
Mobile Devices for Virtual Reality Interaction.
A Survey of Techniques and Metaphors

Jens Bauer(B) and Achim Ebert

Computer Graphics and HCI Lab, University of Kaiserslautern,
Kaiserslautern, Germany

{j bauer,ebert}@cs.uni-kl.de

Abstract. Virtual Reality applications run in a lot of different envi-
ronments using several different input devices. This can lead to incoher-
ent input metaphors across different environments, even using the same
application. Mobile smart devices, such as smart phones and tablets can
be used as alternative input devices. They can provide an uniform way
of interaction, independent of the actual setting of the VR environment.
Additionally, their use does scale well to the number of users in multi-
user environments. This chapter presents the current State-of-the-Art in
using smart devices as input devices and assesses their applicability in
the field of Virtual Reality.

Keywords: Human computer interaction · Input devices · Mobile
devices · VR environments

1 Introduction

Virtual Reality applications run in a multitude of environments, such as CAVEs,
Powerwalls, etc. or even on simple personal computers. Some applications are
targeted at one special environment, others are more general (maybe through
the use of VR libraries). Due to the cost involved in creating a virtual reality
environment, it is often not possible to create the ideal environment for a spe-
cific application. In most cases, one or two general-purpose environments are
created and the applications have to be created for (one of) these environments
or existing applications have to be adapted. Another important challenge for
virtual reality applications and environments is the trend towards collaboration.
Traditional VR environments are tailored to single-user experiences. This sim-
plifies the setup and simultaneously allows for a better immersive experience
(e.g., due to 3D screens only allowing for a single “sweet spot” that is usually
centered on the single user). In all cases however, input devices are tailored
towards their specific usage scenario. While a feasible approach, this causes a
number of problems as well. Application developers might need to implement
the same functionality for multiple input devices, causing a higher workload.
Users on the other hand need to adapt to different devices even for the same
application if they use it in different environments. The emerging collaboration
c© Springer International Publishing Switzerland 2015
G. Brunnett et al. (Eds.): Virtual Realities, LNCS 8844, pp. 91–107, 2015.
DOI: 10.1007/978-3-319-17043-5 6

92 J. Bauer and A. Ebert

aspect in VR poses a new requirement to input devices. Many of the traditional
devices generally scale not well to the number of users. Reasons for this include
the availability and pricing per device, spacial requirements for input devices
(e.g., a computer mouse needs a stable surface to be operated on), etc. Thus
many collaboration meetings become a kind of presentation, where one user has
the only input device available and is therefore the only one able to interact
[9]. One approach to counteract the generally low number of input devices, is
to have users bring their own devices (referred to as BYOD in some literature).
Since smart phones and tablets are in wide-spread use and their popularity is
growing, they might be a good alternative to more traditional devices. They are
also becoming more and more powerful. Current consumer-level products are
featuring multi-core CPUs and dedicated GPUs. They incorporate multi-touch
screens, GPS receivers, compasses and accelerometers, furthermore connectivity
through WiFi, bluetooth, Near Field Communication (NFC) and 3G technolo-
gies. They offer several benefits, due to their added functionality compared to
typical input devices. For example, they can be used as output devices, even
on a per-user basis to provide individualized views. With their growing mem-
ory capacity they can also serve as a portable data storage. They can provide
uniform means of interaction across different VR environments.

While research in Virtual Reality interaction is generally aiming more at spe-
cialized input devices, there is ongoing research about the possible application
of smart phones and tablets as input devices in the field of Human-Computer-
Interaction (HCI). This paper presents the most current and important results
of this research and rate their applicability in Virtual Reality. While it is impos-
sible to present all results in this field, we aim to present a selection of differ-
ent approaches. It is unlikely that a more specialised overview will generally
help designers of VR environments or applications, since there is a wide field
of requirements in VR. In order to classify the results, we will first present
taxonomies of input devices and metaphors in Sect. 2. In the later sections
notable research results in this regard will be presented: techniques that base on
trackpad-like interaction (Sect. 3), methods using the camera of the mobile device
(Sect. 4), menu-based approaches (Sect. 5), gestures (Sect. 6) and application-
tailored methods (Sect. 7) before concluding in the last section.

2 Taxonomy and Classification

There are some possibilities to classify the research results presented in the
later sections. Quality dimensions of different input device approaches include
the actual capability to effectively execute tasks in applications, the volume
of control or number of different input vectors (e.g., degrees-of-freedom) and
other small factors. In this section we introduce the taxonomy of tasks by Foley,
Buxton’s input device taxonomy and a few additional criteria. With Foley’s
taxonomy we can show the capabilities of input devices (and techniques) to
execute different tasks. Buxton’s taxonomy can be used to measure the amount
of control vectors. A few special properties of input methods in the area of

Mobile Devices for Virtual Reality Interaction 93

virtual reality interaction are not covered by these two taxonomies, which is
why we added four additional factors.

2.1 Foley’s Taxonomy of Tasks

An old, but still useful taxonomy is from Foley et al. [13] (as for example con-
firmed by [4,5]). It identifies six different tasks, that cover all uses of input
devices. Complex interactions can be decomposed into these six basic tasks.

1. Position:
Set the absolute or relative position of an object in 2D or 3D space.

2. Orient:
Set the absolute or relative orientation of an object in 2D or 3D space.

3. Select:
Select an item out of a list of several items.

4. Ink:
Define a path consisting of one or more positions and orientations. The name
Ink refers to the visual line represented by a path.

5. Quantify:
Select a number from a continuous or discrete set.

6. Text:
Enter arbitrary sequences of characters.

2.2 Buxton’s Taxonomy of Input Devices

Another taxonomy of devices by Buxton [10] might seem appropriate at first. It
classifies input devices by their physical properties, like the control agent (e.g.,
the hand), what is sensed by the input device and in how many dimensions
(i.e., this is related to the number of Degrees-of-Freedom (DOF) provided by
the device). This is also affected by the number of buttons or similar triggers
and modifiers on a device.

This approach does not work well to classify different metaphors and tech-
niques on similar input devices. But it still can be used in some circumstances,
when a technique is deviating from the default multi-touch screen interaction
schema. Additionally, as smart phones and tablets are not only input devices,
but also feature output facilities (i.e., the screen, speakers, vibration, etc.), this
taxonomy can be extended to the kind of output used (if any) by a certain
method.

2.3 Other Traits

The taxonomies explained above do not cover all important characteristics. More
interesting traits are:

94 J. Bauer and A. Ebert

– Eyes-free interaction:
This is a characteristic, that is not very important for traditional input devices.
Most of them are eyes-free by design. For example, a simple computer mouse
can be operated without any trouble while looking at the screen instead of
the mouse. This goes for almost all input devices in common use, with the
notable exception of keyboard, at least for inexperienced users. But with the
screen on smart phones and tablets and the resulting possibility of displaying
content to the user via the input device, the discrimination between eyes-free
techniques and those requiring the screen of the hand-held device is important.

– Tracking:
While technically part of Buxton’s taxonomy (as the number of dimensions
provided), it is especially interesting for collaborative setups to know, if a
certain method needs some form of tracking. This is due to the fact, that
tracking does not scale really well to the number of users, as most tracking
systems have a fixed maximum number of markers to track.

– Secondary Device/Method:
Some methods and techniques might be usable only for a subset of features
provided for the main input device. This can either help to provide at least
a minimum number of interactivity to users who would otherwise be only
spectators, or to have a specialised device, that is only used for a certain
interaction and will do this in a better way than a standard input device.

– Scalability:
It is important to measure for each technique, if it is actually applicable to
more than one user and if there is a point, where it will perform worse when
additional users are employing this technique concurrently. For example, all
methods needing a mouse pointer will suffer from this, since it is becoming
more and more difficult for the users to distinguish their mouse cursor from
the others.

3 Trackpad-Based Techniques

The most straight-forward method of using a (small) touchscreen is probably
to have it emulate a trackpad. This has the advantage of most users already
knowing the trackpad metaphor and being able to easily handle it. Of course
with this technique none of the advanced capabilities of smart phones and tablets
are actually used. Several commercial apps doing this are already available, like
Remote Mouse1. Such apps usually allow to send text to the connected computer.
Extending from this, the ArcPad [20] can be used as a trackpad, but additionally
tapping on any point of the pad will move the mouse cursor to the position on
the screen according to the point tapped on the pad. E.g., a tap on the lower
left corner will put the mouse cursor to the lower left corner of the screen.
Respectively tapping the center of the pad will put the mouse cursor to the
center of the screen. This method was created for large display environments,
where movement of a mouse cursor might be cumbersome. Unfortunately, users
1 http://www.remotemouse.net/.

http://www.remotemouse.net/

Mobile Devices for Virtual Reality Interaction 95

can run into trouble with losing track of the cursor when tapping on the pad.
This is especially an issue for users of computers with trackpads, where a tap
normally is interpreted as a click instead of a cursor-relocation.

Since these methods are used to control a mouse cursor, they are basically
able to complete all 6 of Foley’s taxonomy (including text since text can be
entered through the keyboard on the mobile device) through a level of indi-
rection. Directly only position, select and text can be supported. Trackpads
(including the ArcPad) provide 2DOF and one or two buttons. Output facilities
of the smart phone or tablet are not used in this approach. It works eyes-free,
as there is nothing to be displayed at the screen at all and does not need any
tracker to be used. But it will not scale well to many users, as multiple mouse
cursors will puzzle the users. Depending on the setup and the experience of the
users this might work for a small group of users, with coloured mouse cursors or
a similar technique to help differentiating the cursors.

For VR environments the use is actually limited due to the fact that it is
only 2D-cursor-based. This creates a big problem when interacting in a 3D space,
when requiring multiple DOF. Still this might be a viable solution for special
setups, where 2D interaction is sufficient (e.g., selection of objects in a 2.5D
scene on a powerwall).

4 Camera-Based Techniques

Some interaction methods rely on the camera of the mobile device. While all of
the papers in this section use phones as devices, they also apply to tablets with
cameras. They rely of markers that are available for the device to scan as a base.

Prior to the smart phone era, Madhavapeddy et al. [19] created a system
where users can use a phone with a camera and bluetooth to interact with a
world map application (Fig. 1). The application displayed a map of the world,
augmented with Spot Codes, a circular bar code. The user(s) can take pictures
of the application, containing a Spot Code. The phone will then query the appli-
cation via the bluetooth connection using the Spot Code’s content as an id, to
get further information about the special spot on the map.

Thelen et al. [27] took this idea further by customizing the information trans-
ferred to the user’s phone. This leverages on the idea of having a separate device
for each user. The 3D Human Brain Atlas (Fig. 2) [27] is basically a quiz about
the human brain, featuring different levels of difficulty. By scanning a barcode
prior to the beginning of the quiz, users select their own difficulty level. The
phone remembers this throughout the game and the combination of a code
scanned on the main screen together with the difficulty is sent to a server, which
in turn sends the quiz question. Also the phone is used as a identification mech-
anism, where certain phones can be registered as instructor phones and will get
the answers together with the question.

Point and Shoot by Ballagas et al. [6] uses the visual marker approach, but
displays them only for short periods of time. The phone will send a notification to
the main application to display the markers, then the picture is taken including

96 J. Bauer and A. Ebert

Fig. 1. Selection on the world map
with spot codes [19].

Fig. 2. A marker being selected on the
3D Human Brain Atlas [27]

the markers, after which the markers disappear. The position where the phone
was pointed to is then calculated based on the markers.

In the same paper another technique, called Sweep [6], was introduced. By
optical flow calculations done directly on the phone, it is possible to detect
the phones movement and use it similar to an optical mouse, even in mid-air.
Unfortunately, due to technical limitations, this method incurred a high latency
(about 200 ms) making its usage cumbersome. To our knowledge, there is no
current study if the technical advances till today could lift this restriction, but
it is very likely.

Rhos [25] proposed to use markers on physical objects to create Augmented
Reality (AR) games. While this is not directly related, this can still be used with
the approaches above, to create additional content and seamlessly add it into
the basic content provided by the application to all users.

The following classification will exclude Sweep, since it is different from the
other methods. It will be classified separately. The methods are basically only
used to perform selection tasks (according to the Foley taxonomy). It can be
noted that some of the techniques follow up with text input after the selection
by using the phone’s native keyboard. Combining several selections allows for
the other tasks to be completed, too, but this might be cumbersome for the
users.

All of these techniques feature input in 2 dimensions (as restricted by the
camera). It is notable, too, that the input device is also used as an output device
for most of the methods, making collaboration easier on a larger scale, since
interaction is possible without interrupting the workflow of other users.

None of the methods are actually eyes-free, as it is necessary to point with
the device at some position on the screen, which is of course only possible by
looking at it. This might interrupt the user’s workflow, but assuming this is used
to present further information on the screen of the mobile device, this is not a
problem. Tracking systems are also not needed for any of those methods, all
of them are actually designed to do their own kind of tracking their position.
Depending on the application, external tracking might be used to improve the

Mobile Devices for Virtual Reality Interaction 97

accuracy of the chosen method. Transferring content to the smart phone or tablet
makes it also a valuable secondary device. A program might provide the standard
means of interaction (depending on the program and setup) and additionally can
allow for mobile devices to be used for further information, or for additional users
to get information. Regarding scalability, all the methods work well with many
users, actual restrictions are posed by available screen space where the users
can interact. Point and Shoot might also have some scalability issues because of
the bar codes flashing up on the screen, whenever a user interacts. This might
distract other users looking at the screen. The problem increases with more
people using the system at the same time.

Depending on the actual setup of a VR environment, these method might
work very well (e.g., a powerwall) or might not be a good choice at all (e.g., fully
immersive environment).

Sweep can only be used for position tasks, adding a button functionality will
also allow for selection and, through composition, all other tasks as defined by
Foley. It tracks input in 2D, but it could be augmentable to actually support
3D. It is eyes-free, as it does not use any of the output facilities of smart phones
and tablets and is used similar to a mouse. It is also not dependant on external
tracking, since doing its own tracking is the core of Sweep. The technique in itself
is highly scalable. The real problem is similar to trackpads: the number of mouse
cursors that need to be displayed on the screen. The cursor is also the problem
why this might not be a good choice of input method for VR applications. Similar
to the trackpad solutions already described, this is only useful if a 2D pointer
can be effectively used with the application.

5 Menus

Another approach of using smart phones and tablets as input devices is an
external menu structure on the mobile device. This can be as simple as presenting
all required functionality in the device’s native UI and transferring all user input
to the actual application. But this most likely causes a break in user interface
design between main application and mobile device and is additionally not eyes-
free in most cases, interrupting the workflow when used. For this reason several
advanced menu versions have been proposed, most of them featuring an eyes-free
interaction mode.

Many of those menus base on the idea of Marking Menus [18]. Marking Menus
are basically a structure of radial menus. The user can use them eyes-free after
learning the menu structure, by just remembering the path to draw (with finger
or pen) to a certain menu item. When applied to mobile devices, the device
can present the menu to the user who can then either progress to move to the
desired menu item blindly, or look at the structure to find the menu item and
thus help to remember the path next time. The strokes of the path can be drawn
continuously or stroke-after-stroke, depending on the actual implementation.

As current smart phones and tablets allow for multi-touch interaction, stan-
dard Marking Menu interaction can be improved by utilizing this. Kin et al. [17]

98 J. Bauer and A. Ebert

Fig. 3. Two-handed Marking Menus
[17] employ multi-touch to draw parts
of the Marking Menu strokes using
alternating fingers.

Fig. 4. Marking Menus with continu-
ous strokes are the base for the multi-
touch extensions by [7].

used multi-touch to enable faster input of the strokes, using two fingers at the
same time (Fig. 3). They use the stroke-after-stroke version of Marking Menus,
allowing to either draw the strokes simultaneously one with each finger, or one
after another, alternating between fingers, a bit slower, but offering double the
number of menu items, by changing the menu depending on the starting finger.

Another possibility of multi-touch extensions are proposed by Bauer et al. [7].
Using the continuous version of Marking Menus (Fig. 4), multi-touch can be used
to continue strokes even when the user hits the edge of the screen by just using
another finger to continue the strokes. Using the same technique, it is possible
to have one finger on the screen, only to have the menu stick to the current state
and have another finger select menu items from the same point. If a menu item
next is accessible through a up-left-stroke sequence, one finger can do the “up”
stroke, another one then can do the left stroke over and over again, without
needing to add “up” in front of each stroke, as long as the first finger is on the
touch screen. Also the number of items in the menu structure is increased by
presenting different menus, depending on how many fingers are used to initiate
the stroke-sequence. By including the idea of Control Menus [24], it is possible
to not only select an item, but also to add value control as an item. Combined
with multi-touch this can be used for higher dimensional value control and 3D
interaction. Additonally, the accelerometer sensors on the smart phone or tablet
can be used for further input variations.

Flower Menus by Bailly et al. [2] improve the number of items in a Marking
Menu structure by not only allowing straight strokes, but instead take the cur-
vature of a stroke into account. Using the stroke-after-stroke variant of Marking
Menus, they have 12 items on each level. Each basic direction (i.e., Up, Down,
Left, Right) can be combined with either a straight stroke, or a curved stroke
to either the left or right side to get up to 12 items per level. Of course multiple
levels of menu structure can be chained one after another (Fig. 5).

Mobile Devices for Virtual Reality Interaction 99

Fig. 5. The design of Flower Menus [2].
Each basic stroke direction (Up, Down,
Left, Right) has 3 variations (straight,
curved left/right).

Fig. 6. Wavelet Menus [14,15] are a
sequence of radial menus, that are con-
ceptually hidden under each other and
revealed as the user strokes from the
center towards an menu item.

Basing on the idea of novice and expert mode interaction as used by Marking
Menus, Francone et al. [14,15] proposed the Wavelet Menu (Fig. 6). It is derived
from the Wave Menu by Bailly et al. [3], but better suited to the small screen
estate on mobile devices. The first time the user touches the screen, the root
level of the menu is revealed around the touch point. Then when the user starts
moving the finger towards one menu item, the submenu is appearing from below
the current menu, with the current menu expanding outwards. When the user
releases the finger at the menu, the next level of menu (or actual functionality)
gets selected. If the touch is released prior to this, the last menu stays on top
instead. Like with Marking Menus, the user can remember the sequence of strokes
needed to access a certain item and can then do the strokes without actually
looking at the device.

Gebhardt et al. [16] use a HTML-based menu displayed on a mobile device
to interact with VR spaces. It is targeted for use with configuration tasks of
the system, but can also be used for other tasks. They created a custom set of
widgets to be presented on the mobile device. An example of this can be seen
in Fig. 7. The strong point of this method is the device-independence, since the
only requirement for the mobile device used is HTML5-support. Also there are
basically no requirements for the server-VR-system; it does not even need to be
a VR system.

Menu selection only offers support for selection tasks. By including the Con-
trol Menu mechanic, quantify tasks can also be accomplished, and by composi-
tion everything else, even text (if paired by a technique like QuikWrite [23]). The
input dimension of menus is defined by the number of items it contains, which
can be a large number. With the Control Menu mechanic and common multi-
touch gestures, like rotation and pinch-to-zoom, four dimensions of input can be
achieved, enough to allow for 3D interaction, important for VR applications.

100 J. Bauer and A. Ebert

Fig. 7. A HMTL5 Menu [16] composed
of several standard and custom wid-
gets.

Fig. 8. The principle of Motion Mark-
ing Menus [22] is to divide the pos-
sible angle range into different parts,
each corresponding to a menu item.
By alternating the movement or adding
small stops in between, a menu struc-
ture can be traversed.

All of the presented menus, with the exception of the HTML-based menu,
can be used eyes-free after a training period. They do not need external tracking,
but it could be used to provide a means of positioning and/or rotational input
to the presented method. This will, of course, negatively affect the scalability of
that method. Still any of the menu methods can be used as a secondary input
method, especially to avoid menu structures in immersive environments, where
navigating menus can be very cumbersome. Without tracking, menu interaction
scales very well to the number of users, due to the minor communication overhead
per device, the fact that users can practically interact from any position they can
see the application screen/area and individual mobile devices do not interfere
with each other during interaction.

For these reasons, all presented menu approaches are very well suited to be
used in a VR environment, with the actual implementation being dependent on
the parameters of the VR application.

6 Gestures

Using the built-in sensors of smart phones and tablets, especially accelerometers,
gestures with the device itself can be recognised. Since these gestures do not

Mobile Devices for Virtual Reality Interaction 101

use the touch screen or only for activation of the gesture sensing, it is easy to
implement the same gesture recognition for other devices as well, as long as they
feature the necessary sensors.

Device gestures can also be added to other input methods, such as the menus
presented in the previous section. One has to keep in mind, that the gestures
are more difficult to execute with larger and heavier devices, so large tablets are
not a good input device to use the following methods with.

Motion Marking Menus (Fig. 8) as presented by Oakley and Park [22], base on
the concept of Marking Menus, as shown in the last section. But instead of using
swipes for the selection of menu items, selection is done via the angle it is held in.
They use a button or a touch on the screen as an activation mechanic. The angle
the device can be held is divided into a number of menu items. Two menu items,
for example, each get a 45 ◦ angle, meaning that holding the device horizontally
or up to a 45 ◦ deviation from the horizontal plane will invoke the first menu
item, any other posture will activate the second item. By tilting the device up
and down from the current posture while still holding the activation button, a
menu sequence can be invoked, similar to touch menus.

Building from this general idea, Jerk-Tilts (Fig. 9) is a method by Baglioni
et al. [1] for selection by gesture. Instead of having the user remembering a spe-
cial posture or sequence of postures, they use a single tilt-and-back gesture in
different directions to invoke functionality. For example, holding the device and
executing a quick tilt to the right and then back to the original posture will
invoke a selection of a certain kind. The same can be done in all four basic direc-
tion and combining two directions allow for a total of eight different possibilities.
A big advantage of this method is, that it works without any activation button,
allowing to use this together with other input methods using the touch screen.

Dachselt and Buchholz [11] suggest to use a throw gesture alongside tilt
gestures (forming Throw and Tilt (Fig. 10)). Tilt can be used for selections,
similar to the methods presented above in this section or to move a mouse cursor,
while the throw gesture can be used to transfer data to the main application.
Care has to be taken when the throw gesture is executed to have a firm grip on
the input device, but it is intuitive to throw content towards the application.

All the techniques above provide means to accomplish selections tasks. Using
tilt, Throw and Tilt can additionally provide means for position and/or rotation
tasks. This can again be composed into all other possible tasks. The number
of input dimensions is different for all methods. Motion Marking Menus have
a dimensionality dependent on the number of menu items. Jerk-Tilts have a
fixed dimensionality of eight, the number of possible gestures. With only three
dimensions (two tilt dimensions and throw) Tilt and Throw has the least number
of dimensions. All methods work eyes-free and need no external tracking and
are also scalable to the number of users. Due to the greater motion of the throw
gesture, Tilt and Throw might scale a little bit less than the other approaches,
but this can be somewhat mitigated by providing an alternative to the throw
gesture.

102 J. Bauer and A. Ebert

Fig. 9. Jerk-Tilt [1] are a tilt-and-back
kind of gesture, that can be done in
eight different directions, allowing for
eight different functions to be invoked.

Fig. 10. The characteristic throw ges-
ture from Tilt and Throw [11].

All these methods can well be used as a secondary input method to provide a
subset of the application’s main functionality to additional users. The methods
can also be used with tracked input devices, that might already be present in
a given VR setup, such as flysticks. This allows for a common input metaphor
over multiple input devices.

7 Application-Tailored Techniques

This section contains several techniques, that are specifically tailored towards a
certain application. While this limits their general applicability, it is still pos-
sible to use them in similar usage scenarios. Because these techniques do not
have much in common, their classification will be written individually instead of
grouping them together as in the previous sections.

The Mod Control (Fig. 11) system by Deller and Ebert [12] was designed for
interaction with a map application. The system itself is modular and not directly
tailored towards the application. But the reference implementation features sev-
eral interaction modules to improve control of the map application through a
smart phone. Among them is a combined touch/accelerometer interface for 3D
navigation. The user can modify the current view as flying, controlling the for-
ward and sideward speed using the touchpad while the devices rotation control
yaw and heading of the view. This is a common problem, especially in VR envi-
ronments. This module can be classified to accomplish position and orientation
tasks, in 5 DOF, it can be used eyes-free and does not need external tracking, it
is usable as a secondary device to other input devices which do have less DOF.
Also it scales well to the number of users.

Mobile Devices for Virtual Reality Interaction 103

Fig. 11. ModControl [12] can be used to present an overview of the content to a mobile
device and allows independent interaction.

Another interesting module is the image module, featuring a small version
of the map shown by the main application. This allows users to explore the
map independently from other users and send their current view back to the
application if needed. It fulfils a position and select task, in two dimensions.
Though it cannot be operated eyes-free, it scales very well since every user can
interact totally independent of the others. For the same reason it also makes for
a good secondary device for additional users. The applicability in the VR domain
is dependent on the VR application. For terrain simulations, for example, it will
work very well, while it is not useful for architectural applications.

Seewonauth et al. [26] propose two techniques, Touch & Connect and Touch
& Select to initiate data transfer between a phone and a computer. Since today’s
smart phones and tablets have quite large memory capacity, they can be used
as a mobile data storage. To avoid complicated file management, one of those
two method can be used to easily copy a data set. Touch & Connect bases on
NFC. The users select a file on the source device and simply touch a NFC tag
on the target computer to copy the file. Note that the same approach can be
used to get the current data set from the display or to initiate a connection (as
input device) to the currently running application, avoiding the need to enter
IP-Addresses or Host names.

104 J. Bauer and A. Ebert

Touch & Select uses several NFC tags to track the position of the mobile
device. The user again selects a file on the smart phone or tablets and touches a
point directly on the screen. This initiates the file transfer. The same principle
can be used to interact with the screen directly for other effects.

Both methods allow to accomplish selection tasks, with Touch & Select hav-
ing additional two dimensions of input. Since the user has to point with the
device, it cannot be used eyes-free, but especially if used for data transfer, both
methods are valid secondary input means. It does not scale as well as other
methods to the number of users, since it is also dependent on the number of
NFC tags provided and also it requires the users to stand near the tagged spots,
limiting the concurrent use. External Tracking is only needed by the means of
providing the NFC tags.

For VR applications, Touch & Connect is probably more useful than Touch
& Select, since the latter selects a 2D screen position, which is only situational
useful. But to initiate connections between a mobile device and a stationary
computer system, Touch & Connect is very convenient. Please also note, that a
similar behaviour is achievable by providing a visual tag, that can be scanned
by a smart phone or tablet camera if NFC is unavailable.

Bauer et al. [8] provide another specialised approach for four different usage
scenarios. Beside two scenarios where the content of the main screen is trans-
ferred to mobile devices, similar to the image view from ModControl, they also
present two scenarios for interaction with 3D scenes. One design is using a joy-
stick metaphor. The smart phone or tablet is used to control forward movement
by tilting in the appropriate direction. Turning is done by tilting the device
sidewards, not unlike a steering wheel.

In another scenario, users control 3D objects by using combined input from
the touchscreen and accelerometers. Tilting the device causes the object to move
in the X-Y-plane and using the touchscreen movement in the X-Z-plane is avail-
able. This makes it a 3DOF input method.

Both methods provide means to accomplish position tasks and with an added
button or gesture it can also select. Through composition then all six tasks are
possible. The first method provides only two dimensions of input, while the other
one provides 3 dimensions (actually four, but since the X direction is mapped in
two ways this reduces to three different dimensions). Both techniques can be used
eyes-free, without external tracking and scale well to the number of users. They
are useful for additional users to provide a reduced set of controls to interact
with an application. And as both methods are designed for 3D interaction, they
are in general useful for VR applications.

Semantic Snarfing describes a technique by Myers et al. [21] using a laser
pointer to mark a spot on a large display. The semantic area (e.g., a dialog) this
spot belongs to is then transferred to a mobile device’s screen. Due to technical
progress since the time the paper was published, the method can be used today
without a laser pointer by utilizing the camera of a smart phone or tablet. This
makes Semantic Snarfing a method similar to the camera methods described
in their own section. What makes Semantic Snarfing special from the camera

Mobile Devices for Virtual Reality Interaction 105

techniques is the semantics that needs to be provided in order to make the system
work. The method has in general the same properties as the camera methods,
as it allows selection (and then more tasks on the mobile device’s screen), scales
generally well to the amount of users, but does not support eyes-free interaction.
Tracking is not required. Its usability in VR environments is dependent on the
application and setup, quite similar to the camera methods. But as a secondary
device, Semantic Snarfing is applicable to even more VR environments, as the
primary device can be used to select the “snarfing point” for the mobile device.

Table 1. Overview of all presented methods. (: methods using output capabili-
ties.; c: achievable through composition; parenthesis depict simple improvements to
the method.)

106 J. Bauer and A. Ebert

8 Conclusion

Several interaction techniques are possible with smart phones and tablets. For
applications where collaboration is expected, supporting interaction via mobile
devices will add benefit to users and their collaboration. Even if not the full
set of functionality can be accessed by smart phone or tablet interaction, it will
still help users to be active users of an application instead of being only passive
spectators.

However, it is important to choose the right form of interaction for the appli-
cation in question in order to reach a high usability of the resulting system. The
overview given by this paper should help in considering which methods are fea-
sible for certain settings. Table 1 contains an overview of the properties reviewed
in the previous chapter for easier comparison.Moreover, it can form a starting
point for implementation of an own interaction metaphor. If possible, a metaphor
for the mobile device should not deviate from the metaphor of the main device
to avoid the necessity of learning to use two devices. In some application areas
it is possible to avoid the usage of other devices completely, and using smart
phones or tablets as the only input device.

References

1. Baglioni, M., Lecolinet, E., Guiard, Y.: JerkTilts: using accelerometers for eight-
choice selection on mobile devices. In: Proceedings of the 13th International Con-
ference on Multimodal Interfaces, ICMI 2011, pp. 121–128. ACM, New York (2011)

2. Bailly, G., Lecolinet, E.: Flower menus: a new type of marking menu with large
menu breadth, within groups and efficient expert mode memorization. In: AVI 2008
Proceedings of the Working Conference on Advanced Visual Interfaces, pp. 15–22
(2008)

3. Bailly, G., Lecolinet, E., Nigay, L.: Wave menus: improving the novice mode of hier-
archical marking menus. In: Baranauskas, C., Abascal, J., Barbosa, S.D.J. (eds.)
INTERACT 2007. LNCS, vol. 4662, pp. 475–488. Springer, Heidelberg (2007)

4. Ballagas, R., Borchers, J., Rohs, M., Sheridan, J.G.: The smart phone: a ubiquitous
input device. IEEE Pervasive Comput. 5(1), 70–77 (2006)

5. Ballagas, R., Borchers, J., Rohs, M., Sheridan, J.G., Foley, J., Wallace, V., Chan,
P.: The smart phone: a the input design space. Shoot (2006)

6. Ballagas, R., Rohs, M., Sheridan, J.: Sweep and point and shoot: phonecam-based
interactions for large public displays. In: CHI 2005 Extended Abstracts on Human
Factors in Computing Systems, pp. 1200–1203. ACM (2005)

7. Bauer, J., Ebert, A., Kreylos, O., Hamann, B.: Marking menus for eyes-free inter-
action using smart phones and tablets. In: Cuzzocrea, A., Kittl, C., Simos, D.E.,
Weippl, E., Xu, L. (eds.) CD-ARES 2013. LNCS, vol. 8127, pp. 481–494. Springer,
Heidelberg (2013)

8. Bauer, J., Thelen, S., Ebert, A.: Using smart phones for large-display interaction.
In: 2nd International Conference on User Science and Engineering (I-USEr) (2011)

9. Birnholtz, J.P., Grossman, T., Mak, C., Balakrishnan, R.: An exploratory study of
input configuration and group process in a negotiation task using a large display. In:
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems -
CHI 2007, p. 91 (2007)

Mobile Devices for Virtual Reality Interaction 107

10. Buxton, W.: Lexical and pragmatic considerations of input structures. SIGGRAPH
Comput. Graph. 17(1), 31–37 (1983)

11. Dachselt, R., Buchholz, R.: Throw and tilt seamless interaction across devices using
mobile phone gestures. In: Proceedings of the MEIS 2008, pp. 272–278 (2008)

12. Deller, M., Ebert, A.: Modcontrol – mobile phones as a versatile interaction device
for large screen applications. In: Campos, P., Graham, N., Jorge, J., Nunes, N.,
Palanque, P., Winckler, M. (eds.) INTERACT 2011, Part II. LNCS, vol. 6947, pp.
289–296. Springer, Heidelberg (2011)

13. Foley, J., Wallace, V., Chan, P.: Human factors of computer graphics interaction
techniques. IEEE Comput. Graph. Appl. 4(11), 13–48 (1984)

14. Francone, J., Bailly, G., Lecolinet, E., Mandran, N., Nigay, L.: Wavelet menus on
handheld devices: stacking metaphor for novice mode and eyes-free selection for
expert mode. In: Proceedings of the International Conference on Advanced Visual
Interfaces, AVI 2010, pp. 173–180. ACM, New York (2010)

15. Francone, J., Bailly, G., Nigay, L., Lecolinet, E.: Wavelet menus: a stacking
metaphor for adapting marking menus to mobile devices. In: Proceedings of
the 11th International Conference on Human-Computer Interaction with Mobile
Devices and Services, pp. 2–5 (2009)

16. Gebhardt, S., Pick, S., Oster, T., Hentschel, B., Kuhlen, T.: An evaluation of
a smart-phone-based menu system for immersive virtual environments. In: 2014
IEEE Symposium on 3D User Interfaces (3DUI), pp. 31–34, March 2014

17. Kin, K., Hartmann, B.: Two-handed marking menus for multitouch devices. ACM
Trans. Comput. Hum. Interact. (TOCHI) TOCHI Homepage Archive 18(2),
16:1–16:23 (2011)

18. Kurtenbach, G.P.: The design and evaluation of marking menus. Ph.D. thesis,
University of Toronto (1993)

19. Madhavapeddy, A., Scott, D., Sharp, R.: Using camera-phones to enhance human-
computer interaction. In: Proceedings of Ubiquitous (2004)

20. McCallum, D., Irani, P.: Arc-pad: absolute + relative cursor positioning for large
displays with a mobile touchscreen. In: Proceedings of the 22nd Annual ACM
Symposium on User Interface Software and Technology, pp. 153–156. ACM (2009)

21. Myers, B.A., Peck, C.H., Nichols, J., Kong, D., Miller, R.: Interacting at a distance
using semantic snarfing. In: Abowd, G.D., Brumitt, B., Shafer, S. (eds.) UbiComp
2001. LNCS, vol. 2201, pp. 305–314. Springer, Heidelberg (2001)

22. Oakley, I., Park, J.: Motion marking menus: an eyes-free approach to motion input
for handheld devices. Int. J. Hum. Comput. Stud. 67(6), 515–532 (2009)

23. Perlin, K.: Quikwriting: continuous stylus-based text entry. In: Proceedings of the
11th Annual ACM Symposium on User Interface Software and Technology, UIST
1998, pp. 215–216. ACM, New York (1998)

24. Pook, S., Lecolinet, E., Vaysseix, G., Ura, E.C., Bp, M.: Control menus: execution
and control in a single interactor. In: CHI 2000 Extended Abstracts on Human
Factors in Computing Systems, pp. 263–264, April 2000

25. Rohs, M.: Marker-based embodied interaction for handheld augmented reality
games. Virtual Reality 4(5), 1–12 (2007)

26. Seewoonauth, K., Rukzio, E., Hardy, R., Holleis, P.: Touch & connect and touch
& select: interacting with a computer by touching it with a mobile phone. In:
Proceedings of the 11th International Conference on Human-Computer Interaction
with Mobile Devices and Services, p. 36. ACM (2009)

27. Thelen, S., Meyer, J., Ebert, A., Hagen, H.: A 3D human brain atlas. In:
Magnenat-Thalmann, N. (ed.) 3DPH 2009. LNCS, vol. 5903, pp. 173–186. Springer,
Heidelberg (2009)

	Mobile Devices for Virtual Reality Interaction. A Survey of Techniques and Metaphors
	1 Introduction
	2 Taxonomy and Classification
	2.1 Foley's Taxonomy of Tasks
	2.2 Buxton's Taxonomy of Input Devices
	2.3 Other Traits

	3 Trackpad-Based Techniques
	4 Camera-Based Techniques
	5 Menus
	6 Gestures
	7 Application-Tailored Techniques
	8 Conclusion
	References

