
A Formal Approach to Verify Completeness
and Detect Anomalies in Firewall

Security Policies

Ahmed Khoumsi1(B), Wadie Krombi2, and Mohammed Erradi2

1 Department of Electrical and Computer Engineering,
University of Sherbrooke, Sherbrooke, Canada

ahmed.khoumsi@usherbrooke.ca
2 ENSIAS, Mohammed V University, Rabat, Morocco

krombi@yahoo.com, erradi@ensias.ma

Abstract. Security policies are a relevant solution to protect informa-
tion systems from undue accesses. In this paper, we develop a formal
and rigorous automata-based approach to design and analyze security
policies. The interest of our approach is that it can be used as a com-
mon basis for analyzing several aspects of security policies, instead of
using a distinct approach and formalism for studying each aspect. We
first develop a procedure that synthesizes automatically an automaton
which implements a given security policy. Then, we apply this synthesis
procedure to verify completeness of security policies and detect several
types of anomalies in security policies. We also study space and time
complexities of the developed procedures.

1 Introduction

In this paper, we develop a formal automata-based approach to study firewall
security policies described by filtering rules. Our fundamental contribution is the
development of a procedure that synthesizes an automaton which implements a
security policy given as a table of filtering rules. Then, we apply our automata-
based approach for verifying completeness of security policies and detecting sev-
eral types of anomalies in security policies. We also detect and correct an error
in the commonly used definition of redundancy anomaly. Finally, we give a pre-
cise and accurate evaluation of space and time complexities of our developed
procedures.

Our results are presented as 14 propositions which have all been formally
proved. Due to space limitation, we do not present the proofs.

The rest of this paper is organized as follows. Section 2 presents related
work on modeling and analyzing firewall security policies. In Sect. 3, we present
preliminaries on firewall security policies. Section 4 contains a procedure that
synthesizes an automaton which implements a security policy given as a table
of filtering rules. In Sects. 5, 6, 7, and 8, we apply the synthesis procedure to
verify completeness and detect various types of anomalies in a security policy.
Section 9 evaluates space and time complexities of the procedures we have devel-
oped throughout Sects. 4, 5, 6, 7, and 8. We conclude in Sect. 10.
c© Springer International Publishing Switzerland 2015
F. Cuppens et al. (Eds.): FPS 2014, LNCS 8930, pp. 221–236, 2015.
DOI: 10.1007/978-3-319-17040-4 14

222 A. Khoumsi et al.

2 Related Work

Many studies on security policies focus on firewalls. In [1,2], the authors present
techniques and algorithms to detect anomalies in the filtering policy of a firewall.
Firewall policy anomaly is defined in [3] as the existence of two or more filtering
rules that match the same packet. The security policy is described by a tree
called Policy tree in [1] and Decision tree in [2], where each node represents a
field of a filtering rule and each link corresponds to a possible value of a field.
A path from the root to a leaf describes a filtering rule of the policy. A leaf
specifies the action (Accept, Deny) to be taken when the corresponding filtering
rule is satisfied. The authors of [4] also study anomaly detections, but we find
their categorization of anomalies less rigorous than in [1]. While in [1,2] the
study of anomaly detection is limited to stateless firewalls, in [5,6] the authors
provide solutions to analyze and handle stateful firewall anomalies.

In [7], the authors propose a method to detect functional discrepancies bet-
ween various implementations of a security policy of a firewall. The data struc-
ture used to model the security policy is a tree called Firewall Decision Diagram
(FDD) [8] which maps each packet to the decision to be taken by the firewall for
such a packet. Each non-terminal node in a FDD specifies a test performed on
a field of the packet, and each branch descending from this node corresponds to
possible values of this field.

In [9], the authors introduce Fireman, which is a toolkit for modeling and
analyzing firewalls. Fireman detects errors such as violation of a policy and
inconsistency in a policy of a firewall. Fireman is implemented using Binary
Decision Diagrams (BDD) [10] to represent predicates and perform all the set
of the available operations.

In [11], the authors propose a framework to generate automatically test
sequences to validate the conformance of a security policy. In such a framework,
the behavior of the system is specified by an extended finite state machine [12]
and the security policy is specified with the model OrBAC [13].

In [14], the authors present a visualization tool to analyze firewall configu-
rations. To use this visualization, the firewall policy is modeled using a specific
hierarchical way. The first level after the root in that model consists of the names
of the different rules. The second level contains the action to execute, the third
one the protocol, followed by the source and destination address. The hierarchi-
cal representation of the firewall is formed from rules data by grouping identical
rule elements in a recursive manner.

In [15], the authors develop a method to verify equivalence between two
security policies by extracting and comparing equivalent policies whose filtering
rules are disjoint.

In each of the above works, the security policy is modeled by a data structure
designed to solve a specific problem. To study a given security policy, we need to
model it: by a policy tree to study anomalies, by a FDD to study discrepancies,
by a BDD to study policy violation and inconsistency in a policy of a firewall, etc.
This observation motivated the recent work of [16] which develops an automata-
based approach to design and analyze several aspects of firewall security policies,

A Formal Approach to Verify Completeness and Detect Anomalies 223

instead of using a distinct approach and formalism for studying each aspect. The
present article adds the following contributions:

– We improve our synthesis procedure, in particular by defining formally the
product of automata and labeling the transitions by intervals instead of values,
which implies an enormous reduction of the number of transitions.

– We develop detection procedures, not only for shadowing anomaly, but also
for generalization, correlation, and redundancy anomalies.

– We detect and correct an error in the definition commonly used for redundancy
anomaly.

– We compute space and time complexities of our developed procedures.

3 Preliminaries on Firewall Security Policies

As defined in [17], firewalls are devices or programs that control the flow of net-
work traffic between networks or hosts that employ differing security postures.
The main objective of a firewall is to separate logically networks that have dis-
tinct security requirements. This is done by using rules on which communications
are permitted between networks. The behavior of a firewall is controlled by its
security policy which is specified by an ordered list of filtering rules defining
the decisions and actions to be taken each time a packet arrives at the firewall.
The packets arriving at the firewall are specified by an n-tuple of headers that
are taken into account by the security policy. Examples of headers: source IP
address, destination IP address, port number, protocol.

A firewall security rule (also called filtering rule) is expressed in the form:
if some conditions are satisfied, then a given action must be taken to authorize
or refuse the access. A rule can be represented as a couple (Condition, Action):

– Condition is a set of filtering fields F 0, · · · , Fm−1 corresponding to respective
headers H0, · · · ,Hm−1 of a packet arriving at the firewall. Each F j defines
the set of values that are authorized to Hj . Condition is satisfied for a given
packet P , if for every j = 0, · · · m−1 the value of the header Hj of P belongs to
the field F j . We say that P matches a rule R (we may also say: R matches P)
when the condition of R is satisfied for P . Otherwise, we say that P does not
match R (or R does not match P).

– The field Action is Accept or Deny , to authorize or forbid a packet to go
through the firewall, respectively.

Table 1 shows a structure of table that describes a security policy by a list
of filtering rules R1, · · · ,Rn. Each line of the table corresponds to a rule Ri

(1 ≤ i ≤ n) which is defined by: (1) its condition consisting of m filtering fields
F 0

i , · · · , Fm−1
i ; and (2) its action ai. The rules are given in decreasing priority

order, that is, when a packet P arrives at the firewall, matching of P and R1 is
verified: if P matches R1, then action a1 is executed; if P does not match R1,
then matching of P and R2 is verified. And so on, the process is repeated until
a rule Ri matching P is found or all the rules are examined. If none of the rules

224 A. Khoumsi et al.

R1 to Rn matches P , then usually a default rule is used for P . Such a default
rule has its condition equal to True, that is, it matches any packet.

A security policy of a firewall is said complete if for any packet P arriving at
the firewall, there exists at least one of its filtering rules which matches P . Note
that a security policy is complete if we integrate at the end of its list of rules a
default rule with condition True.

Table 1. Structure of a table of filtering rules

Rule F 0 . . . F j . . . Fm−1 Action

R1 F 0
1 . . . F j

1 . . . Fm−1
1 a1

. .

Rn F 0
n . . . F j

n . . . Fm−1
n an

Table 2 contains an example of security policy with four rules R1 to R4,
where each line of the table corresponds to a rule. The condition of each rule Ri

is defined by four fields named IPsrc, IPdst, Port and Protocol, and its action is
the last field. The term Any in the column of a field F j means any value in the
domain of F j . The term a.b.c.0/x is a usual notation that denotes an interval
of IP addresses obtained from the 32-bit address a.b.c.0 by keeping constant
the first x bits and varying the other bits. A packet P arriving at the firewall
matches a rule Ri if the following four points are satisfied:

– P comes from an address belonging to IPsrc,
– P is destined to an address belonging to IPdst,
– P is transmitted through a port belonging to Port,
– P is transmitted by a protocol belonging to Protocol.

This security policy is complete because R4 has the condition True (i.e., it
matches every packet). Consider for example a packet P specified by the headers
(88.120.10.15), (65.22.23.11), (25), (TCP), that is, P comes from 88.120.10.15, is
destined to 65.22.23.11, and is transmitted through the port 25 by the protocol
TCP. Only R4 matches P which is accepted because the action of R4 is Accept .

The example of Table 2 has been constructed specifically to illustrate the
detections of all the anomalies studied in Sects. 7 and 8.

Table 2. Example of security rules

Rule IPsrc IPdst Port Protocol Action

R1 Any 81.10.10.0/24 Any Any Accept

R2 192.168.10.0/24 81.10.10.0/24 21, 80 TCP Deny

R3 192.168.10.0/24 81.10.10.0/24 21, 85 Any Accept

R4 Any Any Any Any Accept

A Formal Approach to Verify Completeness and Detect Anomalies 225

4 Synthesis Procedure

In this section, we develop a procedure that synthesizes an automaton which
implements a security policy. The input of the procedure is a firewall security
policy F specified by an array of n filtering rules R1, · · · ,Rn ordered in decreas-
ing priority, where each Ri is defined by a condition consisting of m fields and
by an action ai. The result is an automaton ΓF implementing F which is gen-
erated in three steps which are presented below and illustrated by the example
of Table 2.

Due to space limitation, we omit theoretical details on automata. An automa-
ton A consists of states related by labeled transitions, and will be represented by
a graph whose nodes and arcs are the states and the transitions of A, respectively.
An arc from node q to node r labeled by the event σ represents the transition
q

σ→r. There is one initial state (with a small incoming arrow) and one or more
final states (in bold).

We will use the following notation of intervals of integers: [a, b] = {x | a≤x≤
b}, [a, b[= {x | a ≤ x < b},]a, b] = {x | a < x ≤ b} and]a, b[= {x | a < x < b}. For
the sake of clarity, in Figs. 1 and 2 we will use the shorthands of Table 3.

Table 3. Shorthands in Figs. 1 and 2

4.1 Step 1: Automaton for Each Filtering Rule

In Step 1, for each rule Ri, we synthesize an automaton Ai that has m + 1
consecutive states q0i , q1i , · · · , qm

i , where q0i is the initial state and qm
i is the final

state. Every pair of consecutive states qj
i and qj+1

i (0 ≤ j < m) are linked by
as many as transitions as the number of intervals defining the values of the field
F j

i . The transitions are labeled by the respective interval names. Then, each
automaton Ai is completed as follows:

– A new final state Ei is added.
– In every non final state qj

i of Ai, we add the transitions labeled by the intervals
which are complementary to the intervals labeling the transitions leading from
qj
i to qj+1

i . All the added transitions lead to state Ei.

As we will explain it in Proposition 1, the intuition of Ei is that it is reached
when a packet does not match rule Ri.

Step 1 is illustrated in Fig. 1 which represents the automata (Ai)i=1···4
obtained from the rules of Table 2. We assume that IP addresses are in 32 bits,
port numbers are in 16 bits, and only two protocols are possible: TCP and UDP.
Note that some intervals consist of a single value, e.g. 21, 80, 85, TCP and UDP.

226 A. Khoumsi et al.

q
1
4q

1
1q

1
0 q

1
2

q
2
3 q

2
4q

2
2q

2
1

q
3
4q

3
1

E3

q
4
4q

4
1q

4
0

q
1
3

q
3
2

[0, [β1 E1

[0, 2 [16

q
2
0 [α , α]1 2

[0, [α1

]α , 2 [32
2

[0, [β1]β , 2 [32
2

E2
]80, 2 [16

q
3
3q

3
0

[0, [α1

]α , 2 [32
2

[0, [β1]β , 2 [32
2

]85, 2 [16

[α , α]1 2

q
4
2 [0, 2 [16

q
4
3

(a)

21, 80 TCP

(b)

21, 85

(d)

UDP
TCP

[0, 21[]21, 80[
UDP

TCP

UDP
[0, 21[]21, 85[

TCP

UDP

(c)

[0, 2 [32 [β , β]21

]β , 2 [32
2

[β , β]21

[β , β]21

[0, 2 [32 [0, 2 [32

Fig. 1. Automata (Ai)1···4 obtained from Table 2.

4.2 Step 2: Uniform Intervals

We say that a state is of level i if it is reached after i transitions from the initial
state. Hence, each automaton Ai has m + 1 states, from level 0 to level m. The
automata (Ai)i=1···n constructed in Step 1 do not use the same intervals in the
same level. For example, at level 0 (i.e. from q0i) of Fig. 1, we have the following
intervals: [0, 232[in A1 and A4; and [α1, α2], [0, α1[and]α2, 232[in A2 and A3.

To be able to combine the n automata in Step 3, the objective of Step 2 is
to rewrite the n automata so that at each level, they all use the same intervals.
For that purpose, for each level j, the domain of the field F j is partitioned into
a set of disjoint intervals, so that every interval that labels a transition of level j
of Ai is an union of intervals of the partition. We proceed as follows:

– For every automaton Ai and level j, we consider the set of the intervals
labeling the transitions from state qj

i . We construct the list Lj
i consisting of

the values of the extremities of the considered intervals. The values in Lj
i are

sorted in increasing order.
Consider for example the level 0 of Fig. 1: in A1 and A4 we obtain the list
L0
1 = L0

4 = 〈0, 232〉 from the interval [0, 232[; in A2 and A3 we obtain the list
L0
2 = L0

3 = 〈0, α1, α2, 232〉 from the intervals [0, α1[, [α1, α2],]α2, 232[.
– For every level j, the lists (Lj

i)i=1···n are merged into a single increasing sorted
list Lj . Then, we construct a set of disjoint intervals whose extremities are
consecutive elements of Lj (we may have to define some single-value intervals).
The obtained set of intervals is a partition of the domain of the field F j ,
because the set of outgoing transitions in each state qj

i of an automaton Ai

constitute the whole domain of the field F j .

A Formal Approach to Verify Completeness and Detect Anomalies 227

For example, if we merge the above (L0
i)i=1···4, we obtain the sorted list:

L0 = 〈0, α1, α2, 232〉, from which we construct the three disjoint intervals I1,
I2 and I3, which constitute a partition of the domain [0, 232[of IPsrc.

– For every automaton Ai and level j, each transition labeled by an interval I
is replaced by several transitions labeled by the intervals of the partition that
constitute I.
Consider for example the level 0 of A1 in Fig. 1. The transition labeled [0, 232[
is replaced by 3 transitions labeled I1, I2 and I3, respectively.

Step 2 is illustrated in Fig. 2 which represents the automata (A∗
i)i=1···4

obtained from the automata (Ai)i=1···4 of Fig. 1. The constructed intervals are:
I1, I2, I3 at level 0; J1, J2, J3 at level 1; K1,K2,K3,K4, 21, 80, 85 at level 2; and
TCP,UDP at level 3.

q
1
4q

1
1q

1
0

q
2
3 q

2
4q

2
1

q
3
4q

3
1

q
4
4q

4
1q

4
0

q
1
3

q
3
2

E1

q
3
3q

3
0

q
4
2

I1 I3I2 J2

J1 J3

I2

I3

I3I1

I2 J2

J1 J3J2

q
1
2

I1 I2 I3

q
2
0 J2

J1 J3

K3K2K1 4K

q
4
3K3K2K1 4K

E2

q
2
2

I1

J3J1
E3

K2K1 K3 4K

K2K1 K3 4K

(a)

21, 80 TCP

(b)

(d)

UDP

TCP
UDP

TCP

UDP

(c)

21, 80, 85

21, 80, 85

TCP

UDP

21, 85

85

80

Fig. 2. Automata (A∗
i)1···4 obtained from automata (Ai)1···4 of Fig. 1.

4.3 Step 3: Product and Association of Actions

Consider two automata A∗
1 and A∗

2 constructed in Step 2. The product A∗
1 ⊗A∗

2

is defined inductively as follows:

– Its initial state 〈q01 , q02〉 is a combination of the initial states q01 and q02 of A∗
1

and A∗
2.

– For every state 〈r1, r2〉 of A∗
1 ⊗ A∗

2 and label σ:
1. If A∗

1 and A∗
2 have r1

σ→s1 and r2
σ→s2 respectively, then A∗

1 ⊗A∗
2 has the

state 〈s1, s2〉 and the transition 〈r1, r2〉 σ→〈s1, s2〉.
2. If A∗

1 has r1
σ→ s1 and r2 = E2, then A∗

1 ⊗ A∗
2 has the state 〈s1, E2〉 and

the transition 〈r1, E2〉 σ→〈s1, E2〉.

228 A. Khoumsi et al.

3. If A∗
2 has r2

σ→ s2 and r1 = E1, then A∗
1 ⊗ A∗

2 has the state 〈E1, s2〉 and
the transition 〈E1, r2〉 σ→〈E1, s2〉.

– A∗
1 ⊗ A∗

2 has no other state and transition.

The product of all automata A∗
1, · · · ,A∗

n is an iteration of products of two
automata. Let ΓF denote the product of the n automata. Each state of ΓF is
defined in the form (r1, · · · , rn), where each ri may be qj

i or Ei, for i = 1 · · · n
and j = 0 · · · m. We define two types of final states:

– A match state (r1, · · · , rn) is such that ri = qm
i for at least one i;

– The (unique) no-match state is (E1, · · · , En).

To each match state u = (r1, · · · , rn) of ΓF , we associate the action ai of the
rule Ri that has the smallest index i such that ri �= Ei.

The fundamental characteristics of ΓF is that it implements F as stated by
the following proposition:

Proposition 1. Consider a packet P arriving at the firewall, and let H0, · · · ,
Hm−1 be its headers. From the initial state of ΓF , we execute the m consecutive
transitions labeled by the intervals σ0, · · · , σm−1 that contain H0, · · · ,Hm−1,
respectively. Let r = 〈r1, · · · , rn〉 be the (final) reached state of ΓF . r is a match
state if and only if P matches at least one rule of F . More precisely, for every
i = 1, · · · , n:

– ri = qm
i or ri = Ei,

– if ri = qm
i , P matches the rule Ri,

– if ri = Ei, P does not match Ri.

And if r is a match state, then the action (Accept or Deny) associated to r is
the action dictated by the most priority rule matching P .

Figure 3 represents the automaton ΓF obtained in Step 3 from (A∗
i)i=1···4 of

Fig. 2. In Figs. 1 and 2, we have represented explicitly each interval labeling a
transition, because that was useful to understand the operations of Step 2. In
Fig. 3, we use a simpler and more symbolic notation based on the expressions
Any and not(X) where X is one or more intervals. A transition labeled Any
from a state qj

i is a symbolic representation of the transitions labeled by all the
intervals defined at level j in Step 2. For example, the transition Any from
〈q21 , E2, E3, q

2
4〉 represents the 7 transitions labeled K1,K2,K3,K4, 21, 80, 85.

not(X) corresponds to Any without the transitions labeled by the intervals in X.
For example, the transition labeled not(192.168.10.0/24) (i.e. not(I2)) represents
the 2 transitions labeled I1 and I3, and the transition labeled not(21, 80, 85) rep-
resents the 4 transitions labeled K1,K2,K3 and K4. The 5 match states of ΓF
are in bold, there is no no-match state. Let us illustrate the fact that ΓF of Fig. 3
implements F of Table 2. Consider a packet P which arrives at the firewall and
assume that its four headers H0 to H3 are (192.168.10.12), (81.10.10.20), (25),
(TCP), respectively. We start in the initial state 〈q01 , q02 , q03 , q04〉. The transi-
tion labeled 192.168.10.0/24 (comprising H0) is executed and leads to state
〈q11 , q12 , q13 , q14〉. Then, the transition labeled 81.10.10.0/24 (comprising H1) is

A Formal Approach to Verify Completeness and Detect Anomalies 229

executed and leads to state 〈q21 , q22 , q23 , q24〉. Then, the transition labeled]21, 80[
(comprising H2) is executed and leads to state 〈q31 , E2, E3, q

3
4〉. Finally, the tran-

sition labeled TCP (comprising H3) is executed and leads to the match state
〈q41 , E2, E3, q

4
4〉. Since the reached match state is associated to Accept , the packet

is accepted.

q
1
1 q

2
1

q
4
1q

3
1

q
1
1

q
4
1

E2

E3

q
1
2

q
4
2E3

E2

q
4
2E3

E2E1

q
1
2

q
3
2

q
2
2

q
4
2

q
1
3 q

2
3

q
3
3 q

4
3

q
1
3 q

2
3

q
4
3E3

q
1
3

q
4
3

E2

E3

q
4
3

E2

E3

E1

q
1
3

q
3
3 q

4
3

E2

q
3
0 q

4
0

q
1
0 q

2
0

q
1
4

q
4
4q

3
4

q
2
4

q
1
4

q
4
4q

3
4

E2

q
1
4

q
4
4

q
2
4

E3

q
1
4

q
4
4E3

E2

q
4
4E3

E2E1

TCP

TCP

81.10.10.0/24

A
ccept

A
ccept

A
ccept

A
ccept

A
ccept

not(21, 80, 85)

not(81.10.10.0/24)

81.10.10.0/24

not(192.168.10.0/24)

not(81.10.10.0/24)

80

21

85

UDP

Any

Any

Any

UDP

Any

Any

192.168.10.0/24

Fig. 3. Automaton ΓF synthesized from automata (A∗
i)1···4 of Fig. 2.

In the following four Sects. 5, 6, 7, and 8, we show how our 3-step synthe-
sis procedure can be applied for verifying completeness of security policies and
detecting several types of anomalies in security policies.

5 Verifying Completeness

We consider a security policy F defined by a table of n filtering rules R1 to Rn

and its corresponding automaton ΓF . A firewall security policy is said complete
if every packet reaching the firewall matches at least one of the rules R1 to Rn.
From Proposition 1, we obtain:

Proposition 2. A security policy F is complete if and only if its automaton ΓF
has no no-match state.

For example, the security policy of Table 2 is complete because all final states
of ΓF in Fig. 3 are match states. If we remove rule R4, we obtain an incomplete
security policy because the corresponding automaton contains the no-match
state, which is reached for any packet whose header IPdst does not belong to
81.10.10.0/24.

230 A. Khoumsi et al.

6 Anomaly Categorization, General Anomaly Detection

6.1 Categories of Anomalies

Recall that an anomaly in a firewall security policy is defined as the existence
of two or more filtering rules matching the same packet. From this basic defin-
ition, and as noted in [18], several related work has categorized different types
of firewall policy anomalies [1,9,19]. We propose to classify anomalies in two
categories:

Anomaly with Conflict: It is an anomaly where the filtering rules matching
the same packet are associated to different actions. Typical anomalies of this cat-
egory are shadowing, generalization, and correlation anomalies, which we study
in Sects. 7.1, 7.2, and 7.3.

Anomaly Without Conflict: It is an anomaly where the filtering rules match-
ing the same packet are associated to the same action. Typical anomaly of this
category is redundancy anomaly, which we study in Sect. 8.

6.2 Detecting General Anomalies

By general anomaly we mean any anomaly without considering its category.
From Proposition 1, we obtain:

Proposition 3. A security policy F contains a general anomaly if and only
if the automaton ΓF has at least one match state that contains two or more qm

i .

Intuitively, the presence of several qm
i in a match state means the existence

of packets that are accepted by several filtering rules. For example, the security
policy of Table 2 contains several general anomalies, because the automaton of
Fig. 3 has four match states with two or more qm

i .
The nonexistence of general anomaly implies obviously the nonexistence of

any category of anomalies. On the other hand, the existence of general anomaly
is a symptom (but not a guarantee) of the existence of specific anomalies. In the
following two Sects. 7 and 8, we show how to detect anomalies with conflict and
without conflict, respectively.

7 Detecting Anomalies with Conflict

7.1 Detecting Shadowing Anomaly

A rule Rj is shadowed by a preceding rule Ri (i.e. i < j) if, on the one hand
Ri matches all the packets that match Rj , and on the other hand actions of Ri

and Rj are distinct [19]. In this case, all the packets that Rj intends to deny
(resp. accept) are accepted (resp. denied) by Ri; thus, Rj never takes effect. It
is important to discover shadowed rules and alert the administrator to correct
this error by reordering or removing these rules [1]. Based on this definition and
Proposition 1, we obtain:

A Formal Approach to Verify Completeness and Detect Anomalies 231

Proposition 4. In a security policy F , rule Rj is shadowed by rule Ri if and
only if the following three conditions hold: (1) i < j; (2) ai �= aj; and (3) for
every match state 〈r1, · · · , rn〉 of ΓF , if rj = qm

j then ri = qm
i .

For example, in Table 2, R2 is shadowed by R1 because: 1 < 2, a1 = Accept �=
a2 = Deny , and ΓF of Fig. 3 has no match state with q42 and without q41 . Conse-
quently, R2 never takes effect and hence its action Deny is never taken. Assume
that the administrator decides to remove this anomaly by switching the orders
of rules R1 and R2. After this switch, it is not necessary to construct a new
automaton ΓF from the beginning. Since R1 becomes R2 and vice versa, we
have just to switch between r1 and r2 in all states to give priority to R2 over R1,
and then to re-assign actions to match states. As a result, in Fig. 3 we will have
the action Deny associated to the first and third match states from the top, and
the action Accept associated to the three other match states.

7.2 Detecting Generalization Anomaly

A rule Rj generalizes a preceding rule Ri (i.e. i < j) if, on the one hand Rj

matches more packets than Ri, and on the other hand actions of Ri and Rj are
distinct [19]. Based on this definition and Proposition 1, we obtain:

Proposition 5. In a security policy F , rule Rj generalizes rule Ri if and only
if the following four conditions hold: (1) i < j; (2) ai �= aj; (3) for every match
state 〈r1, · · · , rn〉 of ΓF , if ri = qm

i then rj = qm
j ; and (4) there exists a match

state 〈r1, · · · , rn〉 of ΓF such that ri = Ei and rj = qm
j .

For example, in Table 2, R4 generalizes R2 because: 2 < 4, a2 = Deny �= a4 =
Accept , and ΓF of Fig. 3 has no match state with q42 and without q44 and has 3
match states with E2 and q44 .

We have seen in Sect. 7.1 that R2 is shadowed by R1 and that the shadowing
anomaly can be removed by switching the orders of R1 and R2. It can be easily
checked that after this reordering, the shadowing anomaly is transformed into a
generalization anomaly: R1 (which becomes R2) generalizes R2 (which becomes
R1).

7.3 Detecting Correlation Anomaly

Rules Ri and Rj correlate if their actions are distinct and:

– there exist packets that match Ri and not Rj ,
– there exist packets that match Rj and not Ri,
– there exist packets that match both Ri and Rj [19].

Based on this definition and Proposition 1, we obtain:

Proposition 6. In a security policy F , rules Ri and Rj correlate if and only
if the following five conditions hold: (1) i �= j; (2) ai �= aj; (3) there exists a
match state 〈r1, · · · , rn〉 of ΓF such that ri = Ei and rj = qm

j ; (4) there exists
a match state 〈r1, · · · , rn〉 of ΓF such that ri = qm

i and rj = Ej; and (5) there
exists a match state 〈r1, · · · , rn〉 of ΓF such that ri = qm

i and rj = qm
j .

232 A. Khoumsi et al.

For example, in Table 2, rules R2 and R3 correlate because: 2 �= 3, a2 = Deny �=
a3 = Accept , and the automaton ΓF of Fig. 3 has the three match states
〈q41 , q42 , q43 , q44〉, 〈q41 , E2, q

4
3 , q

4
4〉, 〈q41 , q42 , E3, q

4
4〉.

8 Redefining and Detecting Redundancy Anomaly

In the present section, we study redundancy anomaly which has been defined
in [1] as follows: A rule Ri is redundant to a rule Rj if: (1) Rj is associated to the
same action as Ri and matches the same or more packets than Ri, and (2) the
security policy will not be affected if Ri is removed.

We have detected that the formal definition of redundancy anomaly given
by [1] is incompatible with this informal definition. Indeed, there are situations
where a rule is diagnosed by [1] as redundant to another rule, while its removal
affects the security policy.

We will distinguish two cases of redundancy, LP-redundancy and MP-
redundancy, which are compatible with the informal definition. We will show
how to detect each of them. Then, we will show why the formal definition of [1]
is problematic.

8.1 Definition and Detection of LP-Redundancy Anomaly

Redundancy of the Least Priority (LP) of the Two Rules: Rj is LP-
redundant to Ri if the following three conditions hold: (1) i < j; (2) ai = aj ;
and (3) Ri matches all the packets matching Rj .

The intuition of LP-redundancy is that if Rj has less priority than Ri and
matches less packets than Ri, then Rj is obviously useless and can be removed.

Detecting LP-Redundancy Anomaly: Based on the definition of LP-
redundancy and Proposition 1, we obtain:

Proposition 7. In a security policy F , rule Rj is LP-redundant to Ri if the
following three conditions hold: (1) i < j; (2) ai = aj; and (3) for every match
state 〈r1, · · · , rn〉 of ΓF , if rj =qm

j then ri =qm
i ;

For example, in Table 2, R3 is LP-redundant with R1 because: 1 < 3, a1 = a3 =
Accept , and in the automaton ΓF of Fig. 3, the two match states that contain
q43 contain also q41 .

8.2 Definition and Detection of MP-Redundancy Anomaly

Redundancy of the Most Priority (MP) of the Two Rules: Ri is MP-
redundant to Rj if the following four conditions hold: (1) i < j; (2) ai = aj ;
(3) Rj matches more packets than Ri; (4) there exists no rule Rk satisfying the
following three sub-conditions: (4.a) i < k < j, (4.b) ak �= ai, and (4.c) there
exist packets matching both Ri and Rk.

A Formal Approach to Verify Completeness and Detect Anomalies 233

The intuition of MP-redundancy is that if Ri has more priority than Rj but
matches less packets than Rj , then Ri is useless if its removal does not give the
chance to another rule Rk to take an effect different from the effect of Ri.

The following proposition expresses MP-redundancy by using the three anom-
alies with conflict.

Proposition 8. Ri is MP-redundant to Rj if: i < j; ai = aj; Rj matches more
packets than Ri; and there exists no rule Rk between Ri and Rj satisfying one
of the following three conditions: Rk is shadowed by Ri, Rk generalizes Ri, or
Rk and Ri correlate.

Detecting MP-Redundancy Anomaly: Based on the definition of MP-
redundancy and Proposition 1, we obtain:

Proposition 9. In a security policy F , rule Ri is MP-redundant to Rj if the fol-
lowing five conditions hold: (1) i < j; (2) ai = aj; (3) for every match state
〈r1, · · · , rn〉 of ΓF : if ri = qm

i , then rj = qm
j ; (4) there exists a match state

〈r1, · · · , rn〉 of ΓF such that: ri = Ei and rj = qm
j ; and (5) for every k such that

i < k < j and ak �= ai, there exists no match state 〈r1, · · · , rn〉 of ΓF such that:
ri = qm

i and rk = qm
k .

For example, in Table 2, R3 is MP-redundant with R4 because: 3 < 4, a3 = a4 =
Accept , and in the automaton ΓF of Fig. 3: the two match states that contain q43
contain also q44 , there exist three match states containing E3 and q44 , and there
exists no k between 3 and 4.

8.3 Difference with [1]

The difference between our definition of MP-redundancy and the definition of [1]
is in the condition related to Rk. In our definition, the condition is that for
every rule Rk between Ri and Rj that has a different action than Ri, the set
of packets matching Ri must be disjoint with the set of packets matching Rk.
In the definition of [1], the condition is weaker because its permits that the set
of packets matching Rk be included in or equal to the set of packets matching
Ri. In other words, we obtain the definition of [1] by removing the line “Rk is
shadowed by Ri” in Proposition 8. Consequently, there are situations where a
rule is diagnosed by [1] as redundant to another rule while in reality its removal
affects the security policy.

To illustrate the problematic definition of MP-redundancy of [1], let us con-
sider R1 and R4 of Table 2. With our definition, R1 is not MP-redundant to
R4, because R1 accepts all the packets accepted by R2, while R2 is between R1

and R4 and has a different action than R1. But with the definition of [1], R1

is MP-redundant to R4, because the definition of [1] accepts that between
R1 and R4 there exists a rule (R2) which is shadowed by R1. This is problematic
because in reality removing R1 affects the security policy.

234 A. Khoumsi et al.

9 Space and Time Complexities

Recall that n and m are the number of rules and fields, respectively. We call
great field a field whose domain contains more than n values, and small field
a field whose domain contains at most n values. Consider for example the four
fields IPsrc, IPdst, Port and Protocol and assume n = 1000. IPsrc, IPdst and
Port are great fields, because their domains contain 232, 232 and 216 values,
respectively, hence more than 1000 values. Protocol is a small field, because its
domain contains much less than 1000 values (the number of considered proto-
cols is negligible to 1000). In addition to n and m, we will use the following
parameters:

di = number of bits necessary to code the values of field F i, for i = 0, · · · ,m−1,
hence 2di is the number of possible values of F i;

D = sum of the number of bits to code all the fields, i.e. D = d0 + · · · + dm−1;
μ = number of great fields, hence μ ≤ m;
δ = sum of the number of bits to code the small fields, hence δ ≤ D.

In our computation of complexities, we assume that di ≥ 1 (i.e. several
possible values for each field), n > D (hence n > m) and 2n > nm which is
realistic when we have hundreds or thousands of filtering rules.

For example, for the m = 4 fields IPsrc, IPdst, Port and Protocol, we have
used d0 = d1 = 32 (each IPsrc and IPdst is coded in 32 bits), d2 = 16 (Port
is coded in 16 bits), d3 = 1 (Protocol is coded in 1 bit since we consider only
TCP and UDP), and D = 32 + 32 + 16 + 1 = 81. For 81 < n < 216, the above
assumptions (all di ≥ 1, n > 81 and 2n > n4) are obviously satisfied. IPsrc,
IPdst and Port are great fields (theirs domains have more than n values), and
Protocol is a small field (its domain has less than n values). We obtain μ = 3
(number of great fields) and δ = d3 = 1 (1 bit is used to code the unique small
field Protocol).

Proposition 10. The space and time complexities of the synthesis procedure
are in O(nμ+1 × 2δ), which is bounded by both O(nm+1) and O(n × 2D).

Proposition 11. The space and time complexities for verifying completeness of
a security policy are in O(nμ+1 × 2δ), which is bounded by both O(nm+1) and
O(n × 2D).

Proposition 12. The space and time complexities for detecting general anom-
alies in a security policy are in O(nμ+1 ×2δ), which is bounded by both O(nm+1)
and O(n × 2D).

Proposition 13. The space and time complexities for detecting anomalies with
conflict (shadowing, generalization, correlation) and LP-redundancy anomalies
are in O(nμ+2 × 2δ), which is bounded by both O(nm+2) and O(n2 × 2D).

Proposition 14. The space complexity for detecting MP-redundancy anomalies
is in O(nμ+2×2δ), which is bounded by both O(nm+2) and O(n2×2D). The time
complexity for detecting MP-redundancy anomalies is in O(nμ+3 × 2δ), which is
bounded by both O(nm+3) and O(n3 × 2D).

A Formal Approach to Verify Completeness and Detect Anomalies 235

By using results in [20], the authors of [21] prove that several fundamen-
tal problems encountered in analysis and design of firewalls are NP-hard. In
our context, their result is that the time complexity is at least in O(n × 2D).
Our contribution here is that the expression O(n × 2D) is an upper bound of
our more precise expression O(nμ+1 × 2δ) which shows explicitly the influence
of the size of fields (through μ and δ) on the complexity.

10 Conclusion and Future Work

We have first proposed a procedure that synthesizes an automaton which imple-
ments a security policy. This synthesis procedure can be a common basis to
design and analyze several aspects of firewall security policies, instead of using a
distinct approach and formalism for studying each aspect. We have demonstrated
this statement by applying our synthesis procedure for verifying completeness
of security policies and detecting several types of anomalies in security policies.
Another contribution is that we have identified and corrected an error in the
commonly used definition of redundancy anomaly. Last but not least, we have
evaluated precisely space and time complexities of our developed procedures.

As near future work, we intend to use our automata-based approach to design
security policies that can adapt dynamically to the filtered traffic. The approach
we will adopt is that from a given security policy, we extract a new equivalent
policy whose filtering rules can be put in any order without influencing the
semantics of the policy. When the filtered traffic varies, the filtering rules will be
reordered dynamically in order to keep a low average delay of determining the
rule that is applied for an arriving packet.

References

1. Al-Shaer, E., Hamed, H.: Modeling and management of firewall policies. IEEE
Trans. Netw. Serv. Manage. 1(1), 2–10 (2004)

2. Karoui, K., Ben Ftima, F., Ben Ghezala, H.: Formal specification, verification and
correction of security policies based on the decision tree approach. Int. J. Data
Netw. Secur. 3(3), 92–111 (2013)

3. Madhuri, M., Rajesh, K.: Systematic detection and resolution of firewall policy
anomalies. Int. J. Res. Comput. Commun. Technol. (IJRCCT) 2(12), 1387–1392
(2013)

4. Chen, Z., Guo, S., Duan, R.; Research on the anomaly discovering algorithm of
the packet filtering rule sets. In 1st International Conference on Pervasive Com-
puting, Signal Processing and Applications (PCSPA), Harbin, China, pp. 362–366,
September 2010

5. Garcia-Alfaro, J., Cuppens, F., Cuppens-Boulahia, N., Martinez Perez, S.,
Cabot, J.: Management of stateful firewall misconfiguration. Comput. Secur. 39,
64–85 (2013)

6. Cuppens, F., Cuppens-Boulahia, N., Garcia-Alfaro, J., Moataz, T., Rimasson, X.:
Handling stateful firewall anomalies. In: Gritzalis, D., Furnell, S., Theoharidou, M.
(eds.) SEC 2012. IFIP AICT, vol. 376, pp. 174–186. Springer, Heidelberg (2012)

236 A. Khoumsi et al.

7. Liu, A.X., Gouda, M.G.: Diverse firewall design. IEEE Trans. Parallel Distrib.
Syst. 19(9), 1237–1251 (2008)

8. Liu, A.X., Gouda, M.G.: Structured firewall design. Comput. Netw. Int. J. Comput.
Telecommun. Netw. 51(4), 1106–1120 (2007)

9. Yuan, L., Mai, J., Su, Z., Chen, H., Chuah, C.-N., Mohapatra, P.: FIREMAN:
a toolkit for firewall modeling and analysis. In: IEEE Symposium on Security and
Privacy (S&P), Berkeley/Oakland, May 2006

10. Bryant, R.E.: Graph-based algorithms for boolean function manipulation. IEEE
Trans. Comput. 35(8), 677–691 (1986)

11. Mallouli, W., Orset, J., Cavalli, A., Cuppens, N., Cuppens, F.: A formal approach
for testing security rules. In: 12th ACM Symposium on Access Control Models and
Technologies (SACMAT), Sophia Antipolis, France, June 2007

12. Lee, D., Yannakakis, M.: Principles and methods of testing finite state machines -
a survey. Proc. IEEE 84, 1090–1126 (1996)

13. El Kalam, A.A., El Baida, R., Balbiani, P., Benferhat, S., Cuppens, F.,
Deswarte, Y., Miège, A., Saurel, C., Trouessin, G.: Organization based access con-
trol. In: IEEE 4th International Workshop on Policies for Distributed Systems and
Networks (POLICY), Lake Come, Italy, June 2003

14. Mansmann, F., Göbel, T., Cheswick, W.: Visual analysis of complex firewall con-
figurations. In: 9th International Symposium on Visualization for Cyber Security
(VizSec), Seattle, pp. 1–8, October 2012

15. Lu, L., Safavi-Naini, R., Horton, J., Susilo, W.: Comparing and debugging firewall
rule tables. IET Inf. Secur. 1(4), 143–151 (2007)

16. Krombi, W., Erradi, M., Khoumsi, A.: Automata-based approach to design and
analyze security policies. In: International Conference on Privacy, Security and
Trust (PST), Toronto, Canada (2014)

17. Scarfone, K., Hauffman, P.: Guidelines on Firewalls and Firewall Policy, Recom-
mendations of the National Institute of Standards and Technology (NIST). Special
Publication 800–41, Revision 1, 2–1, September 2009

18. Madhavi, S., Raghu, G.: Segment generation approach for firewall policy anomaly
resolution. Int. J. Comput. Sci. Inf. Technol. (IJCSIT) 5(1), 6–11 (2014)

19. Hu, H., Ahn, G., Kulkarni, K.: Detecting and resolving firewall policy anomalies.
IEEE Trans. Dependable Secure Comput. 9(3), 318–331 (2012)

20. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. A.W.H. Freeman, San Francisco (1979)

21. Elmallah, E., Gouda, M.G.: Hardness of firewall analysis. In: International Con-
ference on NETworked sYStems (NETYS), Marrakesh, Morocco, May 2014

	A Formal Approach to Verify Completeness and Detect Anomalies in Firewall Security Policies
	1 Introduction
	2 Related Work
	3 Preliminaries on Firewall Security Policies
	4 Synthesis Procedure
	4.1 Step 1: Automaton for Each Filtering Rule
	4.2 Step 2: Uniform Intervals
	4.3 Step 3: Product and Association of Actions

	5 Verifying Completeness
	6 Anomaly Categorization, General Anomaly Detection
	6.1 Categories of Anomalies
	6.2 Detecting General Anomalies

	7 Detecting Anomalies with Conflict
	7.1 Detecting Shadowing Anomaly
	7.2 Detecting Generalization Anomaly
	7.3 Detecting Correlation Anomaly

	8 Redefining and Detecting Redundancy Anomaly
	8.1 Definition and Detection of LP-Redundancy Anomaly
	8.2 Definition and Detection of MP-Redundancy Anomaly
	8.3 Difference with [1]

	9 Space and Time Complexities
	10 Conclusion and Future Work
	References

