inte-
grated into an objective function, which is then optimized by gradient descent
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methods. Hand texture and shading informations are used in [46] and skin color
in [45].

Lin et al. [14] uses a two-stage Nelder-Mead (NM) simplex search to optimize
the hand position. They sample the hand pose space using a CyberGlove. The
first NM search is constrained to the samples to avoid getting invalid hand poses.
The second NM stage is a refinement and performs an unconstrained search in
the continuous configuration space. They employ edge and silhouette features to
measure the likelihood of the hypothesis.

Oikonomidis et al. [47] proposed a hand tracking approach that is designed
to handle interactions with simple objects like cylinders and spheres. They man-
ually initialize the hand pose and then optimize the objective function using the
particle swarm optimization (PSO) algorithm. The objective function consists
of two parts. The first part contains the incremental fitting of the hand model to
the input image. This is done using the chamfer distance between binary edges,
and the overlapping area between the hand silhouette and the binary segmenta-
tion. The second part penalizes self-penetration of the hand and penetration of
the hand with the object the hand is interacting with.

Often, in real applications, neither a perfect segmentation nor an initial pose
is given. A manual initialization is always tedious or not possible at all. Thus,
several approaches are developed to search in the whole configuration space to be
able to estimate the object pose in (near) real-time. This is even more challenging
if the position of the object has to be detected as well. Particularly for objects
with a high shape variability such as the human hand, localization and detection
cannot be done separately because neither the appearance nor the location is
known in advance.

Hashing [48,49] is also used by [50] for hand pose classification. Binary hash
functions are built from pairs of training examples, each pair building a line in the
pose space. The hash values are in {0, 1} depending on whether the projection of
the input to the line is between two predefined thresholds or not. The projection
is computed using only distances between objects (e.g. hand pose images). The
binary hash functions are used to construct multiple multibit hash tables.

The idea to convert the evaluation of similarity measures to vector distances
is used in [29,51]. They used a Euclidean embedding technique to accelerate the
template database indexing. A large number of 1D embedding is generated. An
1D embedding is characterized by a template pair. AdaBoost is used to combine
many 1D embeddings into a multidimensional embedding. A database retrieval
is performed by embedding the query image, and then, comparing the vector in
the embedded Euclidean space to all database elements. Each embedding needs
the similarity computation between the input image and all pairs of templates
characterizing the high-dimensional embedding.

Thayananthan et al. [32] used a relevance vector machine (RVM). They used
skin segmentation to localize the hand. The RVM’s are trained using an EM type
algorithm to learn the one-to-many mapping from binary image edges to pose
space. From a training set of 10.000 hand templates, 455 are retained.

Tomasi et al. [52] used a hierarchical approach for hand gesture tracking with
application to finger spelling. They use a small database consisting of real hand
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Table 1. Hand pose estimation approaches can be categorized in the above six families.
Some families are able to initially detect the hand pose and position themselves, others
are not. The reliability means how often the estimated pose of the approach is (close
to) the true hand position. For all approaches, any similarity measure could be used.

Family of approach Initialization method Reliability of results

Function optimization [14,45,47] manual high

Dim reduction and NNS [22,44] manual medium–high

Hashing [50] automatic medium

Hierarchies: pose [20] and image
space [23,52]

automatic/manual med

Machine learning [29,32,51] automatic med–high

Cascading [28] automatic med–high

images. The hand silhouette is extracted utilizing skin segmentation. Applying
a Fourier Transform to the silhouette, they obtain a high-dimensional feature
vector. They build a hierarchy by recursively applying PCA-based vector quan-
tization to the vectors.

Stenger et al. [20] proposed an approach that hierarchically partitions the hand
pose space. “The state space is partitioned using a multi-resolution grid”. The
nodes at each level are associated with non-overlapping sets of hand poses in the
state space. “Tracking is formulated as a Bayesian inference problem”. During
tracking, they process only the sub-trees yielding a high posterior probability.

In contrast to the pose space hierarchy of [20,23] used a feature space hierar-
chy to be able to build a deeper template tree, which allows for faster matching.
Their hierarchy is based on the silhouette area of the templates. Inner nodes
represent the intersection area of their child nodes. Leaves represent hand poses
and inner nodes represent the hand poses of all leaves in the sub-tree. Matching
is performed through traversal. During the traversal of the tree from the root
node to a leaf, the hand silhouettes are getting closer to a hand pose.

In [28], cascading [53] is used for hand shape classification. Four different clas-
sifiers are employed, based on edge locations, edge orientations, finger locations,
and geometric moments. “Database retrieval is done hierarchically by quickly
rejecting the vast majority of all database views” using finger and moment-
based features. They reported that they could reject 99 % of the database in this
step. Then, the remaining candidates are ranked by a combination of all four
classifiers.

Table 1 shows another way to categorize the many approaches to hand pose
estimation; for each category, it lists a few references that pursued the respective
approach, which are, in our view, exemplary for that approach.

2.3 Conclusions

In this section, we provided an overview on the area of hand pose estimation.
A detailed description about the main challenges of vision-based hand pose
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estimation is given. Clearly, in the past decade a lot of approaches have been pre-
sented that tried to solve the problem. Many approaches make an important con-
tribution to robust real-time hand tracking. Several similarity measures and input
modalities can, of course, be combined to increase the robustness, e.g. edge fea-
tures, color-based features, and depth information.

In the following section, a new direction for tackling the problem of hand
tracking is proposed. We believe it to be very promising, and our preliminary
results prove its great potential. The new approach uses depth images for sim-
ilarity measure computation and machine learning to learn the hand poses as
well as invariance to hand geometry e.g. finger length. The approach explained
in the following is our current research in progress. Similar methods for human
pose estimation exist but its application to hand pose estimation is challenging
due to the high self-similarity of the fingers and much more unconstrained hand
movement. We will start with the motivation for choosing machine learning for
hand pose recognition.

3 Our RF–Based Hand Pose Recognition

The survey given in the previous section shows that the most often used and
promising approaches are model-based. Almost all model-based approaches use
similaritymeasures definedby experts to compare aposehypothesiswith the obser-
vation, i.e., an expert manually designs the kinds of features such as hand silhou-
ette or edges to be used and how exactly the hypothesis is compared against the
observation (e.g., non-overlapping area or chamfer distance). This has two draw-
backs: first, manually defined kinds of features and similarity measures between
features may not necessarily be optimal. They cannot be learned from examples.
Second, similaritymeasures fromexperts use a fixed (mostly artificial) handmodel.
But, the more the real hand to be tracked differs in shape from the artificial hand
model, the more inaccurate the pose estimation will be. Coping with the variabil-
ity of hand geometry is often hard or impossible with such similarity measures. Of
course, one could add them as additional hand poses to the template database, but
they would all have to be matched to the input image, which would dramatically
increase the execution time of the recognition system, and they would dramatically
increase the memory needed for storing the template data base.

The approach introduced in this section uses a machine learning approach
based on random forests1 (RF) that can learn to be invariant to different hand
geometries as well as achieve a high pose recognition rate. Hand pose estima-
tion, which is a regression problem, is mapped to a classification problem in a
natural way. This enables to use the well-proven random forest techniques for
classification.

1 Random forests (sometimes also called decision forests, were first introduced by
Leo Breiman [54]. Precursors were introduced, e.g., by [55,56].
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3.1 Random Forests

This section gives a quick recap of the general idea of random forests. A ran-
dom forest is a set of decision trees. Decision trees are a common technique to
make any kind of decision based on a set of individual test functions called weak
classifier. Each weak classifier yields a small amount of information gain. One
of the main problems of decision trees is that they tend to overfit to the train-
ing data, and consequently, do not generalize well. To get rid of this problem,
Leo Breiman [54] proposed to use a set of decision trees. Each individual tree
is trained using for each tree a random subset of both, the training data and
weak classifiers. The idea behind random forest is that some individual decision
trees can make a wrong decision but the majority of the trees will make the right
decision. Random forests have been widely used and proved to outperform many
other machine learning approaches and generalize very well. Note that RF’s can
also be used to solve other tasks e.g. regression or density function estimation.

3.2 Learning Random Forests for Hand Pose Recognition

The RF–based approach is used for hand pose recognition in terms of estimat-
ing the hand orientation (3 degrees of freedom) and joint angles (20 degrees
of freedom) with a high accuracy. This yields a 23 dimensional search space.
The remaining 3 DOFs are the location in the image. The approach most sim-
ilar to our method is [41]. Their approach depends on a clustering algorithm
that assigns each hand pose to a gesture, and the number of gestures they use.
The RF–based approach proposed in this section uses a more natural way, that
directly maps the hand pose estimation to classification without the needs of
additional error prone methods.

Description of the Kind of Input Dataset: The input data for our hand pose
recognition method are depth images obtained using a time-of-flight camera.
Depth images provide the distance from the camera for each pixel. Depth images
are superior over color images because they are independent of color distortions,
lighting conditions and the depth information itself can solve a lot of ambiguities
a color image is not able to.

Our Features Set: Crucial for the performance of any RF is the automatic choice
of good features and the per-node weak classifiers, respectively. The choice of
the features is specific to the task, which, here, is hand pose recognition from
depth images.

Choice of the Features: Given an input image I and a candidate position x the
hand is supposed to be located at, [41,42] proposed differences between depth val-
ues of randomly selected pixels as features. This approach can be generalized to
arbitrary rectangles Ri. Rectangles are a good choice because the sum of a rec-
tangular area can be computed in constant time utilizing the integral image [53]:
f(I,x) = dI

(
x + Ri

dI(x)

)
− dI

(
x + Rj

dI(x)

)
. The notation Ri

d denotes a scaling of
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rectangle Ri’s position and size relative to the hand distance, and dI(Ri) denotes
the mean of all distance values in Ri. The choice of the features have two main
advantages. First, range images from state-of-the-art hardware are very noisy.
Using rectangles trivially allows for an averaging of the depth values. It could be
much more robust than single pixel. Second, using a rectangle can provide more
information to a weak classifier than a single pixel. The integral image as acceler-
ation data structure allows constant time complexity for the computation time of
the feature response.

Background Handling: Similar to [42], we use a large value ω for dI(y) if y belongs
to the background. To determine whether a pixel y belongs to the background, we
apply the threshold test dI(y) − dI(x) �∈ [τm(x), τM (x)]. The RF–based scheme
uses more sophisticated, adaptive thresholds. During RF training, in each decision
node depth images are used for training. τm(x), τM (x) is computed by record-
ing the minimum/maximum distances of all pixels inside all hands relative to the
average hand distance. Additionally, a small offset ε is added to the thresholds to
increase the background detection robustness during tracking.

To ensure that our features are independent with respect to the overall depth
of the hand i.e. dI(x), in the case where y is a background pixel, the constant ω
dI(x) is added to the background.

Infinite Training Dataset Generation: An artificial hand model is used to train
the RF. This is very advantageous because we are able to draw samples from
an arbitrarily large ground truth database of hand poses for any pose and shape
variability. This yields a very flexible and virtually inexhaustible source of ground
truth data for RF training.

Of course, any approach should be highly robust against different hand
geometries. In order to achieve that, the length and thickness of each bone has to
be explicitly be parametrized in the hand model. Additionally, Perlin gradient
noise is added to the hand geometry to model “curvy” hand silhouettes pro-
duced by skin, tissue, phalanx “imperfections”, and camera noise. This allows
to generate images with various shapes for our training set. In this way, the RF
learns various hand geometries for each and every pose.

We denote a hand pose in pose space by θ ∈ Θ and a specific hand geometry
by γ ∈ Γ . The hand geometry space consists of parameters for the finger, palm,
and forearm length and thickness, as well as the Perlin noise parameters to
modify the bending of the hand. Overall, the rendered depth image Ik(θ, γ)
depends on those two properties. In the following, we will explain how we use
our artificial hand model to train the decision trees.

Mapping Hand Pose Recognition to RF Learning: The RF–based scheme uses
an elegant mapping of hand pose recognition, which is a regression problem,
to a random forest classification problem. This has the advantage that the well
proven Shannon entropy-based information gain measure can be used. For a
robust estimation, it is crucial to recognize different hand poses independently of
the hand geometry (e.g., finger length and thickness) to some amount. Therefore,
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the mapping to a classification problem is as follows: random samples of uniform
distribution are taken from the hand pose space Θ; each sample θi ∈ Θ represents
a class ci our RF should recognize. Each hand pose sample θi is rendered at a
different geometry γj ∈ Γ taken randomly from uniform distribution, too; all of
them are put in to the same class.

That way, a random forest for classification with the Shannon Entropy based
information gain is trained. Consequently, the RF–based scheme learns to classify
depth images of hand poses robustly against hand shapes.

Recognizing Hand Poses with RFs: Arriving at a leaf node of a decision tree,
the predicted class labeled with a hand pose is obtained In case of discrete
classes, typically a voting over all trees is done and the class with the most votes
wins. However, the set of poses estimated by the decision trees in our RF can be
considered as density function because the hand pose space is a continuous space.
For this reason, the mode of the density function is used as the final estimated
pose. Due to the high-dimensional pose space, the mode finding is applied to
each degree of freedom separately. For maximum finding, the well known mean
shift algorithm [57] is used.

Fig. 6. The figure shows first results of the proposed RF–based method scheme using a
random forest for classification for full-DOF hand pose recognition. The above images
show just 6 frames taken from a larger dataset consisting of flexing and abducting the
index, middle, ring and little finger in arbitrary combination. Each of the 6 frames
consists of two panels. The left panel shows the depth image mapped such that you
can clearly see the hand pose. On the right panel the image is mapped such that you
can see the whole scene, superimposed with an artificial hand at the pose estimated
by our proposed approach.
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For qualitative evaluation, a real hand with flexing and abducting 4 fingers
(index, middle, ring, and pinky) is captured. For the real dataset no ground truth
is available thus, we provide screenshots of a few selected frames that shows the
power of our approach in Fig. 6.

4 Conclusions

In the near future it might be a good idea to use multi-modal sensors and
features, such as depth and conventional camera images, most often denoted
by RGB-D image. The depth image can be used to increase the robustness of
the hand localization and rough pose estimation, and the color image could
heavily improve the accuracy of the pose estimation. First approaches using
depth images have been presented by [37–39].

In the long-term future, when the sensor resolution of depth cameras will have
been improved substantially, hand tracking can significantly benefit from depth
information and the color image could become unnecessary in many situations.
However, one can always find cases with many objects, one of them being the
hand, that have similar distance from the camera, which make it hard to detect
the hand using depth information only. In such cases, conventional color images
could help a lot to detect and estimate the hand pose. Thus, the approaches
using color images should be useful for the future, independent of the quality of
upcoming depth cameras.

Hand tracking is a challenging task due to the high-dimensional pose space
but also due to the highly non-linearity of the pose space and the high variability
of the hand geometry of different persons. We took images of 5 people (Fig. 1b)
and found that the palm and finger length and thickness differ a lot. Simple
model-based approaches cannot handle this geometry variability appropriately
because they have to use a particular hand-model. But machine learning-based
approaches can cope with them. Hands with different geometry can be fed into
machine learning algorithms much in the same way as different hand poses such
that the learning algorithm (e.g. AdaBoosting, support vector machine or ran-
dom forests) can learn them. For this reason our current work (Sect. 3) focuses
on one of the most popular machine-learning approaches, the random forest.
Thayananthan et al. [32,41] also proposed to use machine learning for hand pose
recognition.

Finally, we want to mention that in the past many approaches used local
optimization for hand pose estimation and tracking. They need the hand pose
and position to be known in the previous frame. Consequently, they need a man-
ual initialization which is tedious and sometimes not practicable at all. Another
consequence it that the hand motion speed is strongly limited by the compu-
tational power. Both limitations make such approaches unusable for any real
applications. The future of hand tracking, thus, will focus tracking by detection
approaches which estimate hand pose and position for each frame independently.
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41. Keskin, C., Kıraç, F., Kara, Y.E., Akarun, L.: Hand pose estimation and hand
shape classification using multi-layered randomized decision forests. In: Fitzgibbon,
A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part VI.
LNCS, vol. 7577, pp. 852–863. Springer, Heidelberg (2012)

42. Shotton, J., Fitzgibbon, A., Cook, M., Sharp, T., Finocchio, M., Moore, R.,
Kipman, A., Blake, A.: Real-time human pose recognition in parts from single
depth images. In: Cipolla, R., Battiato, S., Farinella, G.M. (eds.) Machine Learn-
ing for Computer Vision, pp. 119–135. Springer, Heidelberg (2011)

43. Lepetit, V., Lagger, P., Fua, P.: Randomized trees for real-time keypoint recogni-
tion. In: Computer Vision and Pattern Recognition, pp. 775–781 (2005)

44. Shimada, N., Kimura, K., Shirai, Y.: Real-time 3-D hand posture estimation based
on 2-D appearance retrieval using monocular camera. In: IEEE International Con-
ference on Computer Vision, pp. 23 (2001)

45. de La Gorce, M., Paragios, N.: A variational approach to monocular hand-pose
estimation. Comput. Vis. Image Underst. 114(3), 363–372 (2010)

46. de La Gorce, M., Paragios, N., Fleet, D.J.: Model-based hand tracking with texture,
shading and self-occlusions. In: IEEE Conference on Computer Vision and Pattern
Recognition (2008)

47. Oikonomidis, I., Kyriazis, N., Argyros, A.: Full dof tracking of a hand interacting
with an object by modeling occlusions and physical constraints. In: ICCV 2011.
IEEE (2011)

48. Kulis, B., Darrell, T.: Learning to hash with binary reconstructive embeddings. In:
Proceeding NIPS, pp. 1042–1050 (2009)

49. Kulis, B., Grauman, K.: Kernelized locality-sensitive hashing for scalable image
search. In: IEEE International Conference on Computer Vision (ICCV) (2009)

50. Athitsos, V., Potamias, M., Papapetrou, P., Kollios, G.: Nearest neighbor retrieval
using distance-based hashing. In: Proceedings of the 2008 IEEE 24th International
Conference on Data Engineering. ICDE 2008, pp. 327–336. IEEE Computer Soci-
ety, Washington, DC (2008)

51. Athitsos, V., Alon, J., Sclaroff, S., Kollios, G.: Boostmap: an embedding method
for efficient nearest neighbor retrieval. IEEE Trans. Pattern Anal. Mach. Intell.
30(1), 89–104 (2008)

52. Tomasi, C., Petrov, S., Sastry, A.: 3D tracking = classification + interpolation. In:
International Conference on Computer Vision, pp. 1441–1448 (2003)

53. Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple
features. In: IEEE Conference on Computer Vision and Pattern Recognition, vol.
1, pp. I-511–I-518 (2001)

54. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)
55. Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann Publish-

ers Inc., San Francisco (1993)



Hand Pose Recognition — Overview and Current Research 129

56. Ho, T.K.: Random decision forests. In: Proceedings of the Third International
Conference on Document Analysis and Recognition (Volume 1), ICDAR 1995, vol.
1, pp. 278-282. IEEE Computer Society, Washington, DC (1995)

57. Fukunaga, K., Hostetler, L.: The estimation of the gradient of a density function,
with applications in pattern recognition. IEEE Trans. Inf. Theor. 21(1), 32–40
(2006)


	Hand Pose Recognition --- Overview and Current Research
	1 Motivation and Applications
	1.1 Challenges of Hand Tracking

	2 Classification and Overview of Approaches up to Now
	2.1 Similarity Measures
	2.2 Fast Template Search Strategies
	2.3 Conclusions

	3 Our RF--Based Hand Pose Recognition
	3.1 Random Forests
	3.2 Learning Random Forests for Hand Pose Recognition

	4 Conclusions
	References


