
Frédéric Cuppens
Joaquin Garcia-Alfaro
Nur Zincir Heywood
Philip W.L. Fong (Eds.)

 123

LN
CS

 8
93

0

7th International Symposium, FPS 2014
Montreal, QC, Canada, November 3–5, 2014
Revised Selected Papers

Foundations and
Practice of Security

Lecture Notes in Computer Science 8930

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zürich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7410

http://www.springer.com/series/7410

Frédéric Cuppens • Joaquin Garcia-Alfaro
Nur Zincir Heywood • Philip W.L. Fong (Eds.)

Foundations and
Practice of Security
7th International Symposium, FPS 2014
Montreal, QC, Canada, November 3–5, 2014
Revised Selected Papers

123

Editors
Frédéric Cuppens
TELECOM Bretagne
Cesson Sévigné
France

Joaquin Garcia-Alfaro
TELECOM SudParis
Evry
France

Nur Zincir Heywood
Dalhousie University
Halifax, NS
Canada

Philip W.L. Fong
University of Calgary
Calgary
Canada

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-17039-8 ISBN 978-3-319-17040-4 (eBook)
DOI 10.1007/978-3-319-17040-4

Library of Congress Control Number: 2015935046

LNCS Sublibrary: SL4 – Security and Cryptology

Springer Cham Heidelberg New York Dordrecht London
© Springer International Publishing Switzerland 2015
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

Springer International Publishing AG Switzerland is part of Springer Science+Business Media
(www.springer.com)

Preface

The 7th International Symposium on Foundations and Practice of Security (FPS 2014)
was hosted by Concordia University, Montreal, Quebec, Canada, during November
3–5, 2014. FPS 2014 received 48 submissions, from countries all over the world. Each
paper was reviewed by at least three committee members. The Program Committee
selected 18 regular papers, 2 position papers and 5 short papers for presentation. The
program was completed with two excellent invited talks given by Kui Ren (University
of Buffalo) and Jean-Louis Lanet (University of Limoges and Inria Rennes).

Many people contributed to the success of FPS 2014. First, we would like to thank
all the authors who submitted their research results. The selection was a challenging
task and we sincerely thank all the Program Committee members, as well as the
external reviewers, who volunteered to read and discuss the papers. We greatly thank
the General Chair, Mourad Debbabi (Concordia University) and the Organization Chair
Lingyu Wang (Concordia University) for their great efforts to organize and perfectly
control the logistics during the Symposium. Finally, we also want to express our
gratitude to the two Publication Chairs, Joaquin Garcia-Alfaro (Télécom SudParis) and
Nur Zincir Heywood (Dalhousie University), and the webmaster Said Oulmakhzoune
(Télécom Bretagne), for the huge work they provide for programming, editing the
proceedings, and managing the website.

As security becomes an essential property in the Information and Communication
Technologies, there is a growing need to develop efficient methods to analyze and
design systems providing a high level of security and privacy. We hope the articles in
this proceedings volume will be valuable for your professional activities in this area.

December 2014 Frédéric Cuppens
Philip W.L. Fong

Organization

General Chair

Mourad Debbabi Concordia University, Canada

Program Chairs

Frédéric Cuppens Télécom Bretagne, France
Philip W.L. Fong University of Calgary, Canada

Organization Chair

Lingyu Wang Concordia University, Canada

Publication Chairs

Joaquin Garcia-Alfaro Télécom SudParis, France
Nur Zincir Heywood Dalhousie University, Canada

Webmaster

Said Oulmakhzoune Télécom Bretagne, France

Program Committee

Diala Abi Haidar Dar Al-Hekma College, Saudi Arabia
Carlisle Adams University of Ottawa, Canada
Esma Aïmeur Université de Montréal, Canada
Gildas Avoine INSA, Rennes, France
Guillaume Bonfante Université de Lorraine, LORIA, France
Jordi Castellà-Roca Rovira i Virgili University, Spain
Ana Cavalli Télécom SudParis, France
Frédéric Cuppens Télécom Bretagne, France
Nora Cuppens-Boulahia Télécom Bretagne, France
Mila Dalla Preda University of Bologna, Italy
Jean-Luc Danger Télécom ParisTech, France
Mourad Debbabi Concordia University, Canada
Nicola Dragoni Technical University of Denmark, Denmark
Philip W.L. Fong University of Calgary, Canada
Sara Foresti Università degli Studi di Milano, Italy
Eric Freyssinet Université Paris 6, France

Sebastien Gambs Université de Rennes 1, France
Joaquin Garcia-Alfaro Télécom SudParis, France
Ali Ghorbani University of New Brunswick, Canada
Roberto Giacobazzi University of Verona, Italy
Sylvain Guilley Télécom ParisTech, France
Abdelwahab Hamou-Lhadj Concordia University, Canada
Jordi Herrera Universitat Autònoma de Barcelona, Spain
Bruce Kapron University of Victoria, Canada
Hyoungshick Kim SungKyunKwan University, South Korea
Evangelos Kranakis Carleton University, Canada
Pascal Lafourcade Université de Clermont 1, France
Yassine Lakhnech Joseph Fourier University, France
Georgios Lioudakis National Technical University of Athens, Greece
Luigi Logrippo Université du Québec en Outaouais, Canada
Stefan Mangard Infineon Technologies AG, Germany
Jean-Yves Marion École Nationale Supérieure des Mines de Nancy,

France
Joan Melia-Segui Universitat Pomepu Fabra, Spain
Ali Miri Ryerson University, Canada
Guillermo Navarro-Arribas Universitat Autónoma de Barcelona, Spain
Jordi Nin Universitat Politècnica de Catalunya, Spain
Andreas Pashalidis Katholieke Universiteit Leuven, Belgium
Emmanuel Prouff Agence Nationale de la Sécurité des Systèmes

d’Information, France
Silvio Ranise FBK-Irst, Italy
Jean-Marc Robert École de technologie supérieure, Montreal, Canada
Alessandro Sorniotti SAP Research, France
Anna Squicciarini Pennsylvania State University, USA
Chamseddine Talhi École de technologie supérieure, Montreal, Canada
Nadia Tawbi Université Laval, Canada
Alexandre Viejo Rovira i Virgili University, Spain
Lena Wiese Georg-August-Universität Göttingen, Germany
Nicola Zannone Eindhoven University of Technology,

The Netherlands
Mohammad Zulkernine Queen’s University, Canada

VIII Organization

Additional Reviewers

Shivam Bhasin
Sofiene Boulares
Jordi Casas-Roma
Elisa Costante
Jannik Dreier
Raul Armando Fuentes Samaniego
Samuel Paul Kaluvuri
Thomas Korak
Amrit Kumar
Vinh Hoa La
Aouadi Mohamed
Huu Nghia Nguyen

Florian Praden
Sujoy Ray
Diego Rivera
Thomas Roche
Giada Sciarretta
Mouna Selmi
Hari Siswantoro
Bernard Stepien
Fatih Turkmen
Mario Werner
Thomas Zefferer

Organization IX

Contents

Attacks and Vulnerabilities

On Acoustic Covert Channels Between Air-Gapped Systems 3
Brent Carrara and Carlisle Adams

Location-Dependent EM Leakage of the ATxmega Microcontroller 17
Thomas Korak

Privacy

Privacy-Preserving Public Auditing in Cloud Computing
with Data Deduplication. 35

Naelah Alkhojandi and Ali Miri

A Maximum Variance Approach for Graph Anonymization 49
Hiep H. Nguyen, Abdessamad Imine, and Michaël Rusinowitch

Privacy by Design: On the Conformance Between Protocols
and Architectures . 65

Vinh-Thong Ta and Thibaud Antignac

Software Security and Malware Analysis

Moving Target Defense Against Cross-Site Scripting
Attacks (Position Paper). 85

Joe Portner, Joel Kerr, and Bill Chu

Combining High-Level and Low-Level Approaches to Evaluate
Software Implementations Robustness Against Multiple Fault
Injection Attacks . 92

Lionel Rivière, Marie-Laure Potet, Thanh-Ha Le, Julien Bringer,
Hervé Chabanne, and Maxime Puys

Malware Message Classification by Dynamic Analysis 112
Guillaume Bonfante, Jean-Yves Marion, and Thanh Dinh Ta

Network Security and Protocols

A Game Approach for an Efficient Intrusion Detection System
in Mobile Ad Hoc Networks . 131

Myria Bouhaddi, Mohammed Saïd Radjef, and Kamel Adi

http://dx.doi.org/10.1007/978-3-319-17040-4_1
http://dx.doi.org/10.1007/978-3-319-17040-4_2
http://dx.doi.org/10.1007/978-3-319-17040-4_3
http://dx.doi.org/10.1007/978-3-319-17040-4_3
http://dx.doi.org/10.1007/978-3-319-17040-4_4
http://dx.doi.org/10.1007/978-3-319-17040-4_5
http://dx.doi.org/10.1007/978-3-319-17040-4_5
http://dx.doi.org/10.1007/978-3-319-17040-4_6
http://dx.doi.org/10.1007/978-3-319-17040-4_6
http://dx.doi.org/10.1007/978-3-319-17040-4_7
http://dx.doi.org/10.1007/978-3-319-17040-4_7
http://dx.doi.org/10.1007/978-3-319-17040-4_7
http://dx.doi.org/10.1007/978-3-319-17040-4_8
http://dx.doi.org/10.1007/978-3-319-17040-4_9
http://dx.doi.org/10.1007/978-3-319-17040-4_9

Optimizing TLS for Low Bandwidth Environments 147
Diego A. Ortiz-Yepes

Automating MAC Spoofer Evidence Gathering and Encoding
for Investigations . 168

Serguei A. Mokhov, Michael J. Assels, Joey Paquet, and Mourad Debbabi

Access Control Models and Policy Analysis

HGABAC: Towards a Formal Model of Hierarchical Attribute-Based
Access Control . 187

Daniel Servos and Sylvia L. Osborn

Logical Method for Reasoning About Access Control and Data Flow
Control Models. 205

Luigi Logrippo

A Formal Approach to Verify Completeness and Detect Anomalies
in Firewall Security Policies . 221

Ahmed Khoumsi, Wadie Krombi, and Mohammed Erradi

Protocol Verification

Debating Cybersecurity or Securing a Debate? (Position Paper) 239
Fabio Martinelli and Francesco Santini

Formal Verification of e-Reputation Protocols. 247
Ali Kassem, Pascal Lafourcade, and Yassine Lakhnech

(In)Corruptibility of Routing Protocols. 262
Raphaël Jamet and Pascal Lafourcade

Cryptographic Technologies

Decentralized CRT-Based Efficient Verifiable (n, t, n) Multi-secret Sharing
Scheme . 279

Wen Wen, Binod Vaidya, Dimitrios Makrakis, and Carlisle Adams

Composable Oblivious Extended Permutations . 294
Peeter Laud and Jan Willemson

Benchmarking Encrypted Data Storage in HBase and Cassandra with
YCSB . 311

Tim Waage and Lena Wiese

XII Contents

http://dx.doi.org/10.1007/978-3-319-17040-4_10
http://dx.doi.org/10.1007/978-3-319-17040-4_11
http://dx.doi.org/10.1007/978-3-319-17040-4_11
http://dx.doi.org/10.1007/978-3-319-17040-4_12
http://dx.doi.org/10.1007/978-3-319-17040-4_12
http://dx.doi.org/10.1007/978-3-319-17040-4_13
http://dx.doi.org/10.1007/978-3-319-17040-4_13
http://dx.doi.org/10.1007/978-3-319-17040-4_14
http://dx.doi.org/10.1007/978-3-319-17040-4_14
http://dx.doi.org/10.1007/978-3-319-17040-4_15
http://dx.doi.org/10.1007/978-3-319-17040-4_16
http://dx.doi.org/10.1007/978-3-319-17040-4_17
http://dx.doi.org/10.1007/978-3-319-17040-4_18
http://dx.doi.org/10.1007/978-3-319-17040-4_18
http://dx.doi.org/10.1007/978-3-319-17040-4_19
http://dx.doi.org/10.1007/978-3-319-17040-4_20
http://dx.doi.org/10.1007/978-3-319-17040-4_20

Short Papers

Data Confirmation for Botnet Traffic Analysis . 329
Fariba Haddadi and A. Nur Zincir-Heywood

Detection of Illegal Control Flow in Android System: Protecting Private
Data Used by Smartphone Apps . 337

Mariem Graa, Nora Cuppens-Boulahia, Frédéric Cuppens,
and Ana Cavalli

A Responsive Defense Mechanism Against DDoS Attacks 347
Negar Mosharraf, Anura P. Jayasumana, and Indrakshi Ray

Automated Extraction of Vulnerability Information for Home
Computer Security . 356

Sachini Weerawardhana, Subhojeet Mukherjee, Indrajit Ray,
and Adele Howe

A Formal Approach to Automatic Testing of Security Policies Specified
in XACML . 367

Mohamed H.E. Aouadi, Khalifa Toumi, and Ana Cavalli

Author Index . 375

Contents XIII

http://dx.doi.org/10.1007/978-3-319-17040-4_21
http://dx.doi.org/10.1007/978-3-319-17040-4_22
http://dx.doi.org/10.1007/978-3-319-17040-4_22
http://dx.doi.org/10.1007/978-3-319-17040-4_23
http://dx.doi.org/10.1007/978-3-319-17040-4_24
http://dx.doi.org/10.1007/978-3-319-17040-4_24
http://dx.doi.org/10.1007/978-3-319-17040-4_25
http://dx.doi.org/10.1007/978-3-319-17040-4_25

Attacks and Vulnerabilities

On Acoustic Covert Channels Between
Air-Gapped Systems

Brent Carrara(B) and Carlisle Adams

School of Electrical Engineering and Computer Science,
University of Ottawa, Ottawa, ON, Canada

{bcarr092,cadams}@uottawa.ca

Abstract. In this work, we study the ability for malware to leak sensi-
tive information from an air-gapped high-security system to systems on a
low-security network, using ultrasonic and audible audio covert channels
in two different environments: an open-concept office and a closed-door
office. Our results show that malware installed on unmodified commodity
hardware can leak data from an air-gapped system using the ultrasonic
frequency range from 20 kHz to 20.5 kHz at a rate of 140 bps and at
a rate of 6.7 kbps using the audible spectrum from 500 Hz to 18 kHz.
Additionally, we show that data can be communicated using ultrasonic
communication at distances up to 11 m with bit rates over 230 bps and
a bit error rate of 2%. Given our results, our attacks are able to leak
captured keystrokes in real-time using ultrasonic signals and, using audi-
ble signals when nobody is present in the environment - the overnight
attack, both keystrokes and recorded audio.

Keywords: Malware communication · Audio communication ·
Ultrasonic · Jumping air-gaps · Out-of-band covert channels

1 Introduction

Physically separating computers on a high-security network from computers on
a low-security network is a security practice that is commonly employed in high
and medium security environments to protect sensitive information from unau-
thorized access [12,22]. This security practice prevents malware on the low-
security network from attacking computers on the high-security network by
means of traditional virus and worm network propagation vectors (e.g. e-mail,
network shares, web servers, and web clients). The physical separation between
the two networks is commonly referred to as an air-gap, a term that predates
wireless networks, because of the literal physical air-gap separation between the
two networks.

Air-gapped networks are employed in many industrial and government set-
tings, including military [12], financial [12], nuclear power [22], and aviation [27]
environments. In addition to being used in high-security environments, the prac-
tice of using air-gapped machines is recommended by security researchers (see
Schneier [23], for example) and even Osama bin Laden was reported to have used
c© Springer International Publishing Switzerland 2015
F. Cuppens et al. (Eds.): FPS 2014, LNCS 8930, pp. 3–16, 2015.
DOI: 10.1007/978-3-319-17040-4 1

4 B. Carrara and C. Adams

one to protect his communications while in seclusion [6]. Given Schneier’s setup
in [23], once the air-gapped machine is configured and disconnected from the
network there is no risk that a machine connected to the Internet (low-security
machine) could access the air-gapped system via the network. Even so, there
are still a number of ways that malware could be installed on the air-gapped
system including a malicious insider [19], trojan horse executable [25], malicious
payload in a trusted file format [24], or a malicious actor in the supply chain [4].
Once the malware is installed on the air-gapped system, the software requires a
covert channel to propagate data to and from the low-security network. A covert
channel can be characterized as a channel that has a low probability of intercept
(LPI) and when evaluating a covert channel, the adversary and the adversary’s
capabilities must be assumed so that the effectiveness of the adversary’s ability
to detect the presence of the covert channel can be evaluated.

In our study, we analyzed the ability for malware introduced onto an air-
gapped system, using any of the methods described above, to communicate
sensitive information to a remote system on a low-security network using an
out-of-band covert channel, the audio channel, in real-world settings. We studied
both ultrasonic audio communication in the range of 20 kHz to 22 kHz (20 kHz is
understood to be the cutoff frequency that can be heard by a young person, which
decreases with age [9]) and audible audio communication in the range of 0 Hz to
20.5 kHz. Our results demonstrate that, in general, captured keystrokes, encryp-
tion key material (e.g. private keys, shared keys), credentials (e.g. passwords),
documents, and even recorded audio can effectively be leaked from compromised
air-gapped systems. Furthermore, our attack requires no hardware modifications
to the air-gapped system or any system on the low-security network. Our attack
requires only that the air-gapped system be equipped with a speaker and that
a system on the low-security network be equipped with a microphone. Addi-
tionally, we consider our victim as unaware and unassuming of our attack and
therefore measure the covertness of our channel by a human’s natural ability to
hear the communication.

In our study, we analyzed the effectiveness of our attack, i.e. the malware’s
ability to leak data using audio communications, in two traditional office envi-
ronments: a closed-door office containing a single desk and multiple computers
(approximately 3 m× 3 m × 2.8 m in dimension) and an open-concept office con-
taining four desks, each holding multiple computers (approximately 4.27 m×
4.27 m × 2.8 m in dimension). Furthermore, we evaluated the ability for malware
to covertly communicate within both of these environments in two different sce-
narios: the malware on the air-gapped system leaks data from the air-gapped
machine when humans are present in the room (i.e. during regular business hours)
and the malware leaks data from the compromised air-gapped machine after hours
when no humans are present (i.e. after regular business hours), an attack we call
the overnight attack.

As a result of our study, we make the following novel contributions:

1. We demonstrate that, in general, unmodified commodity hardware from
major hardware vendors is capable of the following:

On Acoustic Covert Channels Between Air-Gapped Systems 5

(a) communication using the ultrasonic spectrum (i.e. 20 kHz to 20.5 kHz)
at bit rates greater than 140 bps and bit error rates (BERs) below 10 %.

(b) communication using the audible spectrum (i.e. 0 Hz to 20 kHz) at bit
rates greater than 6.7 kbps and BERs below 15 %.

2. We introduce the concept of the overnight attack and demonstrate that,
given our achievable bit and BERs, the threat of the overnight attack chal-
lenges the traditional threat model that is based on the assumption that
covert audio communication is strictly low-bandwidth [7,8].

3. We demonstrate that covert ultrasonic audio communication is an effective
mechanism for leaking data, including captured keystrokes in real-time, from
air-gapped systems in real-world environments (e.g. open-concept and closed-
door offices) under real-world settings (e.g. people talking and a radio playing
nearby).

4. We demonstrate that ultrasonic communication can leak data from compro-
mised systems at distances up to 11 m at bit rates of over 230 bps and a BER
of 2 %.

Our paper is organized as follows. In Sect. 2, we review the related literature.
In Sect. 3, we introduce the acoustic channel, its effects on audio communication,
and the physical environments we studied in this work. In Sect. 4, we present our
experiments in detail as well as our results. Furthermore, in Sect. 5, we present
protection mechanisms that can be employed to detect our attack and, finally,
in Sect. 6, we conclude.

2 Related Work

Utilizing audio signals for the purpose of covert communication and leaking infor-
mation from an air-gapped system has previously been discussed in [7,8,19].
In [7], Hanspach, et al., built a proof-of-concept network using five identical
Lenovo laptops to demonstrate that audio communication between the comput-
ers can be achieved in the near-ultrasonic range from 17 kHz to 20 kHz. Their
research demonstrates that frequency-hopping spread spectrum (FHSS) with
48 sub-channels can be used effectively to establish a covert channel capable of
transmitting data at a rate of 20 bps up to a distance of 19.7 m. While novel,
their research demonstrates extremely low bit rates and their paper provides no
in-depth BER analysis. Furthermore, their study only examines the ability of five
identical model laptops, Lenovo T400, running Debian Linux to communicate
with one another. In contrast to their study, we demonstrate our attack on multi-
ple systems from various manufacturers running both Mac OS X and Windows.
Furthermore, we demonstrate that orthogonal frequency-division multiplexing
(OFDM) is a much more appropriate modulation scheme given the nature of
the audio channel and that as a result of using OFDM we are able to effectively
demonstrate bit rates over 25x faster than those previously reported using the
near-ultrasonic and ultrasonic bandwidths. In [8], Hanspach, et al., documented
the ability to communicate using the same Lenovo T400 model laptops, over
the ultrasonic range from 20.5 kHz to 21.5 kHz at a speed of 20 bps up to a

6 B. Carrara and C. Adams

range of 8.2 m. In our study, we found that, in general, commodity hardware
has difficulty reliably communicating above 20.5 kHz, but that bit rates above
200 bps can be achieved, in general, in the 20 kHz to 20.5 kHz bandwidth. In [7,8],
Hanspach, et al., also proposed filtering out near-ultrasonic and ultrasonic fre-
quencies from all audio being sent to the speakers as a defensive mechanism. This
technique would be ineffective against our overnight attack. In [19], O’Malley,
et al., established a covert channel between a MacBook Pro and a Lenovo Tablet
using Frequency Shift Keying (FSK) in the ultrasonic range between 20 kHz and
23 kHz using an external speaker. The bit rates they achieved using external
hardware, in the ultrasonic range, are comparable to ours; however, in our attack
no additional hardware is required.

The use of audio has also been researched as an alternative to traditional
wireless communication (e.g. infrared (IR), Bluetooth, radio frequency (RF),
Wi-Fi, and near-field communications (NFC)); however, due to the relatively
low bandwidth available in the channel when compared to IR and RF as well as
the negative impacts of audio on humans and animals, this alternative solution
has been primarily only studied in academic circles [5,10]. In [5], Gerasimov,
et al., studied the use of audio communication over-the-air for the purposes of
device-to-device communication and were able to achieve bit rates of 3.4 kbps,
about half the bit rate we were able to achieve using the spectrum from 0 Hz
to 20 kHz. In [13–15], researchers examined the ability to communicate using
audio signals that are pleasant to humans to exchange pre-authorization informa-
tion required for wireless networks as well as uniform resource locators (URLs).
The researchers synthesized audio signals using frequencies from musical scales,
chords, and lullabies as well as from fictional characters (e.g. R2D2 from Star
Wars) and insects. Similarly, in [3], Domingues, et al., studied the ability to com-
municate using audio signals that sound like musical instruments (e.g. piano,
clarinet, and bells). In [16,17], Madhavapeddy, et al., examined audio communi-
cation as an alternative to Bluetooth wireless communication through the use of
dual-tone multi-frequency (DTMF) signalling, on-off keying and melodic sounds.
Of relevance to our study, Madhavapeddy, et al., studied ultrasonic communica-
tion between two laptops with third-party speakers. Lastly, in [18], Nandakumar,
et al., experimented with audio communication as an alternative to NFC.

3 Acoustic Channel

In this section, we take an in-depth look at the characteristics of the acoustic
channel and demonstrate, by way of measurement, that the over-the-air channel
causes multipath delays and has a non-ideal frequency response.

3.1 Environments Studied and System Requirements

The main goal of our study was to challenge the existing threat model posed
by unauthorized audio communication between air-gapped systems. Previous
researchers have demonstrated the ability to use audio signals to bridge the

On Acoustic Covert Channels Between Air-Gapped Systems 7

Table 1. Machines and parameters of our study

ID Make Model Distance, ∠ in Distance, ∠ in

closed environment open environment

Audio1 Lenovo IdeaPad S10 1.19 m, 50 ◦ 3.89 m, 4 ◦

Audio2 Lenovo ThinkPad X120e 1.55 m, 10 ◦ N/A, N/A

Audio3 Dell Precision T3500 1.88 m, 33 ◦ 3.68 m, 21 ◦

Audio4 HP HP Mini 1.50 m, 38 ◦ 1.47 m, 90 ◦

Audio5 Acer Aspire One 1.91 m, 355 ◦ 3.33 m, 335 ◦

Audio6 Alienware M15X 2.36 m, 330 ◦ 1.45 m, 305 ◦

Audio7 Sony Vaio 2.11 m, 340 ◦ 3.84 m, 47 ◦

Audio8 Apple MacBook Pro N/A, N/A N/A, N/A

air-gap; however, they have only demonstrated very limited bit rates on very
specific hardware in constrained environments [7,8,19]. Our study shows that
not only is audio communication possible using unmodified commodity hardware
but that the achievable bit rates in both the ultrasonic and audible ranges are
well above what has previously been reported. Our work demonstrates that audio
provides an effective covert channel to communicate low volumes of data, such as
captured keystrokes and cryptographic key material, as well as more substantial
data streams, such as captured audio.

In our study, we placed a desktop with a USB headset as well as seven laptops
in two real-world office environments. In all our experiments, the MacBook Pro,
Audio8, was used as the air-gapped system and the remaining seven systems
were connected to the low-security network. The distances and angles between
Audio8 and the other machines can be seen in Table 1 for both our environ-
ments, where an angle of 0◦ can be taken to be directly in front of Audio8 and
positive offset angles are measured clockwise. The systems in our study were
all configured with Windows 7, aside from the MacBook Pro, which was config-
ured with OS X 10.9. Additionally, none of the machines in our study had any
hardware added or modified with the exception of the Dell desktop, Audio3,
which had a USB headset with a microphone and speaker added because it had
none built in. Unfortunately, our Lenovo ThinkPad, Audio2, suffered from a
hardware failure following our closed-door office tests and was unavailable for
testing during our open-concept office tests.

The detailed hardware and configuration requirements for the systems in our
study are summarized here:

– Air-Gapped System:
1. An audio speaker
2. No network connections to the low-security machines
3. Configured according to the steps outlined in [23]

– Low-Security System:
1. A microphone

8 B. Carrara and C. Adams

Given the uniform manner in which the systems were configured we feel that
our study’s environmental model closely mimics a real-world corporate office
where the same version of Windows is installed on every machine. It should be
noted that, for the sake of brevity, we only show detailed bit rate and BER
results with the MacBook Pro as the air-gapped system using uni-directional
communication. In Sect. 4, we provide the combined microphone and speaker
frequency responses of each of the other machines’ speakers and the MacBook
Pro’s microphone in order to assure the reader that all the machines tested are
capable of transmitting audio signals in the audible and ultrasonic ranges in
addition to receiving them.

3.2 Measured Channel Characteristics in Our Environments

To properly engineer our attack, we measured the noise and the reverbera-
tions caused by objects in the environment as well as the frequency response
of the microphones and speakers built into the systems used in our study. In this
section, we present the experiments we used to measure each of these quantities.

It has previously been reported that audible background noise drops off expo-
nentially with frequency [26]. For the purposes of our study, we noted that the
noise levels in our environment, in general, are quite low. Particularly at fre-
quencies above 5 kHz and especially so for frequencies above 10 kHz. This is due
to a combination of factors: equipment in our environment is generating very
little audible background noise at frequencies above 5 kHz and the frequency
response of the microphones in the systems we studied are not as sensitive to
frequencies above 10 kHz as they are to frequencies between 0 Hz and 10 kHz.
Furthermore, ultrasonic communication is not subject to the same degree of
background noise that audible communication is subject to. This manifests itself
in our results through the fact that the error rates for ultrasonic communication
are lower than the error rates for audible communication.

We quantified the multipath spread of the channel in our environments by
performing two experiments. In the first, we transmitted a 100 ms signal from
Audio8 consisting of pure-tone frequencies between 5 kHz and 10 kHz at 500 Hz
intervals and, in the second, we transmitted a 100 ms signal from Audio8 con-
sisting of pure-tone frequencies between 20 kHz and 22 kHz also at 500 Hz inter-
vals. To measure the multipath spread of the channel, we took the two received
waveforms, filtered out all frequencies outside of the passbands (e.g. 5 kHz to
10 kHz and 20 kHz to 22 kHz, respectively), then cross-correlated them with the
original signal according to the algorithm in [20]. We then plotted the nor-
malized magnitude of the cross-correlated signals over time to determine the
multipath spread for two dB thresholds, −10 dB and −15 dB. Our experiment
showed that copies of our original signal were received for 175 ms at the −10 dB
threshold after the line-of-sight signal was received and 200 ms at the −15 dB
threshold in the closed-door environment using audible signals. The observed
reverberations varied from system to system due to their location in the room.
Given the results of our experiments in the closed office setting, we performed
experiments using delays of 125 ms for our tests using ultrasonic frequencies and

On Acoustic Covert Channels Between Air-Gapped Systems 9

Fig. 1. The combined normalized frequency response of the audio channel. From the
diagram it is clear that, over the W = 0 Hz to 22.05 kHz bandwidth, the channel does
not have an ideal frequency response.

delays of 175 ms and 225 ms for our tests using audible frequencies. For our tests
in the open-concept office environment, we performed experiments using 80 ms
for our ultrasonic tests and 125 ms and 150 ms for our audible tests as there were
much fewer echoes to deal with in the open-concept environment.

The frequency responses of the systems are shown in Fig. 1. All quantities
are in dB and are normalized to the highest amplitude received by each of the
speakers for any frequency component. An ideal frequency response would show
as a horizontal line at the 0 dB level across all frequencies. From the figure it can
be seen that the audio channel used in our study does not have an ideal frequency
response. Furthermore, the majority of the frequency responses demonstrate a
near-ideal response up to around 5 or 6 kHz. This is to be expected as the human
voice consists primarily of frequencies between 300 Hz and 3.4 kHz [2] and it
would be expected that the manufacturers of the microphones would design a
device that has an ideal frequency response in this range. Given the non-ideal
frequency response of the audio channel, we used OFDM as our modulation
scheme. We divided the available channel bandwidth, W , into a number of equal-
bandwidth sub-channels, N , such that each of the sub-channels has an ideal
frequency response. We then modulated symbols using FSK on each sub-channel.

4 Experiments and Results

We performed a number of experiments in both the open-concept and closed-
door office environments to determine the achievable bit rates and correspond-
ing BERs using audio communication in the ultrasonic and audible frequency
ranges. We measured the achievable bit rates to better model the threat posed by

10 B. Carrara and C. Adams

malware using an audio covert channel to leak sensitive data from an air-gapped
machine. By quantifying the achievable bit rates we are able to determine the
type of sensitive data that can be leaked by malware in real-world scenarios. We
tested our attack in real-world environments (e.g. open-concept office, closed-
door office) under real-world conditions (e.g. radio playing, people talking) in
real-world scenarios (e.g. when humans are present, when they are not). In this
section, we present the results of the following experiments:

1. In both the open-concept and closed-door office environments, we varied the
channel bandwidth, W , the delay or settle time, k, and the number of sub-
channels, N , to determine the maximum bit rate at which we could com-
municate with the lowest BER (note that increasing W , increasing N , and
decreasing k all increase our effective bit rate).

2. Given the optimal bandwidth, settle time, and number of sub-channels, we
attempted to communicate in the ultrasonic spectrum while a clock radio was
playing a local radio station in the closed-door office environment.

3. Given the optimal bandwidth, settle time, and number of sub-channels, we
attempted to communicate in the ultrasonic spectrum while conversations
were taking place in the closed-door office environment.

4. We used Audio7 to determine the maximum distance that we could commu-
nicate over using our ultrasonic attack.

5. Lastly, we tested Audio8’s ability to receive ultrasonic communication from
each of the other machines in our study.

In Fig. 2, we show the BER for our ultrasonic tests using the W = 20 kHz to
20.5 kHz bandwidth. From the figure it can be seen that as we increased the num-
ber of channels in the ultrasonic experiments, our BER increased dramatically.

Fig. 2. BER for our ultrasonic tests in both the open-concept and closed-door
environments.

On Acoustic Covert Channels Between Air-Gapped Systems 11

Table 2. Average time (s) to leak popular document types

Document type Average size (kb) Leak time using

per page [1] overnight attack

Microsoft Word 15 3.27

Microsoft Excel 6 1.31

Microsoft PowerPoint 57 12.42

Portable Document Format 100 21.79

Text 1.5 0.33

Email 10 2.18

Tagged Image File Format 65 14.16

In the closed-door office environment we achieved a BER of approximately 10 %
or less for all machines with N = 5 and N = 11 and in the open-concept environ-
ment we also achieved a BER of 10 % with N = 5. With N = 11 all machines had
a BER below 10 % except our Acer machine, Audio5, in the open-concept envi-
ronment. This was due to the increased distance between Audio8 and Audio5
in our two environments, i.e. 1.91 m in the closed-door environment versus 3.33 m
in the open-concept environment. The corresponding bit rates for N = 5 and
N = 11 were 140 bps and 189 bps respectively. The results of our tests using
the W = 20 kHz to 21 kHz bandwidth produced BERs above 20 % and 25 %
for all machines in the closed-door and open-concept environments, respectively.
This leads us to conclude that receiving ultrasonic signals above 20.5 kHz is not
generally well supported in commodity hardware at the distances we tested.

Although not shown, we were able to communicate using the combined near-
ultrasonic and ultrasonic ranges (i.e. 18 kHz and above) using N = 17 sub-
channels for an effective bit rate of over 500 bps and BERs of 10 % and 15 % in
the closed-door office and the open-concept office environments, respectively. As
a comparison, previous researchers were only able to achieve a bit rate of 20 bps
with a BER of 0 % using the same bandwidth. Furthermore, in our tests using
the audible spectrum (i.e. W = 0 Hz to 20.5 kHz), we achieved BERs below 10 %
and 15 % for the closed-door and open-concept environments respectively, with
the exception again being Audio5, which achieved a BER of 19 % in the open-
concept tests. We used N = 812 to achieve these results, which gave us a bit
rate of over 6.7 kbps. We were also able to transmit data at a rate over 8.7 kbps
using W = 500 Hz to 20.5 kHz and N = 1857 to achieve BERs below 25 % and
30 % for all machines in the closed-door and open-concept office experiments,
respectively.

In order to reduce our error rates to acceptable levels, an [n, k, d] block
code (where n is the block length, k is the message length, and d is the dis-
tance), capable of correcting �d−1

2 � random errors, such as [n, k, n − k + 1]
Reed-Solomon Codes [21], could be used. To correct up to 10 % and 15 % bit
errors using Reed-Solomon codes, an overheard of approximately 20 % and 30 %

12 B. Carrara and C. Adams

Fig. 3. BER for our distance experiment. We tested Audio8’s ability to communicate
with Audio7 over increasing distances. The parameters for the distance tests were
W = 20 kHz to 20.5 kHz, k = 25 ms, M = 4, and N = 46.

is respectively required. Given our results, our bit rates after error correcting
would then be reduced to 112 bps and 4.7 kbps using the ultrasonic and audi-
ble frequency ranges, respectively. To put these data rates into perspective, an
individual typing 7-bit ASCII text at 80 words per minute and an average word
length of 5.1 characters would produce data at an average rate of 47.6 bps. Sim-
ilarly, voice can be streamed using the LPC-10 codec at 2.4 kbps [11]. Given
these bit rates, our overnight attack can effectively leak both keystrokes and
recorded audio data. Additionally, Table 2 provides average document sizes in
kilobits (kb) and the amount of time that would be required to leak the docu-
ment using our overnight attack. Lastly, both our attacks are effectively able
to leak cryptographic key material such as a 256-bit shared key within seconds.

Using the parameters W = 20 kHz to 20.5 kHz, k = 25 ms, M = 4, and
N = 11, we tested our ultrasonic attack with both a clock radio playing in the
background as well as conversations taking place in the room while data was
being leaked. We saw our resulting BER only increase marginally. This was due
to the fact that while the human voice is predominantly composed of frequen-
cies below 4 kHz there are still some near-ultrasonic and ultrasonic frequencies
present which interfered with our data symbols. We noted that the majority of
the energy in the clock radio and the conversations was in the 0 Hz to 15 kHz
bandwidth and, in general, did not adversely affect our ultrasonic communica-
tion. Additionally, in order for our test to be performed in true ultrasonic fashion
our pilot signal needed to be set to an ultrasonic frequency. In our experiments
we used a pure-tone pilot signal at 20 kHz. Although this did work in most cases,
some of the equipment, namely Audio4, Audio5, and Audio6 had issues reli-
ably picking up a 20 kHz pilot tone.

On Acoustic Covert Channels Between Air-Gapped Systems 13

Fig. 4. The combined normalized frequency response of the audio channel. Each curve
represents the frequency response of the channel with each of the machines in the study
as the transmitter and Audio8 as the receiver. Although the received signal strength
in the ultrasonic range from 20 kHz to 20.5 kHz is relatively low, ultrasonic frequencies
are still present.

Additionally, we performed a distance experiment to determine the maximum
distance over which we could transmit ultrasonic signals as a means to compare
our results to previous work. To determine our maximum transmission range we
set up Audio8 to transmit to our Sony laptop, Audio7, over increasing distances
in 3.66 m (12’) increments from 3.66 m to 25.60 m (84’). The results of our exper-
iment are shown in Fig. 3. Our attack using ultrasonic communication is able to
effectively communicate up to distances of 11 m with BERs under 2 % and up to a
distance of 15 m with BERs around 20 %. With W = 20 kHz to 20.5 kHz, k = 25
ms and N = 46, we are able to communicate at over 230 bps. With error correct-
ing we are therefore able to communicate at a distance of 15 m with an effective
bit rate of 138 bps. As a comparison, the researchers in [8] were only able to com-
municate 20 bps up to a maximum distance of 8.2 m with a BER of 0 %.

Lastly, we performed an experiment to measure Audio8’s ability to receive
ultrasonic communication from all the other machines in our study. In our exper-
iment we placed each of the other systems, with the exception of Audio2 and
Audio3, 1 m in front of Audio8 and played the same broadband white noise
sample that we used to determine the frequency response of the channel in our
previous experiment. We then plotted the combined frequency response of the
other systems’ speakers and Audio8’s microphone. The results are shown in
Fig. 4. From the figure it is clear that the frequency response of the channel
as observed by the microphone in Audio8 is similar to the frequency response
curves shown in Fig. 1. For the sake of brevity, we present this as evidence that
the other systems in our study are capable of transmitting ultrasonic signals.

14 B. Carrara and C. Adams

The results of our experiments show the following:

1. In general, malware can leak sensitive data using ultrasonic communication
to systems on a low-security network at a bit rate of 140 bps (112 bps after
error correction) with all machines observing a pre-error corrected BER of
10 % or under.

2. In general, malware can leak sensitive data using our overnight attack to
systems on a low-security network at a bit rate of 6.7 kbps (4.7 kbps after
error correction) with all machines observing a pre-error corrected BER of
15 % or under (the exception being Audio5, which experienced a BER of
19 %, at least 4 % higher than all other machines).

3. Our ultrasonic attack is not affected by either a clock radio playing music
in the environment or conversations taking place while the communication is
taking place.

4. Our ultrasonic attack is capable of leaking sensitive information at distances
up to 11 m and bit rates over 230 bps. Furthermore, ultrasonic communication
can be used to leak sensitive information at a distance of 15 m and a bit rate
of 138 bps.

5. In general, all the systems in our study can produce ultrasonic signals in the
W = 20 kHz to 22 kHz range.

5 Protection Mechanisms

Our attack can be eliminated by physically removing any speakers from the
high security machine. If removal is not possible, disabling the speaker in soft-
ware is the next best option; however, disabling the speaker in software could
be overwritten by malware installed on the machine and could therefore provide
a false sense of assurance to users of high security machines that our attack is
not possible. The most effective way to detect our attack is to passively monitor
the audio channel for abnormally high peaks of energy, especially in areas of
the spectrum where there are typically none (e.g. the ultrasonic frequency range
above 20 kHz). An effective way to detect our attack would be to periodically
perform the fast Fourier transform (FFT) of the ambient audio in the envi-
ronment and examine the resulting frequency components for abnormally high
peaks. By calculating the FFT and comparing the resulting energy levels in a
given bandwidth to some baseline or by checking if the resulting energy is above
a certain threshold, our attack could be detected. With this method however, the
distance from the transmitter is of utmost importance. If the device scanning the
ultrasonic spectrum is too far from the transmitter, these approaches will not
work. Furthermore, while we have discussed this countermeasure for our ultra-
sonic attack, this methodology works similarly for our overnight attack with
the spectrum analysis simply shifted down into the audible range. Lastly, we feel
it is imperative that this analysis be done by a specialized hardware device that
is less likely to be attacked by malware that could render it ineffective.

On Acoustic Covert Channels Between Air-Gapped Systems 15

6 Conclusion

In this work, we studied the ability for malware to leak sensitive information
to low-security machines using ultrasonic and audible audio communication. We
measured the achievable bit rate and BERs when transmitting signals in the
20 kHz to 20.5 kHz range as well as the 0 Hz to 20.5 kHz range using commodity
hardware from a number of major laptop and desktop vendors. Our study showed
that, in general, data can be communicated using ultrasonic communication
at a bit rate of 140 bps with BERs below 10 %. Furthermore, we showed that
malware can leak information when nobody is around to hear it, using an attack
we call the overnight attack, at a rate of 6.7 kbps with a BER below 15 %.
Additionally, we showed that our ultrasonic attack is not affected by ambient
conversations taking place at the same time as the communication, nor by a radio
playing a local radio station. Lastly, we showed that data can be communicated
using ultrasonic communication across distances up to 11 m and at bit rates
over 230 bps and a BER of 2 %. Given the achievable bit rates, our attack is able
to leak captured keystrokes in real-time using the ultrasonic attack and both
keystrokes and recorded audio using the overnight attack. A passive detection
strategy was also presented.

References

1. File sizes and types (2014). http://help.netdocuments.com/file-sizes/
2. Baken, R.J., Orlikoff, R.F.: Clinical Measurement of Speech and Voice. Cengage

Learning, Clifton Park (2000)
3. Domingues, N., Lacerda, J., Aguiar, P.M., Lopes, C.V.: Aerial communications

using piano, clarinet, and bells. In: 2002 IEEE Workshop on Multimedia Signal
Processing, pp. 460–463. IEEE (2002)

4. Ellison, R.J., Goodenough, J.B., Weinstock, C.B., Woody, C.: Evaluating and mit-
igating software supply chain security risks. Technical report, DTIC Document
(2010)

5. Gerasimov, V., Bender, W.: Things that talk: using sound for device-to-device and
device-to-human communication. IBM Syst. J. 39(3.4), 530–546 (2000)

6. Goldman, A., Apuzzo, M.: How bin Laden emailed without being detected (2011).
http://www.nbcnews.com/id/43011358/

7. Hanspach, M., Goetz, M.: On covert acoustical mesh networks in air. J. Commun.
8(11), 758–767 (2013)

8. Hanspach, M., Goetz, M.: Recent developments in covert acoustical communica-
tions. In: Sicherheit, pp. 243–254 (2014)

9. Kinsler, L.E., Frey, A.R., Coppens, A.B., Sanders, J.V.: Fundamentals of Acoustics,
4th edn., p. 560. Wiley-VCH, December 1999. ISBN: 0-471-84789-5

10. Landström, U.: Noise and fatigue in working environments. Environ. Int. 16(4),
471–476 (1990)

11. Lee, K.S., Cox, R.V.: A very low bit rate speech coder based on a recogni-
tion/synthesis paradigm. IEEE Trans. Speech Audio Process. 9(5), 482–491 (2001)

12. Lindqvist, U., Jonsson, E.: A map of security risks associated with using COTS.
Computer 31(6), 60–66 (1998)

http://help.netdocuments.com/file-sizes/
http://www.nbcnews.com/id/43011358/

16 B. Carrara and C. Adams

13. Lopes, C.V., Aguiar, P.M.: Aerial acoustic communications. In: 2001 IEEE Work-
shop on the Applications of Signal Processing to Audio and Acoustics, pp. 219–222.
IEEE (2001)

14. Lopes, C.V., Aguiar, P.M.: Acoustic modems for ubiquitous computing. IEEE Per-
vasive Comput. 2(3), 62–71 (2003)

15. Lopes, C.V., Aguiar, P.M.: Alternatives to speech in low bit rate communication
systems. arXiv preprint. arXiv:1010.3951 (2010)

16. Madhavapeddy, A., Scott, D., Sharp, R.: Context-aware computing with sound. In:
Dey, A.K., Schmidt, A., McCarthy, J.F. (eds.) UbiComp 2003. LNCS, vol. 2864,
pp. 315–332. Springer, Heidelberg (2003)

17. Madhavapeddy, A., Sharp, R., Scott, D., Tse, A.: Audio networking: the forgotten
wireless technology. IEEE Pervasive Comput. 4(3), 55–60 (2005)

18. Nandakumar, R., Chintalapudi, K.K., Padmanabhan, V., Venkatesan, R.: Dhwani:
secure peer-to-peer acoustic NFC. In: Proceedings of the ACM SIGCOMM 2013
Conference on SIGCOMM, pp. 63–74. ACM (2013)

19. O’Malley, S.J., Choo, K.K.R.: Bridging the air gap: inaudible data exfiltration by
insiders. In: 20th Americas Conference on Information Systems (AMCIS 2014), pp.
7–10 (2014)

20. Proakis, J.G.: Digital Communications. McGraw-Hill, New York (2008)
21. Reed, I.S., Solomon, G.: Polynomial codes over certain finite fields. J. Soc. Ind.

Appl. Math. 8(2), 300–304 (1960)
22. Sanger, D.E.: Obama order sped up wave of cyberattacks against Iran. The New

York Times 1, 2012 (2012)
23. Schneier, B.: Air Gaps (2013). http://aiweb.techfak.uni-bielefeld.de/content/

bworld-robot-control-software://www.schneier.com/blog/archives/2013/
10/air gaps.html?utm source=feedburner&utm medium=feed&utm
campaign=Feed%3A+feedburner%2FbDnSB+(Schneier+on+Security)

24. Stallings, W.: Network Security Essentials: Applications and Standards. Pearson
Education, India (2007)

25. Szor, P.: The Art of Computer Virus Research and Defense. Pearson Education,
Indianapolis (2005)

26. Tempest, W.: The Noise Handbook. Academic Press, New York (1985)
27. Zetter, K.: FAA: Boeings new 787 may be vulnerable to hacker attack (2008).

http://www.wired.com/politics/security/news/2008/01/dreamlinersecurity

http://arxiv.org/abs/1010.3951
http://aiweb.techfak.uni-bielefeld.de/content/bworld-robot-control-software://www.schneier.com/blog/archives/2013/10/air_gaps.html?utm_source=feedburner&utm_medium=feed&utm_campaign=Feed%3A+feedburner%2FbDnSB+(Schneier+on+Security)
http://aiweb.techfak.uni-bielefeld.de/content/bworld-robot-control-software://www.schneier.com/blog/archives/2013/10/air_gaps.html?utm_source=feedburner&utm_medium=feed&utm_campaign=Feed%3A+feedburner%2FbDnSB+(Schneier+on+Security)
http://aiweb.techfak.uni-bielefeld.de/content/bworld-robot-control-software://www.schneier.com/blog/archives/2013/10/air_gaps.html?utm_source=feedburner&utm_medium=feed&utm_campaign=Feed%3A+feedburner%2FbDnSB+(Schneier+on+Security)
http://aiweb.techfak.uni-bielefeld.de/content/bworld-robot-control-software://www.schneier.com/blog/archives/2013/10/air_gaps.html?utm_source=feedburner&utm_medium=feed&utm_campaign=Feed%3A+feedburner%2FbDnSB+(Schneier+on+Security)
http://www.wired.com/politics/security/news/2008/01/dreamlinersecurity

Location-Dependent EM Leakage
of the ATxmega Microcontroller

Thomas Korak(B)

Institute for Applied Information Processing and Communications (IAIK),
Graz University of Technology, Inffeldgasse 16a, 8010 Graz, Austria

thomas.korak@iaik.tugraz.at

Abstract. Nowadays, low power microcontrollers are widely deployed
in wireless sensor networks, also implementing cryptographic algorithms.
These implementations are potential targets of so-called side-channel
analysis (SCA) attacks which aim to reveal secret information, e.g. a
secret key. In this work we evaluate the resistance of AES implementa-
tions on an Atmel AVR XMEGA microcontroller against SCA attacks
using the electromagnetic (EM) emanation measured at different loca-
tions on the chip surface from the front side and the rear side. Results
show that the exploitable leakage for correlation attacks of a software
implementation is higher compared to the leakage of the AES crypto
engine, a hardware accelerator implemented on the microcontroller. Fur-
ther investigations show that front-side EM measurements lead to better
results and the measurement location is crucial if the number of mea-
surements is limited.

Keywords: Microcontroller · CEMA · Wireless sensor networks ·
Wireless sensor nodes · AES

1 Introduction

Microcontrollers are widely used in all kinds of applications nowadays. One rea-
son for the exhaustive usage is the great amount of functionalities they provide
as well as their flexibility compared to application-specific integrated circuits
(ASICs). One popular field of application is that of wireless sensor networks
(WSN). WSNs consist of several sensor nodes which communicate with each
other over a wireless channel. Each WSN typically has one base station which
acts as the master in the network and forwards the received data from the sen-
sor nodes to a backend system. The data transmitted by the sensor nodes varies
depending on the field of application. WSNs are employed e.g. in healthcare
systems, for environmental monitoring, energy monitoring or building adminis-
tration. In order to make attacks like eavesdropping or data alteration infeasible
the data is encrypted before transmission. Due to the data encryption additional
computational costs are introduced. The additional computational costs need to
be minimized because sensor nodes are typically battery powered and the bat-
tery lifetime needs to be maximized. In order to achieve a long battery lifetime,
c© Springer International Publishing Switzerland 2015
F. Cuppens et al. (Eds.): FPS 2014, LNCS 8930, pp. 17–32, 2015.
DOI: 10.1007/978-3-319-17040-4 2

18 T. Korak

efficient cryptographic primitives need to be used and implemented in an effi-
cient way. Besides energy, code size and RAM size are also limited resources on
sensor nodes.

One popular cryptographic primitive is the Advanced Encryption Standard
(AES), a standardized block cipher. AES supports three key lengths (128 bits,
192 bits, or 256 bits) depending on the required security level. Software imple-
mentations of AES exist for nearly every microcontroller platform. Some micro-
controllers (e.g. ATxmega, TI MSP430) also have an integrated AES hardware
accelerator (AES crypto engine). The usage of an AES hardware accelerator
allows faster data encryption/decryption and also parallel execution of other
tasks during encryption/decryption. Besides the efficiency of the data encryp-
tion/decryption, the leakage of secret information (e.g., the secret key) caused by
side channels has to be analysed. Typical side channels with a correlation with
secret information are the runtime of the algorithm, the power consumption or
the electromagnetic (EM) emanation of the device.

1.1 Related Work

The Rijndael algorithm [6] was standardized by the US National Institute of
Standards and Technology (NIST) as the Advanced Encryption Standard (AES)
in 2001. Today, AES is among the most frequently used block ciphers. In wireless
sensor networks, AES is used to encrypt the transmitted data in order to prevent
eavesdropping or data alteration, meaning that the block cipher is used in a
special operation mode [15].

AES is proven to be mathematically secure, but side-channel analysis (SCA)
attacks are still feasible due to implementation-specific properties. These type
of attacks use some key-dependent leakage in the power consumption (e.g., by
Kocher et al. [13]), the EM emanation (e.g., by Gandolfi et al. [8]) or the runtime
(e.g., by Kocher et al. [12]) of the cryptographic algorithm.

There have been several SCA attacks on implementations of the AES on
various platforms in the past. In [18] the authors show an AES key extraction
of an FPGA implementation in less than 0.01 s. In this work the authors point
out that the signal-to-noise ratio on the attacked device is 30 dB to 40 dB lower
than an implementation on an ATxmega microcontroller. Kizhvatov et al. [11]
have performed a power-analysis attack on the hardware accelerator included in
ATxmega microcontrollers. This article serves as the basis for our work.

The AES implementation is often also a building block for higher-layer cryp-
tographic protocols. In [9] the authors use an AES hardware accelerator for an
authenticated encryption algorithm. In [20], the authors take advantage of an
AES hardware accelerator in order to create hash-based signatures.

Several works also deal with the implementation issues for cryptographic
primitives, which arise because of the existing constraints for sensor nodes used
in WSNs. In [4], the authors focus on the energy efficiency of security algorithms
for WSN devices. They also compare software implementations with hardware
accelerators from the point of view of energy efficiency. Rehman et al. [16] com-
pare different encryption techniques for message authentication codes (MACs)

Location-Dependent EM Leakage of the ATxmega Microcontroller 19

in WSNs. In [21] a security mechanism for WSNs, called MoteSec-Aware, is
presented. MoteSec-Aware is based on the AES.

1.2 Our Contribution

When studying the related work above, it is clearly observable that the AES is
the most popular encryption algorithm for sensor nodes, so this algorithm is the
target for our attacks. Atmel’s ATxmega microcontroller is frequently used for
sensor-node applications as the list of sensor nodes [22] shows. It also has a AES
crypto engine integrated, which makes it the perfect device for our evaluations.
In contrast to [11] we use the EM emanation of the device for the SCA attacks
on the ATxmega microcontroller. One advantage of the EM side channel when
compared to the power-consumption side channel is that no modification of the
attacked circuit is required (e.g. inserting a resistor in order to enable power
consumption measurements).

The contributions of this work can be summarized the following:

– We compare the EM leakage of a software AES implementation with the EM
leakage of the AES crypto engine of the ATxmega microcontroller. Results
show very similar leakage patterns for both implementations.

– EM signals are measured at different locations on the chip to find out at which
point the maximum leakage appears. This information is helpful in scenarios
where only a limited number of measurements is available and the approach
can be applied on any device.

– We further compare two different power models for attacking the AES crypto
engine, one based on the Hamming weight of an intermediate value and
the other one based on the Hamming distance between two register values.
The second power model has been used in [11].

– EM signals are measured from the front side and the rear side of the chip
in order to compare the amount of exploitable leakage. Results show that
front-side measurements lead to better results.

– We practically show that the number of required encryptions for a successful
attack can be decreased by combining the EM signal in specific points.

1.3 Outlook

In Sect. 2 we introduce the microcontroller used in the experiments. A short intro-
duction to the Advanced Encryption Standard as well as information about the
software and hardware implementation is provided in Sect. 3. Section 4 explains
the experimental setup as well as the results of the practical experiments. A dis-
cussion of the results can be found in Sect. 5. Some conclusions as well as future
work are given in Sect. 6.

2 Used Microcontroller

In this section we introduce the microcontroller which was used for the evalua-
tions. We decided to use an AVR XMEGA microcontroller, the ATxmega 256A3

20 T. Korak

to be exact. Due to the low power consumption, the high integration as well
as the real-time performance this microcontroller is frequently used on wireless
sensor nodes. Furthermore it has an AES hardware accelerator (in the following
named as AES crypto engine) implemented.

In the following section we provide some more detailed facts about the
ATxmega 256A3 microcontroller. The ATxmega 256A3 has 256 kB in-system
self-programmable flash memory, 8 kB of boot-code section, 4 kB EEPROM,
and 16 kB SRAM. The CPU is based on the AVR enhanced RISC architec-
ture equipped with 32 general purpose working registers. The microcontroller
can be operated with voltages between 1.6 V and 3.6 V and the maximum clock
frequency is 32 MHz. Additional features are: One 16 bit Real-time counter,
16 bit timer/counter for PWM and compare modes, serial interface, ADCs, one
DAC, 50 general-purpose I/O lines, and several other microprocessor-specific fea-
tures. In addition to the AES crypto engine a DES accelerator is also included.
The DES accelerator is out of the scope of this work, so no detailed description
about this feature is provided. For more detailed information about the ATxmega
256A3 we refer to the datasheet [3]. Typical applications for this microcontroller
are industrial control, factory automation, metering, and medical applications,
to mention only a few. Although it is not explicitly noted as a high-security
device we are sure that the cryptographic features the microcontroller provides
are used frequently. So it makes sense to analyze possible weaknesses of these
features.

3 AES Implementations

In this section, a short description of the AES algorithm in general is given fol-
lowed by an introduction to the software AES implementation for the ATxmega
microcontroller. The AES crypto engine is also introduced in this section.

3.1 Description of AES

The Advanced Encryption Standard (AES) is a symmetric block cipher. It sup-
ports a block size of 128 bits (equals state size) and key sizes of 128 bits, 192 bits
and 256 bits. The cipher is round-based and generates one block of cipher text in
10, 12 or 14 rounds, depending on the used key length. Four transformations are
performed on the state in each round: round-key addition (add round-key), byte
substitution (Sbox lookup), byte permutation (shift rows), and a matrix operation
(mix column). Further information about the AES can be found in [5,6].

For correlation attacks, which are performed in this work, an intermediate
value (IV) of the attacked implementation has to be found which depends on
a known input (e.g. plain text) and the secret key. In the case of AES the IV
after the Sbox lookup in the first AES round is a popular choice. This value is
calculated using IVi = Sbox(pi ⊕ ki) where pi is one byte of the known plain
text and ki is one byte of the secret key. For AES-128, both the plain text and
the secret key have a length of 128 bits (i = 1 . . . 16). The resulting cipher text

Location-Dependent EM Leakage of the ATxmega Microcontroller 21

also has a length of 128 bits. The Hamming weight of IVi, written as HW (IVi),
serves as the power model. The Hamming weight of a value equals the sum of
ones of its binary representation [14]. In the following we denote the key guesses
for byte position i as kg,i and the correct key at byte position i as kc,i.

3.2 Software AES Implementation

The software AES implementation is written in assembler. The implementa-
tion is optimized for fast encryption/decryption and no countermeasures against
SCA attacks or fault attacks are implemented. The round key is calculated after
each round and the byte substitution is implemented as a table lookup. It takes
4 054 clock cycles to encrypt one block of plain text. This is close to the 3 766
clock cycles given in [17].

3.3 AES Crypto Engine

The AES crypto engine requires 375 clock cycles to encrypt one block of plain
text and it supports a key length of 128 bits. Comparing the run time of the AES
crypto engine with the figures given for the software implementation it can be
said that the AES crypto engine is approximately ten times faster. The usage of
the AES crypto engine allows to perform other tasks in parallel to the encryption
process.

Detailed information about the crypto engine can be found in [2]. In order to
perform an encryption the plain text must be loaded into the AES State Register
and the key into the AES Key Register. In the AES Control Register the decrypt
bit has to be cleared and the encryption process is then started by setting the
start bit. An interrupt as well as the status bit in the AES Control Register
indicate when the encryption is finished. The cipher text equals the content of
the AES State Register. The hardware crypto engine also supports the cipher
block chaining (CBC) mode of operation in order to increase the efficiency when
using CBC. For this purpose, it is necessary to set the XOR bit in the AES
Control Register.

4 Practical SCA Experiments

In this section, the measurement setup used to record the EM traces is intro-
duced. Then, a description of the performed experiments is given, followed by
the results achieved for the software implementation and for the AES crypto
engine, respectively.

4.1 Measurement Setup

In order to perform the measurements we have implemented a simple program
on the microcontroller. After setting the AES key with an initial command, the
plain text followed by a single control byte is sent to the microcontroller using the

22 T. Korak

serial interface. This control byte is used to select which implementation should
be used for the encryption. The value 00h indicates that the software implemen-
tation should be used and 01h indicates that the AES crypto engine should be
used. Just before the encryption process starts, one output pin (trigger pin) of
the microcontroller is set to high. Setting the pin to low again indicates that the
encryption is finished. In a last step the result is sent back to the control com-
puter. This setup clearly indicates that we know the key of the attacked device.
This fact simplifies the creation of two-dimensional EM-leakage landscapes.

A probe manufactured by Langer EMV Technik (model: LFB3) has been
used to measure the EM emanation of the chip. The signal of the probe was
amplified with a 30 dB amplifier. The amplified signal was digitized using a
LeCroy WavePro 725Zi oscilloscope. The sampling rate on the oscilloscope was
set to 1 GS/s and the microcontroller was clocked with a frequency of 13.56 MHz.

Figure 1(a) shows the grid on the chip, where the probe has been placed in
order to measure the EM signal, from the front side. The grid has a size of
9 × 9 points, leading to a total of 81 points. The distance between the points is
1 mm. Figure 1(b) shows the grid on the chip for the measurements from the rear
side. Here, we have removed the package material in order to measure directly on
the chip die. The chip die has a size of 5 mm× 5 mm. For the rear-side measure-
ments, the focus was put on the die area, so a step size of 0.55 mm was used lead-
ing to a grid of 9×9 points again. In both cases, the probe has been moved using
a stepper table. This allowed us to automate the measurement process up to a
high degree. The amplitude of the measured EM signal varied for different points.
Because of this observation, a calibration step in each point was performed before
the traces were recorded. This calibration step ensures the same resolution of
the voltage values in each point.

Figure 1(c) shows the board where the microcontroller is mounted on. Using
this board it is hardly possible to perform power measurements without irre-
versible modifications. This is true for most real-world devices. Therefore, EM
measurements are the best choice for measuring side-channel information. How-
ever, in order to perform the rear-side measurements, we had to develop a custom
board which allows to mount the chip inverted.

4.2 Experiment Descriptions

Location-Dependent EMLeakage: For verification of the location-dependent
EM leakage N EM traces were recorded in every point P (P = 1 . . . 81). The mea-
surement interval covered the first AES round and the same set ofN random plain
texts was used in each point. In total 81·N traces were recorded. A correlation EM
analysis (CEMA) attack was performed for each of the points separately. In order
to validate the success of the location-dependent correlation attacks the absolute
value of the factor ρborder (Eq. 1) was subtracted from the absolute maximum cor-
relation coefficient of the correct key (ρc,P). ρborder is a function of the number of
used traces N and the derivation of ρborder can be found in [14]. 99.99 % of all the
correlation values are in this border. If |ρc,P | > |ρborder|, the correct key can be
distinguished from the remaining key guesses. The resulting vector ρ̄margin has a

Location-Dependent EM Leakage of the ATxmega Microcontroller 23

116
17

32
33 48

49

64
A
B
C
D
E
F
G
H
I

1 2 3 4 5 6 7 8 9

(a) EM measurement
points, front side.

A
B
C
D
E
F
G
H
I

9 8 7 6 5 4 3 2 1

(b) Opened microcon-
troller, rearside.

(c) Microcontroller board,
front side.

Fig. 1. The attacked microcontroller.

length of 81 (Eq. 2). Positive values indicate that the attack is successful and neg-
ative values indicate that the attack fails in the specific point. For visualization
reasons all negative values of ρ̄margin were set to zero. In order to map the vector
ρ̄margin to the locations, the vector is transformed into a 9 x 9 matrix M according
to Eq. 3. The 1st entry in the 1st row corresponds to point A1, and the 9th entry
in the last row corresponds to point I9.

ρborder = ± 4√
N

(1)

ρ̄margin = [|ρc,1|, |ρc,2|, . . . , |ρc,81|] − |ρborder| (2)

M =

⎡
⎢⎢⎢⎣

ρmargin,1 ρmargin,2 · · · ρmargin,9

ρmargin,10 ρmargin,11 · · · ρmargin,18

...
...

. . .
...

ρmargin,73 ρmargin,74 · · · ρmargin,81

⎤
⎥⎥⎥⎦ (3)

Relation Between EM Leakage and Number of Traces: In the next
experiment the number of traces used for the correlation attacks was gradually
reduced during several iteration. For each iteration the matrix M was visualized
in a two-dimensional plot. The resulting plots visualize the leakage locations for
different numbers of traces.

4.3 Results for Software Implementation

Location-Dependent EM Leakage: The first experiments targeted the AES
software implementation. N = 2000 traces were recorded in each point, which
leads to a total of 2000 · 81 = 162 000 traces. This number was sufficient for
the location-dependent EM leakage verification. For the correlation attack the
Hamming weight of the output of the first substitution box, HW (Sbox(pi⊕kg,i)),
served as power model. Figure 2 shows the EM leakage landscape. The brighter
the point is, the higher ρ̄margin in that point. Black points indicate regions where

24 T. Korak

Fig. 2. Landscape of the leakage of the
AES software implementation using
2000 traces.

Fig. 3. Landscape of the leakage of the
AES crypto engine using 10 000 traces
and the Hamming weight power model.

of traces: 2000

1 2 3 4 5 6 7 8 9

A
B
C
D
E
F
G
H
I

of traces: 100

1 2 3 4 5 6 7 8 9

A
B
C
D
E
F
G
H
I

of traces: 500

1 2 3 4 5 6 7 8 9

A
B
C
D
E
F
G
H
I

of traces: 250

1 2 3 4 5 6 7 8 9

A
B
C
D
E
F
G
H
I

of traces: 50

1 2 3 4 5 6 7 8 9

A
B
C
D
E
F
G
H
I

of traces: 75

1 2 3 4 5 6 7 8 9

A
B
C
D
E
F
G
H
I

of traces: 1000

1 2 3 4 5 6 7 8 9

A
B
C
D
E
F
G
H
I

Fig. 4. EM-leakage landscape for different numbers of traces used for the CEMA
attacks on the software AES implementation.

the attack yields a wrong key byte. The results discussed in this paragraph
were achieved for key byte 1, the attacks targeting key bytes 2 to 16 lead to
similar results. Due to the clear results, we did not further evaluate rear-side
measurements for the software implementation.

Relation Between EM Leakage and Number of Traces: Figure 4 depicts
the relation between CEMA success expressed by ρ̄margin and the number of
measurements used for the CEMA attack. With 50 measurements, the correct
key can be extracted in two points. The fewer measurements are available, the
more critical the location where the EM side-channel signal is measured.

4.4 Results for AES Crypto Engine

For the CEMA attacks targeting the AES crypto engine, two different power
models were used. The first power model, which will be referred to as Hamming
distance model in the rest of this paper, is the model used in [11]. This model
takes into account two subsequent bytes of the plain text (pi, pi+1) and two
bytes of the key (kg,i, kg,i+1): HW ((pi ⊕ kg,i) ⊕ (pi+1 ⊕ kg,i+1)). The second
model, named Hamming weight model, is the same model as is used for attacking

Location-Dependent EM Leakage of the ATxmega Microcontroller 25

Fig. 5. Landscape of the leakage of the
AES crypto engine using 10 000 traces,
the Hamming distance power model
and front-side measurements.

Fig. 6. Landscape of the leakage of the
AES crypto engine using 10 000 traces,
the Hamming distance power model
and rear-side measurements.

the software implementation: HW (Sbox(pi ⊕ kg,i)). The disadvantage of the
Hamming distance model is that two 8 bit values kg,i, kg,i+1 are unknown and
as a result the complexity of the attack increases. Instead of 28 key hypotheses,
216 key hypotheses are required in theory. In [11] the authors show that the
complexity can be decreased. To achieve this, they perform a full key recovery
for all the 256 key values for the first key byte. Applying an exhaustive search,
the correct key can be extracted from the 256 candidates in a final step. If the
value of only one key byte is known (e.g., by using the Hamming weight model
in a first step) all the other values can be revealed iteratively and the exhaustive
search can be prevented. Furthermore, measurements captured from the front
side and the rear side of the chip are analyzed.

Location-Dependent EM Leakage: For the CEMA attacks targeting the
AES crypto engine, 10 000 EM traces were recorded in each point, once from
the front side and once from the rear side. As mentioned in [11], 3 000 traces
are sufficient to reveal the correct key bytes when using power measurements.
Taking this as a reference point, 10 000 traces seemed to be a realistic value in
order to achieve meaningful results.

First, CEMA attacks were performed in each point using the Hamming
weight model. The landscape of the EM leakage in each point is plotted in Fig. 3
for front side measurements. It is clearly visible that there are several locations
where the attack reveals the correct key byte value. With the Hamming weight
model and rear-side measurements, no successful attacks could be performed.

Second, the experiments above were repeated using the Hamming distance
model. Figure 5 shows the landscape of the EM leakage for front-side measure-
ments and Fig. 6 shows the landscape of the EM leakage for rear-side mea-
surements. Here, several locations can be detected where the attacks reveal the
correct key byte for measurements from both sides of the chip. For these attacks

26 T. Korak

we assume that one key byte is known, resulting again in 28 key hypotheses.
By comparing the results for the attacks using front-side measurements and
rear-side measurements, the following observations can be made:

Attacks using the measurements from the front side lead to higher correlation
values. Wires from the metal layers on top of the chip produce the exploitable EM
signals. Therefore, front-side measurements seem to be better suited to capture
these signals, although there is some package material between probe and chip
surface. The fact, that measurements from the front side contain more exploitable
leakage than rear-side measurements has also been observed by Heyszl et al. [10].
Here the authors target an FPGA.

Correlation values for the wrong key hypotheses are smaller when using rear-
side measurements. Opening the chip from the rear side allowed us to minimize
the distance between EM probe and chip die. This smaller distance minimizes
the measurement noise leading to smaller correlation values for the wrong key
hypotheses.

Relation Between EM Leakage and Number of Traces: Figure 7 depicts
the relation between CEMA success expressed by ρ̄margin and the number of
measurements used for the CEMA attack. Bright points indicate a location yield-
ing a successful attack (ρmargin > 0). Black points indicate a location where the
attack fails (ρmargin = 0).

Plot (a) depicts the evolution when using the Hamming weight model. 4 000
traces are necessary in order to reveal the correct key byte. When less than 4 000
traces are used the attacks do not succeed, i.e. the correct key byte cannot be
distinguished from the wrong key guesses. The more traces are used the more
points leak key-dependent information. Plot (b) depicts the evolution when using
the Hamming distance model together with front-side measurements. When
applying this model, 1 000 traces are necessary in order to reveal the correct
key byte. The more traces are used the more points leak key-dependent infor-
mation. Plot (c) depicts the evolution when using the Hamming distance model
together with rear-side measurements. Here, 1 000 traces are necessary in order
to reveal the correct key byte. Increasing the number of traces decreases the
influence of the location.

5 Discussion of the Results

The results presented in Sect. 4 show that a software AES implementation on
a microcontroller which is not secured against SCA attacks, can be successfully
attacked within seconds even without modifying the device. Measuring the EM
emanation does not require any modification. The attack reveals the correct
key byte with only 50 traces. For attacks with this low number of traces, the
location where the EM side-channel signal is measured is critical. From Fig. 8,
it can be seen that attacks lead to correct results in only two points. The higher
the number of traces, the less critical the influence of the location is. When using
2 000 traces, attacks at 62 of the 81 locations lead to correct results.

Location-Dependent EM Leakage of the ATxmega Microcontroller 27

of traces: 4000

1 2 3 4 5 6 7 8 9

A
B
C
D
E
F
G
H
I

of traces: 5000

1 2 3 4 5 6 7 8 9

A
B
C
D
E
F
G
H
I

of traces: 6000

1 2 3 4 5 6 7 8 9

A
B
C
D
E
F
G
H
I

of traces: 7000

1 2 3 4 5 6 7 8 9

A
B
C
D
E
F
G
H
I

of traces: 8000

1 2 3 4 5 6 7 8 9

A
B
C
D
E
F
G
H
I

of traces: 9000

1 2 3 4 5 6 7 8 9

A
B
C
D
E
F
G
H
I

of traces: 10000

1 2 3 4 5 6 7 8 9

A
B
C
D
E
F
G
H
I

(a) Hamming weight model.

of traces: 1000

1 2 3 4 5 6 7 8 9

A
B
C
D
E
F
G
H
I

of traces: 2000

1 2 3 4 5 6 7 8 9

A
B
C
D
E
F
G
H
I

of traces: 3000

1 2 3 4 5 6 7 8 9

A
B
C
D
E
F
G
H
I

of traces: 4000

1 2 3 4 5 6 7 8 9

A
B
C
D
E
F
G
H
I

of traces: 6000

1 2 3 4 5 6 7 8 9

A
B
C
D
E
F
G
H
I

of traces: 8000

1 2 3 4 5 6 7 8 9

A
B
C
D
E
F
G
H
I

of traces: 10000

1 2 3 4 5 6 7 8 9

A
B
C
D
E
F
G
H
I

(b) Hamming distance model (front side).

of traces: 1000

9 8 7 6 5 4 3 2 1

A
B
C
D
E
F
G
H
I

of traces: 2000

9 8 7 6 5 4 3 2 1

A
B
C
D
E
F
G
H
I

of traces: 3000

9 8 7 6 5 4 3 2 1

A
B
C
D
E
F
G
H
I

of traces: 4000

9 8 7 6 5 4 3 2 1

A
B
C
D
E
F
G
H
I

of traces: 6000

9 8 7 6 5 4 3 2 1

A
B
C
D
E
F
G
H
I

of traces: 8000

9 8 7 6 5 4 3 2 1

A
B
C
D
E
F
G
H
I

of traces: 10000

9 8 7 6 5 4 3 2 1

A
B
C
D
E
F
G
H
I

(c) Hamming distance model (rear side).

Fig. 7. EM-leakage landscape for different numbers of traces used for the CEMA
attacks on the AES crypto engine. Note that for (a) and (b) the covered area is 9×9 mm,
while for (c) the covered area equals 5 × 5 mm.

The results achieved for the AES crypto engine clearly show that this hard-
ware part is also not secured against SCA attacks. The leakage of the key-
dependent signal is smaller, so more traces for a successful attack are required
compared to the software implementation. Nevertheless, the factors of 1000

50 = 20
(Hamming distance model) and 4000

50 = 80 (Hamming weight model) do not indi-
cate a security improvement compared to the software implementation.
The additional measurement effort is negligible when keeping in mind the power
of today’s measurement equipment. As Fig. 8 shows, when using only 1 000 traces
for the Hamming distance model, the attack only succeeds in six locations.
The situation for the Hamming weight model is similar; here at least 4 000 traces
are required and with this minimum number only the measurements at four out
of 81 locations lead to successful attacks.

There are two important observations when comparing the results achieved
for front-side and rear-side experiments. First, less measurements are required
for a successful key recovery when front-side measurements are used although
the chip for the rear-side measurements was opened to minimize the distance
between probe and chip die. Interconnects in the metal layers on top of the
chip create the EM signals and it seems that the silicon between probe and
wires attenuates these signals stronger (rear-side measurements) than the pack-
age material (front-side). Second, the Hamming weight power model does not
yield any successful attack when applied on the rear-side measurements for the
AES crypto engine. Here, the assumption is that more than 10 000 traces are

28 T. Korak

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

10

20

30

40

50

60

70

80

Number of Traces

Po
in

ts
 f

or
 S

uc
ce

ss
fu

l A
tta

ck
s

Software AES
AES crypto engine (HW)
AES crypto engine, front side (HD)
AES crypto engine, rear side (HD)

Fig. 8. Points for successful attack as
function of number of traces used.

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

ε
1

C
or

re
la

tio
n

ρ
1

ρ
2

ρ
SUM

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

ε
1

sn
r snr

1

snr
2

snr
SUM

Fig. 9. Simulated leakage model.

required to succeed because also for the Hamming distance model double the
amount of traces is required for a successful attack.

To draw a fair comparison between the four attack approaches, we give the
number of traces, where at least 20 of the 81 locations (equals 24.7%) lead to
successful attacks. For the software implementation, 220 traces are required to
achieve this result. Attacks on the AES crypto engine, based on the Hamming
distance model, required 2 780 traces (4 800 traces for rear-side measurements,
respectively) to succeed in at least 20 locations. When using the Hamming weight
model, attacks in at least 20 locations succeed when more than 9 700 traces are
used. Table 1 summarizes the depicted results from Fig. 8.

In order to further improve the attacks (i.e., reduce the number of traces
required for a successful attack) we present an approach where the EM signals
of two measurement points are combined. A comparable multi-channel SCA
attack is presented in [1]. In this work the authors show how to combine power
and EM measurements attacking a DES implementation. As a result the num-
ber of measurements can be significantly reduced. Elaabit et al. [7] present two
combined attacks: In the first attack, a four-bit model and a mono-bit model
are combined resulting in a higher success rate. The second attack uses a com-
bination of samples at different time instances to improve the success rate for

Table 1. The minimum number of traces required in order to reveal the correct key
byte value in at least Nr. of locations locations.

Nr. of locations Percentage % SW AES AES crypto engine

HW HD,fs HD,rs

10 12.3 125 6 000 1 570 3 300

20 24.7 220 9 700 2 780 4 800

30 37.0 330 4 180 7 400

40 49.4 440 6 000

50 61.7 1 000 9 500

60 74.1 1 830

Location-Dependent EM Leakage of the ATxmega Microcontroller 29

correlation power-analysis attacks. Souissi et al. [19] propose two methodologies
for combined attacks. In the first approach commonly used side-channel distin-
guishers are combined. In the second approach EM signals caused by two spe-
cific decoupling capacitors are combined. Both approaches lead to a significant
improvement of the attacks. In our attack the assumption is that the attacker
has two similar EM probes measuring the EM emanation on the chip surface.
This fact enables the attacker to measure the EM emanation at two different
points in parallel. This assumption is realistic as most modern oscilloscopes
provide four independent channels which allow for the recording of up to four
signals in parallel. If the traces of two points with a high leakage are combined,
the result of the attack can be improved. The sum of the two traces has been
used as combination function. The traces participating to the sum were recorded
at two different locations during the encryption process of the same plain text.

Before we present the practical results, we want to give a theoretical explana-
tion. The leakage in two points can be expressed mathematically as L1 and L2,
according to Eq. 4. The values c1 and c2 are constants, V1 and V2 are functions
of the correct key byte kc and the known plain-text byte p (V = f(p, kc)). r1 and
r2 are normal distributed random values with zero mean and standard deviation
one (r ∼ N (0, 1), σ · r = N (0, σ2)), representing the noise. We further assume
that the leakage functions in the two points are similar (V1 = V2 = V). The
signal-to-noise ratio (SNR) is calculated as given in Eq. 5.

L1 = c1 + ε1 · V1 + σ1 · r1 L2 = c2 + ε2 · V2 + σ2 · r2 (4)

snri =
εi
σi

; i = 1, 2 (5)

Adding two traces in order to improve the attack, equals adding L1 and L2.
The result of this summation is given in Eqs. 7 and 8, respectively. Equation 6
shows how to calculate the sum of two normal distributions with different values
for the standard deviations. Equation 8 allows us to calculate the SNR for LSUM ,
snrSUM (Eq. 9). This result allows us to come to the conclusion, that the attack
can only be improved by adding the leakage in two different points, if Eq. 9 holds.

N (0, σ2
1) + N (0, σ2

2) = N (0, σ2
1 + σ2

2) =
√

(σ2
1 + σ2

2) · N (0, 1) (6)

LSUM = L1 + L2 = (c1 + c2) + (ε1 + ε2) · V + σ1 · r1 + σ2 · r2 (7)

LSUM = cSUM + εSUM · V +
√

(σ2
1 + σ2

2) · rSUM (8)

snrSUM =
εSUM√

(σ2
1 + σ2

2)
; snrSUM > max(snr1, snr2) (9)

In order to visualize the relation given in Eq. 9, we have performed a sim-
ulation using MATLAB. We have varied ε1, which influences snr1, while snr2
has been kept constant for the whole simulation run. Figure 9 depicts the results
of the simulation. The lower plot shows the SNR and the upper plot shows the
evolution of the correlation coefficients for the two points and the sum, respec-
tively. In the range where Eq. 9 holds, the summation leads to an improvement.

30 T. Korak

Table 2. Results of the CEMA attacks before and after the combination of traces
recorded at two different locations.

Software AES, (Hamming weight, front side) Gain / %

Location E4 F5 E4 and F5

Nmin 43 40 29 27.5

AES crypto engine, (Hamming weight, front side) Gain / %

Location F4 F8 F4 and F8

Nmin 3086 4444 2215 28.2

AES crypto engine, (Hamming distance, front side) Gain / %

Location F5 G4 F5 and G4

Nmin 396 683 295 25.5

AES crypto engine, (Hamming distance, rear side) Gain / %

Location E5 G5 E5 and G5

Nmin 1890 1850 1093 40.9

By improvement, we mean ρSUM > max(ρ1, ρ2). In practice, the SNR values
are typically not known. To circumvent this, we recommend the combination of
only two points where the single attacks yield to similar correlation coefficients
ρ1 and ρ2, respectively. From Fig. 9, it can be seen that the combination yields
the best result if ρ1 = ρ2.

In order to prove that the theoretical assumptions also hold true in practice,
we have combined points with similar correlation coefficients from the exper-
iments above and analysed the results. For the attack targeting the software
implementation ρc,P could be increased from 0.630 to 0.740. For the attacks
targeting the AES crypto engine, ρc,P could be increased from 0.072 to 0.085
(Hamming weight power model). For the Hamming distance power model, ρc,P
could be increased from from 0.201 to 0.233 (front-side measurements) and from
0.093 to 0.121 (rear-side measurements) respectively. Table 2 lists the achieved
results for the combination of measurements at two different locations. Further-
more the value Nmin is given. This value equals the minimum number of traces
required for a successful attack when the correlation value ρc,P is given. Nmin

is calculated according to Eq. 10 and the deviation can be found in [14].

Nmin = (
4

ρc,P
)2 (10)

6 Conclusion

In this work we have shown the location-dependent EM leakage of the ATxmega
microcontroller. We have compared the leakage of a software AES implementa-
tion with the leakage of the AES crypto engine, a hardware accelerator for AES
encryptions. For the software implementation, less than 50 traces are sufficient

Location-Dependent EM Leakage of the ATxmega Microcontroller 31

to reveal the AES key if the EM signal is measured at an appropriate position.
Attacks targeting the AES crypto engine require about 700 EM measurements
if captured from the front side and about 1 900 EM measurements if captured
from the rear side. Again, an appropriate measurement position is a prerequi-
site. In all scenarios, the number of required measurements can be decreased if
leakage information from two points are combined. Here, it is important that
the signal-to-noise ratio (SNR) in the points which are combined is similar.
This is shown in theory and verified in practical experiments.

The presented attacks pose a serious threat for sensor nodes, as the required
number of EM measurements can be recorded in a few minutes and no modifi-
cation of the circuit is required.

Acknowledgements. This work has been supported by the European Commission
through the FP7 program under project number 610436 (project MATTHEW).

References

1. Agrawal, D., Rao, J.R., Rohatgi, P.: Multi-channel attacks. In: Walter, C.D., Koç,
Ç.K., Paar, C. (eds.) CHES 2003. LNCS, vol. 2779, pp. 2–16. Springer, Heidelberg
(2003)

2. Atmel. AVR1318: Using the XMEGA built-in AES accelerator (2008) (accessed 5
November 2013)

3. Atmel. 8/16-bit AVR XMEGA A3 Microcontroller (2013) (accessed 5 November
2013)

4. Botta, M., Simek, M., Mitton, N.: Comparison of hardware and software based
encryption for secure communication in wireless sensor networks. In: Telecommu-
nications and Signal Processing (TSP), pp. 6–10. IEEE (2013)

5. Paar, C., Pelzl, J.: Understanding Cryptography. Springer, Heidelberg (2010)
6. Daemen, J., Rijmen, V.: AES Proposal: Rijndael. NIST AES Algorithm Submission

(September 1999). http://csrc.nist.gov/archive/aes/rijndael/Rijndael-ammended.
pdf

7. Elaabid, M.A., Meynard, O., Guilley, S., Danger, J.-L.: Combined side-channel
attacks. In: Chung, Y., Yung, M. (eds.) WISA 2010. LNCS, vol. 6513, pp. 175–
190. Springer, Heidelberg (2011)

8. Gandolfi, K., Mourtel, C., Olivier, F.: Electromagnetic analysis: concrete results.
In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162,
pp. 251–261. Springer, Heidelberg (2001)

9. Gouvêa, C.P.L., López, J.: High speed implementation of authenticated encryption
for the MSP430X microcontroller. In: Hevia, A., Neven, G. (eds.) LatinCrypt 2012.
LNCS, vol. 7533, pp. 288–304. Springer, Heidelberg (2012)

10. Heyszl, J., Merli, D., Heinz, B., De Santis, F., Sigl, G.: Strengths and limitations
of high-resolution electromagnetic field measurements for side-channel analysis.
In: Mangard, S. (ed.) CARDIS 2012. LNCS, vol. 7771, pp. 248–262. Springer,
Heidelberg (2013)

11. Kizhvatov, I.:. Side-channel analysis of AVR XMEGA crypto engine. In: Proceed-
ings of the 4th Workshop on Embedded Systems Security, p. 8. ACM (2009)

http://csrc.nist.gov/archive/aes/rijndael/Rijndael-ammended.pdf
http://csrc.nist.gov/archive/aes/rijndael/Rijndael-ammended.pdf

32 T. Korak

12. Kocher, P.C.: Timing attacks on implementations of diffie-hellman, RSA, DSS, and
other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 104–113.
Springer, Heidelberg (1996)

13. Kocher, P.C., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)

14. Mangard, S., Oswald, E., Popp, T.: Power Analysis Attacks - Revealing the Secrets
of Smart Cards. Springer (2007). ISBN 978-0-387-30857-9

15. National Institute of Standards and Technology (NIST). Special Publication 800–
38A 2001 ED, Recommendation for Block Cipher Modes of Operation - Meth-
ods and Techniques (December 2001). http://csrc.nist.gov/publications/nistpubs/
800-38a/sp800-38a.pdf

16. Rehman, S.U., Bilal, M., Ahmad, B., Yahya, K.M., Ullah, A., Rehman, O.U.:
Comparison Based Analysis of Different Cryptographic and Encryption Techniques
Using Message Authentication Code (MAC) in Wireless Sensor Networks (WSN)
(2012). arXiv preprint arXiv:1203.3103

17. Rinne, S., Eisenbarth, T., Paar, C.: Performance Analysis of Contemporary
Light-Weight Block Ciphers on 8-bit Microcontrollers (June 2007). http://www.
crypto.ruhr-uni-bochum.de/imperia/md/content/texte/publications/conferences/
lw speed2007.pdf

18. Skorobogatov, S., Woods, C.: In the Blink of an Eye: There Goes your AES Key.
IACR Cryptology ePrint Archive 2012:296 (2012)

19. Souissi, Y., Bhasin, S., Guilley, S., Nassar, M., Danger, J.-L.: Towards different
flavors of combined side channel attacks. In: Dunkelman, O. (ed.) CT-RSA 2012.
LNCS, vol. 7178, pp. 245–259. Springer, Heidelberg (2012)

20. Eisenbarth, T., von Maurich, I., Ye, X.: Faster hash-based signatures with bounded
leakage. In: Lange, T., Lauter, K., Lisoněk, P. (eds.) SAC 2013. LNCS, vol. 8282,
pp. 223–244. Springer, Heidelberg (2014)

21. Tsou, Y.-T., Lu, C.-S., Kuo, S.-Y.: MoteSec-Aware: a practical secure mechanism
for wireless sensor networks. IEEE Trans. Wireless Commun. 12(6), 2817–2829
(2013)

22. Wikipedia. List of Wireless Sensor Nodes – Wikipedia, The Free Encyclopedia
(2013) (accessed 4 November 2013)

http://csrc.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf
http://csrc.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf
http://arxiv.org/abs/1203.3103
http://www.crypto.ruhr-uni-bochum.de/imperia/md/content/texte/publications/conferences/lw_speed2007.pdf
http://www.crypto.ruhr-uni-bochum.de/imperia/md/content/texte/publications/conferences/lw_speed2007.pdf
http://www.crypto.ruhr-uni-bochum.de/imperia/md/content/texte/publications/conferences/lw_speed2007.pdf

Privacy

Privacy-Preserving Public Auditing in Cloud
Computing with Data Deduplication

Naelah Alkhojandi(B) and Ali Miri

Ryerson University, Toronto, Canada
{naelah.alkhojandi,ali.miri}@ryerson.ca

Abstract. Storage represents one of the most commonly used cloud
services. Data integrity and storage efficiency are two key requirements
when storing users’ data. Public auditability, where users can employ a
Third Party Audithor (TPA) to ensure data integrity, and efficient data
deduplication which can be used to eliminate duplicate data and their
corresponding authentication tags before sending the data to the cloud,
offer possible solutions to address these requirements. In this paper, we
propose a privacy-preserving public auditing scheme with data dedupli-
cation. We also present an extension of our proposed scheme that enables
the TPA to perform multiple auditing tasks at the same time. Security
and computational analyses for both cases are also presented.

Keywords: Cloud computing · Data deduplication · Public auditing ·
Third Party Auditor · Batch auditing · Privacy preservation

1 Introduction

One of the most important services in cloud computing is data storage, which
allows users to store their data in the cloud. Although cloud storage offers many
advantages, it also introduces new security challenges in data integrity and avail-
ability. To verify the integrity of data stored in the cloud and to save compu-
tational resources of cloud users, it is important to enable auditing services,
including those done on behalf of users by a TPA that can check the integrity of
their data. Some recent work in the literature has tried to tackle issues related to
public auditing [1,6,7,11,12]. Some of this work considers protecting the privacy
of user’s data from the TPA, while others consider dynamic data. The authors of
[1] propose a secure cloud storage system supporting privacy-preserving public
auditing. Their work also includes an efficient scheme in which a TPA performs
multiple auditing tasks in batch mode. In their proposed protocol, they uti-
lize a public key scheme based on a Homomorphic Linear Authenticator (HLA)
with random masking. Unlike previous auditing protocols, this scheme removes
the need to download all the stored data, and it has improved communication
and computation costs. The proposed protocol guarantees that the TPA cannot
derive any knowledge from the stored data.

To increase storage efficiency, storage providers often identify and remove
redundant data and keep only one copy of each file (file-level deduplication) or
c© Springer International Publishing Switzerland 2015
F. Cuppens et al. (Eds.): FPS 2014, LNCS 8930, pp. 35–48, 2015.
DOI: 10.1007/978-3-319-17040-4 3

36 N. Alkhojandi and A. Miri

block (block-level deduplication). Data deduplication may occur before the data
is transmitted to the cloud (client-side deduplication) or after it is transmitted
(server-side deduplication) [2]. Standard server-side deduplication, in particular
those associated with Cloud Service Providers (CSPs), require full access to the
content of users’ data, which may limit the types of information that can be
stored by these types of services. In particular, storing sensitive organizational
data may not be appropriate. Furthermore, although deduplication can be used
with single user data, it has been reported [3] that an average of 60 % of data
can be deduplicated for individual users by using a cross-user deduplication
technique that identifies redundant data among different users.

The authors of [9] proposed the Public and Constant cost storage integrity
Auditing scheme with secure Deduplication (PCAD). Although the paper con-
siders public auditing with deduplication, it does not consider the privacy-
preserving property. In addition, the deduplication is done on the cloud server
at the file-level.

In the remainder of this paper, we use the results from [1,10] to propose a
two-level privacy-preserving public auditing protocol, which enables cross-user
data deduplication achieving both data integrity and storage efficiency. In our
protocol, we only assume that the TPA and the CSP are semi-trusted, and
we will prove that the TPA would not learn the content of users’ data while
performing its tasks. Our analytical and experimental results show the efficiency
of our proposed protocol.

2 Problem Statement

Figure 1 depicts a typical setting for our proposed protocol. X-enterprise users’
files are stored with a CSP. Any of these users should be able to use the services
of a TPA to ensure the integrity of their data. To do so, prior to data upload,
each user computes the signature of its data. To ensure publicly verifiable data
deduplication, our protocol uses an enterprise level mediator. The mediator has
two main tasks to perform. Its first task is to do a client-side deduplication to
eliminate duplicated blocks before sending the data to the cloud, so the amount
of uploaded data and the bandwidth used between the enterprise and the CSP are
both reduced. Since users should have the ability to check the integrity of their
own stored data, the mediator’s second task helps with calculating aggregated
signatures that can be used by the TPA to perform its task.

2.1 System Model:

We consider cloud storage services that involve four entities: Cloud User (U):
who has large number of data files to be stored in the cloud; Cloud Server (CS):
which is managed by the Cloud Service Provider (CSP) to provide data storage
services and has significant storage space and computational resources; Third
Party Auditor (TPA): who can verify the integrity of U’s data upon request and
on their behalf; and Mediator: who performs block-level deduplication on users’

Privacy-Preserving Public Auditing in Cloud Computing 37

Fig. 1. The architecture of the proposed scheme

data before they are sent to the CSP, and also computes an aggregate signature
for the duplicated blocks instead of sending multiple signatures with each block.

2.2 Threat Model:

The Mediator is trusted and allowed to see the content of the blocks and their
signatures, but it is prohibited from knowing the private keys of the users, so it
cannot generate a valid signature on behalf of any user. The TPA is semi-trusted
and allowed to check the integrity of the blocks on behalf of the users/mediator,
but it is prohibited from seeing the content of the blocks. The CS is semi-trusted
and allowed to see the content of the blocks and their signatures, but it is required
to follow the steps needed for the auditing process.

Protocol Overview:

Users have files that are to be sent to the cloud. Each user divides his file into n
blocks and computes the signature of each block for integrity verification using
his private key. Then the users send their files (blocks) with their signatures
to the mediator. There is no interaction between the users during the signing
process. The mediator calculates the hash value of each block and compares
them to identify duplicated blocks. Then it calculates the aggregated signature
of the duplicated blocks utilizing the multisignature scheme of [10]. Instead of
sending one (identical) block with multiple signatures from multiple users, the
mediator sends the aggregated signature with the block and deletes the local
copy. The metadata of the deduplication process is stored locally and in the
cloud. The TPA checks the data integrity on behalf of the users or the mediator
upon request. To do so, it sends a challenge message to the cloud server to make
sure that the cloud has retained the data properly. To generate that challenge,
the TPA picks a random c-element subset of the set [1, n]. For each element, the
TPA chooses a random value. The challenge message specifies the positions of
the blocks required to be checked. The cloud server generates a proof of data
storage correctness and sends it to the TPA. The TPA verifies the proof using a
verification equation.

38 N. Alkhojandi and A. Miri

2.3 Design Goals:

1. Public audibility: allow the TPA to verify the correctness of the stored data
in the cloud.

2. Storage correctness: ensure that the cloud cannot cheat and pass the auditing
process without having stored the data intact.

3. Client-side deduplication at the block-level: allow the Mediator to eliminate
duplicated blocks before sending the data to the cloud.

4. Privacy Preservation: ensure that the TPA cannot learn anything about con-
tent of the stored data during the audit process.

5. Lightweight: provide the scheme with low communication and computational
overheads.

6. Batch auditing: allow the TPA to perform multiple auditing tasks at the same
time.

We design two protocols that satisfy these goals. The first protocol provides the
first five goals, whereas the second protocol described in Sect. 3.3 also provides
support for batch auditing.

3 Proposed Protocols

For the sake of clarity, we begin with the case where two users have identical
files. Then, we extend this case to where the two users have identical blocks of
(possibly different) files.

Scheme Details. Let G1, G2, and GT be multiplicative cyclic groups of prime
order p, and e : G1 × G2 → GT be a bilinear map. Let g be a generator of G2.
H(·) is a secure map-to-point hash function H:{0, 1}∗ → G1, and h(·) is a hash
function h: GT → Zp. We define the users as U = {u1, . . . , um}. User ui has files
Fi. The blocks are denoted by mi,j where 1 ≤ i ≤ k and 1 ≤ j ≤ n, for some k
and n.

3.1 Case 1: Two Users Have the Same File

Suppose we have two users who have the same file (same blocks) as described
in Fig. 2. With no interaction, they send their files and signatures to the medi-
ator who performs a block-level deduplication on the files and aggregates the
signatures of the duplicate blocks. Then the mediator sends the files and the
signatures after the deduplication process to the cloud. Assuming that user 1
asks the TPA to check the correctness of his files, we have the following:

Fig. 2. Case 1: Two users have the same file

Privacy-Preserving Public Auditing in Cloud Computing 39

– Setup phase: KeyGen: Each user ui selects a random xi in Zp, computes yi =
gxi , and selects a random ui inG1. The user ui’s public and private keys (ski, pki)
are set to be (xi, (yi, g, ui, e(ui, yi))). SigGen: Each user computes the signature
of each block of his file as σi,j = (H(mi,j) · u

mi,j

i)xi ∈ G1. Then each user ui

sends (Fi = {mi,j}, {σi,j}) to the Mediator. Dedup: The deduplication is done
by the Mediator at the block-level. The mediator calculates the hash value of
each block and compares them to identify the duplicates. Then it calculates the
aggregated signatures of the duplicated blocks as σj =

∏
σi,j . For example,

σA =
∏

i∈L(H(mA) · umA
i)xi and so on to the end of the file. After that, he

sends (F = {mj}, {σj}, L) to the cloud, where L = the subgroup of users.
– Audit phase: the TPA can check the integrity of files/blocks on behalf of

the users/mediator by sending chal = {(s, vs)} to the cloud server s ∈ I =
{s1, . . . , sc} for the set of blocks [1, n]. GenProof: the cloud server selects
r ∈ Zp, and computes Ri = e(ui, yi)r ∈ GT . CS also computes R = R1·. . .·Rm,
L = y1‖ . . . ‖ym, and γ = h(R‖L). CS computes as well μ′ =

∑
s∈I vs ·ms, μ =

r+γμ′, and σ =
∏

s∈I σvs
s . Then CS sends {μ, σ, {H(ms)},R, L} to the TPA.

VerifyProof: the TPA computes γ = h(R‖L), and verifies {μ, σ, {H(ms)},
R, L} via:

R · e(σγ , g) ?=
∏
i∈L

e((
∏
s∈I

(H(ms)vs)γ · uμ
i , yi) (1)

The correctness of the above verification equation is elaborated as follows:

R · e(σγ , g) =
∏
i∈L

e(ui, yi)r · e((
∏
s∈I

σvs
s)γ , g)

=
∏
i∈L

e(ui, yi)r · e(
∏
s∈I

(
∏
i∈L

((H(ms) · ums
i)xi)vs)γ , g)

=
∏
i∈L

e(ui, yi)r ·
∏
i∈L

e(
∏
s∈I

(H(ms)vs · uvs·ms
i)γ , yi)

=
∏
i∈L

e(
∏
s∈I

(H(ms)vs)γ · uμ′γ+r
i , yi)

=
∏
i∈L

e((
∏
s∈I

(H(ms)vs)γ · uμ
i , yi)

3.2 Case 2: Two Users Have Identical Blocks

Suppose we have two users who have some identical blocks as described in Fig. 3.
With no interaction, they send their files and signatures to the mediator. The lat-
ter performs a block-level deduplication on the files and aggregates the signatures
of the duplicate blocks. Then, the mediator sends the files and the signatures
after the deduplication process to the cloud. Assuming that user 1 asks the TPA
to check the correctness of his file (e.g. F1), we have the following:

– Setup phase: KeyGen, SigGen, and Dedup as in the previous case. The medi-
ator calculates the aggregated signatures of the duplicated blocks as σj =∏

σi,j . For example, σA =
∏

i∈L(H(mA) · umA
i)xi , σB = (H(mB) · umB

1)x1

since this block is owned only by User 1, and σC =
∏

i∈L(H(mC) · umC
i)xi

40 N. Alkhojandi and A. Miri

Fig. 3. Case 2: Two users have some identical blocks

– Audit phase: the TPA can check the integrity of files/blocks on behave of
the users/mediator by sending chal = {(s, vs)} to the cloud server s ∈ I =
{s1, . . . , sc} for the set of blocks [1, n]. GenProof: the cloud server selects
r ∈ Zp, and computes Ri = e(ui, yi)r ∈ GT . CS also computes R = R1 ·
. . . · Rm , L = y1‖ . . . ‖ym, and γ = h(R‖L). CS computes μ′

i =
∑

s∈I vs ·
ms, μi = r + γμ′

i for each user ui, and σ =
∏

s∈I σvs
s . Then CS sends

{{μi}, σ, {H(ms)},R, L} to the TPA. VerifyProof: the TPA computes γ =
h(R‖L), and verifies {{μi}, σ, {H(ms)},R, L} via:

R · e(σγ , g) ?=
∏
i∈L

e((
∏
s∈I

(H(ms)vs)γ · uμi

i , yi) (2)

The correctness of the above verification equation is elaborated as follows:

R · e(σγ , g) =
∏
i∈L

e(ui, yi)r · e((
∏
s∈I

σvs
s)γ , g)

=
∏
i∈L

e(ui, yi)r · e((
∏
s∈I

(H(ms) · ums
i)xi)vs)γ , g)

=
∏
i∈L

e(ui, yi)r ·
∏
i∈L

e(
∏
s∈I

(H(ms)vs)γ) · uvs·ms·γ
i , yi)

=
∏
i∈L

e(
∏
s∈I

(H(ms)vs)γ · u
μ′
i·γ+r

i , yi)

=
∏
i∈L

e((
∏
s∈I

(H(ms)vs)γ · uμi

i , yi)

3.3 Support for Batch Auditing

The TPA may handle multiple auditing tasks from different users. It may be
inefficient to treat them as individual tasks rather than batch them together

Fig. 4. Batch auditing of case 1

Privacy-Preserving Public Auditing in Cloud Computing 41

and audit at the same time. Suppose we have K auditing tasks on K distinct
files from K different users. By modifying the protocols in the one user case, the
aggregation of K verification equations is obtained.

Batch Auditing of Case 1: Two Users Have the Same File. Suppose there
are L users who want to check K distinct files by delegating K auditing tasks.
Each auditing task consists of two users who have the same file as described
in Fig. 4. User 1 delegates auditing Task 1 (k = 1) of file F1, User 3 delegates
auditing Task 2 (k = 2) of file F2, and User 5 delegates auditing Task 3 (k = 3)
of file F3. Each auditing task has two users, so L = 2 for each task k. In general,
each user k has a file Fk = {mk,1, . . . , mk,n}, which is also owned by another
user uk,i, where k ∈ {1, . . . , K} and i ∈ {1, . . . , L}.

Setup phase: Each user uk,i selects a random xk,i → Zp, computes yk,i = gxk,i ,
and selects a random uk,i → G1. Denote the secret key and the public key of each
user uk,i as (skk,i, pkk,i) = (xk,i, (yk,i, g, uk,i, e(uk,i, yk,i))). Then, each user com-
putes the signature of each block of his file as σk,i,j = (H(mk,i,j)·umk,i,j

k,i)xk,i ∈ G1.
Then it sends (Fk,i = {mk,i,j}, {σk,i,j}) to the Mediator. The Mediator calculates
the hash value of each block and compares them to identify the duplicates. Then
it calculates the aggregated signatures of the duplicate blocks as σk,j =

∏
σk,i,j .

After that, the Mediator sends (Fk = {mk,j}, {σk,j}, Lk) to the cloud, where L is
the subgroup of users.

Audit phase: the TPA sends the audit challenge chal = {(s, vs)} to the
cloud server for auditing data files of all K users. Upon receiving chal, the
cloud server selects r ∈ Zp and computes Rk,i = e(uk,i, yk,i)r ∈ GT . The cloud
server also computes R = Rk,1 · . . . · RK,m, and L = yk,1‖ . . . ‖yK,m. Then
it computes γ = h(R‖L). The cloud generates the proof as follows: μ′

k =∑
s∈I vs · mk,s, μk = r + γμ′

k, and σk =
∏

s∈I σvs

k,s. Then the cloud sends
{{μk}, {σk}, {H(mk,s)},R, {Lk}} to the TPA. To verify the response, the TPA
computes γ = h(R‖L) Next, he verifies {{μk}, {σk}, {H(mk,s)},R, {Lk}} via:

R · e(
K∏

k=1

σγ
k , g) ?=

K∏
k=1

(
∏
i∈L

e((
∏
s∈I

(H(mk,s)vs)γ · uμk

k,i, yk,i)) (3)

The correctness of the above verification equation is elaborated as follows:

R · e(
K∏

k=1

σγ
k , g) = Rk,i · . . . · RK,m ·

K∏
k=1

e(σγ
k , g)

=
K∏

k=1

(
∏
i∈L

Rk,i · e(σγ
k , g))

=
K∏

k=1

(
∏
i∈L

e(uk,i, yk,i)r · e(σγ
k , g))

=
K∏

k=1

(
∏
i∈L

e((
∏
s∈I

(H(mk,s)vs)γ · uμk

k,i, yk,i))

42 N. Alkhojandi and A. Miri

Batch Auditing of Case 2: Two Users Have Identical Blocks. Suppose
there are L users who want to check K distinct files by delegating K audit-
ing tasks. Each auditing task consists of two users who share some blocks as
described in Fig. 5. User 1 delegates auditing Task 1 of file F1, User 2 delegates
auditing Task 2 of file F2, and User 3 delegates auditing Task 3 of file F3. In
general, each user k has a file Fk = {mk,1, . . . , mk,n}, and some of these blocks
are also owned by another user uk,i, where k ∈ {1, . . . , K} and i ∈ {1, . . . , L}.

Setup phase: As in the previous case.
Audit phase: the TPA sends the audit challenge chal = {(s, vs)} to the

cloud server for auditing data files of all L users. Upon receiving chal, the cloud
server selects r ∈ Zp and computes Rk,i = e(uk,i, yk,i)r ∈ GT . The cloud server
also computes R = Rk,1 · . . . · RK,m, and L = yk,1‖ . . . ‖yK,m. Then it com-
putes γ = h(R‖L). The cloud generates the proof as follows: computes the
linear combination of sampled blocks for each user in L in each task in K as
μ′

k,i =
∑

s∈I vs · mk,s, μk,i = r + γμ′
k,i. Then it computes σk =

∏
s∈I σvs

k,s for
each task in K. Next, the cloud sends {{μk,i}, {σk}, {H(mk,s)},R, {Lk}} to the
TPA. To verify the response, the TPA computes γ = h(R‖L) Next, it verifies
{{μk,i}, {σk}, {H(mk,s)},R, {Lk}} via:

R · e(
K∏

k=1

σγ
k , g) ?=

K∏
k=1

(
∏
i∈L

e((
∏
s∈I

(H(mk,s)vs)γ · u
μk,i

k,i , yk,i)) (4)

The correctness of the above verification equation is elaborated as follows:

R · e(
K∏

k=1

σγ
k , g) = Rk,i · . . . · RK,m ·

K∏
k=1

e(σγ
k , g)

=
K∏

k=1

(
∏
i∈L

Rk,i · e(σγ
k , g))

=
K∏

k=1

(
∏
i∈L

e(uk,i, yk,i)r · e(σγ
k , g))

=
K∏

k=1

(
∏
i∈L

e((
∏
s∈I

(H(mk,s)vs)γ · u
μk,i

k,i , yk,i))

Fig. 5. Batch auditing of case 2

Privacy-Preserving Public Auditing in Cloud Computing 43

4 Evaluation

4.1 Security Analysis

The security guarantees of our proposed schemes are based on analyzing (a) the
storage correctness and (b) the privacy preservation of these schemes.

For the storage correctness, we have to provide proofs that the cloud server
can only compute the correct reply to the TPA inquiry if the integrity of the data
stored on the cloud is preserved. Such computations will be based on file or block
contents in cases 1 and 2. So, although duplicate blocks or files are removed in
our scheme, the reliance on the content implies that the security proofs given in
[1,4] are directly applicable. In particular, we refer the reader to Sect. 4 of [4] where
different cases for the cloud server behaviour acting as an adversary are discussed.

Similar arguments for the proof of the privacy-preserving property of our
schemes can be made. That is, the proof generated by the cloud server and sent
to the TPA is based on the data content. Hence, if the TPA can learn about the
user’s data content based on the proof generated by the cloud server, it can also
do the same for non-duplicated data violating the proof of theorems 2 and 3 in [1].

4.2 Performance Analysis

The experiment was conducted using C code on a Linux system with an Intel
Core i3 processor running at 2.13 GHz, 4 GB of RAM, and a 5400 RPM Toshiba
320 GB Serial ATA drive with a 8 MB buffer. We also used the Pairing-Based
Cryptography (PBC) library version 0.5.13, and MNT elliptic curve with base
field size 159 bits and the embedding degree 6.

Cost Analysis. We estimated the computation cost in terms of basic crypto-
graphic operations [1] (see Table 1 for notations).

Table 1. Notation of cryptographic operations

Hasht
G Hash t takes values in group G

Addt
G t additions in group G

MulttG t multiplications in group G

Expt
G(�) t exponentiations gai , for g ∈ G, |ai| = �

m-MultExp1
G(�) t m-term exponentiations

∏m
i=1 gai

PairtG1,G2 t pairings e(ui, gi), where ui ∈ G1, gi ∈ G2

m-MultPairtG1,G2 t m-term pairings
∏m

i=1 e(ui, gi)

CS Computation:

– CS selects r ∈ Zp, |p| = 160 bits.
– For each user, CS computes Ri = e(ui, yi)r ∈ GT , so the corresponding com-

putation cost is Ri = Exp1
GT

(|p|), and the size of Ri close to 960 bits.

44 N. Alkhojandi and A. Miri

– CS computes γ = h(R‖L), so the corresponding computation cost is γ =
Hash1

Zp

– In case 1, CS computes μ′ =
∑

s∈I vs·ms and μ = r+γμ′, so the corresponding
computation cost for μ′ is Multc

Zp
+ Addc

Zp
and for μ si Add1

Zp
+ Mult1

Zp
.

However, in Case 2, CS computes for each user: μ′
i =

∑
s∈I vs · ms and μi =

r + γμ′
i, so the corresponding computation cost for μ′

i is Multc
Zp

+ Addc
Zp

and
for μi is Add1

Zp
+ Mult1

Zp
.

– CS computes σ =
∏

s∈I σvs
s , so the corresponding computation cost for σ is

-MultExp1
G1

(|vi|)

TPA Computation (Single Auditing):

– The TPA computes γ = h(R‖L), so the corresponding computation cost for
γ is Hash1

Zp
.

– The TPA computes R · e(σγ , g), so the corresponding computation cost is
Exp1

G1
(|p|) + Pair1

G1,G2
+ Mult1

GT
.

– In Case 1, the TPA computes
∏

i∈L e((
∏

s∈I(H(ms)vs)γ · uμ
i , yi), so the

corresponding computation cost is (c−MultExp1
G1

(|vi|))+Exp2L
G1

+MultL
G1

+
L − MultPair1

G1,G2
. However, in Case 2 the TPA computes

∏
i∈L e((

∏
s∈I

(H(ms)vs)γ ·uμi

i , yi), so the corresponding computation cost is L(c−MultExp1
G1

(|vi|)) + Exp2L
G1

+ MultL
G1

+ L − MultPair1
G1,G2

TPA Computation (Batch auditing):

– The TPA computes R· e(∏K
k=1 σγ

k , g), so the corresponding computation cost
is K − MultExp1

G1
(|p|) + Pair1

G1,G2
+ Mult1

GT

– In Case 1, theTPA computes
∏K

k=1(
∏

i∈L e((
∏

s∈I(H(mk,s)vs)γ ·uμk

k,i, yk,i)), so
the corresponding computation cost is K(c − MultExp1

G1
(|vi|)) + Exp2L

G1
+

MultL
G1

+L−MultPair1
G1,G2

+MultK−1
GT

. However, in Case 2 the TPA computes∏K
k=1(

∏
i∈L e((

∏
s∈I(H(mk,s)vs)γ ·uμk,i

k,i , yk,i)), so the corresponding computa-
tion cost is L(c−MultExp1

G1
(|vi|))+Exp2L

G1
+MultL

G1
+L−MultPair1

G1,G2
+

MultK−1
GT

Experiment 1: Suppose we have two users who have the same files, case 1 for
simplicity, and we want to check 100 blocks. Each auditing task consists of one
file (e.g. “coding.pdf” with size of 513.4 KB and 125 blocks). This file is owned
by two users. Table 2 shows the computation time of the Mediator, the CS,
and the TPA in seconds when the TPA checks 100 blocks of the file. The CS
computed time is the time of generating the proof, while the TPA time is the
time of verifying the proof. In Fig. 6, the chart shows that the computation time
of (the Mediator, the CS, and the TPA) are increased by increasing the number
of blocks inthe file. However, the computation time of checking 100 blocks of the
file consumed by the TPA is slightly larger than the CS computation time.

Privacy-Preserving Public Auditing in Cloud Computing 45

Table 2. The computation times of the mediator, the CS, and the TPA when 100
blocks are checked. Times in seconds

File name Size Number Mediator CS com- TPA computa-

of blocks computa- putation tation time

tion time time

coding.pdf 513.4 KB 125 0.15 0.27 0.30

1.pdf 1.7 MB 415 1.61 0.47 0.49

4.pdf 4.8 MB 1181 12.76 0.91 0.99

6.pdf 6.3 MB 1536 21.76 1.13 1.22

7.ppt 7.1 MB 1725 26.69 1.27 1.37

Fig. 6. Comparison of the time consumed by the mediator, the CS, and the TPA when
100 blocks are checked of each file in each auditing task. Each file is owned by two
users

Batch Auditing Efficiency. Due to the batch auditing process, the TPA
can perform multiple auditing tasks at the same time. First we compare the
computation cost between the single auditing task and the batch auditing task
in order to test whether the batch auditing process is more efficient than multiple
processes of the single task. Table 3 shows the computational cost of the Audit
Phase of the single and Batch auditing in Case 1, for simplicity. Precisely, we
compare the computational cost of the verification equations of both methods
(Eqs. 1 and 3). The HashZp

operation is computed more often in the single task
than the batch task. However, it is negligible and we may ignore it. There are
more pairing operations in the Right Hand Side (RHS) of the single verification
equation than the in Batch auditing equation. Moreover, the Left Hand Side
(LHS) of both ways is almost the same except that the batch auditing has
MultGT

.
The author of [5] computed the time needed for the mathematical operations

in pairing groups using the CHARM benchmarking suite. Table 4 shows the
computation time in seconds of multiplication, exponentiation, and pairing over
type D ellipt ic curve. We use the table to compute the computational cost of the

46 N. Alkhojandi and A. Miri

Table 3. Comparison of the computational cost between the single and batch auditing
tasks in the audit phase. Where K = number of tasks, and L = consists of the number
of subgroup of users in each task

equations above and transfer Table 3 to computed times in Table 5. The latter
table shows that the computation time of the LHS of both methods is almost
the same. On the other hand, the computation time of the RHS of the batch
auditing when K > 1 is less than computation time of the single task, see Fig. 7.

In summary, the batch auditing process reduces the computational cost of
the TPA side by decreasing the pairing operations, which is the most expensive

Table 4. Computation time for mathematical operations in pairing groups (in seconds)

MultG1 2.558 × 10−6

MultG2 2.360 × 10−5

MultGT 6.992 × 10−6

ExpG1 5.895 × 10−5

ExpG2 5.314 × 10−3

ExpGT 1.100 × 10−3

Pairing 3.798 × 10−3

Privacy-Preserving Public Auditing in Cloud Computing 47

Table 5. Comparison of the computational time between the single and the batch
auditing tasks in the audit phase, where K = number of tasks, and L = consists of the
number of subgroups of users in each task. Times are in seconds.

Single auditing task Batch auditing task

RHS LHS RHS LHS

K = 1, L = 2 3.864 × 10−3 7.851 × 10−3 3.864 × 10−3 7.851 × 10−3

K = 1, L = 3 3.864 × 10−3 1.178 × 10−2 3.864 × 10−3 1.178 × 10−2

K = 2, L = (2,2) 7.728 × 10−3 1.570 × 10−2 3.928 × 10−3 1.571 × 10−2

K = 3, L = (2,3,2) 1.159 × 10−2 2.748 × 10−2 3.990 × 10−3 2.749 × 10−2

K = 4, L = (3,3,2,2) 1.546 × 10−2 3.925 × 10−2 4.051 × 10−3 3.928 × 10−2

Fig. 7. Comparison of the computational time in the RHS of the verification equations
between the single and the batch auditing tasks

operation according to Table 4, from (L+1), as required in the single user cases,
to (Lk + . . . + LK + 1).

5 Conclusions

In this paper, we have proposed a privacy-preserving public auditing system with
data deduplication that provides data integrity and storage efficiency in cloud
computing. The proposed protocol uses a two-level architecture that utilizes a
mediator to perform a client-side cross-user deduplication. The mediator also
aggregated multi-user signatures for duplicate blocks of data. Our protocol is
computationally lightweight, and is proven secure in a random oracle model.
The construction of the protocol also allows for an extension to support a batch
auditing process that can further improve overhead costs.

48 N. Alkhojandi and A. Miri

References

1. Wang, C., Chow, S., Wang, Q., Ren, K., Lou, W.: Privacy-preserving public audit-
ing for secure cloud storage. IEEE Trans. Comput. 62(2), 362–375 (2013)

2. Harnik, D., Pinkas, B., Shulman-Peleg, A.: Side channels in cloud services: dedu-
plication in cloud storage. IEEE Secur. Priv. 8(6), 40–47 (2010)

3. Soghoian, C.: How dropbox sacrifices user privay for cost savings, April 2011.
http://paranoia.dubfire.net/2011/04/how-dropbox-sacrifices-user-privacy-for.
html. Accessed 10 Aug 2014

4. Shacham, H., Waters, B.: Compact proofs of retrievability. In: Pieprzyk, J. (ed.)
ASIACRYPT 2008. LNCS, vol. 5350, pp. 90–107. Springer, Heidelberg (2008)

5. Martin, R.: Group selection and key management strategies for ciphertext-policy
attribute-based encryption. Master’s thesis, Rochester Institute of Technology,
New York, August 2013

6. Ren, K., Lou, W., Li, J.: Enabling public auditability and data dynamics for storage
security in cloud computing. IEEE Trans. Parallel Distrib. Syst. 22(5), 847–859
(2011)

7. Erway, C., Kupcu, A., Papamanthou, C., Tamassia, R.: Dynamic provable data
possession. In: Proceedings of the 16th ACM Conference on Computer and Com-
munications Security (CCS 2009), pp. 213–222. ACM, New York (2009)

8. Zhu, Y., Wang, H., Hu, Z., Ahn, G.-J., Hu, H., Yau, S.: Dynamic audit services for
integrity verification of outsourced storages in clouds. In: Proceedings of the 2011
ACM Symposium on Applied Computing (SAC 2011), pp. 1550–1557 (2011)

9. Yuan, J., Yu, S.: Secure and constant cost public cloud storage auditing with
deduplication. presented at IACR Cryptology ePrint Archive, 2013, pp. 149–149
(2013)

10. Boldyreva, A.: Threshold signatures, multisignatures and blind signatures based
on the Gap-Diffie-Hellman-Group signature scheme. In: Desmedt, Y.G. (ed.) PKC
2003. LNCS, vol. 2567, pp. 31–46. Springer, Heidelberg (2003)

11. Ateniese, G., Di Pietro, R., Mancini, L., Tsudik, G.: Scalable and efficient provable
data possession. In: Proceedings of the 4th International Conference on Security
and Privacy in Communication Netowrks (SecureComm 2008), pp. 1–10 (2008)

12. Wang, C., Wang, Q., Ren, K., Cao, N., Lou, W.: Toward secure and dependable
storage services in cloud computing. IEEE Trans. Serv. Comput. 5(2), 220–232
(2012)

http://paranoia.dubfire.net/2011/04/how-dropbox-sacrifices-user-privacy-for.html
http://paranoia.dubfire.net/2011/04/how-dropbox-sacrifices-user-privacy-for.html

A Maximum Variance Approach for Graph
Anonymization

Hiep H. Nguyen(B), Abdessamad Imine, and Michaël Rusinowitch

LORIA/INRIA Nancy-Grand Est, Villers-lès-Nancy, France
{huu-hiep.nguyen,michael.rusinowitch}@inria.fr,

abdessamad.imine@loria.fr

Abstract. Uncertain graphs, a form of uncertain data, have recently
attracted a lot of attention as they can represent inherent uncertainty
in collected data. The uncertain graphs pose challenges to conventional
data processing techniques and open new research directions. Going in
the reserve direction, this paper focuses on the problem of anonymizing
a deterministic graph by converting it into an uncertain form. The paper
first analyzes drawbacks in a recent uncertainty-based anonymization
scheme and then proposes Maximum Variance, a novel approach that
provides better tradeoff between privacy and utility. Towards a fair com-
parison between the anonymization schemes on graphs, the second con-
tribution of this paper is to describe a quantifying framework for graph
anonymization by assessing privacy and utility scores of typical schemes
in a unified space. The extensive experiments show the effectiveness and
efficiency of Maximum Variance on three large real graphs.

1 Introduction

Graphs represent a rich class of data observed in daily life where entities are rep-
resented by vertices and their connections are characterized by edges. With the
appearance of increasingly complex networks, the research community requires
large and reliable graph data to conduct in-depth studies. However, this require-
ment usually conflicts with privacy protection of data contributing entities.
Specifically in social networks, naive approaches like removing user ids from
social graphs are not effective, leaving users open to privacy risks. Structural
attacks to re-identify or de-anonymize users are shown feasible [1,10]. Recent
surveys on security and privacy issues in OSNs (e.g. [9]) enumerate real-world
breaches and possible defenses. Anonymization is such an effective countermea-
sure with many schemes proposed recently [4–6,12,20,22,25,26].

Given a social graph, the existing anonymization methods fall into four main
categories. The first category includes random additions, deletions and switches
of edges to prevent the re-identification of nodes or edges. The methods of sec-
ond category provide k-anonymity [19] by deterministic node/edge additions or
deletions, assuming attacker’s background knowledge regarding some property
of its target node. The methods falling in the third category assign probabili-
ties to edges to add uncertainty to the true graph. Finally, the fourth class of
c© Springer International Publishing Switzerland 2015
F. Cuppens et al. (Eds.): FPS 2014, LNCS 8930, pp. 49–64, 2015.
DOI: 10.1007/978-3-319-17040-4 4

50 H.H. Nguyen et al.

techniques cluster nodes into super nodes of size at least k. Note that the last
two classes of schemes induce possible world models, i.e., we can retrieve sample
graphs that are consistent with the anonymized output graph.

The third category is the most recent class of methods which leverage the
semantics of edge probability to inject uncertainty to a given deterministic graph,
converting it into an uncertain one. In [2], Boldi et al. introduced the concept
of (k,ε)-obfuscation, where k ≥ 1 is a desired level of obfuscation and ε ≥ 0 is
a tolerance parameter. However, this approach exposes several shortcomings in
the selection of potential edges and the formulation of minimizing the standard
deviation of the sampling distribution. We clarify these points in Sect. 3.2.

In this paper, we introduce Maximum Variance (MV) approach based on
two crucial observations. First, we observe that nodes gain better privacy if
their incident uncertain edges constitute large degree variance. To avoid the
trivial solution of all edges having probabilities 0.5 and to keep the expected
node degrees for utility, we formulate a quadratic program with constraints that
the expected node degrees should be as in the true graph. Second observation
emerges naturally from the formation of real networks that display community
structure where new links are largely formed by transitivity. Therefore, we pro-
pose adding potential edges only by distance 2 (friend-of-friend). The extensive
experiments show the elegance and effectiveness of MV over (k, ε)-obfuscation.
We believe that the present work suggests an extensible approach for graph
anonymization. Our contributions are summarized as follows:

– We analyze several disadvantages in the previous work [2], showing that their
pursuit of minimum standard deviation σ has high impact on privacy (Sect. 3).

– We propose MV, a novel anonymization scheme also based on the semantics
of uncertain graphs (Sects. 4 and 5). MV provides better privacy and utility
by using two key observations. It proposes nearby potential edges and tries to
maximize the variance of node degrees by a simple quadratic program.

– Towards a fair comparison between the anonymization schemes on graphs, this
paper describes a generic quantifying framework by putting forward the dis-
tortion measure (Sect. 6). Rather than Shannon entropy-based or min entropy-
based privacy scores with a parameter k as in previous work, the framework
utilizes the incorrectness concept in [17] to quantify the re-identification risks
of nodes. As for the utility score, we select typical graph metrics [2,23].

– We evaluate the MV approach on three large real graphs and show its out-
performance over (k, ε)-obfuscation (Sect. 7).

2 Related Work

2.1 Anonymization of Deterministic Graphs

There is a vast literature on graph perturbation that deserves a survey. In this
section, we enumerate only several groups of ideas that are related to our pro-
posed scheme.

A Maximum Variance Approach for Graph Anonymization 51

Anonymizing Unlabeled Vertices for Node Privacy. In unlabeled graphs,
node identifiers are numbered in an arbitrary manner after removing their labels.
The attacker aims at reidentifying nodes solely based on their structural infor-
mation. For this line of graphs, node privacy protection implies the link pri-
vacy. Techniques of adding and removing edges, nodes can be done randomly
or deterministically. Random perturbation is a naive approach and usually used
as a baseline method. More guided approaches consist of k-neighborhood [25],
k-degree [5,6,12], k-automorphism [26], k-symmetry [22], k-isomorphism [4] and
k2-degree [20]. These schemes provide k-anonymity [19] semantics and most of
them rely on heuristics to avoid combinatorial intractability, except optimal solu-
tions based ondynamic programming [5,6,12].K-automorphism, k-symmetry, and
k-isomorphism can resist any structural attacks by exploiting the inherent symme-
try in graph.K-symmetry partitions a graph into automorphic orbits andduplicate
subgraphs. k2-degree addresses the friendship attacks, based on the vertex degree
pair of an edge. Ying and Wu [23] propose a spectrum preserving approach which
wisely chooses edge pairs to switch in order to keep the spectrum of the adjacency
matrix not to vary too much. The clearest disadvantage of the above schemes is
that they are inefficient, if not infeasible, on large graphs.

Apart from the two above categories, perturbation techniques have other
categories that capitalize on possible world semantics. Hay et al. [10] generalize
a network by clustering nodes and publish graph summarization of super nodes
and super edges. The utility of this scheme is limited. In another direction, Boldi
et al. [2] take the uncertain graph approach. With edge probabilities, the output
graph can be used to generate sample graphs by independent edge sampling.
Our approach belongs to this class of techniques with different formulation and
better privacy/utility tradeoff. Note that in k-symmetry [4], the output sample
graphs are also possible worlds of the intermediate symmetric graph.

Anonymizing Labeled Vertices for Link Privacy. If nodes are labeled, we
are only concerned about the link disclosure risk. For example, Mittal et al. [13]
employ an edge rewiring method based on random walks to keep the mixing time
tunable and prevent link re-identification by Bayesian inference. This method is
effective for social network based systems, e.g. Sybil defense, DHT routing. Link
privacy is also described in [23] but only for Random Switch, Random Add/Del.

Min Entropy, Shannon Entropy and Incorrectness Measure. We now
survey some commonly used notions of privacy metrics. Min entropy, [18] quan-
tifies the largest probability gap between the posterior and the prior over all
items in the input dataset. K-anonymity has the same semantics with the cor-
responding min entropy of log2 k. So k-anonymity based perturbation schemes
in the previous subsection belong to min entropy. Shannon entropy argued in
[3] and [2] is another choice of privacy metrics. The third metrics that we use in
MV is the incorrectness measure from location privacy research [17]. Given the
prior information (e.g. node degree in the true graph) and the posterior informa-
tion harvested from the anonymized data, incorrectness measure is the number
of incorrect guesses made by the attacker. This measure gauges the distortion
caused by the anonymization algorithm.

52 H.H. Nguyen et al.

Table 1. List of notations

Symbol Definition

G0 = (V, EG0) true graph

G = (V, E, p) uncertain graph constructed from G0

G = (V, EG) � G sample graph from G
du(G) degree of node u in G

du(G) expected degree of node u in G
np number of potential edges, i.e. |E| = |EG0 | + np

N (u) neighbors of node u in G
Δ(d) number of d-degree nodes in G

Rσ truncated normal distribution on [0,1]

re ← Rσ a sample from the distribution Rσ

pi (puv) probability of edge ei (euv)

HiG(u) signature Hi of node u in graph G

2.2 Mining Uncertain Graphs

Uncertain graphs pose big challenges to traditional mining techniques. Because of
the exponential number of possible worlds, naive enumerations are intractable.
Typical graph search operations like k-Nearest neighbor and pattern match-
ing require new approaches [15,24,27]. Those methods answer threshold-based
queries by using pruning strategies based on Apriori property of frequent pat-
terns.

3 Preliminaries

This section starts with common definitions and assumptions on uncertain graphs.
It then reveals several shortcomings in the main competitor [2]. Table 1 summa-
rizes notations used in this paper.

3.1 Uncertain Graph

Let G = (V,E, p) be an uncertain undirected graph, where p : E → [0, 1] is
the function that gives an existence probability to each edge. The common
assumption is on the independence of edge probabilities. Following the possible-
worlds semantics in relational data [7], the uncertain graph G induces a set
{G = (V,EG)} of 2|E| deterministic graphs (worlds), each is defined by a subset
of E. The probability of G = (V,EG) � G is:

Pr(G) =
∏

e∈EG

p(e)
∏

e∈E\EG

(1 − p(e)) (1)

Note that deterministic graphs are also uncertain graphs with all edges having
probabilities 1.

A Maximum Variance Approach for Graph Anonymization 53

3.2 (k, ε)-obfuscation and Its Limitations

In [2], Boldi et al. extend the concept of k-obfuscation developed in [3].

Definition 1. (k,ε)-obfuscation [2]. Let P be a vertex property, k ≥ 1 be a
desired level of obfuscation, and ε ≥ 0 be a tolerance parameter. The uncertain
graph G is said to k-obfuscate a given vertex v ∈ G with respect to P if the
entropy of the distribution YP (v) over the vertices of G is greater than or equal
to log2 k:

H(YP (v)) ≥ log2 k (2)

The uncertain graph G is a (k, ε)-obfuscation with respect to property P if it
k-obfuscates at least (1 − ε)n vertices in G with respect to P.

Given the true graph G0 (Fig. 1a), the basic idea of (k, ε)-obf (Fig. 1b) is to
transfer the probabilities from existing edges to potential (non-existing) edges.
The edge probability is sampled from the truncated normal distribution Rσ

(Fig. 1c). For each existing sampled edge e, it is assigned a probability 1 − re

where re ← Rσ and for each non-existing sampled edge e′, it is assigned a
probability re′ ← Rσ.

Table 2 gives an example of how to compute degree entropy for the uncertain
graph in Fig. 1b. Here vertex property P is the node degree. Each row in the left
table is the degree distribution for the corresponding node. For instance, v1 has
degree 0 with probability (1 − 0.8).(1 − 0.3).(1 − 0.9) = 0.014. The right table
normalizes values in each column (i.e. in each degree value) to get distributions
YP (v). The entropy H(YP (v)) for each degree value is shown in the bottom row.
Given k = 3, log2 k = 1.585, then v1, v3 with true degree 2 and v2, v4 with degree
true 1 satisfy (2). Therefore, ε = 0.

−2 −1 0 1 2

0

0.5

1

1.5

2

2.5

3

3.5

4
σ=0.1
σ=0.5
σ=1.0

Fig. 1. (a) True graph (b) An obfuscation with potential edges (dashed) (c) Truncated
normal distribution on [0,1] (bold solid curves)

While the idea is quite interesting as a guideline of how to come up with an
uncertain version of the graph, the specific approach in [2] has two drawbacks.
First, it formulates the problem as the minimization of σ. With small values of σ,
re highly concentrates around zero, so existing sampled edges have probabilities
nearly 1 and non-existing sampled edges are assigned probabilities almost 0.

54 H.H. Nguyen et al.

Table 2. The degree uncertainty for each node (left) and normalized values for each
degree (right)

By the simple rounding technique, the attacker can easily reveal the true graph.
Even if the graph owner only publishes sample graphs, re-identification attacks
are still effective. As we show in Sect. 7, the H2open risk in the uncertain graph
produced by [2] may be up to 50 % of the true graph while it is only 2 % in
our approach. Also note that in [2], the found values of σ vary in a wide range
from 10−1 to 10−8. Second, the approach in [2] does not consider the locality
(subgraph) of nodes in selecting pairs of nodes for establishing potential edges. As
shown in [8], subgraph-wise perturbation effectively reduces structural distortion.

4 Maximum Variance Approach

In this section, we present two key observations underpinning the MV approach.

4.1 Observation #1: Maximum Degree Variance

We argue that efficient countermeasures against structural attacks should hinge
on node degrees because the degree is the fundamental property of nodes in
unlabeled graphs and if a node and its neighbors have degree changed, the re-
identification risk is reduced significantly. Consequently, instead of replicating
local structures as in k-anonymity based approaches [4,12,20,22,25,26], we can
deviate the attacks by changing node degrees probabilistically. For example, node
v1 in Fig. 1a has degree 2 with probability 1.0 whereas in Fig. 1b, its degree
gets four possible values {0, 1, 2, 3} with probabilities {0.014, 0.188, 0.582, 0.216}
respectively. Generally, given edge probabilities incident to node u as p1, p2, ..
pdu(G), the degree of u is a sum of independent Bernoulli random variables, so
its expected value is

∑du(G)
i=1 pi and its variance is

∑du(G)
i=1 pi(1−pi). If we naively

target the maximum (local) degree variance without any constraints, the naive
solution is at pi = 0.5 for every incident edge i. However, such an assignment
distorts graph structure severely and deteriorates the utility. Instead, we should
use the constraint

∑du(G)
i=1 pi = du(G0). Note that the minimum variance of an

uncertain graph is 0 and corresponds to the case G has all edges being deter-
ministic, e.g. when G = G0 and in edge-switching approaches. In the following
section, we show an interesting result relating the total degree variance with
graph edit distance.

A Maximum Variance Approach for Graph Anonymization 55

4.2 Variance of Edit Distance

The edit distance between two deterministic graphs G,G′ is defined as:

D(G,G′) = |EG \ EG′ | + |EG′ \ EG| (3)

A well-known result about the expected edit distance between the uncertain
graph G and the deterministic graph G � G is:

E[D(G, G)] =
∑

G′�G
Pr(G′)D(G,G′) =

∑
ei∈EG

(1 − pi) +
∑

ei /∈EG

pi (4)

Correspondingly, the variance of edit distance is defined as

V ar[D(G, G)] =
∑

G′�G
Pr(G′)[D(G,G′) − E[D(G, G)]]2 (5)

We prove in the following Theorem that the variance of edit distance is the
sum of edge variances and does not depend on the choice of G.

Theorem 1. Assume that G(V,E, p) has k uncertain edges e1, e2, . . . , ek and G �
G (i.e. EG ⊆ E). The edit distance variance is V ar[D(G, G)] =

∑k
i=1 pi(1 − pi)

and does not depend on the choice of G.

Proof. See Appendix A.1.

4.3 Observation #2: Nearby Potential Edges

As indicated by Leskovec et al. [11], real graphs reveal two temporal evolution
properties: densification power law and shrinking diameters. Community Guided
Attachment (CGA) model [11], which produces densifying graphs, is an example
of a hierarchical graph generation model in which the linkage probability between
nodes decreases as a function of their relative distance in the hierarchy. With
regard to this observation, (k, ε)-obfuscation, by heuristically making potential
edges solely based on node degree discrepancy, produces many inter-community
edges. Shortest-path based statistics will be reduced due to these edges. MV,
in contrast, tries to mitigate the structural distortion by proposing only near-
by potential edges before assigning edge probabilities. Another evidence is from
[21] where Vazquez analytically proved that the Nearest Neighbor can explains
the power-law for degree distribution, clustering coefficient and average degree
among the neighbors. Those properties are in very good agreement with the
observations made for social graphs. Sala et al. [16] confirmed the consistency of
Nearest Neighbor model in their comparative study on graph models for social
networks.

5 Algorithms

This section describes steps of MV to convert the input deterministic graph into
an uncertain one.

56 H.H. Nguyen et al.

5.1 Overview

The intuition behind the new approach is to formulate the perturbation problem
as a quadratic programming problem. Given the true graph G0 and the number
of potential edges allowed to be added np, the scheme has three phases. The first
phase tries to partition G0 into s subgraphs, each one with ns = np/s potential
edges connecting nearby nodes (with default distance 2, i.e. friend-of-friend).
The second phase formulates a quadratic program for each subgraph with the
constraint of unchanged node degrees to produce the uncertain subgraphs sG
with maximum edge variance. The third phase combines the uncertain subgraphs
sG into G and publishes several sample graphs. The three phases are illustrated
in Fig. 2.

By keeping the degree of nodes in the perturbed graph, our approach is
similar to the edge switching approaches (e.g. [23]) but ours is more subtle as
we do it implicitly and the switching occurs not necessarily on pairs of edges.

Fig. 2. Maximum Variance approach

5.2 Graph Partitioning

Because of the complexity of exact quadratic programming (Sect. 5.3), we need
a pre-processing phase to divide the true graph G0 into subgraphs and run
the optimization on each subgraph. Given the number of subgraphs s, we run
METIS1 to get almost equal-sized subgraphs with minimum number of inter-
subgraph edges. Each subgraph has ns potential edges added before running the
quadratic program. This phase is outlined in Algorithm 1.

5.3 Quadratic Programming

By assuming the independence of edges, the total edge variance of G = (V,E, p)
for edit distance (Theorem 1) is:

V ar(E) =
|E|∑
i=1

pi(1 − pi) = |EG0 | −
|E|∑
i=1

p2i (6)

1 http://glaros.dtc.umn.edu/gkhome/views/metis.

http://glaros.dtc.umn.edu/gkhome/views/metis

A Maximum Variance Approach for Graph Anonymization 57

Algorithm 1. Partition-and-Add-Edges
Input: true graph G0 = (V, EG0), number of subgraphs s, number of potential edges

per subgraph ns

Output: list of augmented subgraphs gl
1: gl ← METIS(G0, s).
2: for sG in gl do
3: i ← 0
4: while i < ns do
5: randomly pick u, v ∈ VsG and (u, v) /∈ EsG with d(u, v) = 2
6: EsG ← EsG ∪ (u, v)
7: i ← i + 1

return gl

The last equality in (6) is due to the constraint that the expected node
degrees are unchanged (i.e.

∑du(G)
i=1 pi = du(G0)), so

∑|E|
i=1 pi is equal to |EG0 |. By

targeting the maximum edge variance, we come up with the following quadratic
program.

Minimize
|E|∑
i=1

p2i

Subject to 0 ≤ pi ≤ 1∑
v∈N (u)

puv = du(G0) ∀u

The objective function reflects the privacy goal (i.e. the sampled graphs do
not highly concentrate around the true graph) while the expected degree con-
straints aims to preserve the utility.

By dividing the large input graphs into subgraphs, we solve independent
quadratic optimization problems. Because each edge belongs to at most one
subgraph and the expected node degrees in each subgraph are unchanged, it is
straightforward to show that the expected node degrees in G0 are also fixed.

6 Quantifying Framework

This section introduces a unified framework for privacy and utility quantification
of anonymization methods in which the concept of incorrectness is central to
privacy assessment.

6.1 Privacy Measurement

We focus on structural re-identification attacks under various models of attacker’s
knowledge as shown in [10]. We quantify the privacy of an anonymized graph as
the sum of re-identification probabilities of all nodes in the graph. We differenti-
ate closed-world from open-world adversaries. For example, when a closed-world
adversary knows that Bob has three neighbors, this fact is exact. An open-world

58 H.H. Nguyen et al.

adversary, in this case, would learn only that Bob has at least three neighbors.
We consider the result of structural query Q on a node u as the node signature
sigQ(u). Given a query Q, nodes having the same signature form an equivalence
class. So given the true graph G0 and an output anonymized graph G∗, the privacy
score is measured as in the following example.

Example 1. Assuming that we have signatures of G0 and signatures of G∗ as in
Table 3, the re-identification probabilities in G∗ of nodes 1,2 are 1

3 , of nodes 4,8
are 1

2 , of nodes 3,5,6,7 are 0s. And the privacy score of G∗ is 1
3 + 1

3 + 1
2 + 1

2 +0+0+
0+0 = 1.66. Note that the privacy score of G0 is 1

3 + 1
3 + 1

3 + 1
2 + 1

2 + 1
3 + 1

3 + 1
3 = 3,

equal to the number of equivalence classes.

Table 3. Example 1

Graph Equivalence classes

G0 s1{1, 2, 3}, s2{4, 5}, s3{6, 7, 8}
G∗ s1{1, 2, 6}, s2{4, 7}, s3{3, 8}, s4{5}

We consider two privacy scores in this paper.

– H1 score uses node degree as the node signature, i.e. we assume that the
attacker knows apriori degrees of all nodes.

– H2open uses the set (not multiset) of degrees of node’s friends as the node
signature. For example, if a node has 6 neighbors and the degrees of those
neighbors are {1, 2, 2, 3, 3, 5}, then its signature for H2open attack is {1, 2, 3, 5}.

Higher-order scores like H2 (exact multiset of neighbors’ degrees) or H3 (exact
multiset of neighbor-of-neighbors’ degrees) induce much higher privacy scores of
the true graph G0 (in the order of |V |) and represent less meaningful metrics for
privacy. The following proposition claims the automorphism-invariant property
of structural privacy scores.

Proposition 1. All privacy scores based on structural queries [10] are auto-
morphism-invariant, i.e. if we find a non-trivial automorphism G1 graph of G0,
the signatures of all nodes in G1 are unchanged.

Proof. G1 is an automorphism of G0 if there exists a permutation π : V → V such
that (u, v) ∈ EG0 ↔ (π(u), π(v)) ∈ EG1 . For H1 score, it is straightforward to
verify that H1G1(u) = H1G0(π(u)) according to the definition of π.

For H2open score, we prove that ∀dv ∈ H2G0(u) we also have dv ∈ H2G1(π(u))
and vice versa. Because dv ∈ H2G0(u) → (u, v) ∈ EG0 → (π(u), π(v)) ∈ EG1 .
Note that dπ(v) = dv (H1 unchanged), so dv ∈ H2G1(π(u)).

The reverse is proved similarly. This argument can also apply to any structural
queries (signatures) in [10]. �

6.2 Utility Measurement

Following [2] and [23], we consider three groups of statistics for utility mea-
surement: degree-based statistics, shortest-path based statistics and clustering
statistics.

A Maximum Variance Approach for Graph Anonymization 59

Degree-Based Statistics

– Number of edges: SNE = 1
2

∑
v∈V dv

– Average degree: SAD = 1
n

∑
v∈V dv

– Maximal degree: SMD = maxv∈V dv

– Degree variance: SDV = 1
n

∑
v∈V (dv − SAD)2

– Power-law exponent of degree sequence: SPL is the estimate of γ assuming
the degree sequence follows a power-law Δ(d) ∼ d−γ

Shortest Path-Based Statistics

– Average distance: SAPD is the average distance among all pairs of vertices
that are path-connected.

– Effective diameter: SED is the 90-th percentile distance among all path-
connected pairs of vertices.

– Connectivity length: SCL is defined as the harmonic mean of all pairwise
distances in the graph.

– Diameter: SDiam is the maximum distance among all path-connected pairs of
vertices.

Clustering Statistics

– Clustering coefficient: SCC = 3NΔ

N3
where NΔ is the number of triangles and

N3 is the number of connected triples.

All of the above statistics are computed on sample graphs generated from
the uncertain output G. In particular, to estimate shortest-path based measures,
we use Approximate Neighbourhood Function (ANF) [14]. The diameter is lower
bounded by the longest distance among all-destination bread-first-searches from
1,000 randomly chosen nodes.

7 Evaluation

In this section, our evaluation aims to show the effectiveness and efficiency of
the MV approach and verify its outperformance over (k, ε)-obfuscation. The
effectiveness is measured by privacy scores (lower are better) and the relative
error of utility (lower are better). The efficiency is measured by the running time.
All algorithms are implemented in Python and run on a desktop PC with Intel�

Core i7-4770@ 3.4 Ghz, 16 GB memory. We use MOSEK 2 as the quadratic solver.
Three large real-world datasets are used in our experiments3. dblp is a co-

authorship network where two authors are connected if they publish at least
one paper together. amazon is a product co-purchasing network. If a product
i is frequently co-purchased with product j, the graph contains an undirected
edge from i to j. youtube is a video-sharing web site that includes a social
2 http://mosek.com/.
3 http://snap.stanford.edu/data/index.html.

http://mosek.com/
http://snap.stanford.edu/data/index.html

60 H.H. Nguyen et al.

0 0.1 0.2 0.3 0.4
0

20

40

60

80

100

120

ratio of replaced edges

H
1

sc
or

e

dblp
amazon
youtube

Fig. 3. H1 score

0 0.1 0.2 0.3 0.4
0

1000

2000

3000

4000

H
2 op

en
 s

co
re

ratio of replaced edges

dblp
amazon
youtube

Fig. 4. H2open score

0 0.1 0.2 0.3 0.4
0

0.02

0.04

0.06

0.08

0.1

ratio of replaced edges

re
l.e

rr

dblp
amazon
youtube

Fig. 5. Relative error

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

100

200

300

400

500

600

700

800

dblp (1−5) amazon (6−10) youtube (11−15)

ru
nt

im
e

(s
ec

)
partition
prepare subproblems
solve
combine

n
p

200k

n
p

200k

n
p

600k

n
p

3000k

n
p

1000k

n
p

1000k

Fig. 6. Runtime of MV

network. The graph sizes (|V |, |E|) of dblp, amazon and youtube are (317080,
1049866), (334863, 925872) and (1134890, 2987624) respectively. We partition
dblp, amazon into 20 subgraphs and youtube into 60 subgraphs. The sample
size of each test case is 20.

7.1 Effectiveness and Efficiency

We assess privacy and utility of MV by varying np (the number of potential
edges). The results are shown in Table 4. As for privacy scores, if we increase np,
we gain better privacy (lower sums of re-identification probabilities) as we allow
more edge switches. Due to the expected degree constraints in the quadratic pro-
gram, all degree-based metrics vary only a little. By contrast, (k, ε)-obfuscation
(cf. Table 5) does not have such advantages. The heuristics used in [2] only
reaches low relative errors at small values of σ. Unfortunately, these choices give
rise to privacy risks (much higher H1,H2open scores).

We observe the near linear relationships between H1, rel.err and the number
of replaced edges |EG0\EG| in Figs. 3, 5 and near quadratic relationship of H2open

against |EG0 \ EG| in Fig. 4. The ratio of replaced edges in Figs. 3, 4 and 5 is

defined as |EG0\EG|
|EG0 | .

A Maximum Variance Approach for Graph Anonymization 61

Table 4. Effectiveness of MV (k denotes one thousand)

np H1 H2open SNE SAD SMD SDV SCC SP L SAP D SED SCL SDiam rel.err

dblp 199 125302 1049866 6.62 343 100.15 0.306 2.245 7.69 9 7.46 20

200k 59.7 3257.2 1049774 6.62 342.3 100.73 0.279 2.213 7.66 9.3 7.43 19.5 0.017

400k 40.7 744.0 1049813 6.62 343.5 101.26 0.255 2.189 7.56 9.1 7.33 18.9 0.030

600k 32.1 325.7 1050066 6.62 343.4 101.73 0.235 2.173 7.46 9.0 7.25 17.7 0.045

800k 29.5 199.2 1049869 6.62 345.9 102.07 0.219 2.163 7.45 9.0 7.24 17.0 0.056

1000k 27.0 140.7 1049849 6.62 345.4 102.29 0.205 2.155 7.34 9.0 7.15 17.0 0.064

amazon 153 113338 925872 5.53 549 33.20 0.205 2.336 12.75 16 12.10 44

200k 30.2 2209.1 925831 5.53 551.5 33.83 0.197 2.321 12.38 16.1 11.72 40.5 0.022

400k 22.8 452.4 925928 5.53 550.2 34.40 0.182 2.306 11.88 15.3 11.28 37.1 0.050

600k 17.8 188.4 925802 5.53 543.9 34.79 0.167 2.296 11.60 15.0 11.04 36.9 0.066

800k 17.2 118.8 925660 5.53 550.0 35.11 0.154 2.289 11.33 14.4 10.81 34.5 0.087

1000k 15.2 82.4 925950 5.53 551.8 35.43 0.142 2.282 11.13 14.1 10.62 31.8 0.105

youtube 978 321724 2987624 5.27 28754 2576.0 0.0062 2.429 6.07 8 6.79 20

600k 114.4 4428.8 2987898 5.27 28759 2576 0.0065 2.373 6.19 7.8 5.97 18.6 0.030

1200k 84.2 1419.2 2987342 5.26 28754 2576 0.0064 2.319 6.02 7.2 5.82 17.9 0.042

1800k 71.4 814.4 2987706 5.27 28745 2577 0.0062 2.287 5.97 7.1 5.78 17.2 0.049

2400k 65.3 595.5 2987468 5.26 28749 2577 0.0060 2.265 5.96 7.1 5.77 16.6 0.056

3000k 62.8 513.7 2987771 5.27 28761 2578 0.0058 2.251 5.89 7.1 5.71 16.4 0.062

Table 5. (k, ε)-obfuscation

σ H1 H2open SNE SAD SMD SDV SCC SP L SAP D SED SCL SDiam rel.err

dblp 199 125302 1049866 6.62 343 100.15 0.306 2.245 7.69 9 7.46 20

0.001 72.9 40712.1 1048153 6.61 316.0 97.46 0.303 2.244 7.74 9.4 7.50 20.0 0.018

0.01 41.1 24618.2 1035994 6.53 186.0 86.47 0.294 2.248 7.82 9.5 7.59 19.8 0.077

0.1 19.7 7771.4 991498 6.25 164.9 64.20 0.284 2.265 8.08 10.0 7.85 20.0 0.128

amazon 153 113338 925872 5.530 549 33.20 0.205 2.336 12.75 16 12.10 44

0.001 55.7 55655.9 924321 5.52 479.1 31.73 0.206 2.340 12.14 15.2 11.65 33.2 0.057

0.01 34.5 39689.8 915711 5.47 299.7 27.18 0.220 2.348 12.40 15.6 11.91 32.4 0.101

0.1 19.2 16375.4 892140 5.33 253.9 21.87 0.232 2.374 12.52 15.5 12.06 31.4 0.144

youtube 978 321724 2987624 5.27 28754 2576.0 0.0062 2.429 6.07 8 6.79 20

0.001 157.2 36744.6 2982974 5.26 28438 2522.6 0.0062 2.416 6.24 8.0 6.01 19.5 0.022

0.01 80.0 22361.7 2940310 5.18 26900 2282.6 0.0061 2.419 6.27 8.0 6.04 19.0 0.043

0.1 23.4 5806.9 2624066 4.62 16353 970.8 0.0070 2.438 6.59 8.1 6.36 20.4 0.160

The runtime of MV consists of time for (1) partitioning G0, (2) adding friend-
of-friend edges to subgraphs, (3) solving quadratic subproblems and (4) combin-
ing uncertain subgraphs to get G. We report the runtime in Fig. 6. As we can
see, the total runtime is in several minutes and the partitioning step is nearly
negligible. Increasing np gives rise to runtime in steps 2,3 and 4 and the trends
are nearly linear. The runtime on youtube is three times longer than on the
other two datasets, almost linear to their sizes.

7.2 Comparative Evaluation

Table 6 compares MV and (k, ε)-obfuscation. Beside the default strategy NearBy
(nb), we include Random (rand) strategy for potential edges (i.e. selecting pairs
of nodes uniformly on V). The column tradeoff is

√
H2open × rel.err as we

62 H.H. Nguyen et al.

Table 6. MV vs. (k, ε)-obfuscation (lower tradeoff is better)

Privacy Utility

graph H1 H2open |EG0 \ EG| |EG \ EG0 | ε(k = 30) ε(k = 50) ε(k = 100) rel.err tradeoff

dblp 199 125302 0.00238 0.00393 0.00694

σ = 0.001 72.9 40712.1 6993.0 5280.2 0.00039 0.00122 0.00435 0.018 3.61

σ = 0.01 41.1 24618.2 19317.3 5444.9 0.00051 0.00062 0.00082 0.077 12.03

σ = 0.1 19.7 7771.4 65285.1 6916.8 0.00179 0.00199 0.00245 0.128 11.33

(nb)200k 59.7 3257.2 94508.0 94416.5 0.00033 0.00077 0.00152 0.017 0.99

(nb)600k 32.1 325.7 246155.6 246355.3 0.00017 0.00029 0.00085 0.045 0.82

(rand)200k 118.4 7390.4 69838.0 69917.2 0.00092 0.00206 0.00347 0.036 3.09

(rand)600k 56.4 369.4 202425.5 202530.8 0.00045 0.00077 0.00171 0.078 1.50

amazon 153 113338 0.00151 0.00218 0.00456

σ = 0.001 55.7 55655.9 6158.9 4607.4 0.00048 0.00119 0.00293 0.065 13.40

σ = 0.01 34.5 39689.8 14962.0 4801.3 0.00038 0.00052 0.00066 0.114 21.33

σ = 0.1 19.2 16375.4 39382.6 5650.3 0.00068 0.00102 0.00190 0.145 18.46

(nb)200k 30.2 2209.1 104800.9 104759.9 0.00023 0.00032 0.00065 0.022 1.03

(nb)600k 17.8 188.4 266603.7 266533.7 0.00015 0.00023 0.00047 0.066 0.91

(rand)200k 87.8 7728.6 76417.8 76400.4 0.00071 0.00111 0.00190 0.112 9.88

(rand)600k 43.2 353.0 222055.3 222276.3 0.00042 0.00065 0.00106 0.175 3.30

youtube 978 321724 0.00291 0.00402 0.00583

σ = 0.001 157.2 36744.6 19678.5 15028.5 0.00143 0.00232 0.00421 0.022 4.28

σ = 0.01 80.0 22361.7 62228.55 14914.3 0.00060 0.00105 0.00232 0.043 6.38

σ = 0.1 23.4 5806.9 378566.0 15007.5 0.00038 0.00052 0.00074 0.160 12.20

(nb)600k 114.4 4428.8 213097.3 213371.4 0.00047 0.00063 0.00108 0.030 2.00

(nb)1800k 71.4 814.4 521709.9 521791.6 0.00040 0.00052 0.00090 0.049 1.38

(rand)600k 733.5 108899.3 32325.3 32273.0 0.00092 0.00096 0.00105 0.018 5.76

(rand)1800k 345.0 9888.8 216297.2 216160.3 0.00107 0.00134 0.00204 0.050 5.01

conjecture the quadratic and linear curves of H2open and rel.err respectively
(Figs. 4 and 5). Clearly, MV provides better privacy-utility tradeoffs.

In addition to the re-identification scores H1 and H2open, we also compute
ε for k ∈ {30, 50, 100} to have a fair comparison with (k, ε)-obfuscation. Table 6
justifies the better performance of MV. Our approach results in lower relative
errors (better utility), lower privacy scores as well as smaller tolerance ratio ε
(better privacy). Moreover, the worse results of Random strategy confirm our
second observation in Sect. 4.3.

The number of potential edges used in MV could be 20 % of |EG0 |, much less
than that of (k, ε)-obfuscation (100 % for c = 2 [2]). Columns |EG0 \ EG|, |EG \
EG0 | show the difference of edge sets between G0 and samples generated from G.
Because the expected degrees are preserved, |EG0 \ EG| � |EG \ EG0 | in MV
and are higher than those of (k, ε)-obfuscation where the number of edges is
preserved only at small σ, i.e. we allow more edge changes while not sacrificing
the utility.

8 Conclusion

In this work, we propose a novel anonymization scheme for social graphs based
on edge uncertainty semantics. To remedy the drawbacks in previous work, our

A Maximum Variance Approach for Graph Anonymization 63

MV approach exploits two key observations: maximizing degree variance while
keeping the expected values unchanged and using nearby potential edges. Fur-
thermore, we promote the usage of incorrectness measure for privacy assessment
in a unified quantifying framework rather than Shannon entropy or min-entropy
(k-anonymity). The experiments demonstrate the outperformance of our method
over (k, ε)-obfuscation. Our work may incite several directions for future research
including (1) deeper analysis on the privacy-utility relationship (e.g. explain-
ing the near-linear or near-quadratic curves) in MV (2) generalized uncertainty
models for graph anonymization with constraint of unchanged expected node
degrees.

A Proof of Theorems

A.1 Proof of Theorem 1

Proof. We prove the result by induction.
When k = 1, we have two cases of G1: EG1 = {e1} and EG1 = ∅. For both

cases, V ar[D(G1, G1)] = p1(1 − p1), i.e. independent of G1.
Assume that the result is correct up to k−1 edges, i.e. V ar[D(Gk−1, Gk−1)] =∑k−1

i=1 pi(1 − pi) for all Gk−1 � Gk−1, we need to prove that it is also correct
for k edges. We use the subscript notations Gk, Gk for the case of k edges. We
consider two cases of Gk: ek ∈ Gk and ek /∈ Gk.

Case 1. The formula for V ar[D(Gk, Gk)] is

V ar[D(Gk, Gk)] =
∑

G′
k�Gk

Pr(G′
k)[D(G′

k, Gk) − E[D(Gk, Gk)]]2

=
∑

ek∈G′
k

Pr(G′
k)[D(G′

k, Gk) − E[Dk]]2 +
∑

ek /∈G′
k

Pr(G′
k)[D(G′

k, Gk) − E[Dk]]2

The first sum is
∑

G′
k−1�Gk−1

pkPr(G′
k−1)[Dk−1 − E[Dk−1] − (1 − pk)]2.

The second sum is
∑

G′
k−1�Gk−1

(1 − pk)Pr(G′
k−1)[Dk−1 − E[Dk−1] + pk)]2.

Hereweuse shortenednotationsDk forD(G′
k, Gk) andE[Dk] forE[D(Gk, Gk)].

By simple algebra, we have V ar[D(Gk, Gk)] = V ar[D(Gk−1, Gk−1)] + qk(1 −
qk) =

∑k
i=1 pi(1 − pi).

Case 2. similar to the Case 1. �

References

1. Backstrom, L., Dwork, C., Kleinberg, J., Wherefore art thou r3579x?: anonymized
social networks, hidden patterns, and structural steganography. In: WWW, pp.
181–190. ACM (2007)

2. Boldi, P., Bonchi, F., Gionis, A., Tassa, T.: Injecting uncertainty in graphs for
identity obfuscation. Proc. VLDB Endow. 5(11), 1376–1387 (2012)

3. Bonchi, F., Gionis, A., Tassa, T.: Identity obfuscation in graphs through the infor-
mation theoretic lens. In: ICDE, pp. 924–935. IEEE (2011)

64 H.H. Nguyen et al.

4. Cheng, J., Fu, A. W.-C., Liu, J.: K-isomorphism: privacy preserving network pub-
lication against structural attacks. In: SIGMOD, pp. 459–470. ACM (2010)

5. Chester, S., Kapron, B.M., Ramesh, G., Srivastava, G., Thomo, A., Venkatesh,
S.: Why waldo befriended the dummy? k-anonymization of social networks with
pseudo-nodes. Soc. Netw. Anal. Min. 3(3), 381–399 (2013)

6. Chester, S., Kapron, B.M., Srivastava, G., Venkatesh, S.: Complexity of social
network anonymization. Soc. Netw. Anal. Min. 3(2), 151–166 (2013)

7. Dalvi, N., Suciu, D.: Management of probabilistic data: foundations and challenges.
In: PODS, pp. 1–12. ACM (2007)

8. Fard, A.M., Wang, K., Yu, P.S.: Limiting link disclosure in social network analysis
through subgraph-wise perturbation. In: EDBT, pp. 109–119. ACM (2012)

9. Gao, H., Hu, J., Huang, T., Wang, J., Chen, Y.: Security issues in online social
networks. IEEE Internet Comput. 15(4), 56–63 (2011)

10. Hay, M., Miklau, G., Jensen, D., Towsley, D., Weis, P.: Resisting structural re-
identification in anonymized social networks. Proc. VLDB Endow. 1(1), 102–114
(2008)

11. Leskovec, J., Kleinberg, J., Faloutsos, C.: Graph evolution: densification and
shrinking diameters. ACM Trans. Knowl. Discov. Data (TKDD) 1(1), 2 (2007)

12. Liu, K., Terzi, E.: Towards identity anonymization on graphs. In: SIGMOD, pp.
93–106. ACM (2008)

13. Mittal, P., Papamanthou, C., Song, D.: Preserving link privacy in social network
based systems. In: NDSS (2013)

14. Palmer, C. R., Gibbons, P. B., Faloutsos, C.: ANF: a fast and scalable tool for
data mining in massive graphs. In: KDD, pp. 81–90. ACM (2002)

15. Potamias, M., Bonchi, F., Gionis, A., Kollios, G.: K-nearest neighbors in uncertain
graphs. Proc. VLDB Endow. 3(1–2), 997–1008 (2010)

16. Sala, A., Cao, L., Wilson, C., Zablit, R., Zheng, H., Zhao, B.Y.: Measurement-
calibrated graph models for social network experiments. In: WWW, pp. 861–870.
ACM (2010)

17. Shokri, R., Theodorakopoulos, G., Le Boudec, J.-Y., Hubaux, J.-P.: Quantifying
location privacy, In: SP, pp. 247–262. IEEE (2011)

18. Smith, G.: On the foundations of quantitative information flow. In: de Alfaro, L.
(ed.) FOSSACS 2009. LNCS, vol. 5504, pp. 288–302. Springer, Heidelberg (2009)

19. Sweeney, L.: k-anonymity: a model for protecting privacy. Int. J. Uncertainty Fuzzi-
ness Knowl. Based Syst. 10(05), 557–570 (2002)

20. Tai, C.-H., Yu, P.S., Yang, D.-N., Chen. M.-S.: Privacy-preserving social network
publication against friendship attacks. In: KDD, pp. 1262–1270. ACM (2011)

21. Vázquez, A.: Growing network with local rules: preferential attachment, clustering
hierarchy, and degree correlations. Phys. Rev. E 67(5), 056104 (2003)

22. Wu, W., Xiao, Y., Wang, W., He, Z., Wang, Z.: k-symmetry model for identity
anonymization in social networks. In: EDBT, pp. 111–122. ACM (2010)

23. Ying, X., Wu, X.: Randomizing social networks: a spectrum preserving approach.
In: SDM, vol.8, pp. 739–750. SIAM (2008)

24. Yuan, Y., Wang, G., Wang, H., Chen, L.: Efficient subgraph search over large
uncertain graphs. Proc. VLDB Endow. 4(11), 876–886 (2011)

25. Zhou, B., Pei, J.: Preserving privacy in social networks against neighborhood
attacks. In: ICDE, pp. 506–515. IEEE (2008)

26. Zou, L., Chen, L., Özsu, M.T.: K-automorphism: a general framework for privacy
preserving network publication. Proc. VLDB Endow. 2(1), 946–957 (2009)

27. Zou, Z., Li, J., Gao, H., Zhang, S.: Mining frequent subgraph patterns from uncer-
tain graph data. IEEE Trans. Knowl. Data Eng. 22(9), 1203–1218 (2010)

Privacy by Design: On the Conformance
Between Protocols and Architectures

Vinh-Thong Ta(B) and Thibaud Antignac

INRIA, University of Lyon, Lyon, France
{vinh-thong.ta,thibaud.antignac}@inria.fr

Abstract. In systems design, we generally distinguish the architecture
and the protocol levels. In the context of privacy by design, in the first
case, we talk about privacy architectures, which define the privacy goals
and the main features of the system at high level. In the latter case, we
consider the underlying concrete protocols and privacy enhancing tech-
nologies that implement the architectures. In this paper, we address the
question that whether a given protocol conforms to a privacy architec-
ture and provide the answer based on formal methods. We propose a
process algebra variant to define protocols and reason about privacy
properties, as well as a mapping procedure from protocols to architec-
tures that are defined in a high-level architecture language.

1 Introduction

According to the definition provided in [6], “the architecture of a system is the
set of [elements and their relations] needed to reason about the system”. In the
context of privacy, the elements are typically the privacy enhancing technologies
(PETs) themselves and the purpose of the architecture is to combine them to
achieve the privacy requirements. Generally speaking, an architecture can be seen
as the abstraction of a system since an architecture abstracts away the details
provided by PETs (such as message ordering, timing, complex cryptographic
algorithms, etc.). Architectures only capture the main functionalities that a sys-
tem should provide, for instance, which computations and communications are
to be performed by the components.

Works in privacy by design mainly focus on PETs rather than architectures.
In the position paper [3], the authors addressed the problem of privacy by design
at the architecture level and proposed the application of formal methods that
facilitate a systematic architecture design. In particular, they provided the idea of
the architecture language and logic, a dedicated variant of epistemic logics [12], to
deal with different aspects of privacy. Basically, an architecture is defined as a set
of architecture relations, which capture the computations and communications
abilities of each component. For instance, a relation computei(x = t) specifies
that a component i can compute a value t for x. Nevertheless, since [3] is a
position paper, the language envisioned in the paper is mainly based on an
introductory description. An extended version of this language is detailed in [2].

In this paper, we address the major question that whether the integration
or combination of several different PETs conforms to a particular architecture.
c© Springer International Publishing Switzerland 2015
F. Cuppens et al. (Eds.): FPS 2014, LNCS 8930, pp. 65–81, 2015.
DOI: 10.1007/978-3-319-17040-4 5

66 V.-T. Ta and T. Antignac

One challenge we have to face is that due to the diversity of technologies and
protocols, their combination can raise a huge number of scenarios. Moreover,
architectures are defined in an abstract way, while concrete implementations are
more detailed, and it is challenging to define a proper abstraction from a lower
to a higher level. The goal of this paper is to provide answers to this question.

Specifically, our main contributions are two-fold: first, we propose a mod-
ified variant of the applied π-calculus [13] for specifying the protocols related
to PETs, and reasoning about the knowledge of components during the proto-
col run. Second, we propose a mapping procedure which defines the connection
between the protocol specified in the calculus and the architecture defined in the
architecture language. This mapping allows us to show whether a protocol (or a
combination of protocols) conforms to a given architecture. To the best of our
knowledge, this work is the first attempt that examines the connection between
the two levels based on formal methods in the context of privacy protection.

The paper is organized as follows: in Sect. 2, we review the privacy architec-
tures language (PAL) proposed in [2], which is a high-level language for specify-
ing architectures and reasoning about privacy requirements in them. Sections 3
and 4 contain our contributions. The modified applied π-calculus is given in
Sect. 3. Section 4 discusses the connection between each calculus process and
relation in PAL, as well as the definitions and properties of the conformance
between the two levels. In Sect. 5 we review the most relevant related works.
Finally, we conclude the paper and discuss about the future works in Sect. 6.

2 Architecture Level

The language we review here is a simplified version of the one in [2]. The func-
tionality of a service is defined by Ω =

{
X̃ = T

}
, where T is a term and X̃ ∈ Var

represents a variable that can be either indexed (XK) or unindexed (X). Each
X̃ can be a single variable or an array of variables. F ∈ Fun denotes a function,
and �F (X) defines the iterative application of F to the variables in the array
X (e.g.: � + (X) defines the summation of the variables in a given array).

T ::= X̃ | F (T1, . . . , Tn) | � F (X); X̃ ::= X | XK

A ::= {R}
R ::= Hasarch

i

(
X̃
)

| Receivei,j

(
{Att}, X̃

)
| Computei

(
X̃ = T

)

| Checki (T1 = T2) | VerifAttest
j (Att) | Trust i,j

Att ::= Attesti
(
{X̃ = T}

)

An architecture A is defined by a set of components Ci, i ∈ [1, . . . , n], associ-
ated with the set of relations {R}. Each relation R specifies a capability of the
components. Subscripts i and j denote component IDs. Hasarch

i (X̃) expresses
the fact that X̃ is a variable that component Ci initially has (i.e., an input
variable of Ci). Receivei,j({Att}, X̃) expresses the possibility for Ci to receive
the variable X̃ directly from Cj , and optionally an attestation Att related to

Privacy by Design 67

this variable. An attestation, defined by Attesti({X̃ = T}), captures a statement
made by Ci on the set of equations. Each X̃ = T in the set {X̃=T} expresses
the integrity of X̃, stating that it equals to T . Computei(X̃ = T) says that Ci

can compute a variable defined by an equation X̃ = T . Checki (T1 = T2) states
that Ci can check the satisfaction of property T1 = T2. The property X̃ = T in
Attesti is related to the same property in Computei, namely when Ci computes
X̃ = T it can send an attestation on this. VerifAttest

j (Att) says that Cj is able to
successfully verify the origin of an attestation. Finally, Trusti,j is used to express
the fact that component Ci trusts Cj , and this trust relation does not change
during operations. Trust relations are pre-defined, and an attestation sent by Ci

will be accepted by Cj after a successful verification only if Cj trusts Ci.
The semantics of an architecture is defined as its sets of compatible traces.

A trace is a sequence of possible high-level events occurring in the system. Events
can be seen as instantiated relations of the architecture.

θ ::= Seq(ε)

ε ::= hasi

(
X̃ : V

)
| receivei,j

(
{Att}, X̃ : V

)
| computei

(
X̃ = T

)

| checki (T1 = T2) | verifAttest
j (Att)

To distinguish events from relations, we let events start with lowercase. For
instance, event hasi

(
X̃ : V

)
captures the fact that Ci has the value V for X̃,

and computei

(
X̃ = T

)
expresses the fact that Ci performes the computation

X̃ = T . The other events are interpreted based on their corresponding relations
(see [2] for details). An event trace θ is compatible with an architecture A, if in
this trace, only events which are instantiations of components of the architecture
can appear in θ – except for the compute events. For the case of compute events,
besides the computation specified explicitly in the architecture, we also take into
account the “background” computations (deduction) that can be performed by
each component, based on the data it has. This deduction ability of each Ci is
captured by its deduction system �i [2]. The semantics of events is based on the
component states and the global state of the architecture, given as follows:

State = StateV × StateP ;

StateV = (Var → Val⊥); StateP =
{

{X̃ = T} ∪ {T1 = T2} ∪ {Trusti,j}
}

The state of a component (State) is composed of a variable state (StateV) and
a property state (StateP). StateV assigns a value (which can be undefined, ⊥)
to each variable. StateP defines the set of properties X̃ = T and T1 = T2 known
by a component.

In the sequel, σ is used to denote the global state of the architecture A (state
of the components 〈C1, . . . , Cn〉) defined on Staten. σi (σi = (σv

i , σpk
i)) denotes

the state of the component Ci, where σv
i and σpk

i represent the variable state
and property state of Ci, respectively. The initial state of A, denoted by InitA,
contains only the trust properties specified by the architecture. The semantics
of an event trace is defined by the function ST , which specifies the impact of

68 V.-T. Ta and T. Antignac

a trace of events on the states of the components, through the impact of each
event on the states (defined by the function SE).

ST : Trace × Staten → Staten; SE : Event × Staten → Staten;
ST (ε.θ, σ) = ST (θ, SE(ε, σ)); ST (〈〉, σ) = σ;

SE (computei

(
X̃ = T

)
, σ) = σ[(σv

i [eval(T, σv
i)/X̃], σpk

i ∪ {X̃ = T}) / σi].

Due to lack of space we only present SE for the compute event here, the full
list can be found in [2]. The notation ε.θ is used to denote a trace whose first
element is ε and the rest of the trace is θ, while 〈〉 denotes the empty trace. Each
event modifies only the state σi of the component Ci. A modification is expressed
by σ[(v, pk)/σi] that replaces σv

i and σpk
i of σi by v and pk, respectively. The

effect of computei(X̃ = T) is to set X̃ to the evaluation of T based on the current
variable state σv

i , which is denoted by eval(T, σv
i). Event computei also results

in adding the knowledge about X̃ = T to the property state σpk
i .

The semantics of an architecture A is defined as S(A) = {σ ∈ Staten | ∃θ ∈
T (A) such that ST (θ, InitA) = σ}, where T (A) is the set of compatible traces
of A. To reason about the privacy requirements of architectures, the architecture
logic is proposed in [2], which is based on the architecture language PAL.

φ ::= Hasall
i

(
X̃
)

| Hasnone
i

(
X̃
)

| Ki (T1 = T2) | φ1 ∧ φ2

This logic involves modality Ki that represents the epistemic knowledge [12]
of Ci about T 1 = T 2. In the rest of the paper, we refer to φ as an architecture
property. The semantics S(φ) of a property φ is defined as follows:

1. A ∈ S(Hasall
i

(
X̃
)
) ⇔ ∃ σ ∈ S(A), σv

i (X̃) �= ⊥
2. A ∈ S(Hasnone

i

(
X̃
)
) ⇔ ∀ σ ∈ S(A), σv

i (X̃) = ⊥
3. A ∈ S(Ki (Eq)) ⇔ ∀ σ′ ∈ Si(A), ∃ σ ∈ Si(A), ∃ Eq′: (σ ≥i σ′) ∧ (σpk

i �i Eq′)
∧ (Eq′ ⇒ Eq),

where Eq (Eq ′) represents an equation T1 = T2 (T ′
1 = T ′

2). An architecture
satisfies the Hasall

i (X̃) property if and only if Ci may obtain the value of all Xk

in Range(X) in at least one compatible execution trace. Hasnone
i (X̃) holds if and

only if no execution trace can lead to a state in which Ci gets any value of any
Xk. We note that Hasi properties only inform on the fact that Ci can get or
derive some values for the variables but they do not bring any guarantee about
the correctness of these values. Integrity requirements can be expressed using
the property Ki(T1 = T2), which states that the component Ci knows the truth
of the integrity property T1 = T2. In σ ≥ σ′, compared to σ′, σ represents the
state at the end of a longer trace. Finally, σpk

i �i Eq′ and Eq′ ⇒ Eq capture that
Eq′ can be deduced from σpk

i and Eq′, respectively.

Example Architecture: Let us consider a very simple smart metering archi-
tecture which consists in the communication between two components: the meter
(M) and the operator (O). The goal of this architecture is to ensure that the
operator will get the consumption fee for a given period and to be convinced

Privacy by Design 69

that the fee is correct. The privacy requirement says that O must not obtain the
consumption data. One possible design solution is that the meter passes directly
the consumption data to the operator who will compute the fee:

A1 = {for i ∈ [1, . . . , r]: Hasarch
M (Xc); ComputeM (Xmi = Xci);

ReceiveO,M (AttestM (Xmi = Xci), Xmi); Verif
Attest
O (AttestM (Xmi = Xci));

ComputeO(Xtfi = F (Xmi); ComputeO(Xfee = � + (Xtf)), TrustO,M}.

In the architecture A1, the meter initially has the (input) variable Xc that
represents the array of r consumption data Xci , i ∈ [1, . . . , r]. The meter is
capable to compute each metered data (Xmi

) based on each consumption data
(Xci). Intuitively, in Xmi

= Xci , Xmi
will get the value of Xci . Then, the oper-

ator will receive the metered data (Xmi
), along with the attestation made by

M on the integrity property Xmi
= Xci . After verifying the received attes-

tation with success, due to TrustO,M the operator knows that Xmi
= Xci .

Then for each Xmi
, O computes the tariff based on the function F . Finally,

O computes the summation of the r tariffs (i.e., array Xtf) to get the fee for the
period. The requirements of the architecture are modeled with the properties of
the architecture logic. Namely, Hasall

O (Xfee) specifies that O has (all) the fee,
while Hasnone

O (Xc) says that O must not have any consumption data. A1 fulfills
the first requirement, but it does not satisfy the privacy requirement because
based on ReceiveO,M (AttestM (Xmi

= Xci), Xmi
) O can obtain Xci from Xmi

.

3 Protocol Level

To reason about the concrete implementations of an architecture, we propose
a modified variant of the applied π-calculus. We decided to modify the basic
applied π-calculus [13] because thanks to its expressive syntax and semantics, it
is broadly used for security verification of systems and protocols (e.g., [4,9–11,14,
17,18]). Our main goal is to modify some syntax and semantics elements of the
applied π-calculus, making it more convenient to find the connection between
the calculus semantics and the interpretation of architecture relations. One of
such modifications is the notion of component, which is characterized by three
elements: (i) the internal behavior of the component; (ii) the unique ID assigned
to the component; and (iii) the set of IDs of the components who are trusted by
this component. Another reason why we cannot use the basic applied π-calculus
is that it focuses on reasoning about the information a Dolev-Yao attacker (who
can eavesdrop on all communications) obtains. However, in our case we reason
about the information that components can have, which are only aware of the
communications they can take part in.

3.1 Syntax of the Modified Applied π-Calculus

We assume an infinite set of names N and variables V, and a finite set of
component identifiers L, where V ∩ N ∩ L = ∅. Terms are defined as follows:

t ::= c | li | n,m, k | x, y, z | f(t1, . . . , tp).

70 V.-T. Ta and T. Antignac

The meaning of each term is given as follows: c models a communication channel.
li represents a component ID (li �= lj if i �= j) that uniquely identifies a compo-
nent. n, m and k denote names, which model some kind of data (e.g., a random
nonce, a secret key, etc.). Terms x, y, z denote variables that represent any
term, namely, any term can be bounded to variables. f(t1, . . . , tp) is a function,
which models cryptographic primitives, e.g., digital signature can be modeled
by sign(xm, xsk), where xm and xsk specify the message and the private key,
respectively. Moreover, f can also be used to specify verification functions (e.g.,
the signature check is modeled by function checksign(sign(xm, xsk), xpk), where
xpk represents the public key corresponding to the private key xsk).

We rely on the same type system for terms as in the applied π-calculus [13].
Due to lack of space, we omit the unimportant details of this type system, and
leave it implicit in the rest of the paper. We assume that terms are well-typed
and that substitutions preserve types (see [22] for details).

The internal operation of components is modeled by processes. Processes are
specified with the following syntax:

P , Q, R ::= c〈t〉.P ‖ c〈tm, tsig)〉.P ‖ c(x).Q ‖ c(xm, xsig).Q ‖ P |Q
‖ νn.P ‖ let x = t in P ‖ if (t1 = t2) then P ‖ 0.

Note that for simplicity we left out the infinite replication of processes, !P .
As a result a protocol/system run consists of a finite number of traces.

Process c〈t〉.P sends the term t (where t �= (tm, tsig)) on channel c, and
continues with the execution of P . Process c〈tm, tsig〉.P models the attestation
sending, where tm and the signature tsig are sent on c.

Process c(x).Q waits for a term on channel c and then binds the received
term to x in Q. Process c(xm, xsig).Q waits for a term xm and its signature xsig

on channel c, which models the attestation reception.
P |Q behaves as processes P and Q running (independently) in parallel.

A restriction νn.P is a process that creates a new, bound name n, and then
behaves as P . The name n is called bound because it is available only to P . Process
let x = t in P proceeds to P and binds every (free occurrence of) x in P to t.

Process if (t1 = t2) then P says that if t1 = t2 (with respect to the equational
theory E, discussed later) then process P is executed, else it stops. Its special
case is if xm = checksign(xsig, xpk

li
) then P , which captures the verification of an

attestation (i.e., signature xsig with key xpk
li

). For message authentication and
integrity protection purposes digital signature and message authentication code
(MAC) are used. In this paper we only consider signature.

Finally, the nil process 0 does nothing and specifies process termination.

Components: To make the connection between calculus processes and archi-
tecture relations more straightforward, we introduce the notion of components.
P �ρ

l defines a component with the unique identifier l, who trusts the compo-
nents whose IDs are in the set ρ, and whose behavior is defined by process P .
The trust relation can be either one-way or symmetric, for instance, P �{l2}

l1

and Q�{l1}
l2

represent components l1 and l2 who trust each other. The rationale

Privacy by Design 71

behind this way of component specification is that the component IDs and the
trust relation between them are pre-defined, and do not change during the pro-
tocol run (this is what we assumed at the architecture level). In addition, we
assume that a trusted component will not become untrusted.

Systems: A system, denoted by S, can be an empty system with no component:
0S ; a singleton system with one component: P �∅

l ; the parallel composition of
components: P �ρ1

l1
| Q�ρ2

l2
, where ρ1 and ρ2 may include l2 and l1, respectively;

or a system with name restriction. To capture more complex systems, we also
allow systems to be the parallel composition of sub-systems, S1 | S2.

S ::= 0S | P �ρ
l | νn.S | (S1 | S2).

The name restriction νn.S represents the creation of new name n, such as secret
keys, or a random nonce which are only available to the components in S.

3.2 Semantics of the Modified Applied π-Calculus

In order to check the conformance between protocols and architectures, it suffices
to consider the internal reduction rules of the calculus, which model the behavior
of the protocol (without contact with its environment). Reduction rules capture
the internal operations (e.g., let or if processes) and communications performed
by components. We define and distinguish the following reduction rules:

(Reduction rules)

(Rcv) �c〈t〉.P �ρi
li

| �c(x).Q�ρj

lj

rcv(lj ,li,x:t)−→ �P �ρi
li

| �Q{t/x}�ρj

lj
, t �= (tm, tsig);

(Rcvatt) �c〈tm, tsig〉.P �ρi
li

| �c(xm, xsig).Q�ρj

lj

rcvatt(lj ,li,xm:tm)−→
�P �ρi

li
| �Q{tm/xm, tsig/xsig}�ρj

lj
;

(Verifatt) �if xm = checksign(xsig, tpk
li

) then Q′�ρj

lj

veratt(lj , xm:tm)−→ �Q′�ρj

lj
,

where {tm/xm, tsig/xsig}. Note: lj accepts the attestation if li ∈ ρj .

(Check) �if (t1 = t2) then P �ρj

lj

check(lj ,t1:t2)−→ �P �ρj

lj
(t1 = t2 ∈ E, t2 �= checksign);

(Comp) �let x = t in P �ρj

lj

ωcomp−→ �P{t/x}�ρj

lj
, (t = x′ or f , such that

ωcomp = comp(lj , x : t) when f /∈ {sign, checksign}, else ωcomp = τ);

(Has) (νk.) �let x = k in P �ρj

lj

has(lj ,x:k)−→ (νk.) �P{k/x}�ρj

lj
,

(Error) �if (t1 = t2) then P �ρj

lj

error−→ �0�ρj

lj
(if t1 = t2 /∈ E);

(Par-C) �P �ρj

lj

ωc−→ �P ′�ρj

lj
then �Q | P �ρj

lj

ωc−→ �Q | P ′�ρj

lj
;

(Res-C) �P �ρj

lj

ωc−→ �P ′�ρj

lj
then �νn.P �ρj

lj

ωc−→ �νn.P ′�ρj

lj
, where

ωc ∈ {comp(lj , x : t), has(lj , x : k), check(lj , t1 : t2), error, veratt(lj , xm:tm)};

72 V.-T. Ta and T. Antignac

(Par-S) S1
ωs−→ S′

1 then S2 | S1
ωs−→ S2 | S′

1;

(Res-S) S
ωs−→ S′ then νn.S

ωs−→ νn.S′, where

ωs can be ωc, and rcv(lj , li, x : t), rcvatt(lj , li, xm : tm).

Before defining the system states, we label each reduction relation (arrow) based
on the name of the rule and the terms used in them. We adopt the notion of
equational theory E from [13,22], which contains rules of form t1 = t2 ∈ E, that
define when two terms are equal. For instance, the equational theory E may
include rules for signature verification, decryption, MAC verification, etc. The
meaning of each reduction rule is as follows:

– Rule (Rcv) captures the communication between components li and lj .
Namely, li sends value t for x on channel c, which is received by lj . As a
result, we get Q{t/x} that binds t to every free occurrence of x in Q. It is
assumed that t �= (tm, tsig), which is treated as a special case.

– Rule (Rcvatt) deals with exchanging the message tm and the signature tsig on
channel c, which models the reception of the attestation Attest li({xm = tm}).
As a result, we get Q in which tm and the signature are bound to xm and xsig,
respectively. The reason that we distiguish (Rcvatt) from (Rcv) is because we
want to make a clear distinction between the cases of receiving a message with
and without an attestation.

– Rule (Verifatt) captures the case when after binding tm and tsig to xm and the
signature xsig, respectively, component lj successfully verified the signature
using the corresponding public key of li, tpk

li
. We implicitly assume that tm

and tsig contain enough information for the receiver to identify the “type” of
the received message (e.g., the consumption fee in smart metering systems).
Rules (Rcvatt) and (Verifatt) together specify the scenario when li sends to
lj the value tm for xm, with the signature that proves the integrity and the
authenticity of this message. Then, in case lj trusts li, it knows the truth
about the integrity property xm = tm.

– Rule (Check) considers the case when two terms are equal in the check (with
respect to the equational theory E), which leads to P as result. We assume
that t2 is not the checksign function, which is used for the attest verification.

– Rule (Comp) models the computation x = t performed by lj . As a result,
every free occurrence of x in P is given the value t. In this rule we assume
that t can be either a variable or a function (except for sign and checksign,
because they are considered as parts of the attestation), but not a name.

– Rule (Has) deals with the case when t is a name. The name k, either bound
(with νk) or free (without νk), represents the value of x. Here x is used to
model the variable that lj initially has to capture the input data coming from
the environment (e.g., the consumption data in the smart metering).

– Rule (Error) specifies the case when two terms are not equal with respect to
E. As a result, the process will continue with the nil process.

– Rules (Par-C) and (Res-C) say that the if and let reductions are closed
under parallel composition and restriction within a component, respectively.

Privacy by Design 73

Rules (Par-S) and (Res-S) capture that all the reductions are closed under
parallel composition and restriction on systems, respectively.

Instead of referring to the trace of reductions
ω1

s−→ . . .
ωm

s−→ we will refer to the
trace of the corresponding labels ω1

s , . . . , ωm
s for the sake of clarity.

States of components and systems: Let us consider a system S with n
components. Let LabelS be the set of all labels (ωs ∈ LabelS) of the reduction
relations defined above, and let LTraceS be the set of all possible label traces
of S. We define the functions VST, VT and VL that update the states of the
components and the entire system. VT and VL are similar to ST and SE in PAL,
but they are based on label traces and labels instead of traces of events and
events. VST takes as input the set of all the possible label traces of S and handle
each trace with VT. Let Staten

S denote the set of global state of S and ∅tr an
empty set of traces. Finally, in ωs.tr the label ωs is the prefix of the trace tr.

VST : {LTraceS} × Staten
S → Staten

S ;
VT : LTraceS × Staten

S → Staten
S ; VL : LabelS × Staten

S → Staten
S ;

VST (LTraceS , λ) = VST (LTraceS\{tr}, VT (tr, λ)); VST (∅tr, λ) = λ;
VT (ωs.tr, λ) = VT (tr, VL(ωs, λ)); VT (〈〉, λ) = λ;

VL(has(li, x : k), λ) = λ[(λv
li

{k/x}, λpk
li

) / λi];

VL(rcv(li, lj , x : t), λ) = λ[(λv
li

{t/x}, λpk
li

) / λi]

VL(rcvatt(li, lj , xm : tm), λ) = λ[(λv
li

{tm/xm}, λpk
i) / λli]

VL(comp(li, x : t), λ) = λ[(λv
li

{λv
li

t/x}, λpk
li

∪ {x = t}) / λli]

VL(check(li, t1 : t2), λ) = λ[(λv
li
, λpk

li
∪ {t1 = t2}) / λli] if λv

li
t1 = λv

li
t2 ∈ E

VL(veratt(li, xm : tm), λ) = λ[(λv
li
, λpk

li
∪ {{xm = tm} if Trust li,lj ∈ λpk

li
}) / λi].

We let λli and λ denote the state of component li and the global state that
consists in the state of all components in the system, respectively. Each λli is
defined by the pair (λv

i , λpk
li

), which is the variable state and the property state
for component li, respectively. In our calculus the variable state λv

li
is defined by

the set of substitutions {t1/x1, . . . , tm/xm}, which captures the terms available
to li, as well as the values of each variable from the perspective of li. λv

li
{t/x}

is a shorthand for (λv
li

∪ {t/x}) \ {t′/x}, if {t′/x} ∈ λv
li

for some t′. λpk
i is the

set of integrity properties (e.g., t1 = t2) that captures the knowledge gained by
lj about these properties. λv

i t represents the evaluation of t based on λv
i , and

λv
li
t1 = λv

li
t2 ∈ E says that the evaluation of t1 and t2 in λv

li
are equal up to the

equational theory E. We also consider the state update that results after a failed
check (namely, λ[λErr/λi], where λErr denotes the error state), though we omit
the formal details here to save space.

4 From Protocols to Architectures

In the sequel, we discuss how the corresponding architecture can be extracted
based on a given protocol or system. Namely, given a protocol specified in our

74 V.-T. Ta and T. Antignac

process calculus we define an extraction procedure that extracts the correspond-
ing architecture relations. The extraction procedure is based on the application
of a set of extraction rules that we define below. Each extraction rule specifies the
connection between the traces of labels of a system and the corresponding archi-
tecture relation. We assume a (initial) system S which consists in the parallel

composition of r components (for a finite r), namely, S
def
= P1�ρ1

l1
| . . . | Pr�ρr

lr
.

The corresponding architecture relations will be extracted based on the possible
traces (i.e., the trace semantics) of S. We emphasize that during the extraction
of architectural properties we only consider the reduction traces to capture the
communication between components, without considering the activity of the
environment (i.e., the Dolev-Yao attacker). Formally, we do not take into account
the labelled transitions known in the applied π-calculus [13]. The reason is that
the architecture relations focus only on the abilities of the components and the
communication between them.

An architecture does not not contain the Compute relations for background
computations. The situation is similar at the protocol level, where the protocol
description specifies the basic computations and communications of the compo-
nents, without involving the background computations. Hence, when extracting
the architecture relations, it is sufficient to consider only the protocol description
and its corresponding reduction traces. The background computations will be
taken into account when we discuss the mapping to the Hasj architecture logic
property for reasoning about the data that can be deduced by a component.

Given a system S and the set LTraceS of (all) its possible label traces, we
define the extraction function XT that extracts the corresponding architecture
based on LTraceS . XST is interpreted similarly as VST. RelS denotes the set of
architectural relations of S. Function XL extracts a relation based on a label ωs

and put it into αS . We use αS to denote the set of the extracted relations so far.
We have the following extraction rules:

XST : {LTraceS} × RelS → RelS ;

XT : LTraceS × RelS → RelS ; XL : LabelS × RelS → RelS ;

XST (LTraceS , αS) = XST (LTraceS\{tr}, XT (tr, αS)); XST (∅tr, αS) = αS ;

XT (ωs.tr, αS) = XT (tr, XL(ωs, αS)); XT (〈〉, αS) = αS ;

Rhas: XL(has(lj , x : k), αS) = αS ∪ {Hasarch
lj

(x)};
Rrecv: XL(rcv(lj , li, x : t), αS) = αS ∪ {Receivelj ,li (x)};
Rrecv

att : XL(rcvatt(lj , li, xm : tm), Computeli (xm = tm) ∈ αS) =

αS ∪ {Receivelj ,li ({Att}, xm)}, where Att = Attest li({xm = tm});
Rcomp: XL(comp(lj , x : t), αS) = αS ∪ {Computelj (x = t)}, where t /∈ {sign, checksign};
Rcheck: XL(check(lj , t1 : t2), αS) = αS ∪ {Checklj (t1 = t2)} if t1 = t2 ∈ E;

Rattver: XL(veratt(lj , xm : tm), {Trust lj ,li , Receivelj ,li ({Att}, xm)} ⊆ αS) =

αS ∪ {Verif Attest
lj

(Att)}, where Att = Attest li({xm = tm});

All the rules above capture the communication and computation abilities
of each component during the protocol run and are defined based on the trace
semantics. In contrast, the Trust li,lj relations are extracted based on the syntax.
The initial set of relations is αinit

S = {Trustli,lj if lj ∈ ρi | ∀ li, lj ∈ {l1, . . . , lr}}.
The meaning of each rule is defined as follows:

Privacy by Design 75

– Rule Rhas corresponds to the relation Hasarch
lj

(x), which says that lj initially
has a value for x. The name k represents an input data for x of lj .

– Rrecv extracts the relation Receivelj ,li(x), and describes the case when lj
receives a value t for x during the protocol run. S′ and S′′ represent the
systems before and after the communication between li and lj . S′ involves the
possibility for lj to receive the variable x.

– Rrecv
att extracts the relation Receivelj ,li(Attest li({xm = tm}), xm), where {xm

= tm} contains xm = tm, along with all the equations xg = xh computed by
li in order to constitute tm. Intuitively, besides attesting xm = tm, li attests
the integrity of all the computations it performed in order to get xm. S′

includes the possibility for lj to receive xm, and its signature xsig. Assumption
Computeli(xm = tm) ∈ αS captures the fact that li is able to compute xm =
tm, hence, it can make an attestation on this equation.

– Rule Rcomp corresponds to the relation Compute, for the equations x = f or
x = x′. We do not extract the computations for signature and its verification
since these computations are integrated within the Attest relation.

– Rule Rcheck extracts the relation Check. To be able to check an equation,
a component must have the ability to perform the function required in the
check and it should possess the required data during the protocol run. This
is determined by the equational theory E, which defines the checking abilities
of a component. We do not extract Check for signature check because it is
considered as an attestation verification.

– Rule Rattver deals with the case when component lj successfully verified the
attestation sent by component li. However, we get the corresponding rela-
tion Verif Attest

lj
(Att) only in case li ∈ ρj (i.e., lj trusts li). The assumption

Receivelj ,li(Att, xm) ∈ αS captures the fact that lj has received (Att, xm).

The extraction procedure starts with the initial system S, then we follow the
possible reduction traces from S and apply the extraction rules where possible.
Although during the extraction every possible label trace of the system is exam-
ined, due to the simplifications we made on the processes (e.g., infinite process
replication is leftout), the number of traces is finite, hence, the extraction proce-
dure will terminate. In the sequel, we let AS denote the extracted architecture
of S (i.e., the set of relations αS when we have examined all the possible traces).

Definition 1 (State based semantics): The state based semantics of a given
system is defined as V(S) = {λ ∈ Staten

S | ∃ tr ∈ T (S), VT (tr, InitS) = λ}.
InitS is the initial state of the system S which contains only the Trust relations
in λpk. We adopt the Has properties used in PAL (Sect. 2), and define their
semantics based on the semantics of the calculus.

ψ ::= Hasall
li (x) | Hasnone

li (x) | Kli (t1 = t2) | ψ1 ∧ ψ2

Definition 2 (Semantics of property ψ for systems):

1. S ∈ V(Hasall
li

(x)) ⇔ ∃ λ ∈ V(S): ∃ t′ and t such that
(λv

li
t′ = t) ∈ E, where BoundTo(t) = x

76 V.-T. Ta and T. Antignac

2. S ∈ V(Hasnone
li

(x)) ⇔ ∀ λ ∈ V(S) and ∀ t ∈ terms(λv
li
):

� ∃ t′ such that (λv
li

t′ = t) ∈ E, where BoundTo(t) = x
3. S ∈ V(Kli (Eq)) ⇔ ∀ λ′ ∈ Vli(S) ∃ λ ∈ Vli(S), ∃ Eq′:

(λ ≥li λ′) ∧ (λpk
li

�E Eq′) ∧ (Eq′ ⇒E Eq).

S satisfies the property Hasall
li (x) when during the system run, li can deduce

or obtain a value t for x. (λv
li
t′ = t) ∈ E means that li can deduce t based on

λv
li
t′ and the equational theory E. BoundTo(t) = x captures the fact that this

t has been bounded to x during the reduction trace (i.e., t is the value of x).
S satisfies Hasall

li (x) when li cannot deduce or obtain any value t for x. Finally,
the deduction λpk

li
�E Eq′ and Eq′ ⇒E Eq are defined on the deduction system

based on the equational theory E.
To compare AS and A, we define E , the set of type-preserved mappings from

terms in the calculus to the terms in PAL: E = {li �→ i; x �→ X̃; f(t1, . . . , tm) �→
F (T1, . . . , Tm); f(x1, . . . , xm) �→ �F (X), X = [X1, . . . , Xm]}. It is important
to emphasize that in each mapping, the result and its preimage must have the
same type. Defining an explicit type system for terms is not in the scope of
this paper. Here, we only provide general type matching requirements for the
mapping rules, giving the reader an intuition about the mapping to understand
the definitions given below. In E , each ID li can be mapped to an ID i; each
x can be mapped to a X̃ of the same type. f(t1, . . . , tm) can be mapped to
F (T1, . . . , Tm) if each (tj , Tj) pair has the same type, and the two functions
return the same type, too. Similarly, f(x1, . . . , xm) can be mapped to �F (X)
if they return the same type, and the array X contains m variables, such that
each corresponding variable pair has the same type. In the sequel, we let EAS

denote the application of the mapping E to the architecture AS .
The property 1 discusses the connection between a system S and its extracted

architecture EAS with respect to the Has and K logical properties (φ and ψ).

Property 1 (Correctness of the mapping): Given a system S and its extr-
acted architecture EAS, for some E, we have that ∀ x, li, t1, t2 in S and ∀ X̃, i, T1,
T2 in EAS, where {x �→ X̃, li �→ i, t1 �→ T1, t2 �→ T2} ∈ E : 1. S ∈ V(Hasall

li (x))

iff EAS ∈ S(Hasall
i

(
X̃

)
); 2. S ∈ V(Hasnone

li (x)) iff EAS ∈ S(Hasnone
i (X̃)); and

3. S ∈ V(Kli (t1 = t2)) iff EAS ∈ S(Ki (T1 = T2)).

The first point of Property 1 says that if the system S satisfies Hasall
li (x), then

the extracted architecture EAS of S satisfies Hasall
i

(
X̃

)
, and vice versa. The

second point is related to the privacy requirement capturing that when EAS

satisfies Hasnone
i (X̃), the system S satisfies Hasnone

li
(x), and vice versa. The

third point is related to the integrity property stating that if in the system S
component li knows t1 = t2, then in the extracted architecture this component
knows the corresponding T1 = T2, and vice versa. The proof is based on the
semantics of the architecture and the state based semantics of the systems, as
well as the correspondence between the deduction rules of the privacy logic and
the equational theory E of the calculus.

Privacy by Design 77

We give two conformance definitions between protocol and architecture, a
strong one and a weak one.

Definition 3 (Strong Conformance): Let us consider a system S and an
architecture A. We say that S strongly conforms to A up to E (S |=s

E A) if ∃ E
such that EAS = A.

In the strong case, we require that there exists a mapping E such that EAS

contains exactly the same relations as A.

Definition 4 (Weak Conformance): Let us consider a system S and an
architecture A. We say that S weakly conforms to A up to E (denoted S |=w

E
A) if (i.) ∃ E such that A ⊂ EAS, and (ii.) ∀ x, X̃ such that {x �→ X̃} ∈ E : If
A ∈ S (Hasnone

i (X̃)) then S ∈ V(Hasnone
li (x)).

Point (i.) of the weak case requires the more relaxed A ⊂ EAS . Point (ii.) says
that for every X̃ in the privacy requirement Hasnone

j (X̃) of the architecture, lj

cannot have any value t for x in the system S (where {x �→ X̃} ∈ E).
Next, we provide the state simulation and bisimulation definitions in order

to formulate Properties 2 and 3 about the relationship between the states of a
system and states of an architecture in case of weak and strong conformance.

Definition 5 (State simulation): Let us consider a system S and an archi-
tecture A. We say that λ ∈ V(S) simulates σ ∈ S(A) up to E (denoted by λ �E
σ), if ∀ li, x, t1, t2 in S, and ∀ i, X̃, T1, T2 in A, such that {li �→ i, x �→ X̃, t
�→ T , t1 �→ T1, t2 �→ T2} ∈ E :

– if ∃ σ[(σv
i [V /X̃], σpk

i) / σi] ∈ S(A), then ∃ λ[(λv
li

∪ {t/x}, λpk
li

) / λli] ∈ V(S)
– if ∃ σ[(σv

i [eval(T, σv
i)/X̃], σpk

i ∪ {X̃ = T}) / σi] ∈ S(A), then ∃ λ[(λv
li

∪
{λv

li
t/x}, λpk

li
∪ {x = t}) / λli] ∈ V(S), and

– if ∃ σ[(σv
i , σpk

i ∪ {T1 = T2}) / σi] ∈ S(A), then ∃ λ[(λv
li
, λpk

li
∪ {t1 = t2})

/ λli] ∈ V(S).

Also, we write λ �(X̃,x)
E σ if λ simulates σ up to E, but with respect to only the

pair (X̃, x), where {x �→ X̃} ∈ E.

Each point of Definition 5 captures the state simulation that results from the
corresponding architecture relations. For example, the second point says that if
∃ Computei(X̃ = T) ∈ A then ∃ Computeli(X̃ = T) ∈ EAS .

Definition 6 (State bisimulation): Given a system S and an architecture A:

1. We say that λ ∈ V(S) and σ ∈ S(A) simulate each other up to E (λ �E σ),
if λ �E σ and σ �E λ.

2. We say that λ ∈ V(S) and σ ∈ S(A) simulate each other up to E and the
variable pair (X̃, x), λ �(X̃,x)

E σ, if λ �(X̃,x)
E σ and σ �(X̃,x)

E λ.

78 V.-T. Ta and T. Antignac

Property 2. Given a system S and an architecture A, where λ ∈ V(S) and σ
∈ S(A). We have that S |=s

E A iff λ �E σ.

Property 2 says that when S strongly conforms to A, then the states of lj in S
simulates the states of the corresponding component j in A, and vice versa.

Property 3. Given a system S and an architecture A, where λ ∈ V(S) and σ

∈ S(A). We have that S |=w
E A iff (i.) λ �E σ and (ii.) λ �(X̃,x)

E σ, for all X̃

in Hasnone
j (X̃).

Property 3 says that in case S weakly conforms to A, then the states of lj simu-
lates the states of the corresponding component j, and these states are bisimilar
for all the variable pair (x, X̃), such that Hasnone

j (X̃) holds. A consequence
of Properties 2 and 3 is that it is sufficient to show the state simulation and
bisimulation to prove the weak and strong conformance properties. These two
properties also capture the correctness of the mapping with respect to the weak
and strong conformance definitions. The proof of Properties 2 and 3 is based on
the defined extraction rules and the correspondence between functions SE of the
architecture and VL of the system.

Example Conformance Check: We check the conformance between an exam-
ple protocol and the architecture A1 at the end of Sect. 2, with r = 1. Let us
consider the protocol description in which there are components lM and lO that
refer to the meter and operator, respectively. The behavior of the meter is spec-
ified by the process RM . The operator is defined by the process RO.

RM
def
= let xc1 = k1 in P1; P1

def
= let xm1 = xc1 in P2;

P2
def
= let xsig = sign(xm1 , skm) in P3; P3

def
= cmo〈xm1 , xsig〉. 0.

RO
def
= cmo(xm1 , xsig). 0. S

def
= RM�lM

| RO�lM
lO

.

Due to lack of space, we use this very simple example to demonstrate the
mapping procedure and the conformance check between S and A1. The initial
relations set αinit

S is {Trust lO,lM }. The architecture relations corresponding to
S can be extracted in the following steps: From the two reductions

S
has(lM , xc1 :k1)−→ P1�lM

| RO�lM
lO

comp(lM , xm1 :xc1)−→ P2�lM
| RO�lM

lO
and rules

Rhas, Rcomp we have αS = αinit
S ∪ {Hasarch

lM
(xc1)} ∪ {ComputelM (xm1 = xc1)}.

The let-process in P2 has no effect on the extraction, while the channel syn-
chronization will result in adding ReceivelO,lM ({xm1 = xc1}, xm1) to αS . Since
RO terminates right after receiving the attestation, the two ComputelO relations
and Verif Attest

lO
(Attest lM ({xm1 = xc1})) cannot be extracted. This means that

the system S does not conform to the architecture A1.

5 Related Works

Dedicated languages have been proposed to specify privacy properties (e.g.,
[5,7,16]) but they are complex and not intended to be used at the architec-
tural level. In [2,3] the authors addressed the idea of applying formal methods to
architecture design and proposed a simple privacy architecture language (PAL).

Privacy by Design 79

On the other hand, there are also many works focusing mainly on the protocol
level, providing formal methods for specifying and verifying protocols, as well
as reasoning about the security and privacy properties (e.g., [8,19,21]). For this
purpose, process algebra languages are the most favoured means in the literature,
because they are general frameworks to model concurrent systems.

In addition, among the process algebras, the applied π-calculus ([13,22]) is
one of the most promising language in the sense that its syntax and semantics
are more expressive than the others (e.g., [1,15,20]). It also have been used to
analyse security and privacy protocols (e.g., in [4,9–11,14,17,18]). However, we
cannot use it directly for our purpose because for instance, it lacks syntax and
semantics for modelling component IDs and trust relations. Some modifications
and extensions of the applied π-calculus are required, which we proposed in
Sect. 3.

Finally, the definition of the architecture comes before the definition of the
protocol in software development cycles. Therefore, we chose to make it pos-
sible to verify the conformance of a protocol described in our language to an
architecture. We used the architecture language in [2] for this purpose. Its main
advantage is that (i) compared to informal pictorial methods, or semi-formal rep-
resentations such as UML diagrams, it is more formal and precise, while (ii) com-
pared to process calculi, it is more abstracted. The architecture language PAL
enables designers to reason at the level of architectures, providing ways to express
properties without entering into the details of specific protocols.

6 Conclusions and Future Works

In this paper, we proposed the application of formal methods to privacy by
design. We provided the mapping from the protocol level to the architecture level
for checking if a given implementation conforms to an architecture and showed
its correctness. For this purpose, we modified the applied π-calculus and defined
the connection between the semantics of the calculus and PAL. To the best of
our knowledge, this is the first attempt at examining the connection between
the protocol and the architecture levels in the privacy protection context.

The calculus version and the mapping procedure we proposed in this paper
are based on a simplified version of the architecture language. Indeed, we only
consider the attestation on equation X̃ = T . Moreover, our proposed calculus
(and mapping) does not support the modelling of zero-knowledge proofs, as well
as the posibility of spot-checks used in toll pricing systems. Hence, our method
can only handle simple architectures and protocols at this stage. One future
direction of our work is to extend the calculus to support these such extensions.

Acknowledgements. The authors would like to thank Daniel Le Métayer for his
initial idea and valuable comments during this work. This work is partially funded by
the European project PARIS/FP7-SEC-2012-1, the ANR project BIOPRIV, and the
Inria Project Lab CAPPRIS.

80 V.-T. Ta and T. Antignac

References

1. Abadi, M., Gordon, A.: A calculus for cryptographic protocols: the Spi calculus.
Technical Report SRC RR 149, Digital Equipment Corporation, Systems Research
Center (1998)

2. Antignac, T., Le Métayer, D.: Privacy architectures: Reasoning about data min-
imisation and integrity. In: Mauw, S., Jensen, C.D. (eds.) STM 2014. LNCS, vol.
8743, pp. 17–32. Springer, Heidelberg (2014)

3. Antignac, T., Le Métayer, D.: Privacy by design: From technologies to architec-
tures. In: Preneel, B., Ikonomou, D. (eds.) APF 2014. LNCS, vol. 8450, pp. 1–17.
Springer, Heidelberg (2014)

4. Backes, M., Maffei, M., Unruh, D.: Zero-knowledge in the applied pi-calculus and
automated verification of the direct anonymous attestation protocol. In: Proceed-
ings of SSP 2008. IEEE Symposium on Security and Privacy, pp. 202–215, May
2008

5. Barth, A., Datta, A., Mitchell, J., Nissenbaum, H.: Privacy and contextual
integrity: framework and applications. In: IEEE Symposium on Security and Pri-
vacy, pp. 15–198, May 2006

6. Bass, L., Clements, P., Kazman, R.: Software Architecture in Practice. SEI Series
in Software Engineering, 3rd edn. Addison-Wesley, Reading (2012)

7. Becker, M.Y., Malkis, A., Bussard, L.: A practical generic privacy language. Inf.
Syst. Secur. 6503, 125–139 (2011)

8. Burrows, M., Abadi, M., Needham, R.: A logic of authentication. ACM Trans.
Comput. Syst. 8, 18–36 (1990)

9. Delaune, S., Kremer, S., Ryan, M.: Verifying privacy-type properties of electronic
voting protocols. J. Comput. Secur. 17(4), 435–487 (2009)

10. Delaune, S., Ryan, M.D., Smyth, B.: Automatic verification of privacy properties
in the applied pi calculus. Trust Management II. IFIP AICT, vol. 263, pp. 263–278.
Springer, Boston (2008)

11. Dong, N., Jonker, H., Pang, J.: Analysis of a receipt-free auction protocol in the
applied pi calculus. In: Degano, P., Etalle, S., Guttman, J. (eds.) FAST 2010.
LNCS, vol. 6561, pp. 223–238. Springer, Heidelberg (2011)

12. Fagin, R., Halpern, J.Y., Moses, Y., Vardi, M.: Reasoning About Knowledge,
paperback edn. MIT Press, New York (2004)

13. Fournet, C., Abadi, M.: Mobile values, new names, and secure communication. In:
Proceedings of the 28th ACM Symposium on Principles of Programming, POPL
2001, pp. 104–115 (2001)

14. Fournet, C., Abadi, M.: Hiding names: Private authentication in the applied pi
calculus. In: Okada, M., Babu, C.S., Scedrov, A., Tokuda, H. (eds.) ISSS 2002.
LNCS, vol. 2609, pp. 317–338. Springer, Heidelberg (2003)

15. Hoare, C.A.R.: Communicating sequential processes. Commun. ACM 21(8),
666–677 (1978)

16. Jafari, M., Fong, P.W., Safavi-Naini, R., Barker, K., Sheppard, N.P.: Towards defin-
ing semantic foundations for purpose-based privacy policies. In: Proceedings of the
First ACM Conference on Data and Application Security and Privacy, CODASPY
2011, New York, USA, pp. 213–224 (2011)

17. Kremer, S., Ryan, M.D.: Analysis of an electronic voting protocol in the applied pi
calculus. In: Sagiv, M. (ed.) ESOP 2005. LNCS, vol. 3444, pp. 186–200. Springer,
Heidelberg (2005)

Privacy by Design 81

18. Li, X., Zhang, Y., Deng, Y.: Verifying anonymous credential systems in applied
pi calculus. In: Garay, J.A., Miyaji, A., Otsuka, A. (eds.) CANS 2009. LNCS, vol.
5888, pp. 209–225. Springer, Heidelberg (2009)

19. Meadows, C.: Formal methods for cryptographic protocol analysis: Emerging issues
and trends. IEEE Sel. Areas Commun. 21(1), 44–54 (2003)

20. Milner, R., Parrow, J., Walker, D.: A calculus of mobile processes, parts i and ii.
Inf. Comput. 100(1), 1–77 (1992)

21. Paulson, L.C.: The inductive approach to verifying cryptographic protocols. J.
Comput. Secur. 6(1–2), 85–128 (1998)

22. Ryan, M.D., Smyth, B.: Applied pi calculus. In: Cryptology and Information Secu-
rity Series, vol. 5, pp. 112–142 (2011)

Software Security and Malware
Analysis

Moving Target Defense Against Cross-Site
Scripting Attacks (Position Paper)

Joe Portner, Joel Kerr, and Bill Chu(&)

Department of Software and Information Systems, University of North Carolina,
Charlotte, NC 28223, USA

{jpportner,cjokerr}@gmail.com, billchu@uncc.edu

Abstract. We present a new method to defend against cross-site scripting
(XSS) attacks. Our approach is based on mutating symbols in the JavaScript
language and leveraging commonly used load-balancing mechanisms to deliver
multiple copies of a website using different versions of the JavaScript language.
A XSS attack that injects unauthorized JavaScript code can thus be easily
detected. Our solution achieves similar benefits in XSS protection as Content
Security Policy (CSP), a leading web standard to prevent cross site scripting, but
can be much more easily adopted because refactoring of websites is not
required.

Keywords: Cross site scripting � Moving target defense � Web security �
Application security

1 Introduction

Cross-site scripting (XSS) has been a leading web attack vector for many years. XSS
attacks stem from a web design feature: there is no clear demarcation separating
JavaScript programs from other web data such as Hypertext Markup Language
(HTML) and Cascading Style Sheets (CSS) data streams. JavaScript programs can be
intermixed with other web data in very complicated ways, affording malicious Java-
Script programs to be injected into a legitimate web data stream and cause malicious
logic to be executed on a client device. Unfortunately there is no easy way to prevent
all XSS attacks. The best practice is to encourage developers to sanitize untrusted data
before placing them into the web stream [1, 5–7]. However, there is no one-size-fit-all
solution to perform whitelist-based data sanitization for web data streams that can
prevent XSS attacks while preserving legitimate web functions [1].

The most comprehensive industry proposal to combat XSS is part of the Content
Security Policy (CSP) introduced by Mozilla Foundation in Firefox 4 and adopted as a
W3C candidate in 2012 [2]. All major browsers are supporting it today. XSS protection
is one of the major goals of CSP. It can be summarized by the following four com-
ponents. (1) New versions of CSP-compliant browsers must be used. (2) CSP assumes
legitimate JavaScript programs can be enumerated before run time. (3) Dynamic
evaluation of JavaScript programs using the “eval” function is not permitted. (4) No
inline JavaScript programs are permitted. All legitimate JavaScript programs must be
contained in dedicated files. The website will instruct a CSP-compliant browser to load

© Springer International Publishing Switzerland 2015
F. Cuppens et al. (Eds.): FPS 2014, LNCS 8930, pp. 85–91, 2015.
DOI: 10.1007/978-3-319-17040-4_6

approved JavaScript files from approved web locations. By banning inline JavaScript
programs, CSP achieves a clear separation of JavaScript programs from other web data
stream. To execute a JavaScript program, a CSP-compliant site will use:

script-src www.acmecorp.com;
<script src=“https://www.acmecorp.com/main.js”/>

The first line is a CSP directive indicating that JavaScript programs can be served
from www.acmecorp.com. The second line invokes a particular JavaScript program
from the whitelisted source. CSP has a built in XSS detection mechanism. If an inline
JavaScript program is detected, a CSP-compliant browser will report this event back to
the server as an indication of malicious attack behavior.

No major objections have been raised against the first three components of CSP.
Legitimate JavaScript programs in most web sites reside in either static files (e.g. .html,
.css, .php, .jsp, .aspx) or content management systems databases that do not change
after deployment. Dynamic contents often come from either business databases (e.g.
orders, accounts) or user input. They typically do not contain JavaScript programs.
XSS attacks target vulnerabilities in server side scripts written in languages such as
PHP, ASP, Java, and JSP.

The fourth component of CSP presents the most challenge for its wide adoption.
Many small JavaScript programs are often tightly integrated into web pages as illus-
trated by the following example.

<type=“text” name=“email” onkeyup=“doX(arg1, arg2)”>

In this case a JavaScript function doX() is called whenever a key is released in the text
box. If one were to disable inline JavaScript programs, one must refactor the webpage and
move this JavaScript program out of the html file. It is a formidable task for any large
website to pull out many small snippets of JavaScript code into different files. It is equally
difficult to maintain such a website as these scripts will not be directly visible to a
developer in the files that they are used in. The developer is forced to open separate files to
view/modify a few lines of code. It is not surprising that despite efforts by browser vendors
to support CSP, a 2014 study by Veracode indicated only 355 of the top 1 million Alexa
web sites have adopted CSP [3]. Even for those adopting CSP, they often continue to
enable inline JavaScript programs for reasons described here. Therefore in practice even
the limited adoption of CSP is for reasons other than XSS protection.

2 Moving Target Defense Against XSS

In this paper we outline a new approach, based the principle of moving target defense
[11], to mitigate XSS attacks with CSP-like benefits without the requirement of
refactoring JavaScript programs in existing websites. Our approach, referred to as the
Moving Target defense against XSS (MDX), shares the same first three assumptions as
CSP but allows inline JavaScript programs. We create randomly mutated versions of
JavaScript language. A server implementing MDX will maintain multiple copies of a
website, each with a different version of JavaScript. For a given web page request, a

86 J. Portner et al.

http://www.acmecorp.com

random version will be served. The server will inform a compliant browser the version
of mutated JavaScript language it should use. Injected JavaScript programs will fail
because it cannot predict the version of JavaScript at run time. A MDX-compliant
browser will report back any instances of JavaScript programs not using the agreed
upon mutation. These instances suggest website vulnerabilities that should be fixed.

2.1 JavaScript Language Mutation

XSS attacks consist of injected code that modifies either state or behavior on a page.
If we can defend a script from both unwanted state change and behavior, we can defeat
XSS attacks. To modify behavior of a page, an attacker must use JavaScript functions,
or APIs. For example, an attack script can inject page elements as shown below:

node.appendChild(newNode);

This particular attack would add the “newNode” object as a child to the “node”
object. In order to make API calls, a script must use the parentheses (). We can mutate
one of these tokens – for instance, the left parenthesis – in whitelisted JavaScript
programs. The above example JavaScript program can be mutated to:

node.appendChild(123newNode);

Here the string “(123” will be interpreted by JavaScript interpreter as a single token
representing the left parenthesis. By taking away an attacker’s ability to use the left
parenthesis, they are not able to attack page behavior. Only left parentheses that are
syntactically correct (i.e., appropriately mutated) will be executed successfully.

To manipulate page state (without using API functions), the attackers must use the
assignment operator. The browser and DOM objects provide access to key state objects
that attackers could manipulate. An example of a XSS attack that manipulates page
state is shown below:

location = “evil.com”;

We can mutate the “=” token in whitelisted JavaScript programs. Again, the above
example becomes:

location =123 “evil.com”;

Similarly here the string “=123” is interpreted by the JavaScript interpreter as the
token for assignment operator.

Limiting mutation to these two tokens simplifies the mutation process and keeps
computation resource requirements low. We acknowledge that there is potential for an
attacker to use a different JavaScript language feature to launch a successful XSS
attack; however, if it was discovered that another token could be used to manipulate
behavior or state, our method could easily be extended to include another token.
Additionally, because the tokens themselves are being changed, filter evasion tech-
niques, like encoding, redirection, etc., will not be successful either.

Moving Target Defense Against Cross-Site Scripting Attacks (Position Paper) 87

2.2 Deploying MDX

Multiple versions of the web site will be served, each using a different version of the
JavaScript language. For a given web request, one of the versions will be picked
randomly. This scheme fits nicely into most practical settings as websites are often
replicated for load balancing, as illustrated in Fig. 1.

Whitelisted JavaScript programs in a web site are mutated offline by a process that
scans web content (e.g. files with extensions such as .html, .php, .jsp, .aspx, and .css, as
well as databases used by a content management system), to identify JavaScript pro-
grams, and mutate the tokens for left parenthesis and assignment operator. When a web
page is served, part of the header informs an MDX-compliant browser of the particular
version of JavaScript being used. This is accomplished by passing a string that rep-
resents the mutated left parenthesis and assignment operator. The browser passes the
mutated tokens to its JavaScript engine to interpret JavaScript programs. Our example
for this scenario is seen in Fig. 2.

Fig. 1. Example load-balanced MDX implementation

Fig. 2. MDX mutation process

88 J. Portner et al.

Backwards compatibility can easily be maintained. If a request is made from a
browser not supporting MDX, then the request will be redirected to an unmodified
version of the site. Similar to CSP, an MDX-compliant browser will report JavaScript
violations back to the server so XSS vulnerabilities can be identified. These reports
include: the page on which the violation occurred, the page’s referrer, the resource that
violated the page’s policy, and the specific directive it violated [2]. Our assumption is
that reported vulnerabilities will be fixed in a timely manner.

With MDX, the odds are greatly in favor of the defenders. Suppose N copies of the
web site are deployed at any given time. An attacker might be able to discover all
versions of JavaScript available at any given moment. He can craft an attack with a
probability of 1/N being successful. The probability of the attack failing, thus leading to
vulnerability discovery, is 1–1/N. For example if 10 website copies are deployed the
probability of a successful attack is 10 %. For any attack, its probability of being
discovered is 90 %.

Each cross site scripting attacks are likely to be carried out multiple times. For
example, XSS attack may involve sending a mass email with a malicious JavaScript
program embedded in a link. If k attacks occur, the probability of all k attacks being
successful is (1/N)k. The probability of at least one attack failing—leading to the
detection of the vulnerability—is 1–(1/N)k. Continuing with the email attack example,
if 10 attack links were clicked, the probability of XSS vulnerability detection would
be 1–(1/10)10, or 0.999999999.

2.3 Browser Implementation

We carried out a proof of concept implementation to start exploring how to modify an
open source browser to support MDX. We implemented a modified JavaScript engine
inside WebKit by statically changing JavaScript tokens for the left parenthesis and
assignment operators. We tested the modified WebKit JavaScript engine with a
modified version of Safari browser and found it worked as planned. All known filter
evasion XSS attacks [4] were defeated by our modified browser. The next steps in a
future browser implementation include (1) have the browser dynamically change the
symbol table used by the lexical analyzer of the JavaScript interpreter and (2) make
each tab of the browser work with different versions of the lexical analyzer table within
the JavaScript interpreter. Based on our experience in modifying WebKit, assistance
from browser developers may be required.

3 Discussions

Much research into preventing XSS attacks has focused on offline taint analysis based
on server side source code (e.g. [5–7]). However it is difficult to fix all XSS vulnera-
bilities using program analysis in practice because of high false positives generated.
Space limitation does not permit us to reference other research proposals to protect XSS
attacks at run time. Most of them are heuristics based. Our work is related to one line of
such research, Instruction-Set Randomization (ISR) [8, 10], which was designed to
protect languages from injection attacks without relying on any heuristics. However, as

Moving Target Defense Against Cross-Site Scripting Attacks (Position Paper) 89

pointed out by [9] parsing all web streams on a web server to randomize JavaScript
programs upon every page load introduces a prohibitive run time overhead.

To minimize performance overhead, xJS [9] was proposed to counter XSS in such
way that one does not need to run JavaScript parsing on the web server. All JavaScript
programs are encoded by XORing them with a random key which will be decoded by a
browser plugin by XORing again with the same key. This key can be exchanged as part
of response to a web request. This approach has the advantage of not requiring browser
modifications. The main drawback of this approach, however, is that it does not
accommodate server side scripts. It is common for JavaScript programs to contain host
variables, which will be dynamically replaced with content by a server side script (e.g.
PHP). By XORing all JavaScript programs blindly, xJS breaks such behavior as
illustrated in Fig. 3.

In contrast, MDX preserves all server side script functions as illustrated in Fig. 2.
Unlike ISR MDX mutates JavaScript programs offline. This has the advantage of
avoiding run time performance penalty. Although an attacker can still craft JavaScript
code to attack a specific version of the JavaScript language, such an attempt will likely
to fail because the version of JavaScript language served is chosen randomly from a
(potentially large) number of options, which is accomplished by leveraging commonly
used load-balancing features. Furthermore XSS vulnerabilities can be discovered
quickly with very high probability.

In summary, MDX is a promising new approach to defend against XSS attacks
without requiring people to change their existing websites. It can be deployed effi-
ciently by leveraging existing web delivery infrastructure without performance pen-
alties. MDX is highly scalable, enabling those with more computing resources to offer
better protection against XSS attacks by deploying more website copies. A critical
success factor for wide adoption of MDX is to gain the necessary support from major
browsers. Such support is possible, as in the case of support for Content Security Policy
we discussed above.

Acknowledgment. This work is funded in part by NSF Grant 1129190.

Fig. 3. xJS transformation process

90 J. Portner et al.

References

1. OWASP: XSS (Cross Site Scripting) Prevention Cheat Sheet, 12 April 2014. https://www.
owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet

2. Web Application Security Working Group: Content Security Policy 1.1, 11 February 2014.
http://www.w3.org/TR/2014/WD-CSP11-20140211/

3. Dawson, I.: Security Headers on the Top 1,000,000 Websites: March 2014 Report, 19 March
2014. http://blog.veracode.com/2014/03/security-headers-on-the-top-1000000-websites-march-
2014-report/

4. OWASP: XSS Filter Evasion Cheat Sheet, 26 April 2014. https://www.owasp.org/index.
php/XSS_Filter_Evasion_Cheat_sheet

5. Xie, J., Chu, B., Lipford, H.R., Melton, J.T.: ASIDE, p. 267. ACM Press, New York (2011)
6. Vogt, P., Nentwich, F., Jovanovic, N., Kirda, E., Kruegel, C., Vigna, G.: Cross-site scripting

prevention with dynamic data tainting and static analysis. In: 14th Annual Network &
Distributed System Security Symposium, 28 February 2007

7. Wassermann, G., Su, Z.: Static detection of cross-site scripting vulnerabilities, p. 171. ACM
Press, New York (2008)

8. Kc, G.S., Keromytis, A.D., Prevelakis, V.: Countering code-injection attacks with
instruction-set randomization, p. 272. ACM Press, New York (2003)

9. Krithinakis, A., Athanasopoulos, E., Markatos, E.P.: Isolating javascript in dynamic code
environments, pp. 45–49. ACM Press, New York (2010)

10. Athanasopoulos, E., Krithinakis, A., Markatos, E.P.: An architecture for enforcing javascript
randomization in web 2.0 applications. In: 13th Information Security Conference, USA,
25–28 October 2010

11. MIT Lincoln Lab: Survey of Cyber Moving Targets. Technical Report 1166, September
2013

Moving Target Defense Against Cross-Site Scripting Attacks (Position Paper) 91

https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet
http://www.w3.org/TR/2014/WD-CSP11-20140211/
http://blog.veracode.com/2014/03/security-headers-on-the-top-1000000-websites-march-2014-report/
http://blog.veracode.com/2014/03/security-headers-on-the-top-1000000-websites-march-2014-report/
https://www.owasp.org/index.php/XSS_Filter_Evasion_Cheat_sheet
https://www.owasp.org/index.php/XSS_Filter_Evasion_Cheat_sheet

Combining High-Level and Low-Level
Approaches to Evaluate Software

Implementations Robustness Against
Multiple Fault Injection Attacks

Lionel Rivière1,2(B), Marie-Laure Potet3, Thanh-Ha Le1,
Julien Bringer1, Hervé Chabanne1,2, and Maxime Puys1

1 Safran Morpho, Paris, France
{lionel.riviere,thanh-ha.Le,julien.bringer,herve.chabanne,

maxime.Puys}@morpho.com
2 Télécom Paristech, Paris, France

{lionel.riviere,herve.chabanne}@telecom-paristech.fr
3 Verimag, Gières, France

marie-laure.potet@imag.fr

Abstract. Physical fault injections break security functionalities of algo-
rithms by targeting their implementations. Software techniques streng-
then such implementations to enhance their robustness against fault
attacks. Exhaustively testing physical fault injections is time consuming
and requires complex platforms. Simulation solutions are developed for
this specific purpose. We chose two independent tools presented in 2014,
the Laser Attack Robustness (Lazart) and the Embedded Fault Simula-
tor (EFS) in order to evaluate software implementations against multiple
fault injection attacks. Lazart and the EFS share the common goal that
consists in detecting vulnerabilities in the code. However, they operate
with different techniques, fault models and abstraction levels. This paper
aims at exhibiting specific advantages of both approaches and proposes a
combining scheme that emphasizes their complementary nature.

Keywords: Fault injection · Fault simulation · Instruction skipping ·
Control flow graph · Multiple fault · Smartcard · Embedded systems ·
Security

1 Introduction

Active physical attacks, in particular fault injections, are performed against
smartcard implementations in order to reveal sensitive information or break

This work was partially funded by the French ANR project E-MATA HARI.
Identity and Security Alliance (The Morpho and Télécom ParisTech Research
Center).
Maxime Puys—Work done while the author was in internship at Morpho.

c© Springer International Publishing Switzerland 2015
F. Cuppens et al. (Eds.): FPS 2014, LNCS 8930, pp. 92–111, 2015.
DOI: 10.1007/978-3-319-17040-4 7

Combining High-Level and Low-Level Approaches 93

secured codes. Introduced in 1997 [1], they consist in inducing volatile faults in
an operating circuit in order to generate computational errors. Several means
exist to perform physical fault injections such as clock of voltage glitch [2].
Electromagnetic waves [3] and laser beams [4] improved the injection accuracy.
Physical injections effects can be exploited towards Differential Fault Analysis
attacks (DFA) [1,5], which aim at retrieving crucial information such as crypto-
graphic keys by com paring faulty outputs with the correct ones. Such attacks
also apply to non-cryptographic security features such as integrity checks or
authentications.

In the following subsections, we describe how fault attacks threaten smart-
card implementations and we propose a coarse-grained process for secure devel-
opment accordingly. We emphasize actual challenges in this area and we present
our contributions.

1.1 Fault Injection Attacks Threats

In the context of smartcard-based products, manufacturers have the challenge to
ensure fault robustness for every embedded functionality. Sensitive data such as
private keys are critical and must be securely managed. In order to provide confi-
dentiality, integrity and authenticity to sensitive data, smartcard manufacturers
design secure implementations, embedding software countermeasures, that are
tested and evaluated against physical attacks.

However, performing an exhaustive physical fault injection evaluation would
be time consuming, thus costly and therefore would come far too late in the
development process. Moreover, if a vulnerability is found in the final sample
code, it then remains mainly two options to smartcard developers. If a software
countermeasure can handle the vulnerability, the product may be patched on
already existing smartcards. However, if the vulnerability is not addressable with
a software countermeasure, it could condemn the project. Furthermore, different
products are built on different components. For each new product specifications,
new dedicated evaluations are developed from scratch or adapted from existing
ones. Hence, smartcard manufacturer need a generic method to cope with this
multiplicity constraint and stem experiments complexity. This justifies the use of
a global development process taking into account the robustness of the developed
applications against fault injections.

1.2 A Coarse-Grained Process

Defining a secure development process against fault injection attacks is based on
the following steps:

1. identify objects that must be protected
2. develop the functional application embedding appropriate countermeasures
3. physical testing of the robustness against fault injections

This coarse-grained process must be refined in order to detect weaknesses as
soon as possible. Although physical attacks are conducted on the binary code

94 L. Rivière et al.

under execution, countermeasure accuracy evaluation must take place both on
the source code (for instance C code) and on the assembly code (proper to each
architecture). Source code robustness evaluation offers several advantages. First,
a same application can be deployed on several types of architectures and C codes
can then be reused, even with some adaptations depending on the component
countermeasures. Then the evaluation effort is factorized between several deploy-
ments of a same application. As illustrated below, testing a low-level code against
fault injection can produced a huge amount of attacks that must be examined in
detail. Attacks established at the source level abstract several low-level attacks
and can be more easily classified in terms of their impacts. Nevertheless, source
code robustness evaluation does not give sufficient guarantees: physical attacks
take place at the binary code, which can be very different than the source code
(due to the compiling process). As a consequence, a low-level code analysis is also
necessary. In this paper we present such a development process, based on two tools.

1.3 Actual Challenges

There exist several tools and approaches dedicated to test implementations
against fault injections [6–8]. All these works differ from the fault model that is
taken into account [9] and the level of code that is targeted (C or Java bytecode
for the referenced works). Nevertheless all approaches face to the same problems:

– how to evaluate the dangerousness of traces obtained by fault injection
– how to compare a set of attacks
– how to establish a final verdict both in term of vulnerability or robustness

Starting from the set of assets to be protected, the first challenge consists in
stating a verifiable oracle (in white or black box approach) allowing to classify
attacks that jeopardize security and are not detected by countermeasures. White
box oracles can be made more precise because they imply the internal state exe-
cution. Fault injection robustness is an intrinsically brute-force process, implying
all possible deviant behaviors provoked by fault injections. Generally we obtain
a large amount of attacks that must be reduced, to be reasonably treated. Actu-
ally there exist no criteria for that. Finally we can distinguish two classes of
tools: dynamic tools start from a given execution trace which is progressively
mutated [7,10] and static tools [6,8] that do not execute code and produce pro-
grams embedding some fault injections. For the first category of tools, attacks
can be effectively founded but it is not possible to state robustness verdict. On
the contrary, static approaches are complete but can generate false positives (for
instance unfeasible paths).

We use here two complementary tools. The first one, Lazart [11], is a sta-
tic tool acting on the source code and based on symbolic execution [12] that
ensures both the feasibility of founded attacks and completeness verdict. The
second one [10] is a low-level embedded simulator, based on a dynamic app-
roach, which guarantee a fine-grained attack classification due to the fact that
hardware mechanisms and countermeasures are not abstracted.

Combining High-Level and Low-Level Approaches 95

1.4 Our Contributions

– We propose a global process combining high-level and low-level robustness
evaluation against multiple fault injections

– We formalize the relationship between source and assembly attacks
– Based on the complementarity between source code and assembly code attacks,

we propose a systematic way to reduce the set of low-level attacks in order to
facilitate the verdict statement.

After the identification of sensitive code that must be protected, we propose to
conduct several evaluations:

1. Use the concolic tool Lazart in order to evaluate the code robustness to pro-
duce (or prove the absence of) high-level attacks

2. Use the low-level Embedded Fault Simulator (EFS) to produce low-level
attacks

3. Evaluate the coverage of the high-level attacks by the low-level attacks
4. Evaluate the divergence between high and low-level evaluation
5. State a verdict

In Sect. 2, we describe the Lazart [11] approach used to perform high-level
fault injection simulation and its concolic analysis capabilities. Section 3 keeps
the same structure to provide a description of the low-level Embedded Fault
Simulator that simulates fault effects on the assembly code on actual smartcards.
We exhibit the main advantage of each approach and show how results can be
compared. In complement of [10], we propose a way to classify found attacks,
through the notion of representative attack. Section 4 illustrates the proposed
process on more significant examples. In Sect. 4, we expose our fault simulation
results on a PIN verification implementation, with the Lazart and EFS tools.
Finally, in Sect. 5, we explore the potential of combining the two tools to enhance
the vulnerability detection rate and accuracy. Section 6 concludes the paper and
gives some perspectives.

A Small Example. In the two following sections, tools are illustrated with the
help of the small example given below.

1 // Byte array comparison
2 static bool byteArrayCompare(byte* a1, byte* a2){
3 int i = 0;
4 int status = BOOL_FALSE;
5 int diff = BOOL_FALSE;
6 int size = sizeof(a1)/sizeof(byte);
7 for (i=0; i<size; i++)
8 if (a1[i] != a2[i])
9 diff = BOOL_TRUE;

10 if ((i==size) && (diff == BOOL_FALSE))
11 status = BOOL_TRUE;
12 return status;
13 }

Listing 1.1. byteArrayCompare

96 L. Rivière et al.

Listing 1.1 describes a byteArrayCompare function, that compares two arrays
of byte and return true if they match, false otherwise. The code of this function
contains some countermeasures: for instance the test i==size allows to verify
that we loop size times. ‘a1’ and ‘a2’ have the same size, which is checked prior
to the function call. BOOL TRUE and BOOL FALSE are constant bytes define to
0xAA and 0x55 respectively.

2 High-level Robustness Evaluation

The Lazart approach aims at evaluating the code robustness against multiple and
volatile fault injections [11] and acts at the source code level (here the LLVM.3.3
intermediate representation issued from C code). The considered fault model
combines an attack objective and fault injections impacting the control flow by
test inversion. A test inversion consists in changing the result of a conditional
jump. The originality of Lazart is to be based on a static code analysis technique,
here symbolic execution. Attack paths are determined with respect to an attack
objective, mastering in that the combinatorial of multiple injections. A path that
fulfills the attack objective reveals a vulnerability in the code and constitutes an
attack.

The main particularity of Lazart, contrary to other tools starting from a
concrete trace [6–8], is to be able to positively or negatively qualify the result of
the robustness evaluation. Thanks to the symbolic approach, Lazart explores all
possible paths (and fault injection possibility) with respect to a set of symbolic
inputs. Then it is possible to state if a targeted application resists to an attack
of multiplicity n or not.

2.1 The Lazart Approach

The Lazart approach is based on the following steps, as illustrated on Fig. 1.

Fig. 1. The Lazart approach

1. Starting from the Control Flow Graph (CFG) and an attack objective, Lazart
uses a reachability propagation algorithm that colors the CFG. An attack
objective is a parameter that must be set, corresponding to a basic block to
reach or not to reach.

Combining High-Level and Low-Level Approaches 97

2. Based on coloration, Lazart determines which program locations are candi-
date for successful fault injections. It produces a mutant that embeds these
fault injection possibilities.

3. Using Klee, a symbolic test case generator aiming a path-coverage criterion,
Lazart evaluates the robustness of the targeted application. It produces either
some attacks, or establishes the absence of attacks or even an inconclusive
response.

A more complete description of Lazart, and underlying algorithms, can be
found in [11]. Here, we illustrate this approach on the byteArrayCompare exam-
ple given Listing 1.1. Figure 2(a) gives the CFG associated to the byteArray
Compare function. The mapping between the C code and the CFG is direct,
except for the test on line 10, which is split into two conditions: the basic
block for.end testing the condition (i==size) followed by the basic block
land.lhs.true testing the condition (diff == BOOL FALSE). Figure 2(b) gives
the colored CFG, with the objective to reach the block if.then9 (corresponding
to the assignment status=BOOL TRUE on the line 11).

A node n is green whenever the attack objective is fatally reachable from n
and red when the objective is never reachable. The yellow color corresponds to
a node from which the goal could (or not) be reachable. A yellow node owning
at least one red son becomes orange. Faults are possibly injected in yellow and
orange nodes, forcing to reach a green block (and consequently not fall into a
red one).

Fig. 2. Initial CFG of byteArrayCompare and after coloration

Fault injections are encoded by adding code simulating test inversions (a mut-
ant of the initial code). A global fault number counter is added and incremented

98 L. Rivière et al.

as soon as a fault is injected and each mutation is guarded by a boolean variable
that indicates if the fault is injected or not. In our example, two mutations are
introduced to avoid the red node if.then10 and two double mutations hijacking
the flow of the block if.then in the for loop body and another one forcing (or
avoiding) the exit of the for loop.

Klee [13,14] is the concolic test case generation engine used by Lazart to
explore all paths and thus all combinations of fault injections. It requires to
declare which variables are made symbolic. Klee makes it possible to define
assertions to constrain the chosen symbolic variables. The byteArrayCompare
function takes two arrays of byte a1 and a2 as input arguments. Here, the size
a1 and a2 is set to 4, a1 is instantiated by an initial value and a2 is declared as
symbolic with the following constraint: each byte must be different from a1. Vari-
ables guarding fault injections are implicitly declared as symbolic, as described
below.

2.2 Results Analysis

Table 1 gives the results supplied by Lazart when at most 4-faults injections are
performed. An n-attack is found when the corresponding path led to reach the
green block introducing n faults. Attacks can be partially compared with respect
to the program locations where faults are injected. An attack strictly including
all locations associated to another one is considered as redundant.

Table 1. Possible attacks for byteArrayCompare

Attack multiplicity (# of fault) # of attacks Non-redundant attacks

0 0 0

1 1 1

2 5 1

3 10 0

4 11 1

Total 27 3

For the byteArrayCompare function, Lazart generates 17 possibilities of fault
injections. Executing the mutant that embeds these fault injections, Klee pro-
duces 56 tests in about 3 s. Among them, the single attack of multiplicity 1
is obtained when the loop operates normally and the fault injection forces the
inversion of the condition diff==BOOL FALSE. The non-redundant attack of mul-
tiplicity 2 is obtained when first, the loop is skipped (inverting the test i<size)
and secondly, we force the condition i==size to be true. Others 2-faults injec-
tion attacks are redundant with the attack of multiplicity 1 (we invert one of the
internal test of the body and the final condition diff==BOOL FALSE). 3-faults
injections do not introduce new attacks. The attack of order 4 corresponds to
the case where the internal test of comparison is inverted for each byte.

Combining High-Level and Low-Level Approaches 99

The fault model considered by Lazart encompasses several data or control
flow low-level attacks, depending on the compilation process: replacing an assem-
bly instruction by no operation (NOP) to delete a jump or a carry flag assign-
ment, modifying values impacting the condition, etc. Nevertheless a complete
and exhaustive approach does really make sense only at the binary level where all
impacts of code modification can be taken into account (such as code operation
mutation). On the contrary, a coarse-grain analysis, guided by some objectives in
term of sensible parts of code, takes sense during the development process where
threats must be early determined and proved to be taken into account. Here we
focus on control flow modification impact that is generally hard to follow in a
manual audit process. Some other fault models, such as data modification, can
be also simulated by code mutation as described in [15] and could be integrated
into Lazart, without difficulty. Furthermore, multiple fault injection must now
be taken into account according to the next state-of-the art in term of laser
attacks.

Finally, the main originality of Lazart is the possibility of stating a complete
verdict either in term of found attacks or absence of attacks (in our example
when 0 injection is targeted). A static analysis is also used in [8,15], based on
a theorem proving approach, targeting single data fault injection. The use of a
concolic engine allows us either to establish the robustness or to produce attacks.

3 Low-Level Robustness Evaluation

The EFS approach [10] differs from Lazart [11] as it operates in runtime mode
(dynamically) in the actual smartcard. No bias is introduced by external periph-
erals and no code mutation is performed. It uses the whole function execution
time frame to exhaustively inject cycle-wise faults. For instance, without any
knowledge of the code, the EFS skips every single byte of instruction, one-by-one
up to n-by-n in order to perform instruction skip even with unaligned instruc-
tion sets. The fault width n is chosen and can be wider than the size of a single
instruction. It is then possible to evaluate security consequences of skipping sev-
eral instructions.

3.1 The EFS Approach

Figure 3 describes the EFS workflow. The EFS operates on the smartcard Cen-
tral Processing Unit (CPU) as it is embedded in the software project with other
applications. On the computer side, the EFS Handler, which consists of a soft-
ware program, provides functionalities to manage fault injection experiments.
The host computer is in charge of the smartcard communication.

The whole process takes place in four main steps. First, the developer pro-
vides some attack parameters such as the fault characteristics, in term of fault
model and fault width. He also specifies the targeted functionality such as PIN
verification or an Rivest, Shamir, Adleman (RSA) signature. According to these
parameters, in a second step, the EFS Handler calls its test case generation

100 L. Rivière et al.

Fig. 3. The embedded fault simulator workflow

algorithm and produces a task list. A task consists in setting up the EFS and
launching the targeted function.

At the third step, the host computer performs all tasks and sends back the
functional smartcard responses to the EFS Handler. Finally, at the fourth step,
the EFS handler sorts every functional responses into groups according to their
functional behaviors. A functional response can be of four kinds: normal, faulty,
countermeasure or CPU signal. A Functional response is said faulty under two
conditions: it differs from the expected reference response and the program ter-
minates.

In the faulty group, an attack is found when the corresponding attack path
breaks the functional specification of the targeted program. For instance, a
PIN verification program ensures that a PIN candidate matches the expected
PIN value. Its output is binary (true of false), thus any output that invert the
expected response is considered as an attack. A more complete description of
the Embedded Fault Simulator can be found in [10].

3.2 Results Analysis

We illustrate this approach on the byteArrayCompare example given in
Listing 1.1. As the EFS is a low-level approach, we perform our code analysis
on the assembly generated from the code compilation. Chosen parameters allow
to generate all paths and thus all possibilities of fault injection with respect to
the instruction skip fault model.

Table 2 gives the results of the EFS according to the number of skipped
contiguous instructions. In this experiment we skipped up to 16 instructions.
However, 4 to 16-contiguous instructions skips, denoted as {4+} in the table,
didn’t reveal any new representative attacks. A detected attack is representative
if it produces an unobserved functional effect leading to a successful attack.

A functional effect of an attack breaks the functional property of an instruc-
tion such as a value assignment to a register or the equality of two registers. The
attack is successful if the broken assembly instruction disrupts the property of
the high-level function that contains it (a comparison or a PIN Verification for
instance). Several faults at the assembly level can produce the same functional
effect on the high-level. We discuss this point in Sect. 4.4.

Combining High-Level and Low-Level Approaches 101

Table 2. EFS attacks on byteArrayCompare

of skipped instructions # of attacks Representative attacks

1 4 4

2 3 1

3 2 1

4+ 407 0

Total 416 6

Three of the four attacks that skipped only one instruction are obtained when
some assignment instructions are skipped (MOV). First, two attacks occurred at
the initialization phase where status and diff should have been initialized to
BOOL FALSE.

uint8_t status = BOOL_FALSE; ->x97A055
MOV R10,#0x55

uint8_t diff = BOOL_FALSE; ->x977055
MOV R7,#0x55

Listing 1.2. Single instruction skip 1 & 2

As these two assignments are contiguous, a double instructions skip attack
also succeeds but is redundant as shown in Listing 1.2. Those attacks work when
R7 or R10 contains the precise value.

The attack effect found accounts to the same 1-fault with Lazart, which
consists in inverting the condition diff==BOOL FALSE.

if (a1[i] != a2[i]) diff = BOOL_TRUE;
xAD4B CMP R4,R11
xD903 JE 0x38A1

->x9770AA MOV R7,#0xAA

Listing 1.3. Single instruction skip 3

The third single instruction skip attack avoids the update of the diff value
when a difference is found during the comparison. This effect is showed in List-
ing 1.3. Consequently, the difference is not reported.

Replayed 4 times in a row, this attacks corresponds to the 4-fault attacks
found by Lazart that consists in inverting the internal test of comparison for
each byte.

Finally, the last single instruction skip attack is found in the sensitive part
corresponding to the equality status assignment to true. Listing 1.4 gives the
corresponding assembly code. At line 3, after the CMP (Compare), the Z flag
(Zero) is set. In normal condition, the JNE (Jump Not Equal) instruction will
read and reset the Z flag then continue without branching.

102 L. Rivière et al.

1 if ((i==array_size) && (diff==BOOL_FALSE)) status = BOOL_TRUE;
2 xAD56 CMP R5,R6 ;(i==array_size)
3 ->xD907 JNE 0x38B2 ;return status
4 xD91F5503 CJNE R7,#0x55,0x38B2 ;diff==BOOL_FALSE
5 x97A0AA MOV R10,#0xAA ;status=BOOL_TRUE

Listing 1.4. byteArrayCompare Attack

However, if we skip the line 4, the Z flag is not restored and will be read by the
following conditional branch CJNE (Conditional Jump Not Equal). Consequently,
even if a mismatch occurs during the array comparison, the status is set to
BOOL TRUE.

The attack effect is equivalent to the 2-fault attacks found by Lazart that
consists in inverting the line 10 of Listing 1.1.

A non-redundant two instructions skip attack was found. It breaks the com-
parison loop by avoiding the loop counter initialization (first instruction skipped)
and the loop branching routine (second instruction skipped). Consequently, the
diff value will never be updates and will keep its BOOL FALSE initial value.
A non-redundant three instructions skip attack was also found but is similar to
the one showed in Listing 1.4. It breaks the double condition test on the line 1
by directly branching to the status=BOOL TRUE assignment after the comparison
loop (line 6). This is a second manner to produce the same effect obtained by
Lazart, inverting the line 10 of Listing 1.1.

Skipping 4 up to 16 instructions does not introduce new attacks. The whole
process has reported 416 attacks over 3199 tests. The subset of 9 attacks con-
sisting of {1, 2, 3}-instructions skips provided 6 representative low-level attacks.
These recover the 4 non-redundant high-level attacks found by Lazart. The
equivalence between the two fault attack classes is not trivial due to the abstrac-
tion level difference. The EFS performs exhaustive testing according to a fault
model and with respect to the function code, size and duration. Therefore, the
output fault classification allows determining the robustness of a targeted embed-
ded application code against a chosen fault model. Moreover, output states that
differ from the reference state can be evaluated to claim if the detected attack
path reveals a critical vulnerability or not.

4 Case Study

A PIN verification algorithm constitutes a valuable target of evaluation for Lazart
and the EFS tools. As it provides a secret PIN to protect, and uses a try counter to
avoid brute force attacks, PIN verification is sensitive to fault attacks impacting
both data and control flow. With fault injections, the aim is to break the PIN
verification and/or the PIN Try Counter (PTC). In this paper, we focus on the PIN
comparison. Subsect. 4.1 first describes the attack scenario selected to evaluate
Lazart and the EFS. Subsect. 4.2 focuses on the results obtained with Lazart while
Subsect. 4.3 exhibits attacks found by the EFS. A short synthesis is proposed in
Subsect. 4.4 to summarize both approach capabilities.

Combining High-Level and Low-Level Approaches 103

4.1 Secured VerifyPIN implementation

We analyze, in the next subsections, with both Lazart and the EFS, a secured
implementation of the VerifyPIN functionality. First, we added the always-
decrement-first rule [16–18], which recommends to decrement the PTC before any
other operation occurs. When every conditional tests on the PIN passes, the PTC
is incremented back. This prevents from tearing attacks, which consist in tearing
the smartcard from the reader, or disabling the power just after the PIN compar-
ison. Thereby, an attacker could not lead brute force attacks on the PIN value.

Our implementations are also prone to fault injection on data flow and control
flow. The main methods to prevent fault attacks are redundancy and integrity
checks. We provide the PTC integrity via backups for checking. We also managed
operations involving the PTC, hence, increment and decrement are protected by
checking the expected value after each operation. We also use double checks
for sensitive conditional tests such as the PIN comparison itself to avoid single
fault injection leading to instruction skip or test inverting [19]. The core of the
VerifyPIN implementation is shown in Listing 1.5.

1 equal = BOOL_TRUE;
2 for(i=0 ; i<SIZE_OF_PIN; i++) { // Main Comparison
3 equal = equal & ((buffer[i] != pin[i]) ? BOOL_FALSE : BOOL_TRUE);
4 stepCounter++;
5 }
6

7 if(equal == BOOL_TRUE) {
8 if(equal != BOOL_TRUE) // Double test
9 goto counter_measure; // Resets the remaining tries to max

10 triesLeft = MAX_TRIES; // First backup
11 triesLeftBackup = -MAX_TRIES; // Second backup
12 if(triesLeft != -triesLeftBackup) // Verifies the new value
13 goto counter_measure;
14 authenticated = 1; // Authentication status update
15 if(stepCounter == INITIAL_VALUE + 4)
16 return EXIT_SUCCESS;
17 }
18 else {
19 authenticated = 0;
20 if (stepCounter == INITIAL_VALUE + 4)
21 goto failure;
22 }

Listing 1.5. VerifyPIN C code

Table 3. VerifyPIN implementation properties

of lines in C code 83

o lines in ASM code 67

ASM Code size (in Byte) 179

Constant time comparison
√

Double comparison
√

Branch balancing ×

104 L. Rivière et al.

Table 3 summarizes implementation properties. As described in Sect. 3, we
perform an exhaustive testing campaign, with respect to the targeted function
size and duration. Using the EFS, the test consists in skipping every single
instruction and every possible block of instructions of the very same implemen-
tation on a 16-bit smartcard. The results are described in the three following
subsections.

4.2 Vulnerabilities Detected by Lazart

Here, we present the results produced with Lazart for the VerifyPIN code, where
we target the block containing the statement authenticated=1 (Listing 1.5
line 14).

BYTE triesLeft = maxTries;
int i;
klee_make_symbolic(buffer,

sizeof(char)*SIZE_OF_PIN, "buffer");
for (i = 0; i < SIZE_OF_PIN; ++i)

klee_assume(buffer[i] != pin[i]);

Listing 1.6. Klee Symbolic Input

The experiment aims at establishing the robustness of PIN implementations
with a permissive number of trials and when the attacker does not known any part
of the PIN. Then inputs are characterized for Klee as described in Listing 1.6.

VerifyPIN Robustness Evaluation. Lazart generates 6 possibilities of fault
injection. Klee takes about three second to terminate normally producing 49
tests, distributed as described in Table 4, with up to 4 fault injections.

Table 4. Lazart results for VerifyPIN

Fault Multiplicity # of test # of attack # non- redundant

0 4 0 0

1 7 0 0

2 9 2 2

3 13 5 0

4 16 11 1

Total 49 18 3

One non-redundant attack of multiplicity 2 consists in inverting the double
tests equal==BOOL TRUE and equal!=BOOL TRUE. The other one corresponds to a
fault injection that circumvents the loop execution followed by another one that
hijacks the step counter value countermeasure. The attack of multiplicity 4 corre-
sponds to the case where the internal test of the comparison is inverted for each
byte.

Combining High-Level and Low-Level Approaches 105

4.3 Vulnerabilities Detected by the EFS

With EFS attacks on VerifyPIN we encountered five types of functional outputs
that are described in Table 5.

Table 5. Functional output behaviors distribution with the EFS tool

Functional Output VerifyPIN

Wrong PIN / Signal or Countermeasure 79,87 %

Random output / APDU Errors 18,5 %

Right PIN → Authentication 1,59%

Number of tests 4528

Wrong PIN / Signal or Countermeasure is the most recurrent case over all
experiments. Signal stands for illegal opcode or illegal operand and is triggered
by the CPU. Software Countermeasures are triggered by the targeted code itself,
when a fault is detected. When no CPU signal nor software countermeasures are
triggered, the fault injection has no effect and leads to the Wrong PIN status.

Internal countermeasures are triggered when function calls or register oper-
ation are targeted (ECALL, MOV). Tampering with the DEC/CMP or INC/CMP pair
also leads to trigger countermeasures. When the fault width is too large, there
is a possibility to jump outside of the PIN verification execution window lead-
ing to countermeasure triggering, unresponsive smartcard, random outputs and
Application Protocol Data Unit (APDU) error cases.

Table 6. Detected attacks by the EFS on VerifyPIN

skipped instructions VerifyPIN

1 1 (1)

2 2 (1)

3 1 (0)

4 4 (0)

5+ 64 (1)

Total 72 (3)

VerifyPIN Robustness Evaluation. Table 6 describes the fault obtained
attacking VerifyPIN, according the number of skipped instructions. From the 72
successful attacks over 4528 tests (1.59 %), there are only 2 representative vul-
nerabilities found in the code under 4-instructions skips. The varying fault width
explains this rate. The fault width corresponds to the number of skipped bytes
of opcode. Most successes are explained by skips of conditional tests implying
the triesLeft counter or the BOOL TRUE value.

106 L. Rivière et al.

If we consider only addresses where successful attacks started from, we obtain
the following Table 7. It describes the fault width according to the faulted
assembly code address that led to successful authentications. The digit between
parentheses corresponds to representative attacks. Several non-representative
{1, 2}-instructions skip faults were found. Those results are exposed with more
details on the following subsections.

Table 7. Faulted code address in VerifyPIN

Address (ASM code) Fault width #instr Corresponding C code

0x4909 0x16 9 If (triesLeft ≤ 0)

0x490D 0x12 7

0x490F 0x10 4 If (t1 != triesLeftBackup)

0x4914 0x0B 6

0x4970 0x08 4 If (equal == BOOL TRUE)

0x4974 0x04 1

In the #instr. column we show the corresponding number of skipped instruc-
tion. Successful attacks imply to skip up to 9 contiguous instructions, which is
hard to achieve with a physical injection.

Moreover, Table 7 exhibits one attack path that only requires a single instruc-
tion skip. The corresponding C code is the conditional test on the boolean value
equal that states the equality of the two compared PINs (lines 1-5 in Listing 1.1,
recalled in Listing 1.7 below).

equal = BOOL_TRUE;
for (i=0; i<SIZE_OF_PIN; i++) { // Main Comparison

equal = equal & (buffer[i] != pin[i]) ? BOOL_FALSE : BOOL_TRUE);
stepCounter++;

}

Listing 1.7. VerifyPIN C code

The equal value is used as a part of the comparison at each step, for each
byte comparison.

A single difference between the PIN value and the input PIN is sufficient
to switch the equal value to false. A single instruction skip leading to an
authentication with a wrong input PIN at equal == BOOL TRUE is not easy to
detect at the C level. The analysis has to be pushed further, at the assembly
level. While reading the assembly code, we notice that neither the byte-to-byte
comparison nor the PIN values is altered during the for loop. However, the
equal value is initialized to the constant value BOOL TRUE before the loop starts
as stated in Listing 1.7 in the C code.

Combining High-Level and Low-Level Approaches 107

equal = BOOL_TRUE;
x9710 MOV R11,#DWR(0x10)
x9741000A MOV EQUAL(0x000A),R11

Listing 1.8. VerifyPIN ASM equal Assignment

In Listing 1.8 we show how the equal assignment takes place at assembly
level. First, the BOOL TRUE constant is copied from its address #DWR(0x10) to
the register R11.

Then, R11 is immediately copied into EQUAL(0x000A), which stands for the
equal variable in the C code. During the loop, EQUAL(0x000A) takes part in
a multi-conditional assignment formula. The R11 register is still unused during
the loop. At the end of the loop, EQUAL(0x000A) is written back to R11 and
compared to the BOOL TRUE constant as shown in Listing 1.9.

1 ->x97D1000A MOV R11,#EQUAL(0x000A)
2 xD9101B CJNE R11,#DWR(0x10),AUTH(0x4996)
3 xD91024 CJNE R11,#DWR(0x10),CTM(0x49A2)

Listing 1.9. VerifyPIN ASM code

Consequently, if the MOV responsible of that copy is skipped (line 1), the R11
register will not be updated and will keep its latest value, namely BOOL TRUE.

Therefore, this single skip leads to a successful authentication without dis-
rupting the control flow.

4.4 Synthesis

We encountered different behaviors during our experiments. Less than 2 % of
the EFS attack paths against VerifyPIN implementations leads to a successful
authentication. Most of reported attacks are redundant. They include all attacks
detected by Lazart but except 4-faults injections due to the fact that, in the
current implementation of the EFS, only contiguous instructions are skipped.
However, high-multiplicity faults performed by Lazart can target different lines
of the C code, at different locations. This is why those two faults are not reported
by the EFS. However, for each other non-redundant attack found by Lazart, there
is at least one attack found by the EFS that reflect the same code vulnerability.
In particular, for a given vulnerable code line detected by Lazart, there can be
different explanations in the underlying assembly code, which are reported by
the EFS.

As shown on Fig. 4, the first observation is that, to a statement at high-level
C code corresponds several low-level assembly code lines (1). Secondly, some
low-level operations are totally abstracted at the C-level and thus, they cannot
be targeted. Some instructions induce implicit operations, such as flag register
read/writes. To have a good insight of flag states updates (2), the developer
must consider the dynamic assembly code behavior.

108 L. Rivière et al.

Fig. 4. Fault level differences insights

Therefore, vulnerable instructions such as CMP RX,#0x00 can be avoided.
Regarding instruction skips, a careful attention must be paid to manage branch-
ing codes in order to avoid unexpected branching attacks, as illustrated in the
example given in Listing 1.4.

5 Combining Lazart and the EFS to Improve the
Vulnerability Detection

In this section, we expose some interesting results obtained by combining Lazart
and the EFS tool in evaluating both the VerifyPIN and the byteArrayCompare
implementations. The two approaches reveal some complementary despite their
different operating mode. On the one hand, Lazart can locate a sensitive portion of
code at the C level according to an attack goal but it does not consider the under-
lying mechanism. On the other hand, the EFS can perform exhaustive instruction
skipping in a whole function time frame but without any predetermined security
purpose. Performances, in terms of timing and accuracy differ according to the
security property that the developer is trying to evaluate or reach.

Here, the main idea is to combine both approaches in order to perform a low-
level exhaustive testing on assembly codes that correspond to some sensitive code
blocks determined by Lazart. We proceed as described below:

(1) Determine the attack goal with Lazart. In our case study, we must ensure
that the PIN authentication fulfills its security functionality.

(2) Locate sensitive portions of code according to the CFG coloring algorithm,
the green basic block. If it is reached under fault injection, the goal no longer
holds.

(3) Setup the EFS code range target according to the assembly code address
range that corresponds to the green basic block in the source code.

(4) Perform the EFS within the restricted code area

As we first try Lazart and the EFS independently on byteArrayCompare and
VerifyPIN, we propose to run the combined tests on those two implementations.
To do so, we define two benchmark criteria. First, the Detection rate denotes the
capacity of an approach to reveal distinct vulnerabilities in the code via the non-
redundant attacks. It is the ratio between the number of attacks found and the
number of non-redundant attacks. Secondly, the Timing performance criterion

Combining High-Level and Low-Level Approaches 109

denotes the time spent to perform the whole process and is largely related to
the total number of test.

In the rest of this section, all results are obtained under the following attack
parameters. Lazart performed multiple fault injections up to four faults. The
EFS performed up to four contiguous instructions skips for all implementations.
Non-redundant and representative attacks are reported in parentheses.

Table 8. Lazart & EFS complementarity results on byteArrayCompare

Approach # of tests # of attacks Detection rate Timing performance

Lazart 56 27 (3) 11.7 % ∼3 s

EFS 2652 204 (6) 2.9 % ∼9 mn

Lazart + EFS 56 + 572 20 (4) 20 % ∼2 mn

Table 8 describes the results obtained by the combination of Lazart and the
EFS on the byteArrayCompare function. Chaining Lazart and the EFS greatly
improves the detection rate and is 4,5 times faster than the EFS alone. There
is a difference of magnitude between the Lazart and the EFS timing perfor-
mance. This arises because of the operating platform. Lazart runs on powerful
x86 processors clocked at several GHz whereas the EFS runs at best on 33 MHz
smartcards.

Lazart performs its fault injection simulation based on code mutation. Each
mutation consists in forcing a conditional test to branch or not to branch, regard-
less values considered in the targeted test. Thereby, whatever the conditional
test, the fault will occur. However, as described in Listing 1.2, two attacks are
found in the initialization phase of the byteArrayCompare function. Those two
are not reported because Lazart does not take data mutations into account.
Consequently, at the low level, the EFS alone found two non-redundant faults
that are not reported with the combined approach. This highlights the impor-
tance of tracking the evolution of values that are used in conditional tests. We
simply extended the portion of code spotted by Lazart with the portion of code
where sensitive values are manipulated for the combined approach. Therefore,
the combined approach is able to retrieve all six attacks.

Table 9 describes the results obtained on VerifyPIN code. The combination
reduces the experiment duration by a factor of 10 thanks to the range reduction
operated by Lazart. Moreover, the detection rate increases, it reflects a more accu-
rate fault detection. Lazart and the EFS found two different sets of attacks in the
same code area. This explains the better non-redundant attack detection rate.

Lazart and the EFS are two fault injection simulation tools that operate at
different abstraction levels with different fault models. However, we proposed a
new method to make them work together. Our experiments highlight the interest
of combining them despite of their differences and show significant performance
improvements. The high-level static approach helps to refine the code range
of the low-level dynamic one, and altogether they improve the vulnerability
detection rate of our fault simulation.

110 L. Rivière et al.

Table 9. Lazart & EFS complementarity results on VerifyPIN

Approach # of tests # of attacks Detection rate Timing performance

Lazart 49 18 (3) 16.6 % <3 s

EFS 4528 72 (2) 2.7 % ∼17 mn

Lazart + EFS 49 + 720 14 (3) 21.4 % ∼1 mn30 s

6 Conclusion

In this paper, we study the application of two simulation techniques to evaluate
smartcards robustness against multiple fault attacks and show their complemen-
tary. Lazart performs concolic analysis on the control flow graph of a C code
under the test inverting fault model. The EFS performs exhaustive instruction
skip at the assembly level with respect to a targeted function. We exposed our
attack results on a common PIN verification implementation. We show that soft-
ware countermeasure implementations must be tested to avoid coding errors or
some compiler optimizations that could lead to the countermeasure deprecation.
We also took advantage of Lazart and the EFS differences by combining them.
It results in a new multi-level fault injection simulation tool that improved the
fault vulnerability detection rate and accuracy.

There exist several tools and approaches dedicated to test implementations
against fault injections [6–8]. All these works differ from the fault model that is
taken into account and the level of code that is targeted (C or Java bytecode for
the referenced works). Actually, there exists no criteria allowing us to evaluate
and compare such approaches. The work presented here constitutes a first step in
this sense: we propose some criteria based on the number of generated tests and
non-redundant attacks (number of generated attacks is not significant). Then
we proposed to evaluate the efficiency of a test campaign against fault injection
by a detection rate. Proposed criteria must be refined and extended for instance
in taking into account coverage criteria. Another contribution of this work is
the proposition of a method to combine high and low level evaluations. In [7],
the authors exploit high-level attacks generation in order to evaluate a low level
simulation. But it is an a posteriori approach. Here we propose to combine a
priori fault injection simulations. A finer analysis must be conducted in order to
estimate the gain of this combination.

References

1. Boneh, D., DeMillo, R.A., Lipton, R.J.: On the importance of checking crypto-
graphic protocols for faults. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol.
1233, pp. 37–51. Springer, Heidelberg (1997)

2. Balasch, J., Gierlichs, B., Verbauwhede, I.: An in-depth and black-box character-
ization of the effects of clock glitches on 8-bit MCUs. In: Breveglieri, L., Guilley,
S., Koren, I., Naccache, D., Takahashi, J. (eds.) FDTC, pp. 105–114. IEEE (2011)

Combining High-Level and Low-Level Approaches 111

3. Dehbaoui, A., Dutertre, J.-M., Robisson, B., Tria, A.: Electromagnetic transient
faults injection on a hardware and a software implementations of AES. In: Bertoni,
G., Gierlichs, B. (eds.) FDTC, pp. 7–15. IEEE (2012)

4. Skorobogatov, S.P., Anderson, R.J.: Optical fault induction attacks. In: Kaliski Jr.,
B.S., Koç, Ç.K., Paar, C. (eds.) Cryptographic Hardware and Embedded Systems
- CHES 2002. LNCS, vol. 2523, pp. 2–12. Springer, Heidelberg (2003)

5. Biham, E., Shamir, A.: Differential fault analysis of secret key cryptosystems. In:
Kalisk Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 513–525. Springer,
Heidelberg (1997)

6. Machemie, J.-B., Mazin, C., Lanet, J.-L., Cartigny, J.: SmartCM a smart card
fault injection simulator. In: WIFS, pp. 1–6. IEEE (2011)

7. Berthomé, P., Heydemann, K., Kauffmann-Tourkestansky, X., Lalande, J.-F.: High
level model of control flow attacks for smart card functional security. In: ARES,
pp. 224–229. IEEE Computer Society (2012)

8. Christofi, M., Chetali, B., Goubin, L., Vigilant, D.: Formal verification of a CRT-
RSA implementation against fault attacks. J. Cryptographic Eng. 3(3), 157–167
(2013)

9. Bar-El, H., Choukri, H., Naccache, D., Tunstall, M., Whelan, C.: The sorcerer’s
apprentice guide to fault attacks. Proc. IEEE 94(2), 370–382 (2006)

10. Berthier, M., Bringer, J., Chabanne, H., Le, T.-H., Rivière, L., Servant, V.: Idea:
embedded fault injection simulator on smartcard. In: Jürjens, J., Piessens, F.,
Bielova, N. (eds.) ESSoS. LNCS, vol. 8364, pp. 222–229. Springer, Heidelberg
(2014)

11. Potet, M.-L., Mounier, L., Puys, M., Dureuil, L.: Lazart: a symbolic approach for
evaluation the robustness of secured codes against control flow fault injection. In:
ICST (2014)

12. King, J.C.: Symbolic execution and program testing. Commun. ACM 19(7), 385–
394 (1976)

13. The KLEE symbolic virtual machine. http://klee.llvm.org/
14. Cadar, C., Dunbar, D., Engler, D.R.: KLEE: unassisted and automatic generation

of high-coverage tests for complex systems programs. In: OSDI, pp. 209–224 (2008)
15. Christofi, M.: Preuves de sécurité outillées d’implémentation cryptographiques.

Ph.D. thesis, Laboratoire PRiSM, Université de Versailles Saint Quentin-en-
Yvelines, France (2013)

16. Uguchi-Cartigny, J., Sere, A.A.-K., Lanet, J.-L.: Carte à puce Java Card : Protec-
tion du code contre les attaques en faute (2009)

17. Folkman, L.: The use of a power analysis for influencing PIN verification on cryp-
tographic smart card. Bakalásk práce, Masarykova univerzita, Fakulta informatiky
(2007)

18. Sauveron, D.: Etude et réalisation d’un environnement d’exprimentation et de
modélisation pour la technologie Java Card : application à la sécurité. Ph.D. thesis,
Université Bordeaux 1- Informatique et Mathématiques (2004). Thèse de doctorat
dirigée par Chaumette, S

19. van Woudenberg, J.G.J., Witteman, M.F., Menarini, F.: Practical optical fault
injection on secure microcontrollers. In: Breveglieri, L., Guilley, S., Koren, I.,
Naccache, D., Takahashi, J. (eds.) FDTC, pp. 91–99. IEEE (2011)

http://klee.llvm.org/

Malware Message Classification
by Dynamic Analysis

Guillaume Bonfante(B), Jean-Yves Marion, and Thanh Dinh Ta

Lorraine University - CNRS - LORIA, Nancy, France
bonfante@loria.fr

Abstract. The fact that new malware appear every day demands a
strong response from anti-malware forces. For that sake, an analysis of
new samples must be performed. Usually, one tries to replay the behav-
ior of malware in a safe environment. However, some samples activate
a malicious function only if they receive some particular inputs from its
command and control server. The problem is then to get some grasp
on the interactions between the malware and its environment. For that
sake, we propose to work in four steps. First, we enumerate all pos-
sible execution path following the reception of a message. Second, we
describe for all execution path the set of corresponding messages. Third,
we build an automaton that discriminate types of runs given an arbitrary
word. Finally, we unify some equivalent run, and simplify the underlying
automaton.

1 Introduction

The essential problem of an anti-virus software is to discriminate malware from
safe programs. There are broadly two ways to perform such a task: by a syntactic
analysis of the code or by a behavioral one. The first one is the key of standard
anti-virus software. Indeed, the principle takes benefit from optimized pattern
matching algorithms and may be tuned to avoid false positives. On the other
hand, they are very sensitive to malware mutations, and thus may be easily
fooled.

Behavioral analyses try to discriminate good usages from bad ones. Usually,
this is done by recording interactions of the program with its operating sys-
tem: file modifications, access to some drive, memory rights alteration and so
on. Good/Bad behaviors are modeled by state automata or by temporal logical
formulae [4,21]. Though attracting in theory, such systems suffer from an heavy
slow down of the monitored machines. Furthermore, it is not that easy to dis-
tinguish good from bad behaviors leading to high false negative/positive rates.
And finally, it is not that complicate to make behaviors mutate.

In this contribution, we propose an alternative form of behavioral analysis
which focuses on the interactions between a program with its environment via
messages. It results more technically in an analysis of the structure of input
messages as read by programs. This is called message format extraction.
c© Springer International Publishing Switzerland 2015
F. Cuppens et al. (Eds.): FPS 2014, LNCS 8930, pp. 112–128, 2015.
DOI: 10.1007/978-3-319-17040-4 8

Malware Message Classification by Dynamic Analysis 113

Message format extraction can be considered also in the context of retro-
engineering as a first and inevitable step to understand the communication pro-
tocols used in the malicious code. In the pioneer work [7], the authors described
a method to extract formats of received messages by a pattern analysis. Using
similar techniques, this work was pursued later on for respectively sent mes-
sages [6], encrypted ones [23] or hierarchically-structured ones [16], and finally
for communication protocols [9].

In this line of work, messages are modeled as fields sequences. The main issue
is then to detect the fields boundaries in a message. The problem is even more
complicate due to fields (qualified as directed) which may contain informations
about other fields (via length measure for instance). The authors developed
algorithms that detect direction fields and separators. However, to do that, they
make a strong assumption on the parsing algorithm of the target program itself.
If one replaces the naive string matching algorithm with a more sophisticated one
(e.g. Knuth-Morris-Pratt), the assumptions (described in these interpretations)
are no more valid and thus the results.

Our approach relies on a different paradigm. We state that the structure
of input messages can be described (or at least approximated) by finite state
automata. Suppose we are given a program P which reads some input m at
run time, then we provide a finite state automaton which will categorize input
messages according to their corresponding execution. Actually, we will show
experimentally that one retrieves the shape of messages from the automaton.
Second difference, we do not make any hypothesis on the parsing algorithm of
the program P .

However, from the idea to its concrete realization, there are some preliminary
steps that must be crossed. Suppose we want to study the communications of
a malware P . First, one must identify which instructions open a communica-
tion. This is not computable in general. But, for self-modifying program—that
is almost all malware—standard heuristics will fail. This is a first reason to work
dynamically. Second reason, suppose P opens a communication with its Com-
mand and Control (C&C). In that case, the C&C behaves like an oracle from
our perspective and there is no way to get a simple sample of a message. Letting
the communication open (and the program run) gives us access to a (hopefully
informative) message from the other side.

But, in the scenario above, there are two issues. First, the C&C server may
be closed. Malware managers move very quickly servers to escape traffic sur-
veillance. Second, launching P may be observed by the C&C, thus breaking the
stealth of the analysis. In the experiment we report here, we opened the com-
munication only once. This can be seen as a kind of trade-off between stealth
and information. However, the method we develop cope with the all scenarios,
fully open or fully closed communications and all in-between ones.

So, let us suppose we run a program P which at some point receives some
data. As said above, we will build an automaton which is fed by some byte
sequence w (in other words, a message) will output a state witnessing the execu-
tion path in P of w. Actually, states of the automaton describe the analysis of the
message by the program P , and consequently reveal the structure of messages.

114 G. Bonfante et al.

To build the automaton, we proceed in four steps. First, we enumerate all
execution paths from the reception instant that are reachable by message mod-
ification. This is known as a coverage issue in the context of software testing or
in the context of malware retro-engineering. In recent times [15,18], the binary
code is translated to some intermediate representation, and then some concolic
testing [12] is performed with help of SMT solvers. Our approach is known as
tainting driven fuzzing analysis which gave reasonably good coverage level for the
experiments we made. But we already think for the near future to use techniques
mentioned above, or some coming from disassembly such as the ones presented
by Reps et al. [19] who developed CodeSurfer, or by Kinder and Veith [14],
the authors of Jakstab, or the more recent Bardin et al. [3] which combines
advantages of both latter methods.

For the second step, we proceed for each execution branch to a tainting
analysis. For each conditional instructions (that are junctions in the execution
tree), we describe a condition for each successor. Again, symbolic execution
techniques could be used here, such as [2]. From these constraints, we build in
a third step a dual automaton which serves as a basis for the fourth one. In the
last step, we simplify the automaton by state sharing. Those are meant to fold
execution loops.

We have implemented the constructions described all along, and tested it on
several programs, but notably on the well-known malware called Zeus. In Sect. 5,
we present the result of the approach that we obtained on the malware.

Limitations. In this contribution, we do not consider protocols. We work only
on one message, not on the dialog between the program and its C&C. Thus, a
malware could easily escape our analysis, simply by splitting messages. However,
we think that a careful analysis of one message is a first step toward protocol
analysis. Second limitation, we consider that the message analysis is done by
some non-self-modifying code, globally, the code may be self-modifying, but not
the parsing procedure itself. This limitation is not too harsh: during packer’s
decryption (that is when a malware is essentially self-modifying), there are few
interactions with the environment. In his thesis, Calvet [8] showed that less than
2% of malware interact with the system during decryption. But, a code may
interpret some commands sent by a C&C, and for those ones, our method is not
operant. We let that issue for further researches.

Related Work. Beside the previously cited works [6,7,9,16,23], the automata
approximation can be though of as a learning procedure. This approach has nat-
ural relations with researches in machine learning [1,22] and may take benefit
from results is this domain for the further development. Actually, we faced a
problem very similar to the one of M. Dalla Preda et al. [10] but in a different
setting. They describe execution paths of a program as automata, and at one
point they compute approximations to get finite descriptions. Here, we focus on
messages rather than execution paths, but actually this fact induces an under-
lying path approximation.

Malware Message Classification by Dynamic Analysis 115

2 Background

In this contribution, we model the memory as a flat sequence of 8-bit bytes. The
set of bytes is noted Bytes. The set of addresses (the address space) is noted
DWords. Typically, the address space is the range 0..232 − 1, that is 4 Bytes.
The memory is represented as a finite mapping μ : DWords → Bytes. Aside
from the memory, there is a finite set of registers, next denoted Registers,
which contains eip, the instruction pointer. The state of registers is represented
by a finite function ν : Registers → DWords.

An execution environment (μ, ν) represents the state of the system. At each
step of the computation, an opcode c pointed by eip is fetched from memory, and
depending on it, the execution environment is updated. The couple (ν(eip), c)
is the underlying instruction of (μ, ν) next denoted I(μ, ν).

Accordingly, the execution from an initial state (μ1, ν1) is the sequence
(μ1, ν1) → (μ2, ν2) → · · · . From this execution, we extract the sequence of under-
lying instructions called the trace T (μ, ν) = i1, i2, . . . where ij = I(μj , νj) for
all j ≥ 1 (see Example 1).

A running program P may ask for some inputs. To do that, it gives the
control back to the operating system which will itself (a) push in memory a
sequence of bytes m and (b) resume P . We call the execution environment at
instant (b) an input environment. Input environments are characterized to be
the “return” state of reading interruptions, or to follow input functions calls
(e.g. WSARecv or recv on the Windows R© OS). The instruction corresponding to
an input environment is said to be an input instruction.

Let N = (μ, ν) be an input environment. The input message m is stored in
memory in an interval of addresses A = [b, b+1, . . . , b+�−1] with � the length of
the message m and b some (more or less arbitrary) address. Given some message
m′ = b0 · · · b�′−1 ∈ Bytes∗, let N [m′] = (μ′, ν′) be the same environment as N
but the one which received m′ instead of m. More technically, suppose � is stored
in eax then μ′(b+ i) = bi for all i < �′, otherwise μ′(a) = μ(a) and ν′(r) = ν(r)
for all registers except eax for which ν′(eax) = �′. For the remaining, we define
m[i] = bi for all i < �′.

Given some input environment N , consider an instruction ij in a trace
T (N) = i1, . . . , ij , ij+1, . . ., we say that ij is deterministic if for any message
m such that T (N [m]) = i1, . . . , ij , i′, . . ., then i′ = ij+1. In other words, the
successor of a deterministic instruction does not depend on messages. Typically,
sequential instructions (e.g. mov ebp, esp), calls and unconditional jumps to
some fixed address (e.g. call 0xf1b542 or jmp 0xf1ae33) enter this category.

Non deterministic instructions are called message-triggered. In this category,
one finds calls or jumps to some register (e.g. call edx or jmp eax), but the
most representative are the conditional jumps (e.g. jnz 0xf1a9ce).

2.1 Execution Tree

Let us consider a program P asking for some input m, its behavior will then
depend on m. In a first step, we compute all possible run depending on m seen

116 G. Bonfante et al.

as a parameter. In a second step, for each execution branch, we describe the
language of messages corresponding to that branch. But, for the moment, let us
define the execution tree of an input environment N .

Consider an input environment N , define iN0 to be the index of the first
message triggered instruction in the trace T (N) = i1, . . . , iiN

0
, Actually, the

prefix i1, . . . , iiN
0

is shared by all traces T (N [m]) with m a message. Indeed, by
definition, i1, . . . , iiN

0
are deterministic but the last one, thus the sequence is

uniquely determined by N . In the sequel, we shall drop the superscript N when
the context is clear.

The trace TN (m) = i1, . . . , in is the sub-sequence of T (N [m]) cut after a
second input instruction in (if such an in exists, otherwise TN (m) = T (N [m])).
In other words, we forget anything which would follow the analysis of a second
message coming from the environment. The trigger-trace of m is the sequence
BN (m) = [(a1, ii1) , . . . , (ak, iik

)] where:

– ii0 , ii1 , . . . , iik
is the subsequence of TN (m) containing only the message-

triggered instructions and (if relevant) the input instruction at the end of
TN (m),

– a�+1 is the address pointed by eip at step ii�+1 for all � ≥ 0, that is the
address of the instruction following ii�

.

TN (m) = I(N) → · · · → ii0 → ia1 → · · · → ii1 → ia2 → . . .

One may observe that the trace TN (m) is uniquely determined by BN (m).
Indeed, with the notation above, for all � ≥ 0, instructions ii�+1, . . . , ii�+1−1 are
deterministic, thus uniquely determined by a�+1.

Example 1. Let us run wget on some URL, the program receives a first message
from the server via the operating system. It then verifies that the first four bytes
of this message are “HTTP”. Figure 1 displays the corresponding piece of trace:

The notion of message-triggered instruction is relative to traces. Indeed, the
instruction cmpsb [esi],[edi] at address 0x404f89 is message triggered the
first three times, not the fourth one (that is because of cmpsb stops either when
[esi] �= [edi] or if ecx = 0, and ecx’s value is 0 after the third time).

Fig. 1. Trace and its corresponding triggered-trace

Malware Message Classification by Dynamic Analysis 117

Definition 1 (Trigger Execution Tree (TET)). Given an input environ-
ment N , its trigger execution tree EN is a tree with labeled vertices and labeled
edges, that is defined inductively as follows:

– the root is labeled iiN
0
, it is associated with the empty sequence [].

– suppose BN (m) = [(a1, ii1) , . . . , (ak, iik
)] is a trigger-trace, suppose that the

vertex n is associated with [(a1, ii1) , . . . ,
(
aj , iij

)
] for some j < k, then EN

contains a transition n
aj+1−→ n′ with n′ a (fresh) vertex labeled iij+1 and asso-

ciated to [(a1, ii1) , . . . ,
(
aj+1, iij+1

)
].

The trigger execution tree is the standard execution tree once removed inter-
mediate deterministic instructions. Each path from the root to some leaf of EN

corresponds to a trigger trace, thus to a trace in the original program.
Since traces are infinite in general, so may be the execution tree. Given c > 0,

let Tc(N) be the prefix of length c of the trace T (N), then we define EN,c to be
the sub-tree of EN cut to traces of length at most c.

Example 2. Figure 3a shows the TET of wget with traces limited to 50 instruc-
tions. The vertices ⊥i’s mark the ends of traces due to length limit.

Remark 1. From now on, the trigger execution trees are understood as to be cut
at some length limit c. We then omit c in EN,c when it is clear from the context.

3 Input Messages Analysis

3.1 Dynamic Tainting Analysis

Dynamic tainting is a well known technique which tracks the dependency of data
within programs. The below is a very brief introduction, we refer the reader
to [20] for details.

The semantics of an instruction i = I(N) of some execution environment N
depends on a set of registers1 R and memory content at a set of addresses A,
and modify a set register2 R′ and memory content at a set of addresses A′. For
such an i, one derives a hyper-edge (R ∪ A, i, R′ ∪ A′) where source nodes are
“read” memory addresses or registers, targets are “written” ones. Source and
target nodes are considered separate. We say that i depends on source nodes.

Let us consider a prefix i1, . . . , ij of some trace T (N) = i1, i2, The
hyper-graph H(i1, . . . ij) is the chain of edges obtained by glueing correspond-
ing target and sources (cf. Example 3). The sources of H (i1, . . . , ij), denoted
by S (i1, . . . , ij), consists of source nodes that are not targets of any hyper-
edge (that is source nodes which are not glued). The set S (i1, . . . , ij) describes
the dependency of i1, . . . , ij on N . The local sources S�(i1, . . . , ij) are source
nodes in S (i1, . . . , ij) related by a path to the targets of ij . They describe the
dependency of ij on N (supposedly it is executed).

1 But eip which is treated apart.
2 Idem.

118 G. Bonfante et al.

Fig. 2. Hyper-edge glueing

Example 3. Given that esp and edx have respectively the value 0x34c140a
and 0x34c14f6 at the beginning. The hyper-graph H(i1, i2, i2) in Fig. 2 has
sources S(i1, i2, i3) = {esp,m[0x34c140a], eax, ebx, edx,m[0x34c14f6]} and
local sources S�(i1, i2, i3) = {ebx, edx,m[0x34c14f6]}.

Proposition 1. The tainting analysis leads to two main facts.

1. Any instruction in a finite trace depends only on finitely many input bytes
from memory. It is a direct consequence from the fact that assembly instruc-
tions read and modify only locally the memory.

2. Given some execution environment N and some instruction ij occurring in
its trace T (N) = i1, . . . , ij , . . ., let N ′ be an environment coinciding with N
on the sources of H(i1, . . . , ij), then, T (N ′) = i1, . . . , ij , . . . coincide with
the trace of N at least up to the j-th instruction.

3.2 Trace Formula Construction

In this section, and the following ones, N denotes an input environment and
A = [b, . . . , b + � − 1] is the relative interval of addresses. A local condition is a
subset γ ⊆ BytesS for some (finite) set S, called the support of γ.

Definition 2 (Trace Language). Given a program P and some input envi-
ronment N , its execution tree (possibly cut at some length c) is EN . Let p be a
finite path in EN from the root to some leaf, its language is the set of messages

MN (p) = {m ∈ M | BN (m) = p}.

A path (from the root to some leaf) p in EN corresponds to a trigger-trace
BN (m) of some m ∈ MN (p), and thus to a sub-trace TN (m) = i1, . . . , ij .
Let Sp be the addresses of A that are sources of H(i1, . . . , ij), namely Sp =
A ∩ S(i1, . . . , ij). In other words, Sp is the set of addresses within the message
which are read by the processor along p.

Proposition 2. For any message m ∈ MN (p), for any message m′, if m′ =|Sp

m then m′ ∈ MN (p).

Proposition 2 can be restated as follows: the set MN (p) is isomorphic to γp ×
BytesA\Sp for some set γp ⊆ BytesSp . In terms of languages, it means that
MN (p) is a regular one.

Malware Message Classification by Dynamic Analysis 119

Fig. 3. Trigger trees of wget

Example 4. In Fig. 3a, writing [ˆX] for (Bytes \ {X}), we have MN (⊥1) = [ˆH] ·
Bytes∗, MN (⊥2) = H · [ˆT] · Bytes∗, MN (⊥3) = H · T · [ˆT] · Bytes∗, etc.

3.3 Message Execution Tree

A trigger execution tree can be seen as a decision tree, which gives a set of
messages given a trace. Here, we consider the dual view that gives a trace given
a message.

Definition 3. A Message Execution Tree (MET) is a tree whose transitions are
labeled by finite sets of bytes and leaves are labeled by a trigger path; for each
vertex n and letter b ∈ Bytes, there is a unique vertex n′ such that n

S�b−→ n′.

Given a MET G and a message m, let us follow m within G until we reach a leaf
(if any). G(m) denote the trigger path labeling that leaf. The MET G is said to
be compatible with a TET EN if m ∈ MN (G(m)) for all m ∈ Bytes∗.

We can always build a compatible MET for any finite3 TET EN . Indeed, let
L = max (∪p∈EN (Sp))−b as the largest offset appearing in the sources of a path
p ∈ EN , and let G be the full 256-ary tree of depth L. Each leaf of G corresponds
to some word in m ∈ BytesL, we associate to that leaf the path p such that
m ∈ MN (p), then G is compatible with EN .

However, one may notice that the full tree G described above is very large
in general, its size is of the order 256L, thus hardly computable. We developed
some heuristics to get a much more compact representation.

3 Possibly due to a length limit.

120 G. Bonfante et al.

3.4 Message Decomposition

Given a path p = [(a1, ii1) , . . . , (ak, iik
)] in a TET EN , it corresponds to a trace

TN (m) = i1 → · · · → ii0 → ia1 → · · · → ii1 → ia2 → The tainting
analysis shows that any i ∈ TN (m) depends on the environment N with respect
to a local sources Sl (i1, i2, . . . , i). Hence the set SA (i) = S� (i1, i2, . . . , i) ∪ A
describes the local dependency of i with respects to the input.

In the TET EN , we replace the label aj+1 of each edge iij

aj+1−→iij+1 by its
local condition, that is the set γaj+1 = {m|SA(i) | m ∈ Bytes∗ ∧ TN (m) =
i1, . . . , iaj+1 , . . .}. The tree thus obtained from EN is called the trigger message
tree relative to EN , next denoted by FN .

Example 5. Figure 3b shows the trigger message tree relative to the TET in
Fig. 3a.

Let SFN
be the union

⋃
i∈FN

SA (i) of local dependencies in FN . The relation
RFN

⊆ SFN
×SFN

is defined by (a, a′) ∈ RFN
if a, a′ ∈ SA (i) for some i ∈ FN .

Definition 4 (Address Closure). The reflexive-transitive closure of RFN
is

called the address closure of FN , denoted by αFN
.

The address closure αFN
induces a partition SFN

= A1 ∪ · · · ∪ Ar ⊆ A of
equivalence classes. Let p be some path in FN , from the root to some leaf, each
Ai ⊆ A gives a local decomposition of MN (p) defined by γp,Ai

= {m|Ai
| m ∈

MN (p)}. Then the path language MN (p) can be decomposed into:

Proposition 3. MN (p) = γp,A1 × γp,A2 × · · · × γp,Ar
× BytesA\SFN

Example 6. The path p in Fig. 4 is extracted from the execution tree of wget
cut at length 60, it is of the form

i1
m[0]=‘H’−−−−−−→ i2

m[1]=‘T’−−−−−−→ . . .
m[4]=\n−−−−−→ i6

m[5] �=\n−−−−−→ i7
m[5]=\r−−−−−→ ⊥

Both instructions i6 and i7 depend on the 5-th byte of the input, the local
decomposition groups their local conditions into a single set MN (p)|{5} ={m[5] �=
\n} ∩ {m[5] = \r} = {m[5] = \r}, thus MN (p) decomposes:

MN (p) = {H} × {T} × {T} × {P} × {\n} × {\r} × BytesA\{0,1,2,3,4,5}

Fig. 4. Path of wget and message decomposition

Malware Message Classification by Dynamic Analysis 121

From the partition SFN
= A1 ∪ · · · ∪ Ar induced from the closure αFN

of
FN , we derive a tree FN whose branches have the form where γi is a local
condition on Ai. Moreover, each path in EN corresponds uniquely to a leaf in
FN . Algorithm 1 constructs the tree FN when the following hypothesis holds.

Hypothesis 1. For any path ii0
γ1→ ii1

γ2→ · · · in FN , let Ad(k) denote the
equivalence class containing the support of γk. Then, for all k ≤ l, d (k) ≤ d (l).

Proposition 4. Let s0 be the root of the trigger message tree FN . For any
path p in EN , there is a unique path p = s0

γ1→ · · · γr→ sr in FN such that
MN (p) = γ1 × · · · × γr × Bytes�A1∪···∪Ar .

Input: P = {MN (p) = γp,A1 × · · · × γp,Ar × γp,� | p is a path on FN}.
Output: the tree FN .
begin

FN ← {initial state s};
foreach MN (p) ∈ P do

i ← 1, s1 ← s; while edge e = si

γp,Ai−−−−→ s′
i for some s′

i exists on FN do
i ← i + 1; s1 ← source of e; s2 ← target of e;

end
while i �= j do

s1 ← s2;
if i + 1 ≤ n then

s2 ← new state;
else

s2 ← new state labeled ⊥;
end
add new edge s1

γp,Ai−−−−→ s2 into FN ; i ← i + 1;
end

end
end

Algorithm 1: Tree construction

Fig. 5. Decomposition tree

122 G. Bonfante et al.

Finally, local conditions in the tree FN can be reordered to follow the pro-
gression of a MET. We end with a message execution tree, next denoted AN .

Example 7. Figure 5 shows the tree FN corresponding to the EN discussed in
Example 6. To save space, we grouped transitions of the first four characters,
that is from s1 to s4. One can observe that FN in this case is indeed AN .

4 Message Classification

In Sect. 3, we showed how to relate messages to traces of execution using path
languages and their dual representation by message execution trees. With this
analysis, some messages m and m′ that are not treated in the same manner are
not in the same path language, even if they are clearly related. For example,
consider a program which looks for the first newline character by examining
each byte, then the execution traces of the parsing of "aaa\n" and the one of
"aaaa\n" fall into different categories. In this section, we propose a method to
avoid such irrelevant details. The principle is to gather equivalent path languages
with respect to the remaining execution of the program.

4.1 Message Automaton

Definition 5 (Message Automaton (MA)). A message automaton A is a
quadruple 〈Q, ι, E, P 〉 where

– Q is a set of states, ι ∈ Q being the one qualified to be initial,
– E ⊆ Q × Bytes → Q is a transition function which is totally determined at

some states, and totally undetermined at other states.
– P : Q → 2B maps each state to a set of trigger paths (in general, the trigger

paths of B are distinguished from the paths within A).

In other words, it is a pair made of a (deterministic) automaton and the path
function P . Given some word m, E(ι,m) and Q (ι,m) denote respectively the
state and the path (within the automaton) following the word m along the tran-
sition function E from the initial state ι.

Proposition 5. The message execution tree AN has form of a message automa-
ton 〈Q, ι, E, P 〉 whereQ consists of all vertices, ι is the root vertex,E consists of s×
γ → s′ whenever s

γ−→ s′ is an edge of AN , and P (q) = {the path from root to q}
for any leaf q, otherwise P (q) = ∅.
Given some trigger path equivalence ≈⊆ B×B, a morphism h : A → A ′ where
A = 〈Q, ι, E, P 〉 and A ′ = 〈Q′, ι′, E′, P ′〉 is a function h : Q → Q′ satisfying:
1.h (ι) = ι′, 2.E′(h(q), b) = h(q′) for all q ∈ Q and b ∈ Bytes, 3.P ′(h(q)) ≈
P (q)4 for any q ∈ Q satisfying P (q) �= ∅.

4 This is the set equality up to the equivalence ≈.

Malware Message Classification by Dynamic Analysis 123

Fig. 6. Message automaton constructed from a morphism

Definition 6 (ObservationalApproximation).GivenaMAA = 〈Q, ι, E, P 〉,
a MA A ′ = 〈Q′, ι′, E′, P ′〉 is said to approximate observationally A if E (ι,m)
exists5 then E′ (ι′,m) exists, moreover if P (E (ι,m)) �= ∅ then P ′ (E′ (ι′,m)) ≈
P (E (ι,m)) and if Q (ι,m1) �= Q (ι,m2) then Q′ (ι′,m1) �= Q′ (ι′,m2), for all
m,m1,m2 ∈ Bytes∗.

Intuitively, the message automaton A ′ recognizes and distinguishes at least the
paths of A . Morphisms justify the observational approximation:

Proposition 6. If there is a morphism h : A → A ′, then A ′ approximates
observationally A .

Example 8. The automaton A in Fig. 6 is constructed from AN in Example 7
using the morphism that maps si �→ Si and ⊥i �→ ⊥ for all 1 ≤ i ≤ 7. On
A , set the path function to be ⊥ �→ ∪i≤7⊥i (with the identification of ⊥i with
its corresponding path in AN) and Si �→ ∅ otherwise. One can observe that A
approximates observationally AN .

Definition 7 (State Equivalence). Given a MA A = 〈Q, ι, E, P 〉, a state
equivalence relative to ≈ is an equivalence ∼⊆ Q × Q satisfying: if q1 ∼ q2 then

– if there is a transition q1
t−→ q′

1

• then either q2 has no outgoing transitions,
• or there is a state q′

2 with transition q2
t−→ q′

2 and q′
1 ∼ q′

2.
– if P (q1) , P (q2) �= ∅ then P (q1) ≈ P (q2).

The co-recursive definition of the state equivalence is constructive. Indeed, to
look for a state equivalence we can start the verification from any pair (q1, q2):
first, add it as the first element of the relation whenever q1 or q2 has no tran-
sition, or both of them have similar transitions, then continue verifying pairs of
corresponding states (q′

1, q
′
2) or some pair obtained from the transitive closure of

the current constructed relation. At any verification step, if states of the verified
pair invalidate the definition, then the relation cannot be a state equivalence.
In this case, we will restart verifying with another pair until an equivalence is
completely constructed. This construction is given in the technical report.

5 Because E is a partial function, E (ι, m) does not always exist for any m ∈ Bytes∗.

124 G. Bonfante et al.

Fig. 7. Message automaton and its quotient

Example 9. Figure 7a shows the MET of wget with traces cut to length 70.
Given the path equivalence ⊥5 ≈ ⊥9, ⊥6 ≈ ⊥10, ⊥7 ≈ ⊥11, we have a state
equivalence s5 ∼1 s7 ∼1 ⊥8, s6 ∼1 s12, ⊥5 ∼1 ⊥9, ⊥6 ∼1 ⊥10 and ⊥7 ∼1 ⊥11.

Given a MA A = 〈Q, ι, E, P 〉, let ∼ be a state equivalence relative to some path
equivalence ≈, then the MA A/∼ = 〈Q′, ι′, E′, P ′〉 constructed as follows

– Q′ = {[q]/∼ | q ∈ Q}, ι′ = [ι]/∼,
– E′ = {[q1]/∼ t−→ [q2]/∼ | q1

t−→ q2 ∈ E}
– P ′ : [q]/∼ �→ ⋃

q′∈frac[q]∼ P (q′).

is called the quotient of A by ∼. This construction leads to:

Proposition 7. The function []/∼ : Q → Q′ defines a morphism A → A/∼, then
A/∼ approximates observationally A .

Example 10. The MA in Fig. 7b is constructed from the state equivalence ∼1

in Example 9, it approximates observationally the MET in Fig. 7a.

4.2 Minimal Message Automaton

Let A be a message automaton, let ∼ be a nontrivial6 equivalence on A then
the quotient A/∼ has fewer state than A . A message automaton A is said to be
irreducible if there is no nontrivial equivalence on A .

Proposition 8. The composition f ◦ g of two morphisms is a morphism.

Consider a sequence of morphisms AN
id→A1

h1→A2
h2→ . . . where the hi’s are induced

from some nontrivial state equivalence on Ai, then this sequence is always finite
(the number of states is strictly decreasing). It ends on an irreducible machine
automaton An+1. By Proposition 7 and Proposition 8, h = hn◦hn−1◦· · ·◦h1 is a
morphism. By Proposition 6, An+1 approximates observationally AN . Moreover,
since An+1 is not reducible, it is minimal:
6 Namely ∼ is not the equality.

Malware Message Classification by Dynamic Analysis 125

Fig. 8. Minimal message automaton

Proposition 9. There is no message automaton that approximates observation-
ally AN but has less states than An+1.

Example 11. The MA in Fig. 8 is reduced from the MA in Fig. 7b using the
morphism constructed from the state equivalence ⊥1 ∼2 ⊥2 ∼2 ⊥3 ∼2 ⊥4 ∼2
[s8]/∼1 ∼2

[s9]/∼1 ∼2
[s10]/∼1, it approximates observationally the MET in Fig. 7a.

We let the reader verify that it is minimal.

5 Implementation and Experiments

To verify the relevance of the approach, we have implemented a binary code cov-
erage module that builds the execution tree by a fuzzing techniques optimized
by means of a tainting analysis; then the results are fed to an automaton con-
struction module that constructs a minimal message automaton that represents
the language of input messages for each examined program. We repeatedly apply
non trivial state equivalence transformations up to a non reducible automaton.

The implementation of both consists in about 16500 lines of C++ code and
is freely available online at [5]. The binary code coverage module is implemented
with the help of the Pin DBI framework [17].

5.1 Experiments

The results given here obtained by our modules when examining Zeus, a well-
known family of malwares disclosed in 2009. Some previous analyses [11,13] have
shown that this malware steals private informations on infected hosts. Below,
we provide some details on Zeus that, as far as we know, are not published.

With an initial dynamic analysis, we could observe that Zeus hooks the API
send and WSASend. Then it parses the data at the hooked socket to collect the
informations. Figure 9 shows the message automaton obtained from a message
execution tree where traces are limited to the length 450 (for the path equivalence
≈, again, we identify all pending vertices ⊥i). Actually, the automaton classifies
data that Zeus is interested in. First, one reads keywords directly within the
automaton. Let us consider now the languages corresponding to path between
the state mentioned as “initial” and the one as “terminal”:

126 G. Bonfante et al.

initial

0xd4ae29

U

0xd4ae29

P

0xd4b179

C

0xd4ae29

T

0xd4ae29

L

0xd4ae29

F

0xd4ae29

S

terminal

!{C,F,L,P,S,T,U}

0xd4ae29

S

!{S}

0xd4ae29

A

0xd4b18c

W

!{A,W}

W

!{W}

0xd4ae29

Y

!{Y}

0xd4ae29

I

!{I}

0xd4ae29

E

!{E}

0xd4ae29

S

!{S}

P

!{P}

S

!{S}

0xd4b010

R

!{R}

S

!{S,V} V

0xd4b04a

32

!{32} [32-255]

\r\n {[0-9],[11-12],[14-31]}

0xd4ae29

E

!{E}

!{D} D

T

!{T}

A

!{A}

Fig. 9. Message automaton of Zeus

M1 = ‘U’.‘S’.‘E’.‘R’.{32}.{32, 33, . . . , 255}∗

M2 = ‘P’.‘A’.‘S’.‘S’.{32}.{32, 33, . . . , 255}∗

M3 = ‘P’.‘A’.‘S’.‘V’.Bytes∗

M4 = ‘P’.‘W’.‘D’.Bytes∗

M5 = ‘C’.‘W’.‘D’.Bytes∗

M6 = ‘T’.‘Y’.‘P’.‘E’.{!‘A’}.Bytes∗

M7 = ‘F’.‘E’.‘A’.‘T’.{!‘A’}.Bytes∗

M8 = ‘S’.‘T’.‘A’.‘T’.{!‘A’}.Bytes∗

M9 = ‘L’.‘I’.‘S’.‘T’.{!‘A’}.Bytes∗

The observed words USER, PASS, PASV, PWD, CWD, TYPE, FEAT, STAT, LIST are com-
mands defined in the ftp protocol. That may be interpreted as an insight that
Zeus steals information concerned with ftp communications. Moreover, besides
these words there is no more commands of ftp occurring in the automaton, so
we may think that Zeus is interested only in this subset of ftp commands. In
the following languages that occur also within the automaton:

M10 = ‘U’.‘S’.‘E’.‘R’.{!32}.Bytes∗

M11 = ‘U’.‘S’.‘E’.‘R’.{32}.{32, 33, . . . , 255}k.\r.Bytes∗

M11 = ‘U’.‘S’.‘E’.‘R’.{32}.{32, 33, . . . , 255}k.\n.Bytes∗

M12 = ‘U’.‘S’.‘E’.‘R’.{32}.{32, 33, . . . , 255}k. ({1, 2 . . . , 31} \ {\r, \n}) .Bytes∗

M13 = ‘P’.‘A’.‘S’.‘S’.{!32}.Bytes∗

M14 = ‘P’.‘A’.‘S’.‘S’.{32}.{32, 33, . . . , 255}k.\r.Bytes∗

M15 = ‘P’.‘A’.‘S’.‘S’.{32}.{32, 33, . . . , 255}k.\n.Bytes∗

M16 = ‘P’.‘A’.‘S’.‘S’.{32}.{32, 33, . . . , 255}k. ({1, 2, . . . , 31} \ {\r, \n}) .Bytes∗

Malware Message Classification by Dynamic Analysis 127

we notice that 32 is the ASCII code of the space character, and the set
{1, 2, . . . , 31} contain all control characters. So these languages show clearly how
Zeus parses a USER or PASS command: it checks whether the next character is
space or not, if yes then it collects the bytes until a control character is detected.
In other words, we retrieved the delimiter-oriented analysis of Caballero et al. [7].

6 Conclusion

The experiments we made so far showed that the hypothesis we made are gener-
ally speaking fulfilled. The parsing methods look more or less transparent. How-
ever, the shape of the automaton depends largely on the choice on the length of
traces. At the same time, the computation time is more or less exponential in
the size of the execution tree, thus, usually exponential in the length of traces.
There a good reasons to optimize the computation of the execution tree and all
derived ones, we think of symbolic execution, SMT-solvers and advanced tainting
techniques. Finally, there is a parameter that we did not really used, namely the
path equivalence ≈. Again, some first tries showed that this must be deepened.

References

1. Angluin, D.: Inductive inference of formal languages from positive data. Inf. Con-
trol 45(2), 117–135 (1980)

2. Bardin, S., Philippe, H.: OSMOSE: automatic structural testing of executables.
Softw. Test. Verification Reliab. 21(1), 29–54 (2011)

3. Bardin, S., Herrmann, P., Védrine, F.: Refinement-based CFG reconstruction from
unstructured programs. In: Jhala, R., Schmidt, D. (eds.) VMCAI 2011. LNCS, vol.
6538, pp. 54–69. Springer, Heidelberg (2011)

4. Beaucamps, P., Gnaedig, I., Marion, J.-Y.: Abstraction-based malware analysis
using rewriting and model checking. In: Foresti, S., Yung, M., Martinelli, F. (eds.)
ESORICS 2012. LNCS, vol. 7459, pp. 806–823. Springer, Heidelberg (2012)

5. Bonfante, G., Marion, J.-Y., Ta, T.D.: PathExplorer
6. Caballero, J., Poosankam, P., Kreibich, C., Xiaodong Song, D.: Dispatcher:

enabling active botnet infiltration using automatic protocol reverse-engineering.
In: CCS (2009)

7. Caballero, J., Yin, H., Liang, Z., Song, D.: Polyglot: automatic extraction of pro-
tocol message format using dynamic binary analysis. In: CCS (2007)

8. Calvet, J.: Analyse Dynamique de Logiciels Malveillants (2013)
9. Comparetti, P.M., Wondracek, G., Krügel, C., Kirda, E.: Prospex: protocol speci-

fication extraction. In: SSP (2009)
10. Preda, M.D., Giacobazzi, R., Debray, S., Coogan, K., Townsend, G.M.: Modelling

metamorphism by abstract interpretation. In: Cousot, R., Martel, M. (eds.) Static
Analysis. LNCS, vol. 6337, pp. 218–235. Springer, Heidelberg (2010)

11. Falliere, N., Chien, E.: Zeus: King of the Bots. Technical report (2009)
12. Godefroid, P., Klarlund, N., Sen, K.: DART: directed automated random testing.

In: PLDI (2005)
13. IOActive. Reversal and Analysis of Zeus and SpyEye Banking Trojans. Technical

report (2012)

128 G. Bonfante et al.

14. Kinder, J., Zuleger, F., Veith, H.: An abstract interpretation-based framework for
control flow reconstruction from binaries. In: Jones, N.D., Müller-Olm, M. (eds.)
VMCAI 2009. LNCS, vol. 5403, pp. 214–228. Springer, Heidelberg (2009)

15. Lecomte, S.: Élaboration d’une représentation intermédiaire pour l’exécution con-
colique et le marquage de données sous Windows (2014)

16. Lin, Z., Jiang, X., Xu, D., Zhang, X.: Automatic protocol format reverse engineer-
ing through context-aware monitored execution. In: NDSS (2008)

17. Luk, C.-K., Cohn, R.S., Muth, R., Patil, H., Klauser, A., Lowney, P.G., Wallace,
S., Reddi, V.J., Hazelwood, K.M.: Pin: building customized program analysis tools
with dynamic instrumentation. In: PLDI (2005)

18. Moser, A., Krügel, C., Kirda, E.: Exploring multiple execution paths for malware
analysis. In: SSP (2007)

19. Reps, T., Balakrishnan, G.: Improved memory-access analysis for X86 executables.
In: Hendren, L. (ed.) Compiler Construction. LNCS, vol. 4959, pp. 16–35. Springer,
Heidelberg (2008)

20. Schwartz, E.J., Avgerinos, T., Brumley, D.: All you ever wanted to know about
dynamic taint analysis and forward symbolic execution. In: SSP (2010)

21. Song, F., Touili, T.: Pushdown model checking for malware detection. STTT 16(2),
147–173 (2014)

22. Valiant, L.G.: A theory of the learnable. CACM 27, 1134–1142 (1984)
23. Wang, Z., Jiang, X., Cui, W., Wang, X., Grace, M.: ReFormat: automatic reverse

engineering of encrypted messages. In: Backes, M., Ning, P. (eds.) ESORICS 2009.
LNCS, vol. 5789, pp. 200–215. Springer, Heidelberg (2009)

Network Security and Protocols

A Game Approach for an Efficient Intrusion
Detection System in Mobile Ad Hoc Networks

Myria Bouhaddi1(B), Mohammed Säıd Radjef1, and Kamel Adi2

1 Research Unit of LaMOS, Department of Operational Research,
Faculty of Exact Sciences, University of Bejaia, Bejaia, Algeria

2 Department of Computer Science and Engineering, University of Quebec
in Outaouais, Quebec, Canada

myria.bouhaddi@gmail.com, radjefms@yahoo.fr,

Kamel.Adi@uqo.ca

Abstract. Intrusion Detection Systems (IDS) have become a necessary
complement to any security infrastructure and are widely deployed as an
additional line of defense to conventional security techniques. Intrusion
detection techniques have been widely studied in the literature for the
conventional networks. However, due to the specific characteristics of the
mobile ad hoc networks (MANET), such as the lack of a fixed infrastruc-
ture and a centralized management, the implementation of an IDS presents
several new challenges that must be addressed. In this paper, we present
a game-based approach to implement an intrusion detection system in
MANETs. We consider the selfish node behavior and discuss mechanisms
that stimulate cooperation between nodes while reducing the consump-
tion of energy due to deployment of the IDS. We also address the prob-
lem of increasing the effectiveness of security mechanism by developing a
network packet sampling strategy, to effectively detect network intrusions
with respect to a given total sampling budget, and find the right moment
for notifying specific nodes to launch countermeasures. Finally, we eval-
uate the proposed approach via simulations where the results show the
effectiveness of the proposed intrusion detection model.

Keywords: MANETs · IDS · Clustering · Selfish nodes · Game theory ·
Nash equilibrium

1 Introduction

Mobile Ad-hoc NETworks (MANET) are, nowadays, a vital complement to tra-
ditional networks. They are generally built around a set of wireless mobile nodes
forming a temporary network and that can be deployed spontaneously without
requiring any pre-existing network infrastructure or centralized administration.
Hence, network operations are fully distributed among mobile nodes that act
as relays to support multi-hop communications. The unique characteristics of
MANET such as infrastructure-less nature make them very interesting for a
growing number of situations and applications, in particular, when the deploy-
ment of a network infrastructure is unfeasible or prohibitively expensive.
c© Springer International Publishing Switzerland 2015
F. Cuppens et al. (Eds.): FPS 2014, LNCS 8930, pp. 131–146, 2015.
DOI: 10.1007/978-3-319-17040-4 9

132 M. Bouhaddi et al.

Unlike traditional networks, MANETs have no specific station where an
Intrusion Detection System (IDS) can be deployed. Hence, a node may need
to run its own IDS [3,4] and cooperate with others to ensure security. This is
very inefficient in terms of resource consumption since the nodes, typically, have
limited autonomy in term of energy. To overcome this difficulty, a common app-
roach is to divide a MANET into a set of 1-hop clusters where each node belongs
to at least one cluster. Nodes in each cluster have a leader node (cluster-head)
to serve as an IDS for the entire cluster.

All these election procedures do not take into account the residual energy
that ensure the longevity of the network, and in the case where they do it,
it remains very difficult to collect this data because the information regarding
the node’s energy is private to the node, and thus, not verifiable. Since cluster-
head is more energy consuming, some selfish nodes will be tempted to keep the
information hidden to avoid being cluster-head while they still taking advantage
from network services.

Game theory has been developed and extensively used in the context of econ-
omy and biology. It is very powerful mathematical tool for analyzing and pre-
dicting the behavior of rational and selfish entities [1]. Due to its interesting and
sometimes unexpected results, its popularity reached the field of communications
and networking technology. In this paper, we use game theory as a central tool
for modeling two problems: (i) encourage nodes to declare themselves as lead-
ers in the clustering procedure and assume the IDS functions (leader-IDS) (ii)
increase the detection efficiency of malicious packets in the network by finding
an optimal sampling rate in accordance with a given total sampling budget and
members’ reputation, and determine the optimal probability for an attacker to
launch an attack, i.e.: when it would be more profitable for it to attack a target
node, the IDS informs the victim node to launch countermeasures (for instance,
activate its own Host Intrusion Detection System HIDS) once the probability of
attack exceeds this threshold.

The remainder of this paper is organized as follows. Section 2 presents the
related work. Section 3 describes the problem statement and proposed model
which is consists of the leader election procedure and the intrusion detection
mechanism. In Sect. 4, we present the results of the simulation and we evaluate
our model based on these results. Finally, Sect. 5 draws a conclusion with a future
work.

2 Related Work

This section reviews the related work on the application of the game theory for
the intrusion detection in ad hoc network and the clustering procedure, then
summarizes the work on selfishness in wireless networks.

Several proposals address the use of game theory in order to model and
solve intrusion detection problems. In [5], the authors considered the problem
of intruding packets in a network by means of network packets sampling. The
intrusion detection game is played between two players: the service provider and

A Game Approach for an Efficient Intrusion Detection System 133

the intruder. They take into consideration the scenario where the adversary has
significant information about the network. The attack is accomplished when the
adversary sends a malicious packet via a path to the victim node and the packet
is not sampled. The intruder objective is to minimize chances of detection and
the provider maximizes it. This is a min-max approach, where the solution is a
max flow problem from which the stable points will be obtained. This work have
been extended in [9], where the authors considered the problem of intrusion over
multiple packets in a network. Note that, a single packet belonging to an attack
may look as normal if sampled alone, while a series of these packets could be
marked as an intrusion. In the modeling process, the authors considered the case
where the IDS needs all the malicious fragments to detect the intrusion.

In [6], the authors used game theory to analyze the clustering problem and
propose a clustering mechanism called CROSS. In this model, each node is mod-
eled as player, who can hear all other players’ messages and know how many
players there are. According to this number of players, every player calculates
an equilibrium probability, which is used to decide whether a player declares
itself to be a cluster-head. So, the idea is to have a self-election process where a
node has a great benefit when it transmits data, while it wants to avoid being a
cluster-head. The setup of the game and its rules create a natural cooperation
between nodes. A node is then “forced” to cooperate and declare itself, because
it has more benefit from transmitting its data than declaring itself as CH. More-
over, if all its neighbors have already declared themselves, then the only way to
transmit own data is to declare itself, and no other node will declare itself until
this node has done so.

Selfishness in wireless networks has been given a particular attention in the
research community. The activation of an IDS imply a cost in terms of energy
consumption and the use other resources to the nodes. So, a selfish node will
need an inducement or reward for being cluster-head and keep its IDS active. To
encourage selfish nodes in ad hoc network to cooperate, one way to address the
problem is to use the incentive mechanisms. Various approaches have been used
in the literature such as credit-exchange schemes and reputation-based systems.
In credit-exchange schemes [8], nodes receive a credit payment to compensate
the energy consumption during their participation in services of the network
and this credit can later be used by these nodes to encourage other nodes to
cooperate. In the reputation-based schemes [7], a node’s behavior is measured
by its neighbors, and selfishness is deterred by the threat of partial or total
disconnection from the network.

3 Problem Statement and Proposed Model

The approach set-up is outlined in two steps. First, we elaborate a game theoretic
model to form and analyze the problem of clustering in ad hoc networks where
we consider the conflicting interests of nodes in their appointment to the role
of leader-IDS. Furthermore, we introduce another game theoretic framework to
represent the interaction between a leader-IDS and an attacker with incomplete
information as a non-zero sum non-cooperative game.

134 M. Bouhaddi et al.

3.1 Game Theoretic Model for Leader Selection

Amongst other things, the responsibility of a cluster-head is to offer the IDS
services to its cluster members. Since a cluster-head consumes much more energy
to maintain the security of the whole cluster, a selfish node may refuse to declare
itself as CH. To solve this problem, we consider the CH declaration as a game
and adopt a game theoretic model to promote cooperation of selfish nodes.

The idea to use the game theory to designate cluster-heads in considering
the misbehavior of selfish nodes takes inspiration from the work presented in [6]
where the cluster-head is responsible for the packets transmission of its members
to the sink in wireless sensors network. Unlike to the transmission function of
the cluster-head considered in [6], the task of the leader here is to run its IDS to
sample the incoming packets to its whole cluster for detecting the malicious ones.
In the case where there is no node declare itself cluster-head, then the security
will be compromised and the losses with the damage caused will be considered
and appear in the game structure. The authors in [6] also assume that the game
is played with all nodes of the network, this hypothesis is unrealistic, because
all nodes of a network cannot be neighbors. In addition, they didn’t take into
account the nodes energy level during the leader selection process which is a
decisive factor in the lifespan of the network.

We consider an ad hoc network as a graph G = (N,X), where N is the
set of nodes and X is the set of bidirectional links in the network. Each node
i ∈ N is characterized by a level energy Ei and it is assumed that it has an IDS.
Each link is characterized by a value of a reputation Rx, x ∈ X (0 ≤ Rx ≤ 1)
initialized to 1. We consider the presence of selfish nodes that are not willing
to participate in detecting network intrusions in order not to consume resources
such as battery, memory and CPU time. The reputation value is calculated by
the leader-IDS for each incoming link to its members according to the number of
tested packets and it allows to reflect the behavior of nodes. This value depends
on the number of malicious messages detected w.r.t. the total number of messages
tested. We denote by V (i) the set of i’s neighbors, with |V (i)| the number of
these neighbors. The energy, reputation and the list of neighbors are updated at
each time interval Telec. The reputation of node i will be the average reputation
at each interval. We assume nodes are rational in the sense that they want to
maximize their own benefice.

We define the problem of the self-organization of nodes into groups in an
ad hoc network with presence of selfish behavior as a game which is formally
defined by:

CG(i) =< ζ(i), {S
(i)
k }k∈ζ(i) , {U

(i)
k }k∈ζ(i) >, where:

• ζ(i) is the set of players containing the node i and its neighbors (|V (i)|) i.e.:

ζ(i) = {i} ∪ V (i)

• a node (player) has a choice between two decisions: a node decides to either
declare itself as CH (D) or not (ND)

S
(i)
k = {D,ND},∀i,∀k

A Game Approach for an Efficient Intrusion Detection System 135

• regarding payoffs, if a player chooses to not become CH, then if no other
node becomes a CH either, security will be compromised and hence the losses
incurred will be estimated at value l. If at least one neighbor declares itself
as CH, nodes will get a reward r for having their data secured. Finally, if the
player declares itself as CH, its reward for securing its data will be reduced
by an amount equal to the cost c corresponding to the IDS activation (ex.
energy consumption). In this case, the final payoff for this node will be r − c.
We suppose that r > c and l > c, otherwise the node is not motivated to
declare itself as a leader.

The game is played by |V (i)|+1 players. Let s(i) = {s
(i)
1 , · · · , s

(i)
|V (i)|, s

(i)
|V (i)|+1}

be the vector profile of the strategies followed by the players. The utility function
U

(i)
k (s) of an arbitrary node k playing to the CG(i) has the following form:

U
(i)
k (s) =

⎧
⎪⎨
⎪⎩

−l, if s
(i)
k = ND,∀ k ∈ ζ(i)

r if s
(i)
k = ND and ∃ j ∈ ζ(i), s

(i)
j = D

r − c if s
(i)
k = D

(1)

When the game is played between two players, it will admit two Nash equi-
libria (D,ND) and (ND,D). Although, these two Nash equilibria are not sym-
metrical. Since these players are nodes, this implies that they have the same
reasoning. So, we calculate the Nash equilibria in a mixed strategies to find a
symmetrical equilibrium. If we assume that each player is allowed a probabil-
ity distribution on its strategies set, a mixed strategy Nash equilibrium can be
found. In other words, every player has now a probability of declaring itself as
CH and a probability to not doing so. We denote the probability of playing D
as p and the probability of playing ND as 1 − p. According to Theorem 1 in [6],
there exists an equilibrium probability p∗ based on a symmetric mixed strate-
gies Nash equilibrium. Using the procedure found in [10], the symmetric mixed
strategy Nash equilibrium is given by the following formula:

p∗
i = 1 − (

c

l + r
)

1
|V (i)| (2)

with: c
r+l < 1.

Note that p∗
i decreases as the number of players increases. This can be inter-

preted by the fact that players become less cooperative when the number of their
neighbors increases.

Once the Nash equilibrium is found, an interesting point is to look at the
variation of this equilibrium depending on the losses l.

In order to study the variation of the cooperation w.r.t. the loss l of the node
i in its participation in the clustering game, we made an implementation under
MATLAB to compute the optimal probability a node i should have to declare
itself as a leader. For this implementation, we set the following game parameters
r = 30 c = 15 and l varying in [1, 30]. We also varied the number of neighbors
|V (i)| by considering the values 5, 15, 25 and 35 (Fig. 1).

136 M. Bouhaddi et al.

Fig. 1. Variation of the p∗
i according to losses l and the number of neighbors |V (i)|.

Based on this figure, we remark that:

• The optimal probability p∗
i decreases when the number of neighbors increases.

This means that when the number of neighbors increases, the nodes become
less cooperative to declare themselves as cluster-head.

• p∗
i increases when the value of l increases, which means that when the insecu-

rity increase, the node are more cooperating by playing “De”, independently
of values of |V (i)|.
The probability of at least one player declares itself as CH is:

pA = Pr{at least one node plays De}
= 1 − Pr{no one plays De}
= 1 − (1 − p)|V (i)|+1

= 1 − (
c

r + l
)

|V (i)|+1
|V (i)| (3)

Let ω = c
r+l . By representing the variation of the two probabilities (p∗

i , pA) for
the different values of ω with respect to the number of neighbors of an arbitrary
node i, we get the following figure.

Fig. 2. Evaluation of p∗
i and pA for different values of ω.

A Game Approach for an Efficient Intrusion Detection System 137

Figure 2 gives a graphic illustration of Eqs. 2 and 3. When the number of
players |V (i)| increases, the probabilities p∗

i and pA decrease. Moreover, what
is interesting to note also is that pA is closely related to the parameter ω. The
probability that there is at least one node that declares itself cluster-head is
large when the value of omega is small. This means in a practical sense that a
node is encouraged to declare itself as a leader when the gain in security and
losses are much bigger than the cost (c << r + l).

These characteristics of the computed probabilities can be very useful in the
designation of a clustering mechanism based on the rationality of the selfish
nodes to encourage cooperation without integrating a mandatory mechanism.

The expected average payoff of an arbitrary node i is:

U (i) = −l(1 − p)|V (i)|+1 + (r − c)p + r(1 − p) − r(1 − p)|V (i)|+1 (4)

By substituting in Eq. (4) the equilibrium probability p∗
i , the average payoff

for the equilibrium strategy U
(i)
NE is:

U
(i)
NE = −(l + r)(

c

r + l
)

|V (i)|+1
|V (i)| + c(

c

r + l
)

1
|V (i)| + r − c = r − c (5)

However, this average payoff is not the optimum value. For indeed, as in [6],
the optimal case would correspond to the situation that only one player plays D
and all others play ND. Since, we do not differentiate the players, the optimum
solution during a period of |V (i)|+1 rounds corresponds to the case where each
player plays D in only one round, and no other player does so. The probability
corresponding to this situation is:

(p(1 − p)|V (i)|)(|V (i)|+1) (6)

In this optimum case, the average payoff is:

U
(i)
opt =

r − c + r|V (i)|
|V (i)| + 1

(7)

What is interesting to note here is that U
(i)
NE is less than U

(i)
opt, which means

that the probability that maximizes the average gain of a player is suboptimal.
Using these results, we develop a clustering algorithm that evolve in this direc-
tion, where the role of cluster-head is cyclic, i.e.: a node declares itself cluster-
head once every |V (i)| + 1 round. During the |V (i)| other rounds, its neighbors
will assume the function of leader-IDS by turns.

Now, we calculate the Price of Anarchy (PoA), which measures the inef-
ficiency of the equilibrium p∗ and corresponds to the payoff loss due to this
suboptimum choice:

PoA = U
(i)
opt − U

(i)
NE =

r − c + r|V (i)|
|V (i)| + 1

− r + c =
|V (i)|c

|V (i)| + 1
(8)

From this result, the PoA depends only on the cost c of playing D and not
to the gain r or the loss l. In order to adjust the average gain given by the Nash
equilibrium towards the optimum average gain, the cost c must be small.

138 M. Bouhaddi et al.

Clustering Algorithm. Based on these mathematical results, the proposed
clustering algorithm is summarized as follows:

1. In the first round, each node i ∈ N broadcasts a “Hello” message to discover
its neighborhood V (i) in which he attaches its different characteristics, namely
its energy level Ei.

2. Thereafter, each node i which is in the same location as its neighbors, plays
in the clustering game, i.e.: the CG(i) non-cooperative game defined above.
Each node i calculates the equilibrium probability p∗

i , given by the equation.
2, for becoming CH according to the parameters of the game but also the
number of its neighbor |V (i)| participating in the game.

3. If the probability p∗
i for a node is nonzero, then the node joins the list of

potential cluster-heads NCHP .
4. From the list (NCHP) of the CH-potential, the node for which the residual

energy is greater than or equal to the threshold Er:

Er =

∑
j∈NCHP

Ej

|NCHP |
and having the lowest physical media address will immediately announce itself
to be a CH and joins the set of cluster-heads (NCH).

5. To form the clusters, the node with the lowest ID belonging to NCH announces
its new status as a leader and the closest nodes will join it to form a cluster.
This operation will be iterated until all nodes are affiliated to clusters, be it
as leader or member.

6. After a predetermined time Telec (1 round), the current cycle ends and the
next cycle begins with the formation of new clusters.

7. The nodes that have already served as CH (NCH), will be awarded a prob-
ability to declare themselves as CH equal to zero until there are no more
neighbors which choose to designate itself cluster-head.

8. The game for the next round will take place between a node i which does
not have served as CH yet and its neighbors which are in the same case, i.e.:
V (i) = V (i) − NCH.

When there are several potential cluster-heads, a first test is used to select
nodes whose residual energy exceeds a certain threshold. Among these nodes, a
second test is applied for selecting the node with the lowest ID as a cluster head.

Thus, as the rounds pass, the number of nodes that have not been cluster-
heads decreases, so this probability increases.

3.2 Intruder-Defender Game Theoretical Model

To have a best management of energy resources of the network when deploying
of the IDSs, we consider them installed only on the cluster-heads. So, we sup-
pose that the whole network is partitioned into clusters following the previously
presented algorithm. After finding the appropriate sample rate for each link, the

A Game Approach for an Efficient Intrusion Detection System 139

leader-IDS calculates the optimal probability of attack to warn the target node
for taking appropriate action when its beliefs exceed this threshold.

Each cluster-head is responsible for the cluster members’ security by sampling
some packets circulating the incoming links to a cluster members in accordance
to the sampling budget (BCH) available to the leader-IDS and the reputation of
each incoming link. Reputations are needed to locate whom to inspect among the
nodes in the network. This budget can be defined as the number of packets that a
cluster-head can sample during a certain time. The reputation value is calculated
by the leader-IDS for each incoming link to its each member node T ∈ MCH1.
Initially, the reputation value for each link is set to 1, i.e.: we assume at the
beginning that all links are well reputed. If the leader-IDS detects a malicious
message on an incoming link to its cluster, then the reputation corresponding
to this link decreases, otherwise it may increase or remain unchanged. So, the
reputation value Rx(t) represents the evaluation of good behavior of the link x
during the interval [0, t], with 0 ≤ Rx(t) ≤ 1.

Rx(t) =

{
1 , if t = 0

1 − Number of messages tested malicious (t)
Number of all tested messages (t) if t > 0 (9)

Each leader-IDS maintains a reputation list about the incoming links of each
target node for which it is liable. The leader-IDS divides the time interval Telec

in which it has the security responsibility of the cluster. Each time interval,
it updates its data about the reputation of its neighbors links. We define the
sampling rate sx on the link x as the number of packets to be examined during a
particular interval. The sampling rate is based on the reputation of the link x and
the total sampling budget of the leader-IDS. Our goal is to give more attention
to the less reputable links. So, the sampling rate allowed to the incoming link x
by CH during the period [0, t] is:

s∗
x(t) =

(1 − Rx(t)) × BCH∑
x∈η(1 − Rx(t))

, η =
⋃

T∈MCH

XT (10)

with η the set of the all incoming links to the members nodes MCH.
The interpretation of the Eq. 10 is that more the reputation is small, more

the link should be monitored. So, since the goal of the attacker is to attack
without being detected, it is pushed to improve its reputation.

3.2.1 The Game Definition
At this stage, we suppose that our network is fully clustered with a leader-IDS
designated in each cluster. We consider the interaction between the coalition
(leader-IDS and target node T) and the sender node as a two-player static
Bayesian game. The coalition leader-IDS and target node maintain the secu-
rity of communications by attempting to detect any intrusion from an attacker.
The sender node having the private type Malicious (M) or Normal (N), tries
1

MCH: represents the set of the cluster members with CH as cluster-head.

140 M. Bouhaddi et al.

to attack a target node when its type is malicious. The goal of the game is to
find the optimal probability for which the sender (Intruder) would be tempted
to attack the target node. This probability will be very useful in the intrusion
detection because if this probability is high, the victim node should launch its
own countermeasures to thwart the intrusion.

We formalize the efficiency of the intrusion detection as a game where the
leader-IDS evaluates the risk of attack to notify or not the target node to take
the necessary measures. In contrast to the method given in [11], the leader-IDS,
here, considers all sender nodes, even those who are part of its cluster as potential
attackers. This leads to detect internal and external intrusion in the network.
For more efficiency, we consider the believes of a leader-IDS about all the sender
nodes directly related to their reputation.

A malicious sender has two pure strategies: Attack and Not Attack. A nor-
mal sender has one pure strategy: Not Attack. On the other hand, the coalition
leader-IDS/Target node has two pure strategies: Notify and Not Notify which
means either the leader-IDS notifies the target node to launch its countermea-
sures (HIDS) or not.

We suppose that the leader-IDS/Target player (player 2) assigns a probability
μ to a sender player being malicious. At each beginning of a game, the defender
considers that the probability that a sender is malicious or not is equivalent to the
calculated reputation corresponding to the incoming link x, we set μ = 1−Rx(t).

Figure 3 illustrates the game payoff of the attacker and leader-IDS/target
node interactions for the activation or not of the target’s IDS in the extensive
form. In this figure, we have the following game parameters:

– a (resp. a′) denotes the detection rate of the leader-IDS (resp. the detection
rate of the target-IDS),

– b (resp. b′) denotes the false alarm rate of the leader- IDS (resp. target-IDS),
with a, a′, b, b′ ∈ [0, 1].

– The gain for the secured data when the target node is protected is r.
– The cost of an attacker, leader-IDS and target-HIDS for attacking and moni-

toring (e.g., energy cost) are denoted by Ca, CCH and CT respectively, where
Ca > 0, CCH > 0 and CT > 0. It is reasonable to assume that r > Ca,
r > CCH and r > CT , since otherwise attacker does not have incentive to
attack and leader-IDS/target node do not have incentive to monitor,

– CfCH
and CfT

denote the loss for a false alarm of the leader-IDS and the
target-HIDS respectively, where CfCH

, CfT
> 0.

From the Fig. 3, we note that for the strategy combination (Attack, Notify),
the payoff of the coalition leader IDS/ target node is the expected gain of detect-
ing the attack minus the monitoring cost (CCH + CT). The expected gain for
detecting the attack depends on the values a and a′, which is ar − (1 − a)r =
(2a − 1)r and a′r − (1 − a′)r = (2a′ − 1)r. Note that 1 − a and 1 − a′ are the
false negative rate for the leader-IDS and Target node respectively. In contrast,
the gain of a malicious sender is the loss of the leader-IDS and the target node
(1 − 2a)r + (1 − 2a′)r. Thus, the payoff of the player 1 is his gain minus the
attacking cost. For the other two strategy combinations, when the malicious

A Game Approach for an Efficient Intrusion Detection System 141

Fig. 3. Extensive form of attacker/coalition leader-IDS/target node game.

node plays Not Attack, his payoff is always 0. In both cases, the payoff of the
coalition leader-IDS/target node if the leader-IDS decides to Notify the target
node is the cost of monitoring of the coalition and an expected loss −bCfCH

and
−b′CfT

due to false alarms, and a payoff of −bCfCH
− CCH if he decides to Not

Notify. For the strategy combination (Attack, Not Notify), the payoff of the
leader-IDS is only the gain of his detection minus cost of his monitoring, and
the payoff of the malicious player is his gain of success minus the attacking cost.

3.2.2 The Game Solution
The objective of both players is to maximize their own payoffs. It can be shown
that the game has a pure strategy Bayesian Nash Equilibrium only when μ <

b′CfT
+CT

(2a′−1)r+b′CfT
, which is ((Attack if malicious, Not Attack if Normal), Not Notify,

μ).
When μ >

b′CfT
+CT

(2a′−1)r+b′CfT
, a mixed strategy Nash Equilibrium can be derived

as follows.
We set β as the probability to notify the target node to launch its own HIDS

and α the probability for an attack by the Intruder.
To solve the game and find the overall payoffs of the attacker, we compute the

corresponding utility functions followed by the first derivative of these functions.
From Fig. 3, we define the leader-IDS utility function UCH/T as follows:

UCH/T = μ[αβ((−CCH − CT) + (2a − 1)r + (2a′ − 1)r)+
α(1 − β)(−CCH + (2a − 1)) + (1 − α)β(−bCfCH

−
b′CfT

− CCH − CT) − (1 − α)(1 − β)(CCH + bCfCH
)]+ (11)

(1 − μ)[β(−bCfCH
− b′CfT

− CCH − CT)−
(1 − β)(CCH + bCfCH

)]

The main objective of the leader-IDS is to maximize this utility function by
choosing for a fixed β∗, a α∗ strategy that maximizes the probability of protecting

142 M. Bouhaddi et al.

the target node. This leads to an equilibrium where the following holds:

UCH/T (α∗, β∗) ≥ UCH/T (α∗, β)

To attain this aim, the leader-IDS calculates the optimal value of α∗ by
finding the first derivative with respect to β∗ and setting it to zero. This results
to the following:

α∗ =
b′CfT

+ CT

μ((2a′ − 1)r + b′CfT
)
. (12)

The value of β∗ is used by the leader-IDS to decide whether to inform the
victim node to active its own HIDS or not. The leader-IDS is monitoring and
analyzing the traffic via sampling, it calculates its believes about all the incoming
links to a target node T , if

∑
x∈XT

(1−Rx) >
∑

x∈XT
α∗

x so it notifies the target
node to run its HIDS for more security.

The utility function Ua of the attacker is defined as follows:

Ua = αβ(−Ca + (1 − 2a)r + (1 − 2a′)r)+
α(1 − β)(−Ca + (1 − 2a)r) (13)

The main objective of the attacker is to maximize this utility function by
choosing for a fixed β∗, an α∗ that maximizes the probability for compromising
the victim node. By following the same procedure as for the leader-IDS, we have:

β∗ =
Ca + (2a − 1)r

(1 − 2a′)r
(14)

From the solution of the game, the attacker best strategy is to attack when the
probability of activating the HIDS by the victim node is less than β∗. To achieve
this goal, the attacker observes the behavior of the leader-IDS to determine
whether it attacks or not by comparing its observations with the determined
threshold.

4 Simulation

In this section, we evaluate the performances of our detection intrusions approach
by simulating it under Matlab. The idea is to compare the effectiveness of our
intrusion detection model where only the cluster-heads are concerned with the
safety of their clusters with a standard model. We remind that in our model a
target node is invited to activate its HIDS when the risk of intrusion goes beyond
a certain threshold. For the validation of our model we use the detection rate
and the lifetime of the secure network.

In our simulation, initially, we assign a residual energy chosen randomly in
[40, 100] Joules. The node’s energy decreases by 10 J [2] per 10 s, respectively
5 J/10 s in the case of the activation the NIDS, respectively the HIDS. The
data traffic flow is randomly fixed in [10, 50] packets per node per session. The
expended energy during the transmission of one packet is fixed to 0.0368 J [12]
and we consider as negligible the energy expended for the reception of a packet.

The simulation parameters are summarized in Table 1.

A Game Approach for an Efficient Intrusion Detection System 143

Table 1. Simulation parameters.

Parameter Value

Simulation area 500m× 500 m

Number of nodes 15

Transmission range 150m

Residual energy Random value in [40 .. 100] Joules

Energy to forward one packet 0.0368 J

Energy to activate an NIDS/10 s 10 J

Energy to activate an HIDS/10 s 5 J

Sampling budget 20 packets/10 s

Telec 100 s

Simulation run time 100 s

Time step 10 s

4.1 Simulation Results

We apply our clustering algorithm presented in the first part of this work, with
the following parameters set: r = 30, l = 20 and c = 10. The result of this
simulation within Telec time is summarized in the following figure (Fig. 4).

Fig. 4. The clustered network.

4.2 Approach Evaluation

In the sequel, we evaluate our model of a collaborative approach between NIDSs
running in the network cluster-heads and HIDSs running in the target nodes.
This simulation evaluates the detection rate the lifetime of the secured network.
We fix the game parameters as described in the following table (Table 2).

144 M. Bouhaddi et al.

Table 2. Game parameters.

Game parameter value Game parameter value

a 0.9 CCH 15

a′ 0.83 CT 10

b 0.05 Ca 5

b′ 0.05 CfCH 3

r 20 CfCH 3

We compare our collaborative NIDS-HIDS game based approach with a stan-
dard approach in which the IDS is activated only in the cluster-heads and we
use the same parameters in the two models.

Fig. 5. Comparison in terms of detection rate.

Fig. 6. Comparison in terms of the secured network lifetime.

The Fig. 5 shows that our approach gives better results for the detection rate
since our model is more efficient and allows to sample more packets and hence
to detect more malicious attacks.

The Fig. 6 shows that in our model the network stays secured much more
than in the standard model. This is explained by the fact that when an HIDS is
activated, there is a reduction of the energy consumption of the corresponding
cluster-head, allowing it, then, to remain active much longer.

A Game Approach for an Efficient Intrusion Detection System 145

5 Conclusion

The tradeoff between security and resource consumption of IDSs has motivated
us to propose a game theoretical solution for preserving the longevity of nodes
while increasing their security.

In the first step, we have proposed a clustering algorithm based on game
theory. Nodes play a clustering game with the purpose of selecting a cluster-
head which will be responsible of the security of the whole cluster. The game
has been developed so that its setup and its rules lead to a natural cooperation of
the nodes in the self-election process. A node is “forced” to cooperate and declare
itself, because it has greater benefit for being cluster-head, i.e.: it is aware that
if all its neighbors have already declared themselves, then the only way to secure
its data is to declare itself.

The second step of the model consists in managing sparingly the resources
of cluster-head by finding the optimal sampling rate based on the contribution
of each node in the cluster. Hence, a nonzero-sum non cooperative game was
formulated to analyze the interaction between the leader-IDS and the intruder
in order to find the threshold from which the leader-IDS notifies the target node
to launch countermeasures (activate an HIDS), once the probability of attack is
greater than the game derived threshold.

The simulation carried out showed that our model is able to increase the
intrusion detection rate while keeping the secure of the network for longer.

References

1. Altman, E., Boulogne, T., Azouzi, R.-E., Jimenez, T., Wynter, L.: A survey on
networking games in telecommunications. Comput. Oper. Res. 33, 286–311 (2006)

2. Bhattacharya, P., Debbabi, M., Mohammed, N., Otrok, H., Wang, L.: Mechanism
design-based secure leader election model for intrusion detection in MANET. IEEE
Trans. Dependable Secure Comput. 8, 89–103 (2011)

3. Da Silva, A-P-R., Martins, M-H-T., Rocha, B.P.S., Loureiro, A.A.F., Ruiz, L.B.,
Wong, H.C.: Decentralized intrusion detection in wireless sensor networks. In: Pro-
ceedings of the 1st ACM International Workshop on Quality of Service and Security
in Wireless and Mobile Networks, pp. 16–23(2005)

4. Kamhoua, C.-A., Makki, K., Pissinou, N.: Game theoretic modeling and evolution
of trust in autonomous multi-hop networks application to network security and
privacy, pp. 1–6. IEEE Communications Society (2011)

5. Kodialam, M., Lakshman, T.: Detecting network intrusions via sampling: a game
theoretical approach. Bell Laboratories Lucent Technologies (2003)

6. Koltsidas, G., Pavlidou, F.-N.: A game theoretical approach to clustering of ad hoc
and sensor networks. Telecommun. Syst. 47, 81–93 (2011)

7. Komathy, K., Narayanasamy, P.: Study of cooperation among selfish neighbors in
MANET under evolutionary game theoretic model. In: IEEE- ICSNC, pp. 133–138
(2007)

8. Li, F., Wu, J.: Hit and run: a Bayesian game between malicious and regular nodes
in MANETs. In: IEEE SECON, pp. 432–440 (2008)

146 M. Bouhaddi et al.

9. Mahrandish, M., Assi, C., Debbabi, M.: A game theoritic model to handle network
intrusions over multiple packets. In: Proceedings of IEEE International Conference
on Communications (ICC), Turkey (2006)

10. Osborne, M.-J.: An Introduction to Game Theory. Oxford University Press, New
York (2000)

11. Otrok, H., Mohammed, N., Wang, L., Debbabi, M., Bhattacharya, P.: A moderate
to robust game theoretical model for intrusion detection in MANETs. In: Wireless
Communications and Networking Conference (WCNC), pp. 608–612 (2008)

12. Robert, J.-M., Otrok, H., Chriqi, A.: RBC-OLSR: reputation-based clustering
OLSR protocol for wireless ad hoc networks. Comput. Commun. 35, 487–499
(2012)

Optimizing TLS for Low Bandwidth
Environments

Diego A. Ortiz-Yepes1,2(B)

1 IBM Research – Zurich Laboratory, Säumerstrasse 4, 8803 Rüschlikon, Switzerland
2 Digital Security Group, Institute for Computing and Information Sciences,

Radboud University Nijmegen, Nijmegen, The Netherlands
ort@zurich.ibm.com

Abstract. This paper explores alternatives to minimize the overhead of
Transport Layer Security (TLS) towards making it usable in bandwidth-
constrained environments. Several areas are identified where overhead
can be reduced while remaining fully compatible with standard Trans-
port Layer Security. The most relevant one consists of moving to Elliptic
Curve Cryptography (ECC) from RSA in the certificates, which reduces
the overhead of the TLS handshake between 22 % and 60 % depending
on the chosen security level.

We also propose two TLS extensions that further reduce the size of
the handshake: using a more compact certificate format and certificate
caching. Using compact certificates instead of ECC based X.509 cer-
tificates reduces the overhead of the handshake between 11% and 20 %
depending on the security level. Using certificate caching avoids exchang-
ing certificates more than once irrespective of the number of times that
the handshake is performed.

Keywords: Transport Layer Security · Embedded systems security ·
Optimization of secuity protocols

1 Introduction

The research described in this paper is motivated by research into the Mobile
ZTIC (MZTIC) [23], a companion security device intended to be used with
mobile devices via the 3.5 mm Tip-Ring-Ring-Sleeve (TRRS) audio interface. We
found that the theoretical bidirectional bandwidth that can be reliably achieved
using this analogue interface across different types of mobile devices was rather
low, in the order of a few hundred bytes per second. Therefore, we decided to
use an ad-hoc light weight message-based security protocol ensuring integrity,
authenticity and confidentiality of the data exchanges between the MZTIC and
the server instead of Transport Layer Security (TLS), as we did in the original
ZTIC [32]. However, it remains an interesting question whether TLS could be
used on top of such a low bandwidth channel as it would allow an identical
back-end to be used for both the ZTIC and the MZTIC, and for the code of the
ZTIC to be reused for the MTZIC.
c© Springer International Publishing Switzerland 2015
F. Cuppens et al. (Eds.): FPS 2014, LNCS 8930, pp. 147–167, 2015.
DOI: 10.1007/978-3-319-17040-4 10

148 D.A. Ortiz-Yepes

We note that the applicability of this research goes far beyond MZTIC: low
bandwidth environments are increasingly encountered, e.g. in sensors and smart
electricity meters. Moreover, such environments are expected to be more preva-
lent in the Internet-of-Things, where security should not be neglected [30]. Even
mobile phones and tablets with fast Internet connections can benefit from a
bandwidth optimized TLS setting because it would help them preserve power
and possibly allow for security-sensitive network-enabled applications to be exe-
cuted more efficiently.

The rest of this paper is structured as follows: Sect. 2 examines the TLS
handshake overhead, suggesting optimizations to avoid it without deviating from
the protocol. Section 3 outlines two complementary extensions aimed to reduce
the certificate related overhead. Section 4 presents approaches related to our
research. Section 5 concludes and outlines future work. The main concepts of TLS
are summarized in AppendixA. Readers unfamiliar with TLS are encouraged to
familiarize themselves with the concepts presented in this appendix as they are
used throughout the rest of this paper.

2 Optimizing the TLS Handshake

This section identifies overhead areas in the TLS handshake, suggesting opti-
mizations for minimizing such overhead.

2.1 Resumed vs. Full Handshake

The goal of the resumed handshake is to reduce the performance cost of the
full handshake in terms of CPU processing and the number of required round
trips [26], therefore using resumed sessions is encouraged. However, there is a
clear trade off between the efficiency gained by using the resumed handshake
and the security provided by performing a full handshake, which is required
when starting a new session. Consequently, a maximum session length of 24 h
is suggested in [9]. In practice, most web servers use sessions of a few minutes
[1]. For embedded applications, something in between should be considered. The
rationale is that the prospects of successfully performing an attack increases
with the transmitted data volume. A hint towards a “reasonable” amount of
data to be exchanged during a single session of five megabytes is provided in
[5]. For embedded applications the amount of data exchanged may be relatively
low, and therefore the session length can be allowed to span for a longer amount
of time. In fact, instead of having a relatively short maximum session length, it
would be best to allow the server to perform a full handshake whenever a certain
amount of data has been exchanged using the session.

2.2 Client Hello

Each listed cipher suite uses a couple of bytes. Therefore, the client should inclu-
de the minimum possible number of cipher suites in the ClientHello message.

Optimizing TLS for Low Bandwidth Environments 149

Support for compression [8] is only worthwhile when large volumes of data
are to be exchanged. Furthermore, it only makes sense to include the compres-
sion method in the ClientHello if message sizes are expected to be large and
contain low-entropy information. If the size of the exchanged messages is small,
then using compression may actually increase the processing time. Furthermore,
using compression is prone to implementation errors [17] and is a precondition
for the CRIME attack [27]. Therefore, unless there is a clear benefit in terms of
bandwidth savings by enabling compression, it should be disabled.

It is recommended to avoid listing non-essential extensions. For example, the
mechanism that enables the TLS server to resume sessions and avoid keeping
per-client session state [28] should be avoided because it adds a few hundred
bytes to the handshake. Similarly, when the Elliptic Curve Cryptography (ECC)
Cipher Suites for TLS extension is used [3], then it is recommended to list as
few curves and as few point formats as possible in the elliptic curves and
point formats messages, respectively.

2.3 Certificates

Encoding Overhead. Most of the TLS handshake overhead is in the certifi-
cates exchanged during the handshake protocol. Standard TLS servers use X.509
certificates [7]. These certificates are constructed and stored using ASN.1 and
exchanged using Distinguished Encoding Rules (DER). Consequently, each cer-
tificate contains metadata describing its structure as well as the types of each
primitive data element constituting it. The amount of overhead that the cer-
tificate encoding brings is non-negligible, for example the server certificate sent
by the server when connecting to https://www.google.com is 1151 bytes long,
of which 310 bytes (27 %) are encoding overhead. Section 3.2 (p. 8) provides an
alternative which suggests using Card Verifiable Certificates (CVCs) instead of
X.509 certificates to avoid this issue.

Server Certificates. Sending a server certificate chain should be avoided. If
possible, clients should be provisioned with all required certificates to validate a
single certificate sent by the server during the handshake.

Certificate Keys and Signature Schemes. RSA keys and signatures have
been traditionally used in X.509 certificates [7]. However, using ECC keys and
signatures (fully compatible with X.509) is more appropriate on computational
and transport efficiency grounds. The reason is that for equivalent security the
required key lengths for ECC are smaller than their RSA counterparts yielding
shorter signatures, which result in smaller certificates taking less time to trans-
port. ECC keys and certificates are supported by many browsers [33] and smart
card applications, particularly by ePassports [18] and (chipped) driver licenses
[21]. The study of ECC based cryptosystems is certainly younger than the study
of RSA, but mature enough to be used with confidence in real-world applications.

https://www.google.com

150 D.A. Ortiz-Yepes

A rough comparison between ECC key sizes and RSA moduli sizes for com-
parable security is shown in the first two columns of Table 1. The resulting cer-
tificate sizes without changing certificate fields other than signatureAlgorithm,
signatureValue, and subjectPublicKeyInfo (cf. [7]) are also shown after the
slash. The last column shows the substantial savings in certificate size when ECC
is used instead of RSA.

Table 1. Comparison between RSA and ECC keys and the resulting certificates.

RSA key length (bits)/certificate ECC key size (bits)/certificate Savings

size (bytes) size (bytes)

1024/589 160/291 51%

2048/845 224/315 63%

3072/1101 256/331 70%

Issuer and Subject. The Issuer and Subject fields identify the entities issuing
and being issued the certificate, respectively. It is useful for these fields to have
a well-defined structure that can be used to automatically index them in a direc-
tory service and to be readable and understandable by a human in case that they
need to be “manually” checked. In most situations involving Machine-to-Machine
(M2M) communication and embedded devices, such as considered in this paper,
certificates are not intended for human validation. Hence, these fields can still
be constructed following the conventions in [20], yet making them as short as
possible, e.g. each consisting of a single attribute pair, NAME = PKId, where NAME
correspond to the common name attribute, and PKId is the public key identi-
fier of the corresponding entity, e.g. a digest of the public key object encoded,
for example, as a UniversalString. We note that using UniversalStrings is
discouraged in [15]. However, they allow the most succinct encoding of a public
key identifier (binary data) and must be supported [7]. Alternatively a UTF8 or
Teletext string could be used, but then a printable (and expanded!) represen-
tation of the public key identifier would be stored.

Certificate Revocation. When an entity receives a certificate during the hand-
shake, it must check that the certificate’s signature is valid, that it has been
issued by a trusted Certification Authority (CA), that it is within its validity
period, and that it has not been revoked. In order to check the revocation status
of the certificate, the entity can either retrieve the Certificate Revocation List
(CRL) and check that the certificate in not included in it [7], or submit a query
to the Online Certificate Status Protocol (OCSP) server, which will indicate
whether the certificate is revoked [29]. Given that less information is exchanged
and most of the processing is done by the (OCSP) server, if revocation is checked
it is suggested to use OCSP instead of CRLs.

Optimizing TLS for Low Bandwidth Environments 151

2.4 Certificate Request

Distinguished Names. The number of trusted CA root certificate names
should be kept to a minimum. The names themselves should be kept as short
as possible, e.g. following the optimization presented in Sect. 2.3. Furthermore,
if a single trusted CA root is supported by the server, then this field should
be omitted altogether. Even when there is more than one supported trusted CA
root this field can be omitted by configuring clients to implicitly signal the server
which client CA they are planning to use, for example, by selecting a certain
port or using a specific url suffix.

Key Exchange Algorithm. It is suggested to use Elliptic Curve Diffie-Hellman
(ECDH) instead of RSA or Diffie-Hellman (DH). The rationale is that ECDH is
based in ECC, while RSA and DH are based in Finite Field Cryptography (FFC)
[22]. As discussed in Sect. 2.3 (p. 3), the size of ECC keys are smaller and the asso-
ciated public key operations take less time to compute than using comparable
RSA or DH keys [16]. Thus, by using ECDH not only the sizes of the ClientKey
Exchange and ServerKeyExchange can be reduced (with respect to DH), but also
the computation of the pre-master secret can be performed using less resources,
and eventually more efficiently.

2.5 Combining the Handshake Optimizations

A base handshake size can be estimated by adding the sizes of the messages excha-
nged during the handshake, excluding those pertaining certificate exchanges and
cryptographic related extensions, e.g. ECC extensions [3]. This base handshake
size (about 630 bytes) can be used to estimate the size of several handshake sce-
narios using different cryptosystems in the X.509 certificates. Table 2 shows these
estimations.

The last four columns of Table 2a and b consider the following handshake
scenarios:

– Handshake (only server authentication, no chain): The client authen-
ticates the server. The server sends its certificate. The server does not authen-
ticate the client.

– Handshake (only server authentication, chain): The client authenti-
cates the server. The server sends its certificate and the certificate of its issuer.
The server does not authenticate the client.

– Handshake (mutual authentication, no chain): The client authenticates
the server. The server sends its certificate. The server authenticates the client.
The client sends its certificate.

– Handshake (mutual authentication, chain): The client authenticates the
server. The server sends its certificate and the certificate of its issuer. The
server does authenticates the client. The client sends its certificate.

152 D.A. Ortiz-Yepes

Table 2. Using X.509 certificates: RSA vs. ECC.

For calculating the certificate sizes, each of the two entities (i.e. client and
server) are assumed to have a key of the size indicated in the first column. The
signature of the certificate uses a key of the size indicated in the first column
of the next row. In practice, CAs tend to have larger keys than the entities
that they certify, so it makes sense to incorporate this consideration in the size
estimation model.

Table 2c compares the values in Table 2a and b showing the bytes saved with
ECC as a percentage relative to the base RSA. Note that the savings in Table 2c
increase with the security level in a similar way than the savings in Table 1. This
is not surprising because the savings are directly related to the certificate, and
ultimately to the differences of the key and signature sizes.

3 Reducing TLS Handshake Certificate Exchange
Overhead

We have already pointed out that most of the TLS handshake overhead can
be attributed to the exchanged certificates. We propose in this section two
complementary extensions towards reducing such overhead while preserving the

Optimizing TLS for Low Bandwidth Environments 153

ability and flexibility of the end points to mutually authenticate using Public
Key Infrastructures (PKIs). The first extension consists of End-point certificate
caching (Sect. 3.1); and the second of Replacing X.509 with CVCs (Sect. 3.2).

3.1 End Point Certificate Caching

The goal of this extension is to minimize the number of times that a certificate is
exchanged between the end points. Ideally, a certificate should be sent only once
over the network, and then cached by the receiving end point. Initially, each of
the end points would start with an empty cache and a list of trusted certificates.
When a given end point receives and validates an entity certificate, it caches it.
The next time that a full handshake occurs, using the extension would proceed
as follows:

ClientHello The client indicates support for the End point certificate caching
extension by including at least one of the following two elements:
CachedServerCertificates Lists the hashes of the server certificates that

the client has received and validated in previous handshakes. Note that
this list only contains entity certificates.

ClientCertificates Lists the hashes of the client certificates. If the client
does not support client authentication, it does not include this element.

ServerHello The server indicates support for the End point certificate caching
extension by including at least one of the following two elements:
UsingServerCertificate Offset in CachedServerCertificates of the cer-

tificate that shall be used by the server to authenticate itself to the
client. If this is not a valid offset, the client shall terminate the connec-
tion sending a HANDSHAKE FAILURE alert (or a custom alert defined by
the extension). If this message is included, then the Server shall not send
any Certificate handshake message to the client.

UsingClientCertificate Offset in ClientCertificates of the certificate
that the server expects the client to use for client authentication. If this
is not a valid offset, the client shall terminate the connection sending
an appropriate alert. If this message is included, then client authentica-
tion shall take place during the handshake and the client shall use the
certificate signaled by the server. Note that the semantics of this ele-
ment is that the server already has the certificate. Consequently, if it
is the first time that the client intends to use the certificate, the server
shall not send this element, i.e. to allow the client to send the certificate
(chain) to the server for the first time. In this case, the server shall send
a CertificateRequestMessage.

When an extension such as outlined above is used, there may be an initial
lengthy handshake, but all subsequent handshakes would not include any cer-
tificate, thus making them short. When the server rolls its certificate over, it

154 D.A. Ortiz-Yepes

would simply not send a UsingServerCertificate element. Instead, it would
send its new certificate as traditionally done. Conversely, if a client is rolling
its certificate, it would refrain from including the old certificate hash in the
ClientCertificates list.

CachedServerCertificates and ClientCertificates can be seen as
dynamic white-lists leveraging the dynamism and flexibility of PKIs, while at
the same time avoiding wasteful certificate exchanges and checks. Managing the
caches is left to each of the end points. At the client side, there is little need to
have more than a single client certificate and associated private key, resulting in
a succinct ClientCertificates containing a single element. Caching server cer-
tificates may prove difficult for embedded devices (clients) with limited memory.
We note that end points do not need to store the full certificate: just the certifi-
cate hash, expiration date and associated public key. For embedded devices that
communicate repeatedly with the same set of known servers, this solution would
bring large overhead savings. At the server side, implementing the cache should
be easier to accommodate due to larger amounts of resources being available.

Note that certificate caching does not reduce the level of security already
attained with the TLS handshake. This follows from the fact that ultimately
each of the end points has to prove possession of the corresponding private keys.
The extension merely avoids having to exchange certificates that have already
been exchanged in the past between the end points.

3.2 Using Card Verifiable Certificate (CVC) with TLS

A large part of the TLS handshake overhead is a consequence of X.509 certifi-
cates being represented in ASN.1 and encoded using DER. Besides the actual
certificate information, there is a non-negligible amount of structuring data (e.g.
tags and lengths), as well as data type descriptors for each of the primitive cer-
tificate fields as already alluded to in Sect. 2.3 (p. 3). To address this issue, we
now describe a TLS extension replacing X.509 certificates with CVCs in order
to not just make certificate exchanges less frequent (the goal of the extension
presented in the previous section), but also smaller.

CVCs are widely used in smart card based applications. They have been
designed to have a small footprint to enable them to be sent to the smart card
in as few—if possible, just one—Application Protocol Data Units (APDUs).
A single APDU can carry at most 255 bytes of application data, and even less
when a secure channel [14] is established. There are mechanisms to allow longer
payloads, e.g. extended length APDUs and APDUs chaining, but these mech-
anisms are not necessarily supported by all smart cards. Consequently, these
certificates are very good candidates to replace X.509 certificates in the context
of TLS entity authentication. The main components of a CVC are defined in
[19]. However, this standard falls short of providing an actual certificate format
per se. Consequently, there are several, not necessarily interoperable CVC for-
mats. The most widely used formats are Extended Access Control (EAC) and
Extended Access Protection (EAP) certificates, described below.

Optimizing TLS for Low Bandwidth Environments 155

Extended Access Control (EAC) Certificates. EAC certificates are
defined in [18]. They are used by Machine Readable Travel Document (MRTD)—
commonly known as electronic passports—to check the entitlements of a termi-
nal, e.g. at border control, to read sensitive biometric information. The main
mechanism for checking such entitlements is Terminal Authentication, a proto-
col in which the terminal must sign a challenge sent by the passport using the
private key associated to the certificate that it sends to the passport.

According to [18], EAC certificates may use RSA for keys and signatures,
but in practice ECC is always used because when using relatively small curves
(e.g. less than 256 bits) it is possible to fit the certificates in a single APDU.

It would be possible to use EAC certificates out-of-the-box with TLS. The
main advantage of such an approach is that existing PKI management tools such
as [10,12,25] could be used to create and manage them. However, the following
peculiarities—and to some extent, limitations— would need to be considered:

References. The structure and semantics of both the Certification Authority
Reference and the Certificate Holder Reference are prescribed in [18]: a 2 let-
ter country code, a variable length (at most 9 characters) holder mnemonic,
and a 5 digit sequence number. Sticking to such a convention does not make
sense in the context of TLS authentication and would break compatibility
with existing PKI management tools.

Hierarchy. [18] defines a 3-layer hierarchy: Country Verifying Certification
Authority (CVCA) → Document Verifier (DV) → Inspection System (IS),
which is not related to the purposes of TLS authentication. Such a hierarchy
could be kept, providing the TLS entities (servers and clients) with IS cer-
tificates. For server authentication, depending on the setting, clients could
be provided beforehand with the CVCA certificate, the DV certificate (or
both), which would act as the roots of trust for authenticating the server. For
client authentication, the Server could send the Certification Authority Ref-
erence(s) of any of the certificates that it trusts in the CertificateRequest
message. As discussed in Sect. 2.4, it would be recommended to provide a
single reference, or at most two, in case of rollover periods.

Certificate Holder Authorization Template. This field would need to be
ignored. It uses up only a few bytes, which does not make it problematic.

Extended Access Protection (EAP) Certificates. EAP certificates are
defined in [21], which standardizes, among others, mechanisms to control access
to the information stored in electronic driver licenses. Particularly, these certifi-
cates are used for the driver license (chip) to check the entitlements of a terminal
to read its sensitive information, in a similar manner than described in Sect. 3.2.
The structure of an EAP certificate is rather similar to that of an EAC certifi-
cate. Further, again ECC is used for keys and signatures for the same reason as
with EAC certificates.

Unlike EAC certificates, however, EAP certificates do not use ASCII Ref-
erences as their EAC counterparts do. This neatly avoids the References issue
discussed for EAC certificates. In order to identify the holder and the issuer of a

156 D.A. Ortiz-Yepes

given EAP certificate, public key identifiers (in the guise suggested in Sect. 2.3,
p. 4) are used. Further, EAP certificates do not restrict the hierarchy to three
tiers, which makes them more flexible than EAC certificates, thus overcoming
the Hierarchy issue alluded to when discussing EAC certificates.

On the downside, the Certificate Holder Authorization field also has infor-
mation that would need to be ignored. Besides, to the best of our knowledge,
other than sample and test implementations around ISO 18013, there are no
tools geared to generate and/or manage EAP certificate hierarchies.

A TLS Extension Using CVCs. There does not seem to be a clean, nice
way to either use EAC or EAP certificates “out-of-the-box” for the purposes of
TLS entity authentication. The former are widely supported by existing tools
that could be leveraged to create and manage them. However, they are inflexible
regarding the entity naming conventions. On the other hand, EAP certificates
do not have such naming limitations, but tools supporting them are close to non-
existent. In both cases, there are semantics in the holder authorization field that
would need to be ignored. Also, using them for TLS authentication feels like an
abuse as it is a scenario that they were not originally designed for. Consequently,
in the context of TLS entity authentication there is room for creating a TLS
extension such that:

– The client indicates support for the extension in the ClientHello message
– The server acknowledges support for the extension in the ServerHello mes-

sage
– Any Certificate message contains a certificate following the TLS CVC for-

mat. Such a format would be essentially the same as the EAP certificate for-
mat, except for the fact that the Certificate Holder Authorization is replaced
for a Object Identifier (OID) indicating that it is a certificate to be used for
generic public key remote authentication.

By simulating usage of an extension with the properties described above, we
have created Table 3a, which illustrates handshake sizes using CVCs with differ-
ent ECC key/signature sizes1. Table 3b compares the values of Tables 2a and 3a,
corresponding to the savings resulting from moving from X.509 to CVCs (both
using ECC). Table 4 compares the values of Tables 2a and 3b, corresponding to
the savings resulting from moving from X.509 (RSA) to Card Verifiable (CV)
(ECC) certificates.

The following observations can be made regarding Tables 2, 3 and 4:

– There is more improvement in Table 2c than in Table 3b because the former
changes RSA keys and signatures to ECC, while the latter just changes the
certificate format (but not the underlying cryptosystem).

1 Note that in the case of Table 2a and b, the signature of the certificate uses a key
of the size indicated in the first column of the next row. In Table 3a that is not the
case. Particularly, the key of the certificate and the one used to sign the certificate
have the same size because the whole CVC chain is expected to use the same curve.

Optimizing TLS for Low Bandwidth Environments 157

Table 3. ECC: X.509 vs. CVC.

Table 4. X.509 (RSA) vs. CVC.

– The improvements in Table 3b are flat irrespective of increasing the security
size, while they grow with the security level in Table 2c. This follows from the
fact that the gains of changing the cryptosystem grow with the security level,
whereas the gain from changing the certificate format are constant and do not
depend on the security level.

– The combined improvement shown in Table 4 is quite substantial, especially
when mutual authentication takes place and with increasing security level.

– Moving from X.509 ECC to CVC (Table 3b) brings modest improvement,
but it is not comparable to the gain when moving from X.509 RSA to CVC
(Table 4), which is much larger. This is visible in Fig. 1 by noting that the dis-
tance between dark gray and black lines is smaller than the distance between
the gray ones. Consequently, if X.509 ECC certificates are already in use, there
is little gain, and possibly a lot of necessary work to use CVCs instead.

4 Related Work

The closest related work to this paper is the TLS Pre-Shared Keys (PSK) exten-
sion [13], which allows TLS entities to authenticate each other using symmetric

158 D.A. Ortiz-Yepes

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

18.0

250 500 1000 2000 4000

E
st

im
at

ed
 H

an
d

sh
ak

e
T

ra
n

sp
o

rt
 T

im
e

(s
ec

)

Available Bandwith (bytes/sec)

X.509/RSA/1024

X.509/RSA/2048

X.509/RSA/3072

X.509/ECC/256

X.509/ECC/320

X.509/ECC/384

CVC/ECC/256

CVC/ECC/320

CVC/ECC/384

Fig. 1. Mutually authenticated handshake transport time as a function of a given band-
width (based on the third columns of Tables 2a, b and 3a): the light gray lines illustrate
using RSA X.509 certificates ; the dark gray lines using ECC X.509 certificates, and
the black lines using CVC certificates. The vertical difference between two lines of the
same dashing pattern, associated to the security level, represent the amount of time
saved during the handshake between the corresponding certificate/cryptosystem com-
bination. Absolute time savings are higher as bandwidth is decreased and the security
level is increased. In these scenarios, applying the optimizations presented in this paper
is highly advisable.

keys shared in advance instead of the traditional combination of private keys and
X.509 certificates. The PSK extension aims to avoid computationally expensive
public key operations and certificate exchanges, which result in faster hand-
shakes. If no certificates are exchanged, the total handshake size is in the order of
the base handshake size described in Sect. 2.5, p. 5, which is—not surprisingly—
lower than any entry in the last 4 columns of Tables 2a, b and 3a. As noted in
[13], PSKs are better suited for “closed environments where the connections are
mostly configured manually in advance”, and geared towards a “rather limited
set of applications, usually involving only a very small number of clients and
servers”.

There are situations where the level of authentication provided by a shared
key may be insufficient, and stronger, public key based alternatives are needed.
When clients need to be authenticated, PSK does not provide cipher suites allow-
ing public keys to be used for that purpose. Therefore, “traditional” certificate-
based TLS still has to be used. In these cases, the handshake and certificate
optimizations discussed in Sects. 2 and 3.2 remain fully applicable.

Optimizing TLS for Low Bandwidth Environments 159

Table 5. Optimizations for reducing TLS overhead. The shading of the first column
indicates the amount of overhead saved: the darker the color, the more overhead is
saved by implementing the optimization.

Secure Messaging [14] is widely used to establish secure channels between
a remote entity and a smart card. In order to establish the secure channel
(encrypted, authenticated, or both), the remote entity and the smart card must
share a set of symmetric, usually 3-DES, keys. The overhead of Secure Messag-
ing consists of a 8-byte MAC appended to each APDU, plus a few bytes used
to agree on the security parameters of the channel. Using secure messaging may
be an option, but server support for it is rare outside of the smart card world.
Further, being based on symmetric cryptography, has the same shortcomings as
discussed for PSKs.

5 Conclusions and Future Work

We have shown that there are areas where the TLS protocol overhead can be
reduced by following certain optimizations, summarized in Table 5. The “Client
side”, “Server side” and “Both sides”optimizations listed in this table are easy
to implement and bring small to moderate reductions in the TLS handshake
size. If supporting ECC is an option, the “ECC support” optimizations can
be implemented. These optimizations bring moderate to large benefits. As the

160 D.A. Ortiz-Yepes

largest amount of handshake overhead is in the certificates themselves, we found
that just by using ECC X.509 certificates the total handshake sizes can be
shrunk between 22 % and 60 % depending on the chosen security level, e.g.
reduced from 1225 bytes to 959 bytes at the lowest security level (1024 bit RSA
keys/160 bit ECC keys) and from 4201 bytes to 1683 bytes at the highest secu-
rity level (4096 bit RSA keys/288 bit ECC keys). Such a gain comes at relatively
little “cost” and is therefore strongly encouraged.

X.509 certificates have been shown to bring considerable overhead due to
their representation and encoding. Because of that, we have suggested to replace
them with compact, Card Verifiable (CV) certificates, which by design use a
more succinct representation. We have explored the feasibility of using EAC and
EAP certificates for TLS authentication, concluding that these certificates are
not interoperable with each other and carry semantics that would be undesirable
to reuse. For that reason we have proposed a complementary CVC format to be
used for generic entity authentication. Replacing X.509 ECC certificates with
CVCs would yield a further decrease between 11 % and 20 % on the handshake
size depending on the chosen security level, e.g. from 983 to 876 bytes, and from
1571 to 1208 bytes. Such a gain is modest compared with the gain obtained by
moving from RSA to ECC X.509 certificates and may not justify implementing
the extension. On the other hand, we have found the End point certificate caching
extension to be extremely useful and promising because it enables exchanging the
end point certificates a single time between the client and the server. This may
be a relatively “heavy” handshake, but subsequent handshakes will be negligible
and will take place much faster, even with limited available bandwidth. In fact,
these handshakes would combine the authentication strength of using PKIs with
the transport efficiency of using a purely symmetric PSK cipher suite.

In summary, we conclude that following most of the optimizations summa-
rized above, particularly using ECC X.509 certificates and implementing the
End point certificate caching extension, would render feasible using TLS in the
MZTIC (the initial motivating purpose of our work) without negatively impact-
ing usability. However, replacing X.509 certificates with CVCs may not be worth
the effort. Similarly, using compression is also not warranted because the mes-
sages that are sent back and forth are rather small.

We consider properly defining the End point certificate caching extension
and implementing it accordingly as the next steps derived from our research as
presented in this paper.

Acknowlegements. The author wishes to thank Michael Kuyper for the pointer to
EAP certificates; Tamas Visegrady, Erik Poll, Peter Schwabe and Reto Hermann for
providing feedback and suggestions based on draft versions of this paper.

A Transport Layer Security (TLS)

The TLS protocol suite, specified in RFC 5426 [9], aims at providing confidential-
ity and integrity between a client and a server—the end points—communicating
over an untrusted network.

Optimizing TLS for Low Bandwidth Environments 161

This appendix summarizes the most important elements of TLS for the pur-
poses of this paper. Focus will be given to the latest version (i.e. TLS v. 1.2).
We refer to [9,26] for more authoritative and detailed descriptions of TLS.

A.1 TLS Goals

End Point Authentication. The client can authenticate the server to make
sure that it is not communicating with a third party trying to impersonate the
server. This authentication takes place using an X.509 [7] public key certificate
provided by the server, which the client must validate. Once the client has vali-
dated the server certificate, it authenticates the server by requesting it to prove
possession of the associated private key. The server may request the client to
authenticate using an analogous mechanism.

The roots of trust for end point authentication are the trusted Certifica-
tion Authorities (CAs), whose certificates must be provisioned to each end
point. These trusted certificates need to be distributed or configured by some
offline means. Additional intermediate certificates in the certificate chain can
be either provisioned using the same means, or sent during the handshake
(cf. AppendixA.4).

End point authentication is not mandatory in TLS. It is possible—albeit
rare—to find anonymous TLS connections providing only confidentiality and
integrity (but not entity authentication). Usually in TLS the client authenticates
the server. The connection is said to be mutually authenticated when both client
and the server have authenticated to one another.

Data Confidentiality and Integrity. Once established, TLS protects the
integrity and confidentiality of the application data exchanged between the end
points. This is achieved by encrypting the application data exchanged using the
record protocol (cf. AppendixA.5) and adding a Hash-based Message Authen-
tication Code (HMAC), using key material derived during the handshake (cf.
AppendixA.4).

The secure tunnel that TLS provides not only guarantees integrity of the indi-
vidual messages exchanged, but also of the session, i.e. the sequence of messages.
This is an important benefit, as weaknesses in security protocols due to so-called
Man-in-the-Middle attacks where an attacker replays, reorders, or manipulates
some individual messages are not uncommon, even in security-critical protocols
used for financial transactions, e.g. see [2,4,11,31].

A.2 TLS Requirements

To use TLS a bidirectional, reliable link is required. If the link is not reliable, then
TLS can be used only on top of a protocol ensuring reliability. Additionally, the
end points must be able to perform cryptographic operations, including public
key cryptography. If they do not have resources to perform such operations, then
“traditional” TLS is not suitable2.
2 Unless the Pre-Shared Keys (PSK) extension is used, cf. Sect. 4.

162 D.A. Ortiz-Yepes

A.3 Benefits of Using TLS

Using TLS is advantageous because there are existing and well maintained imple-
mentations. In addition, these implementations and the protocol itself receive
wide scrutiny from the security community. TLS is very flexible regarding the
security levels that can be achieved. There are known attacks, e.g. [6,24], but
most of them can be avoided by fine tuning the implementations and enabling
only essential extensions. In the case of Machine-to-Machine (M2M) communi-
cation, the focus of this paper, Man In The Middle (MITM) and impersonation
attacks can be prevented by having certificate checks strictly and automatically
enforced.

A.4 TLS Handshake

Execution of the TLS handshake achieves the following three goals: the end
points (1) agree on a cipher suite, (2) calculate a master secret, and (3) may
have authenticated to each other.

A cipher suite is a combination of the following four algorithms:

Key exchange used by the end points to agree on the pre-master secret, a
shared bit string only known by the end points. There are fundamentally
three key exchange mechanisms: RSA, Diffie-Hellman (DH) and Elliptic
Curve Diffie-Hellman (ECDH)3. The pre-master secret is used in conjunc-
tion with random values generated by the end points to generate the master
secret, which is then used to derive the keys that will subsequently be used
to encrypt the application layer data and generate the HMAC to protect its
integrity.

Server authentication used by the server to authenticate to the client. The
most frequent are RSA and DSS.

Bulk encryption used to encrypt the application layer data, e.g. RC4, 3DES-
EDE, Advanced Encryption Standard (AES).

Digest used to hash the application layer data, e.g. MD5, SHA1.

A full handshake is illustrated in Fig. 2a. It is initiated by the client, who
sends the ClientHello message to the server. This message lists the cipher
suites and extensions supported by the client. It also includes a client-generated
random value.

Upon receiving the ClientHello, the server responds with a ServerHello
message. This message selects the cipher suite and a subset of the extensions
that shall be used during the rest of the session, along with a server-generated
random value and a server-assigned session identifier (Session ID). If the server
is to authenticate to the client (which is usually the case), it sends its X.509
public key certificate in a Certificate message. It may send more than one
certificate in the chain to allow the client to properly validate its certificate. The
server sends a ServerKeyExchange message to provide the client with its public
3 The last two used in conjunction with Digital Signature Standard (DSS) [22].

Optimizing TLS for Low Bandwidth Environments 163

Client Server

Client Hello

Server Hello

Certificate
Server Key Exchange

Certificate Request

Server Hello Done

Certificate
Client Key Exchange

Certificate Verify

Change Cipher Spec

Finished

Change Cipher Spec

Finished

(a) Full.

Client Server

Client Hello

Server Hello
Change Cipher Spec

Finished

Change Cipher Spec

Finished

(b) Resumed.

Fig. 2. TLS handshake.

key to be used for deriving the pre-master secret. This message is only sent when
(EC)DH is used for key exchange. The key included in the ServerKeyExchange
message is signed by the server using the private key associated to the public
key included in the server certificate that was sent to the client. If the server
requires the client to also authenticate (to the server), then it sends the Certi-
ficateRequest message. The server signals the end of its messages by sending
a ServerHelloDone message.

The client checks the messages received from the server. It makes sure that
the cipher suite and extensions are actually supported and that the server certifi-
cate is valid. If the server sent a ServerKeyExchange message, it checks that the
signature of the server’s public key is valid. If the server requested the client to
authenticate, then the client sends its X.509 certificate in a Certificate mes-
sage. The client then sends the ClientKeyExchange message. If RSA is used for

164 D.A. Ortiz-Yepes

key exchange, this client generates a random bit string (the pre-master secret)
and encrypts it using the server public key included in the server certificate. Then
it includes the result of the encryption operation in the ClientKeyExchange mes-
sage. If (EC)DH is used, it just sends its DH public key to the server using this
message. Upon receiving the ClientKeyExchange message, in the RSA case,
the server can decrypt the pre-master secret (thus implicitly proving possession
of its private key). In the (EC)DH case, the server can simply use the client
public key to derive the shared secret, which is then used as the pre-master
secret. In either case, after receiving this message, the client and the server
share the pre-master secret, which can then be used to derive the master secret,
and subsequently the shared key material that is later to be used to protect
the application layer data. If client authentication takes place, the client sends
a CertificateVerify message to the server. This message includes a signa-
ture (using the client’s private key) of all the handshake messages exchanged
so far. The client sends the ChangeCipherSpec message4 to the server, to sig-
nal that from this point forth the negotiated cipher and derived keys shall be
used. The client notifies the server that it has finished the handshake by sending
the Finished message. This is the first message to be actually encrypted and
includes a Message Authentication Code (MAC) of all handshake messages up to
and including the ChangeCipherSpec.

To terminate the handshake, the server sends the ChangeCipherSpec fol-
lowed by the Finished message to the client. These messages have the converse
semantics as the ones received from the client.

Once the server initiated Finished message is received by the client (and its
MAC has been validated), the end points can start exchanging application data
using the record protocol, as described in AppendixA.5.

Resumed Handshake and Rehandshake. A full handshake (as described so
far) marks the beginning of a new session. A session may span several connec-
tions between the client and the server. For example, when accessing a web site
using HTTP on top of TLS (HTTPS), each object is fetched using a different
connection, but most of these connections belong to the same session.

When a new connection is established, the client may indicate to the server
its willingness to reuse an existing session by including the Session ID field in
the ClientHello message. If the server accepts, it echoes the same Session ID
in the ServerHello message. In this case a resumed handshake as illustrated in
Fig. 2b takes place.

The resumed handshake reuses the master secret that has been previously
calculated, but uses the new random values exchanged in the *Hello messages
to calculate new session keys. Clearly, the resumed handshake is much more
efficient than the full handshake because neither certificates are exchanged nor
public key operations are performed.

4 Strictly speaking, the ChangeCipherSpec is not a message but a protocol. However,
for the purposes of this description, it can be seen a message sent during the hand-
shake.

Optimizing TLS for Low Bandwidth Environments 165

When the client wants to negotiate a new cipher suite or refresh the session
keys, it can request a rehandshake by simply sending a ClientHello to the
server. Conversely, if the server decides to initiate the rehandshake, it may do
so by sending a HelloRequest message to the client. Whether the subsequent
handshake is full or resumed depends on the Session ID being present in the
*Hello messages.

A.5 TLS Record Protocol

Application layer data is split into fragments by the TLS record protocol. Each
of these fragments is appended with an HMAC, which is used to protect the
integrity of the fragment and the stream. The fragment payload and the HMAC
are then encrypted in order to ensure confidentiality (cf. AppendixA.1). A record
is then built by prepending a header (record type = application data, protocol
version, length) to the encrypted fragment. Once assembled, the record is han-
dled to the lower (transport) layer for delivery to the receiving end point.

A.6 TLS Alert Protocol

Whenever an anomaly is detected by one of the end points, the alert protocol is
used to signal it to the other one. The alert protocol builds on the record layer
and includes a level (warning or fatal) and an alert code. If the level is fatal, the
connection must be terminated.

References

1. Apache: Apache Module mod ssl, January 2014. http://httpd.apache.org/docs/2.
2/mod/mod ssl.html

2. Barisani, A., Bianco, D., Laurie, A., Franken, Z.: Chip & PIN is definitely bro-
ken. In: Presentation at CanSecWest Applied Security Conference, Vancouver 2011
(2011). Slides available at http://dev.inversepath.com/download/emv/emv 2011.
pdf

3. Blake-Wilson, S., Bolyard, N., Gupta, V., Hawk, C., Moeller, B.: Elliptic Curve
Cryptography (ECC) Cipher Suites for Transport Layer Security (TLS). RFC 4492
(Informational), May 2006. http://www.ietf.org/RFC/RFC4492.txt, updated by
RFCs 5246, 7027

4. Blom, A., de Koning Gans, G., Poll, E., de Ruiter, J., Verdult, R.: Designed to
fail: a USB-connected reader for online banking. In: Jøsang, A., Carlsson, B. (eds.)
NordSec 2012. LNCS, vol. 7617, pp. 1–16. Springer, Heidelberg (2012)

5. Bundesamt für Sicherheit in der Informationstechnik : Schutzprofil für die Kom-
munikationseinheit eines intelligenten Messsystems für Stoff- und Energiemengen,
March 2013

6. Codenomicon: The Heartbleed Bug, April 2014. http://heartbleed.com/
7. Cooper, D., Santesson, S., Farrell, S., Boeyen, S., Housley, R., Polk, W.: Internet

X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL)
Profile. RFC 5280 (Proposed Standard), May 2008. http://www.ietf.org/RFC/
RFC5280.txt, updated by RFC 6818

http://httpd.apache.org/docs/2.2/mod/mod_ssl.html
http://httpd.apache.org/docs/2.2/mod/mod_ssl.html
http://dev.inversepath.com/download/emv/emv_2011.pdf
http://dev.inversepath.com/download/emv/emv_2011.pdf
http://www.ietf.org/RFC/RFC4492.txt
http://heartbleed.com/
http://www.ietf.org/RFC/RFC5280.txt
http://www.ietf.org/RFC/RFC5280.txt

166 D.A. Ortiz-Yepes

8. Deutsch, P.: DEFLATE Compressed Data Format Specification version 1.3. RFC
1951 (Informational), May 1996. http://www.ietf.org/RFC/RFC1951.txt

9. Dierks, T., Rescorla, E.: The Transport Layer Security (TLS) Protocol Version
1.2. RFC 5246 (Proposed Standard), August 2008. http://www.ietf.org/RFC/
RFC5246.txt, updated by RFCs 5746, 5878, 6176

10. Digital Security group Radboud University Nijmegen, et al.: JMRTD: An Open
Source Java Implementation of Machine Readable Travel Documents, January
2014. http://jmrtd.org/index.shtml

11. Drimer, S., Murdoch, S.J., Anderson, R.: Optimised to fail: card readers for online
banking. In: Dingledine, R., Golle, P. (eds.) FC 2009. LNCS, vol. 5628, pp. 184–200.
Springer, Heidelberg (2009)

12. Entrust: Consolidated Certificate Issuance and Management, January 2014. http://
www.entrust.com/solutions/certificate-management/

13. Eronen, P., Tschofenig, H.: Pre-Shared Key Ciphersuites for Transport Layer Secu-
rity (TLS). RFC 4279 (Proposed Standard), December 2005. http://www.ietf.org/
RFC/RFC4279.txt

14. GlobalPlatform: Card Specification, January 2001
15. Gutmann, P.: X.509 Style Guide (2000). https://www.cs.auckland.ac.nz/

∼pgut001/pubs/x509guide.txt
16. Hankerson, D., Menezes, A.J., Vanstone, S.: Guide to Elliptic Curve Cryptography.

Springer, Heidelberg (2004)
17. Hollenbeck, S.: Transport Layer Security Protocol Compression Methods. RFC

3749 (Proposed Standard), May 2004. http://www.ietf.org/RFC/RFC3749.txt
18. Advanced Security Mechanisms for Machine Readable Travel Documents-Part 3,

Technical report, Bundesamt für Sicherheit in der Informationstechnik: Advanced
Security Mechanisms for Machine Readable Travel Documents - Part 3 July 2013

19. ISO/IEC: ISO 7816-8. Identification cards Integrated circuit cards Part 8: Com-
mands for security operations (2004)

20. ISO/IEC: ISO/IEC 9594-1:2005, Information technology - Open Systems Intercon-
nection - The Directory: overview of concepts, models and services (2005)

21. ISO/IEC: ISO 18013-3. Information technology Personal identification ISO-
compliant driving licence. Part 3: Access Control, authentication and integrity
validation (2009)

22. National Institute of Standards and Technology: FIPS PUB 186-4 – Digital Signa-
ture Standard (DSS), July 2013

23. Ortiz-Yepes, D., Hermann, R., Steinauer, H., Buhler, P.: Bringing strong authen-
tication and transaction security to the realm of mobile devices. IBM J. Res. Dev.
Cybersecurity Smarter Planet 58(1), 4:1–4:11 (2014)

24. Polk, T., McKay, T., Chokhani, S.: NIST Special Publication 800-52 - Guidelines
for the Selection, Configuration, and Use of Transport Layer Security (TLS) Imple-
mentations, April 2014

25. PrimeKey: EJBCA - Open Source PKI Certificate Authority, January 2014. http://
www.ejbca.org/

26. Rescorla, E.: SSL and TLS: Designing and Building Secure Systems. Addison-
Wesley, Reading (2000)

27. Rizzo, J., Duong, T.: The CRIME attack. In: Ekoparty (2012)
28. Salowey, J., Zhou, H., Eronen, P., Tschofenig, H.: Transport Layer Security (TLS)

Session Resumption without Server-Side State. RFC 5077 (Proposed Standard),
January 2008. http://www.ietf.org/RFC/RFC5077.txt

http://www.ietf.org/RFC/RFC1951.txt
http://www.ietf.org/RFC/RFC5246.txt
http://www.ietf.org/RFC/RFC5246.txt
http://jmrtd.org/index.shtml
http://www.entrust.com/solutions/certificate-management/
http://www.entrust.com/solutions/certificate-management/
http://www.ietf.org/RFC/RFC4279.txt
http://www.ietf.org/RFC/RFC4279.txt
https://www.cs.auckland.ac.nz/~pgut001/pubs/x509guide.txt
https://www.cs.auckland.ac.nz/~pgut001/pubs/x509guide.txt
http://www.ietf.org/RFC/RFC3749.txt
http://www.ejbca.org/
http://www.ejbca.org/
http://www.ietf.org/RFC/RFC5077.txt

Optimizing TLS for Low Bandwidth Environments 167

29. Santesson, S., Myers, M., Ankney, R., Malpani, A., Galperin, S., Adams, C.: X.509
Internet Public Key Infrastructure Online Certificate Status Protocol - OCSP. RFC
6960 (Proposed Standard), June 2013. http://www.ietf.org/RFC/RFC6960.txt

30. Scheier, B.: The Internet of Things Is Wildly Insecure And Often
Unpatchable. Wired (2014). http://www.wired.com/opinion/2014/01/
theres-no-good-way-to-patch-the-internet-of-things-and-thats-a-huge-problem/

31. Szikora, J.P., Teuwen, P.: Banques en ligne: à la découverte d’EMV-CAP. MISC
(Multi-System & Internet Security Cookbook) 56, 50–62 (2011)

32. Weigold, T., Kramp, T., Hermann, R., Höring, F., Buhler, P., Baentsch, M.: The
Zurich Trusted information channel – an efficient defence against man-in-the-
middle and malicious software attacks. In: Lipp, P., Sadeghi, A.-R., Koch, K.-M.
(eds.) Trust 2008. LNCS, vol. 4968, pp. 75–91. Springer, Heidelberg (2008)

33. Zoller, T.: TLS/SSL hardening and compatibility report 2011 (2011)

http://www.ietf.org/RFC/RFC6960.txt
http://www.wired.com/opinion/2014/01/theres-no-good-way-to-patch-the-internet-of-things-and-thats-a-huge-problem/
http://www.wired.com/opinion/2014/01/theres-no-good-way-to-patch-the-internet-of-things-and-thats-a-huge-problem/

Automating MAC Spoofer Evidence Gathering
and Encoding for Investigations

Serguei A. Mokhov1,3,4(B), Michael J. Assels4, Joey Paquet1,4,
and Mourad Debbabi2,3,4

1 Computer Science and Software Engineering, Concordia University,
Montreal, QC, Canada

2 Concordia Institute for Information Systems Engineering, Montreal, QC, Canada
3 NCFTA Canada, Montreal, QC, Canada

4 Faculty of Engineering and Computer Science Concordia University,
Montreal, QC, Canada

{mokhov,mjassels,paquet,debbabi}@encs.concordia.ca

Abstract. Following up on the previous work, we elaborate on the
details of the design and implementation of the live and dead digital
evidence gathering and its encoding into Forensic Lucid by the cor-
responding MAC Spoofer Analyzer ’s (MSA’s) components in an actual
operational environment. We monitor over a 1000 analyst-managed com-
puters on the Faculty’s network to help network system administrators in
daily network security monitoring. The common Forensic Lucid evi-
dence encoding format represents a consistent evidence representation
and allows specification of reasoning functions over the evidence in a
context-oriented manner.

Keywords: MAC spoofing · Forensic Lucid · Digital evidence

1 Introduction

We have laid out the introductory and background setting of this work in a recent
short paper [11]. Here we add extra detail to that discussion reducing some of
the background repetition, while keeping it reasonably stand-alone. The readers
wishing to get more details on the related work, please refer to that short piece.

It is simple to spoof a MAC address by changing the network card settings
in most operating systems, via a bridged virtual machine, or most house-grade
routers that allow setting an arbitrary MAC address for a variety of legitimate
needs [10,11]. On the analyst-managed subnets on campus, however, a MAC
spoofer presents a significant security concern if a MAC address of a MAC-
based port security setting of a security-hardened desktop in a managed lab
or office gets spoofed by a visiting laptop (where the user is in full control).
Among other things, it may potentially gain unauthorized access to restricted
services/resources and/or increase the Faculty’s liability if, for example, the lap-
top is infested with malware [10,11].

c© Springer International Publishing Switzerland 2015
F. Cuppens et al. (Eds.): FPS 2014, LNCS 8930, pp. 168–183, 2015.
DOI: 10.1007/978-3-319-17040-4 11

Automating MAC Spoofer Evidence Gathering and Encoding 169

Our existing MAC Spoofer Watcher tool (msw) detects many of such possi-
bilities and alerts the network group’s security Request Tracker (RT) [19] queue
together with cellphone notifications after a series of probes and checks [10,11].
It spends good effort in filtering out the common false positives identified com-
monly through several iterations of the deployed tool in daily network opera-
tions [11]. However, more often than not, a false positive report is generated.
Analysts had to manually and sequentially double-check for true or a false pos-
itive right after the alert is generated (to the RT ticket as well as cellphones at
any time of the day or night). A large volume of such events is overwhelming to
the limited human resources dealing with such events while attending to many
other duties [10,11].

The msw’s processing is triggered by switch port events registered in the
switchlog that msw observes, such as when LINK-UP events occur at Layer 2 of
the OSI model [8]. If all of its preliminary false-positiveness tests incrementally
fail, msw generates the RT email alert at the time [10,11]. This alert triggers a
follow-up investigation by the MSA tool presented in this paper to automate the
process and establish the likelihood of a genuine spoofer or a false positive with
high confidence to assist the network security crew in their daily operations by
supplying the evidential results back to the same RT ticket [10,11].

This follow-up includes two types of digital forensics: live and “dead” (pas-
sive) [5,9,14], simultaneously [10]. The process re-examines the evidence used
by msw as well as performing additional live probes as explained further [10,11].
The live forensics includes re-examining the switch port status, ARP [15] cache,
ping, and finger replies, etc. In parallel, we also examine the past logs on the
switch port link activity, user activity syslog, DHCP logs, netflows surrounding
the time of the incident. These tools, daemons, and their logs act as witnesses
and their witness accounts of the relevant events are a part of the evidential
statement in our case [10,11]. All evidence is gathered in the common format of
Forensic Lucid, and is fed to the eduction-based analysis engine (in our case
based on GIPSY presented in [10]).

There is a possibility that more than one alert is generated for the same
host in a short period of time—currently that means all such offences will be
processed concurrently with the gradually growing body of evidence with each
subsequent incident. That means the current and the recent past evidence will
have a disadvantage of multiple processing of logically the same case. The later
runs, however, gather all the previous and the new evidence, thereby increasing
the confidence in the subsequent analyses [10,11] that we can live with. Likewise,
there is no synchronization between the multiple concurrently running investi-
gations working independently on the same logical case; however, the “phase
2” design calls to leverage GIPSY’s implementation of the eductive computation
model [10], where the already-computed event reconstruction results at the same
forensic contexts [10] are cached in the Demand Store Tier DST [10] speeding up
later runs and avoiding duplicate work. This implies, a GIPSY instance should
be running on a standby waiting to process such things, whereas currently we
spawn a GIPSY instance each run [10,11].

170 S.A. Mokhov et al.

2 Methodology

2.1 MAC Spoofer RT Alert

At the arrival of the MAC spoofer report we construct a primary claim “there
is a MAC spoofer” with some initial facts and evidence from the ticket [10,11].
In the long run, we want to automatically verify its true- or false-positiveness to
some degree of certainty by gathering all the supporting evidence from various
sources (e.g., switchlog, activity log, argus/netflow data, etc.) in one common
format of Forensic Lucid and reason about it. Subsequently, we send a follow-
up report results to the ticket [10,11]. In case of a likely true positive, other
things are to be possibly automatically verified/established, such as who is the
likely perpetrator and their malignity, whether privileged resources access was
attempted, etc [10,11].

2.2 Report Analysis by Human Experts

An investigator, usually a network administrator, manually examining the evi-
dence and doing an investigation usually goes sequentially through some of the
steps occasionally taking shortcuts by omitting some of the steps if something is
obvious or performing them to increase confidence in the analysis results [10,11]:

1. Check the switch port is still up [10,11]
2. Check the host responds to telnet with memory and hardware commands

(the custom commands are designed to return expected values) [10,11]
3. Check switchlog for LINK-UP events regarding the switch port in ques-

tion [10,11]
4. Delete ARP entry for the host from the ARP cache with arp (for further

checks) [10,11]
5. Check the host responds to ping, finger (both should respond as expected,

else the firewall configuration is non-standard) [10,11]
(a) If ping answers, check the TTL values for likely Linux (64) or Windows

(128) hosts, or someone plugged in a router (63 or 127, i.e., decremented
by 1 at each hop) [3,10,11,18]

(b) No answer to ping nor ARP cache entry re-appears, likely machine no
longer up due to a quick reboot or ghosting; often leading to a false-
positive [11]

(c) No answer to ping, but ARP query returns successfully. A good indicator
of a likelihood of a real MAC spoofer (the machine acquired an IP, is up,
but does not reply as it should) [10,11]

6. Check the host responds to nbtscan for Windows hosts (should return one
of the known strings) [10,11]

7. Attempt to ssh to the host (should accept certain logins and respond appro-
priately) [10,11]

8. Check activity log for boot and login events for the host [10,11]
9. Optionally check for swpvios for this port in the recent past [10,11]

10. Check argus/netflow logs for connections made from the host after the
spoofer report for potential illicit network activity [10,11]

Automating MAC Spoofer Evidence Gathering and Encoding 171

2.3 Automated Algorithm

We automated and enhanced the manual process presented in the preceding
section with a parallel algorithm for MSA that does extra verification, evidence
gathering, and subsequent reporting, all in near-realtime [10,11].

The algorithm for the automated solution is in Algorithm 1 [10,11]. In the
general case, it consists of both live- (probing and checking the active MAC-
spoofer-accused on the network) and dead-forensics (examining some of the logs
after the fact) techniques simultaneously [10,11]. It should be noted while the
algorithm is depicted in the traditional sequential manner, many of steps related
to both live and dead forensics data gathering are designed to be done concur-
rently, which will commonly yield a performance improvement compared to the
human expert doing the same [10,11].

Additional evidence is gathered with an nmap scan to fingerprint the OS
and ports [11]. Then, gather the DHCP requests made to see if the offending
laptop by default (suddenly) queries DHCP for the IP while not too long ago the
legitimate host did its own DHCP requests (with known intervals or, if rebooted
frequently, with the additional log entries “booted successfully in OS”) [10,11].
This will not work if the laptop has been intentionally configured with static IP,
but could provide additional confidence, if the DHCP was used (which is the
default in many cases) [10,11]. An additional query to nbtscan for additional
evidence, à la msw is also made [10,11].

2.4 Use and Misuse Cases

The UML Use Case diagram in Fig. 1 depicts most common use and misuse cases
of the ENCS network in the context of MAC spoofer investigations. Misuse cases
are in gray. Following Alexander’s notion of Misuse Cases for requirements spec-
ification ([1]) to visualize the threat and mitigation scenarios as well as the
primary and supporting actors involved. A lot of investigative work is shared
between the network administrator and the MAC Spoofer Analyzer (MSA),
where the latter automatically gathers all the evidence in one place, encodes,
invokes the analysis computation via GIPSY and then generates two reports:
the summarized evidence and designed upcoming automated reasoning report.
The MAC spoofer misuse cases illustrate the typical actions a person with a UM
laptop would do to spoof a MAC address. While presently MSA is not downing
the switch port, the design includes this use case to be complete; this action
depends on the result of the analysis and confidence in it. In Sect. 2.6 is the
description of the corresponding sequence diagram (Fig. 3).

2.5 False Positives

The typical false positive (we have about 2–3 per week excluding semester-bound
re-imaging season) spoofer detections include [11]:

1. Unusually slow booting (and often patching right afterward and rebooting of)
Windows hosts.

172 S.A. Mokhov et al.

begin
Trigger start by an RT alert of a possible MAC spoofer via the procmail handler;
// In the below live and dead evidence gathering in the begin-end blocks is done in

parallel processes.
// Each check/evidence collector as a product, encodes its output in Forensic

Lucid as an observation sequence. All such sequences are combined into an
evidential statement for further analysis.

// Live network MAC spoofer evidence gathering
begin

Check the switch port status;
// SL6 and Windows 7 only should be there
Check host OS and ports open with nmap;
Check how the host responds to telnet with memory and hardware commands;
// Should respond as expected, else the firewall configuration is non-standard
Delete ARP entry for the host from the ARP cache with arp;
Check how the host responds to ping, finger;
begin

if ping answers then
Check the TTL values for likely Linux (64) or Windows (128) hosts, or
someone plugged in a router (63 or 127);

end
else

No answer to ping nor ARP cache entry re-appears, likely machine no
longer up due to a quick reboot or ghosting; often leading to a
false-positive;

end
// May increase confidence in false-positiveness
begin

Reaffirm possible boot and patching in the activity log;
end
No answer to ping, but ARP query returns successfully. A good indicator of a
likelihood of a real MAC spoofer (the machine acquired an IP, is up, but does
not reply as it should);

end
Check how the host responds to nbtscan;
// Should be allowed internally
Attempt to ssh to the host;

end
// "Dead" network MAC spoofer evidence gathering
begin

Check switchlog for
LINK-UP events regarding the switch port in question;
Check activity log for boot and login events for the host;
Optionally check for swpvios [2] for this port in the recent past;
Check argus/netflow logs for connections made from the host after the spoofer
report for potential illicit network activity;
Check the DHCP requests for the host;

end
// Analysis
begin

Gather evidence from all the checks and encode it in Forensic Lucid;
Invoke analysis engine;

end
Generate a report;

end

Algorithm 1. MAC spoofer checking algorithm [11].

2. Older outdated images of OS’s that were rarely booted to and unpatched/not
re-imaged for a long time [11].

3. Accidental user-managed (UM) host (with the UM image) on a trusted virtual
LAN (VLAN) [2,7] (either mistaken OS image/IP address or switch port
configuration settings) [11].

Automating MAC Spoofer Evidence Gathering and Encoding 173

Fig. 1. Use and Misuse Cases in MAC spoofer investigations

4. Host in the middle of ghosting or in the ghosting console without a recognized
NetBIOS string on a trusted VLAN [11].

5. Exceptional printers on the trusted VLAN [11].
6. Malfunctioning host (hard drive or memory going bad) [11].

While not all can be handled in an automated manner easily, the proposed
MSA tool is designed to be able to identify cases 1, 2, and 6 in its follow-up
investigation [11].

2.6 Components

The MSA system’s design consists of the following components/modules acting
together in unison (sequentially or in parallel) [11]:

1. Procmail [4] handler
2. RT ticket email to Forensic Lucid encoder
3. Live and log data collector/Forensic Lucid encoder (activity, switchlog,

argus [16], DHCP, and others)

174 S.A. Mokhov et al.

:0c:mac-spoofer-analyzer.lock

* ^Subject: .*Possible MAC spoofer

* ^From: .*(nobody|root(\+[a-z\d-]+)?|nag(db)?)@

| $HOME/bin/mac-spoofer-alert-handler | ...

Fig. 2. Procmail handler trigger recipe (rule)

4. (under design consideration) Network database query component for previ-
ously known information on the hosts, locations, switch ports, and MAC
addresses

5. Forensic Lucid processor (GIPSY) invocator
6. Output/conclusion report generator

Procmail Handler. This component consists of two parts: the .procmailrc
recipe for procmail [4] (see Fig. 2) looking for Possible MAC spoofer and From:
matching a regular expression .*(nobody|root(+[a-z-.]+)?|nag(db)?)@ [17]
and handing over a copy of that RT ticket email to the handler (the variable $HOME
is appropriately set to the installation directory); and the handler is a script that
(1) parses the Subject: header for RT ticket number, host, switch and port num-
ber, (2) checks in its internal storage if this ticket has already been handled to avoid
duplicate or useless handling of replies or comments to the ticket by people in case
the From: didn’t filter enough in (1), (3) if this is a new spoofer report claim, save
the RT email into a .rt file, which is a text file with the name of the RT ticket
number containing the RT email, e.g., 123456.rt, (4) ssh to primary compute
and control host and start the Collector/Encoder component there.

Collector/Encoder. The collector/encoder script consists of multiple mod-
ules and subcomponents that collect information from various data sources
(mostly logs or probes on different hosts) and convert them into an eviden-
tial statement es context format encoded in Forensic Lucid [11]. The script,
mac-spoofer-evidence-collector is a multiprocess Perl application that
calls upon various modules (listed below) to gather the corresponding evidence
available [11].

There are three primary API methods that the main collector/encoder dynam-
ically discovers and calls for each of the following modules are collect(),
encode(), and getType() [11]. The collect() method implements a specific
data gathering mechanism (from a log file on some host or a direct live probe
around the initial contextual point of interest in meta-Lucid terms as initial
filtering criteria), and stores the gathered data (RT-number.collector-type) [11].
The encode() methods selectively encode the collected data into Forensic
Lucid with some preprocessing and filtering following the Occam’s razor princi-
ples and normalization (for easier co-relation of timestamps and other data items
of the same type, such as MAC addresses). Something that is not encoded or
not recognized by the encoder for a particular data log, is still preserved either
as a simple observation in an observation sequence or in a comment section

Automating MAC Spoofer Evidence Gathering and Encoding 175

of the corresponding Forensic Lucid fragment, such that a human investiga-
tor can review and fine-tune it later [11]. The getType() is simply a way for
the main collector/encoder to tell apart which module was called to use as an
extension [11]. All encoded files have an additional extension of .ctx, that is
context files (that have observation sequences of interest). The main script then
check-sums all the collected and encoded data with sha1sum [11].

1. RTForensicLucidEncoder is the module that is the very first to be invoked
to parse and encode the initial RT ticket into a claim [11]. In particular, it
extracts the date, hostname, IP, switch, and port context point data that
are used for subsequent lookups in the related logs, live data, and database
entries that follow to gather all relevant contextual evidence surrounding the
initial RT report [11]. The other concrete collector/encoder modules search
for data temporally near this context point [11].

2. SwitchLogForensicLucidEncoder uses the date, switch, and port informa-
tion to look for related events in the switchlog and encode the events of
interest such as link state changes, swpvios, etc. [11]

3. ActivityLogForensicLucidEncoder uses the date and host information to
look for host bootups, shutdowns, patching, and user logins/logouts [11].

4. MSWForensicLucidEncoder encodes log entries produced by msw. The older
msw did not produce non-STDERR log file entries, only errors and email
notifications. To be able to replay some of the data (that are normally real-
time) from the past, we need an event trace/decision log. This is especially
relevant for development and testing on past cases while no actual spoofing
is going on [11]. Thus as a part of this work, msw was itself augmented to
add extra logging functionality, and, while at it, making it in a more Foren-
sic Lucid-friendly manner to simplify extraction by logging sub-expressions
directly in the Forensic Lucid context format [11]. This approach compen-
sates somewhat for the fact that real-time data for nbtscan and other probes
and the like are not available in the offline playback. Furthermore, those data
serve as additional evidential observations to improve the confidence in the
subsequent analysis [11].

5. DHCPLogForensicLucidEncoder uses the date and host information to look
for the host’s DHCP requests and the corresponding DHCP protocol
exchange messages [11].

6. ARPPingForensicLucidEncoder uses arp and ping to gather the live host
presence evidence, which is especially useful in the presence of a firewall on
the spoofing host [11].

7. NmapForensicLucidEncoder uses nmap to gather the live OS and open ports
evidence [11].

8. FingerForensicLucidEncoder uses finger to gather the live OS and login
evidence [11].

9. SSHForensicLucidEncoder uses ssh to gather the live “genuineness” test
evidence [11].

10. ArgusForensicLucidEncoder uses Argus commands to gather netflow sum-
maries, etc., as evidence of network activity prior the report arrival time tar,

176 S.A. Mokhov et al.

such as at least tar − tlinkup primarily because a number of probes are done
between the LINK-UP event [6,7,12,13] and the ticket arrival time to weed
out the majority of false positives [11].

11. NbtscanForensicLucidEncoder uses nbtscan to gather the live NetBIOS
evidence (for Windows hosts) for work groups and the MAC address [11].

12. SWMForensicLucidEncoder uses the switch management swm [2] to check
the live current port status at the time of the check if it is up [11].

13. EncodingUtils module was developed as a helper module for many of the
above to uniformly encode data such as timestamps, MAC addresses, and
hostnames, which sometimes vary in their lexical representation in different
logs or probes. It, therefore, has timestampformat(), macformat(), and
hostnameformat() methods [11]. For example, timestams formatted sim-
ilar to "Jul 7 15:10:18", "2013-07-07 13:10:55497751", "2013-07-07
16:24 EDT", or "201307020450", become "Tue Jul 9 08:56:56 2013" in
the human-readable form for reporting and as a long epoch integer inter-
nally [11]. Likewise, MAC addresses have different legal lexical representa-
tions used by different vendors, like 00bb335588ff in raw, 0:bb:33:55:88:ff
in Argus (stripping leading zeroes), 00-BB-33--55-88-FF by Microsoft, or
00bb.3355.88ff by Cisco are folded into the DCHP ethers format, such as
00:bb:33:55:88:ff. Hosts are simply formatted into fully-qualified domain
names (FQDNs) [11].

Encoding the RT Ticket Claim. The RT ticket claim’s evidence is primarily the
following:

– Ticket arrival timestamp t ar, e.g., Wed, 1 Aug 2012 07:07:07 -0400, is a
contextual point in time from which to move forward and backward to extract
relevant events in other evidential sources [11].

– ipaddr – possible spoofer’s IP address; filter for logs that use IP addresses
only. This works well if the spoofer uses the same IP address as the legitimate
host, via DHCP or statically [11]. This partially breaks if the spoofer changes
an IP address to be of another host on the same subnet after checking, which
IPs are unused. (Such behavior is a sign of extreme deliberation and possibly
malice of someone who knows what they are doing as opposed to “scriptkiddie”
tools for “mere Internet access” with a laptop.) This case can still be caught
via the other evidential sources and logs that do not use IPs, and primarily
host/switch/port based checks [11]. The extra arp checks for the investigation
if the MAC address in DHCP matches the expected IP address talking on the
port or not, will confidently tell if the spoofer is genuine [11].

– hostname–possible spoofer’s DNS name; filter for logs that use hostnames [11].
– switch–uplink switch DNS name where the host is/was connected to [11].
– port–uplink port on the switch where the host is/was connected to [11].
– mac–the MAC address being spoofed; for lookups in DHCP, switch, database,

and other sources that have it [11].

The so-called secondary context, encoded hierarchically (primarily for report-
ing to humans and possibly other uses) includes a room number, jack number

Automating MAC Spoofer Evidence Gathering and Encoding 177

on the wall, and (possibly in the future) hardware/memory/OS information
extracted [11]. The primary context point is used to construct the two-claim
solution [11] and gather the evidence from the log files surrounding that context
filtered by t ar ± 24 hrs, ipaddr, hostname, switch, port, and mac further.
The RT two-claim is made indirectly by msw, as a “prosecution witness” [11].

Encoding Log and Probe Evidence. Collection of other pertinent evidence
depends on the context of the initial report described in the preceding section.
The modules described earlier collect both live and dead evidence from probes
and logs. Not everything possible is collected to avoid unnecessary complexity in
encoding and evaluation, so only information is kept that is likely to be helpful
in the decision making. The data selection is made by the typical criteria a
human expert selects the data for the same task. Following the examples pre-
sented in [10], we illustrate some of the examples of the encoded evidence in
Forensic Lucid for the modules mentioned. Context calculus operators [10]
help with additional filtering of deemed unnecessary data during computation.

In Listing 1.1 is the msw evidence encoding example. In Listing 1.2 is the
empty (no-observation) activity log example. In the regular cases, activity log
features operating system booted and users logged on. perp o in the presence
of users can be set to the most likely perpetrator in a follow-up investigation.
finger and ssh live evidence supplements the activity log evidence with similar
information on expected banners and possible users, if available. No-observations
are recorded similarly.

// ...
// msw evidence , encoded: Jul 22 09:17:31 2013
observation sequence msw_os =
{

msw_encsldpd_o_1 ,
msw_ghost_o_2 ,
msw_arp_o_3

};

observation msw_encsldpd_o_1 = ([switch:"switch1",port:"FastEthernet0 /1",
ipaddr:"123.45.44.252",hostname:"flucid -44. private.local",encsldpd:
false], 1, 0, 1.0, "Jul 13 14:33:37 2013");

observation msw_ghost_o_2 = ([switch:"switch1",port:"FastEthernet0 /1",
ipaddr:"123.45.44.252",hostname:"flucid -44. private.local",ghost:false],
1, 0, 1.0, "Jul 13 14:33:38 2013");

observation msw_arp_o_3 = ([switch:"switch1",port:"FastEthernet0 /1",ipaddr:
"123.45.44.252",hostname:"flucid -44. private.local",arp:true], 1, 0,
1.0, "Jul 13 14:33:39 2013");

// end of msw evidence
// ...

Listing 1.1. msw encoded evidence example

Live probes by nmap (and similarly complementary by nbtscan) give a list
of open ports and other aspects that are compared to the minimum expected
ports and other values. In Listing 1.4 is an example of captured and encoded
nmap evidence. The samples of ignored lines are in the comment section; they
play no role in evaluation but recorded anyway in case the investigator wants to
include some of that data later on.

178 S.A. Mokhov et al.

// ...
// activity log evidence , encoded: Jul 22 09:17:25 2013
observation perp_o = $;
observation sequence activity_os =
{

activity_o_1
};

observation activity_o_1 = $;
// end of activity log evidence
// ...

Listing 1.2. activity encoded no-observation evidence example

In Listing 1.3 is an example of the evidence encoded from the DHCP logs to
supplement the investigation and provide visibility into the situation.

Collection/Encoding Summary. All the encoded evidence, e.g., for the ticket
RT12345 is saved into the appropriate files: 12345.rt.ctx,12345.switchlog.ctx,
12345.activity.ctx, 12345.nmap.ctx, and others plus the incident modeling
transition functions ψ (forward tracing) and Ψ−1 (optimized backtracing, see [10]
for their description and definition) in the file mac-spoofer-transition.ipl for
the case into the case file 12345.spoofer.ipl for the primary claim “there is
a spoofer” and 12345.notspoofer.ipl as “defence” claim that “this is a false
positive” for parallel evaluation.

In case of reasonable true-positiveness, the design calls for subclaims to be
created and evaluated as well: 12345.perp.ipl, 12345.nfs.ipl to determine
who (attribution) and how malicious they are based on the previously extracted
evidence (e.g., via activity and Argus logs).

At the end of its operation, Collector/Encoder (after checksumming every-
thing) passes all the collected and encoded data to the Forensic Lucid proces-
sor (see the following section) to do the actual reasoning and event reconstruction
computations. A GIPSY instance is spawned per claim to be evaluated.

Forensic Lucid Processor. The Forensic Lucid Processor presently
includes the mac-spoofer-flucid-processor script feeding the encoded evi-
dence to GIPSY [10] that has a Forensic Lucid parser and a distributed
run-time system, implemented in Java. This component is designed to do the
heavy weight computation, model-checking, and event reconstruction. The Col-
lector/Encoder then gathers its report for analysis and notifies the analysts. The
MSA design includes a provision to act on the results of analysis if the confidence
is high by, e.g., shutting down the switch port or quarantining the IP address.
Presently this aspect is under development.

Output/Conclusion Generator. In MSA, this corresponds to the mac-
spoofer-reporter to report the findings to system administrators. Presently, 1
is already in production; 2 reports in the development environment.

– Decision tree, findings, conclusions; mail with the proper RT subject (under
active development).

Automating MAC Spoofer Evidence Gathering and Encoding 179

// ...
// DHCP evidence , encoded: Jul 14 21:08:13 2013
observation sequence dhcpd_os =
{

dhcp_log_o_1 ,
dhcp_log_o_2 ,
dhcp_log_o_3 ,
dhcp_log_o_4 ,
dhcp_log_o_5

};

observation dhcp_log_o_1 = ([dhcpmsg:"DHCPOFFER", direction1:"on", ipaddr:"
xxx.xxx.xx.xx", direction2:"to", mac:"xx:xx:xx:xx:xx:xx", via:"xxx.xxx.
xx.x"], 1, 0, 1.0, "Jul 14 11:58:03 2013");

observation dhcp_log_o_2 = ([dhcpmsg:"DHCPREQUEST", direction1:"for",
ipaddr:"xxx.xxx.xx.xx", dhcpd:"xxx.xxx.xx.xxx", direction2:"from", mac:
"xx:xx:xx:xx:xx:xx", via:"xxx.xxx.xx.x"], 1, 0, 1.0, "Jul 14 11:58:03
2013’’);

observation dhcp_log_o_3 = ([dhcpmsg:"DHCPACK", direction1:"on", ipaddr:"
xxx.xxx.xx.xx", direction2:"to", mac:"xx:xx:xx:xx:xx:xx", via:"xxx.xxx.
xx.x"], 1, 0, 1.0, "Jul 14 11:58:03 2013");

observation dhcp_log_o_4 = ([dhcpmsg:"DHCPINFORM", direction1:"from",
ipaddr:"xxx.xxx.xx.xx", via:"xxx.xxx.xx.x"], 1, 0, 1.0, "Jul 14
11:58:07 2013");

observation dhcp_log_o_5 = ([dhcpmsg:"DHCPACK", direction1:"to", ipaddr:"
xxx.xxx.xx.xx", mac:"xx:xx:xx:xx:xx:xx", via:"bond0"], 1, 0, 1.0, "Jul
14 11:58:07 2013");

// end of DHCP evidence
// ...

Listing 1.3. dhcp log encoded evidence example

– Multi-stage reporting mailings as data become available:
1. Gathered evidence first; grouped together in one place. (This is already in

operation and is of help earlier on to any active network security people
watching in.)

2. Analysis, that may computationally take a longer time, will be delivered
in a follow-up analysis update (in progress).

The UML sequence diagram shown in Fig. 3 depicts the design of a series
of synchronous and asynchronous calls by the modules involved. It is based on
the components mentioned earlier in Sect. 2.6 and further, their API, and on
Algorithm 1. All the encoders work asynchronously as child processes (fork())
started by mac-spoofer-evidence-collector. This is because there is no par-
ticular ordering for their execution required (except for the RT ticket encoding as
there is a data dependency on the context point from it used by the other modules
as well as preferential start up of live forensics modules first to do their probes
sooner). All modules produce intermediate raw files and encoded timestamped
files; the latter are subsequently collected into one Forensic Lucid script when
all the modules return, which is then fed to GIPSY to compile and evaluate for
reasoning purposes. When GIPSY returns, the final analysis report is generated.

180 S.A. Mokhov et al.

// ...
// ‘nmap ’ evidence , encoded: Jul 14 21:09:23 2013
observation sequence nmap_os = os_nmap_entries;

observation sequence os_nmap_entries =
{

([protocol_port :135, protocol:"tcp"], 1, 0),
([protocol_port :139, protocol:"tcp"], 1, 0),
([protocol_port :445, protocol:"tcp"], 1, 0),
([protocol_port :49152 , protocol:"tcp"], 1, 0),
([protocol_port :49157 , protocol:"tcp"], 1, 0),
([protocol_port :6002 , protocol:"tcp"], 1, 0),
([protocol_port :49153 , protocol:"tcp"], 1, 0),
([protocol_port :49154 , protocol:"tcp"], 1, 0),
([protocol_port :49156 , protocol:"tcp"], 1, 0),
([protocol_port :7001 , protocol:"tcp"], 1, 0),
([protocol_port :7002 , protocol:"tcp"], 1, 0),
([protocol_port :49155 , protocol:"tcp"], 1, 0),
([protocol_port :135, protocol:"tcp"] => "open msrpc Microsoft

Windows RPC", 1, 0),
([protocol_port :139, protocol:"tcp"] => "open netbios -ssn", 1, 0),
([protocol_port :445, protocol:"tcp"] => "open netbios -ssn", 1, 0),
([protocol_port :6002 , protocol:"tcp"] => "open http SafeNet

Sentinel License Monitor httpd 7.3", 1, 0),
([protocol_port :7001 , protocol:"tcp"] => "open tcpwrapped", 1, 0),
([protocol_port :7002 , protocol:"tcp"] => "open hbase -region Apache

Hadoop Hbase 1.3.0 (Java Console)", 1, 0),
([protocol_port :49152 , protocol:"tcp"] => "open msrpc Microsoft

Windows RPC", 1, 0),
([protocol_port :49153 , protocol:"tcp"] => "open msrpc Microsoft

Windows RPC" 1, 0),
([protocol_port :49154 , protocol:"tcp"] => "open msrpc Microsoft

Windows RPC", 1, 0),
([protocol_port :49155 , protocol:"tcp"] => "open msrpc Microsoft

Windows RPC", 1, 0),
([protocol_port :49156 , protocol:"tcp"] => "open msrpc Microsoft

Windows RPC", 1, 0),
([protocol_port :49157 , protocol:"tcp"] => "open msrpc Microsoft

Windows RPC", 1, 0),
([mac:"00:13:72: xx:xx:xx"] => "(Dell)", 1, 0),
([os:"Microsoft Windows 7|2008"], 1, 0),
([hops:1], 1, 0)

};

// Unencoded data
/*

Starting Nmap 6.25 (http :// nmap.org) at 2013 -07 -14 21:08 EDT
NSE: Loaded 106 scripts for scanning.
NSE: Script Pre -scanning.
Initiating ARP Ping Scan at 21:08
Scanning xxx.xxx.xx.xx [1 port]
Completed ARP Ping Scan at 21:08 , 0.00s elapsed (1 total hosts)
Initiating SYN Stealth Scan at 21:08
Scanning xxx.xxx.xx.xx [1000 ports]

*/
// end of ‘nmap ’ evidence
// ...

Listing 1.4. nmap encoded evidence example

Automating MAC Spoofer Evidence Gathering and Encoding 181

F
ig
.
3
.
M

A
C

sp
o
o
fe

r
a
n
a
ly

ze
r

U
M

L
se

q
u
en

ce
d
ia

g
ra

m

182 S.A. Mokhov et al.

3 Conclusion

MSA is already a part of the nagtools set [2] in production that is being actively
designed, developed, and maintained in iterative builds [11]. The nagtools have
not been released publicly since we have not estimated yet the impact of such a
release on the details of the operations of our network even if the code released
is properly sanitized. The interested readers should contact the first two authors
to discuss this. The GIPSY’s code is open-source.

Discussion. There are a number of challenges and limitations in the current
approach to be addressed:

– Short-lived spoofer sessions, so not much live forensic data are available [11].
– Need to systematically measure true negatives, false negatives, false posi-

tives [11].
– Sysadmin mistakes (assigning a managed VLAN or replacing the OS image

from managed to UM without updates to the VLAN), which is nearly impos-
sible to tell apart from genuine spoofing [11].

A note on RADIUS/802.1X: we do use the latter for user authentication for
the server consoles and the like, but that service does not uniformly scale for
all services and hosts we provide in the labs and servers, especially we are only
moving to an AD-based service recently. Some of our services are tied to hosts in
specific locations with license restrictions, and historically without any AD-like
domains and a mix of clients RADIUS/802.1X-based machine authentication
was not really applicable on our primarily Layer-2 network.

Ongoing and Future Work. A sister work underway to extend this approach to
the switch port violations that are more numerous in volume with the partial
encoding is already done (being reported in the same way) except that the tools
are being taught to report the evidence directly in Forensic Lucid due to
its natural readability while being machine-processable. This ongoing work as a
result also includes the Forensic Lucid automated formal reasoning aspects.

Additionally, we are in the process of IPv6 migration with all associated
benefits, such as IPSec being on by default. We are, however, very far from
completion of the IPv6 project, and need to maintain the current setup for
some time and evaluate the IPv6 impact on our entire network not only from
the MAC spoofer perspective. We additionally, need to implement a somewhat
similar mechanism in the user-managed realm. Furthermore, we plan to:

– provide a direct hook for msw to invoke the reasoner not via RT. In this case
one can group relevant .ctx, etc. files by the hostname, IP, or MAC addresses
instead of RT ticket numbers. Some adjustments will need to be made about
duplicate handling for the same host for possible prior investigations [11]

– provide a hook to swm to shutdown the switch port in question in case of a
high confidence in the detection of the spoofing activity [11]

– provide a hook to the account management in case of high severity and high
confidence, autoblock the account of the offender (long term future goal) [11]

Automating MAC Spoofer Evidence Gathering and Encoding 183

References

1. Alexander, I.: Misuse Cases: Use Cases with hostile intent, November 2002. http://
www-dse.doc.ic.ac.uk/Events/BCS-RESG/Aleksander.pdf

2. Assels, M.J., Echtner, D., Spanner, M., Mokhov, S.A., Carrière, F., Taveroff, M.:
Multifaceted faculty network design and management: practice and experience. In:
Desai, B.C., Abran, A., Mudur, S. (eds.) Proceedings of C3S2E 2011, pp. 151–155.
ACM, New York, May 2010–2011. short paper; full version online at http://www.
arxiv.org/abs/1103.5433

3. Bejtlich, R.: The Tao of Network Security: Beyond Intrusion Detection. Addison-
Wesley, New York (2005). ISBN: 0-321-24677-2

4. van den Berg, S.R., Guenther, P.A.: procmail v3.22, September 2001. http://www.
procmail.org/

5. Carrier, B.D.: Risks of live digital forensic analysis. Commun. ACM 49(2), 57–61
(2006). http://www.d.umn.edu/∼schw0748/DigitalForensics/p56-carrier.pdf

6. Cisco Systems Inc: Catalyst 2950 Switch Hardware Installation Guide, October
2003

7. Clark, K., Hamilton, K.: Cisco LAN Switching. Cisco Press (1999). ISBN: 1-57870-
094-9

8. Day, J.D.: The (un)revised OSI reference model. SIGCOMM Comput. Commun.
Rev. 25(5), 39–55 (1995)

9. McDougal, M.: Live forensics on a Windows system: using Windows Foren-
sic Toolchest (WFT) (2003–2006). http://www.foolmoon.net/downloads/Live
Forensics Using WFT.pdf

10. Mokhov, S.A.: Intensional Cyberforensics. Ph.D. thesis, Department of Computer
Science and Software Engineering, Concordia University, Montreal, Canada, Sep-
tember 2013. http://arxiv.org/abs/1312.0466

11. Mokhov, S.A., Assels, M.J., Paquet, J., Debbabi, M.: Toward automated MAC
spoofer investigations. In: Proceedings of C3S2E 2014, pp. 179–184. ACM, August
2014 (short paper)

12. Odom, W.: CCENT/CCNA ICND1: 640–822 Official Cert Guide, 3rd edn. Cisco
Press (2012). ISBN: 978-1-58720-425-8

13. Odom, W.: CCNA ICND2: 640–816 Official Cert Guide, 3rd edn. Cisco Press
(2012). ISBN: 978-1-58720-435-7

14. Pearce, C.: Computing forensics: a live analysis, April 2005. http://www.linux.org.
au/conf/2005/security miniconf/presentations/crpearce-lca2005.pdf

15. Plummer, D.C.: RFC 826: An Ethernet Address Resolution Protocol, November
1982. http://tools.ietf.org/html/rfc826, viewed in December 2012

16. QoSient, LLC.: Argus: Auditing network activity (2000–2013). http://www.
qosient.com/argus/

17. RJK: Regexp syntax summary, June 2002. http://www.greenend.org.uk/rjk/2002/
06/regexp.html, last viewed May 2008

18. Tanenbaum, A.S., Wetherall, D.J.: Computer Networks, 5th edn. Prentice Hall
(2011). ISBN: 978-0-13-212695-3

19. Vincent, J., Rolsky, D., Chamberlain, D., Foley, R., Spier, R.: RT Essentials.
O’Reilly Media, Inc., August 2005

http://www-dse.doc.ic.ac.uk/Events/BCS-RESG/Aleksander.pdf
http://www-dse.doc.ic.ac.uk/Events/BCS-RESG/Aleksander.pdf
http://www.arxiv.org/abs/1103.5433
http://www.arxiv.org/abs/1103.5433
http://www.procmail.org/
http://www.procmail.org/
http://www.d.umn.edu/~schw0748/Digital Forensics/p56-carrier.pdf
http://www.foolmoon.net/downloads/Live_Forensics_Using_WFT.pdf
http://www.foolmoon.net/downloads/Live_Forensics_Using_WFT.pdf
http://arxiv.org/abs/1312.0466
http://www.linux.org.au/conf/2005/security_miniconf/presentations/crpearce-lca2005.pdf
http://www.linux.org.au/conf/2005/security_miniconf/presentations/crpearce-lca2005.pdf
http://tools.ietf.org/html/rfc826
http://www.qosient.com/argus/
http://www.qosient.com/argus/
http://www.greenend.org.uk/rjk/2002/06/regexp.html
http://www.greenend.org.uk/rjk/2002/06/regexp.html

Access Control Models
and Policy Analysis

HGABAC: Towards a Formal Model
of Hierarchical Attribute-Based Access Control

Daniel Servos(B) and Sylvia L. Osborn

Department of Computer Science, Western University, London, ON, Canada
dservos5@uwo.ca, sylvia@csd.uwo.ca

Abstract. Attribute-based access control (ABAC) is a promising alter-
native to traditional models of access control (i.e. discretionary access
control (DAC), mandatory access control (MAC) and role-based access
control (RBAC)) that is drawing attention in both recent academic lit-
erature and industry application. However, formalization of a founda-
tional model of ABAC and large scale adoption are still lacking. This
paper seeks to aid in the transition by providing a formal model of hier-
archical ABAC, called Hierarchical Group and Attribute-Based Access
Control (or HGABAC), which includes attribute inheritance through
user and object groups as well as environment, connection and adminis-
trative attributes. A formal specification and an attribute-based policy
language are provided. Finally, several example configurations (which
demonstrate the versatility of the model) are presented and evaluated.

1 Introduction

Until recently, access control research and real world access control implementa-
tions have largely fallen under one of the three traditional models of access con-
trol: discretionary access control (DAC) [11], mandatory access control (MAC)
[1,5] or role-based access control (RBAC) [6,14]. In these models, access con-
trol decisions are largely based on the identity of the user. In DAC this often
takes the form of an access control list (ACL) mapping users to permissions on
an object, while MAC is based around a security lattice controlling the direc-
tion of information flow. In dynamic environments where information sharing
between systems and users from different security domains is common, these
identity-based access control models are inadequate. While RBAC provides a
more generalized model than MAC or DAC [13], it also falls short in cases where
users and their respective roles in the system are poorly defined beforehand.
A secondary issue, common among these models, is the simplicity of the access
control policies. In the case of RBAC, all access control policies must fit the
form of “if a user is assigned a role X they are granted the set of permissions
Y”. However, this is insufficiently flexible for many real world scenarios. For
example, a bank may only permit an employee with the role “teller” to access
clients’ accounts during set times of the day and week or limit their access to
accounts based on a systemwide threat level. In both cases, the policy would be
too complex to express in a traditional RBAC model.
c© Springer International Publishing Switzerland 2015
F. Cuppens et al. (Eds.): FPS 2014, LNCS 8930, pp. 187–204, 2015.
DOI: 10.1007/978-3-319-17040-4 12

188 D. Servos and S.L. Osborn

To date, researchers have largely approached this problem by extending foun-
dational RBAC models to compensate for inadequate flexibility required for their
particular use case (e.g. [3,4,10,15]). However, there has been a growing demand
from both government and industry for a more general and dynamic model
of access control, namely attribute-based access control (ABAC). Rather than
basing access control decisions on a user’s identity like the traditional meth-
ods, ABAC bases access control around the attributes of a user, the objects
being accessed, the environment and a number of other attribute sources. Ide-
ally, these are all properties of the elements already existing in the system
and do not need to be manually entered by administration (e.g. many of the
attributes about a document come from its existing metadata; author, title, etc.).
Access policies can be created, limiting access to certain resources or objects,
based on the result of a boolean statement comparing attributes, for example
“user.age >= 18 OR object.owner == user.id”. This allows for flexible enforce-
ment of real world policies, while only requiring knowledge of some subset of
attributes about a given user.

Despite the demand for and potential advantages of ABAC, little has been
accomplished in the way of formalizing foundational models and large scale
adoption is still in its early stages. The work detailed in this paper seeks to
provide a formalized hierarchical model of ABAC, entitled Hierarchical Group
and Attribute-Based Access Control (or HGABAC), which introduces a group
based hierarchical representation of object and user attributes that is lacking
in current models. HGABAC is intended to be a starting point that is detailed
enough for real world use but generic enough to emulate traditional models of
access control.

The rest of this paper is organized as follows. Section 2 reviews the existing
work related to attribute-based access control models and current efforts towards
standardization. Section 3 outlines our proposed model of ABAC, HGABAC,
and provides a formal specification, as well as details of the policy language
used and the group hierarchy. Section 4 gives an example use case and evaluates
the solution HGABAC provides. Section 5 demonstrates how HGABAC can be
configured to emulate DAC, MAC and RBAC access control policies. Finally,
Sect. 6 details our conclusions and plans for future work.

2 Related Work

One of the most frequently referenced works in the ABAC literature is the
eXtensible Access Control Markup Language (XACML) standard [7]. XACML
is an XML-based access control policy language that is notable for its sup-
port of attribute-based policies and use in multiple access control products.
While XACML supports attribute-base access control concepts and hierarchi-
cal resources, it intently lacks any kind of formal model (simply being a policy
language) and instead relies on the implementing system to apply an under-
lying model of access control. Another related but distinct research area from
ABAC is attribute-based encryption (ABE), where objects are encrypted based
on attribute related access policies. In ciphertext-policy (CP-ABE) style ABE

HGABAC: Towards a Formal Model Hierarchical ABAC 189

Table 1. Comparison of notable models of attribute-based access control.

Logic-based ABACα ABAC for WS-ABAC ABMAC HGABAC

framework [8] web services [17] [12]

for ABAC [19]

[18]

Hierarchical Hierarchical

attributes,

no user

groups

√

Object

attributes

√ √ √ √ √

User attributes
√ √ √ √ √ √

Environment

attributes

√ √ √ √

Connection

attributes

Shown in

example

but not

model

√

Administrative

attributes

√

General model
√ √

For web

services

For web

services

For grid

computing

√

Formal model Only models

policies

and

evaluation

√
Simplistic Simplistic

√ √

Can model

DAC,

MAC, and

RBAC

Not demon-

strated

√
Not demon-

strated

Not

demon-

strated

Not demon-

strated

√

an attribute-based policy is used to encrypt an object and user’s keys consist of
a set of attributes relating to that user [2,16]. While ABE, much like XACML,
lacks any kind of formal ABAC model and has rather simplified access policies,
it does provide an interesting means of enforcing ABAC policies outside of the
security domain in which they originate.

Various works have attempted to informally describe ABAC or have taken
the first steps towards formalization. The most notable of these are summarized
and compared to our model in Table 1. Yuan and Tong [19] describe the ABAC
model in terms of authorization architecture and policy engineering and give
an informal comparison between ABAC and traditional role-based models. Shen
and Hong [17] present WS-ABAC, an ABAC model designed for web services
based around XACML. However, the model presented in this work is limited and
mostly describes an architecture to use XACML and attribute-based policies to
provide authentication for web services. Lang et al.’s ABMAC model [12] aims
to bring ABAC like access control to grid computing. While this model is based
on attribute-based policy decisions, it has several key differences in the policy
description and policy evaluation methods. This work is of note as it mentions
ABAC’s ability to represent the traditional models using a single policy language.

190 D. Servos and S.L. Osborn

Fig. 1. HGABAC components and relations using Crow’s Foot Notation to denote
cardinality of relationships. Primitive components are shown in ovals.

Wang et al. [18] propose a logic-based framework for ABAC based on logic
programming where policies are specified as “stratified constraint flounder-free
logic programs that admit primitive recursion”. While their framework intro-
duces hierarchical attributes (something lacking from other models), it is largely
focussed on the representation, consistency and performance of attribute-based
policies and their evaluation over providing a workable model of ABAC. Sev-
eral critical components required for a usable model are absent, including object
attributes (the only attributes considered are user attributes) and they omit any
kind of formalization of ABAC aspects outside of policies and their evaluation
(e.g. there is no mention of objects and only access control on services/operations
is considered).

Lastly, and most promising is the work by Jin et al. [8] towards a general-
ized and formalized model of ABAC with constraints for the traditional models,
which they call ABACα. Their model provides a first step “to develop a for-
mal ABAC model that is just sufficiently expressive to capture DAC, MAC and
RBAC” which allows configuration of constraints on attributes at creation and
modification time as well as policies. While this work provides a sufficient basis
for new models of ABAC, it (intentionally) lacks components that would be nec-
essary for a real world implementation, such as attribute and object hierarchies,
a simplistic policy language and environment attributes.

Our model, HGABAC, is distinct from other models in several regards. Most
notably, the graph based user group hierarchy provides several new interesting
means of representing the traditional models in an ABAC framework (allow-
ing the hierarchy to model MAC and RBAC in an intuitive way, rather than
a partially ordered set as is done in ABACα [8]). These hierarchical repre-
sentations of MAC and RBAC are demonstrated in Sect. 5. The object group
hierarchy allows for objects to be categorized into collections of similar types
of objects (e.g. a collection of only health care record objects) and have com-
mon attributes applied to all members of the group. This reduces the amount of

HGABAC: Towards a Formal Model Hierarchical ABAC 191

manual intervention required to tag similar objects with a common attribute and
value pairs and reduces the number of object attribute assignments required (as
evaluated in Sect. 4.2). Additionally, several efforts are made to create a model
more suited to real world application without losing descriptive power or flex-
ibility in terms of policies that may be enforced; a fully specified and intuitive
policy language is presented (in Sect. 3.2) loosely based on C style boolean state-
ments and a more rich selection of attribute sources is allowed. Attributes based
on the user’s current connection to the system and administrative attributes are
supported which are lacking in other models. Finally, HGABAC uses a strongly
typed system to represent attribute values (i.e. an attribute must have a prede-
fined data type, e.g. integer, floating point, set, etc.). This helps enforce consis-
tency in policies and attribute value assignments as well as helping to prevent
any possible ambiguity in policies (e.g. preventing any type mismatches).

3 HGABAC Model

3.1 Formal Model

BasicElements andDefinitions. We define the base elements of the HGABAC
model, as shown in Fig. 1, as follows:

– Users (U): set of current human and non-human entities that may request
access on system resources through sessions.

– Objects (O): finite set of system resources (files, database records, devices,
etc.) for which access should be limited.

– Operations (Op): finite set of all operations provided by the system that
may be applied to an object (e.g. read, write, create, delete, update etc.).

– Policies (P): set of all current policy strings following the format of our
policy language defined in Sect. 3.2.

– Sessions (S): set of all user sessions, such that each element, s is a tuple of
the form s = (u ∈ U, a ⊆ effective(u ∈ U), con atts) where u is the user who
activated the session, con atts is the set of connection attributes for the session
such that ∀c ∈ con atts : c = (name, values) and a is the subset of the user’s
effective attributes they wish to activate for the given session (effective(u) is
the set of all attributes a user is assigned either directly through the UAA
relation or indirectly through group membership). Policies are evaluated on
the basis of the activated attributes in a user’s session rather than the total
set of the user’s assigned and inherited attributes.

– Permissions: pairing of a policy string and an operation, such that perm =
(p ∈ P, op ∈ Op). Access to perform an operation, op, on a given object is only
allowed if there exists a permission that contains a policy, p, that is satisfied
by a given set of attributes corresponding to the requesting user’s session,
object being accessed and the current state of the connection, environment
and administrative attributes in the system. For example, a policy paired
with a read operation, “user.id = object.author”, would allow read access to
all objects for which the user is also the author.

192 D. Servos and S.L. Osborn

Attributes. HGABAC defines attributes to be (name, value, type) triples where
the name is a unique identifier and value is an unordered set of atomic values of
a given type or the null set. Type restricts the data type of the atomic values
(e.g. string, integer, boolean, etc.) to a system defined data type. Attributes
represent some descriptive characteristic of the entity to which they are assigned.
For example, a user might have attributes describing their name, age, employee
id, etc., while an object might have attributes describing its author, owner, file
type, etc. The set of all attributes (TA) is divided into five subsets based on
their origin and to which entity or object they may be applied:

– User Attributes (UA): the set of attribute name, type pairs that may be
applied to users such that ∀a ∈ UA : a = (name, type) and each element of
UA has a globally unique name (i.e. there cannot be two elements with the
same name but different types). Note that value is left out of the definition of
UA as user attributes are given a set of values when assigned to users directly
or to groups (in the UAA and UGAA relations).

– Object Attributes (OA): the set of attribute name, type pairs that may
be applied to objects such that ∀a ∈ OA : a = (name, type) and each element
of OA has a globally unique name (i.e. there cannot be two elements with the
same name but different types). As with UA, value is left out of the definition
of OA as object attributes are given a set of values when assigned to objects
directly or to groups (in the OAA and OGAA relations).

– Environment Attributes (EA): the set of attribute (name, value, type)
triples that represent the current state of the system’s environment (e.g.
the current time, number of active users, etc.) such that ∀a ∈ EA : a =
(name, value, type) and each element of EA has a globally unique name (i.e.
there cannot be two elements with the same name but different types or val-
ues). What properties of a system’s environment are available as environment
attributes is left to the implementation.

– Connection Attributes (CA): the set of attribute name, type pairs that
correspond to attributes derived from and available for each connection to
the system such that ∀a ∈ CA : a = (name, type) and each element of CA
has a globally unique name (i.e. there cannot be two elements with the same
name but different types). What properties of the connection are available
as connection attributes is left as a implementation decision; however, at a
minimum some kind of unique session id should be included.

– Administrative Attributes (AA): the set of attribute (name, value, type)
triples that are defined by administrators (including automated administra-
tive tasks and programs) that rarely change and apply to all policies which
reference them such that ∀a ∈ AA : a = (name, value, type) and each element
of AA has a globally unique name. What administrative attributes are avail-
able will change at runtime based on both the implementation and actions of
administrators.

– Total Attributes (TA): set of all attributes that exist in a given system
such that TA = UA ∪ OA ∪ CA ∪ EA ∪ AA.

HGABAC: Towards a Formal Model Hierarchical ABAC 193

Groups. Groups and their hierarchies both simplify administration tasks, allow-
ing attributes to be assigned to groups of users or objects at once rather than
directly, and allow for more intuitive and expressive configuration possibilities
than allowed in current ABAC models (including in the task of emulating the
traditional models as shown in Sect. 5). Section 3.1 details the group hierarchy,
while user and object group definitions and membership are defined below:

– User Groups (UG): set of all current user groups, where each element is
comprised of a tuple, g, such that g = (name, u ⊆ U, p ⊆ UG) where name is
a globally unique identifier, u is the set of members of the group, and p is the
set of the group’s parents in the user group graph.

– Object Groups (OG): set of all current object groups, where each element
is comprised of a tuple, g, such that g = (name, o ⊆ O, p ⊆ OG) where name
is a globally unique identifier, o is the set of members of the group, and p is
the set of the group’s parents in the object group graph.

Relations. We define the following relations between the base elements, groups
and attributes:

– Direct User Attribute Assignment (UAA): user attribute assignment
relation containing user, attribute name, value triples such that:

∀uaa ∈ UAA : uaa = (u ∈ U, att name, values)

where att name ∈ {name | (name, type) ∈ UA} and values is some set of
elements such that each element of values is of the same data type (type)
and (att name, type) ∈ UA. There may exist only one tuple in UAA for every
user, att name pair.

– Direct Object Attribute Assignment (OAA): object attribute assign-
ment relation containing object, attribute name, value triples such that:

∀oaa ∈ OAA : oaa = (o ∈ O, att name, values)

where att name ∈ {name | (name, type) ∈ OA} and values is some set of
elements such that each element of values is of the same data type (type)
and (att name, type) ∈ OA. There may exist only one tuple in OAA for every
object, att name pair.

– User Group Attribute Assignment (UGAA): user group attribute
assignment relation containing user group name, attribute name, value triples
such that:

∀ugaa ∈ UGAA : ugaa = (group name, att name, values)

where group name ∈ {name | (name, u, p) ∈ UG} and att name ∈ {name |
(name, type) ∈ UA}. values is some set of elements such that each element
of values is of the same data type (type) and (att name, type) ∈ UA. There
may exist only one tuple in UGAA for every group name, att name pair.

194 D. Servos and S.L. Osborn

– Object Group Attribute Assignment (OGAA): object group attribute
assignment relation containing object group name, attribute name, value triples
such that:

∀ogaa ∈ OGAA : ogaa = (group name, att name, values)

where group name ∈ {name | (name, u, p) ∈ OG} and att name ∈ {name |
(name, type) ∈ OA}. values is some set of elements such that each element
of values is of the same data type (type) and (att name, type) ∈ OA. There
may exist only one tuple in OGAA for every group name, att name pair.

Mappings. The following are the most important formal functions in the
HGABAC model.
– direct: Mapping of a user, object, or group to the attribute name, value pairs

directly assigned to it in the UAA, OAA, UGAA or OGAA relation (i.e. not
including inherited attributes or attributes from group membership). direct
is defined as:

direct(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

{(n, v) | (x, n, v) ∈ UAA}, if x ∈ U

{(n, v) | (x, n, v) ∈ OAA}, if x ∈ O

{(n, v) | (name(x), n, v) ∈ UGAA}, if x ∈ UG

{(n, v) | (name(x), n, v) ∈ OGAA}, if x ∈ OG

where name(x) is the name of the given group, n is an attribute name, v is a
set of valid values for that attribute and x ∈ U ∪ O ∪ UG ∪ OG.

– consolidate: Mapping of a set of attribute name, value pairs which may
contain multiple instances of the same name to a set of attribute name, value
pairs where each name occurs only once. Value sets are unioned together for
pairs with the same attribute name. consolidate is defined as:

consolidate(x) = {(n, v1 ∪ v2) | (n, v1) ∈ x ∧ (n, v2) ∈ x}

where x is sets of attribute name, value pairs, n is an attribute name, v1 and
v2 are sets of values.

– member: Mapping of a User or Object to the set of groups for which they
are a member. member is defined as:

member(x) =

{
{(n, u, p) | (n, u, p) ∈ UG ∧ x ∈ u}, if x ∈ U

{(n, o, p) | (n, o, p) ∈ OG ∧ x ∈ o}, if x ∈ O

where n is the name of a group, u is a subset of U , o is a subset of O, p is a
subset of UG or OG and x ∈ U ∪ O.

– inherited: Mapping of a user, object or group to its set of inherited attributes
(i.e. the set of attributes assigned indirectly through the group hierarchy or
group membership). inherited is defined as:

inherited(x) = consolidate(
⎧
⎪⎪⎨

⎪⎪⎩

{(n, v) | g ∈ member(x) ∧ (n, v) ∈ consolidate(direct(g) ∪ inherited(g))}, if x ∈ U ∪ O

{(n, v) | g ∈ parents(x) ∧ (n, v) ∈ consolidate(direct(g) ∪ inherited(g))}, if x ∈ UG ∪ OG

∅, if name(x) = min group

)

HGABAC: Towards a Formal Model Hierarchical ABAC 195

where parents(x) is the set of parents for the given group, n is an attribute
name, v is a set of valid values for n and x ∈ O ∪ U ∪ UG ∪ OG .

– effective: Mapping of a user, object, or group to their effective attributes (i.e.
all attributes inherited or directly assigned). effective is defined as:

effective(x) = consolidate(direct(x) ∪ inherited(x))

where x is a user, object or group (i.e. x ∈ U ∪ O ∪ OG ∪ UG).
– name: Mapping of a group or attribute to its assigned name. name is defined

as:
name(x) = x(1)

that is, the name is the first element of the tuple in both the case of groups
and attributes, and x ∈ OG ∪ UG ∪ TA.

– parents: Mapping of a group to its set of parents. parents is defined as:

parents(x) = x(3)

that is, the set of a groups where parents is the third element of the tuple in
both the case of user and object groups, and x ∈ OG ∪ UG .

– authorized: P, S,O → {true, false, undef}
Function which determines if a user session passes the given policy given the
current value of the environment and administrative attributes for a given
object, where P is the set of all policies, S is the set of all sessions and O is
the set of all objects. true and false are returned as expected based on the
evaluation of the boolean policy rule; undef is returned if the policy cannot
be evaluated (e.g. an object or user attribute referred to in the policy is not
present in the attribute sets or incompatible types are compared).

Group Graph. HGABAC represents the group hierarchy as a directed acyclic
graph with each group a vertex and each edge a parent/child relation between
the groups such that the edge is directed to the parent. Additionally, all paths in
the graph must eventually end at a special min group that has no parents and
no assigned attributes. A group, g, can only have min group as a parent if it has
one and only one parent such that effective(g) = direct(g) and inherited(g) = ∅.
The parent/child relation between any two related groups is defined such that
group c is a child of group p iff:

∀(n, v1) ∈ effective(p):
∃!a ∈ effective(c): a = (n, v2) and v1 ⊆ v2

A child group must have one attribute for each effective attribute assigned to
the parent group, such that the attribute has the same name and the parent’s
attribute’s value is a subset of the child’s attribute’s value. Thus, the effective
attributes for a group, g, are calculated as:

effective(g) = consolidate(direct(g) ∪ inherited(g))

196 D. Servos and S.L. Osborn

Fig. 2. Example user group hierarchy represented as a graph. The large bold text
denotes the group’s name, beneath which the set of directly assigned attributes is
shown.

Users’ and objects’ effective attributes are calculated in a similar way, con-
solidating the values of directly assigned and inherited attributes.

An example user group hierarchy is shown in Fig. 2. In this example the
set of effective attributes of groups Undergrad and Staff are the same as their
set of direct attributes as they both inherit from min group. The group Faculty
inherits the attributes (employe level, {1}) and (room access, {MC355}) from the
group Staff such that the effective attributes of Faculty will be (employe level,
{2, 1}) and (room access, {MC320, MC355}). Similarly, the group Gradstudents
inherits attributes from both the groups Undergrads and Staff such that the set
of effective attributes for Gradstudents is {(employe level, {1}), (student level,
{1, 2}), (room access, {MC325, MC342, MC8, MC10, MC355})}.

The object group hierarchy has the same properties as the user group hier-
archy (being a directed acyclic graph, etc.), and is set up in a similar way with
a min group place holder being the ancestor of all object groups. In implemen-
tations, of HGABAC it is likely that both the user and object group graphs
could be consolidated into a single graph with the same min group and treated
similarly (e.g. with the same functions/operations) so long as constraints are
enforced so no object group may inherit from a user group and no object group
may have a user attribute assigned (and vice versa).

3.2 Policy Language

In HGABAC access control decisions are based on a boolean rule based policy
language comparing attributes and constants. The result of logical operations
(AND, OR, NOT) on ternary values (TRUE, FALSE, UNDEF) are determined
based on the AND, OR and NOT truth tables from Kleene K3 logic [9]. A policy
evaluated to UNDEF is equivalent to FALSE in terms of access control decisions
(i.e. access is denied). Comparison operations (<, >, etc.) result in TRUE or
FALSE as expected when value types are comparable (e.g. 1 < 2 results in
TRUE) and UNDEF when incomparable (e.g. “Pizza” > 3.1415). The following
definition of the policy language is given using ABNF syntax:

policy = exp [bool op policy]
/ (policy)

HGABAC: Towards a Formal Model Hierarchical ABAC 197

exp = var op var
/ [“NOT”] bool var
/ [“NOT”] “(” policy “)”

var = const / att name
bool var = boolean / att name
op = “>” / “<” / “=” / “>=” / “<=” / “! =” / “IN” / “SUBSET”
bool op = “AND” / “OR”
att name = user att name / object att name / env att name / admin att name

/ connect att name
user att name = “user.” id
object att name = “object.” id
env att name = “env.” id
admin att name = “admin.” id
connect att name = “connect.” id
atomic = int / float / string / “NULL”
const = atomic / set
boolean = “TRUE” / “FALSE” / “UNDEF”
set = “{” “}” / “{” setval “}”
setval = atomic / atomic “,” setval
id = +(ALPHA / DIGIT / “ ”)
int = [“-”] (1-9) *(DIGIT) / “0”
float = int “.” +(DIGIT)
string = DQUOTE *(%x20-21 / %x23-7E) DQUOTE

user att name and object att name correspond to attribute names in UA and OA
respectively, while env att name, admin att name and connect att name corre-
spond to attribute names in EA, AA and CA respectively. string are c-style
strings limited to printable characters. Otherwise, our policy language functions
like c-style boolean statements where the only variables are attributes.

The following are example policy strings using the HGABAC policy language:

(a) user.id IN {5, 72, 4, 6, 4} OR user.id = object.owner
(b) object.required perms SUBSET user.perms AND user.age >= 18
(c) user.admin OR (user.role = “doctor” AND user.id ! = object.patient)

Policy string a would only return true when processed by the authorized
function, if the user attribute id is present and has at least one value matching
an element in the given set {5, 72, 4, 6, 4} or has a value that is equal to a
value in object.owner. Note that the value of the attribute user.id may be a set
of multiple values, which would still pass the policy so long as ∃e ∈ user .id :
e ∈ {5, 72, 4, 6, 4} or e = object .owner . Policy string b would limit access to a
user who is at least 18 and has the set of permissions such that the object’s
required perms is a subset. Finally, policy string c demonstrates a possible use
case, where you desire to give doctors access to any medical record but their
own (as well as allow a user with the admin attribute to access any record).

4 Examples and Evaluation

4.1 Example: The Library

This section outlines how HGABAC may be used to provide access control for
a hypothetical university library. In the following use cases it is assumed that
access control is desired on four different kinds of resources provided by the
library; books, course material (textbooks, lecture notes, etc.), periodicals, and
archived records.

Case 1: Undergraduate students may check out any unrestricted book and any
course materials for a course in which they are enrolled.

198 D. Servos and S.L. Osborn

User Group Graph: Object Group Graph:

Fig. 3. User and object group hierarchies to support the cases given in Sect. 4.1.

Case 2: Graduate students may check out any unrestricted book or periodical
but may only check out course materials for courses in which they are a
teaching assistant or enrolled.

Case 3: Faculty may check out any book, periodical or course material as well
as any archived record from their department.

Case 4: Staff may access any resource between the hours of 8:00 and 17:00 on
weekdays.

Case 5: Students enrolled in a computer science course may access periodicals
from the university network.

Group Graphs. Figure 3 shows the the user and object group hierarchies that
would be created by an administrator for the above example and cases.

Group Membership. Users are assigned to one of the four user type groups
(Undergrads, Gradstudents, Faculty or Staff) as expected (i.e. undergraduate
students are members of the “Undergrads” group, graduate students to the
“Gradstudents” group, etc.). Students are also assigned membership in a user
group for each course they are enrolled in (e.g. if a student is enrolled in CS203
they would be a member of the user group “CS203”). Graduate students and
faculty also belong to a department group (for the purposes of these cases, only
a computer science department group, “CS Department”, is considered). For
example a computer science graduate student taking the course CS203 would
be a member of the “Gradstudents”,“CS203” and “CS Department” groups and
would have the effective attributes {{user type, {undergrad, grad}}, {enrolled in,
{cs course, cs203}}, {depart, {compsci}}.

Resources are assigned membership in one of the four object type groups or
one of their children as expected (i.e. books are assigned to the “Books” group
or the “Restricted Books” group, course material to one of the course object
groups (e.g. “CS101”), etc.). For example a textbook for the course CS101 would
be assigned to the “CS101” object group and would have the following effective
attributes {{object type, {course}}, {req course, {cs101}}}.

Case 1. One permission pair would be sufficient for meeting the requirements of
the case: PERMS={{““undergrad” IN user.user type AND ((object.object type =
“book” AND NOT object.restricted) OR (object.object type = “course” AND

HGABAC: Towards a Formal Model Hierarchical ABAC 199

user.enrolled in IN object.req course))”, check out book}} where “check out
book” is the operation that allows a resource to be read/viewed.

Case 2. In this case each graduate student would be assigned an attribute
“teaching” containing the set of courses the graduate student is assigned to as
a TA. The following permission pair combined with the pair from Case 1 would
be sufficient for meeting the requirements of the case: PERMS = {{““grad” IN
user.user type AND (object.object type = “periodical” OR (object.object type =
“course” AND object.req course IN user.teaching))”, check out book}}. As the
“Gradstudents” group is a child of the “Undergrads” group, graduate students
are granted access to unrestricted books and course materials for courses they
are enrolled in through the policy permission pair in Case 1 (as they have both
the values “grad” and “undergrad” for their user type attribute).

Case 3. As this case is less restrictive than the previous it can be met by a
straightforward permission pair: PERMS = {{““faculty” IN user.user type AND
(object.object type IN {“book”, “periodical”, “course”} OR (object.object type =
“archive” AND object.depart IN user.depart))”, check out book}}.

Case 4. For this case at least two environment attributes are required. “time of
day hour”, that represents the current hour (1 to 24) and, “day of week”, that
represents the current day of the week (1 to 7). Then the following permission
pair would be sufficient for meeting the requirements for the case: PERMS =
{{““staff” IN user.user type AND env.time of day hour >= 8 AND env.time of
day hour <= 16 AND env.day of week IN {2, 3, 4, 5, 6}”, check out book}}.

Case 5. It is assumed that four connection attributes exist which represent the
user’s IP address; “ip octet 1” represents the first digit of the user’s IP address,
“ip octet 2”, the second and so on up to “ip octet 4”. It is also assumed that
all IP addresses matching the pattern “192.168.*.*” are internal addresses on
the university’s network. The following permission pair would then be suffi-
cient for meeting the requirements of the case: PERMS = {{““cs course” IN
user.enrolled in AND connect.ip octet 1 = 192 AND connect.ip octet 2 = 168
AND object.object type = “periodical” ”, check out book}}.

4.2 Evaluation

To evaluate whether the hierarchical user and object groups of the HGABAC
model provides an advantage over more traditional non hierarchical models of
ABAC in terms of simplifying administration and reducing complexity, we eval-
uate HGABAC based on the number of attribute and group assignments needed
to fulfill the requirements of each use case given in Sect. 4.1. These results are
compared to the number of attribute assignments that would be required in
a non hierarchical model of ABAC such as ABACα [8] (if ABACα supported
environment and connection attributes required to model cases 4 and 5).

Table 2 outlines the results of this comparison. The worst case (each user
is enrolled in each course and each object is of an object type such that it will

200 D. Servos and S.L. Osborn

Table 2. Number of attribute and group assignments required for each case in Sect. 4.1.
U is the number of users and O is the number of objects.

Case 1 Case 2 Case 3

HGABAC ABAC HGABAC ABAC HGABAC ABAC

User attribute

assignments

4 4U U + 5 5U 4 2U

Object attribute

assignments

5 2O 6 2O 8 2O

User group

assignments

3U 0 3U 0 2U 0

Object group

assignments

O 0 O 0 O 0

Total assignments 3U + O + 9 4U + 2O 4U + O + 11 5U + 2O 2U + O + 12 2U + 2O

Case 4 Case 5

HGABAC ABAC HGABAC ABAC

User attribute

assignments

1 U 1 U

Object attribute

assignments

0 0 1 O

User group

assignments

U 0 U 0

Object group

assignments

0 0 O 0

Total assignments U + 1 U U + O + 2 U + O

have the most attributes) is assumed as well as a constant number of courses and
departments (the same number shown in the group graphs in Fig. 3). In cases 1, 2
and 3 where it is required that multiple attributes be assigned to each object and
user, HGABAC has a noticeable advantage as hierarchical groups allow multiple
attributes to be assigned with a single group membership assignment. This also
has significant advantages for administration of ABAC systems, for example if
an administrative tasks required adding an attribute to every student in a given
course, only a single additional attribute assignment to the course’s user group
would be required in HGABAC, while a new attribute assignment for every user
in the course would be required in traditional ABAC. Cases 4, and 5 take less
advantage of HGABAC’s group hierarchy, instead making use of connection and
environment attributes, and as such results in HGABAC having a comparable
performance to traditional ABAC but with a slight overhead due to the object
and user groups.

5 Emulating Traditional Models

5.1 DAC Style Configuration

HGABAC can be configured to emulate DAC by assigning each user an “id” att-
ribute with a single value equal to a unique identifier for that user and assigning

HGABAC: Towards a Formal Model Hierarchical ABAC 201

each object an attribute for each access mode (e.g. “read” and “write”) that con-
tains the set of user ids corresponding to users who have access to that object
for the given access mode. The set of permissions are then simply: PERMS =
{(“user.id IN object.read”, read), (“user.id IN object.write”, write)}. To model
DAC style administration, an “owner” attribute maybe added to objects that
contains a single user id corresponding to the owner of the object. The permis-
sion to grant access on administrative operations is then simply: (“user.id =
object.owner”, admin operation).

5.2 MAC Style Configuration

HGABAC’s user groups allow configurations that emulate MAC style lattice
based access control. For example given the following MAC lattice:

The user group graph may be configured as follows to enable MAC with a liberal
*-property where each user is assigned only to a single read group and a single
write group. This is similar to how RBAC is configured to emulate MAC in
[13]. Each read group is assigned a single attribute named “read” and each write
group is assigned a single attribute named “write” both with a single value equal
to its clearance level (e.g. group UR is assigned the value {“UR”} for its “read”
attribute). Each object is assigned a security level attribute named “level”. The
set of permissions are then simply: PERMS = {(“object.level IN user.read”,
read), (“object.level IN user.write”, write)}. Users are limited to only activating
attributes inherited from groups of a single security level in any given session.
The following table shows direct(g) and effective(g) for each group:

g direct(g) effective(g)

min group ∅ ∅
UR “UR” “UR”

C1R “C1R” “UR”, “C1R”

C2R “C2R” “UR”, “C2R”

S1R “S1R” “UR”, “C1R”, “S1R”

S2R “S2R” “UR”, “C1R”, “C2R”, “S2R”

S3R “S3R” “UR”, “C2R”, “S3R”

TSR “TSR” “UR”, “C1R”, “C2R”, “S1R”, “S2R”, “S3R”, “TSR”

TSW “TSW” “TSW”

(Continued)

202 D. Servos and S.L. Osborn

g direct(g) effective(g)

S1W “S1W” “TSW”, “S1W”

S2W “S2W” “TSW”, “S2W”

S3W “S2W” “TSW”, “S3W”

C1W “C1W” “TSW”, “S1W”, “S2W”, “C1W”

C2W “C2W” “TSW”, “S2W”, “S3W”, “C2W”

UW “UW” “TSW”, “S1W”, “S2W”, “S3W”, “C1W”, “C2W”, “UW”

5.3 RBAC Style Configuration

HGABAC’s user groups can also effectively enforce hierarchical RBAC style
access control by having each user group represent a role and its assigned
attributes, represent permissions. For example given the following role hierarchy,
the user group graph on the right may be used:

Each group is assigned a single attribute named “perms” that contains the set
of permissions that group grants. Objects are tagged with an attribute for each
access mode whose value contains the set of permissions that grant permission
to perform that access mode on the object. For example, an object may have a
“read” attribute with values p1 and p4 and a “write” attribute with values p2
and p3. The set of permissions are then simply: PERMS = {(“user.perms IN
object.read”, read), (“user.perms IN object.write”, write)} assuming the only
access modes are read and write.

If the roles in the above example role hierarchy have the following directly
assigned permissions, then the groups in the user group graph will have the
following direct and effective values for the attribute “perms”:

While this enables HGABAC to emulate core and hierarchical RBAC (as defined
in the NIST RBAC standard [6]), work towards emulating the separation of duty
style constraints possible in NIST RBAC is left to future work.

6 Conclusions and Future Work

We have introduced a new model of ABAC, entitled HGABAC, that supports
boolean rule based ABAC, hierarchical user and object groups, as well as

HGABAC: Towards a Formal Model Hierarchical ABAC 203

environment, connection and administrative attributes. We show that adding
user and object groups enables greater flexibility when modelling real world
situations in addition to simplifying administration.

Future work in terms of formalizing a model of ABAC should largely consist
of extending HGABAC to support features required for real world use of ABAC
systems. Some potential additions include support for separation of duty, del-
egation, and access control for administrative functions. Expanding the policy
language defined in Sect. 3.2 or alternatively exploring using XACML in it’s
place could lead to greater flexibility in supported policies. To achieve the full
potential of ABAC, further automation is needed in terms of attribute assign-
ment and group membership. The addition of conditional user and object group
membership could also have interesting applications and implications that are
worthy of future research.

References

1. Bell, D., Padula, L.: Secure Computer Systems: Mathematical Foundations and
Model. Mitre, Bedford (1974)

2. Bethencourt, J., Sahai, A., Waters, B.: Ciphertext-policy attribute-based encryp-
tion. In: IEEE Symposium on Security and Privacy, SP 2007, pp. 321–334. IEEE
(2007)

3. Chandran, S.M., Joshi, J.B.D.: LoT-RBAC : a location and time-based RBAC
model. In: Ngu, A.H.H., Kitsuregawa, M., Neuhold, E.J., Chung, J.-Y., Sheng,
Q.Z. (eds.) WISE 2005. LNCS, vol. 3806, pp. 361–375. Springer, Heidelberg (2005)

4. Chen, L., Crampton, J.: Risk-aware role-based access control. In: Meadows, C.,
Fernandez-Gago, C. (eds.) STM 2011. LNCS, vol. 7170, pp. 140–156. Springer,
Heidelberg (2012)

5. Denning, D.E.: A lattice model of secure information flow. Commun. ACM 19(5),
236–243 (1976)

6. Ferraiolo, D.F., Sandhu, R., Gavrila, S., Kuhn, D.R., Chandramouli, R.: Proposed
NIST standard for role-based access control. ACM Trans. Inf. Syst. Secur. (TIS-
SEC) 4(3), 224–274 (2001)

7. Godik, S., Anderson, A., Parducci, B., Humenn, P., Vajjhala, S.: OASIS extensible
access control 2 markup language (XACML) 3. Technical report, OASIS (2002)

8. Jin, X., Krishnan, R., Sandhu, R.: A unified attribute-based access control
model covering DAC, MAC and RBAC. In: Cuppens-Boulahia, N., Cuppens, F.,
Garcia-Alfaro, J. (eds.) DBSec 2012. LNCS, vol. 7371, pp. 41–55. Springer,
Heidelberg (2012)

9. Kleene, S.C.: On notation for ordinal numbers. J. Symb. Log. 3(4), 150–155 (1938)
10. Kuhn, D.R., Coyne, E.J., Weil, T.R.: Adding attributes to role-based access con-

trol. IEEE Comput. 43(6), 79–81 (2010)
11. Lampson, B.W.: Protection. ACM SIGOPS Oper. Syst. Rev. 8(1), 18–24 (1974)
12. Lang, B., Foster, I., Siebenlist, F., Ananthakrishnan, R., Freeman, T.: A flexible

attribute based access control method for grid computing. J. Grid Comput. 7(2),
169–180 (2009)

13. Osborn, S., Sandhu, R., Munawer, Q.: Configuring role-based access control to
enforce mandatory and discretionary access control policies. ACM Trans. Inf. Syst.
Secur. (TISSEC) 3(2), 85–106 (2000)

204 D. Servos and S.L. Osborn

14. Sandhu, R.S., Coyne, E.J., Feinstein, H.L., Youman, C.E.: Role-based access con-
trol models. Computer 29(2), 38–47 (1996)

15. Servos, D.: A role and attribute based encryption approach to privacy and security
in cloud based health services. Master’s thesis, Lakehead University (2012)

16. Servos, D., Mohammed, S., Fiaidhi, J., Kim, T.-H.: Extensions to ciphertext-policy
attribute-based encryption to support distributed environments. Int. J. Comput.
Appl. Technol. 47(2), 215–226 (2013)

17. Shen, H.-B., Hong,F.: An attribute-based access control model for web services. In:
Seventh International Conference on Parallel and Distributed Computing, Appli-
cations and Technologies, PDCAT 2006, pp. 74–79. IEEE (2006)

18. Wang, L., Wijesekera, D., Jajodia,S.: A logic-based framework for attribute based
access control. In Proceedings of the 2004 ACM Workshop on Formal Methods in
Security Engineering, pp. 45–55. ACM (2004)

19. Yuan, E., Tong, J.: Attributed based access control (ABAC) for web services. In:
Proceedings of the 2005 IEEE International Conference on Web Services, ICWS
2005. IEEE (2005)

Logical Method for Reasoning About Access
Control and Data Flow Control Models

Luigi Logrippo(&)

Département d’informatique et d’ingénierie,
Université du Québec en Outaouais, Gatineau, QC J8X 3X7, Canada

luigi@uqo.ca

Abstract. Some logic definitions applicable to a variety of access control and
data flow control models are proposed. A formalization of concepts of confi-
dentiality and integrity is provided, on the basis of predicates CanKnow and
CanStore. The application of these concepts is demonstrated for simplified ver-
sions of the following models: Coalitions, Multi-Level Systems, Role-Based
Access Control, High Water Mark, Chinese Wall. Formal definitions and proofs
of invariant properties of these models in terms of our concepts are given. It will
then appear that these models have many possible variations and combinations of
which only few have been studied. These concepts can be useful for developing
proofs on access control models, automatically or manually, for developing new
models, and for teaching access control and data flow control concepts.

Keywords: Access control � Flow control � Formal methods � Logic �
Invariants

1 Introduction

In order to perform operations on data objects (typically, reading from them or writing
on them, according to the well-known UNIX data protection primitives) subjects must
secure the authorization of access control systems. Some of these systems are con-
cerned not only about single accesses, but also about propagation of data (flow control).

The theory of access control systems has generated extensive literature. Given the
importance of the access control function, it is generally agreed that such systems have
to be built according to solid formal methods. Many such methods have been proposed.
The logic of the models underlying such systems has often been specified in formal
terms, and proofs have been provided of their soundness.

However, there is no agreement on what kind of logic methods can be used in order
to prove properties of these models. Different authors use different concepts and
methods, tailored to the specific model they are discussing. In standard textbooks [5],
the various models are presented with different formalisms. The result is conceptual
fragmentation in the area, which makes it difficult to isolate basic concepts and to
combine solutions.

In this paper, we identify some basic access control and data flow control concepts
that can be used for characterizing the properties of abstract models and for providing
their proofs. The concepts are intuitive and are shown to be general enough to deal with

© Springer International Publishing Switzerland 2015
F. Cuppens et al. (Eds.): FPS 2014, LNCS 8930, pp. 205–220, 2015.
DOI: 10.1007/978-3-319-17040-4_13

several of the classical models of access control. In order to keep proofs simple and the
paper within page limits, these models have been reduced to their minimal charac-
teristics and adapted to our method. Also, proofs are sketchier or omitted for the more
complex models.

We concentrate on proving properties of confidentiality and integrity, for which we
propose our own formal definitions. According to an often cited source [17], confi-
dentiality is related to disclosure of information, while integrity is related to modifi-
cation of information. In our formal method, confidentiality defines what subjects can
know, and integrity defines what objects can contain. We are aware of the fact that
these two terms are often used with more complex meanings. Our definitions arise from
our concepts and do not attempt to fully capture these meanings.

These properties can be also seen as requirements that can be proven to be
invariant for the models because of the access control rules.

After a brief literature review in Sect. 2, the main ideas of this paper are presented in
Sect. 3. The following sections present case studies to show the range of applicability of
the method and can be read independently, with the exception mentioned in Sect. 11.
An easy application is coalitions, Sect. 4. Upward multilayer models, with their coun-
terpart, downward multilayer models, are presented in Sects. 5 and 6. Section 7 presents
a model for categories or domain powersets as we call them. If incompatibilities between
domains are defined, then we obtain a sort of static Chinese Wall model, presented in
Sect. 8. A very simplified RBAC model is presented in Sect. 9. In Sects. 10 and 11, we
deal with the dynamic models of High Water Mark and Chinese Wall. Section 12
presents prospectives of research.

2 Literature Review

Over the years, there have been many contributions on logic formalisms and formal
methods for access control models. Most of these contributions addressed specific
models and applications. Others were more general but went in directions that are
orthogonal to ours. Abadi has written many papers on this general subject, but
addressing subjects such as authentication, cryptography, security protocols and lan-
guages for programming security policies. A survey paper published in 2003 can be
used as introduction to his work [1]. Bertino et al. [4] developed a logical framework “to
evaluate and compare the expressive power of access control models”, which is not the
purpose of our paper. Similar goals inspired the work of Habib, Jaume and Morisset
[9, 12]. Barker [2, 3] has developed a general logic framework for the modeling of
access control, but his main focus were policy systems, rather than reasoning about
access control and flow control properties of models as in our paper. Crampton et al. [6]
presented a logic for automated tools “to assist in reasoning about the effects of an access
control mechanism on the computations performed by an operating system”. Cuppens
and Demolombe [7] developed a modal logic framework to specify confidentiality
policies. They addressed indirect channels such as deductive and abductive ones.

206 L. Logrippo

Combining these approaches with ours will be the subject of future research.
The access control models we discuss are well-known textbook models [5, 8]. We

refer to these sources for citations and background information. As mentioned, the
usual definitions are adapted to our method.

3 Basic Concepts for Our Logical Method

Our method uses seven basic concepts:

• Three kinds of entities: Subjects, Objects, Data Variables. The objects model files or
databases, and data variables stand for data values contained in the objects.

• Two relationships between subjects or objects and data variables, respectively
CanKnow and CanStore

• Two relationships that express access control constraints or rules between subjects
and objects: CanRead, CanWrite.

We will see that this is enough to define several basic access control models and
prove some of their main properties. Other more complex models may require addi-
tional concepts. We will see that the High Water Mark and Chinese Wall models will
require the notions of state and state transitions caused by read and write operations.

We use the letters S, O and x with various primes or numerals to denote variables
over respectively subjects, objects and data items (indexes will be used later to express
states). We also use the following abbreviations:

CK for CanKnow, CS for CanStore, CR for CanRead, CW for CanWrite
A simple example will introduce the idea of our method. Consider a system with

two subjects S1, S2 and two objects, O1 and O2. Suppose that we have the following
access control relationships:

CR(S1,O1), CW(S1,O2), CR(S2,O2).
Suppose also that CS(O1,x) is given unconditionally, so we know that x is in O1.

Then S1 can read x from O1 and store it in O2. S2 can then read x from O2. We can
conclude that CS(O2,x) and CK(S2,x).

In other words, subjects can know values by reading them from the data objects
they are authorized to read, and objects can store values that are written on them by
subjects authorized to do so. In order for something to be known or stored at all in a
system we must also assume that some subjects can know something or some objects
can store something at some point and this will be expressed by unconditional
relationships.

Security research knows methods for passing information between subjects without
using intermediate objects, as first discussed in [13]. A reference that uses a logical
point of view is [7]. Our method does not consider explicitly these methods, and so
does not attempt to cover information flow in its generic meaning but is open to the
addition of other entities and rules.

Logical Method for Reasoning About Access Control 207

Table 1 defines the deduction rules for our method. The rule for CK expresses the
fact that if there exists an object that can store a value and a subject can read that object,
then the subject can know the value. The rule for CS deals with storing and is similar.
The rules of Table 1 will be used throughout this paper, although for readability we will
use their intuitive meaning in place of their logic formulation. A translation into
symbolic notation should always be possible.

We also use the auxiliary functions CSS and CKS, as follows:
For any S, CanKnowSet(S) or CKS(S) is the set of data variables x for which CK

(S,x) is true: CKS(S) = def {x | CK(S,x) = true}
For any O, CanStoreSet(O) or CSS(O) is the set of data variables x for which CS

(O,x) is true: CSS(S) = def {x | CS(S,x) = true}.
We will use both the notation based on CS and CK binary predicates and the

notation based on CKS and CSS sets. These two notations are equivalent, e.g.
the deductive rules of Table 1 could be expressed in terms of sets, but in intuitive terms
one notation is sometimes more clear than the other. E.g. it may be easier to say: S can
know x rather than saying: x is in the set that can be known by S. On the other hand it is
easier to say that S can know everything that S’ can rather than saying that for all x, etc.
The set notation will be used in order to define the confidentiality and integrity
properties.

Concerning logical notation, in order to simplify the expressions, we omit universal
quantifiers. Variables that are not existentially quantified should be assumed to be
universally quantified outside the expression. This implies that several free occurrences
of the same variable in an expression refer to the same entity. This is a common
convention in algebra and logic.

A key element of our logic method is the use of variable labelling, e.g. in the next
section we use the notation O:D to denote object O belonging to domain D. These
labels can be thought of as types, since they regulate the use of read and write oper-
ations for the variables that are associated with them, by means of CR and CW
predicates. However we will not make use of type theory concepts. Our use of labels is
inspired by [14] but we are not attempting in this paper to establish a relationship
between our method and the method of [14].

We should clarify the role of these labels in implementations of the models
described by our method. If a label is used in the access control rules of a model, then it
should be available in the implementation, e.g. for the model of the next section the
implementation should have available the labels indicating the domains of subjects S or
objects O. Otherwise, the label is there only for our proofs, to show the provenance of
entities, e.g. in the next section x:D means that data variable x belongs to domain D but
an implementation of the model does not need to know this, since the access control
rules do not use it. There are security models in which the labels of data variables
should be available to the implementation, such is the one of [14].

To lighten the notation we also write variables without labels. This means: any
possible label, according to the context. For example in Table 1, x, S and O have no
labels which means that the rules apply for any labels, still subject to the rule that if
there are several free occurrences of the same variable in an expression, they refer to
the same entity and so all such occurrences are understood to have the same label.

208 L. Logrippo

4 Coalitions

The study of coalitions is a first application of our method. It is very simple, but
introduces a concept that is useful in practice and provides a good introduction to our
method. The main properties of coalitions will hold, with appropriate changes, for other
models that will be discussed later.

Coalitions model collaborating organizations that share data. A coalition is a set of
domains that are mutually compatible. Data, subjects and objects belong to specific
domains but subjects can read or write from or to other objects of their coalition. So an
object will store values only from its own coalition. For example, in a coalition of
banks, each bank has its own customers, but all banks can read from each other’s
databases and so can know and store all the data of all the members of the coalition.

Coalitions in their elementary form presented here are not mentioned in the liter-
ature. Some papers have considered information sharing schemes with relation to Role-
Based Access Control. Other papers study organizational and collaborative issues
related to coalitions, spontaneous coalitions, coalitions in social networks, etc., issues
which are beyond the scope of this paper. We give coalitions their place in our cata-
logue of basic models of access control.

To formalize the notion of coalitions, we use the following notation and
conventions:

• S:D, O:D, x:D are variables for subjects, objects and values belonging to domain D
• For each D, we assume that there is at least one S:D, one O:D and one x:D
• D ≈ D = def D and D’ belong to the same coalition: this an equivalence relation that

is supposed to be known for a given system.

We assume that for each data variable x:D we have at least one of the following two:

• an unconditional relationship of the form CK(S:D, x:D) stating that subject S:D can
know x:D

• an unconditional relationship of the form CS(O:D, x:D) stating that object O:D can
store x:D

The access control rules and the confidentiality and integrity properties for coali-
tions are given in Table 2:

Table 1. Deductive system

Logical Method for Reasoning About Access Control 209

The contents of Table 2 can be taken in one of two ways: one could start from the
access control rules and prove that the confidentiality and integrity properties
are invariant by the rules. Or one could start from the desired properties and derive the
rules. Here we take the first avenue and we leave the second for future research. We
have the following results, note that several of them are independent of the label of x.

Property 1: (Pervasiveness of data values in a domain): CK(S:D, x) ↔ CS(O:D, x)

Proof: Any S:D can write on any O:D and any S:D can read from any O:D. □

The following properties extend the pervasiveness to all domains in a coalition

Property 2: D ≈ D’ → (CK(S:D, x) ↔ CK(S:D’, x))

Property 3: D ≈ D’ → (CS(O:D, x) ↔ CS(O:D’, x))

Property 4: D ≈ D’ → (CK(S:D, x) ↔ CS(O:D’, x))

Proofs: They are similar for all three. If a subject in a coalition can know any value,
then it can write the value in an object in the same coalition, from which it can be read
by another subject in the coalition, etc. □

Property 5: (Main coalition property): (CK(S:D, x:D’) ∨ CS(O:D, x:D’)) ↔ D ≈ D’

Proof for → : This property can be true unconditionally and then D = D’. Other CK or
CS relationships can be inferred from the unconditional ones only by using CK or CS
inference rules. The access control rules ensure that D ≈ D’ at each inference, and ≈ is
transitive.

Proof for ← : Both consequences are simultaneously true, and the proofs are similar.
Let us prove only D ≈ D’ → CK(S:D, x:D’). By the unconditional relationships, there
must exist a subject S:D’ that knows x:D’ or an object O:D’ that stores it. In the first
case, x:D’ can be written on a O:D’. Since D ≈ D’, S:D can read from it. In the second
case, no write is necessary and S:D can read directly from O:D’. □

The following corollary is another way to write the confidentiality and integrity
properties of Table 2.

Table 2. Access control rules and properties for coalitions

210 L. Logrippo

Corollary: CK(S:D, x:D’) ↔ D ≈ D’ and CS(O:D, x:D’) ↔ D ≈ D’

In view of the previous results, we can strengthen the three pervasiveness properties to
‘if and only if’. Let us take the first one, and the other two follow in similar ways:

Property 2’: (CK(S:D, x) ↔ CK(S:D’, x)) ↔ D ≈ D’

Proof: the ← part was Property 2, now for (CK(S:D, x) ↔ CK(S:D’, x)) → D ≈ D’.
This means proving: (CK(S:D, x:D’’) ↔ CK(S:D’, x:D’’)) → D≈D’. By the Corollary,
D ≈ D’’ and D’ ≈ D’’ so D ≈ D’. □

This model can be varied in various ways, which we propose for further study. For
example, subjects can read only from their own domain, but can write anywhere in the
coalition, or: subjects can read from anywhere in the coalition, but write only in their
own domain, or yet: subjects in different domains can have different read and write
properties, e.g. we can have ‘master’ and ‘slave’ domains. This last variation brings us
to the models considered in the next section.

5 Upward Multi-level Models (UML)

The upward multi-level models (UML) are characterized by partially ordered sets of
security levels. On the low (high) end of the ordering we find the low (high) security
classifications. These models are characterized by the requirement: information can
only move upward, i.e. from lower to higher security classifications [17]. The well-
known Bell-La Padula model (BLP henceforth) belongs to this category. The main
simplification we make here is that a single set of levels is used for both security
clearance and security classification. So if TopSecret > Secret, subject Alice:TopSecret
can read from but not write on object MedFile:Secret.

Furthermore:

• S:L, O:L, x:L are variables for subjects, objects and data belonging to level L
• For each level L, we assume that there is at least one S:L, one O:L and one x:L

This assumption allows us to avoid having to consider some limit cases, such as
levels among which no information could flow, levels holding no information of their
own, etc. Without it the essential results would remain valid, but with more compli-
cated formulation and proofs. However we don’t assume that the number of levels is
finite and we don’t require them to form a lattice.

We assume that for each x:L we have at least one of the following two:

• an unconditional relationship of the form CK(S:L, x:L) stating that a subject S:L can
know x:L

• an unconditional relationship of the form CS(O:L, x:L) stating that an object O:L
can store x:L

The access control rules and the confidentiality and integrity properties for UML
are given in Table 3. The latter state that a value of a certain security level cannot be
known or stored at a lower security level, which is another way of saying that infor-
mation can only move up.

Logical Method for Reasoning About Access Control 211

We have the following results, which should be obvious. They state the perva-
siveness of data values in a level and the upward monotonicity of knowledge. They are
independent of the label of x.

Property 1: CK(S:L, x) ↔ CS(O:L, x)

Property 2: L ≥ L’ → (CK(S:L’, x) → CK(S:L, x))

Property 3: L ≥ L’ → (CS(O:L’, x) → CS(O:L, x))

Property 4: L ≥ L’ → (CK(S:L’, x) → CS(O:L, x))

Proof of Property 2: By Property 1, an O:L’ can store x. By the CR rule, S:L can read it
and know it. □

Property 5: (Main UML property): (CK(S:L, x:L’) ∨ CS(O:L, x:L’)) ↔ L ≥ L’

Proof for → : This property can be true unconditionally and then L = L’. Otherwise, it
can be true only by CK and CR inference rules. But then L ≥ L’ must be true at each
inference by the access control rules and then the result follows by transitivity.

Proof for ← : By the unconditional relationships, CK(S:L’, x:L’) ∨ CS(O:L’, x:L’) for
some S:L’ or O:L’. Since L ≥ L’, (CK(S:L, x:L’) ∨ CS(O:L, x:L’)) can be derived by
repeated use of CK or CS inference rules. We have assumed that there are subjects and
objects at every level, so data can move up.□

Property 6: (Strong monotonicity): (CK(S:L’,x) → CK(S:L,x)) ↔ L ≥ L’

Proof. The ← is Property 2 and the → can be proven by contradiction. (CK(S:L’,
x)→ CK(S:L,x)) ∧ L < L’ is impossible since we have assumed that at each level, such
as L’, there is a variable x:L’ that cannot be read from level L. □

Property 7 and Property 8 are corresponding ‘iff’ strengthening of Properties 3 and 4
and can be proven in similar ways.

We can express the same properties in terms of sets, with the proper inclusion
operator ⊂ :

Property 6’: (CKS(S:L) ⊂ CKS(S:L’)) ↔ L < L’

Property 7’: (CSS(O:L) ⊂ CSS(O:L’)) ↔ L < L’

Property 8’: (CKS(S:L) ⊂ CSS(O:L’)) ↔ L < L’

The confidentiality and integrity properties of Table 3 follow as corollaries.

Table 3. Access control rules and properties for Upward Multi-level models

212 L. Logrippo

6 Downward Multi-level Models (DML)

We have just seen that UML models allow values to migrate to higher levels. There-
fore, higher levels are not protected against information coming from lower levels. This
is usually expressed by saying that UML leads to high confidentiality but low integrity.
To protect the integrity of the upper layers, the Biba model was invented, where
information can only move downward [17]. The duality of downward multi-level
models (DML) with respect to UML is well-known, and we leave the proof of the
corresponding properties as an easy exercise.

We propose as interesting cases study a ‘maximum integrity model’ that we have
found in a company. Some important documents of this company are placed in a security
level that can be read by all, but cannot be written on. Furthermore, information
belonging to this level cannot be stored anywhere else. In this way, these documents do
not risk becoming corrupted. Note that in this model we don’t have the symmetry
between confidentiality and integrity that characterizes the previous models: all levels
can know but only one can store this information. Unlike the previous models, the labels
of the data variables seem to be important in implementations of this model.

7 Domain Powerset Models (DP)

Domain powerset models (DP) are often called category or compartment models and
are combined with the UML model in the usual presentation of the BLP model.
However they deserve a place of their own because they can be combined with other
models than UML.

Let us assume that in an organization there are three domains (or categories or
compartments) of data, for example: NUC, EUR, US. Some subjects can be allowed to
access only data classified NUC, others only data classified EUR, other yet only data
classified US. We label them {NUC},{EUR},{US}. But then there may be subjects
allowed to access data classified NUC or EUR, they will be labeled {NUC, EUR} and
so upward in the powerset lattice until we find the label {NUC, EUR, US}. There may
also be subjects not allowed to access anything, labeled {}. See for this [5]. We extend
this labeling method to objects, to specify what are the domains of the values that can
be stored in them.

We will continue using D with primes for variables for domain names. Labels
Δ, Δ’… will denote sets of domains. A subject S:Δ has clearance to know only data
variables in the domains in Δ. An object O:Δ can store data belonging to any of the
domains in Δ. We also assume that there is at least one object, subject and data variable
in each of the domains.

For each variable x:D we have at least one of the following two:

• An unconditional relationship of the form CK(S:{D}, x:D)
• An unconditional relationship of the form CS(O:{D}, x:D)

The access control rules and the properties for this model are given in Table 4 and
their proofs follow by methods similar to those we have seen.

Logical Method for Reasoning About Access Control 213

8 Domain Powersets with Conflicts (DPC)

The existence of conflicts between domains motivates this model, which is a ‘static’
version of the Chinese Wall model (see Sect. 11). Starting from the domain powerset
model (DP), we define conflicts between domains, and then we stipulate that subjects
(objects) may not know (store) values belonging to mutually conflicting domains: this
phrase expresses the confidentiality (integrity) properties of this model. This means that
labels containing conflicting domains are not allowed in DPC, neither for subjects, nor
for objects. Note that after this removal, the powerset lattice of labels of the DP model is
no longer a lattice. References [16, 17] present a lattice construction for Chinese Wall.
This is possible for our model as well, if we agree that there could be unassignable labels.

Rather than using a conflict relationship we prefer to use its complement, the com-
patibility relationship, which is reflexive and symmetric. For domains D and D’ we write
D ∼ D’ if the two domains are compatible. We suppose that this relationship is known in a
given organizational context. We still use labels Δ as for the DP model, but with the
condition that for D, D’ ∈ Δ, D ∼ D’.

Because of this fact, the CR and CW relationships for the DPC model can be the same
as those of the DPmodel in Table 4, and the confidentiality and integrity properties follow.

As an example, consider a system with two subjects, Alice and Bob, and three
domains, Bank1, Bank2 and Oil. The domains are all pairwise compatible, with the
exception of Bank1 and Bank2. So allowed labels are: {}, {Bank1}, {Bank2}, {Oil},
{Bank1, Oil}, {Bank2, Oil} and forbidden labels are: {Bank1, Bank2}, {Bank1,
Bank2, Oil}. A possible label assignment is: Alice: {Bank1, Oil}; Bob: {Oil}; Bank1:
{Bank1,Oil}; Bank2: {Bank2, Oil};Oil: {Oil}. We’ll leave it as an exercise for the
reader to determine the resulting CR and CW relationships.

An issue in this model is that a conservative label assignment could assign to all
subjects only empty labels. This of course would come into conflict with “need to
know” and availability requirements, and is a reason for the model of Sect. 11.

9 Role-Based Access Control (RBAC)

In order to present the essential idea in one page, we will consider here a drastically
simplified RBAC with only subjects, objects and data variables. We will take the
concept of RBAC’s role to correspond to our concept of subject and subjects-roles will
be called R1, R2 etc.

Table 4. Access control rules and properties for Domain Powerset Models

214 L. Logrippo

Subjects-roles will be labeled with their sets of permissions P, each of which will be
of the form (CR,O) or (CW,O). Normally objects are not labeled in RBAC. The access
control rules for RBAC are given in Table 5.

Example:

• R1:{(CR,O1),(CW,O2)}
• R2: {(CR,O1),(CR,O2)}
• R3: {(CR,O1), (CR,O2), (CW,O2), (CW,O3)}
• R4: {(CR,O3)}

We assume unconditional relationships of the form CK(Oi, xi:Oi) for each Oi. By
application of the inference rules of Table 1 and the access control rules of Table 5 in
the example above the following can be derived:

• CKS(R1) = {x1:O1};
• CKS(R2) = CKS (R3) = {x1:O1, x2:O2};
• CKS(R4) = {x1:O1, x2:O2, x3:O3}
• CSS(O1) = {x1:O1};
• CSS(O2) = {x1:O1, x2:O2};
• CSS(O3) = {x1:O1, x2:O2, x3:O3}

Constraints can be defined in RBAC according to the application. Here are two
constraints that are violated in the previous example:

• (Confidentiality) No subject-role should be allowed to know both x1:O1 and x2:O2
• (Integrity) No object should be able to store both x1:O1 and x2:O2

A practical case for this integrity constraint could be: no cheque can bear two
accountant signatures. This constraint is violated if O2 is a cheque and x1:O1, x2:O2
are accountant signatures.

Other possibilities exist for the application of this method in RBAC, but this should
be the subject of another paper.

A more complete presentation requires considering mappings between users,
subjects and roles, as well as mappings between roles and sets of permissions. See [15]
for a thorough discussion of data flow in RBAC.

10 High Water Mark (HWM)

HWM is our first example of a dynamic model. In dynamic models, some read or write
operations that are not allowed by the access control rules are still possible and lead to
state changes, i.e. label changes for subjects and objects.

Table 5. Access control rules for RBAC

Logical Method for Reasoning About Access Control 215

The HWM model is a variation of the UML model. We define it as follows (note
that the usual definition is somewhat different). Writing down is possible but when this
happens, the level of the object which has received the information from higher up is
moved up to the level of the subject that has just written on it. Reading up is possible
but as soon as a subject does this, its level is moved up correspondingly.

This model can be formalized by a state machine whose transitions are determined
by read and write operations. As a consequence of the operations, subjects or objects
can change levels so that the confidentiality and integrity properties of UML models
can remain true. Data variables don’t change labels.

We have an unbounded set of states M0, M1 … Li(S) or Li(O) are the labels of S or
O at state Mi. The labels denote levels as in UML and the set of levels is the same for
all states. The notation CKSi, CSSi has similar meaning. Each one of these sets is
determined by what can be read or stored at state Mi according to the access control
rules of the UML model.

Note that although now the notation S:Li(S) or O:Li(O) would be formally more
appropriate, we will continue to use the notation S:Li or O:Li for simplicity. A con-
sequence is the fact that Li is not the same in S:Li and O:Li.

For the initial state M0 and each x:L we have one of the unconditional relationships:
x:L∈CKS0(S:L0) or x:L∈CSS0(O:L0) where L0 = L.

R(S,O) and W(S,O) are respectively read and write operations of a subject on an
object which cause state transitions. They are not constrained by the access control
rules and have no pre-conditions, but have post-conditions.

The post-condition of a R(S:Li, O:L’i) operation is:

• For S:Li+1, Li+1 is the greatest of Li and L’i
• However for O:L’i+1, L’i +1 = L’i (Upgrade security level of subject, but the object

does not change level)
• CKSi+1(S:Li+1) = CKSi(S:Li)∪CSSi(O:L’i) and CSSi+1(O:L’i+1) = CSSi(O:L’i) (Add

to what subject can know, but the object’s knowledge is unchanged)

Correspondingly, the post-condition of a W(S:Li, O:L’i) operation is:

• For O:L’i+1, L’i+1 is the greatest of Li and L’i
• However for S:L i+1, Li+1 = Li

• CKSi+1(O:L’i+1) = CKSi(S:Li)∪CSSi(O:L’i) and CSSi+1(S:Li+1) = CSSi(S:Li)

Given these definitions, the confidentiality and integrity properties of Table 6 seem
to be intuitively true for the HWM model, although a detailed proof will have to
consider all the cases. The properties hold for the unconditional relationships at the
initial state and the post-conditions for each state transition ensure their invariance.

Note that R(S,O) (or W(S,O)) operations could be executed when the access control
conditions CR(S,O) (or CW(S,O)) are true. However then the initial and final states of
the transition are identical.

The theory knows also a “low water mark” model in connection with DML models
and the same concepts apply, with the appropriate modifications.

216 L. Logrippo

11 Chinese Wall (ChW)

The usual definitions of ChW characterize this model in terms of constraints on reading
and writing expressed by ‘simple’ and ‘*’ properties [5, 16]. We start instead from the
requirements, which are the same as for our DPC model, with its confidentiality and
integrity properties. Unlike the DPC model, in our version of ChW subjects initially
know nothing, and objects know only one domain. Subjects (objects) are allowed to
acquire new information by read (write) operations and then their labels change, but
these operations are allowed only if they lead to allowed labels.

There would be much to say about this model, but we limit ourselves to the
minimum necessary to illustrate the application of our method. So we consider only the
case where the sets of domains, subjects and objects are fixed.

The understanding of our version of ChW depends on the understanding of the
DPC model (Sect. 8) and the HWM model (Sect. 10). We have a set of domains {D1,
… Dn}, with a compatibility relation ∼ between domains as in the DPC model. The
state model is similar to the one of HWM and similar notation will be used, however
here there are both pre-conditions and post-conditions for reading and writing.

Labels Δi are subsets of the set of domains. For S:Δ0, Δ0 = {} and CKS0(S:Δ0) = {}.
For O:Δ0, Δ0 = {Dk} for some k and CSS(O:Δ0) is the set of all x:Dk. So at the
beginning subjects know nothing, and each object stores information about one
domain. At each state, the access control rules are the same as for the DPC (or DP)
model and determine the CKSi, CSSi sets but reading and writing operations R and W
are not constrained by them, they are only constrained by their pre-conditions. In S:Δi,
Δi is the set of labels of data variables in CKSi(S:Δi) and similarly for O:Δi.

We write Δ ∼ Δ’ if for D∈Δ, D’∈Δ’, D ∼ D’. Δ ∼ Δ’ is the pre-condition for both R
(S:Δ, O:Δ’) and W(S:Δ, O:Δ’). In the case of operation R this means that all the
information that S already can know must be compatible with the all the information
that O already can store, and similarly in the case of operation W.

The post-condition for R(S:Δi, O:Δ’i) describes the fact that S can now know
anything in O:

• For S:Δi, Δi+1 = Δi∪Δ’i
• For O:Δi, Δi+1 = Δi

• CKSi+1(S:Δi+1) = CKSi(S:Δi) ∪ CSSi(O:Δ’i)
• CSSi+1(O:Δ’i+1) = CSSi(O:Δi)

The post-condition for W(S:Δi, O:Δ’i) describes the fact that O can now store
anything that S knows:

Table 6. Properties for HWM

Logical Method for Reasoning About Access Control 217

• For O:Δi, Δi+1 = Δi∪Δ’i
• For S:Δi, Δi+1 = Δi

• CSSi+1(O:Δi+1) = CSSi(O:Δi) ∪ CSSi(O:Δ’i)
• CKSi+1(S:Δ’i+1) = CSSi(S:Δi)

Note that the CR and CW access control rules for the DPC model imply the pre-
conditions for the R and W operations. If these are executed when the access control
rules are true, the initial and final states of the transition will be identical.

Following is an example of execution of such a system, similar to the example of
Sect. 8.

We have four objects and four domains. At the beginning each object contains one
domain, which has the same name as the object:

Bank1:{Bank1}, Bank2:{Bank2}; Oil:{Oil}; Auto:{Auto}
We suppose that we have only one conflict, between domains Bank1 and Bank2.

We have two subjects, Alice and Bob, who know nothing at the beginning, their labels
are {}. A possible sequence of state transitions is:

Alice reads from Bank1, now Alice:{Bank1}.
Bob reads from Bank2, now Bob:{Bank2}.
Alice reads from Oil, now Alice:{Bank1,Oil}.
Bob writes on Oil, now Oil:{Oil,Bank2}.
(Henceforth, Alice cannot read from Oil, since it may contain Bank2 data).
Alice writes on Auto, now Auto:{Auto,Bank1,Oil}
(Henceforth, Bob cannot read from Auto, since it may contain Bank1 data)
Each one of the above is a R or W operation that changes the state. After a number

of such operations we will reach a state after which no new labels can be generated. But
in a real execution after this and between state transitions other read and write oper-
ations are possible, which agree with the DPC (or DP) access control rules and
therefore do not change the state.

The confidentiality and integrity properties for ChW are the same as those for the
DPC model, extended to the set of all possible states. It is clear in this example that it is
not possible to reach a state where Alice or Bob can know both x:Bank1 and y:Bank2,
and similarly for what objects can store.

Note that according to the original definition of ChW Alice would be prevented to
write on Auto. This example shows that the two shortcomings of this definition
identified in [16] are not present in our version of ChW. Similar results were shown in
[16, 18] by using different models.

12 Future Research: Variations and Combinations
of the Models

Once a basic common reasoning method has been developed, and once some basic
models have been identified, it is possible to start playing with variations and com-
binations of the models. We have mentioned that by combining the UML model with
the DP model we obtain the most commonly referenced variety of the BLP model. It is
also known that we can further combine this with the DML models to obtain a model
where UML is used for certain types of information (e.g. sales statistics), and DML for

218 L. Logrippo

others (e.g. directives). Since these models have been invented, many variations for
them have been proposed in the literature and it will be interesting to see which ones fit
in our framework, and if not what extensions will be necessary.

Aspects of Discretionary Access Control (DAC) models can be described by using
labels to describe capabilities of subjects or access control lists for objects, where label
changes result in state changes.

New models can also be invented. For example, one can think of combinations of
the RBAC model with layered models, if subject and object variables are given levels
in additions to permissions. Such models can be made dynamic if labels can change by
effect of operations, as a consequence of user action or administrative intervention.

References [10, 19] propose Attribute Based Access Control (ABAC) as a very
general access control model where each one of these new combined models could find
its place. Applications of these models can perhaps be found in the Web and in the
Cloud, where there is a need for multi-functional access control models [11].

Of course, many concepts can be added to our model: operations different from
reading and writing, creation and deletion of subjects and objects, etc.

13 Conclusions

We have presented a new formalized reasoning method for expressing and proving
properties of access control and data flow control models. This method is based on
simple and intuitive concepts, but has been shown to be usable for a number of
classical access control models. The properties proven were already known in their
essence, but with reference to different conceptual frameworks.

Some classical proof methods in this area deal with subject and objects and only
implicitly with data. Our method deals explicitly with data, making it possible to prove that
data values originating from certain levels or domains cannot cross certain boundaries.

In all the examples we have used essentially the same reasoning method. Each model
has access control rules that are defined to ensure the invariance of the model’s confi-
dentiality and integrity properties, but this invariance must be proven. Unconditional
relationships are specified to populate the model and they are such that the desired
properties are true in a base case. Then the fact that the properties are invariant is proven by
an induction step showing that, because of the access control rules, each use of an inference
rule produces results that preserve the properties. The proofs in this paper were straight-
forward but they will not necessarily be so for the combined models proposed in Sect. 12.

The use of our method has allowed us to determine that some of the classical
models can be decomposed into more elementary models. Our common logic frame-
work allows these basic models to be varied and combined in many ways, leading to
other models that have not been studied in the literature but can be practically useful.
Their properties can be proven with our framework.

One interesting question towards which progress can now be made is the following:
given certain desired flow control properties, find a labeling principle and a combi-
nation of reading and writing authorizations that can be used to achieve it.

Our method can be at the basis of automatic proof methods for more complex
models and can be an asset for teaching systematically access control and flow control
theory.

Logical Method for Reasoning About Access Control 219

Acknowledgment. This research was supported in part by the Natural Sciences and Engineering
Research Council of Canada. I would like to thank Frédéric Cuppens and Nora Cuppens-
Boulahia for having hosted me during a phase of this project. I would also like to thank my PhD
students Sofiene Boulares, Omar Abahmane and Jamal Abd-Ali for many inspiring discussions.

References

1. Abadi, M.: Logic in access control. In: Proceedings of the 18th IEEE Symposium on Logic
in Computer Science (LCS 2003), pp. 228–233 (2003)

2. Barker, S.: Access control for deductive databases by logic programming. In: Stuckey,
P.J. (ed.) ICLP 2002. LNCS, vol. 2401, pp. 54–69. Springer, Heidelberg (2002)

3. Barker, S.: The next 700 access control models or a unifying meta-model? In: Proceedings
of the 14th ACM Symposium on Access Control Models and Technologies (SACMAT
2009), pp. 187–196 (2009)

4. Bertino, E., Catania, B., Ferrari, E., Perlasca, P.: A logical framework for reasoning about
access control models. ACM Trans. Inform. Syst. Secur. (TISSEC) 6(1), 71–127 (2003)

5. Bishop, M.: Computer Security – Art and Science. Addison-Wesley, USA (2003)
6. Crampton, J., Loizou, G., O’Shea, G.: A logic of access control. Comput. J. 44(2), 137–149

(2001)
7. Cuppens, F., Demolombe, R.: A modal logical framework for security policies. In: Proceedings

of the 10th International Symposium on Foundations of Intelligent Systems (ISMIS 1997),
pp. 579–589 (1997)

8. Jaeger, T.: Operating System Security. Morgan and Claypool, San Rafael (2008)
9. Jaume, M., Morisset, C.: Un cadre sémantique pour le contrôle d’accès. Technique et

Science Informatique 27(8), 951–976 (2008)
10. Jin, X., Krishnan, R., Sandhu, R.: A Unified Attribute-Based Access Control Model

Covering DAC, MAC and RBAC. In: Cuppens-Boulahia, N., Cuppens, F., Garcia-Alfaro,
J. (eds.) DBSec 2012. LNCS, vol. 7371, pp. 41–55. Springer, Heidelberg (2012)

11. Khamadja, S., Adi, K., Logrippo, L.: Designing flexible access control models for the Cloud.
In: Proceedings of the 6th International Conference on Security of Information and
Networks (SIN 2013), pp. 225–232 (2013)

12. Habib, L., Jaume, M., Morisset, C.: Formal definition and comparison of access control
models. J. Inform. Assur. Secur. 4, 372–381 (2009)

13. Lampson, B.W.: A note on the confinement problem. Comm. ACM 16(10), 613–615 (1973)
14. Myers, A.C., Liskov, B.: Protecting privacy using the decentralized label model. ACM

Trans. Softw. Eng. Methodol. (TOSEM) 9(4), 410–442 (2000)
15. Osborn, S.: Information flow analysis of an RBAC system. In: Proceedings of the 7th ACM

Symposium on Access Control Models and Technologies (SACMAT 2002), pp. 163–168
(2002)

16. Sandhu, R.S.: Lattice-based enforcement of Chinese Wall. Comput. Secur. 11(8), 753–763
(1992)

17. Sandhu, R.S.: Lattice-based access control models. Computer 26(11), 9–19 (1993)
18. Sharifi, A., Tripunitara, M.V.: Least-restrictive enforcement of the Chinese Wall security

policy. In: Proceedings of the 18th ACM Symposium on Access Control Models and
Technologies (SACMAT 2013), pp. 61–72 (2013)

19. Wang, L., Wijsekera, D., Jajodia, S.: A logic-based framework for Attribute-Based Access
Control. In: Proceedings of the ACMWorkshop on Formal Methods in Security Engineering
(FMSE 2004), pp. 45–55 (2004)

220 L. Logrippo

A Formal Approach to Verify Completeness
and Detect Anomalies in Firewall

Security Policies

Ahmed Khoumsi1(B), Wadie Krombi2, and Mohammed Erradi2

1 Department of Electrical and Computer Engineering,
University of Sherbrooke, Sherbrooke, Canada

ahmed.khoumsi@usherbrooke.ca
2 ENSIAS, Mohammed V University, Rabat, Morocco

krombi@yahoo.com, erradi@ensias.ma

Abstract. Security policies are a relevant solution to protect informa-
tion systems from undue accesses. In this paper, we develop a formal
and rigorous automata-based approach to design and analyze security
policies. The interest of our approach is that it can be used as a com-
mon basis for analyzing several aspects of security policies, instead of
using a distinct approach and formalism for studying each aspect. We
first develop a procedure that synthesizes automatically an automaton
which implements a given security policy. Then, we apply this synthesis
procedure to verify completeness of security policies and detect several
types of anomalies in security policies. We also study space and time
complexities of the developed procedures.

1 Introduction

In this paper, we develop a formal automata-based approach to study firewall
security policies described by filtering rules. Our fundamental contribution is the
development of a procedure that synthesizes an automaton which implements a
security policy given as a table of filtering rules. Then, we apply our automata-
based approach for verifying completeness of security policies and detecting sev-
eral types of anomalies in security policies. We also detect and correct an error
in the commonly used definition of redundancy anomaly. Finally, we give a pre-
cise and accurate evaluation of space and time complexities of our developed
procedures.

Our results are presented as 14 propositions which have all been formally
proved. Due to space limitation, we do not present the proofs.

The rest of this paper is organized as follows. Section 2 presents related
work on modeling and analyzing firewall security policies. In Sect. 3, we present
preliminaries on firewall security policies. Section 4 contains a procedure that
synthesizes an automaton which implements a security policy given as a table
of filtering rules. In Sects. 5, 6, 7, and 8, we apply the synthesis procedure to
verify completeness and detect various types of anomalies in a security policy.
Section 9 evaluates space and time complexities of the procedures we have devel-
oped throughout Sects. 4, 5, 6, 7, and 8. We conclude in Sect. 10.
c© Springer International Publishing Switzerland 2015
F. Cuppens et al. (Eds.): FPS 2014, LNCS 8930, pp. 221–236, 2015.
DOI: 10.1007/978-3-319-17040-4 14

222 A. Khoumsi et al.

2 Related Work

Many studies on security policies focus on firewalls. In [1,2], the authors present
techniques and algorithms to detect anomalies in the filtering policy of a firewall.
Firewall policy anomaly is defined in [3] as the existence of two or more filtering
rules that match the same packet. The security policy is described by a tree
called Policy tree in [1] and Decision tree in [2], where each node represents a
field of a filtering rule and each link corresponds to a possible value of a field.
A path from the root to a leaf describes a filtering rule of the policy. A leaf
specifies the action (Accept, Deny) to be taken when the corresponding filtering
rule is satisfied. The authors of [4] also study anomaly detections, but we find
their categorization of anomalies less rigorous than in [1]. While in [1,2] the
study of anomaly detection is limited to stateless firewalls, in [5,6] the authors
provide solutions to analyze and handle stateful firewall anomalies.

In [7], the authors propose a method to detect functional discrepancies bet-
ween various implementations of a security policy of a firewall. The data struc-
ture used to model the security policy is a tree called Firewall Decision Diagram
(FDD) [8] which maps each packet to the decision to be taken by the firewall for
such a packet. Each non-terminal node in a FDD specifies a test performed on
a field of the packet, and each branch descending from this node corresponds to
possible values of this field.

In [9], the authors introduce Fireman, which is a toolkit for modeling and
analyzing firewalls. Fireman detects errors such as violation of a policy and
inconsistency in a policy of a firewall. Fireman is implemented using Binary
Decision Diagrams (BDD) [10] to represent predicates and perform all the set
of the available operations.

In [11], the authors propose a framework to generate automatically test
sequences to validate the conformance of a security policy. In such a framework,
the behavior of the system is specified by an extended finite state machine [12]
and the security policy is specified with the model OrBAC [13].

In [14], the authors present a visualization tool to analyze firewall configu-
rations. To use this visualization, the firewall policy is modeled using a specific
hierarchical way. The first level after the root in that model consists of the names
of the different rules. The second level contains the action to execute, the third
one the protocol, followed by the source and destination address. The hierarchi-
cal representation of the firewall is formed from rules data by grouping identical
rule elements in a recursive manner.

In [15], the authors develop a method to verify equivalence between two
security policies by extracting and comparing equivalent policies whose filtering
rules are disjoint.

In each of the above works, the security policy is modeled by a data structure
designed to solve a specific problem. To study a given security policy, we need to
model it: by a policy tree to study anomalies, by a FDD to study discrepancies,
by a BDD to study policy violation and inconsistency in a policy of a firewall, etc.
This observation motivated the recent work of [16] which develops an automata-
based approach to design and analyze several aspects of firewall security policies,

A Formal Approach to Verify Completeness and Detect Anomalies 223

instead of using a distinct approach and formalism for studying each aspect. The
present article adds the following contributions:

– We improve our synthesis procedure, in particular by defining formally the
product of automata and labeling the transitions by intervals instead of values,
which implies an enormous reduction of the number of transitions.

– We develop detection procedures, not only for shadowing anomaly, but also
for generalization, correlation, and redundancy anomalies.

– We detect and correct an error in the definition commonly used for redundancy
anomaly.

– We compute space and time complexities of our developed procedures.

3 Preliminaries on Firewall Security Policies

As defined in [17], firewalls are devices or programs that control the flow of net-
work traffic between networks or hosts that employ differing security postures.
The main objective of a firewall is to separate logically networks that have dis-
tinct security requirements. This is done by using rules on which communications
are permitted between networks. The behavior of a firewall is controlled by its
security policy which is specified by an ordered list of filtering rules defining
the decisions and actions to be taken each time a packet arrives at the firewall.
The packets arriving at the firewall are specified by an n-tuple of headers that
are taken into account by the security policy. Examples of headers: source IP
address, destination IP address, port number, protocol.

A firewall security rule (also called filtering rule) is expressed in the form:
if some conditions are satisfied, then a given action must be taken to authorize
or refuse the access. A rule can be represented as a couple (Condition, Action):

– Condition is a set of filtering fields F 0, · · · , Fm−1 corresponding to respective
headers H0, · · · ,Hm−1 of a packet arriving at the firewall. Each F j defines
the set of values that are authorized to Hj . Condition is satisfied for a given
packet P , if for every j = 0, · · · m−1 the value of the header Hj of P belongs to
the field F j . We say that P matches a rule R (we may also say: R matches P)
when the condition of R is satisfied for P . Otherwise, we say that P does not
match R (or R does not match P).

– The field Action is Accept or Deny , to authorize or forbid a packet to go
through the firewall, respectively.

Table 1 shows a structure of table that describes a security policy by a list
of filtering rules R1, · · · ,Rn. Each line of the table corresponds to a rule Ri

(1 ≤ i ≤ n) which is defined by: (1) its condition consisting of m filtering fields
F 0

i , · · · , Fm−1
i ; and (2) its action ai. The rules are given in decreasing priority

order, that is, when a packet P arrives at the firewall, matching of P and R1 is
verified: if P matches R1, then action a1 is executed; if P does not match R1,
then matching of P and R2 is verified. And so on, the process is repeated until
a rule Ri matching P is found or all the rules are examined. If none of the rules

224 A. Khoumsi et al.

R1 to Rn matches P , then usually a default rule is used for P . Such a default
rule has its condition equal to True, that is, it matches any packet.

A security policy of a firewall is said complete if for any packet P arriving at
the firewall, there exists at least one of its filtering rules which matches P . Note
that a security policy is complete if we integrate at the end of its list of rules a
default rule with condition True.

Table 1. Structure of a table of filtering rules

Rule F 0 . . . F j . . . Fm−1 Action

R1 F 0
1 . . . F j

1 . . . Fm−1
1 a1

. .

Rn F 0
n . . . F j

n . . . Fm−1
n an

Table 2 contains an example of security policy with four rules R1 to R4,
where each line of the table corresponds to a rule. The condition of each rule Ri

is defined by four fields named IPsrc, IPdst, Port and Protocol, and its action is
the last field. The term Any in the column of a field F j means any value in the
domain of F j . The term a.b.c.0/x is a usual notation that denotes an interval
of IP addresses obtained from the 32-bit address a.b.c.0 by keeping constant
the first x bits and varying the other bits. A packet P arriving at the firewall
matches a rule Ri if the following four points are satisfied:

– P comes from an address belonging to IPsrc,
– P is destined to an address belonging to IPdst,
– P is transmitted through a port belonging to Port,
– P is transmitted by a protocol belonging to Protocol.

This security policy is complete because R4 has the condition True (i.e., it
matches every packet). Consider for example a packet P specified by the headers
(88.120.10.15), (65.22.23.11), (25), (TCP), that is, P comes from 88.120.10.15, is
destined to 65.22.23.11, and is transmitted through the port 25 by the protocol
TCP. Only R4 matches P which is accepted because the action of R4 is Accept .

The example of Table 2 has been constructed specifically to illustrate the
detections of all the anomalies studied in Sects. 7 and 8.

Table 2. Example of security rules

Rule IPsrc IPdst Port Protocol Action

R1 Any 81.10.10.0/24 Any Any Accept

R2 192.168.10.0/24 81.10.10.0/24 21, 80 TCP Deny

R3 192.168.10.0/24 81.10.10.0/24 21, 85 Any Accept

R4 Any Any Any Any Accept

A Formal Approach to Verify Completeness and Detect Anomalies 225

4 Synthesis Procedure

In this section, we develop a procedure that synthesizes an automaton which
implements a security policy. The input of the procedure is a firewall security
policy F specified by an array of n filtering rules R1, · · · ,Rn ordered in decreas-
ing priority, where each Ri is defined by a condition consisting of m fields and
by an action ai. The result is an automaton ΓF implementing F which is gen-
erated in three steps which are presented below and illustrated by the example
of Table 2.

Due to space limitation, we omit theoretical details on automata. An automa-
ton A consists of states related by labeled transitions, and will be represented by
a graph whose nodes and arcs are the states and the transitions of A, respectively.
An arc from node q to node r labeled by the event σ represents the transition
q

σ→r. There is one initial state (with a small incoming arrow) and one or more
final states (in bold).

We will use the following notation of intervals of integers: [a, b] = {x | a≤x≤
b}, [a, b[= {x | a ≤ x < b},]a, b] = {x | a < x ≤ b} and]a, b[= {x | a < x < b}. For
the sake of clarity, in Figs. 1 and 2 we will use the shorthands of Table 3.

Table 3. Shorthands in Figs. 1 and 2

4.1 Step 1: Automaton for Each Filtering Rule

In Step 1, for each rule Ri, we synthesize an automaton Ai that has m + 1
consecutive states q0i , q1i , · · · , qm

i , where q0i is the initial state and qm
i is the final

state. Every pair of consecutive states qj
i and qj+1

i (0 ≤ j < m) are linked by
as many as transitions as the number of intervals defining the values of the field
F j

i . The transitions are labeled by the respective interval names. Then, each
automaton Ai is completed as follows:

– A new final state Ei is added.
– In every non final state qj

i of Ai, we add the transitions labeled by the intervals
which are complementary to the intervals labeling the transitions leading from
qj
i to qj+1

i . All the added transitions lead to state Ei.

As we will explain it in Proposition 1, the intuition of Ei is that it is reached
when a packet does not match rule Ri.

Step 1 is illustrated in Fig. 1 which represents the automata (Ai)i=1···4
obtained from the rules of Table 2. We assume that IP addresses are in 32 bits,
port numbers are in 16 bits, and only two protocols are possible: TCP and UDP.
Note that some intervals consist of a single value, e.g. 21, 80, 85, TCP and UDP.

226 A. Khoumsi et al.

q
1
4q

1
1q

1
0 q

1
2

q
2
3 q

2
4q

2
2q

2
1

q
3
4q

3
1

E3

q
4
4q

4
1q

4
0

q
1
3

q
3
2

[0, [β1 E1

[0, 2 [16

q
2
0 [α , α]1 2

[0, [α1

]α , 2 [32
2

[0, [β1]β , 2 [32
2

E2
]80, 2 [16

q
3
3q

3
0

[0, [α1

]α , 2 [32
2

[0, [β1]β , 2 [32
2

]85, 2 [16

[α , α]1 2

q
4
2 [0, 2 [16

q
4
3

(a)

21, 80 TCP

(b)

21, 85

(d)

UDP
TCP

[0, 21[]21, 80[
UDP

TCP

UDP
[0, 21[]21, 85[

TCP

UDP

(c)

[0, 2 [32 [β , β]21

]β , 2 [32
2

[β , β]21

[β , β]21

[0, 2 [32 [0, 2 [32

Fig. 1. Automata (Ai)1···4 obtained from Table 2.

4.2 Step 2: Uniform Intervals

We say that a state is of level i if it is reached after i transitions from the initial
state. Hence, each automaton Ai has m + 1 states, from level 0 to level m. The
automata (Ai)i=1···n constructed in Step 1 do not use the same intervals in the
same level. For example, at level 0 (i.e. from q0i) of Fig. 1, we have the following
intervals: [0, 232[in A1 and A4; and [α1, α2], [0, α1[and]α2, 232[in A2 and A3.

To be able to combine the n automata in Step 3, the objective of Step 2 is
to rewrite the n automata so that at each level, they all use the same intervals.
For that purpose, for each level j, the domain of the field F j is partitioned into
a set of disjoint intervals, so that every interval that labels a transition of level j
of Ai is an union of intervals of the partition. We proceed as follows:

– For every automaton Ai and level j, we consider the set of the intervals
labeling the transitions from state qj

i . We construct the list Lj
i consisting of

the values of the extremities of the considered intervals. The values in Lj
i are

sorted in increasing order.
Consider for example the level 0 of Fig. 1: in A1 and A4 we obtain the list
L0
1 = L0

4 = 〈0, 232〉 from the interval [0, 232[; in A2 and A3 we obtain the list
L0
2 = L0

3 = 〈0, α1, α2, 232〉 from the intervals [0, α1[, [α1, α2],]α2, 232[.
– For every level j, the lists (Lj

i)i=1···n are merged into a single increasing sorted
list Lj . Then, we construct a set of disjoint intervals whose extremities are
consecutive elements of Lj (we may have to define some single-value intervals).
The obtained set of intervals is a partition of the domain of the field F j ,
because the set of outgoing transitions in each state qj

i of an automaton Ai

constitute the whole domain of the field F j .

A Formal Approach to Verify Completeness and Detect Anomalies 227

For example, if we merge the above (L0
i)i=1···4, we obtain the sorted list:

L0 = 〈0, α1, α2, 232〉, from which we construct the three disjoint intervals I1,
I2 and I3, which constitute a partition of the domain [0, 232[of IPsrc.

– For every automaton Ai and level j, each transition labeled by an interval I
is replaced by several transitions labeled by the intervals of the partition that
constitute I.
Consider for example the level 0 of A1 in Fig. 1. The transition labeled [0, 232[
is replaced by 3 transitions labeled I1, I2 and I3, respectively.

Step 2 is illustrated in Fig. 2 which represents the automata (A∗
i)i=1···4

obtained from the automata (Ai)i=1···4 of Fig. 1. The constructed intervals are:
I1, I2, I3 at level 0; J1, J2, J3 at level 1; K1,K2,K3,K4, 21, 80, 85 at level 2; and
TCP,UDP at level 3.

q
1
4q

1
1q

1
0

q
2
3 q

2
4q

2
1

q
3
4q

3
1

q
4
4q

4
1q

4
0

q
1
3

q
3
2

E1

q
3
3q

3
0

q
4
2

I1 I3I2 J2

J1 J3

I2

I3

I3I1

I2 J2

J1 J3J2

q
1
2

I1 I2 I3

q
2
0 J2

J1 J3

K3K2K1 4K

q
4
3K3K2K1 4K

E2

q
2
2

I1

J3J1
E3

K2K1 K3 4K

K2K1 K3 4K

(a)

21, 80 TCP

(b)

(d)

UDP

TCP
UDP

TCP

UDP

(c)

21, 80, 85

21, 80, 85

TCP

UDP

21, 85

85

80

Fig. 2. Automata (A∗
i)1···4 obtained from automata (Ai)1···4 of Fig. 1.

4.3 Step 3: Product and Association of Actions

Consider two automata A∗
1 and A∗

2 constructed in Step 2. The product A∗
1 ⊗A∗

2

is defined inductively as follows:

– Its initial state 〈q01 , q02〉 is a combination of the initial states q01 and q02 of A∗
1

and A∗
2.

– For every state 〈r1, r2〉 of A∗
1 ⊗ A∗

2 and label σ:
1. If A∗

1 and A∗
2 have r1

σ→s1 and r2
σ→s2 respectively, then A∗

1 ⊗A∗
2 has the

state 〈s1, s2〉 and the transition 〈r1, r2〉 σ→〈s1, s2〉.
2. If A∗

1 has r1
σ→ s1 and r2 = E2, then A∗

1 ⊗ A∗
2 has the state 〈s1, E2〉 and

the transition 〈r1, E2〉 σ→〈s1, E2〉.

228 A. Khoumsi et al.

3. If A∗
2 has r2

σ→ s2 and r1 = E1, then A∗
1 ⊗ A∗

2 has the state 〈E1, s2〉 and
the transition 〈E1, r2〉 σ→〈E1, s2〉.

– A∗
1 ⊗ A∗

2 has no other state and transition.

The product of all automata A∗
1, · · · ,A∗

n is an iteration of products of two
automata. Let ΓF denote the product of the n automata. Each state of ΓF is
defined in the form (r1, · · · , rn), where each ri may be qj

i or Ei, for i = 1 · · · n
and j = 0 · · · m. We define two types of final states:

– A match state (r1, · · · , rn) is such that ri = qm
i for at least one i;

– The (unique) no-match state is (E1, · · · , En).

To each match state u = (r1, · · · , rn) of ΓF , we associate the action ai of the
rule Ri that has the smallest index i such that ri �= Ei.

The fundamental characteristics of ΓF is that it implements F as stated by
the following proposition:

Proposition 1. Consider a packet P arriving at the firewall, and let H0, · · · ,
Hm−1 be its headers. From the initial state of ΓF , we execute the m consecutive
transitions labeled by the intervals σ0, · · · , σm−1 that contain H0, · · · ,Hm−1,
respectively. Let r = 〈r1, · · · , rn〉 be the (final) reached state of ΓF . r is a match
state if and only if P matches at least one rule of F . More precisely, for every
i = 1, · · · , n:

– ri = qm
i or ri = Ei,

– if ri = qm
i , P matches the rule Ri,

– if ri = Ei, P does not match Ri.

And if r is a match state, then the action (Accept or Deny) associated to r is
the action dictated by the most priority rule matching P .

Figure 3 represents the automaton ΓF obtained in Step 3 from (A∗
i)i=1···4 of

Fig. 2. In Figs. 1 and 2, we have represented explicitly each interval labeling a
transition, because that was useful to understand the operations of Step 2. In
Fig. 3, we use a simpler and more symbolic notation based on the expressions
Any and not(X) where X is one or more intervals. A transition labeled Any
from a state qj

i is a symbolic representation of the transitions labeled by all the
intervals defined at level j in Step 2. For example, the transition Any from
〈q21 , E2, E3, q

2
4〉 represents the 7 transitions labeled K1,K2,K3,K4, 21, 80, 85.

not(X) corresponds to Any without the transitions labeled by the intervals in X.
For example, the transition labeled not(192.168.10.0/24) (i.e. not(I2)) represents
the 2 transitions labeled I1 and I3, and the transition labeled not(21, 80, 85) rep-
resents the 4 transitions labeled K1,K2,K3 and K4. The 5 match states of ΓF
are in bold, there is no no-match state. Let us illustrate the fact that ΓF of Fig. 3
implements F of Table 2. Consider a packet P which arrives at the firewall and
assume that its four headers H0 to H3 are (192.168.10.12), (81.10.10.20), (25),
(TCP), respectively. We start in the initial state 〈q01 , q02 , q03 , q04〉. The transi-
tion labeled 192.168.10.0/24 (comprising H0) is executed and leads to state
〈q11 , q12 , q13 , q14〉. Then, the transition labeled 81.10.10.0/24 (comprising H1) is

A Formal Approach to Verify Completeness and Detect Anomalies 229

executed and leads to state 〈q21 , q22 , q23 , q24〉. Then, the transition labeled]21, 80[
(comprising H2) is executed and leads to state 〈q31 , E2, E3, q

3
4〉. Finally, the tran-

sition labeled TCP (comprising H3) is executed and leads to the match state
〈q41 , E2, E3, q

4
4〉. Since the reached match state is associated to Accept , the packet

is accepted.

q
1
1 q

2
1

q
4
1q

3
1

q
1
1

q
4
1

E2

E3

q
1
2

q
4
2E3

E2

q
4
2E3

E2E1

q
1
2

q
3
2

q
2
2

q
4
2

q
1
3 q

2
3

q
3
3 q

4
3

q
1
3 q

2
3

q
4
3E3

q
1
3

q
4
3

E2

E3

q
4
3

E2

E3

E1

q
1
3

q
3
3 q

4
3

E2

q
3
0 q

4
0

q
1
0 q

2
0

q
1
4

q
4
4q

3
4

q
2
4

q
1
4

q
4
4q

3
4

E2

q
1
4

q
4
4

q
2
4

E3

q
1
4

q
4
4E3

E2

q
4
4E3

E2E1

TCP

TCP

81.10.10.0/24

A
ccept

A
ccept

A
ccept

A
ccept

A
ccept

not(21, 80, 85)

not(81.10.10.0/24)

81.10.10.0/24

not(192.168.10.0/24)

not(81.10.10.0/24)

80

21

85

UDP

Any

Any

Any

UDP

Any

Any

192.168.10.0/24

Fig. 3. Automaton ΓF synthesized from automata (A∗
i)1···4 of Fig. 2.

In the following four Sects. 5, 6, 7, and 8, we show how our 3-step synthe-
sis procedure can be applied for verifying completeness of security policies and
detecting several types of anomalies in security policies.

5 Verifying Completeness

We consider a security policy F defined by a table of n filtering rules R1 to Rn

and its corresponding automaton ΓF . A firewall security policy is said complete
if every packet reaching the firewall matches at least one of the rules R1 to Rn.
From Proposition 1, we obtain:

Proposition 2. A security policy F is complete if and only if its automaton ΓF
has no no-match state.

For example, the security policy of Table 2 is complete because all final states
of ΓF in Fig. 3 are match states. If we remove rule R4, we obtain an incomplete
security policy because the corresponding automaton contains the no-match
state, which is reached for any packet whose header IPdst does not belong to
81.10.10.0/24.

230 A. Khoumsi et al.

6 Anomaly Categorization, General Anomaly Detection

6.1 Categories of Anomalies

Recall that an anomaly in a firewall security policy is defined as the existence
of two or more filtering rules matching the same packet. From this basic defin-
ition, and as noted in [18], several related work has categorized different types
of firewall policy anomalies [1,9,19]. We propose to classify anomalies in two
categories:

Anomaly with Conflict: It is an anomaly where the filtering rules matching
the same packet are associated to different actions. Typical anomalies of this cat-
egory are shadowing, generalization, and correlation anomalies, which we study
in Sects. 7.1, 7.2, and 7.3.

Anomaly Without Conflict: It is an anomaly where the filtering rules match-
ing the same packet are associated to the same action. Typical anomaly of this
category is redundancy anomaly, which we study in Sect. 8.

6.2 Detecting General Anomalies

By general anomaly we mean any anomaly without considering its category.
From Proposition 1, we obtain:

Proposition 3. A security policy F contains a general anomaly if and only
if the automaton ΓF has at least one match state that contains two or more qm

i .

Intuitively, the presence of several qm
i in a match state means the existence

of packets that are accepted by several filtering rules. For example, the security
policy of Table 2 contains several general anomalies, because the automaton of
Fig. 3 has four match states with two or more qm

i .
The nonexistence of general anomaly implies obviously the nonexistence of

any category of anomalies. On the other hand, the existence of general anomaly
is a symptom (but not a guarantee) of the existence of specific anomalies. In the
following two Sects. 7 and 8, we show how to detect anomalies with conflict and
without conflict, respectively.

7 Detecting Anomalies with Conflict

7.1 Detecting Shadowing Anomaly

A rule Rj is shadowed by a preceding rule Ri (i.e. i < j) if, on the one hand
Ri matches all the packets that match Rj , and on the other hand actions of Ri

and Rj are distinct [19]. In this case, all the packets that Rj intends to deny
(resp. accept) are accepted (resp. denied) by Ri; thus, Rj never takes effect. It
is important to discover shadowed rules and alert the administrator to correct
this error by reordering or removing these rules [1]. Based on this definition and
Proposition 1, we obtain:

A Formal Approach to Verify Completeness and Detect Anomalies 231

Proposition 4. In a security policy F , rule Rj is shadowed by rule Ri if and
only if the following three conditions hold: (1) i < j; (2) ai �= aj; and (3) for
every match state 〈r1, · · · , rn〉 of ΓF , if rj = qm

j then ri = qm
i .

For example, in Table 2, R2 is shadowed by R1 because: 1 < 2, a1 = Accept �=
a2 = Deny , and ΓF of Fig. 3 has no match state with q42 and without q41 . Conse-
quently, R2 never takes effect and hence its action Deny is never taken. Assume
that the administrator decides to remove this anomaly by switching the orders
of rules R1 and R2. After this switch, it is not necessary to construct a new
automaton ΓF from the beginning. Since R1 becomes R2 and vice versa, we
have just to switch between r1 and r2 in all states to give priority to R2 over R1,
and then to re-assign actions to match states. As a result, in Fig. 3 we will have
the action Deny associated to the first and third match states from the top, and
the action Accept associated to the three other match states.

7.2 Detecting Generalization Anomaly

A rule Rj generalizes a preceding rule Ri (i.e. i < j) if, on the one hand Rj

matches more packets than Ri, and on the other hand actions of Ri and Rj are
distinct [19]. Based on this definition and Proposition 1, we obtain:

Proposition 5. In a security policy F , rule Rj generalizes rule Ri if and only
if the following four conditions hold: (1) i < j; (2) ai �= aj; (3) for every match
state 〈r1, · · · , rn〉 of ΓF , if ri = qm

i then rj = qm
j ; and (4) there exists a match

state 〈r1, · · · , rn〉 of ΓF such that ri = Ei and rj = qm
j .

For example, in Table 2, R4 generalizes R2 because: 2 < 4, a2 = Deny �= a4 =
Accept , and ΓF of Fig. 3 has no match state with q42 and without q44 and has 3
match states with E2 and q44 .

We have seen in Sect. 7.1 that R2 is shadowed by R1 and that the shadowing
anomaly can be removed by switching the orders of R1 and R2. It can be easily
checked that after this reordering, the shadowing anomaly is transformed into a
generalization anomaly: R1 (which becomes R2) generalizes R2 (which becomes
R1).

7.3 Detecting Correlation Anomaly

Rules Ri and Rj correlate if their actions are distinct and:

– there exist packets that match Ri and not Rj ,
– there exist packets that match Rj and not Ri,
– there exist packets that match both Ri and Rj [19].

Based on this definition and Proposition 1, we obtain:

Proposition 6. In a security policy F , rules Ri and Rj correlate if and only
if the following five conditions hold: (1) i �= j; (2) ai �= aj; (3) there exists a
match state 〈r1, · · · , rn〉 of ΓF such that ri = Ei and rj = qm

j ; (4) there exists
a match state 〈r1, · · · , rn〉 of ΓF such that ri = qm

i and rj = Ej; and (5) there
exists a match state 〈r1, · · · , rn〉 of ΓF such that ri = qm

i and rj = qm
j .

232 A. Khoumsi et al.

For example, in Table 2, rules R2 and R3 correlate because: 2 �= 3, a2 = Deny �=
a3 = Accept , and the automaton ΓF of Fig. 3 has the three match states
〈q41 , q42 , q43 , q44〉, 〈q41 , E2, q

4
3 , q

4
4〉, 〈q41 , q42 , E3, q

4
4〉.

8 Redefining and Detecting Redundancy Anomaly

In the present section, we study redundancy anomaly which has been defined
in [1] as follows: A rule Ri is redundant to a rule Rj if: (1) Rj is associated to the
same action as Ri and matches the same or more packets than Ri, and (2) the
security policy will not be affected if Ri is removed.

We have detected that the formal definition of redundancy anomaly given
by [1] is incompatible with this informal definition. Indeed, there are situations
where a rule is diagnosed by [1] as redundant to another rule, while its removal
affects the security policy.

We will distinguish two cases of redundancy, LP-redundancy and MP-
redundancy, which are compatible with the informal definition. We will show
how to detect each of them. Then, we will show why the formal definition of [1]
is problematic.

8.1 Definition and Detection of LP-Redundancy Anomaly

Redundancy of the Least Priority (LP) of the Two Rules: Rj is LP-
redundant to Ri if the following three conditions hold: (1) i < j; (2) ai = aj ;
and (3) Ri matches all the packets matching Rj .

The intuition of LP-redundancy is that if Rj has less priority than Ri and
matches less packets than Ri, then Rj is obviously useless and can be removed.

Detecting LP-Redundancy Anomaly: Based on the definition of LP-
redundancy and Proposition 1, we obtain:

Proposition 7. In a security policy F , rule Rj is LP-redundant to Ri if the
following three conditions hold: (1) i < j; (2) ai = aj; and (3) for every match
state 〈r1, · · · , rn〉 of ΓF , if rj =qm

j then ri =qm
i ;

For example, in Table 2, R3 is LP-redundant with R1 because: 1 < 3, a1 = a3 =
Accept , and in the automaton ΓF of Fig. 3, the two match states that contain
q43 contain also q41 .

8.2 Definition and Detection of MP-Redundancy Anomaly

Redundancy of the Most Priority (MP) of the Two Rules: Ri is MP-
redundant to Rj if the following four conditions hold: (1) i < j; (2) ai = aj ;
(3) Rj matches more packets than Ri; (4) there exists no rule Rk satisfying the
following three sub-conditions: (4.a) i < k < j, (4.b) ak �= ai, and (4.c) there
exist packets matching both Ri and Rk.

A Formal Approach to Verify Completeness and Detect Anomalies 233

The intuition of MP-redundancy is that if Ri has more priority than Rj but
matches less packets than Rj , then Ri is useless if its removal does not give the
chance to another rule Rk to take an effect different from the effect of Ri.

The following proposition expresses MP-redundancy by using the three anom-
alies with conflict.

Proposition 8. Ri is MP-redundant to Rj if: i < j; ai = aj; Rj matches more
packets than Ri; and there exists no rule Rk between Ri and Rj satisfying one
of the following three conditions: Rk is shadowed by Ri, Rk generalizes Ri, or
Rk and Ri correlate.

Detecting MP-Redundancy Anomaly: Based on the definition of MP-
redundancy and Proposition 1, we obtain:

Proposition 9. In a security policy F , rule Ri is MP-redundant to Rj if the fol-
lowing five conditions hold: (1) i < j; (2) ai = aj; (3) for every match state
〈r1, · · · , rn〉 of ΓF : if ri = qm

i , then rj = qm
j ; (4) there exists a match state

〈r1, · · · , rn〉 of ΓF such that: ri = Ei and rj = qm
j ; and (5) for every k such that

i < k < j and ak �= ai, there exists no match state 〈r1, · · · , rn〉 of ΓF such that:
ri = qm

i and rk = qm
k .

For example, in Table 2, R3 is MP-redundant with R4 because: 3 < 4, a3 = a4 =
Accept , and in the automaton ΓF of Fig. 3: the two match states that contain q43
contain also q44 , there exist three match states containing E3 and q44 , and there
exists no k between 3 and 4.

8.3 Difference with [1]

The difference between our definition of MP-redundancy and the definition of [1]
is in the condition related to Rk. In our definition, the condition is that for
every rule Rk between Ri and Rj that has a different action than Ri, the set
of packets matching Ri must be disjoint with the set of packets matching Rk.
In the definition of [1], the condition is weaker because its permits that the set
of packets matching Rk be included in or equal to the set of packets matching
Ri. In other words, we obtain the definition of [1] by removing the line “Rk is
shadowed by Ri” in Proposition 8. Consequently, there are situations where a
rule is diagnosed by [1] as redundant to another rule while in reality its removal
affects the security policy.

To illustrate the problematic definition of MP-redundancy of [1], let us con-
sider R1 and R4 of Table 2. With our definition, R1 is not MP-redundant to
R4, because R1 accepts all the packets accepted by R2, while R2 is between R1

and R4 and has a different action than R1. But with the definition of [1], R1

is MP-redundant to R4, because the definition of [1] accepts that between
R1 and R4 there exists a rule (R2) which is shadowed by R1. This is problematic
because in reality removing R1 affects the security policy.

234 A. Khoumsi et al.

9 Space and Time Complexities

Recall that n and m are the number of rules and fields, respectively. We call
great field a field whose domain contains more than n values, and small field
a field whose domain contains at most n values. Consider for example the four
fields IPsrc, IPdst, Port and Protocol and assume n = 1000. IPsrc, IPdst and
Port are great fields, because their domains contain 232, 232 and 216 values,
respectively, hence more than 1000 values. Protocol is a small field, because its
domain contains much less than 1000 values (the number of considered proto-
cols is negligible to 1000). In addition to n and m, we will use the following
parameters:

di = number of bits necessary to code the values of field F i, for i = 0, · · · ,m−1,
hence 2di is the number of possible values of F i;

D = sum of the number of bits to code all the fields, i.e. D = d0 + · · · + dm−1;
μ = number of great fields, hence μ ≤ m;
δ = sum of the number of bits to code the small fields, hence δ ≤ D.

In our computation of complexities, we assume that di ≥ 1 (i.e. several
possible values for each field), n > D (hence n > m) and 2n > nm which is
realistic when we have hundreds or thousands of filtering rules.

For example, for the m = 4 fields IPsrc, IPdst, Port and Protocol, we have
used d0 = d1 = 32 (each IPsrc and IPdst is coded in 32 bits), d2 = 16 (Port
is coded in 16 bits), d3 = 1 (Protocol is coded in 1 bit since we consider only
TCP and UDP), and D = 32 + 32 + 16 + 1 = 81. For 81 < n < 216, the above
assumptions (all di ≥ 1, n > 81 and 2n > n4) are obviously satisfied. IPsrc,
IPdst and Port are great fields (theirs domains have more than n values), and
Protocol is a small field (its domain has less than n values). We obtain μ = 3
(number of great fields) and δ = d3 = 1 (1 bit is used to code the unique small
field Protocol).

Proposition 10. The space and time complexities of the synthesis procedure
are in O(nμ+1 × 2δ), which is bounded by both O(nm+1) and O(n × 2D).

Proposition 11. The space and time complexities for verifying completeness of
a security policy are in O(nμ+1 × 2δ), which is bounded by both O(nm+1) and
O(n × 2D).

Proposition 12. The space and time complexities for detecting general anom-
alies in a security policy are in O(nμ+1 ×2δ), which is bounded by both O(nm+1)
and O(n × 2D).

Proposition 13. The space and time complexities for detecting anomalies with
conflict (shadowing, generalization, correlation) and LP-redundancy anomalies
are in O(nμ+2 × 2δ), which is bounded by both O(nm+2) and O(n2 × 2D).

Proposition 14. The space complexity for detecting MP-redundancy anomalies
is in O(nμ+2×2δ), which is bounded by both O(nm+2) and O(n2×2D). The time
complexity for detecting MP-redundancy anomalies is in O(nμ+3 × 2δ), which is
bounded by both O(nm+3) and O(n3 × 2D).

A Formal Approach to Verify Completeness and Detect Anomalies 235

By using results in [20], the authors of [21] prove that several fundamen-
tal problems encountered in analysis and design of firewalls are NP-hard. In
our context, their result is that the time complexity is at least in O(n × 2D).
Our contribution here is that the expression O(n × 2D) is an upper bound of
our more precise expression O(nμ+1 × 2δ) which shows explicitly the influence
of the size of fields (through μ and δ) on the complexity.

10 Conclusion and Future Work

We have first proposed a procedure that synthesizes an automaton which imple-
ments a security policy. This synthesis procedure can be a common basis to
design and analyze several aspects of firewall security policies, instead of using a
distinct approach and formalism for studying each aspect. We have demonstrated
this statement by applying our synthesis procedure for verifying completeness
of security policies and detecting several types of anomalies in security policies.
Another contribution is that we have identified and corrected an error in the
commonly used definition of redundancy anomaly. Last but not least, we have
evaluated precisely space and time complexities of our developed procedures.

As near future work, we intend to use our automata-based approach to design
security policies that can adapt dynamically to the filtered traffic. The approach
we will adopt is that from a given security policy, we extract a new equivalent
policy whose filtering rules can be put in any order without influencing the
semantics of the policy. When the filtered traffic varies, the filtering rules will be
reordered dynamically in order to keep a low average delay of determining the
rule that is applied for an arriving packet.

References

1. Al-Shaer, E., Hamed, H.: Modeling and management of firewall policies. IEEE
Trans. Netw. Serv. Manage. 1(1), 2–10 (2004)

2. Karoui, K., Ben Ftima, F., Ben Ghezala, H.: Formal specification, verification and
correction of security policies based on the decision tree approach. Int. J. Data
Netw. Secur. 3(3), 92–111 (2013)

3. Madhuri, M., Rajesh, K.: Systematic detection and resolution of firewall policy
anomalies. Int. J. Res. Comput. Commun. Technol. (IJRCCT) 2(12), 1387–1392
(2013)

4. Chen, Z., Guo, S., Duan, R.; Research on the anomaly discovering algorithm of
the packet filtering rule sets. In 1st International Conference on Pervasive Com-
puting, Signal Processing and Applications (PCSPA), Harbin, China, pp. 362–366,
September 2010

5. Garcia-Alfaro, J., Cuppens, F., Cuppens-Boulahia, N., Martinez Perez, S.,
Cabot, J.: Management of stateful firewall misconfiguration. Comput. Secur. 39,
64–85 (2013)

6. Cuppens, F., Cuppens-Boulahia, N., Garcia-Alfaro, J., Moataz, T., Rimasson, X.:
Handling stateful firewall anomalies. In: Gritzalis, D., Furnell, S., Theoharidou, M.
(eds.) SEC 2012. IFIP AICT, vol. 376, pp. 174–186. Springer, Heidelberg (2012)

236 A. Khoumsi et al.

7. Liu, A.X., Gouda, M.G.: Diverse firewall design. IEEE Trans. Parallel Distrib.
Syst. 19(9), 1237–1251 (2008)

8. Liu, A.X., Gouda, M.G.: Structured firewall design. Comput. Netw. Int. J. Comput.
Telecommun. Netw. 51(4), 1106–1120 (2007)

9. Yuan, L., Mai, J., Su, Z., Chen, H., Chuah, C.-N., Mohapatra, P.: FIREMAN:
a toolkit for firewall modeling and analysis. In: IEEE Symposium on Security and
Privacy (S&P), Berkeley/Oakland, May 2006

10. Bryant, R.E.: Graph-based algorithms for boolean function manipulation. IEEE
Trans. Comput. 35(8), 677–691 (1986)

11. Mallouli, W., Orset, J., Cavalli, A., Cuppens, N., Cuppens, F.: A formal approach
for testing security rules. In: 12th ACM Symposium on Access Control Models and
Technologies (SACMAT), Sophia Antipolis, France, June 2007

12. Lee, D., Yannakakis, M.: Principles and methods of testing finite state machines -
a survey. Proc. IEEE 84, 1090–1126 (1996)

13. El Kalam, A.A., El Baida, R., Balbiani, P., Benferhat, S., Cuppens, F.,
Deswarte, Y., Miège, A., Saurel, C., Trouessin, G.: Organization based access con-
trol. In: IEEE 4th International Workshop on Policies for Distributed Systems and
Networks (POLICY), Lake Come, Italy, June 2003

14. Mansmann, F., Göbel, T., Cheswick, W.: Visual analysis of complex firewall con-
figurations. In: 9th International Symposium on Visualization for Cyber Security
(VizSec), Seattle, pp. 1–8, October 2012

15. Lu, L., Safavi-Naini, R., Horton, J., Susilo, W.: Comparing and debugging firewall
rule tables. IET Inf. Secur. 1(4), 143–151 (2007)

16. Krombi, W., Erradi, M., Khoumsi, A.: Automata-based approach to design and
analyze security policies. In: International Conference on Privacy, Security and
Trust (PST), Toronto, Canada (2014)

17. Scarfone, K., Hauffman, P.: Guidelines on Firewalls and Firewall Policy, Recom-
mendations of the National Institute of Standards and Technology (NIST). Special
Publication 800–41, Revision 1, 2–1, September 2009

18. Madhavi, S., Raghu, G.: Segment generation approach for firewall policy anomaly
resolution. Int. J. Comput. Sci. Inf. Technol. (IJCSIT) 5(1), 6–11 (2014)

19. Hu, H., Ahn, G., Kulkarni, K.: Detecting and resolving firewall policy anomalies.
IEEE Trans. Dependable Secure Comput. 9(3), 318–331 (2012)

20. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. A.W.H. Freeman, San Francisco (1979)

21. Elmallah, E., Gouda, M.G.: Hardness of firewall analysis. In: International Con-
ference on NETworked sYStems (NETYS), Marrakesh, Morocco, May 2014

Protocol Verification

Debating Cybersecurity or Securing a Debate?

(Position Paper)

Fabio Martinelli and Francesco Santini(B)

Istituto di Informatica e Telematica, IIT-CNR, Pisa, Italy
{fabio.martinelli,francesco.santini}@iit.cnr.it

Abstract. Although inheriting from a well-established literature, Argu-
mentation is currently emerging more and more as a prosperous field
of Artificial Intelligence. This paves the way to applications different
from traditional ones, as legal reasoning. This paper sets the scene of a
large-scale work whose purpose is to develop an Argumentation-based
reasoning tool dedicated to the assessment of Cybersecurity and its
(re)configuration. Concurrently, and for the first time, we plan to extend
the same framework in order to check the vulnerabilities of a debate
itself, preventing those attacks aimed at manipulating the result of a
decision-making process (e.g., an attack/countermeasure analysis).

1 Introduction

Decisions about network/system security are increasingly complex, involving
tradeoffs between keeping systems secure, maintaining system operation, escalat-
ing costs, and compromising functionality. We suggest the use of Argumentation
to provide automated support for Cybersecurity decisions. Argumentation is a
formal approach to decision-making that has proved to be effective in a number
of domains, for instance, reasoning in Law, Medicine (diagnosis and treatment
of patients), and e-Democracy.

The main benefit of using Argumentation is that it specifically supports
reasoning when direct resolution is not possible due to inherent, unresolved log-
ical conflicts. This well adapts to problems where multiple causes for a specific
anomalous behaviour are possible, and multiple countermeasures can be taken
to solve/mitigate it (as, in general symptom diagnosis, and treatment/mitiga-
tion of a problem). In case of a Cybersecurity attack, or policy violation, these
problems along with their solution involve (i) the integration of information
from multiple sources (e.g., sensors), (ii) the need to handle information that is
noisy and may be inconsistent (or somehow manipulated), and, finally, (iii) the
requirement to explain the outcome of such integration to humans, in order to
support a decision in a way clear to the end-user (see Sect. 3).

But a second issue naturally arises with this approach. How much is the
cost of manipulating a final decision by acting on the decision process itself
(Sect. 3.1)? In fact, it is possible to study the key arguments of a debate and try

The author ‘F. Santini’ is supported by MIUR PRIN “Security Horizons”.

c© Springer International Publishing Switzerland 2015
F. Cuppens et al. (Eds.): FPS 2014, LNCS 8930, pp. 239–246, 2015.
DOI: 10.1007/978-3-319-17040-4 15

240 F. Martinelli and F. Santini

to make them weaker or stronger with the purpose to bring the result in favour
of the desired side (i.e., persuasion). Knowing this, an attacker can try to forge
sensor-data, and consequently to pop up the expected argument in a system.
Such cost can be measured in terms of the number of arguments to add to or
remove from a discussion, or, in case of weighted frameworks [5], the number of
fake votes on arguments/attacks, an uncertainty score associated with them, or,
in general, a related strength-level to be manipulated.

2 Preliminaries

In this section we briefly summarise the background information related to clas-
sical Abstract Argumentation Frameworks (AAFs) [8]. First we give the def-
inition of AAF (see Definition 1), the definition of defence (Definition 2), of
extension-based semantics (Definition 3), and, finally, of the acceptance state
for an argument (Definition 4).

Definition 1 (AAF). An Abstract Argumentation Framework (AAF) is a pair
F = 〈A,R〉 of a set A of arguments and a binary relation R ⊆ A × A, called
the attack relation. ∀a, b ∈ A, aR b (or, a � b) means that a attacks b. An AAF
may be represented by a directed graph (an interaction graph) whose nodes are
arguments and edges represent the attack relation. A set of arguments S ⊆ A
attacks an argument a, i.e., S � a, if a is attacked by an argument of S, i.e.,
∃b ∈ S.b � a.

Definition 2 (Defence). Given F = 〈A,R〉, an argument a ∈ A is defended
(in F) by a set S ⊆ A if for each b ∈ A, such that b � a, also S � b holds.

The “acceptability” of an argument can be defined under different seman-
tics, depending on the frequency of its membership to some sets, called exten-
sions: such semantics characterise a collective “acceptability” for arguments. In
Definition 3 we only report the original semantics given by Dung [8] (successive
proposals can be found in the literature [9, Chap. 2.5]). Respectively, adm, com,
prf , stb, and gde stand for admissible, complete, preferred, stable, and grounded
semantics.

Definition 3 (Semantics [8]). Let F = 〈A,R〉 be an AAF. A set S ⊆ A is
conflict-free (in F), denoted S ∈ cf (F), iff there are no a, b ∈ S, such that a � b
or b � a ∈ R. For S ∈ cf (F), it holds that

– S ∈ adm(F), if each a ∈ S is defended by S;
– S ∈ com(F), if S ∈ adm(F) and for each a ∈ A defended by S, a ∈ S holds;
– S ∈ prf (F), if S ∈ adm(F) and there is no T ∈ adm(F) with S ⊂ T ;
– S ∈ stb(F), if foreach a ∈ A\S, S � a;
– S = gde(F) if S ∈ com(F) and there is no T ∈ com(F) with T ⊂ S.

We also recall that the requirements in Definition 3 define an inclusion hier-
archy on the corresponding extensions, from the most to the least stringent:
stb(F) ⊆ prf (F) ⊆ com(F) ⊆ adm(F). Moreover, σ(F) 	= ∅ always holds for
each considered semantics σ (except stable). Finally, gde(F) is always unique.

Debating Cybersecurity or Securing a Debate? 241

Definition 4 (Arguments acceptance-state). Given one of the semantics σ
in Definition 3 and a framework F , an argument a is (i) sceptically accepted in
iff ∀S ∈ σ(F), a ∈ S, (ii) a is credulously accepted if ∃S ∈ σ(F), a ∈ S and a is
not sceptically accepted, and (iii) a is rejected if �S ∈ σ(F), a ∈ S.

Consider F = 〈A,R〉 in Fig. 1, with A = {a, b, c, d, e} and R = {a � b, c � b,
c � d, d � c, d � e, e � e}. In F we have adm(F) = {∅, {a}, {c}, {d}, {a, c}, {a,
d}}, com(F) = {{a}, {a, c}, {a, d}}, prf (F) = {{a, d}, {a, c}}, stb(F) = {{a, d}},
and gde(F) = {a}. Hence, argument a is sceptically accepted in com(F), prf (F)
and stb(F), while it is only credulously accepted in adm(F).

a b c d e

Fig. 1. An example of AAF.

2.1 Decision-Making with Arguments

In this section we simplify part of the content in [9, Chap. 15]. Solving a decision
problem amounts to defining a pre-ordering, usually a complete one, on a set
D = {d1, . . . , dn} of n candidate options. Argumentation can be a means for
ordering this set D, that is to define a preference relation � on D.

Two categories of arguments are distinguished: (i) epistemic arguments (Ae)
justify beliefs and are themselves based only on beliefs, while (ii) practical argu-
ments (Ap) justify options and are built from both beliefs and preferences or
goals; moreover, we have that Ae ∪Ap = A, and Ae ∩Ap = ∅. We also define the
subsets of practical arguments that are respectively in favour (Ff), or against
(Fc) a given option d ∈ D:

– Ff : D → 2Ap is a function that returns the arguments in favour of a candidate
decision. Such arguments are said pros the option.

– Fc : D → 2Ap is a function that returns the arguments against a candidate
decision. Such arguments are said cons the option.

These functions need to satisfy some side-conditions, usually (i) ∀d ∈ D, �δ ∈
Ap s.t . δ ∈ Ff (d) and δ ∈ Fc(d), (ii) if δ ∈ Ff (d) and δ ∈ Fp(d′) (resp. if
δ ∈ Fc(d) and δ ∈ Fc(d′)), then d = d′, and (iii) D = {d1, . . . , dn}, Ap =
(
⋃ Ff (di)) ∪ (

⋃ Fc(di)), with i = 1, . . . , n.
In Definition 5 we present one of the possible ways to prefer (�) one decision

instead of another. This unipolar principle only refers to either the arguments
pros or cons.

Definition 5 (Counting arguments pros/cons). Let DS = (D,F) be a deci-
sion system, where F is an AAF, and Accstb(F) collects the sceptically accepted
arguments of a framework F under the stable semantics. Let d1, d2 ∈ D, then:

d1 � d2 ⇐⇒ |Ff (d1) ∩ Accstb(F)| ≥ |Ff (d2) ∩ Accstb(F)|

242 F. Martinelli and F. Santini

In some applications, the arguments in favour of and against a decision are
aggregated into a unique meta-argument having a unique strength value. In
Definition 6 we present a non-polar principle, where h is a generic aggregation
function.

Definition 6. Let DS = (D,F), Accstb(F), and d1, d2 ∈ D. Let (δ1, . . . , δn) and
(δ′

1, . . . , δ
′
m) (resp. (γ1, . . . , γl) and (γ′

1, . . . , γ
′
k)) the vectors of the arguments in

Ap pros and cons the decision d1 (resp. d2). Then:

d1 � d2 ⇐⇒ h(δ1, . . . , δn, δ′
1, . . . , δ

′
m) ≥p h(γ1, . . . , γl, γ′

1, . . . , γ
′
k)

Relation ≥p⊆ Ap × Ap defines a preference (partial) order on Ap. A simple
example can just be the arithmetic difference between the number of arguments
pros and cons: in practice, d1 � d2 ⇐⇒ |Ff (d1) ∩ Accstb(F)| − |Fc(d1) ∩
Accstb(F)| ≥ |Fp(d2) ∩ Accstb(F)| − |Fc(d2) ∩ Accstb(F)|.

3 An Example for Adopting Cybersecurity
Countermeasures

Consider an AAF, Fworm = 〈{a, b, c, d, e, f, g}, {b � a, c � b, d � b, e � d, f �
a, g � f}〉, where the arguments correspond to the following statements:

a. A worm is attacking our web server.
b. Disabling Web traffic mitigates worms.
c. Web traffic can be blocked only if loss >70 %.
d. Traffic should not be blocked if the alarm is faulty.
e. Evidence shows that the alarm is reliable.
f. The antivirus has been recently updated.
g. Virus definitions are no longer maintained.

Such AAF is visually represented in Fig. 2a. We consider a related decision-
making problem with two options, D = {disable port80,¬disable port80}, which
respectively represent the action of disabling or not disabling traffic through port
80. Ap is {b, c, d}, since these arguments are directly associated with actions in
D. Then we have that Ff (disable port80) = {b}, while Ff (¬disable port80) =
{c, d}.1 The set of stable extensions is stb(Fworm) = {{a, c, e, g}} (only one
extension), and consequently Acc(Fworm) = {a, c, e, g} (in grey in Fig. 2b). These
arguments are therefore sceptically (i.e., always) accepted in stable extensions,
and, for this reason, they represent the strongest arguments possible in such
formalisation. Since, the final goal is to reason in presence of conflict, this set of
arguments represents our truth: even if attacked (e.g., argument a), they can be
considered as “enough” defended (e.g., by d).

1 For the sake of simplicity, in our example we allow attacks among practical arguments
(e.g., d � b), and attacks between a practical and an epistemic argument (e.g.,
b � a). In general, this should be avoided to prevent wishful thinking [9, Chap.
15.2.3].

Debating Cybersecurity or Securing a Debate? 243

Following the unipolar principle in Definition 5, we have that |Ff (disable port
80)∩Accstb(Fworm)| = 0 and |Ff (¬disable port80)∩Accstb(Fworm)| = 1. There-
fore, the final result is ¬disable port80 � disable port80, and the system-security
administrator is recommended not to disable traffic on port 80.

Fig. 2. (a) Fworm , and (b), in grey, the arguments in the unique stable extension

3.1 Forgery of a Discussion

The goal of this section is to briefly introduce how the same framework can
also be used by an attacker to reach an intended goal, e.g., to block traffic
on port 80. Such attacker can study the vulnerabilities of the decision-making
process (knowing the security policy of a company, or altering sensor output)
and exploit them for his own sake. Considering the same example in Fig. 2a, by
attacking argument c with a new argument h, we obtain a completely different
result, as sketched in Fig. 3: Ap is still {b, c, d}, but the set of stable extensions
changes to stb(Fworm) = {{b, e, g, h}}, and Accstb(Fworm) = {b, e, g, h}. Follow-
ing Definition 5, we now have that |Ff (disable port80) ∩ Accstb(Fworm)| = 1
and |Ff (¬disable port80) ∩ Accstb(Fworm)| = 0. The result is the opposite:
disable port80 � ¬disable port80, and the system-security administrator is thus
recommended to disable traffic on port 80. To achieve this behaviour, an attacker
could try to keep the loss percentage of Web traffic below 70 %, for instance by
reducing the activity of the worm. In this way, the worm is maintained alive
and spreading to other computers through a different port/service; nevertheless,
Web traffic is blocked, consequently causing a double damaging-effect.

Clearly, the manipulation of this reasoning process comes with a cost in terms
of the chosen metrics. First, an attacker is interested in what arguments to attack
in order to bring the decision to the desired result, that is only c in this case (but
they can be more than one). Then, among such arguments, the goal is to choose
the least expensive one to attack, in terms of e.g., money or possibility. This cost
also depends on the available actions that can be executed on an AAF. For exam-
ple, removing argument e in Fig. 2a enforces the decision of keeping port 80 open,

244 F. Martinelli and F. Santini

since Accstb(Fworm) = {a, c, d, g} (Ap = {b, c, d}) and |Ff (disable port80) ∩
Accstb(Fworm)| = 0, |Ff (¬disable port80)∩Accstb(Fworm)| = 2. With respect to
Fig. 2b, the preference of decision disable port80 is increased from 1 to 2.

In addition, further actions can be the insertion or deletion of attacks, or
if either arguments or attacks are associated with a preference score, we can
consider the cost of modifying such weights: by evaluating decisions in accordance
to an aggregation function h (see Definition 6), the manipulation process is now
focused on how to alter the result of h, and how to do it in the cheapest way
possible. For instance, h can sum together the preference scores of all the pros
and cons, and then to compute the their arithmetic difference.

Fig. 3. A forged Fworm with a new augment h:“Loss is <70 %”.

4 From Raw Data to Decision

In Fig. 4 we show the architecture of the tool we want to develop to deal with the
process presented in Sect. 3: circles represent outputs or inputs that are outside
the direct scope of such implementation. One of these inputs is the Cyberse-
curity case-studies we want to manage, while a second one is represented by
other reasoning-engines to plug-in besides our own tool, named ConArg2 [6],
which is already capable to find Accstb [4]. Round rectangles represent soft-
ware that does not need any interactive input from a user (e.g., translators
between different formats), while octagons represent the core modules where
we implement the intelligence of the tool, as ConArg, the Decision-Making mod-
ule (which implements the process designed in Sect. 2.1), and the Reasoner. In
the Reasoner we realise the intelligence to solve higher-level problems, as evalu-
ating and optimising the cost of manipulation. All the other components in Fig. 4
represent human-interaction through GUIs. For instance, a Security Expert can
directly add the information for a particular Cybersecurity case-study she/he
has in mind, without having an automated translation from offline cases. On the
other side, the System Security Administrator can visually examine Cybersecu-
rity decisions to be taken on the considered problem, and graphically manipulate
2 http://www.dmi.unipg.it/∼bista/tt/conarg/index.html.

http://www.dmi.unipg.it/~bista/tt/conarg/index.html

Debating Cybersecurity or Securing a Debate? 245

them with the purpose to see what happens in case new arguments are added.
Since arguments/attacks can be weighted, a module is dedicated to the analysis/
extraction of costs and their representation in WAML, which is a weighted exten-
sion of Argument Markup Language (based on XML). WAML will be the lingua-
franca format to represent (weighted) AAFs.

Fig. 4. An architecture to manage Cybersecurity case-studies and their manipulation.

5 Related Work

Since the application of Argumentation to Cybersecurity-related issues is rela-
tively a new field (or, at least, not deeply investigated), there is a few related
work to be mentioned. A bunch of works applying Argumentation-based conflict-
resolution to the specific case of firewall rules are [1–3]. In our approach, however,
we would like to provide a general reasoning-tool.

In [7] the authors formalise the reasoning about access control using a plan-
ning theory formalised in Dung’s abstract argumentation framework [8]; such
planning is based on an adaptation of Dung’s notion of defence. Their formal
argumentation framework allows arguments about the backward derivation of
plans from objectives and policy rules (abduction), as well as arguments about
the forward derivation of goals from general objectives. Parties negotiate to find
an agreement about which policy to apply, even though there may be more than
one way to achieve a security objective.

A first general and introductory work on Argumentation and Cybersecurity
is proposed in [10]. There the authors suggest the use of Argumentation to pro-
vide automated support for Cybersecurity decisions. Three different tasks where
Argumentation can contribute are surveyed in the paper: first, the establishment
of a security policy, drawing from a range of information on best practice and
taking into account likely attacks and the vulnerability of the system to those
attacks. Secondly, the process diagnosis to determine if an attack is underway
after some apparent anomaly in system operation is detected; the final goal is to
decide what action, if any, should be taken to ensure system integrity. At last,

246 F. Martinelli and F. Santini

Argumentation can be used to reconfigure a security policy in the aftermath of a
successful attack: this reconfiguration needs to ensure protection against future
similar-attacks, without creating new vulnerabilities.

6 Conclusion

As related work highlights (see Sect. 5), while some very preliminary steps have
been accomplished to use Argumentation to resolve conflicts in rule-based poli-
cies (e.g., security policies, access control, or firewall rule-set), no real effort has
been spent to avoid the manipulation of such decision-making process in Cyber-
security scenarios. Our goal is to develop a comprehensive tool where to deal
with both such problems, i.e., decision and decision manipulation. Since AAFs
can be weighted, such problems can be associated with a score that enables
solution-optimisation.

References

1. Applebaum, A., Levitt, K.N., Rowe, J., Parsons, S.: Arguing about firewall policy.
In: Verheij, B., Szeider, S., Woltran, S. (eds.) COMMA. Frontiers in Artificial
Intelligence and Applications. IOS Press, Amsterdam (2012)

2. Bandara, A.K., Kakas, A.C., Lupu, E.C., Russo, A.: Using argumentation logic
for firewall policy specification and analysis. In: State, R., van der Meer, S.,
O’Sullivan, D., Pfeifer, T. (eds.) DSOM 2006. LNCS, vol. 4269, pp. 185–196.
Springer, Heidelberg (2006)

3. Bandara, A.K., Kakas, A.C., Lupu, E.C., Russo, A.: Using argumentation logic
for firewall configuration management. In: Integrated Network Management,
pp. 180–187. IEEE (2009)

4. Bistarelli, S., Rossi, F., Santini, F.: Benchmarking hard problems in random
abstract AFs: The stable semantics. In: Proceedings of the Fifth International
Conference on Computational Models of Argument, FAIA, IOS Press (2014, to
appear)

5. Bistarelli, S., Santini, F.: A common computational framework for semiring-based
argumentation systems. In: 19th European Conference on Artificial Intelligence,
ECAI 2010, FAIA, vol. 215, pp. 131–136. IOS Press (2010)

6. Bistarelli, S., Santini, F.: Conarg: a constraint-based computational framework
for argumentation systems. In: Proceedings of the 2011 IEEE 23rd International
Conference on Tools with Artificial Intelligence, ICTAI 2011, pp. 605–612. IEEE
Computer Society (2011)

7. Boella, G., Hulstijn, J., van der Torre, L.W.N.: Argumentation for access control.
In: AI*IA, pp. 86–97 (2005)

8. Dung, P.M.: On the acceptability of arguments and its fundamental role in non-
monotonic reasoning, logic programming and n-person games. Artif. Intell. 77(2),
321–357 (1995)

9. Rahwan, I., Simari, G.R.: Argumentation in Artificial Intelligence, 1st edn.
Springer Publishing Company, Incorporated, New York (2009)

10. Rowe, J., Levitt, K., Parsons, S., Sklar, E., Applebaum, A., Jalal, S.: Argumenta-
tion logic to assist in security administration. In: Proceedings of the 2012 Workshop
on New Security Paradigms, NSPW 2012, pp. 43–52. ACM (2012)

Formal Verification of e-Reputation Protocols

Ali Kassem2(B), Pascal Lafourcade1, and Yassine Lakhnech2

1 LIMOS, Université d’Auvergne, Clermont-ferrand, France
2 CNRS, VERIMAG, Université Grenoble Alpes, Saint-Martin-d’Hères, France

ali.kassem@imag.fr

Abstract. Reputation systems are often useful in large online commu-
nities in which most of the users are unknown to each other. They are
good tools to force the users to act in truthfulness way. However, for a
reputation system to work effectively users have to be willing to provide
rates. In order to incentivize the users to provide honest rates, a reputa-
tion system have to ensure their privacy and anonymity. Users are also
concerned about verifying the correctness of the reputation score. In the
applied pi-calculus, we define a formal framework and several fundamen-
tal privacy, authentication, and verifiability properties suitable for the
security analysis of e-reputation protocols. As proof of concept, using
ProVerif, we analyze a simple additive decentralized reputation protocol
proposed to ensure rate privacy if all users are honest.

Keywords: Reputation protocols · Formal verification · Privacy ·
Authentication · Verifiability · Applied pi-calculus · ProVerif

1 Introduction

Electronic reputation (in short, e-reputation) systems are tools for the users to
quantify the trust between each other. Electronic commerce, social news, peer-to-
peer routing, and collaborative environments are examples of applications highly
benefit from using e-reputation systems. Indeed, similar to the word-of-mouth rep-
utation, an e-reputation system allows users to form an opinion on the behavior of
an unknown user service provider through a reputation score. A reputation score
is a mathematical value1 (e.g., the number of all users that provided a positive
feedback, or the percentage of those provided a positive one from all the users that
provided feedback) computed from the opinions of users that have been interacted
with the service provider. For example, users may rate a service provider on eBay
or a restaurant on Yelp as useful, and those ratings allow other to identify more
easily the best service provider (or product). In the following, whatever the type

This research was conducted with the support of the “Digital trust” chair from the
Foundation of the University of Auvergne.

1 Note that, the reputation score could be a vector computed from detailed opinions of
the users, where each value reflects the quality of a specific task such as item describing
accuracy, shipping speed, etc.

c© Springer International Publishing Switzerland 2015
F. Cuppens et al. (Eds.): FPS 2014, LNCS 8930, pp. 247–261, 2015.
DOI: 10.1007/978-3-319-17040-4 16

248 A. Kassem et al.

of parties (clients, service providers, nodes, website, etc.) involved in a reputation
system we call them users, and the opinions or feedbacks they provide about each
other are called rates . We explicitly distinguish the user that is currently receiving
a rate by calling him target user.

E-reputation protocols are becoming an important tool in online commu-
nities. However, many adversarial behaviors can affect such systems [8]. Users
may collude to collectively subvert the system either by giving a negative (unfair)
rates on the victim in order to destroy its reputation–what is called bad-mouthing
attack [10], or by advertising the quality of service of a certain user more than
its real value to increase his reputation–what is called ballot-stuffing attack [10].
Moreover, reputation systems may have to face Sybil attack, that is users that
pollute the system by creating numerous fake identities [13]. In the worst case,
some parties (e.g., authority, or users) may act dishonestly and modify the rates
to obtain a wrong reputation score. To limit such behavior, users have to be able
to check for irregularities, or to prove their absence. Target user may wish to
ensure verifiability too. He may want to be transparent to inspire trustworthiness
in his reputation score.

For reputation systems to be effective, in addition to their correctness, users
have to be willing to provide rates. In order to incentivize the users to provide
honest rates, e-reputation protocols have to ensure their privacy and anonymity.
Usually, users wish to remain anonymous as they would like to be sure that the rate
they provide cannot be used in a way that can affect them in the future. Actually,
it has been shown that preserving the privacy of users encourage them to feed the
reputation systems with honest ratings without fearing retaliation [22].

Contributions: In this paper, we provide the means to analyze the privacy of
e-reputationprotocols andverify their correctness.Precisely,wemodel e-reputation
protocols in the applied pi-calculus [1], we define four privacy properties: Rate
Privacy, rates provided by the users are kept secret; Rate Anonymity, an attacker
cannot relate a certain rate to the user provided it; Receipt-Freeness, a user can-
not prove to an attacker that he provided a certain rate about the target user;
Coercion-Resistance, even when interacting with a coercer, the user can still
provide a rate of his choice. We also give two authentication properties: Rate
Integrity, the rate is recorded as sent (casted) by the user unmodified; User Eli-
gibility, only eligible users (those who accomplish a successful interaction) can
cast rates, and two verifiability properties: Reputation Score Verification, any
one can verify the validity of a certain user score; User Eligibility Verification,
any one can verify that every counted rate is casted by an eligible users (those
who accomplish a successful interaction). Finally, we validate the effectiveness of
the proposed approach by analyzing the security of an e-reputation protocol [21]
using ProVerif [7].

The proposed properties still cannot detect attacks such as bad-mothing
and ballot-stuffing attacks, but properties such as: User Eligibility Verifica-
tion, Receipt-Freeness, and Coercion-Resistance can minimize them. As User
Eligibility Verification imposes some constraints on the users in order to provide
a rate (e.g., accomplish a successful interaction); Receipt-Freeness can limit the

Formal Verification of e-Reputation Protocols 249

bribing and positive rate exchange between users as they cannot provide a proof
that they provided a certain rate; similarly does Coercion-Resistance even when
interacting with a coercer.

Related Work: As an example of simple reputation system is the one used by
eBay. After the exchange is accomplished between users (a client and a service
provider), they can rate each other with a rating, −1, 0, or +1 in accordance with
their satisfaction. A more sophisticated reputation systems have been recently
proposed. Androulaki et al. propose an reputation protocol relies on trusted cen-
tral authority to demonstrate the validity of rates in [4]. Pavlov et al. [21] were
the first ones to propose a decentralized reputation protocol to preserve users
privacy. Other try to have privacy preserving protocols [2,24,25] by dealing with
unlinkability that is to ensure that an attacker cannot distinguish whether the
same user is involved in two interactions or not. Bethencourt et al. [6] formally
define the anonymity of both the users and the target user, and propose a proto-
col argued informally to satisfy those definitions. Anceaume et al. extend their
work in [3] to handle non-monotonic ratings and mention additional security
properties concerned in reputation scores correctness.

However, to best of our knowledge no general formal framework that allows
the verification of the security properties in e-reputation protocols have been
given. In some related domains, there are numerous papers presenting the formal-
ization and verification of the security properties, for instance in e-voting [5,9,
16,17], in e-auction systems [12,15,18], and in e-exams [14]. Some of the security
properties therein studied seem to relate with those we present for e-reputation
protocols. For instance, user eligibility is analogous to voter, bidder, and student
eligibility. Rate privacy reminds vote, bid, and mark privacy.

However, still there are fundamental differences. In voting, the candidates
and the voters (and thus the maximum possible number of votes) are already
known, and after voting process the total number of votes and that taken by
each candidate will be publicly available. Thus, there is a certain leakage of
information. For example, if a candidate does not receive any vote, the attacker
can exclude this previously possible option. While in reputation all users can
rate each other playing two rules at the same time (rate provider and target
user). Also, the number of provided rates is not (necessarily) publicly known.
Thus, having a reputation score does not give us any information about the
number of the rates provided for the other users. Also, in protocols that support
both negative and positive rates, a score zero does not means zero rates. Even in
case of only positive rates, a score zero could due to the fact that this user did
not make any interaction with the others yet, not necessarily means that users
provides their rates to other target users like in voting. Actually, in reputation
a user do not have to choose between different target users as he can provides
rates for all users he interacted with. Note that, providing a rate for a certain
user is not always good like when you vote for a certain candidate in voting, as
the rate could be a bad one. Hence, reputation systems have many differences
from voting systems.

250 A. Kassem et al.

Furthermore, the threat models for reputation, voting, auctions and exams
are different: in voting collusion between the voters and the candidates (bribing)
aims to see a candidate win; in reputation collusion between the users by brib-
ing, by exchanging good rates or even making fake interaction aims to increase
their reputation scores; similarly in exams collusion between the student and
the examiner aims to get the highest possible mark; it is different in auction
since bidders want to win with the lowest possible price, but seller want to sell
with the highest possible one.

Outline: In Sect. 2, we model e-reputation protocols in the applied pi-calculus.
We formally express the security properties in Sect. 3. In Sect. 4, we validate our
framework by analyzing the security of an e-reputation protocol [21]. Finally, we
conclude and outline the future work in Sect. 5.

2 Modelling

We model e-reputation protocols in the applied pi-calculus [1], a process calculus
designed for the verification of cryptographic protocols. To perform the auto-
matic protocol verification, we use ProVerif [7]. This tool uses a process descrip-
tion based on the applied pi-calculus, but has syntactical extensions and is
enriched by events to check reachability and correspondence properties. Besides,
it can check equivalence properties. We use the labeled bisimilarity (≈l) to
express the equivalence between two processes [1]. Informally, two processes are
equivalent if an observer has no way to distinguish between them.

Precisely, honest parties are modeled as processes in the applied pi-calculus.
These processes can exchange messages on public or private channels, create
keys or fresh random values and perform tests and cryptographic operations,
which are modeled as functions on terms with respect to an equational theory
describing their properties.

The Dolev-Yao attacker [11] has complete control of the network, except
the private channels: he can eavesdrop, remove, substitute, duplicate and delay
messages that the parties are sending one another, and insert messages of his
choice on the public channels. To capture threats due to collusions and coercions,
we assume dishonest parties. They cooperate with the attacker, revealing their
secret data (e.g., secret keys) to him, or taking orders from him (e.g., what
rate to provide). We model such dishonest parties as in Definition 10 and 15
from [9]: if the process P is an honest party, then the process P c1 or P c1,c2 is
its dishonest version. The process P c1 is a variant of P which shares with the
attacker channels c1. Through c1, P c1 sends all its inputs and freshly generated
names (but not other channel names). The second process P c1,c2 does not only
reveal the secret data on channel c1, but also takes orders from the attacker on
the channel c2 before sending a message or branching. This models a completely
corrupted party. To hide the outputs of an extended process (a process which
may contain an active substitutions {m/x}) on a certain channel, we use the
Definition 11 from [9]: if A is an extended process, then the process A\out(ch,·)

Formal Verification of e-Reputation Protocols 251

is a variant of A that hides all the outputs on channel ch, it is defined by
νch.(A|!in(ch, x)). For more details about the applied pi-calculus, its standard
results and all the definitions used in this paper, we refer to the papers [1,9].

Reputation protocols have some important differences. However, a large class
of them can be represented as follows.

Definition 1 (Reputation Protocol). A reputation protocol is defined by a
tuple (U , T,A1, . . . , Al, ñp), where U is the process executed by the users, T is the
process executed by the target user; the one we looking for his reputation score,
Ai’s are the processes executed by the authorities, and ñp is the set of private
channel names.

A reputation protocol involves users who provide the rates about the target user,
and the protocol authorities who often handle the rates, calculate the reputation
score, distribute the scores, etc. Note that all users execute the same process, but
with different variable values, e.g., keys, identities, and rates. In some protocols,
especially decentralized ones such as [21], reputation scores are computed upon
request by a certain user; the one looking to know the reputation score of the
target user (due to a potential interaction with him), this user is represented as
on of the authorities as usually his task involve some organizational work.

To reason about privacy, we talk about reputation processes; instances of a
reputation protocol.

Definition 2 (Reputation Process). Given a reputation protocol a repu-
tation process is a closed process νñ.(Uσid1σr1 , . . . , Uσidn

σrn , T, A1, . . . , Am)
where ñ is the set of all restricted names, which includes the set of the protocol’s
private channels; Uσidi

σri ’s are the processes run by the users, the substitution
σidi

specifies the user’s identity and σri specifies the rate given by the user idi;
T is the process runs by the target user; and A1, . . . , Am are the processes run
by the authorities.

As a notation, we use what in applied pi-calculus is called “context”. The con-
text RPI [] is the process RP without the processes whose identities are in
the set I; they are replaced by “holes”. We use this notation when we need
to specify exactly, for instance, the processes of the users id1 and id2 with-
out repeating the entire reputation process. This is done by rewriting RP as
RP{id1,id2}[Uσid1σr1 |Uσid2σr2].

3 Security Properties

In the following, we formally define our security properties.

3.1 Privacy Properties

We model our four privacy properties; Rate Privacy, Rate Privacy, Receipt-
Freeness, and Coercion-Resistance as observational equivalence, a standard choice

252 A. Kassem et al.

for such kind of properties [23]. We use the labeled bisimilarity to express the
equivalence between two processes.

The first property, Rate Privacy, says that user rates have to be secret. Keep-
ing the rates secret gives the users more incentive to provide honest rates.

Definition 3 (Rate Privacy). A reputation protocol ensures Rate Privacy if
for any reputation process RP , any user id, and any two rates r, r′, we have
that: RP{id}[Uσidσr] ≈l RP{id}[Uσidσr′].

Rate Privacy states that two processes with different rates have to be observa-
tionally equivalent. Note that, such a property can be defined as a reachability
property: an attacker can not reach a state where the rate r is in his knowledge.
However, modeling it as an equivalence property is stronger, as this prevents the
attacker from obtaining any information about the rate.

Here, we can consider dishonest target user, as he might be interested in
knowing the rates provided by the others users about him. We can do this by
replacing honest T with dishonest one. If we assume that T has an identity idt,
we obtain RP{id,idt}[Uσidσr|T c1,c2] ≈l RP{id,idt}[Uσidσr′ |T c1,c2]. We can also
add another dishonest users using the same technique, however the user who
provides the two different rates has to be honest. Otherwise the property can be
trivially violated by him revealing his rate to the attacker. This technique can
be used in all the following properties if we want to add some dishonest parties.

The previous definition of Rate Privacy ensures that the attacker cannot
know the rates of the users. However, in practice the rates could be publicly
available, e.g., in some sites we could find that n users provide a certain rate
without mentioned the identities of these users. Another variant of Rate Privacy
is Rate Anonymity, i.e., the attacker might know the list of all rates, but is
unable to associate a certain rate to its corresponding user.

Definition 4 (Rate Anonymity). A reputation protocol ensures Rate
Anonymity, if for any reputation process RP , any users id1, id2, and any rates
r1, r2, we have that: RP{id1,id2}[Uσid1σr1 |Uσid2σr2] ≈l RP{id1,id2}[Uσid1σr2

|Uσid2σr1].

This definition states that the process where user id1 provides a rate r1 and user
id2 provides a rate r2 is equivalent to the process where id1 provides a rate r2
and id2 provides a rate r1. This prevents the attacker from obtaining the identity
of the user who provides a certain rate.

A protocol that ensures Rate Privacy also ensures Rate Anonymity. We have
RP{id1,id2}[Uσid1σr1 |Uσid2σr2] ≈l RP{id1,id2}[Uσid1σr2 |Uσid2σr2] using Rate Pri-
vacy since only the rate provided by the user id1 is changed from r1 in the left
side to r2 in the right one. Similarly, by changing the rate of id2, we have:
RP{id1,id2}[Uσid1σr2 |Uσid2σr2] ≈l RP{id1,id2}[Uσid1σr2 |Uσid2σr1].

For Receipt-Freeness and Coercion-Resistance we follow the definitions intro-
duced in [9].

A protocol is receipt-free, if an attacker cannot distinguish between a situa-
tion where a user id1 provides a rate rc according to the attacker’s wishes and

Formal Verification of e-Reputation Protocols 253

reveals his data on a channel ch, and a situation where id1 actually provides a
rate r1 of his choice and pretends to reveal his secret data (this is modeled by
process U ′). The process U ′ is a process in which user id1 provides a rate r1, but
communicates with the attacker (coercer) to trick him by saying that his desired
rate rc is provided. This can be done by providing the attacker a fake receipt,
e.g., using a trapdoor to generate a different opening key. Note that, user id2
swaps the rates with id1 to avoid the case where the attacker can distinguish the
situations by counting the rates, if possible.

Definition 5 (Receipt-Freeness). A reputation protocol ensures Receipt-
Freeness if for any reputation process RP , any users id1, id2, and any rates
r1, rc, there exists a closed plain process U ′ such that:

– U ′\out(ch,.) ≈l Uσid1σr1 , and
– RP{id1,id2}[(Uσid1σrc)

ch|Uσid2σr1] ≈l RP{id1,id2}[U ′|Uσid2σrc].

Coercion-Resistance is a stronger property than Receipt-Freeness, as the attacker
can not only ask for a receipt, but is also allowed to interact with the user during
the rating process and to provide the messages the user should send.

Definition 6 (Coercion-Resistance). A reputation protocol ensures Coercion-
Resistance if for any reputation process RP , there exists a closed plain process
U ′ such that for any σ?, and context C = νc1.νc2.(|P) satisfying ñ∩ fn(C) = ∅
and RPI [C[(Uσid1σ?)c1,c2]|Uσid2σr1] ≈l RPI [(Uσid1σrc)

ch|Uσid2σr1], where I =
{id1, id2}, we have that:

– C[U ′]\out(ch,.) ≈l Uσid1σr1 , and
– RPI [C[(Uσid1σ?)c1,c2]|Uσid2σr1] ≈l RPI [C[U ′]|Uσid2σrc].

Here, the context C models the attacker’s behaviors which tries to force the user
to provide the rate rc. Note that, no matter what rate the user id1 intends to
provide (σ?), the attacker will force him to provide the rate rc.

3.2 Authentication Properties

We model the authentication properties as correspondence properties, a well-
known approach [23]. Correspondence properties capture relationships between
events, which may have the same structure “if a event e is executed the event
e′’s has been previously executed”. Events are annotations that do not change a
process behavior, but are inserted at precise locations to allow reasoning about
the authentication properties.

To define our two authentication properties, we use the following events:

– Event sent(idu, idt, r) emitted when the user idu send a rate r (or sum of
rates) for the authority (or responsible party) to evaluate the target user idt.
This event is emitted just before sending the message containing the rate.

254 A. Kassem et al.

– Event record(idu, idt, r) emitted when the rate r (or sum of rates) from the
user idu provided about the target user idt is received by the authority (or the
intended party). This event is placed after receiving the rate and perform
the required checks before accepting it, if any.

– Event eligible(idu, idt) emitted when the user idu is certified as an eligible user
to provide a rate about the target user idt. It is placed just before providing
the credential by the responsible party.

After placing these events inside the reputation process, the authentication prop-
erties can then defined as follows:

First, Rate Integrity, which ensures that the rate is not altered and received
by the responsible party as it provided by the user.

Definition 7 (Rate Integrity). A reputation protocol ensures Rate Integrity,
if for every reputation process RP each occurrence of the event record(idu, idt, r)
is preceded by a distinct occurrence of the corresponding event sent(idu, idt, r)
on every possible execution trace.

The second property is User Eligibility, which ensures that only the users have a
certain credential can provide a rate. The credential can be a certificate from an
authority, a proof that he has been interacted with the target user, or marked in
some database as interacted with the target user. It is defined using the following
two events:

Definition 8 (User Eligibility). A reputation protocol ensures User Eligibil-
ity, if for any reputation process RP each occurrence of the event record(idu, idt, r)
(for any r) is preceded by a distinct occurrence of the corresponding event eligible
(idu, idt) on every possible execution trace.

3.3 Verifiability Properties

Similar to [15], we define a verification test as an efficient terminating algorithm
that takes as input the data visible to a participate of the reputation protocol and
returns a boolean value (true or false). To reason about verifiability properties,
we extend the reputation process with the following functions and variables:

– rs is a variable referring to the reputation score assigned to the target user;
– L: List(ERate) is a list of (encrypted or anonymized) rates provided by the

users about the target user;
– getRate:ERate �→ Rate is a function that maps the (encrypted or anonymi-

zed) rates to a regular rates (e.g., an integer). This function does not need to
be computable for any party, as it is only used to define the verification test;

– compRep is a function that computes the reputation score given a list of rates.
This might be simply the summation of all the rates, but there may be more
complex operations to determine this value;

– isEligible : ID × ID �→ {true, false} is a function which takes a rate and
returns true if the rate was provided by a certified user (user which interacted
with the target user).

Formal Verification of e-Reputation Protocols 255

We write getRate(L) for getRate(L[1]), . . . , getRate(L[n]), where L[i] is the ith

entry of the list L.
Users would like to verify the validity of the reputation score of the target,

this is ensured by Reputation Score Verification.

Definition 9 (Reputation ScoreVerification).A reputation protocol ensures
Reputation Score Verification, if we have a test RSV respecting the following:

– Soundness: RSV = true ⇒ rs = compRep(getrate(L));
– Completeness: if all participants follow the protocol correctly, then rs = comp

Rep(getrate(L)) ⇒ RSV = true.

Another interesting verifiability property is User Eligibility Verification which
allows anyone to check if every counted rate is provided by an eligible user.

Definition 10 (User Eligibility Verification). A reputation protocol ensures
User Eligibility Verification, if we have a test UEV respecting the following
conditions:

– Soundness: UEV = true ⇒ ∀r ∈ L, isEligible(r) = true;
– Completeness: if all participants follow the protocol correctly, then ∀r ∈ L, is

Eligible(r) = true ⇒ UEV = true.

Note that, this property is different from the User Eligibility presented before.
A protocol satisfying User Eligibility means that it authenticates the users and
only allows eligible ones to provide rates, but this does not necessarily means that
anyone (e.g., another user) can himself verify that the rates were provide by an
eligible users as the protocol might not provide a proof for that. In the protocols
that satisfy User Eligibility but not User Eligibility Verification, users usually
have to trust a certain authority about the eligibility of the users, however in
those satisfying Use Eligibility Verification a user can himself verify the eligibility
of the users and thus detecting any error or cheating, and does not have to trust
any authority concerning this point as the authority itself might act dishonestly.

4 Case Study

Using ProVerif [7], we applied the previously explained definitions on the first
protocol proposed by Pavlov et al. in [21]. This protocol was designed to provide
privacy of the rates in decentralized additive reputation systems, if all users flow
the protocol correctly i.e., all users are honest. It also assumes that all users
provide honest rating about the target user (i.e., rating that correctly reflects
their satisfaction), as the protocol cannot prevent the users from providing an
unfair rating to increase (or decrease) the reputation score of the target user
more (or less) than its real value. The authors argue that the protocol preserves
the secrecy of all the rates if the users do not collude with each others.

256 A. Kassem et al.

Informal Description. The basic idea behind this protocol is to consider the rate
provided by each user to be his secret information. The rates are cumulatively
added to each other, without revealing them, to obtain a sum represents the
reputation score of the target. The protocol is initiated by a querying agent Aq

looking to know the reputation score of the target user, and proceeded as follows:

1. Initialization Step: the querying agent Aq orders the users in a ring: Aq →
U1 →, . . . ,→ Un → Aq, and sends to each user Ui the identity of his successor
in the ring, i.e., for i ∈ {1, . . . , n − 1} it sends the identity of Ui+1 to Ui, and
for Un it sends its identity.

2. Aq chooses a random number rq
= 0 and sends it to U1.
3. Upon reception of rp from his predecessor in the ring, each user Ui for i ∈

{1, . . . , n} calculates rp + ri and sends the obtained value to his successor in
the ring, where ri is the reputation rate of the user Ui about the target user.

4. Upon reception of the feedback from Un, Aq subtracts rq from it in order to
obtain the reputation score of the target user represented by the sum of all
rates.

To ensure secrecy and authentication, the designers of the protocol assume an
authenticated secure channel between every two users.

Formal Model. Generally, it is difficult to model arithmetic operations in formal
protocol provers such as ProVerif. However, we build a simple equational theory
which handles the required arithmetics to verify the protocol for the case where
we have two users U1 and U2 in addition to the querying agent.

We modeled the protocol in ProVerif using a standard equational theory for
symmetric encryption (functions senc and sdec), senc(m, k) represents the
symmetric encryption of the message m with the key k and sdec represents
the decryption function; and an equational theory for arithmetic addition and
subtraction (functions sum and sub). The function sum takes two values and
return their sum. Having x or y we can obtain the other one from sum(x, y)
using the function sub. Similarly, we can obtain sum(y,z) and sum(x,z) from
sum(sum(x, y), z) having x and y respectively. Note that with this equa-
tional theory, having x or y, one cannot obtain sum(z, y) or sum(z,x) from
sum(z, sum(x, y)). Solving this requires two additional equations similar to
the last two equations presented below. One could also says why not modeling
sum as a commutative function, i.e., sum(x, y) = sum(y, x), which solves this
problem and moreover allows us to represent the subtraction using only two
equations instead of four. This is due to a ProVerif problem as both solutions
cause non termination. Actually, it is well known that ProVerif has difficulties
with commutative operations. However, we overcome this weakness by giving the
value rp received by the user process Ui as the first argument to the function sum,
and his rate ri as the second argument. Thus, such a term sum(z, sum(x, y))
does not appear between the messages involved in the protocol.

Formal Verification of e-Reputation Protocols 257

sdec(senc(m,k),k) = m

sub(sum(x, y), x) = y

sub(sum(x, y), y) = x

sub(sum(sum(x, y), z), x) = sum(y,z)

sub(sum(sum(x, y), z), y) = sum(x,z)

An alternative equational theory could be modeling the sum of two num-
bers x and y as their exclusive-or (XOR), i.e., xor(x, y) instead of sum(x, y).
In this case the subtraction will represented by another XOR application, i.e.,
xor(xor(x, y), y) = x. ProVerif, originally does not handel the XOR opera-
tor, however Küsters et al. show how to reduce the derivation problem for horn
theories with XOR to the XOR-free case in [20]. Their reduction allows one to
carry out the analysis of the protocols that involve XOR operator using tools,
such as ProVerif. We belive that their result allows us to carry out the analysis
(possiblly for more than two users) with ProVerif, using the XOR operator to
model the summation and subtraction. However, we kept this for future work.

All the parties (querying agent and users) are modeled as honest parties.
To model the authenticated secure channel, all the messages are exchanged
encrypted with a symmetric key shared between all the users, for a secure
communication. For authentication, the unique identities of the sender and the
receiver are included in the message to authenticate the sender, and ensure that
only the intended receiver will receive the message. Note that, the attacker can
still block, or re-play the messages.

Analysis. The results of our analysis are detailed below.

Rate Privacy: In case of only one user, it is clear that we do not have Rate
Privacy as the reputation score will be equal to the rate of this user, and thus the
querying agent can knows this rate. We show, using ProVerif, that the protocol
ensures Rate Privacy in the case of two users (other than the querying agent). As
we mentioned, to model the authenticated channel we add the identities to the
messages. Note that, if the identity of the receiver is removed from the messages,
the attacker can re-direct the message sent by the first user, which contains
sum(rq, r1), to the querying agent instead of the second user, and thus the rate
of the first user will be enclosed to the querying agent even if he acts honestly.
A similar attack will enclose the rate of the last user (herein user two) if the
attacker re-direct the first message by querying agent, which contains rq to the
last user. To make the attack on the intermediate users (in case of more than two
users) the attacker needs two sessions to be initiated by the same querying agent.
Note that, in all these attacks the rate will only enclosed to the querying agent
and not to the attacker unless that the obtained reputation score is published
by the querying agent.

Rate Anonymity: ProVerif was able to show that the protocol ensures Rate
Anonymity in the case of two users (other than the querying agent).

258 A. Kassem et al.

Receipt-Freeness: The protocol does not ensure Receipt-Freeness since the shared
key k can be used as a receipt which allows the attacker to enclose the value
of the message received by the victim user and that sent by him, then subtract
them from each other to check whether the difference is equal to the rate rc he
wants, or not. Note that, the user cannot lie about the key by giving the attacker
an different key k′ since, for any keys k′
= k and rates rc
= ri, we cannot have
that rc = sub(sdec(senc(sum(rp, ri), k), k′), sdec(senc(rp, k), k′)).

Coercion-Resistance: As Receipt-Freeness does not hold, then Coercion-
Resistance also does not hold since by Proposition 18 of [9], if a protocol ensures
Coercion-Resistance then it also ensures Receipt-Freeness.

Rate Integrity: We check the integrity of the messages exchanged between the
parties (querying agent and users). Thus events are placed in both querying
agent and user processes. ProVerif shows that the integrity of the messages is
preserved if the correspondance is modeled without injectivity, and terms types
(sorts) are respected. Note that, the injectivity does not hold since the attacker
can re-play the message several times, and thus we will have several emission
of the event record preceded by only one emission of event sent. Note also that
a flaw attack exists if we ignore the types of the terms: for example, the first
message sent by the querying agent to the first user to inform him about the
identity of his successor, which has a type ID, might be received by this user as
a rate rq, which has another type Rate. Thus, the event record will emitted but
not the event sent.

User Eligibility: We show with ProVerif that User Eligibility is ensured by
the protocol. We assume that the users included in the ring are eligible as they
are registered in a certain database. Thus, the event eligible is emitted when the
querying agent chooses the user as a node in the ring. The event record emitted
when the rate is received by his successor in the ring (actually the summation
of all privious rates is received).

Reputation Score Verification: The users can only get the reputation score, how-
ever they have no means to check if this score is calculated correctly from the
users rates. However, if the rates and the score are published encrypted with the
shared key in a Bulletin Board, then we can design a test that allows the users to
verify the reputation score. The test takes users rates and the reputation score
of the target user, and simply checks if the summation of all rates is equal to the
score. Note that, verifability could destroys the privacy of the rates. We show
using ProVerif that the test is sound and complete.

User Eligibility Verification: Users that provides rates are not publicly known.
Also, users do not provide any proof (e.g., certificate from authority) which
could allow us to verify their eligibility. Note that, as user eligibility is ensured,
according to the definition of User Eligibility Verification the test that always

Formal Verification of e-Reputation Protocols 259

gives true is sound and complete. However, this test is dummy as it does not pro-
vide any information for the users to remove their doubts, trusting the authority
is all what they have to do instead.

5 Conclusion and Future Work

We set the first research step on the formal understanding of e-reputation sys-
tems, and establishes a framework for the automatic analysis of their security
requirements. In particular, we show how to model reputation protocols in the
applied pi-calculus, and how security properties such as privacy, authentication,
and verifiability properties can be expressed.

We validate our model and definitions by analyzing, using ProVerif, the secu-
rity of an e-reputation protocol, the protocol by Pavlov et al. [21]. It has been
informally argued to preserve rate privacy. Our analysis shows that it ensured
Rate Privacy, Rate Anonymity, and User Eligibility. It fails to satisfy Receipt-
Freeness, Coercion-Resistance, and User Eligibility Verification, and presents
some weakness concerning Rate Integrity, and Reputation Score Verification but
satisfies them with some assumptions.

As a future work we intend to analyze more e-reputation protocols. Sev-
eral e-reputation protocols are highly depends on algebraic properties such as
arithmetic operations and homomorphic encryptions, e.g. [3,6,19,21]. Develop-
ing automatic tools that can deal with these properties is still a real challenge
for the community. However, researches goes some way in the direction of find-
ing solutions for such a problem, for instance the result obtained by Küsters
et al. [20] allows us to analyze protocols with XOR operator using ProVerif. Note
that, this result could help us in analyzing protocols with arithmetic operations,
which is the case of many e-reputation protocols, if used to model summation
and subtraction.

Other interesting research works include the study of the relation between our
security properties as well as the definition of novel properties such as correctness
of the reputation score, prevent double rating, accountability, reliability (e.g., to
prevent Sybil attacks), and addressing false unfair rates.

References

1. Abadi, M., Fournet, C.: Mobile values, new names, and secure communication. In:
Hankin, C., Schmidt, D. (eds.) POPL, pp. 104–115. ACM (2001)

2. Anceaume, E., Guette, G., Lajoie-Mazenc, P., Prigent, N., Tong, V.V.T.: A privacy
preserving distributed reputation mechanism. In: ICC, pp. 1951–1956. IEEE (2013)

3. Anceaume, E., Guette, G., Lajoie-Mazenc, P., Sirvent, T., Viet Triem Tong, V.:
Extending signatures of reputation. In: Hansen, M., Hoepman, J.-H., Leenes, R.,
Whitehouse, D. (eds.) Privacy and Identity 2013. IFIP AICT, vol. 421, pp. 165–176.
Springer, Heidelberg (2014)

4. Androulaki, E., Choi, S.G., Bellovin, S.M., Malkin, T.: Reputation systems for
anonymous networks. In: Borisov, N., Goldberg, I. (eds.) PETS 2008. LNCS, vol.
5134, pp. 202–218. Springer, Heidelberg (2008)

260 A. Kassem et al.

5. Backes, M., Hritcu, C., Maffei, M.: Automated verification of remote electronic
voting protocols in the applied pi-calculus. In: CSF, pp. 195–209 (2008)

6. Bethencourt, J., Shi, E., Song, D.: Signatures of reputation. In: Sion, R. (ed.) FC
2010. LNCS, vol. 6052, pp. 400–407. Springer, Heidelberg (2010)

7. Blanchet, B.: An efficient cryptographic protocol verifier based on prolog rules.
In: 14th IEEE Computer Security Foundations Workshop (CSFW-14 2001), Cape
Breton, Nova Scotia, Canada, 11–13 June 2001, pp. 82–96. IEEE Computer Society
(2001)

8. Carrara, E., Hogben, G.: Reputation-based systems: a security analysis (2007)
9. Delaune, S., Kremer, S., Ryan, M.: Verifying privacy-type properties of electronic

voting protocols. J. Comput. Secur. 17(4), 435–487 (2009)
10. Dellarocas, C.: Immunizing online reputation reporting systems against unfair rat-

ings and discriminatory behavior. In: EC, pp. 150–157 (2000)
11. Dolev, D., Yao, A.C.: On the security of public key protocols. IEEE Trans. Inf.

Theory 29(2), 198–208 (1983)
12. Dong, N., Jonker, H., Pang, J.: Analysis of a receipt-free auction protocol in the

applied pi calculus. In: Degano, P., Etalle, S., Guttman, J. (eds.) FAST 2010.
LNCS, vol. 6561, pp. 223–238. Springer, Heidelberg (2011)

13. Douceur, J.R.: The sybil attack. In: Druschel, P., Kaashoek, M.F., Rowstron, A.
(eds.) IPTPS 2002. LNCS, vol. 2429, pp. 251–260. Springer, Heidelberg (2002)

14. Dreier, J., Giustolisi, R., Kassem, A., Lafourcade, P., Lenzini, G., Ryan, P.Y.A.:
Formal analysis of electronic exams. In: Samarati, P. (ed.) SECRYPT 2014 -
Proceedings of the 11th International Conference on Security and Cryptography,
Vienna, Austria, 28–30 August, 2014. SciTePress (2014)

15. Dreier, J., Jonker, H., Lafourcade, P.: Defining verifiability in e-auction protocols.
In: Chen, K., Xie, Q., Qiu, W., Li, N., Tzeng, W.-G. (eds.) ASIACCS, pp. 547–552.
ACM (2013)

16. Dreier, J., Lafourcade, P., Lakhnech, Y.: Vote-independence: a powerful privacy
notion for voting protocols. In: Garcia-Alfaro, J., Lafourcade, P. (eds.) FPS 2011.
LNCS, vol. 6888, pp. 164–180. Springer, Heidelberg (2012)

17. Dreier, J., Lafourcade, P., Lakhnech, Y.: A formal taxonomy of privacy in voting
protocols. In: ICC, pp. 6710–6715 (2012)

18. Dreier, J., Lafourcade, P., Lakhnech, Y.: Formal verification of e-Auction protocols.
In: Basin, D., Mitchell, J.C. (eds.) POST 2013 (ETAPS 2013). LNCS, vol. 7796,
pp. 247–266. Springer, Heidelberg (2013)

19. Hasan, O., Brunie, L., Bertino, E., Shang, N.: A decentralized privacy preserving
reputation protocol for the malicious adversarial model. IEEE Trans. Inf. Forensics
Secur. 8(6), 949–962 (2013)

20. Küsters, R., Truderung, T.: Reducing protocol analysis with xor to the xor-free
case in the horn theory based approach. J. Autom. Reasoning 46(3–4), 325–352
(2011)

21. Pavlov, E., Rosenschein, J.S., Topol, Z.: Supporting privacy in decentralized addi-
tive reputation systems. In: Jensen, C., Poslad, S., Dimitrakos, T. (eds.) iTrust
2004. LNCS, vol. 2995, pp. 108–119. Springer, Heidelberg (2004)

22. Resnick, P., Zeckhauser, R.: Trust among strangers in internet transactions: Empir-
ical analysis of ebay’s reputation system. In: Baye, M.R. (ed.) The Economics of
the Internet and E-commerce (Advances in Applied Microeconomics), vol. 11, pp.
127–157. Emerald Group Publishing Limited (2002)

23. Ryan, M., Smyth, B.: Applied pi calculus. In: Formal Models and Techniques for
Analyzing Security Protocols, chapt. 6. IOS Press (2011)

Formal Verification of e-Reputation Protocols 261

24. Steinbrecher, S.: Design options for privacy-respecting reputation systems within
centralised internet communities. In: Fischer-Hübner, S., Rannenberg, K.,
Yngström, L., Lindskog, S. (eds.) Security and Privacy in Dynamic Environments.
IFIP AICT, vol. 201, pp. 123–134. Springer, Boston (2006)

25. Steinbrecher, S.: Enhancing multilateral security in and by reputation systems.
In: Matyáš, V., Fischer-Hübner, S., Cvrček, D., Švenda, P. (eds.) The Future of
Identity. IFIP AICT, vol. 298, pp. 135–150. Springer, Heidelberg (2009)

(In)Corruptibility of Routing Protocols

Raphaël Jamet1(B) and Pascal Lafourcade2

1 Univ. Grenoble Alpes, CNRS, VERIMAG, 38000 Grenoble, France
raphael.jamet@imag.fr

2 LIMOS, Université d’Auvergne, Clermont-Ferrand, France
pascal.lafourcade@udamail.fr

Abstract. Analyses of routing protocols security are nearly always sup-
ported by simulations, which often evaluate the ability to deliver mes-
sages to a given destination. Several competing definitions for secure
routing exist, but to our knowledge, they only address source routing pro-
tocols. In this paper, we propose the notion of corruptibility, a quantita-
tive computational definition for routing security based on the attacker’s
ability to alter the routes used by messages. We first define incorrupt-
ibility, and we follow with the definition of bounded corruptibility, which
uses two routing protocols as bounds for the evaluated protocol. These
definitions are then illustrated with several routing algorithms.

1 Introduction

Internet is made out of several independent entities controlling their own net-
works. To be routed, packets need to get through several networks until they
reach their destination, and so the Internet can be seen as a large ad hoc network.
In this context, routing relies on several protocols, including the Border Gateway
Protocol (BGP, [10]). This protocol ensures the dissemination of routing infor-
mation between autonomous systems (AS), and is notoriously insecure [9,12,13].

For instance, the AS 7007 incident [3] caused an internet-wide outage in
1997 because this AS declared itself able to route to the whole Internet. This
declaration was made in a way that ensured most networks would choose the
AS, as the preferred gateway to the rest of the Internet. This misconfiguration
then propagated through the Internet, overloading the faulty AS, and causing
huge packet losses.

Another example, still related to BGP, has been seen more recently in the
wild [7]. In this incident, China Telecom’s subnetwork declared itself preferential
for the routing to more than 50,000 IPs, including some strategic subnetworks
for the USA. Unlike the previous example, the infrastructure of the problematic
subnetwork still managed to route packets to their destination.

In the context of wireless ad hoc networks (WANET), attacks and misconfig-
urations are not as well studied as in traditional networks. For instance, in [15],

This research was conducted with the support of the “Digital trust” Chair from the
Foundation of the University of Auvergne.

c© Springer International Publishing Switzerland 2015
F. Cuppens et al. (Eds.): FPS 2014, LNCS 8930, pp. 262–276, 2015.
DOI: 10.1007/978-3-319-17040-4 17

(In)Corruptibility of Routing Protocols 263

the authors present some usual routing protocol vulnerabilities. In [8], the analy-
sis is more specific to the security of routing protocols on wireless sensor net-
works, which are a subset of the WANET family with more limited resources
and specific protocols.

Our intuition is that a secure routing protocol should guarantee that mali-
cious parties cannot influence the routes a message will take, or at least that
this influence is limited in a clearly stated way. We call such protocols incor-
ruptible, and using an incorruptible routing protocol would have prevented both
previously mentioned incidents. We do not consider confidentiality or integrity
of the data, as they are properties which are not necessarily tied to the routing
layer. Furthermore, this study is centered on wireless networks, but we believe
the notion can easily be transposed to the context of wired networks.

Contribution: We propose the first steps towards a computational notion for
the security of routing protocols, based on the ability for an attacker to influence
how messages are routed. We provide three measures. The first one quantifies the
difference between routing protocols in a safe context. The second one, denoted
routing protocol corruption, quantifies how much an attacker is able to change
how messages are routed. The last definition allows one to prove that an attacker
can only corrupt a protocol within some limits. We only consider protocols where
the nodes memories do not evolve once the attack begins. Finally, we illustrate
these definitions with the analysis of a simple protocol.

Related Work: In [14], the authors proposed the Source Routing Protocol
(SRP), which is an on-demand route discovery protocol. In on-demand routing
protocols, route discovery is the process of building a valid path for a given
data message. Using BAN logic [4], they claimed that routes generated by this
protocol are correct and their integrity is respected. An attack has been found
later on that protocol by [11], who argued that the results of the analysis are
flawed because such an analysis is “a misuse of BAN”, as this logic has been
designed to study trust relationships, and not security notions.

The authors of [1] provide a definition of provably secure on-demand route
discovery. They assume the adversary has compromised a few nodes in the net-
work which gives him full control of their actions and memories. To prove secu-
rity of protocols, they use the simulation paradigm, which uses two models: the
real-world model, and an ideal-world model where the protocol is idealized. This
way, they can detect specific problems in the protocol, while avoiding the inher-
ent problems of such routing protocols. In their model, a protocol is considered
secure if the executions set in the real-world model are indistinguishable from
those set in the ideal-world version. This model was expanded in [5], where the
authors provided an automated way to check protocols in this model.

The main differences between our model and theirs lie in the limitations on
the evaluated protocols, and the property being evaluated. Regarding protocols,
their model is able to track of the evolution of the internal states on nodes
and to model broadcasts, while we do not consider these situations. Regarding
the properties, the one we verify is universal to routing protocols, and could be

264 R. Jamet and P. Lafourcade

applied to any, while their property of secure route discovery only makes sense
on source routing protocols.

Outline: In Sect. 2, we model networks and protocols in our formalism, and
in Sect. 3 we provide some routing protocols. We present our definitions of an
incorruptible routing protocol in Sect. 4, along with the analysis of one of the
protocols given in Sect. 3. Finally, we conclude and present the perspectives of
this work in Sect. 5.

2 Definitions

To represent the network topology, we use a vertex-labeled directed graph named
the topology, and denoted by T = {V,E, f}, where vertices V represent network
nodes, and edges E represent their connectivity. We consider only static net-
works, and we suppose that nodes cannot send messages to themselves. The
function f associates labels to nodes, which are used to model pre-existing dis-
tinctions between nodes, such as sinks and sensors in the case of a wireless sensor
network. We denote by Neigv the set of neighbors of a node v (that is, the nodes
at one hop of v). We notice that v �∈ Neigv.

2.1 Routing Protocols

To forward messages, all the nodes follow a routing protocol P. This protocol
must verify that all messages are routed independently at the time of the analy-
sis. The path that a message will take should not be influenced by what other
messages have been routed before. Note that acknowledgments can be modeled
by considering they are the continuation of the route of the initial message.

We define K as the array of individual node memories, denoted by K[v] for
any node v ∈ V . Once initialized, a node’s memory is never modified again.
This is a strong restriction, and it reduces the range of protocols that can be
modeled. On the other hand, for a given message, these protocols generate routes
that do not depend on the past messages, which is an important property for
the following security proofs, and we embrace that assumption in the rest of this
paper. We discuss ways to lift this restriction in the conclusion.

We denote by ηd the data size, and by η the security parameter for crypto-
graphic functions. a

$←− X denotes that a is a random value obtained according
the distribution represented by X. If X is a set, a is randomly drawn using the
uniform law on X. Similarly, if X is a probabilistic algorithm, a is drawn at
random using the algorithm.

We define a routing protocol P as the set of four oracles {PI ,PG,PR,PD}
which respectively model the initialization, message generation, routing and the
depacketing phases. They are defined in Definitions 1 through 4.

Definition 1 (Initialization oracle). Let T = {V,E, f} be a topology, which
contains nodes v1 . . . vn ∈ V . The initialization oracle PI(T, η) models the setup

(In)Corruptibility of Routing Protocols 265

phase of P on the topology represented by T , with security parameter η, which
initializes the memories of the nodes. This oracle call returns K, an array asso-
ciating to each node its memories.

Definition 2 (Message generation oracle). Let T = {V,E, f} be a topology
with o, d ∈ V . Once memories K have been initialized, the message generation
oracle PG

K(o, d, ηd) models the generation of a new random data of length ηd to
route by o, for d. This oracle call returns a message m, and does not modify K.

Definition 3 (Routing oracle). Let T = {V,E, f} be a topology with v ∈ V .
Once memories K have been initialized, the routing oracle PR

K(v,m) models how
v would route m given the initialization K. This oracle call returns either ⊥ if
no message is forwarded, or (w,m′) if a message m′ is forwarded to w (with
w ∈ Neigv). That call does not modify K.

Definition 4 (Depacketing oracle). Let T = {V,E, f} be a topology with
d ∈ V . Once memories K have been initialized, the depacketing oracle PD

K (d,m)
models how d would unpack the message m given the initialization K. This oracle
call returns either the Data contained in the message if extractable, or ⊥ if that
operation is not possible. That call does not modify K.

2.2 Message Lifecycle and Routes

We now present how to model the natural lifecycle of a message. First, the
network needs to be initialized by calling K

$←− PI(T, η). Then, a new message
containing a random data is generated by a node o with destination d using
the generation oracle m0 = PG

K(o, d, ηd). That message is first routed by the
node o with the routing oracle PR

K(o,m0) = (h1,m1), assuming that message is
not dropped. We then continue with its first hop, h1, who reacts accordingly:
PR

K(h1,m1) = (h2,m2). This process continues until the message finally reaches
a node hn such that PR

K(hn,mn) = ⊥: at this point, the message is stopped.
We refer to such a sequence [h0, . . . , hn] = R as a route, which can be empty, in
which case it is denoted by [].

Definition 5 (GENROUTE(m0, h0,PR
K)). Given a message m0, a node iden-

tifier h0, and a routing oracle PR
K initialized with node memories K, we define

GenRoute(m0, h0,PR
K) the function that generates a route for m0 starting at

h0. This function calls PR
K , first with arguments (h0,m0), and then with the pair

(hi,mi) returned by the previous call, until the oracle returns ⊥. The function
returns the route [h1, . . . , hn].

As P can be probabilistic, making several calls to GenRoute with the same
arguments can result in different routes. However, since we require message rout-
ing independence, the probabilistic distribution of routes should stay the same,
no matter what messages have been routed before. Finally, we define a predicate
on routes which we denote by Φ.

Definition 6 (Φ(R, a, b)). Given a route R and two nodes a and b, Φ(R, a, b)
is a function that returns true if and only if a route R contains a and that a
appears before any occurrence of b.

266 R. Jamet and P. Lafourcade

3 Examples of Routing Protocols

We now provide some routing protocols in our formalism. Given a message m
and the initialized memories array K, the PD oracles return the Data that is
contained in m.

Let S be a signature scheme with three functions: GenAsymKeyPair(η)
generates asymmetric key pairs given the security parameter η, Sign(x, sk) gen-
erates a signature of x using the key sk, Verify(x, pk, S) verifies a signature
S against the input x with key pk. The function ShortRoute(o, d, T) takes
as input an origin, a destination, and a topology, and returns uniformly at
random one of the shortest routes between the origin and destination. Finally,
FindNext(R, v) is the function that returns the node identifier coming right
after v in the route R, or ⊥ otherwise.

The null protocol P∅ is defined in Fig. 1. It drops all messages, and adds
no information in the packets it generates. The uniform random walk RW is
defined in Fig. 2. The following protocol is called SI (for Shortest-Insecure)
and it is described in Fig. 3. That protocol stores routes in messages without
protecting them.

We define two other protocols, which stem from SI, and use the signature
scheme S. First, S∅ (Fig. 4) is a secured version of SI, which prevents any
alteration to the route stored in a message by using signatures. The route is
signed by the message sender, and if that signature does not verify, then the
message is discarded. The next protocol, SR (Fig. 5), works in a similar way,
but instead of discarding the message, it routes it randomly until the message
reaches the destination.

4 Incorruptibility

We now present how our notion of incorruptibility is formalized, and how it
can be used to show the security of routing protocols. We begin by defining
what is an attacker in our context, and follow with the measures of distance,
incorruptibility, and bounded corruptibility.

4.1 Attacker

Our model deals with an attacker external to the network, who did not com-
promise any honest node. This entity controls the network links, and is able to
intercept, create and manipulate messages. Its goal is to alter how a challenge
message is routed. Notice that manipulating communications implies the pos-
sibility of forging messages to observe how nodes would react, and to observe
which messages are generated in the network. However, since we suppose the
attacker is external to the network, it does not have any direct access to the
node’s memories.

This adversary is modeled as a probabilistic polynomial-time Turing machine.
It can query the oracles PG

K , PR
K and PD

K a polynomial number of times, but does

(In)Corruptibility of Routing Protocols 267

not have direct access to the array of node memories K. None of its actions can
modify K by hypothesis, but the adversary has its own memory. Note that we
provide access to PD

K to the adversary, as we are not concerned by confidentiality.
We denote the trivial attacker that returns its given input message by Asafe.

We name it “safe” as it is a placeholder attacker that effectively does nothing.

4.2 Measuring How Routing Protocols Operate

We define an experiment named ExptRt
P , which allows us to reason on an adver-

sary’s ability to influence how a message is routed.

Definition 7 (ExptRt
P (A, T, o, d, s, a, b, η, ηd)). Let P be a routing protocol. Let

A be an adversary and T = {V,E, f} a topology with o, d, s, a, b ∈ V . We define:

ExptRt
P (A, T, o, d, s, a, b, η, ηd) :

K
$←− PI(T, η)

m
$←− PG

K(o, d, ηd)

m′ $←− APR
K ,PG

K ,PI ,PD
K (m, o, d, s, a, b, T)

If PD
K (d,m′) �= PD

K (d,m)
m′ ← m

R $←− GenRoute(m′, s,PR
K)

Return Φ(R, a, b)

First, the initialization is done by calling PI(T, η), which returns the array of
node memories K that is used through the experiment. A challenge message m
is generated using K, and given to the adversary. The adversary should then
change m in a new message m′, containing the same data as m. The experiment
returns a value Φ(R, a, b) with R a route generated for m′ from the node s.
The predicate Φ(R, a, b) is true when the route passes through a before b. We
use the equality of depacketed messages as a way to prevent replay attacks: an
attacker has no incentive in returning new messages containing random data, as
their answer would get replaced by the challenge message, which they could have
output in the first place. Note that we do not take into account the messages
formats or contents because we focus only on their route.

For instance, the return value of ExptRT
P (Asafe, T, o, d, s, a, b, η, ηd) models

whether a random message m generated by o in destination of d gets routed
by a before b when sent first from s, when all those nodes follow the rout-
ing protocol P. When we use an arbitrary adversary A, then the experiment
ExptRT

P (A, T, o, d, s, a, b, η, ηd) represents the same observation, except that m
has been tampered with by A before being routed by s. We remark that P∅
has an interesting property here: for any A, T and o, d, s, a, b, the probability
Pr[ExptRt

P∅(A, T, o, d, s, a, b, η, ηd)] = 0.
We then compare two such measures in order to define the distance between

a tuple protocol, attacker and another.

268 R. Jamet and P. Lafourcade

Initialization P∅I(T, η):
1: Return ∅
Message generation P∅G

K(o, d, ηd):

1: Data
$←− {0, 1}ηd

2: Return Data

Message routing P∅R
K(m, v):

1: Return ⊥

Fig. 1. Protocol P∅

Initialization RWI(T, η):
1: Return ∅
Message generation RWG

K(o, d, ηd):

1: Data
$←− {0, 1}ηd

2: Return next, (Data, d)

Message routing RWR
K(m, v):

1: (Data, d) ← m
2: if v �= d then

3: next
$←− Neigv

4: Return next, (Data, d)
5: else
6: Return ⊥
7: end if

Fig. 2. Protocol RW

Initialization SII(T, η):
1: for all nodes v in T do
2: K[v] ← T
3: end for
4: Return K

Message generation SIG
K(o, d, ηd):

1: Data
$←− {0, 1}ηd

2: R ← SHORTROUTE(o, d, K[o])
3: Return (Data,R, d)

Message routing SIR
K(m, v):

1: if v �= d then
2: next ← FINDNEXT(R,v)
3: Return (next, (Data,R, d))
4: end if
5: Return ⊥

Fig. 3. Protocol SI

Initialization S∅I(T, η):
1: for all nodes v in T do
2: (pk[v], sk[v]) ← GENASYMKEYPAIR(η)
3: K[v] ← (T, pk, sk[v])
4: end for
5: Return K

Message generation S∅G
K(o, d, ηd):

1: Data
$←− {0, 1}ηd

2: R ← SHORTROUTE(o, d, K[o])
3: S ← SIGN((Data,R, o, d), sk[o])
4: Return (Data,R, o, d, S)

Message routing S∅R
K(m, v):

1: (Data,R, o, d, S) ← m
2: if v �= d then
3: if VERIFY((Data,R, o, d), pk[o], S) then
4: next ← FINDNEXT(R,v)
5: Return (next, (Data,R, o, d, S))
6: end if
7: end if
8: Return ⊥

Fig. 4. Protocol S∅

Initialization SRI(T, η):
1: for all nodes v in T do
2: (pk[v], sk[v]) ← GENASYMKEYPAIR(η)
3: K[v] ← (T, pk, sk[v])
4: end for
5: Return K

Message generation SRG
K(o, d, ηd):

1: Data
$←− {0, 1}ηd

2: R ← SHORTROUTE(o, d, K[o])
3: S ← SIGN((Data,R, o, d), sk[o])
4: Return (Data,R, o, d, S)

Message routing SRR
K(m, v):

1: (Data,R, o, d, S) ← m
2: if v �= d then
3: if VERIFY((Data,R, o, d), pk[o], S) then
4: next ← FINDNEXT(R,v)
5: else
6: next

$←− Neigv

7: end if
8: Return (next, (Data,R, o, d, S))
9: end if

10: Return ⊥

Fig. 5. Protocol SR

(In)Corruptibility of Routing Protocols 269

Definition 8 (Distance). For a topology T = {V,E, f} with nodes o, d, s, a, b ∈
V , two adversaries A1 and A2, two protocols P1 and P2, we define the distance
Dist((P1,A1), (P2,A2), T, o, d, s, a, b, η, ηd) as

∣∣∣Pr[ExptRt
P1

(A1, T, o, d, s, a, b, η, ηd)] − Pr[ExptRt
P2

(A2, T, o, d, s, a, b, η, ηd)]
∣∣∣ .

The notion of distance is a way to compare the routes being generated by
(P1,A1) and (P2,A2), given T and o, d, s, a, b. We now present how to mea-
sure observable differences between routing protocols using this experiment.

4.3 Routing Similarity

We begin by expressing the similarity of routing protocols using Dist. We recall
that stating that a function μ(x) : N→R is negligible in x means that for every
positive polynomial P there exists an integer I such that for all x > I, μ(x) <
| 1
P (x) |, as given in [2].

Definition 9 (Routing protocols similarity). For a topology T = {V,E, f},
we say that two protocols P1 and P2 route messages similarly on the topology T
if ∀o, d, s, a, b ∈ V , Dist((P1,Asafe), (P2,Asafe), T, o, d, s, a, b, η, ηd) is negligible
in η and in ηd.

o = s

ax

d = b

Fig. 6. Topology Ts

Intuitively, two protocols route messages similarly on a
topology if the routes generated for random messages are
computationally indistinguishable for all origins o, desti-
nations d, and senders s. For instance, RW and SI are
not similar for all topologies, as the latter generates dis-
tinguishably shorter routes. However, on a topology T2

consisting of two connected nodes, they are similar, as mes-
sages are either routed to the neighbor if o �= d and not
routed at all otherwise.

Consider for instance S∅ and P∅ on a topology Ts as described in Fig. 6. We
observe that on this topology, the probability Pr[ExptRt

S∅(Asafe, Ts, o, d, s, a, b, η,
ηd)] = 0.5, as there are two shortest routes from o to d and only one reaches
a before b. We know that Pr[ExptRt

P∅(Asafe, Ts, o, d, s, a, b, η, ηd)] = 0, since
null routes will never reach any of the two nodes. So, we can deduce that
Dist((S∅,Asafe), (P∅,Asafe), Ts, o, d, s, a, b, η, ηd) = 0.5, which means that those
two protocols are not similar on Ts, and we can conclude that P∅ and S∅ are
not similar on every topology, as they differ on at least Ts.

Notice that this definition does not include attackers: two protocols routing
messages similarly may not behave in the same way in presence of an active
adversary. This allows us to show that a secure version of a protocol is similar
to its original counterpart. For instance, SR, S∅ and SI are all similar.

4.4 Incorruptibility of a Protocol

We propose a measure which evaluates whether an attacker can alter a mes-
sage m into another message m′ in order to make its routing distinguishably

270 R. Jamet and P. Lafourcade

different. We call this measure the incorruptibility of a routing protocol, the
related advantage is denoted by AdvINC

P , and we define it using Dist.

Definition 10 (AdvINC
P (A, T, o, d, s, a, b, η, ηd)). For an adversary A, a topol-

ogy T = {V,E, f} with five nodes o, d, s, a, b ∈ V , we define AdvINC
P (A, T,

o, d, s, a, b, η, ηd) = Dist((P,A), (P,Asafe), T, o, d, s, a, b, η, ηd).

Definition 11 (Incorruptible protocol). If for any adversary A, any topol-
ogy T = {V,E, f}, and any five nodes o, d, s, a, b ∈ V , the value of the advantage
AdvINC

P (A, T, o, d, s, a, b, η, ηd) is negligible in η and in ηd, we say that P is
incorruptible.

Informally, a protocol is corruptible if an adversary’s alterations of a message
can result in distinguishably different routes. For instance, the P∅ protocol is
incorruptible, as it always generates null routes. Similarly, RW is incorruptible: it
is not influenced by any information contained in the messages, and so intuitively
an attacker which can only alter the content of a message is not able to influence
in any way how a message is routed.

However, this definition is too restrictive for some protocols that intuitively
cannot be attacked, such as S∅. Most protocols whose behavior depends on the
message contents can be influenced, as an attacker can use that dependency in
order to differ from the safe behavior of the protocol. We now provide an attacker
for S∅ to illustrate this reasoning, and in the next subsection, we provide a
generalization of the incorruptibility advantage to answer those concerns.

In order to show the corruptibility of S∅ (which is described in Fig. 4), we
use the adversary Azero that takes as input the message m = (Data,R, o, d, S),
and returns the altered m′ = (Data,R, o, d, 0). Intuitively, this attacker destroys
the signature S of the message m, which ensures the protocol drops it at the
next hop. This behavior differs significantly from how the original m would have
been routed.

We recall the definition of AdvINC
S∅ (Azero, T, o, d, s, a, b, η, ηd) =

∣∣∣Pr[ExptRt
S∅

(Azero, o, d, s, a, b, η, ηd)] − Pr[ExptRt
S∅(Asafe, o, d, s, a, b, η, ηd)]

∣∣∣.
We omit T, o, d, s, a, b, and η, ηd from the parameters list when it is clear from

the context. We are first interested in the left part of this subtraction. Azero

changes the signatures of messages it is given. Let us consider what happens
with an altered message m′

zero (containing Szero) and its corresponding Rzero,
generated in the ExptRt

S∅(Azero, o, d, s, a, b, η, ηd) experiment. We separate the
case where S is valid and where it is not. We have:

Pr[ExptRt
S∅(Azero, o, d, s, a, b, η, ηd)] =

Pr[Φ(Rzero, a, b)|Verify((Data,Rzero, o, d), pk[o], Szero)]×
Pr[Verify((Data,Rzero, o, d), pk[o], Szero)]+
Pr[Φ(Rzero, a, b)|¬Verify((Data,Rzero, o, d), pk[o], Szero)]×
Pr[¬Verify((Data,Rzero, o, d), pk[o], Szero)]

(In)Corruptibility of Routing Protocols 271

If we assume that S∅ uses a secure (UF-CMA in the sense of [6]) signature
scheme S of security parameter η, then we know that the probability ε of the sig-
nature being forged by an intruder (i.e. Verify((Data,R, o, d), pk[o], S) returns
true) becomes negligible in η. Therefore:

Pr[ExptRt
S∅(Azero, o, d, s, a, b, η, ηd)] =

Pr[Φ(Rzero, a, b)|Verify((Data,Rzero, o, d), pk[o], Szero)] × ε +
Pr[Φ(Rzero, a, b)|¬Verify((Data,Rzero, o, d), pk[o], Szero)] × (1 − ε)

We first consider the case where the signature is invalid. Consider the oracle
S∅R

K described in Fig. 4. If the signature of the message is not valid, then the
message is dropped. Therefore, all the routes generated for m′ in this context
are equal to the empty route []. We know that Φ([], a, b) is always false for
any a and b. We can therefore conclude that the experiment returns 0 with a
probability (1 − ε), and remove it from the equation.

Pr[ExptRt
S∅(Azero, o, d, s, a, b, η, ηd)] =

Pr[Φ(Rzero, a, b)|Verify((Data,Rzero, o, d), pk[o], Szero)] × ε

We denote by p the probability of the experiment returning 1 when the
signature is valid. Going back to the advantage, we have:

AdvINC
S∅ (Azero) =

∣∣∣(0 + ε × p) − Pr[ExptRt
S∅(Asafe)]

∣∣∣

The first part of the subtraction is negligible in η, as p is a probability and
ε is negligible in η. However, Pr[ExptRt

S∅(Asafe, T, o, d, s, a, b)] may not be neg-
ligible, depending on T and o, d, s, a, b (as we have shown using the topology
in Fig. 6). Intuitively, without attacker interference, S∅ actually routes mes-
sages to their destination, which ensures the existence of such nodes. There-
fore, there exist some topologies T (Ts being one of them) where the advantage
AdvINC

S∅ (Azero, T, o, d, s, a, b, η, ηd) is not negligible in η and in ηd, and so S∅ is
not incorruptible on all topologies.

4.5 Bounded Corruptibility

We generalize the notion of corruptibility to a definition using two reference
protocols. We define another advantage, called AdvBINC

P,B1,B2
. It follows the same

principle as AdvINC
P , but instead of considering how an attacker can force P

to behave differently, we consider how it can be corrupted to the outside of a
reference routing interval, defined by the safe execution of two protocols B1 and
B2 on T , measured for the parameters o, d, s, a, b.

Definition 12 (AdvBINC
P,B1,B2

(A, T, o, d, s, a, b, η, ηd)). Let A be an attacker, and
let T = {V,E, f} be a topology with nodes o, d, s, a, b ∈ V . We consider a protocol
P, which is compared with two protocols B1 and B2. We define AdvBINC

P,B1,B2

(A, T, o, d, s, a, b, η, ηd) as:

272 R. Jamet and P. Lafourcade

max(Dist((B1,Asafe), (B2,Asafe), T, o, d, s, a, b, η, ηd),
Dist((P,A), (B1,Asafe), T, o, d, s, a, b, η, ηd),
Dist((P,A), (B2,Asafe), T, o, d, s, a, b, η, ηd))

) − Dist((B1,Asafe), (B2,Asafe), T, o, d, s, a, b, η, ηd)

Informally, AdvBINC
P,B1,B2

(A, T, o, d, s, a, b, η, ηd) is a measure of the maximal dis-
tance the behavior of P attacked by A can get from the outside of the interval
determined by the safe behavior of B1 and B2. Remark that if the attacked
protocol’s behavior is in the interval, then the advantage is 0.

Definition 13 (Bounded corruptibility). If for any adversary A, for any
topology T , and for all o, d, s, a, b, AdvBINC

P,B1,B2
(A, T, o, d, s, a, b, η, ηd) is negligible

in η and in ηd, we say that P’s corruptibility is bounded between B1 and B2.

Remark that this definition has some interesting properties:

– AdvBINC
P,B1,B2

(A, T, o, d, s, a, b, η, ηd) = AdvBINC
P,B1,B2

(A, T, o, d, s, a, b, η, ηd):
The bounds for bounded corruptibility are commutative.

– AdvBINC
P,P,P (A, T, o, d, s, a, b, η, ηd) = AdvINC

P (A, T, o, d, s, a, b, η, ηd):
Stating that a protocol is bounded between itself and itself is the same as
stating its incorruptibility.

– Dist(B1,B2, T, o, d, s, a, b, η, ηd) = 0 ⇒ ∀B3, AdvBINC
P,B1,B3

(A, T, o, d, s, a, b,

η, ηd) = AdvBINC
P,B2,B3

(A, T, o, d, s, a, b, η, ηd):
If two protocols route messages identically, then those protocols are equivalent
for bounding purposes.

Example: Bounded Corruptibility of S∅: We try to bound S∅ using itself
and P∅. We assume that S∅ uses a secure UF-CMA signature scheme [6] S of
security parameter η. By definition, AdvBINC

S∅,S∅,P∅(A, T, o, d, s, a, b) equals:

max(Dist((S∅,Asafe), (P∅,Asafe)),
Dist((S∅,A), (S∅,Asafe)),
Dist((S∅,A), (P∅,Asafe)),

)−Dist((S∅,Asafe), (P∅,Asafe))

By using the fact that Pr[ExptRt
P∅(Asafe)] = 0, we get the following:

max(|Pr[ExptRt
S∅(Asafe)]|,

|Pr[ExptRt
S∅(Asafe)] − Pr[ExptRt

S∅(A)]|,
|Pr[ExptRt

S∅(A)]|
)−|Pr[ExptRt

S∅(Asafe)]|

(In)Corruptibility of Routing Protocols 273

Probabilities are positive, which allows us to remove some of the absolute values.
We also rewrite |a| as max(a,−a) in the last case, to remove all absolute values:

max(Pr[ExptRt
S∅(Asafe)],

P r[ExptRt
S∅(Asafe)] − Pr[ExptRt

S∅(A)],

P r[ExptRt
S∅(A)] − Pr[ExptRt

S∅(Asafe)],

P r[ExptRt
S∅(A)]

)−Pr[ExptRt
S∅(Asafe)]

We include the subtraction in the maximum and simplify further:

max(0, 0 − Pr[ExptRt
S∅(A)],

P r[ExptRt
S∅(A)] − 2Pr[ExptRt

S∅(Asafe)],

P r[ExptRt
S∅(A)] − Pr[ExptRt

S∅(Asafe)])

We know Pr[ExptRt
S∅(A)] − 2Pr[ExptRt

S∅(Asafe)] ≤ Pr[ExptRt
S∅(A)] −

Pr[ExptRt
S∅(Asafe)], and therefore we can remove the right part of the inequation

from the maximum. Similarly, 0 − Pr[ExptRt
S∅(A)] ≤ 0. We therefore simplify

the maximum to:

max(0, P r[ExptRt
S∅(A)] − Pr[ExptRt

S∅(Asafe)])

We want to prove that this is negligible in η and in ηd for all T = {V,E, f} and
o, d, s, a, b ∈ V .We reformulate this asPr[ExptRt

S∅(A)] − Pr[ExptRt
S∅(Asafe)] ≤ ε,

with ε negligible in η and in ηd. Looking at the experiment, this means that

Pr[Φ(GenRoute(m′, s,S∅R
K), a, b))] − Pr[Φ(GenRoute(m, s,S∅R

K), a, b))] ≤ ε

The difference between these probabilities is null unless the routes gener-
ated from attacked messages m′ and the routes generated from m are different.
Looking at the route generation process, the only factors influencing the ora-
cle S∅R

K (defined in Fig. 4) are the validity of the signature, the contents of R,
and the identity of the receiver (which cannot be modified by the attacker).
Furthermore, all those solutions require S∅D

K(m′) = S∅D
K(m), as otherwise the

experiment would have run as if the attacker output m.
We therefore know that the advantage is null unless the attacker either made

the signature invalid, or it altered the route stored in the message and the sig-
nature is still valid. In that first case, the invalid signature forces the message to
be dropped. Consequently, the generated route is equal to the empty route [].
Since Φ([], a, b) = 0, then the probability of the experiment returning true is
null, and so this strategy does not provide an higher advantage. In the other
case, the attacker managed to alter the route stored in the message, while keep-
ing the same data, and keeping the signature valid. To have a valid signature
for an altered message, the attacker has either forged it, or recovered it from

274 R. Jamet and P. Lafourcade

S∅G
K(o, d). Note that it cannot create a valid signature for a key it created, as

that key would not be present in any node’s K.
We first consider the case of the attacker trying to forge the signature. We

proceed by assuming it manages to forge or guess the signature with a probability
pF when running on T ′, o′, d′, s′, a′, b′. This adversary A could also be used to
build an adversary AS who breaks the UF-CMA experiment with probability
pF . AS needs to emulate S∅ on T ′, creating its own initialization on the network
except for the node o′, who uses the challenge’s key. As AS does not know
the keys of o′, it should use the chosen-plaintext oracle and verification oracle
provided in the UF-CMA experiment to simulate its knowledge. A will therefore
be in the right simulated context for ExptRt

S∅(A, T ′, o′, d′, s′, a′, b′), and will be
provided a message m originating from o′ (which costs AS one call to its chosen-
plaintext oracle). By assumption, this adversary will therefore return a message
m′ containing a valid forged signature with probability pF . In the end, given an
adversary A for ExptRt

S∅ who makes qG queries to S∅G
K and qR queries to S∅R

K

to forge signatures with probability pF , we built an adversary AS making qG +1
queries (A’s queries, plus one to create the setting) to the chosen-plaintext oracle,
and qR queries to the verification oracle such that AdvUFCMA

S (AS , η) = pF . As
we supposed the signature scheme S secure, we know that pF is negligible in η.

The attacker can also try to obtain the signature without forging it. The only
source of valid signatures for A is S∅G

K(o, d), but this oracle provides packets con-
taining random data. Therefore, given the attacker does qG queries, the proba-
bility of obtaining a valid packet m′ verifying S∅D

K(m′) = S∅D
K(m) is

(
2ηd −1
2ηd

)qG ,
which is negligible in ηd. Summing all the possibilities before:

Pr[Φ(GenRoute(m′, s,S∅R
K), a, b))] − Pr[Φ(GenRoute(m, s,S∅R

K), a, b))]

≤ AdvUFCMA
S (AS , η) +

(
2ηd − 1

2ηd

)qG

Therefore, we can say that for all adversaries A making a polynomial number of
queries to S∅G

K(o, d) and S∅R
K(m, v), AdvBINC

S∅,S∅,P∅(A, T, o, d, s, a, b) is negligible
in η and in ηd.

5 Conclusion

In this paper, we have presented a notion of routing security, named incorruptibil-
ity. Incorruptibility is a quantitative measure, based on the ability of an attacker
to influence how messages are routed. We provide a few example protocols in
our modelization, and proved that some of them are indeed incorruptible. How-
ever, some protocols require a broader notion: after showing why one of them
is corruptible, we propose the notion of bounded corruptibility, a generalization
of the previous measure. This more accommodating notion allows us to prove
that some routing protocols can only be influenced between given limits, which
are exprimed using routing protocols. We finally provide a proof of the bounded
corruptibility of one of our example routing protocols.

(In)Corruptibility of Routing Protocols 275

Perspectives: There are several ways this work could be expanded. Modeling
node state changes is possible, but this would require more complex proof tech-
niques to obtain results given messages influence how the next ones are routed.
This would be an important step towards more complex protocols.

Insider attacks on routing protocols suppose one or more nodes in the network
are controlled by the attacker. To model this, our first intuition was to allow the
attacker some degree of access to K, for instance K[s] (as s represents the last
hop before attacker alteration of m). However, this simple modification of the
game does not work because of the PD

K (d,m′) �= PD
K (d,m) check: if the attacker

has enough access to K, most protocols get trivially broken in this model as
the attacker can create a completely new message containing the data of its
choice. However, this attack, based on building from scratch another packet, is
not meaningful as all protocols relying on cryptography are vulnerable to it. Our
goal is to ensure the attacker’s m′ is based on m, without blocking any legitimate
alteration of the message that would change its route.

Finally, it may be interesting to consider dynamic topologies, which corre-
spond better to what may be actually found in a network, either because of
varying wireless transmission quality, or because of an intruder actively disrupt-
ing the connections. To do this, the attacker could be able to actively choose
the topology used by the network during initialization and evaluation of the
challenge message.

References

1. Ács, G., Buttyán, L., Vajda, I.: Provably secure on-demand source routing in
mobile ad hoc networks. Trans. Mob. Comput. 5(11), 1533–1546 (2006)

2. Bellare, M.: A note on negligible functions. J. Cryptol. 15(4), 271–284 (2002)
3. Bono, V.J.: 7007 explanation and apology. Appears in NANOG mailing list (1997)
4. Burrows, M., Abadi, M., Needham, R.M.: A logic of authentication. Proc. Roy.

Soc. Lond. A. Math. Phys. Sci. 426(1871), 233–271 (1989)
5. Buttyán, L., Thong, T.V.: Formal verification of secure ad-hoc network routing

protocols using deductive model-checking. In: Wireless and Mobile Networking
Conference (WMNC 2010), pp. 1–6. IEEE (2010)

6. Goldwasser, S., Micali, S., Rivest, R.L.: A digital signature scheme secure against
adaptive chosen-message attacks. SIAM J. Comput. 17(2), 281–308 (1988)

7. Hiran, R., Carlsson, N., Gill, P.: Characterizing large-scale routing anomalies: a
case study of the China Telecom incident. In: Roughan, M., Chang, R. (eds.) PAM
2013. LNCS, vol. 7799, pp. 229–238. Springer, Heidelberg (2013)

8. Karlof, C., Wagner, D.: Secure routing in wireless sensor networks: attacks and
countermeasures. Ad Hoc Netw. 1(2–3), 293–315 (2003)

9. Kent, S.T.: Securing the border gateway protocol: a status update. In: Lioy, A.,
Mazzocchi, D. (eds.) CMS 2003. LNCS, vol. 2828, pp. 40–53. Springer, Heidelberg
(2003)

10. Lougheed, K., Rekhter, Y.: Border Gateway Protocol (BGP). RFC 1105 (Experi-
mental), June 1989. Obsoleted by RFC 1163

11. Marshall, J.: An analysis of SRP for mobile ad hoc networks. In: International
Multiconference in Computer Science (IMECS 2002), pp. 18–21 (2002)

276 R. Jamet and P. Lafourcade

12. Murphy, S.: BGP Security Vulnerabilities Analysis. RFC 4272, January 2006
13. Nordström, O., Dovrolis, C.: Beware of BGP attacks. ACM SIGCOMM Comput.

Commun. Rev. 34(2), 1–8 (2004)
14. Papadimitratos, P., Haas, Z.J.: Secure routing for mobile ad hoc networks. In:

Communication Networks and Distributed Systems Modeling and Simulation Con-
ference (CNDS 2002), pp. 193–204 (2002)

15. Wu, B., Chen, J., Wu, J., Cardei, M.: A survey of attacks and countermeasures
in mobile ad hoc networks. In: Xiao, Y., Shen, X.S., Du, D.-Z. (eds.) Wireless
Network Security, pp. 103–135. Springer, New York (2007)

Cryptographic Technologies

Decentralized CRT-Based Efficient Verifiable
(n, t, n) Multi-secret Sharing Scheme

Wen Wen(&), Binod Vaidya, Dimitrios Makrakis,
and Carlisle Adams

School of Electrical Engineering and Computer Science,
University of Ottawa, Ottawa, ON, Canada

{wwen085,cadams}@uottawa.ca, bnvaidya@gmail.com,

dimitris@eecs.uottawa.ca

Abstract. Secret sharing is critical to most applications making use of security
and remains one of the most challenging research areas in modern cryptography.
In this paper, we propose a novel efficient multi-secret sharing scheme that is
based on the (n, t, n) secret sharing technique. We use the Chinese remainder
theorem (CRT) to generate secret shares and the reconstruction of secrets instead
of using the Lagrange polynomial interpolation. In addition, we discuss the
security of the scheme, and provide a new method to generate verifiable shares
that make the proposed scheme a verifiable secret sharing scheme.

Keywords: Security � (n, t, n) secret sharing �Multi-secret sharing �Verification

1 Introduction

The Secret Sharing (SS) scheme was independently proposed by Shamir [1] and
Blakley [2] in 1978 for safeguarding cryptographic keys. Since then, secret sharing has
been intensively studied and has been used in various applications.

In Shamir’s scheme, the dealer shares a secret with multiple shareholders; however,
any entity, including the shareholders, cannot retrieve the secret unless it obtains the
help from a certain number of shareholders. Secret sharing schemes with this property
are called (t, n) threshold secret sharing schemes, where t represents the minimum
number of shareholders that are required to retrieve the secret and n stands for the total
number of existing shareholders. This threshold property is an important feature when
applying secret sharing in practical cases.

In 1982, Mignotte [3] proposed a new secret sharing scheme that is based on the
Chinese Remainder Theorem (CRT) [14]. However, with this scheme, the exposure of
any individual share reveals some information of the original secret, thus it is not
perfectly secure. In 1983, Asmuth and Bloom [4] proposed another secret sharing
scheme that is also based on CRT. According to [10], the computational complexity of
the secret reconstruction from t shares for Asmuth-Bloom’s scheme is OðtÞ while it is
Oðtðlog2 tÞÞ for Shamir’s.

Both Shamir’s scheme and Asmuth-Bloom’s scheme can only share a secret by
distributing shares once. This is not efficient when sharing multiple secrets. In 1994,

© Springer International Publishing Switzerland 2015
F. Cuppens et al. (Eds.): FPS 2014, LNCS 8930, pp. 279–293, 2015.
DOI: 10.1007/978-3-319-17040-4_18

He and Dawson [5] proposed a multi-stage secret sharing scheme which was soon
proved to be one-time secret sharing scheme. Afterwards, many multi-secret sharing
schemes (MSSS) have been proposed and the design of all of them is based on the
Lagrange polynomial interpolation Most of the existing multi-secret sharing schemes,
such as those described in [6–8], are relatively effective and efficient when sharing
multiple secrets. Harn and Lin [9] proposed their strong (n, t, n) verifiable secret
sharing scheme in 2010. This scheme led to the (n, t, n) multi-secret sharing scheme
proposed by Liu, Harn, Yang and Zhang in 2012 [13].

To the best of our knowledge, no multi-secret sharing scheme based on CRT has
been designed. In this paper, we propose an efficient and CRT based decentralized
(n, t, n) multi-secret sharing scheme. We also propose a new way of generating
verifiable shares to make the proposed scheme a verifiable multi-secret sharing scheme
without revealing information about the final secret.

The rest of the paper is organized as follows. Section 2 gives the background of
secret sharing by introducing two well-known secret sharing schemes. Section 3
describes the (n, t, n) secret sharing architecture and the previous (n, t, n) multi-secret
sharing scheme based on Lagrange Polynomial Interpolation. We present our multi-
secret sharing scheme in Sect. 4. The Sect. 5 presents the conclusions and directions for
further works.

2 Background

This section introduces two basic and well known schemes of secret sharing. Most of
the secret sharing schemes are extended or built on them.

2.1 Shamir’s Secret Sharing Scheme

Shamir’s secret sharing scheme uses the Lagrange Polynomial Interpolation. Denote
the subject who wants to share a secret as the dealer D, sometimes called the secret-
holder, and name the subjects who keep one share of the secret as participants Pi,
sometimes referred to as share-holders.

Share generation/distribution stage. Dealer D randomly selects {S, a1,…, at−1}, where
S is the secret that is to be shared later. S and ai are used to construct a random
polynomial f(x) of degree (t − 1):

f ðxÞ ¼ Sþ a1xþ . . .þ at�1x
t�1ðmod pÞ ð1Þ

S and all ai belong to the finite field GF(p) with p > S, where p is a large prime
number. D computes n shares: s1 ¼ f ðx1Þ; s2 ¼ f ðx2Þ; . . .; sn ¼ f ðxnÞf g. D then dis-
tributes each share si to the corresponding shareholder Pi through a secret channel.

Reconstruction stage. Assume there are t participants, P1, …, Pt, which wish to
reconstruct the secret S. Set x = 0; the final secret S can be derived by simply applying
the Lagrange Interpolation formula [1] as shown in Eq. (2):

280 W. Wen et al.

S ¼ f ð0Þ ¼
Xt

j¼1

f ðxjÞð
Yt

r¼1;r 6¼j

�xr
xj � xr

Þðmod pÞ ð2Þ

2.2 Asmuth-Bloom’s Secret Sharing Scheme

In this scheme, two integers t and n are given, with 1� t� n and n� 2. Then select a
sequence of pair-wise co-prime positive integers m0\m1\ � � �\mn such that:

m0
Qn

i¼n�tþ2
mi\

Qt
i¼1

mi.

We note that the regulations above give the secret sharing scheme (t, n)-consistency.
This (t, n)-consistency is the key to achieve the threshold property and will be used
to test the correctness of the collected shares of the final secret. We will discuss (t, n)-
consistency in the next sub-section.

The shares used to share a secret S are generated as follows:

y ¼ Sþ am0

Shi � ðSþ am0ÞðmodmiÞ

Here, a is a positive integer randomly selected subject to the condition 1� y�M

where M ¼ Qt
i¼1

mi.

According to CRT [14], we could reconstruct the secret by applying the following
processing:

Sþ am0 � ð
Xt

i¼1

Shi � ciÞðmodMÞ ð3Þ

S � ðSþ am0Þðmodm0Þ ð4Þ

where M ¼ Qt
i¼1

mi, Mi ¼ M=mi, ci ¼ Mi � ðM�1
i mod miÞ, 1� i� t.

Quisquater et al. [10] analyzed the schemes based on CRT and indicated that Asmuth-
Bloom’s scheme is asymptotically ideal and perfect zero-knowledge if the parameters of
the system satisfy a natural condition. That means, any (t − 1) shares of such a
(t, n) threshold secret sharing scheme will give no information about the secret; in other
words, the revealing of (t − 1) or fewer shares will not narrow down the search space for S.

2.3 (t, n)-Consistency Test

A set of n shares is (t, n) consistent only if all the combinations of at least t shares (each
combination could be called an access structure) within the set can reconstruct the same
secret.

Decentralized CRT-Based Efficient Verifiable (n, t, n) Multi-secret Sharing Scheme 281

The (t, n)-consistency test could be done by reconstructing the secret using all the
possible combinations. That means the process for the reconstruction of the secret
needs to be done Cn

t times, which is not efficient for large t and n.
However, in [15], Harn and Lin proposed testing the (t, n)-consistency by recon-

structing the secret only once. This approach is based on Shamir’s secret sharing
scheme, and if the interpolation of the collected n points ðx1; s1Þ, ðx2; s2Þ, …, ðxn; snÞ
yields a polynomial with degree (t − 1), then all the shares pass the (t, n)-consistency
test and all the proxies are considered legitimate and honest.

This is achieved using all the n points to do the following calculation:

Sn ¼ f ð0Þ ¼
Xn
j¼1

f ðxjÞð
Yn

r¼1;r 6¼j

�xr
xj � xr

Þðmod pÞ ð5Þ

If Sn ¼ S, then all the collected shares are legitimate, and they all pass the (t, n)-
consistency test.

3 Architecture and Previous Related Work

In this section, we first explain the communication architecture used by the (n, t, n) multi-
secret sharing scheme. Then we introduce the Verifiable (n, t, n) Multi-Secret Sharing
Scheme. Finally, we discuss the security of the Verifiable (n, t, n) Multi-Secret Shar-
ing Scheme and explain the limitation of this multi-secret sharing approach.

3.1 (n, t, n) Secret Sharing Architecture

As shown in Fig. 1, the traditional architecture only involves two entities with a secure
channel established between them. However, in our proposed scheme, there are three
kinds of entities involved: dealer, proxy, and reader. Instead of the direct communi-
cation between reader and dealer, the proxies work as an intermediate layer to help both
sides to exchange information.

As depicted in Fig. 1, there are two kinds of secure channels. The first one is a
secure channel between the proxies and the dealer. In fact, each dealer has a secure
channel with every proxy, and every pair of proxies shares a unique secure channel.
This secure channel can be achieved by symmetric encryption. Later in our scheme, we
choose AES-256 [14]. The shared secret key is given before deployment by a trusted
third party or the manufacturer. Every pair of participants share a unique secret private
key, so they can use that key to encrypt their communication. In this way, participants
can communicate with each other without revealing any information to others.

The second one is a secure channel between proxies and the reader. This kind of
secure channel is achieved by asymmetric cryptography, such as RSA and Elliptic
Curve algorithm, since the proxies and readers do not share private keys. In our
scheme, the readers and proxies are relatively more powerful than the dealer. They can
afford the costs of the heavy asymmetric encryption/decryption.

282 W. Wen et al.

(n, t, n) multi-secret sharing schemes based on this architecture can be used in
different applications, such as key establishment in Internet of Things and key man-
agement in WSNs. The proxies are expected to help both sides of the communication to
secretly exchange information without having a pre-shared key or using expensive
asymmetric encryption techniques.

3.2 (n, t, n) Multi-secret Sharing Scheme [13]

Master Secret Generation Phase. Given a set of participants fP1;P2; . . .;Png, each
randomly selects a ðt � 1Þ degree sub-polynomial fiðxÞ, thus the corresponding sub-
secret is Si ¼ fið0Þ.

All the participants work together to select a set of n-tuple weight vectors, denoted
as ei ¼ ei;1; ei;2; . . .; ei;n

� �
, for i ¼ 1; 2; . . .; n� t þ 1. All ei are linearly independent so

that there would be ðn� t þ 1Þ different master secrets shared among the participants;

the l-th master secret will be: Ml ¼
Pn
i¼1

el;iSi.

Master Shares Generation Phase

• Each Pi computes sub-shares: si;j ¼ fiðxjÞ) fsi;1; si;2; . . .; si;ng, where the xj could
be used as identifications, and j ¼ 1; 2; . . .; n; i 6¼ j; xi 6¼ xj.

• Pi sends each si;j to a corresponding Pj secretly by encrypting the message using the
shared key between these two participants.

• Each Pi computes the master shares as msi;l ¼
Pn
j¼1

el;jsj;i.

Master Secret Reconstruction Phase. Any t master shares can reconstruct the inter-
polating polynomial because:

Fig. 1. Communication architecture of (n, t, n) threshold secret sharing scheme

Decentralized CRT-Based Efficient Verifiable (n, t, n) Multi-secret Sharing Scheme 283

msi;l ¼ el;1f1ðxiÞ þ el;2f2ðxiÞ þ � � � þ el;nfnðxiÞ ¼ FðxiÞ ð6Þ

FlðxÞ ¼ el;1f1ðxÞ þ el;2f2ðxÞ þ � � � þ el;nfnðxÞ ð7Þ

And according to Eq. (2), the master secret can be obtained as: Ml ¼ Flð0Þ ¼Pn
i¼1

el;iSi.

3.3 Security Analysis

As was indicated above, the multi-secret sharing is simply achieved by multiplying the
sub-shares by an n-tuple weight vector.

Here it is necessary to understand that the number of the secrets shared by one set
of shares is limited. The n-tuple weight vectors are publicly known to every participant.
Each participant only knows the sub-shares generated for itself, and participant Pi

could only receive msi;l ¼
Pn
j¼1

el;jsj;i.

This final reconstructed secret itself will leak no information to the attackers.
However, the master shares could be calculated if the attacker collected enough

reconstructed secrets. The final polynomial is represented as FlðxÞ ¼
Pn
i¼1

el;ifiðxÞ.
After reconstructing n secrets, a polynomial system could be revealed:

F1ðxÞ ¼ e1;1f1ðxÞ þ e1;2f2ðxÞ þ � � � e1;nfnðxÞ
F2ðxÞ ¼ e2;1f1ðxÞ þ e2;2f2ðxÞ þ � � � e2;nfnðxÞ
..
.

FnðxÞ ¼ en;1f1ðxÞ þ en;2f2ðxÞ þ � � � en;nfnðxÞ

ð8Þ

If the reconstruction is done by an outside attacker, since all the FiðxÞ and ei;j, where
1� i� l; 1� j� n, are known, this attacker can solve the polynomial system and get all
the fjðxÞ. Next time, it could calculate the master secret by itself using all the fjðxÞ and
the public n-tuple weight vector.

The above is the best case for such an attacker; since this is an (n, t, n) threshold
multi-secret sharing scheme, we needs to ensure that the scheme can still work when
there are no more than (t − 1) colluders. Here, assuming that p1; p2; . . .; pt�1 are
colluders, so f1ðxÞ; f2ðxÞ; . . .; ft�1ðxÞ are known; deleting the known elements, it is easy
to get the following polynomial system:

F0
1ðxÞ ¼ e1;tftðxÞ þ e1;tþ1ftþ1ðxÞ þ � � � e1;nfnðxÞ

F0
2ðxÞ ¼ e2;tftðxÞ þ e2;tþ1ftþ1ðxÞ þ � � � e2;nfnðxÞ

..

.

F0
lðxÞ ¼ en;tftðxÞ þ en;tþ1ftþ1ðxÞ þ � � � el;nfnðxÞ

ð9Þ

284 W. Wen et al.

There are only ðn� t þ 1Þ unknowns, so the system can be solved if there are at least
ðn� t þ 1Þ equations. In other words, using this scheme, at most ðn� t þ 1Þ secrets
can be shared using one set of the shares.

As a result, this (n, t, n) multi-secret sharing scheme needs to update the master
shares frequently, and every time a new master secret is about to be shared, the dealer
needs to select and broadcast an n-tuple weight vector.

In order to further reduce the workload for the resource-constrained devices and
eliminate the limitation of the number of shares that can be reused, we propose our
decentralized (n, t, n) threshold multi-secret sharing scheme. The new scheme also
exploits the idea of using (n, t, n) threshold secret sharing to achieve multi-secret
sharing while introducing CRT and a one-way hash function.

4 Proposed Efficient Decentralized (n, t, n) Multi-secret
Sharing Scheme Based on CRT

We denote the dealer as D, and each proxy as Pi, where i ¼ 1; 2; . . .; n. All the proxies
form a set of Pi: P1;P2; . . .;Pnf g. There is also a reader Rr outside the local network
who wants to initiate the r-th communication session and get the secret Sr; here r is the
session number, r ¼ 1; 2; . . .; l and S1 6¼ S2 6¼ . . . 6¼ Sl.

Assuming that dealer D is the extremely resource constrained device, so the
workload for dealer should be as small as possible. In the best case, we can outsource
most of the work to the proxies to establish a decentralized secret sharing scheme.
While outsourcing the workload to the proxies, we also need to keep in mind that the

Table 1. Notifications and corresponding descriptions

Notation Description

Pi=Pj The i-th/j-th proxy, i; j ¼ 1; 2; 3; . . .; n; i 6¼ j

Rr Reader in the r-th communication session with r = 1, 2, 3, …
m0 Large positive integer selected to set up the upper bound of the key space
mi Large randomly selected positive integers, i = 1, 2, 3, …, n
S Master secret, S is an integer and 0\S\m0

S0 Pseudo master secret
SHi Secret shares of the master secret S, SHi � S0ðmodmiÞ
Sr Secret generated and reconstructed in the r-th communication session
Hðx1; x2Þ One-way hash function with two inputs, x1 6¼ x2
hi;r Pseudo-random number generated by Pi in the r-th session using one-way hash

function

Sh j
i;r

Sub-share generated by Pi in the r-th session which will be sent to Pj

Sh j
r Reconstruction share generated by Pj for secretSr

Ny Number of possible secrets

ShV j
r Pj’s verification share

Px Cheater, or corrupted proxy, x ¼ 1; 2; 3; . . .; n

Decentralized CRT-Based Efficient Verifiable (n, t, n) Multi-secret Sharing Scheme 285

proxies have relatively more resources but are still resource-constrained devices; only
the reader R which wants to initialize a communication session with D is powerful.

We list all the involved notation and their corresponding descriptions in Table 1;
this notation will be used in the rest of the paper.

4.1 Detailed Scheme

Dealer Centralized Distribution Phase. As can be seen in Fig. 2, which shows the
centralized distribution phase, only the dealer and all the proxies are involved in this
phase.

For Dealer D:

• D randomly selects (n + 1) positive pair-wise co-prime integers: m0;m1;m2; . . .;mn,

the boundaries are defined as follows: m0
Qn

i¼n�tþ2
mi

� �
\

Qt
i¼1

mi.

• D then selects the master secret S. Here 0\S\m0, so if m0 is large enough, the key
space will be sufficient to achieve required computational security. After S is
selected, D computes S0 ¼ Sþ Am0, where A is a randomly selected positive

integer, and 0\S0\M, M ¼ Qn
i¼1

mi.

• D computes shares for all the proxies: SHi � S0 mod mi:
mi; SHið Þ is the actual share which will be sent to the corresponding proxy Pi, and
all the m0;m1;m2; . . .;mn will be public to all members.

Proxy Sub-shares Distribution Phase. In this phase, proxies become senders and
receivers at the same time, and when a proxy is in the Sender mode, its behavior will be
similar to the dealer. The real dealer and the reader will not participate in the process.
As shown in Fig. 3, the dealer and the reader are both waiting, and all the proxies start

Fig. 2. Communication flow during dealer centralized distribution phase

286 W. Wen et al.

to distribute the generated sub-shares. We use one proxy as an example of sender state
proxy and show this proxy as a square in order to distinguish it from others in Fig. 3. In
later discussion, in order to distinguish two proxy states, we use Pi to represent the
proxies in sender mode, and use Pj to represent the proxies in receiver mode.

For Proxy Pi:

• When Rr wants to reconstruct Sr, Pi uses a two-variable one-way hash function
Hðx1; x2Þ to generate a random number: Hðr; SHiÞ ¼ hi;r. By using one-way hash
function, we can easily compute hi;r but the reverse computation is extremely
difficult.

• Pi computes sub-shares Sh j
i;r � SHi � hi;rðmodmjÞ, then distributes each sub-share to

corresponding proxy Pj (j ¼ 1; 2; . . .; n; j 6¼ i).

For Proxy Pj:

• Pj will obtain n sub-shares from both other proxies and itself: Sh j
1;r; Sh

j
2;r; . . .;

n
Sh j

1;rg.
• Pj then adds all sub-shares together: Sh j

r �
Pn
i¼1

Sh j
i;r

� �
modmj
� �

; we call this Sh j
r

the reconstruction share for secret Sr.

Final Reconstruction Phase. After receiving all the sub-shares and generating the final
construction share, the reader will first request reconstruction shares from t or more
proxies. The dealer will locally perform the same one-way hash function operations as
the proxies did, and compute the final secret without the help from the proxies. This
method requires more memory space while reducing the communication and compu-
tation costs.

Figure 4 shows the final reconstruction phase. Proxies can provide reconstruction
shares to both the dealer and the reader. However, the dealer may choose not to get the
final secret by using reconstruction shares.

Fig. 3. Proxy Pi distribute sub-shares to other proxies

Decentralized CRT-Based Efficient Verifiable (n, t, n) Multi-secret Sharing Scheme 287

For Receiver or Reader Rr:

• Rr selects a group of proxies: P1;P2; . . .;Ptf g. Each proxy will send its own
reconstruction share to Rr through the secret channel, so that Rr gets Sh1r ; Sh

2
r ; . . .;

�
Shtrg and m1;m2; . . .;mtf g.

• Let Mr ¼
Pt
i¼1

mi, Mi;r ¼ Mr=mi, yi;r ¼ M�1
i;r ðmodmiÞ. Then, based on CRT, Rr can

compute the unique solution:

S0r � ð
Xt

i¼1

Shri �Mi;r � yi;rÞ modMrð Þ ð10Þ

Sr � S0r modm0ð Þ ð11Þ

Note: S0r � ðPn
i¼1

SHi � hi;rÞðmodMÞ, since hi;r will change every time, Sr will be

different accordingly.

Performance Analysis. There are several resource consuming processes: primality
test; secret reconstruction; communication; and encryption/decryption. As we see from
the details of the proposed scheme, the heavy computation does not frequently happen
on the dealer side.

The primality test is one of the operations that takes a long time, especially when
the device is not powerful. However, we only need one set of well tested prime
numbers, so over a long period of time, this type of computation would only happen
once on the dealer.

The exponential operation is another resource-consuming process. It will be
introduced when calculating the multiplicative inverse during the secret reconstruction
phase. Since the dealer possesses all the required information, so the new secret can be

Fig. 4. Dealer and reader collecting reconstruction shares from proxies

288 W. Wen et al.

reconstructed locally, this means that the exponential operation will only executed by
the resourceful reader.

Since the master shares are reusable, once the master shares are distributed; the
dealer has no need to communicate with proxies which omits the frequent communi-
cation as well as the heavy encryption operations.

That means that for each communication session, the dealer only needs to perform
lightweight hash function computation and multiplication while in the previous scheme
the dealer still has to communicate with proxies and periodically update the polyno-
mials possessed by all the proxies.

Our scheme therefore adjusts the workload distribution to make the workloads
further outsourced from the dealer to the proxies and the reader. This is an important
feature for the resource-constrained devices such as small sensor nodes. However, in
order to reduce the workload of the dealer, we introduced more operations on the
proxies and the reader, which will potentially increase the overall cost of the system.
Due to the page limitation, we do not give the details here.

4.2 Security and Verification

Security Analysis. The security analysis on Asmuth-Bloom’s scheme has been done
by [10], which indicates that as long as no more than (t − 1) shares ðsi;miÞ are revealed,
the secret S is secure. Here, we reused part of the shares, so it is necessary to discuss the
possible influence of revealing of all the mi, for i ¼ 1; 2; 3; . . .n.

In the worst case, assume ðt � 1Þ shares, which correspond to prime numbers
mn�tþ2;mn�tþ3; . . .;mn, are known to the attacker, and all the co-prime numbers
m0;m1;m2; . . .;mn are publicly exposed. S is the selected secret within the range

0;m0ð Þ, and S0 is in the range of 0;
Qt
i¼1

mi

� �
with S0 � Sþ am0ðmodMÞ, M ¼ Qt

i¼1
mi.

The generated shares are si � S0ðmodmiÞ.
Since the adversary has only ðt � 1Þ shares, together with the corresponding mi, the

adversary could perform CRT reconstruction operation on ðt � 1Þ shares to get all the
information that ðt � 1Þ shares could reveal.

The multiplicative inverse of mi is M�1
i ¼ ½ð Qn

i¼n�tþ2
miÞ=mi��1. Denote the recon-

structed result as X; the computation of X is shown in Eq. (12).

X � ð
Xn

i¼n�tþ2

Mi � ðM�1
i mod miÞ � siÞðmod

Yn
i¼n�tþ2

miÞ ð12Þ

We could know that X\
Qn

i¼n�tþ2
mi, which means there is only one possible value

of S0, and S0 cannot be smaller than X. We assume there is an integer Y such that
S0 ¼ X þ Y , and in order to meet the requirement that si � S0ðmodmiÞ for mn�tþ2;
mn�tþ3; . . .;mn, Y is divisible by mn�tþ2;mn�tþ3; . . .;mn, since they are co-prime to

Decentralized CRT-Based Efficient Verifiable (n, t, n) Multi-secret Sharing Scheme 289

each other, so Y ¼ b
Qn

i¼n�tþ2
mi, where b is a non-negative integer; thus S0 ¼ Xþ

b
Qn

i¼n�tþ2
mi.

Next, if we could get the value of b, we can obtain S0. Within the search space for

S0, the number of possible values for b is N ¼ ðQt
i¼1

mi � XÞ= Qn
i¼n�tþ2

mi.

Because m0
Qn

i¼n�tþ2
mi

� �
\

Qt
i¼1

mi, N[ðm0
Qn

i¼n�tþ2
mi � XÞ= Qn

i¼n�tþ2
mi. Since

X\
Qn

i¼n�tþ2
mi, we conclude that at least N[ðm0

Qn
i¼n�tþ2

mi �
Qn

i¼n�tþ2
miÞ=

Qn
i¼n�tþ2

m

i¼ ðm0 � 1Þ.
That means that despite the adversary knowing all the prime numbers and ðt � 1Þ

shares, it still needs to try at least ðm0 � 1Þ times to learn the real secret. Considering
that the conclusions above are based on the fact that all the mi, for i ¼ 1; 2; 3; . . .n, are
known, then as long as m0 is big enough, the key space will not be narrowed down to
an unacceptable level.

Also because both SHi and hi;r are unknown, it is hard for an adversary to compute
SHi from the received Sh j

i;r � SHi � hi;rðmodmjÞ.
Two Methods of Generating Verifiable Shares. Although the algorithm itself appears
to be secure, as demonstrated above, it is still important to consider the possibility that
not all the received shares are correct. Some errors may occur during the transmission,
or the proxies may intentionally send false shares to hamper the operation of the
system.

We assume that the majority of the proxies are trustworthy, and the shares could be
verified through the test of (t, n)-consistency. In order to do the test, we need to collect
shares and perform the reconstruction operation to see if the reconstruction result of
every set of t shares is the same. But this also means the reconstruction shares and the
final secret are both exposed.

Here in this sub-section, we present two methods to generate verifiable shares
without revealing any information about the final secret.

Using Uniform Vectors for Verifiable Shares Generation. The first method of gener-
ating verifiable shares is using uniform vectors. This method was proposed by Liu,
Harn, Yang and Zhang in 2012 [13].

They proposed to ask the dealer to broadcast two n-tuple weight vectors at the same
time. One of them is used to generate the reconstruction shares, the other is used to
form the verifiable shares. However, since the publicly exposed n-tuple weight vectors
will reveal some information about the secret as we illustrated in Sect. 3, the dealer
needs to more frequently updates the privately kept polynomials.

Here, we simply ask the proxies to locally generate two sets of random numbers by
performing the hash function, then following the similar steps in the reconstruction
share generation. Reader receives two sets of shares, one is used for secret recon-
struction purpose, the other one is for verification.

290 W. Wen et al.

Exploits Special Property of CRT for Verifiable Shares Generation. The second
method exploits a special property of CRT, and helps the verifier to get reconstruction
shares and verifiable shares at the same time without asking the dealer to broadcast an
n-tuple weight vector as done in the first method.

As we mentioned before, in the proxy sub-distribution phase, proxy Pj receives the
following information: fSh j

1;r; Sh
j
2;r; . . .; Sh

j
n;rg. The verifiable shares are simply gen-

erated by using the following operation: ShV j
r � ðQ Sh j

i;rÞðmodmjÞ.
If all the verification shares have the (t, n)-consistency property, then the recon-

struction shares reveal the correct secret.
In our scheme, we choose the second method because it is more efficient and simple

to be exploited.
Here, we could also use the verification shares as the reconstruction shares while

using the reconstruction ones to do the verification. How to decide which one to be
used as reconstruction shares? That is according to the actual application requirements.
Since the multiplication operation requires more computational resources and more

time, and the verification does not need to happen frequently, we shall use ShV j
r �

ðQn
i¼1

Sh j
i;rÞðmodmjÞ as the verification share.

Cheater Detection. Cheater could be a compromised legitimate node or an attacker
disguised itself as a legitimate node. The main purpose of a cheater is launching attacks
from the inside and those attacks have different kinds.

The passive attacks are intended to eavesdrop and steel the shared secret. In our
distributed approach, every proxy only possess part of the secret. A successful attack
requires at least t cheaters to collude with each other, which is difficult to achieve. As
long as the number of cheaters is up to t � 1, the risk of leaking the secret can be
ignored since t � 1 shares cannot construct the secret as we discussed in this section.

The active attacks are trying to degrade the quality of service by modifying the
messages or simply denying the request of information. If the attackers are so powerful
that they can make the honest proxies to obliviously collude with the fellow cheaters, in
the worst case, there is no way to detect nor identify the cheaters when n ¼ 2t � 1 and
up to t � 1 proxies are compromised [16].

We highlight our assumption again, which is that the majority of the proxies are
honest and trustworthy. Because of the similarities shared by the Lagrange Polynomial
Interpolation and the Chinese Remainder Theorem, in our scheme, we can use the
similar technique as we mentioned earlier in Sect. 2 to test the (t, n)-consistency of all
the collected reconstruction shares.

This test can be done as follows. We use all the received reconstruction shares to
reconstruct the final secret:

Sn0r � ð
Xn
i¼1

Shri �Mi;r � yi;rÞ modMrð Þ ð13Þ

Decentralized CRT-Based Efficient Verifiable (n, t, n) Multi-secret Sharing Scheme 291

Here Mr ¼
Pn
i¼1

mi, Mi;r ¼ Mr=mi, yi;r ¼ M�1
i;r ðmodmiÞ. If S0r ¼ Sn0r, all the reconstruc-

tion shares are legitimate.
However, since the CRT operation involves exponential computations, we propose

to reconstruct the secret by randomly selecting t shares from all the collected shares
pool first. Then, instead of using all the shares to do the reconstruction again, we use
the reconstructed secret to re-generate a copy for the unselected reconstruction shares:

Shtþ10
r � S0rðmodmtþ1Þ; . . .; Shn0r � S0rðmodmnÞ

If all the calculated reconstruction shares equal the collected corresponding ones,
then all the shares are legitimate; otherwise, there are one or more cheaters among the
majority-honest proxies.

5 Conclusion and Future Work

In this paper, we reviewed the existing multi-secret sharing schemes, and proposed our
own CRT-based efficient (n, t, n) multi-secret sharing scheme with two verifiable
scheme approaches. The use of CRT reduces the computational expense compared
to Lagrange Polynomial Interpolation, and by allowing the proxies and the dealer to
compute the one-way hash function locally, our scheme further omits the requirement
of obtaining the n-tuple weight vector from the dealer and the periodically updating of
the secret distributed polynomials.

Further analysis of the performance of this scheme is underway. The communi-
cation and computation costs of our scheme will be carefully simulated and tested. This
scheme can be used in multiple applications such as Internet of Things and WSNs.
However, in order to adapt this scheme to various applications, further security
enhancements and performances improvements should be done as well.

References

1. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)
2. Blakley, G.R.: Safeguarding cryptographic keys. In: National Computer Conference, 1979, ser.

American Federation of Information Processing Societies Proceedings, vol. 48, pp. 313–317
(1979)

3. Mignotte, M.: How to share a secret? In: Beth, T. (ed.) EUROCRYPT 1982. LNCS,
vol. 149, pp. 371–375. Springer, Heidelberg (1983)

4. Asmuth, C.A., Bloom, J.: A modular approach to key safeguarding. IEEE Trans. Inf. Theor.
IT-29(2), 208–210 (1983)

5. He, J., Dawson, E.: Multistage secret sharing based on one-way function. Electron. Lett. 30
(19), 1591–1592 (1994)

6. He, J., Dawson, E.: Multisecret-sharing scheme based on one-way function. Electron. Lett.
31(2), 93–95 (1995)

7. Lin, H.Y., Yeh, Y.S.: Dynamic multi-secret sharing scheme. Int. J. Contemp. Math. Sci.
3(1), 37–42 (2008)

292 W. Wen et al.

8. Chang, T., Hwang, M., Yang, W.: A new multi-stage secret sharing scheme using one-way
function. ACM SIGOPS Oper. Syst. Rev. 39(1), 48–55 (2005)

9. Harn, L., Lin, C.: Strong (n, t, n) verifiable secret sharing scheme. Inf. Sci. 180(16),
3059–3064 (2010)

10. Quisquater, M., Preneel, B., Vandewalle, J.: On the security of the threshold scheme based
on the chinese remainder theorem. In: Naccache, D., Paillier, P. (eds.) PKC 2002. LNCS,
vol. 2274, pp. 199–210. Springer, Heidelberg (2002)

11. Herranz, J., Ruiz, A., Sáez, G.: New results and applications for multi-secret sharing
schemes. Des. Codes Crypt. 73, 841–864 (2013)

12. Waseda, A., Soshi, M.: Consideration for multi-threshold multi-secret sharing schemes. In:
2012 International Symposium on Information Theory and Its Applications (ISITA). IEEE
(2012)

13. Liu, Y., Harn, L., Yang, C., Zhang, Y.: Efficient (n, t, n) secret sharing schemes. J. Syst.
Softw. 85, 1325–1332 (2012)

14. Stallings, W.: Cryptography and Network Security, 4th edn. Pearson Education India,
New Delhi (2006)

15. Harn, L., Lin, C.: Detection and Identification of cheaters in (t, n) secret sharing scheme.
Des. Codes Cryptogr. 52(1), 15–24 (2009)

16. Ghodosi, H.: Comments on Harn–Lin’s cheating detection scheme. Des. Codes Crypt. 60(1),
63–66 (2011)

Decentralized CRT-Based Efficient Verifiable (n, t, n) Multi-secret Sharing Scheme 293

Composable Oblivious Extended Permutations

Peeter Laud(B) and Jan Willemson

Cybernetica AS, Tallinn, Estonia
{peeter.laud,jan.willemson}@cyber.ee

Abstract. An extended permutation is a function f : {1, . . . , m} →
{1, . . . , n}, used to map an n-element vector a to an m-element vector
b by bi = af(i). An oblivious extended permutation allows this map-
ping to be done while preserving the privacy of a, b and f in a secure
multiparty computation protocol. Oblivious extended permutations have
several uses, with private function evaluation (PFE) being the theoreti-
cally most prominent one.

In this paper, we propose a new technique for oblivious evaluation
of extended permutations. Our construction is at least as efficient as
the existing techniques, conceptually simpler, and has wider applicabil-
ity. Our technique allows the party providing the description of f to
be absent during the computation phase of the protocol. Moreover, that
party does not even have to exist — we show how to compute the private
representation of f from private data that may itself be computed from
the inputs of parties. In other words, our oblivious extended permuta-
tions can be freely composed with other privacy-preserving operations in
a multiparty computation.

Keywords: Secure multiparty computation · Private function evalua-
tion · Extended permutations

1 Introduction

In Secure Multiparty Computation (SMC), k parties compute (y1, . . . , yk) =
f(x1, . . . , xk), with the party Pi providing the input xi and learning no more
than the output yi. Private Function Evaluation (PFE) is a special case of SMC,
where the function f is also private, and its description, typically in the form
of a circuit, is provided as input by one of the parties. One will thus obtain
a solution for PFE, if one designs an SMC system for a universal function f .
In SMC systems, f is usually represented as a Boolean or arithmetic circuit.
Universal circuits are large (compared to circuits they can execute), hence this
approach has not been practical so far.

Supported by the European Union Seventh Framework Programme (FP7/2007–2013)
under grant agreement no. 284731 “Usable and Efficient Secure Multiparty Computa-
tion (UaESMC)”, by Estonian Research Council through grant no. IUT27-1, and by
European Regional Development Fund through the Estonian Center of Excellence in
Computer Science (EXCS).

c© Springer International Publishing Switzerland 2015
F. Cuppens et al. (Eds.): FPS 2014, LNCS 8930, pp. 294–310, 2015.
DOI: 10.1007/978-3-319-17040-4 19

Composable Oblivious Extended Permutations 295

Recently, Mohassel and Sadeghian [39] have split the task of oblivious circuit
evaluation into two parts — obliviously evaluating the gates, and hiding the
topology of the circuit in a manner that allows the outputs of the gates to be
passed to the inputs of next gates. They introduce oblivious extended permuta-
tions (OEP) for the second subtask. Their approach increases the performance
of PFE over the state of the art by a couple of orders of magnitude, making the
private execution of small circuits a realistic proposition.

SMC techniques have seen significant maturation in last years, with the
appearance of several frameworks [1,2,5,8,14,23,37] that allow the private com-
putation of certain tasks with practically relevant sizes. There have been a num-
ber of successful applications of these frameworks [3,6,7,28,33]. A common tenet
of all existing and in-progress applications is their client-server nature, where
the participating entities are partitioned into input parties providing the private
inputs to a SMC system, computing parties that execute the SMC protocols
for computing the function f , and output parties that receive the results of the
computation [4] (these sets of parties may overlap). This flexibility is certainly
required in practice, as the active participation of all input parties in all stages
of computation is unwanted both for efficiency (if the number of input parties
is large), as well as organizational (if the input parties do not have the ability
to execute complex protocols) reasons.

Mohassel’s and Sadeghian’s OEP construction does not fit into the model
with input, computing and output parties. In their construction, the party pro-
viding the description of the private function must participate in the computa-
tion, i.e. it must be both an input and a computing party.

In this paper, we propose a multiparty OEP construction that allows the exten-
ded permutation to be input to the private computation by a non-computing input
party or constructed during the computation from other private values, thereby
removing the need to treat them in any special manner. In fact, all our construc-
tions will be presented in the Arithmetic Black Box (ABB) model [13], making
their use in larger applications straightforward, and also greatly simplifying the
security proofs. Our construction is conceptually simpler than [39], and, if the
number of computing parties is small, also potentially more efficient (even though
a fair comparison is difficult due to different operational profiles). It increases the
variety of deployment scenarios for PFE applications, among which credit evalu-
ation and background checks have been proposed [29]. With our construction, the
private computation can be outsourced, and the evaluated function itself may be
obtained through secure computation. We have implemented our proposed con-
struction and provide benchmarking results.

This paper has the following structure. We review the related work in Sect. 2
and give the necessary preliminaries, including the ABB model, in Sect. 3. In
Sect. 4 we present the desired ideal functionality for OEPs, as well as the actual
protocol set (together with security proofs), with the most complicated proto-
col appearing in Sect. 5. In Sect. 6 we present the benchmarking results of our
implementation of the OEP protocol; according to our knowledge, this is the
first such implementation. In Sect. 7, we discuss some further research directions
opened up by our OEP construction.

296 P. Laud and J. Willemson

2 Related Work

A number of existing OEP constructions are based on switching networks employ-
ing 2 × 2 switches that may either pass their inputs unmodified, swap the inputs,
or copy one input to both outputs. The network is commonly obtained from Waks-
man’s construction [42]; it is evaluated with SMC techniques. Such constructions
appear in [24,29,39]. In [38], the construction of [39] is amended to give it security
against malicious adversaries. All such constructions require one of the computing
parties to know the extended permutation.

AnOEPcan also be constructedwith homomorphic encryption [24, Sect. 5.3.2].
This construction has better asymptotic complexity than the ones based on switch-
ing networks, but it requires many expensive public-key operations. Again, one
computing party has to know the extended permutation.

Oblivious RAM (ORAM) [17,19,41] is a functionality that allows a server’s
memory to be read and written according to a client’s private address. It is a
more flexible construction than OEP, which fixes the indices ahead of time and
performs many reads in parallel. The implementation of ORAM algorithms on
top of SMC (which would be necessary to emulate OEP) is non-trivial and brings
high overheads [12,36].

A very simple construction for shuffling (permuting) the elements of a vector
is given by Laur et al. [34]. Hamada et al. [21,22] have used this construction
to give fast sorting algorithms. Our constructions are also based on this form of
shuffling protocols.

3 Preliminaries

Universal composability (UC) [9] is a standard theoretical framework for stating
and proving security of cryptographic constructions. In this framework, a proto-
col π is defined secure if it is as secure as some ideal functionality F embodying
the desired functional and non-functional properties of π in an abstract manner.
A functionality F1 is at least as secure as F2, if for every user of these function-
alities, and every adversary of F1, there is an adversary of F2, such that the user
cannot see the difference in interacting with F1 or F2. UC framework derives
its usefulness from the composability of the “at least as secure as” relation: If
protocol π1 is at least as secure as the (ideal) functionality F1, and protocol π2

incorporating F1 (i.e. π2 has been realized in the F1-hybrid model) is at least
as secure as F2, then π2, where the calls to F1 have been replaced with the
invocations of π1, is also at least as secure as F2.

Arithmetic black box. For SMC, the standard ideal functionality is the Arith-
metic Black Box (ABB) FABB [13]. It provides an interface for users P1, . . . , Pk,
up to t of which may be corrupted (for simplicity, we only consider static cor-
ruptions), to perform computations without revealing intermediate values. Here
t depends on the protocol set πABB implementing FABB. The functionality FABB

is given in Fig. 1. Depending on the implementation πABB, the adversary and/or

Composable Oblivious Extended Permutations 297

Internal state: a finite map S from variable names to values (initially empty)
Exposed commands:

Input data. On input (input, v, x) from some Pi and (input, v) from all other parties,
add {v �→ x} to S.

Classify. On input (classify, v, x) from all parties, add {v �→ x} to S.
Compute. On input (compute, ⊗, v1, v2, v3) from all parties, look up x1 = S(v1) and

x2 = S(v2), and add {v3 �→ x1 ⊗ x2} to S.
Declassify. On input (declassify, v) from all parties, answer with S(v) to all parties.

When receiving any command except input, the whole command, as well as its answer
is also sent to the adversary. For input-commands, (input, v) is sent to the adversary. I.e.
one does not attempt to hide from the adversary, which protocols are executed (who
could determine it through traffic analysis). Only the processed values are hidden.
Some of the parties may be corrupted. For any command (c, . . .) listed above, FABB

accepts the command (masqi, c, . . .) from the adversary, for a corrupted party Pi. Such
commands are processed as commands (c, . . .) from Pi.
The execution of FABB takes place in rounds, with each party submitting its command
for the current round, and the adversary submitting commands for corrupt parties. In
implementations πABB, many rounds may take place in parallel.

Fig. 1. The ideal functionality FABB

certain coalitions of users may also be able to stop the execution of FABB. We
will not define the behaviour of FABB in exceptional situations (e.g. undefined
variables), because their occurrence can be detected from public information.

The interface of FABB does not correspond well to the partitioning of parties
into input, computing, and output parties. Still, it can be modeled by precisely
defining, which parties are needed to execute different commands, and which
parties receive the results.

The values FABB operates on are elements of some algebraic structure depend-
ing on πABB, typically some finite field or ring. The operations ⊗ supported by
FABB also depend on the actual protocols that are available. Many protocol sets
πABB for SMC have been proposed [11,15,16,18,26,40,43], several of them also
providing security against malicious adversaries. All sets support at least the addi-
tion and multiplication of values stored in S. Based on them, one can implement
a rich set of arithmetic and relational operations [10], enjoying the same security
properties. The protocols we present in this paper need to compare the values in
S, and we assume that “equals” and “less than” operations are available in FABB.

For a variable name v, it is customary to denote its value, as stored in S, by
�v�. Also, in the description of algorithms executed together with FABB, notation
�w� = ⊗(�u�, �v�) denotes the calling of (compute,⊗, u, v, w) on FABB.

Shuffling. An oblivious shuffle, introduced by Laur et al. [34] allows to permute
the elements of a private array of length m according to a private permuta-
tion σ ∈ Sm. The functionality and security of oblivious shuffle can be likewise
presented through the notion of ABB. Let the variable names be partitioned

298 P. Laud and J. Willemson

Input a shuffle. On input (input, s, σ) from some Pi and (input, s, m) from all other
parties, if σ ∈ Sm then add {s �→ σ} to S.

Classify a shuffle. On input (classify, s, σ) from all parties, add {s �→ σ} to S.
Make a random shuffle. On input (rand shuffle, s, m) from all parties, pick σ ∈R Sm

and add {s �→ σ} to S.
Compose private and public shuffle. On input (compose left, s1, s2, τ) from all

parties, look up σ = S(s2) and add {s1 �→ τ ◦ σ} to S. On input
(compose right, s1, s2, τ) do the same, but add {s1 �→ σ ◦ τ} to S.

Apply a shuffle. On input (apply, u1, . . . , um; v1, . . . , vm; s) from all parties, look up
σ = S(s) and xi = S(vi) for all i ∈ {1, . . . , m}. Add {ui �→ xσ(i)} to S for all i.

Invert a shuffle. On input (invert, s1, s2) from all parties, look up σ = S(s1) and add
{s2 �→ σ−1} to S.

Similarly to Fig. 1, all commands are also sent to the adversary, except for input, where
only (input, s, m) is sent. Also, (masqi, . . .) commands are accepted from the adversary.

Fig. 2. Shuffle-related operations in FABB

into two — names for scalars, and shuffles. In Fig. 1, each variable name refers
to a scalar. In Fig. 2 we list the shuffling-related commands of the ABB. Here
u, v denote scalar variables, and s denotes shuffle variables.

For ABB implementations based on secret sharing, Laur et al. [34] introduce
a construction, where a shuffle σ ∈ Sm is represented as �σ� = (�σ�1, . . . , �σ�l),
where �σ�i ∈ Sm are random permutations subject to �σ�1 ◦ · · · ◦ �σ�l = σ. Each
�σ�i is known by all parties in some set Ai. In the shuffling protocol, the values
x1, . . . , xm are shuffled using �σ�1, . . . , �σ�l (sequentially). Before shuffling with
�σ�i, the current values are shared among the parties in Ai only. The sets Ai

have to be carefully selected for the scheme to be secure. For k = 3 and t = 1,
we may take l = 3 and Ai = {1, 2, 3}\{i}.

It is straightforward to securely implement other operations in Fig. 2, based
on the protocol of Laur et al. [34]. Note that inverting a shuffle also inverts
the sequence of the party sets Ai applying the consecutive permutations in �σ�.
Laur et al. also show how to make the protocols secure against malicious adver-
saries. Alternatively, recent proposals for making passively secure protocols ver-
ifiable [25,31] are readily applicable to described shuffling protocols.

Oblivious shuffles are instrumental for fast sorting algorithms on private val-
ues [22]. To sort a vector �u� = (�u1�, . . . , �um�), where all values are known to
be different, one may generate a random shuffle �σ� and apply it on �u�. After-
wards, the elements of �u� are randomly ordered and their comparison results
may be declassified. In this way expensive, data-oblivious sorting methods [27]
do not have to be employed. Sorting, in turn, can be used to transform a vector
of values (�v1�, . . . , �vm�) to a shuffle �σ�, such that σ(i) = vi, provided that the
private values are a permutation of (1, . . . , m). See Algorithm 1. The algorithm
is secure because the only values output by FABB during its execution are the

Composable Oblivious Extended Permutations 299

Algorithm 1. Vector2Shuffle, From a vector of private values to private
shuffle

Data: Vector of values (�v1�, . . . , �vm�), with {v1, . . . , vm} = {1, . . . , m}
Result: A shuffle �σ�, such that σ(i) = vi

�s� ← rand shuffle(m)
(�u1�, . . . , �um�) ← apply(�v1�, . . . , �vm�; �s�)
Sort (�u1�, . . . , �um�), using declassify(�·� ≤ �·�) as the comparison function
Let τ ∈ Sm be the sorting permutation, i.e. uτ(i) = i.
return invert(�s� ◦ τ)

results of comparisons; these may be made public by the security arguments for
sorting algorithms. It is easy to verify that Algorithm 1 is also correct.

As sorting turns out to be a useful operation in our protocols, we opt to make
it a part of FABB. See Fig. 3 for the exact specification of lexicographically, stably
sorting the rows of a m× l table. For ease of use, we let our sorting functionality
to not actually sort its input, but to output a private shuffle that would sort
the input if applied to it. The protocol for computing such a shuffle in πABB is
identical to Algorithm1, except for the omission of the last inversion.

Sort. On input (sort, u1
1, . . . , u

l
1; . . . ; u

1
m, . . . , ul

m; s), look up the values xj
i = S(uj

i) for
all i ∈ {1, . . . , m} and j ∈ {1, . . . , l}. Find σ ∈ Sm, such that
– for all 1 ≤ i ≤ j ≤ n: (x1

σ(i), . . . , x
l
σ(i)) ≤ (x1

σ(j), . . . , x
l
σ(j)), where the ordering

of tuples is defined lexicographically;
– for all 1 ≤ i < j ≤ n: if (x1

i , . . . , x
l
i) = (x1

j , . . . , x
l
j), then σ(i) < σ(j).

Add {s �→ σ} to S and forward the sort-command to the adversary.

Fig. 3. Sorting in FABB

4 Our OEP Functionality

The notion of extended permutation (EP) was introduced in [39] for encoding
the topology of arithmetic or Boolean circuits. Mathematically, an EP φ from a
length-n to a length-m sequence is just a function from {1, . . . , m} to {1, . . . , n}.
Applying φ to a sequence (x1, . . . , xn) produces a sequence (y1, . . . , ym), such
that yi = xφ(i) for each i. Similarly to shuffles, we want to apply EPs in an
oblivious manner, such that the values to which φ is applied, as well as φ itself
remain private.

Let Fn,m denote the set of all mappings from {1, . . . , m} to {1, . . . , n}. Our
intended ideal functionality for an ABB with EPs is given in Fig. 4. The function-
ality maps variables to either private values, private shuffles or private EPs, and
allows operations on them. Let the variable names be partitioned into three —
names for scalars, shuffles, and EPs. In Fig. 4, u, v denote scalar variables, while
f denotes EP variables.

300 P. Laud and J. Willemson

Include the state S and commands of FABB in Fig. 1 and Fig. 2.
Additional commands are given below.

Input an EP. On input (input, f, φ) from some Pi and (input, f, n, m) from all other
parties, if φ ∈ Fn,m then add {f �→ φ} to S.

Classify an EP. On input (classify, f, φ) from all parties, add {f �→ φ} to S.
Apply an EP. On input (apply, u1, . . . , um; v1, . . . , vn; f) from all parties, look up φ =

S(f) and xi = S(vi). Add {uj �→ xf(j)} to S for all j ∈ {1, . . . , m}. The mapping
φ must be an element of Fn,m.

Convert a vector to an EP. On input (convert, u1, . . . , um, n, f) from all parties,
look up xi = S(ui) for all i ∈ {1, . . . , m}. If 1 ≤ xi ≤ n holds for all i, let φ ∈ Fn,m

be defined by φ(i) = xi and add {f �→ φ} to S. Otherwise, the behaviour of FOEP

is undefined.

The commands are sent to the adversary, and accepted from the adversary similarly
to Fig. 1 and Fig. 2.

Fig. 4. The ideal functionality FOEP

The representation of oblivious extended permutations used by our imple-
mentation πOEP of FOEP is based on the following simple result.

Theorem 1. For any m,n ∈ N there exist �n,m = (1 + o(1))m ln m and gn,m :
{1, . . . , �n,m} → {1, . . . , n}, such that for any function φ ∈ Fn,m, there exist
σ ∈ Sn and τ ∈ S�n,m

, such that φ(x) = (σ ◦ gn,m ◦ τ)(x) for all x ∈ {1, . . . , m}.
Proof. Define �n,m by

�0,m = 0
�n,m = �n−1,m + �m/n�.

Then �n,m = (1 + o(1))m ln m [35]. Define gn,m by

gn,m(x) = k ⇔ �k−1,m < x ≤ �k,m.

Let φ ∈ Fn,m be given. For each y ∈ {1, . . . , n}, let φ−1(y) = {x |φ(x) = y}.
Let the permutation σ ∈ Sn be such, that |φ−1(σ(i))| ≥ |φ−1(σ(i + 1))| for all i.
Note that |φ−1(σ(i))| ≤ �m/i�.

Let Di = {�i−1,m + 1, . . . , �i,m}. Note that |Di| = �m/i� and gn,m(z) =
i for all z ∈ Di. Let the permutation τ ∈ S�n,m

be defined so, that for all
i ∈ {1, . . . , n}, we have τ(φ−1(σ(i))) ⊆ Di. Such permutation τ exists, because
|φ−1(σ(i))| ≤ |Di| and different sets Di are disjoint.

For eachx ∈ {1, . . . , m},wenowhave τ(x) ∈ Dσ−1(φ(x)), implying gn,m(τ(x))=
σ−1(φ(x)) or σ(gn,m(τ(x))) = φ(x). �

We see that σ sorts the elements of {1, . . . , n} according to their number of
preimages with respect to φ. The mapping gn,m creates a sufficient number of
copies of each element. These copies are brought to their correct places by τ.

Composable Oblivious Extended Permutations 301

Theorem 1 immediately suggests the private encoding for an OEP φ. In our
implementation πOEP for FOEP, we will store them as pairs of private shuffles
(σ, τ), defined as in the proof of Theorem1. Figure 5 depicts the protocol set
πOEP (except for the convert-protocol, which is given in Sect. 5), defined in the
FABB-hybrid model.

There are machines M1, . . . , Mk executing the protocols on behalf of the parties
P1, . . . , Pk participating in the protocol. These machines have access to the function-
ality FABB.
There is a public function f �→ (sf , tf) mapping variable names for EPs to pairs of
variable names for shuffles. We assume that these variable names for shuffles are not
used outside this protocol set.
A machine Mi responds to the various commands as follows.

Commands for FABB. When receiving a command for FABB from the environment,
Mi forwards it to FABB and gives back the result.

Input an EP. On input (input, f, φ), the machine Mi constructs the shuffles σ and τ
corresponding to φ according to the proof of Thm. 1. It will then send commands
(input, sf , σ) and (input, tf , τ) to FABB.

Input an EP. On input (input, f, n, m), the machine Mi sends commands
(input, sf , n) and (input, tf , �n,m) to FABB.

Classify an EP. On input (classify, f, φ), the machine Mi constructs the shuffles σ
and τ corresponding to φ according to the proof of Thm. 1. Any indeterminacies
in the proof are solved in the same, public manner by all parties. Machine Mi will
then send the commands (classify, sf , σ) and (classify, tf , τ) to FABB.

Apply an EP. On input (apply, u1, . . . , um; v1, . . . , vn; f), machine Mi will pick �n,m

new variable names w1, . . . , w�n,m (for scalars). After that, it will
1. send (apply, w1, . . . , wn; v1, . . . , vn; sf) to FABB;
2. copy w1, . . . , wn to w1, . . . , w�n,m according to gn,m, i.e. wi after copying will

be equal to wgn,m(i) before copying (note that this is an operation of FABB);
3. send (apply, u1, . . . , um, wm+1, . . . , w�n,m ; w1, . . . , w�n,m ; tf) to FABB.

Fig. 5. The protocol set πOEP for k parties (partially)

Theorem 2. The protocol set πOEP, as depicted in Fig. 5, is at least as secure
as FOEP without convert-commands.

Proof. We have to show a simulator S that can translate between the messages
at the adversarial interface of FOEP and the messages at the adversarial interface
of πOEP. The simulator S has no long-term state and works as follows:

– On an input (c, . . .) from FOEP that corresponds to a command for FABB, the
simulator forwards this input to the adversary.

– On input (input, f, n,m) from FOEP, the simulator forwards the commands
(input, sf , n) and (input, tf , �n,m) to the adversary.

302 P. Laud and J. Willemson

– On input (classify, f, φ) from FOEP, the simulator computes the permutations
σ and τ according to the proof of Theorem1, and forwards (classify, sf , σ) and
(classify, tf , τ) to the adversary.

– On input (apply, u1, . . . , um; v1, . . . , vn; f) from FOEP, the simulator forwards
the commands for applying sf , copying the variables and applying tf to the
adversary. The commands are the same as in Fig. 5.

– On input (masqi, c, . . .) from the adversary to FABB, the simulator S forwards
that command to FOEP, unless the command is part of an adversarial party’s
activity in the protocols of πOEP. These are recognized through the inclusion
of variable names sf and tf.

– On input (masqi, input, sf , n) from the adversary, followed by (masqi, input,
tf , �n,m): send (masqi, input, f, n,m) to FOEP.

– On input (masqi, c, sf , σ) from the adversary, followed by (masqi, c, tf , τ),
where c is either input or classify: the simulator constructs φ = σ◦gn,m◦τ (where
n,m are found from the descriptions of σ and τ), and sends (masqi, c, f, φ) to
FOEP.

– On input (masqi, apply, w1, . . . , wn; v1, . . . , vn; sf) from the adversary, followed
by the requests to copy the variables wj according to gn,m and the input
(masqi, apply, u1, . . . , um, wm+1, . . . , w�n,m

;w1, . . . , w�n,m
; tf): send

(masqi, apply, u1, . . . , um; v1, . . . , vn; f) to the adversary.

Quite clearly, this simulator provides the necessary translation. Actually, the
only non-trivial part of this simulator is the construction of φ from σ and τ pro-
vided by the adversary. Fortunately, there exists a φ for any σ and τ (of correct
types). Hence πOEP is secure even against active adversaries (if the protocol set
implementing FABB is secure against such adversaries). �

The provided simulator S is valid for any attacks by the adversary. It can
cope with active attacks and with dishonest majority. Hence πOEP provides the
same security guarantees as the protocol set πABB implementing FABB.

5 Converting a Private Vector to an OEP

Suppose we are given the numbers m,n, and a vector (�v1�, . . . , �vm�), such that
1 ≤ vi ≤ n for all i. We want to construct �φ�, such that φ ∈ Fn,m and φ(i) = vi

for all i. For this, we have to construct private shuffles �σ� and �τ� of correct
size, such that φ = σ ◦ gn,m ◦ τ. As we show below, the functionality provided
by FABB is sufficient for this construction. However, the construction is more
complex than what we have seen before.

Partially specified shuffles. The following subtask occurs in the construction of
both σ and τ. Let a vector (�v1�, . . . , �vn�) be given, such that vi ∈ {0, 1, . . . , n}
and for each j ∈ {1, . . . , n} there exists at most one i, such that vi = j. Construct
�σ�, where σ ∈ Sn and ∀i ∈ {1, . . . , n} : vi > 0 ⇒ σ(i) = vi.

Composable Oblivious Extended Permutations 303

Algorithm 2. FillBlanks, filling the blank squares of a shuffle
Data: Bounds L, H ∈ N

Data: �vL�, �vL+1�, . . . , �vH�, where vi ∈ {0, L, . . . , H}, and for each
j ∈ {L, . . . , H}, there is at most one i, such that vi = j

Result: �uL�, �uL+1�, . . . , �uH�, where {uL, . . . , uH} = {L, . . . , H} and
vi > 0 ⇒ ui = vi

1 if L = H then
2 return �L�

3 M ←
(L + H)/2�
4 �ξ� ← sort(�vL�; �vL+1�; . . . ; �vH�) ; // Fig. 3

5 (�v′
L�, . . . , �v′

H�) ← apply(�vL�, . . . , �vH�; �ξ�)
6 foreach i ∈ {1, . . . , H − M} do
7 �bi� ← �v′

M+i� ≤ M
8 (�v′

L+i−1�, �v
′
M+i�) ← �bi� ? (�v′

M+i�, �v
′
L+i−1�) : (�v′

L+i−1�, �v
′
M+i�)

9 (�v′
L�, . . . , �v′

M �) ← FillBlanks(L, M ; �v′
L�, . . . , �v′

M �)
10 (�v′

M+1�, . . . , �v
′
H�) ← FillBlanks(M + 1, H; �v′

M+1�, . . . , �v
′
H�)

11 foreach i ∈ {1, . . . , H − M} do
12 (�v′

L+i−1�, �v
′
M+i�) ← �bi� ? (�v′

M+i�, �v
′
L+i−1�) : (�v′

L+i−1�, �v
′
M+i�)

13 (�uL�, . . . , �uH�) ← apply(�v′
L�, . . . , �v′

H�; invert(�ξ�))
14 return (�uL�, . . . , �uH�)

We cannot directly apply Algorithm1 to obtain the shuffle, because this
algorithm assumes that the input vector is a permutation of {1, . . . , n}. In par-
ticular, the correctness of Algorithm 1 hinges on the sorted vector being equal
to (1, . . . , n).

We will hence first fill the zeroes in the vector v1, . . . , vn with the missing num-
bers. We use Algorithm 2 for that, making the call FillBlanks(1, n; �v1�, . . . , �vn�).
After that, we can apply Algorithm1 and obtain a suitable �σ�.

In Algorithm 2, we have used a few conventions that have appeared elsewhere
in the specifications of privacy-preserving algorithms. In line 7, the variable �bi�
will store either 1 or 0, depending on whether the comparison returns true.
The line 8 contains an instance of the binary choice operator �b� ? �x� : �y�. Its
result is equal to �x� if b = 1, and �y� if b = 0. It is typically computed as
�b� · (�x� − �y�) + �y�. In lines 8 and 12 we are actually using pairs of values
in place of �x� and �y�. Hence the effect of these lines is to swap �v′

L+i−1� and
�v′

M+i� if bi = 1, and otherwise leave them as is.
A number of operations in Algorithm2 can be performed in parallelized fash-

ion. We use the convention that foreach-statements indicate vectorized compu-
tations. In addition to that, the recursive calls in lines 9 and 10 are executed in
parallel.

Clearly, Algorithm 2 is secure — it does not declassify any values. Also, it
does not input any values from a particular party, hence there are no issues
in making sure that these values are valid. Algorithm 2 invokes a number of
commands of FABB in order to transform a private vector to a different private

304 P. Laud and J. Willemson

vector. The adversary’s view of Algorithm 2 consists of the sequence of the names
of these commands. This sequence can be derived from L, H, and the names of
the variables input to Algorithm2.

Due to the need to preserve the privacy of �vi�, Algorithm 2 is quite non-
trivial, working in the divide-and-conquer fashion. The main case starts in line 3,
and the lines 3–8 are used to rearrange the elements of vL, . . . , vH so, that
vL, . . . , vM only contain elements in {0, L, . . . ,M}, and vM+1, . . . , vH only con-
tain elements in {0,M + 1, . . . , H}. We record ξ and b1, . . . , bH−M that are
sufficient to undo this rearrangement later. Through recursive calls in lines 9
and 10, we fill in the zeroes among v′

L, . . . , v′
H with missing numbers. Finally, in

lines 11–13 we undo the rearrangement we introduced at the beginning.
Assuming that the complexity of sorting is O(n log n), the overall complex-

ity of FillBlanks is O(n log2 n). We could actually simplify the algorithm some-
what — in line 10, the vector that is the argument to the recursive call is already
sorted, hence there is no need to sort it again in line 4. This does not reduce
the asymptotic complexity, though, as the FillBlanks-call in line 9 still needs to
sort its argument vector. In the full version of this paper [32] we show that for
certain implementations of the ABB, this vector (which is just a private rotation
away from being sorted) can also be sorted more efficiently, bringing the overall
complexity of FillBlanks down to O(n log n), the same as Algorithm 1.

Finding vector representations of �σ� and �τ�. With the help of Algorithm2, we
are now ready to present the computation of �σ� and �τ�, such that φ = σ◦gn,m◦τ.
Algorithm 3 depicts this computation. In the description of this algorithm, we
will heavily use the notation �v� for vectors with private components (but note
that the length of the vector is public). Algorithm3 is secure for the same reasons
as Algorithm 2.

The algorithm to convert the vector �v(1)� = (�v(1)
1 �, . . . , �v

(1)
m �) to the private

shuffles �σ�, �τ� performs the following steps. First, it counts how many times
each value x ∈ {1, . . . , n} occurs among v1, . . . , vm. We first sort the vector v(1),
giving the vector v(1′). In this vector, the different values x occur in continuous
segments. Vector v(2′) marks the start of each segment and v(3′) additionally
records the positions, where different segments start. Sorting according to v(3′)

(a stable sort according to v(2′) would have had the same effect) brings the start
positions together and their differences, recorded in v(4′′) are the counts of the
values x (the lengths of the segments).

Second, the algorithm computes the vector representing σ, to be used as
the argument to Vector2Shuffle. As we sort the vectors in non-decreasing order,
the counts end up in the last n elements of v(4′′). We want to sort them in
non-increasing order, hence we collect their negations in the vector u(2). We
apply the sorting permutation to the actual values, whose counts were in u(2).
We collect the actual values in u(1), but we must be careful, because not all n
values are necessary there. Fortunately, in vector v(2′′), there is exactly one “1”
for each possible value. Thus we obtain zeroes instead of missing values and can
use the FillBlanks-algorithm to fill them out.

Composable Oblivious Extended Permutations 305

Algorithm 3. From a vector of private values to an OEP
Data: m, n ∈ N

Data: �v(1)� = (�v
(1)
1 �, . . . , �v

(1)
m �), where 1 ≤ v

(1)
i ≤ n

Result: �σ�, �τ�, such that (σ ◦ gn,m ◦ τ)(i) = vi for all i ∈ {1, . . . , m}
1 �ξ1� ← sort(�v(1)�)

2 �v(1′)� ← apply(�v(1)�; �ξ1�)

3 �v
(2′)
1 � ← 1

4 foreach i ∈ {2, . . . , m} do �v
(2′)
i � ← 1 − (�v

(1′)
i �

?
= �v

(1′)
i−1�);

5 foreach i ∈ {1, . . . , m} do �v
(3′)
i � ← i · �v

(2′)
i �;

6 �ξ2� ← sort(�v(3′)�)

7 �v(1′′)� ← apply(�v(1′)�; �ξ2�)

8 �v(2′′)� ← apply(�v(2′)�; �ξ2�)

9 �v(3′′)� ← apply(�v(3′)�; �ξ2�)

10 foreach i ∈ {1, . . . , m − 1} do �v
(4′′)
i � ← �v

(2′′)
i � ? (�v

(3′′)
i+1 � − �v

(3′′)
i �) : 0;

11 �v
(4′′)
m � ← m + 1 − �v

(3′′)
m �

12 foreach i ∈ {1, . . . , n} do

13 �u
(1)
i � ← m − n + i > 0 ∧ �v

(2′′)
m−n+i� ? �v

(1′′)
m−n+i� : 0

14 �u
(2)
i � ← m − n + i > 0 ? −�v

(4′′)
m−n+i� : 0

15 �ξ3� ← sort(�u(2)�)

16 �u(1′)� ← apply(�u(1)�; �ξ3�)

17 �σ� ← Vector2Shuffle(FillBlanks(1, n; �u(1′)�))

18 foreach i ∈ {1, . . . , n} do �u
(3′)
i � ← �i−1,m + 1;

19 �u(3)� ← apply(�u(3′)�; invert(�ξ3�))
20 foreach i ∈ {1, . . . , m} do
21 ji ← i − m + n

22 �v
(5′′)
i � ←

⎧
⎪⎨

⎪⎩

1, if i ≤ 0 ∨ ¬�v
(2′′)
i �

�u
(3)
ji

�, if �v
(2′′)
i � ∧ ¬�v

(2′′)
i−1 �

�u
(3)
ji

� − �u
(3)
ji−1� + �u

(2)
ji−1� + 1, if �v

(2′′)
i−1 �

23 �v(5′)� ← apply(�v(5′′)�; invert(�ξ2�))

24 �v
(6′)
1 � ← �v

(5′)
1 �

25 for i = 2 to m do �v
(6′)
i � ← �v

(6′)
i−1� + �v

(5′)
i �;

26 �v(6)� ← apply(�v(6′)�; invert(�ξ1�))

27 foreach i ∈ {m + 1, . . . , �n,m} do �v
(6)
i � ← 0;

28 �τ� ← invert(Vector2Shuffle(FillBlanks(1, �n,m; �v(6)�)))
29 return �σ�, �τ�

306 P. Laud and J. Willemson

Third, the algorithm computes the vector representing τ−1. This vector must
have the values �i−1,m+1, �i−1,m+2, . . . in the positions where the original vector
�v(1)� had the i-th most often occurring values among {1, . . . , n}. We intend to
compute this vector through prefix summation; this takes place in lines 24–25.
While doing this prefix summation, we assume that v(1) is sorted, we undo
the sorting afterwards. In lines 18–23 we set up the vector v(5′) that serves
as the argument to prefix summation. We know that in the middle of continu-
ous segments of v(1′), the values in v(5′) have to be “1”. At the border from
i-th most to i′-th most occurring value, however, there should be jumps from
the segment [�i−1,m + 1, . . . , �i,m] to [�i′−1,m + 1, . . . , �i′,m]. The length of these
jumps depends on i, i′, and on the length of the ending segment. These lengths
of jumps are computed in line 22 (clearly, the expression there can be converted
into a sequence of “? :”-operations). Different cases in this line correspond to the
middle of continuous segments, the start of the first segment, and to the starts
of following segments, respectively. The vector u(2) contains the negations of
the lengths of the continuous segments.

The running time of Algorithm3 is dominated by the call to FillBlanks in
line 28. As the size of its argument is O(m log m), the running time of the
algorithm is O(m log3 m). For ABB implementations based on additive sharing,
it can be reduced to O(m log2 m) [32].

Algorithm 3 is used in the protocol set πOEP for converting a private vector
to an OEP. The security of this protocol trivially follows from universal com-
posability (πOEP provides the same security guarantees as πABB with regards to
the number of parties the adversary can corrupt, and the kinds of attacks they
can perform). Indeed, as declassification is not used in Algorithms 2 and 3 (we
assume that Vector2Shuffle is implemented with the help of the sort-command),
the entire communication on the interface between the protocol and the adver-
sary consists of the names of the commands FABB is executing. The sequence of
these commands depends only on the problem size and can be trivially generated
by the simulator.

6 Benchmarks

The asymptotic complexity of our OEP protocol (both communication and com-
putation) is O(m log m) for an extended permutation f ∈ Fn,m (assuming that
m is at least O(n)) and for a constant number of parties. The asymptotic com-
plexity of converting a vector of indices to an OEP is O(m log3 m).

We have implemented protocols in Fig. 5 on the Sharemind secure multi-
party computation platform (providing security against passive attacks by one
party out of three in total) and tested their performance. In performance testing,
we kept in mind the scenario of private function evaluation. For a circuit with I
inputs, K binary gates and O outputs, the topology of the circuit is represented
by an extended permutation in FI+K,2K+O.

Our performance tests are performed on a cluster of three computers with
48 GB of RAM and a 12-core 3 GHz CPU with Hyper Threading running Linux

Composable Oblivious Extended Permutations 307

(kernel v.3.2.0-3-amd64), connected by an Ethernet local area network with link
speed of 1 Gbps. On this cluster, we have benchmarked the execution time of
the OEP application protocol for extended permutations in F200+K,2K+100 (for
various values of K), simulating the oblivious evaluation of a circuit with 200
inputs and 100 outputs. The permutations were applied to 32-bit values. The
running times are presented in Table 1. The running time t(K) (in seconds)
is very well approximated by 4.54 · 10−7 · K ln K. As this has been the first
implementation of OEPs (as far as we know), these numbers constitute the
baseline for comparing further realizations.

Table 1. Execution times for applying an OEP from (K + 200) inputs to (2K + 100)
outputs (times in seconds)

K/106 0.1 1 5 7 8

Running time 0.5 6 35 49 58

The benchmarking of Algorithm 3 is outside the scope of this paper.

7 Discussion

We have proposed a new, efficient construction for oblivious extended permu-
tations, that is fully integrable with secure multiparty computation protocols
for other operations. Practically usable private function evaluation is a possible
application of our techniques, if combined with private evaluation of the gates in
circuits. Recent advances in private function evaluation may make it a practical
tool for certain subtasks in secure multiparty computation, e.g. for handling the
branching on private values.

It is reasonable to assume that any application of PFE will still attempt to
use as much information that can be publicly deduced about the computed func-
tion. Flexibility of PFE techniques is necessary, in order to absorb all available
information. The oblivious extended permutations proposed in this paper allow
a much greater multitude of potential usage scenarios than [39]. It is possible to
evaluate a function without anyone knowing which function is being evaluated.
This allows us to obliviously select the representation of a private function and
then evaluate it, enabling branching on private values. In this case, we still need
to construct private representations of both branches, but this computation can
be moved to the offline phase. The actual selection of the privately executed
branch can be very efficient [30].

OEPs can be used for purposes other than PFE. Guanciale et al. [20] have
implicitly applied them in the minimization of finite automata obtained through
the product construction.

308 P. Laud and J. Willemson

References

1. SecureSCM. Technical report D9.1: Secure Computation Models and Frameworks,
July 2008. http://www.securescm.org

2. Ben-David, A., Nisan, N., Pinkas, B.: FairplayMP: a system for secure multi-party
computation. In: CCS 2008: Proceedings of the 15th ACM Conference on Computer
and Communications Security, pp. 257–266. ACM, New York (2008)

3. Bogdanov, D., Kalu, A.: Pushing back the rain–how to create trustworthy services
in the cloud. ISACA J. 3, 49–51 (2013)

4. Bogdanov, D., Kamm, L., Laur, S., Pruulmann-Vengerfeldt, P.: Secure multi-party
data analysis: end user validation and practical experiments. Cryptology ePrint
Archive, Report 2013/826 (2013). http://eprint.iacr.org/

5. Bogdanov, D., Laur, S., Willemson, J.: Sharemind: a framework for fast privacy-
preserving computations. In: Jajodia, S., Lopez, J. (eds.) ESORICS 2008. LNCS,
vol. 5283, pp. 192–206. Springer, Heidelberg (2008)

6. Bogdanov, D., Talviste, R., Willemson, J.: Deploying secure multi-party compu-
tation for financial data analysis. In: Keromytis, A.D. (ed.) FC 2012. LNCS, vol.
7397, pp. 57–64. Springer, Heidelberg (2012)

7. Bogetoft, P., et al.: Secure multiparty computation goes live. In: Dingledine, R.,
Golle, P. (eds.) FC 2009. LNCS, vol. 5628, pp. 325–343. Springer, Heidelberg (2009)

8. Burkhart, M., Strasser, M., Many, D., Dimitropoulos, X.: SEPIA: privacy-
preserving aggregation of multi-domain network events and statistics. In: USENIX
Security Symposium, Washington, DC, USA, pp. 223–239 (2010)

9. Canetti, R.: Universally composable security: a new paradigm for cryptographic
protocols. In: FOCS, pp. 136–145. IEEE Computer Society (2001)

10. Damg̊ard, I.B., Fitzi, M., Kiltz, E., Nielsen, J.B., Toft, T.: Unconditionally secure
constant-rounds multi-party computation for equality, comparison, bits and expo-
nentiation. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 285–304.
Springer, Heidelberg (2006)

11. Damg̊ard, I., Keller, M., Larraia, E., Pastro, V., Scholl, P., Smart, N.P.: Practical
covertly secure MPC for dishonest majority – or: breaking the SPDZ limits. In:
Crampton, J., Jajodia, S., Mayes, K. (eds.) ESORICS 2013. LNCS, vol. 8134, pp.
1–18. Springer, Heidelberg (2013)

12. Damg̊ard, I., Meldgaard, S., Nielsen, J.B.: Perfectly secure oblivious RAM with-
out random oracles. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 144–163.
Springer, Heidelberg (2011)

13. Damg̊ard, I.B., Nielsen, J.B.: Universally composable efficient multiparty computa-
tion from threshold homomorphic encryption. In: Boneh, D. (ed.) CRYPTO 2003.
LNCS, vol. 2729, pp. 247–264. Springer, Heidelberg (2003)

14. Geisler, M.: Cryptographic protocols: theory and implementation. Ph.D. thesis,
Aarhus University, February 2010

15. Gennaro, R., Rabin, M.O., Rabin, T.: Simplified VSS and fast-track multiparty
computations with applications to threshold cryptography. In: PODC, pp. 101–
111 (1998)

16. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Mitzenmacher,
M. (ed.) STOC, pp. 169–178. ACM (2009)

17. Gentry, C., Goldman, K.A., Halevi, S., Julta, C., Raykova, M., Wichs, D.: Opti-
mizing ORAM and using it efficiently for secure computation. In: De Cristofaro,
E., Wright, M. (eds.) PETS 2013. LNCS, vol. 7981, pp. 1–18. Springer, Heidelberg
(2013)

http://www.securescm.org
http://eprint.iacr.org/

Composable Oblivious Extended Permutations 309

18. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a com-
pleteness theorem for protocols with honest majority. In: STOC, pp. 218–229. ACM
(1987)

19. Goldreich, O., Ostrovsky, R.: Software protection and simulation on oblivious
RAMs. J. ACM 43(3), 431–473 (1996)

20. Guanciale, R., Gurov, D., Laud, P.: Private intersection of regular languages. In:
Proceedings of the 12th Annual Conference on Privacy, Security and Trust, pp.
112–120. IEEE (2014)

21. Hamada, K., Ikarashi, D., Chida, K., Takahashi, K.: Oblivious radix sort: an effi-
cient sorting algorithm for practical secure multi-party computation. Cryptology
ePrint Archive, Report 2014/121 (2014). http://eprint.iacr.org/

22. Hamada, K., Kikuchi, R., Ikarashi, D., Chida, K., Takahashi, K.: Practically effi-
cient multi-party sorting protocols from comparison sort algorithms. In: Kwon, T.,
Lee, M.-K., Kwon, D. (eds.) ICISC 2012. LNCS, vol. 7839, pp. 202–216. Springer,
Heidelberg (2013)

23. Henecka, W., Kögl, S., Sadeghi, A.R., Schneider, T., Wehrenberg, I.: TASTY: tool
for automating secure two-party computations. In: CCS 2010: Proceedings of the
17th ACM Conference on Computer and Communications Security, pp. 451–462.
ACM, New York (2010)

24. Huang, Y., Evans, D., Katz, J.: Private set intersection: are garbled circuits better
than custom protocols? In: NDSS. The Internet Society (2012)

25. Ikarashi, D., Kikuchi, R., Hamada, K., Chida, K.: Actively private and correct
MPC scheme in t < n/2 from passively secure schemes with small overhead. Cryp-
tology ePrint Archive, Report 2014/304 (2014). http://eprint.iacr.org/

26. Ishai, Y., Paskin, A.: Evaluating branching programs on encrypted data. In:
Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 575–594. Springer, Heidelberg
(2007)

27. Jónsson, K.V., Kreitz, G., Uddin, M.: Secure multi-party sorting and applications.
Cryptology ePrint Archive, Report 2011/122 (2011). http://eprint.iacr.org/

28. Kamm, L., Bogdanov, D., Laur, S., Vilo, J.: A new way to protect privacy in
large-scale genome-wide association studies. Bioinformatics 29(7), 886–893 (2013)

29. Kolesnikov, V., Schneider, T.: A practical universal circuit construction and secure
evaluation of private functions. In: Tsudik, G. (ed.) FC 2008. LNCS, vol. 5143, pp.
83–97. Springer, Heidelberg (2008)

30. Laud, P.: A private lookup protocol with low online complexity for secure multi-
party computation. In: Shi, E., Yiu, S.M. (eds.) ICICS. LNCS. Springer, Heidelberg
(2014, to appear)

31. Laud, P., Pankova, A.: Verifiable computation in multiparty protocols with honest
majority. In: Chow, S.S.M., Liu, J.K., Hui, L.C.K., Yiu, S.M. (eds.) ProvSec 2014.
LNCS, vol. 8782, pp. 146–161. Springer, Heidelberg (2014)

32. Laud, P., Willemson, J.: Composable oblivious extended permutations. Cryptology
ePrint Archive, Report 2014/400 (2014). http://eprint.iacr.org/

33. Laur, S., Talviste, R., Willemson, J.: From oblivious AES to efficient and secure
database join in the multiparty setting. In: Jacobson, M., Locasto, M., Mohassel,
P., Safavi-Naini, R. (eds.) ACNS 2013. LNCS, vol. 7954, pp. 84–101. Springer,
Heidelberg (2013)

34. Laur, S., Willemson, J., Zhang, B.: Round-efficient oblivious database manipula-
tion. In: Lai, X., Zhou, J., Li, H. (eds.) ISC 2011. LNCS, vol. 7001, pp. 262–277.
Springer, Heidelberg (2011)

http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/

310 P. Laud and J. Willemson

35. Lejeune Dirichlet, J.P.G.: Über die Bestimmung der Mittleren Werthe in der
Zahlentheorie. Abhandlungen der Köninglich Preussischen Akademie der Wis-
senschaften, pp. 69–83 (1849)

36. Lu, S., Ostrovsky, R.: Distributed oblivious RAM for secure two-party compu-
tation. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 377–396. Springer,
Heidelberg (2013)

37. Malka, L., Katz, J.: VMCrypt - modular software architecture for scalable secure
computation. Cryptology ePrint Archive, Report 2010/584 (2010). http://eprint.
iacr.org/

38. Mohassel, P., Sadeghian, S., Smart, N.P.: Actively secure private function evalua-
tion. Cryptology ePrint Archive, Report 2014/102 (2014). http://eprint.iacr.org/

39. Mohassel, P., Sadeghian, S.: How to hide circuits in MPC an efficient framework for
private function evaluation. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT
2013. LNCS, vol. 7881, pp. 557–574. Springer, Heidelberg (2013)

40. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)
41. Stefanov, E., van Dijk, M., Shi, E., Fletcher, C.W., Ren, L., Yu, X., Devadas,

S.: Path ORAM: an extremely simple oblivious RAM protocol. In: Sadeghi, A.R.,
Gligor, V.D., Yung, M. (eds.) ACM Conference on Computer and Communications
Security, pp. 299–310. ACM (2013)

42. Waksman, A.: A permutation network. J. ACM 15(1), 159–163 (1968)
43. Yao, A.C.C.: Protocols for secure computations (extended abstract). In: FOCS,

pp. 160–164. IEEE (1982)

http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/

Benchmarking Encrypted Data Storage
in HBase and Cassandra with YCSB

Tim Waage(B) and Lena Wiese

Institute of Computer Science, University of Göttingen,
Goldschmidtstrasse 7, 37077 Göttingen, Germany
{tim.waage,lena.wiese}@uni-goettingen.de

Abstract. Using cloud storage servers to manage large amounts of data
has gained increased interest due to their advantages (like availability and
scalability). A major disadvantage of cloud storage providers, however,
is their lack of security features. In this article we analyze a cloud storage
setting where confidentiality of outsourced data is maintained by letting
the client encrypt all data records before sending them to the cloud stor-
age. Our main focus is on benchmarking and quantifying the performance
loss that such a cloud storage system incurs due to encrypted storage.
We present results based on a modification of the Yahoo! Cloud Serving
Benchmark using the AES implementation of the Bouncy Castle Java
Cryptography Provider for the encryption and decryption steps. The
results show that for single read and write operations the performance
loss is acceptable (even for stronger encryption with 256 bit keylength)
while for range scans the impact can be quite severe.

Keywords: YCSB · Encrypted data storage · Benchmarking · Cassan-
dra · HBase

1 Introduction

Cloud computing has been devised as an alternative to intra-company data
processing by outsourcing administration tasks to cloud service providers. Indi-
vidual users take advantage of external processing resources, too, to store and
share data. Cloud service providers might in particular offer storage space which
can be booked flexibly on demand. The basic application setting we consider in
this paper is using cloud storage servers for larger data records to relieve data
owners from the storage burden.

One of the main obstacles of a wider adoption of cloud storage is its lack
of security. Usually no functionality is provided to ensure confidentiality of the
data stored in the cloud. Confidentiality can be endangered by administrators of
the cloud storage provider, by malicious intruders or even by other users of the
data store. Our main security target is to ensure confidentiality of the externally
stored data record against any illegitimate read accesses. That is, we assume a
semihonest behavior of attackers that are curious about the content of the stored

c© Springer International Publishing Switzerland 2015
F. Cuppens et al. (Eds.): FPS 2014, LNCS 8930, pp. 311–325, 2015.
DOI: 10.1007/978-3-319-17040-4 20

312 T. Waage and L. Wiese

records. To achieve protection against these attackers, we provide the data owner
with a symmetric cryptographic key that is used to encrypt any outgoing data
and decryption only takes place at the data owner site. This symmetric key must
be secured at the data owner site.

We assume that attackers do not further interfere with the stored data. In
particular, the data store should return the correct records to a client request.
Malicious attacks like manipulation of the encrypted data is hence in general
still possible – but provided that the employed encryption scheme is secure,
manipulation will result in arbitrary distortion of data such that they no longer
can be decrypted.

In this paper, we focus on benchmarking this form of encrypted data storage
with one symmetric encryption key. The performance results will be obtained
with the Yahoo! Cloud Serving Benchmark (YCSB; see [1]). Encryption will
be executed by the Java Cryptography Provider offered by the Legion of the
Bouncy Castle [2]. The benchmarking results presented in this paper are part
of a larger environment where index-based keyword search will be supported as
follows: Having a short synopsis of a longer data record (a summary, or simply
a list of tags or keywords for the content of the document), and the large record
itself, we produce a small clear text index (which can easily be stored at the
owner’s computer); however the actual record will be stored remotely in a data
store hosted by some cloud storage provider as shown in Fig. 1.

owner

index on
synopsis

owner site:
trusted

server site:
untrusted

server

keyword

search

row-key-based

access
record

Fig. 1. Data outsourcing with keyword search

In order to comply with the confidentiality requirement, all data leaving the
owner site (for being stored at the cloud server) are encrypted. The client is
responsible for keeping both the encryption key and the keyword index secret
at his own trusted site as shown in Fig. 2. After retrieving data from the cloud
server, the client has to decrypt the data before processing them.

In this paper we make the following contributions:

– We compare the performance of two data stores (HBase and Cassandra) in
both the encrypted and the non-encrypted case in a single-server environment.

– We present three tests of the data stores using a modification of the Yahoo!
Cloud Serving Benchmark (YCSB) to compare the throughput and latency of
the system with and without the encryption system.

Benchmarking Encrypted Data Storage in HBase and Cassandra with YCSB 313

owner

index on
synopsis

owner site:
trusted

server site:
untrusted

server

keyword

search

row-key-based

access

encrypted
record

AES key

Fig. 2. Data outsourcing with encryption and confidential index

– The tests executed analyze the two systems when (1) increasing the num-
ber of parallel worker threads, (2) increasing the target throughput and (3)
increasing the total number of operations.

1.1 Organization of the Article

This article is organized as follows: Sect. 2 describes the main features of the
tested data stores. Section 3 introduces the Bouncy Castle Java Cryptography
Provider as well as the encryption primitives used in our settings. In Sect. 4 the
general architecture of the Yahoo! Cloud Serving Benchmark and its different
workloads are presented. Our modifications to the original YCSB are described
in Sect. 5. Section 6 describes our three test cases and discusses the outcomes.
Related work is surveyed in Sect. 7. Section 8 concludes the paper with a sum-
mary of our results and briefly discusses options for future work.

2 The Data Stores

The Yahoo! Cloud Serving benchmark can be considered as a test environment
for key-value stores because accesses are only done by row key (that is, the key
identifying an individual record in the data store). Key-value stores have been
conjectured to be good candidates when storing big data. Most of them were
created as part of Web 2.0 services. From an abstract point of view, they expose
a very simple interface consisting of the three operations: put, get and delete.

Because the retrieval and storage operations of a key-value store are so sim-
ple, most key-value stores do not have to bother with transactions, isolation of
concurrent accesses or complex combinations (like joins) of values. However, in
a multi-master setting, several clients can concurrently write to different servers
and in this case the key-value store has to provide a strategy for conflict resolu-
tion (for example, using vector clocks).

Where key-value stores excel is their distribution features. Basing on the
background of research done for distributed hash tables, data in key-value stores
can be flexibly partitioned and automatically replicated among several indepen-
dent (shared-nothing) servers. Hence, key-value stores are popular when it comes
to fast and parallel processing of large amounts of non-interlinked data records.

314 T. Waage and L. Wiese

Typically for the so-called NoSQL data stores most key-value stores also
share a lack of certain security features, for example they do not offer user, role
or access rights management. It is assumed that a frontend (for example, the
cloud storage interface) offers the appropriate authentication and authorization
features before letting users access the storage backend. Hence, there is no extra
level of protection and a break-in in the frontend will leave the entire data store
more vulnerable to attacks than a database product offering more sophisticated
user management. A certain level of security could still be achieved by storing the
data in an encrypted form, but both systems do not have any native mechanisms
for providing encryption. The scope of this article is the examination of the
performance impact, if such an additional encryption/decryption step is added.

In our work we focus on Cassandra [3,4] and HBase [5,6], which share a
couple of commonalities. Both can be considered as key-value stores as well
as column family stores (sometimes also called table stores, extensible record
stores or wide column stores). They offer high availability by distributing and
replicating data. Both are implemented in the Java programming language.
A common feature of these systems is their storage organization in log-structured
merge trees which implement an append-only storage: in-memory tables store the
most recent writes to the system; once these tables are flushed to disk, no data
in these tables will ever be modified again (they are immutable). The only mod-
ification that is taking place is merging several flushed tables into larger ones –
this process is called compaction.

Despite the similarities of Cassandra and HBase there are fundamental differ-
ences in their design. Cassandra follows a strictly symmetric peer-to-peer con-
cept using the Gossip protocol for coordination purposes, while HBase relies
on a master-slave structure. Thus Cassandra runs in a single Java process per
node and can make use of the local file system, while HBase needs the database
process per node itself, a properly configured Hadoop Distributed File System
(HDFS) and a Zookeeper system in order to manage different HBase processes.
That means concerning the CAP Theorem [7,8] Cassandra offers availability and
partition-tolerance, while HBase is designed for consistency and availability.

3 Java Cryptography API and the Bouncy Castle
Provider

In the Java programming language, the Java Cryptography API (JCA) provides
the basic architecture when using cryptographic algorithms; it specifies the inter-
faces with which cryptographic algorithms can be used in a Java program. The
actual implementations are then provided by so-called cryptography providers.
The Legion of the Bouncy Castle package for Java implements of most of the
interfaces defined in the JCA – in particular, it implements the Java Cryptog-
raphy Provider class and hence smoothly integrates with the JCA. The Bouncy
Castle provider offers several encryption and decryption routines including the
Advanced Encryption Standard (AES). AES is a symmetric encryption algo-
rithm. It uses the Rijndael cipher with a block size of 128 bit. Possible key sizes

Benchmarking Encrypted Data Storage in HBase and Cassandra with YCSB 315

are 128, 192 and 256 bit. As it turned out in various tests that we conducted
the Legion of the Bouncy Castle package is the fastest choice of all cryptography
providers that offer at least the same flexibility as the standard Java Cryptog-
raphy Extension (SunJCE). In particular it also provides AES encryption in
cipher feedback mode (CFB), which is important for our future work (e.g. when
implementing searchable encryption with flexible word lengths [9]).

In our experiments we employ AES in cipher block chaining (CBC) mode
using PKCS7 padding – as provided by the Bouncy Castle provider; other modes
can be configured on demand. CBC mode produces a chain of ciphertext blocks
by interlinking each block with its predecessor in an XOR operation. More pre-
cisely, the initial plain text block is XORed with an initialization vector; the
output is encrypted with the AES key. Subsequent plain text blocks are XORed
with the encrypted text from the previous block; the output is encrypted with
the key. Block cipher algorithms require their input to be a multiple of the block
size. Since this is not the case for the lengths of keys, field names and values
in YCSB’s output (see Sect. 5 for details), we use PKCS7 padding [10], which
allows any block size from 2 to 255 bytes.

For decryption, the initial cipher text block is decrypted with the key, and the
output is XORed with the initialization vector. Subsequent cipher text blocks
are first decrypted with the key; the output is then XORed with the cipher text
from the previous block to result in a plaintext block.

4 YCSB Benchmark

The Yahoo! Cloud Serving Benchmark (YCSB) is a framework for evaluating
the performance of different key-value stores. It comes with the Core Package,
consisting of six workloads. Each workload is a specific mix of read and write
operations, using different data sizes and request/popularity distributions in
order to simulate certain scenarios. Besides those provided workloads there are
two ways of creating own custom workloads. On the one hand one can modify
the existing Core Package by changing the values in the workload’s parameter
file. On the other hand it is possible to extend the com.yahoo.ycsb. Workload
class and write new code for interacting with different databases. In this work
we modify the provided parameter files and introduce some new parameters in
order to deal with the aspects of encryption. Thus, in contrast to the original
work we added parameters for example for turning the encryption on/off and
for specifying encryption key lengths.

A workload in YCSB runs in two phases. Phase one is the loading phase that
fills the database with records. Every record has a name, also referred to as the
record’s primary key, which is a string like “userxxx”, where xxx is a random
number. Such a record contains a set of 〈field name, value〉 pairs. Thereby field
name is a string like “fieldxxx”, where xxx again is a random number and value
is a random String. For our tests we leave the defaults unchanged, which leads
to 100 records, each containing ten 〈field name, value〉-pairs, where every value
has a length of 100 bytes. While YCSB has been used for a performance eval-
uation of Cassandra [11], there are no workloads on real-world datasets readily

316 T. Waage and L. Wiese

available (in both Cassandra and HBase dialects) that would allow for a direct
performance comparison. The second phase is the transaction phase in which the
workload’s specified insert/update/read/scan operations are actually executed.

In this work we use the six workloads of the Core Package, because they
already give a good impression of the performance aspects we want to examine.
Their characteristics are as follows:

– Workload A is a 50/50 mix of read and write operations.
– Workload B focuses heavily on reading and has only a small amount of writing.
– Workload C even only utilizes read operations.
– Workload D inserts a specified number of records and focuses on reading the

most recently added ones preferably.
– Workload E is the only core workload not dealing with individual records, but

with short ranges of records.
– Workload F combines read and write operations in the way that records are

read, modified and then written back into the database.

Reference [12] gives examples for real world applications.
As it turned out, in the majority of examined cases the results for workloads

A, B, C, D and F are always very similar in terms of overall throughput, as well
as read and write latency, when the recommended order of workloads is obeyed.
Only workload E appears to have different characteristics. Thus for the sake of
simplicity and scope of this article, we narrow the analysis of the results down
to workload A (as representative of the workloads A, B, C, D and F) for making
statements on single read/write operations, as well as workload E for making
statements on range queries.

5 Running YCSB on Encrypted Data

The necessary changes to run YCSB on encrypted data are as follows.
We added a new class that encapsulates all methods for encrypting and

decrypting byte arrays and Strings. As mentioned earlier that class utilizes the
Bouncy Castle Provider. One symmetric AES key is generated that is used
throughout each run of the workload for encryption and decryption of all stored
and retrieved records. A Cipher object is created (and initialized) that executes
the block-wise encryption or decryption using CBC mode and PKCS7-padding
by calling Cipher.getInstance("AES/CBC/PKCS7Padding", "BC");

For the load phase we proceed as follows. After the generation of random field
values, we add an encryption step: each generated record key (“userxxx”), field
name (“fieldxxx”) and field value gets encrypted and collected in a HashMap.
A record then consists of a set of such 〈encrypted field name, encrypted value〉
pairs. In the load phase a set of records is finally stored (batch loaded) into
the database. In a similar manner, before an individual record is stored in the
database (for an insertion of a new value or an update of an existing value
during the transaction phase), an encryption step is added. Thus for every point

Benchmarking Encrypted Data Storage in HBase and Cassandra with YCSB 317

in time the database contains only encrypted data, except for the corresponding
timestamps. Since in CBC mode the length of the cipher-text has to be a multiple
of the key length, the database gets slightly bigger compared to its size storing
the same data unencrypted.

For retrieving records from the database the process is straight forward: the
requested record’s primary key gets encrypted and is then used in order to find
the corresponding 〈encrypted field name, encrypted value〉 pairs for decryption.

6 Results

We performed three tests in order to examine the impact of different parameters
on the performance of Cassandra and HBase. In every scenario measurements
are taken with no encryption, as well as with AES encryption using key lengths
of 128, 192 and 256 bits. For every test an analysis of the overall throughput,
average read and write latencies is given for workload A (single read/write oper-
ations) and workload E (range queries). The latency overhead in the read case
consists of the time required to encrypt the record’s primary key for lookup
purposes, retrieve the ciphertexts of increased length from the database and
the additional decryption step of field name and value. The latency overhead
in the write case consists of the encryption step as well as the additional time
required to store the encrypted data of increased length (compared to non-
encrypted data). All tests measure individual read/scan/insert/update calls to
the database. We conducted our measurements in a single-server environment,
which means the database’s different replication strategies can not have any
distorting effect. The database server is equipped with an Intel Core i7-4600U
CPU (Haswell) @ 2.10 GHz (4 Cores), 8 GB DDR3 RAM and a Samsung PM851
256 GB SSD.

6.1 Test 1: Increasing Number of Parallel Worker Threads

Per default the YCSB client uses a single worker thread for communicating with
the database. However it is possible to specify an arbitrary number of threads in
order to put more load against the database and to simulate how several clients
interact with the database simultaneously. Figures 3 (Cassandra) and 4 (HBase)
show the performance impact, if the number of threads is increased to two, four
and finally eight threads. However the total number of operations remains fixed
at 30000, since all threads share the same operation counter.

As can be seen the number of worker threads has no major impact, neither
on the overall throughput, nor on read and write latencies, whether encryption
is enabled or not. The results are basically constant. An exception appears to be
the read latency for single read/write operations, being slightly lower when per-
forming on two or four threads. The AES encryption key length has no significant
impact in all cases.

318 T. Waage and L. Wiese

Fig. 3. Test 1: Cassandra - Increasing the number of parallel worker threads

6.2 Test 2: Increasing the Target Number of Operations per Second

Usually the YCSB client tries to do as many operations as possible, but the num-
ber of operations per second can be throttled in order to perform latency tests.
If a target parameter is specified the YCSB client executes 1-ms sleep operations
to reduce the throughput accurately until the target throughput is reached. Dif-
ferent target throughputs may result in better or worse latency results.

Figures 5 and 6 show that enabling encryption leads much earlier to a point,
where the databases are saturated and the overall throughput stops increasing.
When performing range queries this point is reached very fast compared to
working with single read/write operations. For both, read- and write-latencies,
can be stated that increasing the targeted number of operations results in lower
latencies up to a certain level, when single read/write operations are performed,

Benchmarking Encrypted Data Storage in HBase and Cassandra with YCSB 319

Fig. 4. Test 1: HBase - Increasing the number of parallel worker threads

but no impact can be observed on range queries. Here only HBase shows a sudden
increase of write latency, when encryption is enabled and the targeted number
of operations exceeds a certain level. As already observed in the first test the
length of the AES key does not make any significant difference.

6.3 Test 3: Increasing the Number of Operations

The total number of operations per transaction phase can be increased in order
to examine the databases performance when it comes to larger amounts of oper-
ations.

The results are presented in Figs. 7 and 8. In both databases increasing the
number of operations leads to a higher overall throughput up to a certain level

320 T. Waage and L. Wiese

Fig. 5. Test 2: Cassandra - Throttle the target number of operations per second

for unencrypted and encrypted operation, except for range queries, when encryp-
tion is enabled. For single read/write operations a higher number of operations
results in less read/write latency. This effect is even stronger, when encryption
is enabled. The same is true for write latencies, when it comes to range queries,
while read latencies remain on a constant level.

6.4 General Observations

It can be stated that turning on encryption reduces the overall throughput down
to approximately 40 % on average for single read/write operations and only 10 %
when it comes to range scans. The chosen AES key length has almost no impact,
the only noticeable difference occurs in read/write latencies in range queries.
With encryption enabled, read latencies are 2–3x higher on average for single

Benchmarking Encrypted Data Storage in HBase and Cassandra with YCSB 321

Fig. 6. Test 2: HBase - Throttle the target number of operations per second

read/write operations, even up to 10–12x higher for range queries. However this
effect is not so strong for write latencies, which are only 2x higher in every
scenario, except for range queries with a higher number of operations, where
they can be up to 4x higher. Thus it can be stated that enabling encryption
increases latency for read operations more than for write operations.

However the number of parallel worker threads seems to have no consequences
for the databases performances. Targeting a higher number of operations per
second slightly decreases read/write latencies to a certain point in all cases,
except for write latencies in range queries with encryption enabled. Compar-
ing the two databases Cassandra and HBase themselves, it can be stated that
Casandra’s overall throughput is generally higher in every scenario, in most
cases by approximately 50 % on average. As mentioned earlier enabling encryp-
tion slows down both databases nearly equally. Concerning read/write latencies,

322 T. Waage and L. Wiese

Fig. 7. Test 3: Cassandra - Increasing the total number of operations

it can be observed that on the one hand Cassandra’s latencies are lower for read
operations. On the other hand latencies of HBase are lower when it comes to
write operations. This is true for every tested scenario.

The effect that latency is reduced (when increasing the target throughput or
the operation count) has also been observed in [13]. Their analysis revealed that
this effect is owed to increased amount of compactions (see Sect. 2) for smaller
operation count.

7 Related Work

The original YCSB description can be found in [1]. There, the different workloads
are described in detail. The article presents benchmark results for HBase and

Benchmarking Encrypted Data Storage in HBase and Cassandra with YCSB 323

Fig. 8. Test 3: HBase - Increasing the total number of operations

Cassandra (among others) – with the overall result that Cassandra had the best
throughput. Elasticity of the systems is tested by adding new servers at runtime.

The so-called YCSB++ benchmark is presented in [13] and used to analyze
HBase and Accumulo. The benchmark extends the original YCSB benchmark
for example to support real multi-client accesses instead of only providing the
option to run multiple worker threads. Its focus lies on measuring consistency;
from a security perspective, it analyzes the performance of Accumulos cell-level
access control lists for read accesses. No encryption is considered there.

Reference [14] pinpoint vulnerabilities in the Cassandra gossip protocol that
may reduce availability by introducing zombie or ghost nodes. Reference [15] ana-
lyze other security weaknesses in Cassandra. Hence appropriate security mea-
sures should be taken already at the client side in order to not expose sensitive
data to the database server that might fall victim to attacks due to weaknesses
in the database implementation.

324 T. Waage and L. Wiese

8 Conclusion and Future Work

We examined the performance impact of adding an encryption/decryption step
to the two popular key-value stores Cassandra and HBase using YCSB by pre-
senting the impact of different runtime parameters. We showed that enabling
encryption slows the entire system down to 10–40% of its original throughput
capacity. The consequences for the system’s read/write latency reach from almost
no impact (e.g. Cassandra’s write latency for single read/write operations) to a
major increase of latency up to 1000–1500% (e.g. read latencies in general for
range queries).

Conclusively, it can be said that there is indeed a price to pay in terms
of increased latency when applying encryption and decryption to data in the
YCSB workloads. However with our settings (with Bouncy Castle as the Java
Cryptography Provider) using a stronger AES encryption with longer key length
does not incur more overhead than using weaker encryption with shorter key
length.

Future work can extend these results as follows. We conducted our exper-
iments in a single-server environment in order to avoid any impact of the dif-
ferent replication strategies used by Cassandra and HBase. However since both
are designed to be used in multi-server environments as well, further tests are
necessary. Moreover YCSB offers a lot of additional options that can be used for
further analysis. Interesting is a modification of the value field length as well as of
the different read/scan/update/insert proportions. Furthermore there are many
more cloud database architectures besides Cassandra and HBase with different
design decisions available for testing. Another important aspect is the impact
of different cryptographic systems, both symmetric (for example Blowfish) or
asymmetric (for example RSA). As another field of research, fine-grained cryp-
tographic access control can be implemented by more advanced key management
(for example, using key hierarchies for different users [16]).

With regard to support for keyword search, an appropriate indexing program
(for example, SOLR or ElasticSearch) shall be employed to obtain the confiden-
tial keyword index on the client site. Further benchmarking can then quantify
the performance loss for this kind of advanced search-based interaction (than
merely row-key-based access).

Acknowledgements. This work was partially funded by the DFG under grant num-
ber WI 4086/2-1.

References

1. Cooper, B.F., Silberstein, A., Tam, E., Ramakrishnan, R., Sears, R.: Benchmarking
cloud serving systems with YCSB. In: Proceedings of the 1st ACM Symposium on
Cloud Computing, pp. 143–154. ACM (2010)

2. The Legion of the Bouncy Castle. http://bouncycastle.org/
3. Lakshman, A., Malik, P.: Cassandra: a decentralized structured storage system.

ACM SIGOPS Operating Syst. Rev. 44(2), 35–40 (2010)

http://bouncycastle.org/

Benchmarking Encrypted Data Storage in HBase and Cassandra with YCSB 325

4. The Apache Software Foundation. http://cassandra.apache.org
5. Borthakur, D., Gray, J., Sarma, J.S., Muthukkaruppan, K., Spiegelberg, N., Kuang,

H., Ranganathan, K., Molkov, D., Menon, A., Rash, S., et al.: Apache hadoop goes
realtime at facebook. In: Proceedings of the 2011 ACM SIGMOD International
Conference on Management of Data, pp. 1071–1080. ACM (2011)

6. The Apache Software Foundation. http://hbase.apache.org
7. Brewer, E.A.: Towards robust distributed systems. In: PODC, p. 7 (2000)
8. Brewer, E.: A certain freedom: thoughts on the cap theorem. In: Proceedings of the

29th ACM SIGACT-SIGOPS Symposium on Principles of Distributed Computing,
p. 335. ACM (2010)

9. Song, D.X., Wagner, D., Perrig, A.: Practical techniques for searches on encrypted
data. In: Proceedings of the 2000 IEEE Symposium on Security and Privacy, S&P
2000, pp. 44–55. IEEE (2000)

10. Kaliski, B.: Rfc 2315: Pkcs# 7: Cryptographic message syntax. Request for Com-
ments (RFC) 2315 (1998)

11. Dede, E., Sendir, B., Kuzlu, P., Hartog, J., Govindaraju, M.: An evaluation of
cassandra for hadoop. In: 2013 IEEE Sixth International Conference on Cloud
Computing (CLOUD), pp. 494–501. IEEE (2013)

12. Cooper, B.F.: https://github.com/brianfrankcooper/YCSB/wiki/Core-Workloads/
13. Patil, S., Polte, M., Ren, K., Tantisiriroj, W., Xiao, L., López, J., Gibson, G., Fuchs,

A., Rinaldi, B.: Ycsb++: benchmarking and performance debugging advanced fea-
tures in scalable table stores. In: Proceedings of the 2nd ACM Symposium on
Cloud Computing, pp. 9:1–9:14. ACM (2011)

14. Aniello, L., Bonomi, S., Breno, M., Baldoni, R.: Assessing data availability of
cassandra in the presence of non-accurate membership. In: Proceedings of the 2nd
International Workshop on Dependability Issues in Cloud Computing, pp. 2:1–2:6.
ACM (2013)

15. Okman, L., Gal-Oz, N., Gonen, Y., Gudes, E., Abramov, J.: Security issues in
nosql databases. In: 10th International Conference on Trust, Security and Privacy
in Computing and Communications (TrustCom), pp. 541–547. IEEE (2011)

16. Zhu, Y., Ahn, G.J., Hu, H., Ma, D., Wang, S.: Role-based cryptosystem: a new
cryptographic RBAC system based on role-key hierarchy. IEEE Trans. Inf. Foren-
sics Secur. 8(12), 2138–2153 (2013)

http://cassandra.apache.org
http://hbase.apache.org
https://github.com/brianfrankcooper/YCSB/wiki/Core-Workloads/

Short Papers

Data Confirmation for Botnet Traffic Analysis

Fariba Haddadi(B) and A. Nur Zincir-Heywood

Faculty of Computer Science, Dalhousie University, Halifax, NS, Canada
{haddadi,zincir}@cs.dal.ca

Abstract. In this paper, we propose a systematic approach to gener-
ate botnet traffic. Given the lack of benchmarking botnet traffic data,
we anticipate that such an endeavour will be beneficial to the research
community. To this end, we employ the proposed approach to generate
the communication phase of the Zeus and Citadel botnet traffic as a
case study. We evaluate the characteristics of the generated data against
the characteristics of a sandbox Zeus botnet, as well as the Zeus and
Citadel botnet captures in the wild provided by NETRESEC and Snort.
Our analysis confirms that the generated data is comparable to the data
captured in the wild.

Keywords: Botnet traffic analysis · Traffic generation and evaluation

1 Introduction

In the world of fast growing Internet having a secure infrastructure is the pri-
mary need to protect users’ identity and information. Botnets- among various
types of malware- are recognized as one of the main threats against cyber security.
A botnet is a set of compromised hosts that are under the remote control of a bot-
master. To detect botnets, various detection mechanisms have been proposed by
researchers where many rely on network traffic behaviour analysis. Some focus on
specific types of botnets while others attempt to build general models. However,
in all cases, the first challenge, is to obtain realistic data that represents botnets
traffic (behaviour). Due to the malicious nature of such data, there are very few
publicly available data sets in the field. Therefore, different approaches have been
explored by the researchers to obtain the necessary data for their research pur-
poses. These approaches include (but not limited to): (i) Running botnet binaries
(that are publicly available or modifying such binaries) in sandbox environments
and capturing the traffic [1–4]; (ii) Obtaining captured Honeynet traffic [5,6]; or
(iii) Obtaining traffic from a network operator or a security company [7]. The first
approach employs publicly available botnet binaries. This implies that any traffic
obtained represents the old behaviours because only older versions of such bina-
ries are publicly available. The second approach employs honeynets. Even though
this method can catch newer botnet behaviours, it is also challenging to set up
honeynets that can simulate real applications in normal behaviour. So there is
no guarantee on the quality of the traffic attracted to the honeynet. The third

c© Springer International Publishing Switzerland 2015
F. Cuppens et al. (Eds.): FPS 2014, LNCS 8930, pp. 329–336, 2015.
DOI: 10.1007/978-3-319-17040-4 21

330 F. Haddadi and A.N. Zincir-Heywood

approach is the only case where most up to date behaviours can be analyzed by
obtaining data from network companies. However, this type of data has privacy
issues so such data might not be made public for further benchmarking and eval-
uation purposes. We anticipate that if a systematic approach can be found, then
potentially publicly available benchmarking data sets can be generated without
such problems. Thus, in this work, we propose a systematic approach to gener-
ate botnet traffic data representing the connection phase of botnet traffic. In this
phase, the infected host intends to locate the C&C server and starts a connec-
tion with the server. Once we generate such data using the proposed approach,
we demonstrate that such an approach could indeed generate realistic behaviours
of the botnet traffic. To this end, we evaluated our approach and confirm that the
data generated represent similar behaviour to the botnet traffic that is captured
in the wild and the botnet traffic that is generated in a sandbox environment
based on publicly available bot binaries. To the best of our knowledge, this is the
first work with such a goal. To achieve our goal, we follow two steps to evaluate
the data after it is generated: (i) Analysis via flow measurements; and (ii) post-
classification analysis via decision tree.

2 Related Work

Gu et al. developed BotMiner based on group behaviour analysis to detect
botnets [5]. They collected the botnet data sets by employing publicly available
botnet binaries as well as using Honeynet data sets. As for the normal traffic,
university campus network traces were employed. Wurzinger et al. proposed an
approach to detect botnets by correlating the commands and responses in the
C&C channels of the monitored network traces [1]. Running a publicly available
bot binary in a controlled environment, they collected the data sets used in this
work. Kirubavathi et al. designed specifically an HTTP-based botnet detection
system using a multilayer Feed-Forward Neural Network [2]. To evaluate the pro-
posed system, botnet binaries were used in the lab. Strayer et al. developed an
IRC botnet detection framework that makes use of classification and clustering
techniques [3]. Again, they captured their data in the lab by running bot bina-
ries. Francois et al. proposed a NetFlow monitoring framework that leverages a
simple host dependency model to track communication patterns and employed
linkage analysis and clustering techniques to identify similar botnet behavioral
patterns [7]. They obtained traffic traces from an Internet operator company.
Zhao et al. investigated a botnet detection approach based on flow intervals [6].
They also employed botnet binaries in the lab and Honeynet project data as for
the normal traces, they used Lawrence Berkeley National Laboratory data sets.
Haddadi et al. designed a machine learning based detection system [8]. Network
traces representing malicious and normal behaviour were generated in the lab
based on botnet and legitimate public data.

Data Confirmation for Botnet Traffic Analysis 331

3 Methodology

A typical advanced botnet has five phases (i.e. lifecycle): (1) the initial infection
phase where exploitation techniques are used to find the vulnerabilities and to
infect the target host, (2) the secondary infection phase where the botnet shell-
code is executed on the victim machine to fetch the image of the bot binary
to install, (3) the connection phase where the bot binary establishes the C&C
channel, (4) the malicious C&C phase in which the established C&C channel
is utilized by the bot master to send the command and (5) the update and
maintenance phase where the botmaster updates the bots when required. It
is known that to enhance their functionality and to avoid detection systems,
botnets tend to use automatic algorithms in different phases of their lifecycle.
Fluxing techniques are one of such methods that botnets use to hide the C&C
servers using automatic Domain Generation Algorithms (DGAs). Citadel and
Zeus are just two of the recent examples of such botnets. A DGA is designed
to periodically generate a large list of domain names. The infected computer
(bot) may locate the C&C server by querying (sending a DNS query to retrieve
the associated IP address) a list of domain names. However, only one of the
domain names from the list is valid at a given time. Once a response is received
for the query, the bot establishes a connection to the C&C server to receive
updates and commands. The list of domain names provided to the bot is large
enough so that blacklisting (blocking) at the firewall level is not straight forward.
Therefore, the domain fluxing technique is highly utilized in current botnets.
Since there are publically available lists of domain names generated by botnet
DGAs, we implemented a systematic approach to generate network traffic using
these botnet domain names to represent the botnet communication during the
connection phase of the botnet lifecycle.

Once the botnet communication traffic is generated, we analyze and evaluate
it against three publicly available botnet traffic data that are captured in the wild
and one botnet binary based traffic data captured in the sandbox environment.
In doing so, our aim is to confirm that our generated traffic is representative of
the publicly available ones and the sandbox ones.

We generate the representative botnet traffic flows using the publicly avail-
able (from legitimate resources) C&C domain name lists. As for generating the
representative legitimate (normal) traffic, we use a legitimate domain name list.
This ensures that both the attack and the normal traffic are generated using the
publically available domain name lists to enable re-engineering of the approach
for benchmarking purposes. For the malicious domain name lists, the two of
the most recent botnets, namely Citadel and Zeus are used. The domain name
lists for these two botnets are obtained from ZeusTracker and DNS-BH project
websites [9,10]. As for the legitimate name list, some of the most frequently
requested domain names from Alexa lists (domain names of the high ranked
web sites) are used [11]. Both the malicious and legitimate behaviour data use
the HTTP protocol as their communication protocol. So, to generate the traffic,
we developed a program to establish HTTP connections with the domain names
from the aforementioned lists. First, this program sends out DNS queries for
the domain names in the lists. If in return it receives a proper DNS response,

332 F. Haddadi and A.N. Zincir-Heywood

Table 1. Data specification

Data set No. of Packets No. of Exported Flows

Alexa (NIMS) 21210 7473

Citadel (NIMS) 79516 5772

Citadel (NETRESEC) 15239 226

Zeus-1 (NIMS) 108947 14884

Zeus (NETRESEC) 7453 361

Zeus (Snort) 6995 145

Zeus-2 (NIMS) 32818 874

Table 2. Softflowd feature set

Softflowd Features

Duration Src-AS Dst-AS In-If Out-If Total-Pkt F-Pkt B-Pkt

Total-Byte F-Byte B-Byte Flows ToS Src-ToS Dst-ToS Src-Msk

Dst-Msk FWD Src-Vlan Dst-Vlan bps pps Bpp

this indicates that the domain name is registered and is associated with a valid
IP address. Then, our program attempts to establish an HTTP connection with
that IP address. Hereafter, we will refer to our generated data sets using this
approach as Zeus-1 (NIMS) and Citadel (NIMS) botnet data sets.

In addition, we employed the few botnet traffic data sets available at
NETRESEC [12] and Snort [13] web sites for Zeus and Citadel botnets. Since
many works in the literature employed running publicly botnet binaries in the
lab (sandbox), we also run a Zeus botnet in a controlled environment and cap-
tured the traces [4]. This toolkit is also analyzed and employed in [14]. However,
we could not do the same for the Citadel botnet given that there is no pub-
licly available free kit, to the best of our knowledge. Hereafter, this Zeus data is
referred to as Zeus-2 (NIMS).

4 Evaluation

As a case study, we focus on generating Zeus and Citadel traffic data using our
proposed system. For analyzing the traffic data generated, features are extracted
using IP-flow technology. Specifically, we employ Softflowd [15], which is an open
source tool based on the NetFlow standard [16]. Table 1 presents the number of
captured packets and the corresponding extracted flows for each of the data
sets employed in this work. Table 2 presents the features that are utilized in our
approach.

4.1 First Step–Analysis via Flow Measurements

As a first step, we anticipate that it will be beneficial to analyze the data sets
on some of the most important features (used by other researchers [1,3,4,6]) of

Data Confirmation for Botnet Traffic Analysis 333

a flow. These features are: the flow duration (Duration), the number of bytes
per flow (Total-Byte) and the number of packets per flow (Total-Pkt).

Given the wide range of the HTTP usage on the Internet, most recent bot-
nets employ HTTP protocol to hide their malicious activities among the normal
web traffic. Citadel and Zeus utilize HTTP protocol to communicate with their
bots, too. Thus, to analyze and compare the aforementioned data sets, we filter
out the non-HTTP flows. This way all the background information is removed
from the data and therefore, the data sets can be compared on their fundamental
properties.

The analysis show that the majority of flows durations (96 %, 70 %, 91 % in
Zeus (NIMS), Zeus (Snort) and Zeus (NETRESEC), respectively) are less than
50 s long (placed in the first bucket). However, 20 % of Zeus (Snort) and 67 %
of Zeus-2 (NIMS) flows last longer than the other two Zeus data sets. Zeus-2
(NIMS), Zeus (Snort) and Zeus (NETRESEC) have more flows with higher num-
ber of transmitted packets (30 packets or more) and more bytes, respectively.
We predict that these differences are due to the connection time, because we do
not keep the connection between our system and botnet C&C servers open long.
Basically, we close the connection once this phase of communication is finished.

Moreover, the analysis also shows that the pattern for duration of flows for
the Citadel (NIMS) botnet, is different from the pattern of the duration of the
flows for Citadel (NETRESEC). On the other hand, there is almost no difference
(among the two data sets) between the number of packets and the number of
bytes transmitted per flow. Therefore, we can conclude that the Citadel C&C
connections in NETRESEC data were kept open without any actual client-server
command and response communication. Since keeping a connection open for a
long time is one of the signs of malicious activities, botnets tend to close the
connection when the necessary information is sent/received and open a new con-
nection for the next round when needed. However, a high number of connections
also raises flags for malicious behaviour. Therefore, there is a trade-off between
these two parameters when the botnets aim to hide their malicious activity in
the normal traffic. Thus, in our approach, we decided to keep the communica-
tion duration with the C&C servers as short as possible, because it gives us
a good balance for the aforementioned trade-offs. In summary, the analysis of
the important features of the flows of the generated traffic and the flows of the
traffic captured in the wild seem to be similar except the durations of the flows
as explained above. More detailed analysis and the visualizations can be found
at [17].

4.2 Second Step–Post-classification Analysis via Decision Tree

To further analyze how similar the generated data (by our proposed approach)
is to the data captured in the wild and the data generated in the sandbox, we
employed a post-classification analysis using a decision tree. To this end, we
trained a C4.5 classifier on the proposed data generation approach and tested
the trained model on the botnet data from the NETRESEC and Snort web sites
as well as on the sandbox data. Table 3 presents the results of this step.

334 F. Haddadi and A.N. Zincir-Heywood

Table 3. C4.5 decision tree classification results

Training data set Testing data set DR Botnet Legitimate

TPR FPR TNR FNR

Citadel (NIMS) Citadel (NETRESEC) 100% 100 % 0 % 0% 0 %

Zeus-1 (NIMS) Zeus (Snort) 81% 81 % 0 % 0% 19 %

Zeus-1 (NIMS) Zeus (NETRESEC) 79% 79 % 0 % 0% 21 %

Zeus-1 (NIMS) Zeus-2 (NIMS) 88% 88 % 0 % 0% 12 %

Zeus-1 (NIMS) Zeus-1 (NIMS-unseen) 84% 84 % 0 % 0% 16 %

In traffic classification, two metrics are typically used in order to quantify
the performance of the classifier: Detection Rate (DR) and False Positive Rate
(FPR). In this case, DR reflects the number of botnet flows correctly classified
and is calculated using: DR = TP/(TP+FN); whereas FPR reflects the number
of legitimate flows incorrectly classified as botnet flows. FPR is calculated using:
FPR = FP/(FP + TN). Naturally, a high DR and a low FPR are the most
desirable outcomes. On the other hand, False Negative Rate (FNR) indicates
that botnet flows are classified as legitimate flows, whereas TNR, True Negative
Rate, indicates the correctly classified legitimate flows. As shown in Table 3,
the trained model on NIMS Citadel could detect all of the NETRESEC Citadel
correctly (100 % TP rate).

In this case, our post-classification analysis show that the main features that
the C4.5 classifier employ for the Citadel trained model are: Duration, Total-Pkt,
Total-Byte, bps, pps and Bpp (from Table 2). Moreover, in the first step of our
analysis, duration feature of a flow presented the most discrepancy between the
NIMS botnet data set and the one captured in the wild. However, the classifica-
tion results indicate that this discrepancy does not seem to have a negative effect
on the identification of Citadel botnet behaviour in a given traffic trace. This
might be because of the importance of the other features employed. This implies
that NIMS Citadel data set is similar to the real-life NETRESEC Citadel data
set. Therefore, we can confirm that the proposed approach seems to generate
realistic Citadel botnet traffic.

Table 3 also presents the classification results on the Zeus botnet traffic.
Again, we trained a C4.5 classifier on Zeus-1 (NIMS) data set, which is gen-
erated by the proposed approach. Then, we tested the trained model against
the Zeus-2 (NIMS) and Zeus data sets from Snort and NETRESEC. As the
results indicate, the DRs of the Zeus-2, Snort and NETRESEC data sets vary
between 79 % to 88 %. This is lower than the DR for Citadel, but still a promising
performance1.

To further analyze the generated data by the proposed approach on Zeus
botnet, we run another experiment. Since NIMS Zeus generated traffic was big-
ger than Alexa legitimate data (and therefore had more flows), we only used a

1 Since these test data sets are one class data sets (only malicious), there is no TNR
and FPR.

Data Confirmation for Botnet Traffic Analysis 335

fraction of the Zeus HTTP traffic to build a balanced Zeus-Alexa training data
set for the results presented in Table 3. Hence, we had some unseen Zeus flows
that were not included in the training process. Thus, we also tested the trained
Zeus model on these unseen Zeus flows. As the result shows, we obtained the
DR of 84 %, Table 3. The performance is almost the same as the classification
result when testing the trained model on other data sets such as NETRESEC
and Snort. This seems to indicate the complicated behaviour of Zeus botnet and
confirm that the results are not side effects of the generated data being different
(or unrealistic), but rather the classifier performs the same on both the generated
data and the data captured in the wild for Zeus botnet. This experiment also
indicates that Zeus botnet behaviour is more complicated than Citadel botnet
behaviour. Moreover, it seems to hide in the legitimate HTTP behaviour better
than Citadel could.

In short, our 2-step analysis indicates that the traffic generated using our
proposed approach is valid and comparable to the botnet traffic captured in real
life (Snort and NETRESEC data) as well as the traffic captured in a sandbox
environment (Zeus-2 NIMS). In other words, traffic generated based on the pro-
posed approach can be employed in botnet behaviour analysis for representing
real data. We provide our NIMS data sets for further benchmarking purposes at
the following URL:

https://web.cs.dal.ca/∼haddadi/data-analysis.htm

5 Conclusion

Due to the high reported botnet infection rate and its wide range of illegal activi-
ties, botnets are one of the main threats against the cyber security. One problem
of this field is the availability of public data sets for meaningful benchmarks and
comparisons among the botnet identification systems. In this work, we propose
a systematic approach to generate botnet traffic and analyze its properties
against that of available botnet traffic captures in the field. To this end, we
explore a 2-step analysis. In the first step, we analyzed the data sets using the
main features of the botnet traffic reported in the literature [1,3,6]. The results
of this step show that the data generated by the proposed approach and the data
captured in the wild by NETRESEC and Snort, are not very different in terms of
their main measured features. However, the sandbox traffic data has noticeable
differences (compared to the data captured in the wild) in terms of most of the
measured features. In the second step, we perform a post-classification analysis
on the data sets using the C4.5 classifier. In this step, we train the classifier
with the data generated by the proposed approach, and test the trained model
on the NETRESEC, Snort and the sandbox data sets. The results indicate that
the trained model could classify the unseen data captured in the wild and the
sandbox data with a high DR and a low FPR. This suggests that the botnet data
generated by the proposed approach confirms to the botnet data captured in the
wild or in the sandbox. We anticipate that this can further enable benchmarking
and evaluation efforts in this research area. Future work will explore employing
the proposed traffic generation approach for other botnets.

https://web.cs.dal.ca/~haddadi/data-analysis.htm

336 F. Haddadi and A.N. Zincir-Heywood

Acknowledgments. This research is supported by the Natural Science and Engi-
neering Research Council of Canada (NSERC) grant, and is conducted as part of the
Dalhousie NIMS Lab at https://projects.cs.dal.ca/projectx/.

References

1. Wurzinger, P., Bilge, L., Holz, T., Goebel, J., Kruegel, C., Kirda, E.: Automatically
generating models for botnet detection. In: Backes, M., Ning, P. (eds.) ESORICS
2009. LNCS, vol. 5789, pp. 232–249. Springer, Heidelberg (2009)

2. Kirubavathi Venkatesh, G., Anitha Nadarajan, R.: HTTP botnet detection using
adaptive learning rate multilayer feed-forward neural network. In: Askoxylakis, I.,
Pöhls, H.C., Posegga, J. (eds.) WISTP 2012. LNCS, vol. 7322, pp. 38–48. Springer,
Heidelberg (2012)

3. Strayer, W.T., Lapsely, D., Walsh, R., Livadas, C.: Botnet detection based on
network behavior. Adv. Inf. Secur. 36, 1–24 (2008)

4. Haddadi, F., Runkel, D., Zincir-Heywood, A.N., Heywood, M.I.: On botnet behav-
iour analysis using GP and C4.5. In: GECCO Comp, pp. 1253–1260 (2014)

5. Gu, G., Perdisci, R., Zhang, J., Lee, W.: BotMiner: clustering analysis of network
traffic for protocol- and structure- independent botnet detection. In: 17th USNIX
Security Symposium, pp. 139–154 (2008)

6. Zhao, D., Traore, I., Ghorbani, A., Sayed, B., Saad, S., Lu, W.: Peer to peer botnet
detection based on flow intervals. In: Gritzalis, D., Furnell, S., Theoharidou, M.
(eds.) Information Security and Privacy Research. IFIP Advances in Information
and Communication Technology, vol. 376, pp. 87–102. Springer, Heidelberg (2012)

7. François, J., Wang, S., State, R., Engel, T.: BotTrack: tracking botnets using
netflow and pagerank. In: Domingo-Pascual, J., Manzoni, P., Palazzo, S., Pont,
A., Scoglio, C. (eds.) NETWORKING 2011, Part I. LNCS, vol. 6640, pp. 1–14.
Springer, Heidelberg (2011)

8. Haddadi, F., Morgan, J., Filho, E.G., Zincir-Heywood, A.N.: Botnet behaviour
analysis using IP flows with HTTP filters using classifiers. In: Seventh International
Workshop on Bio and Intelligent Computing, pp. 7–12 (2014)

9. Zeus Tracker. https://zeustracker.abuse.ch/
10. DNS-BH- Malware Domain Blocklist. http://www.malwaredomains.com/
11. Alexa. http://www.alexa.com/topsites
12. Publicly available PCAP files. http://www.netresec.com/?page=PcapFiles
13. Zeus Trojan Analysis. https://labs.snort.org/papers/zeus.html
14. Binsalleeh, H., Ormerod, T., Boukhtouta, A., Sinha, P., Youssef, A., Debbabi, M.,

Wang, L.: On the analysis of the zeus botnet crimeware toolkit. In: Eighth Annual
International Conference on Privacy, Security and Trust, pp. 31–38 (2010)

15. Softflowd project. http://www.mindrot.org/projects/softflowd/
16. Cisco IOS NetFlow. http://www.cisco.com/en/US/products/ps6601/products ios

protocol group home.html
17. Haddadi, F., Zincir-Heywood, A.N.: Data confirmation for botnet traffic analysis.

Technical report (2014). https://www.cs.dal.ca/research/techreports/cs-2014-01

https://projects.cs.dal.ca/projectx/
https://zeustracker.abuse.ch/
http://www.malwaredomains.com/
http://www.alexa.com/topsites
http://www.netresec.com/?page=PcapFiles
https://labs.snort.org/papers/zeus.html
http://www.mindrot.org/projects/softflowd/
http://www.cisco.com/en/US/products/ps6601/products_ios_protocol_group_home.html
http://www.cisco.com/en/US/products/ps6601/products_ios_protocol_group_home.html
https://www.cs.dal.ca/research/techreports/cs-2014-01

Detection of Illegal Control Flow in Android
System: Protecting Private Data Used

by Smartphone Apps

Mariem Graa1,2(B), Nora Cuppens-Boulahia1, Frédéric Cuppens1,
and Ana Cavalli2

1 Telecom-Bretagne, 2 Rue de la Chataigneraie, 35576 Cesson Sévigné, France
{mariem.benabdallah,nora.cuppens,frederic.cuppens}@telecom-bretagne.eu

2 Telecom-SudParis, 9 Rue Charles Fourier, 91000 Evry, France
{mariem.graa,ana.cavalli}@it-sudparis.eu

Abstract. Today, security is a requirement for smartphone operating sys-
tems that are used to store and handle sensitive information. However,
smartphone users usually download third-party applications that can leak
personal data without user authorization. For this reason, the dynamic
taint analysis mechanism is used to control the manipulation of private
data by third-party apps [9]. But this technique does not detect control
flows. In particular, untrusted applications can circumvent Android sys-
tem and get privacy sensitive information through control flows. In this
paper, we propose a hybrid approach that combines static and dynamic
analysis to propagate taint along control dependencies in Android system.
To evaluate the effectiveness of our approach, we analyse 27 free Android
applications. We found that 14 of these applications use control flows to
transfer sensitive data. We successfully detect that 8 of them leaked private
information. Our approach creates 19 % performance overhead that is due
to the propagation of taint in the control flow. By using our approach, it
becomes possible to detect leakage of personal data through control flows.

Keywords: Android system · Smartphones · Dynamic analysis · Static
analysis · Control dependencies · Leakage of sensitive information

1 Introduction

Smartphone operating systems use has been increasing at an accelerated rate
in recent years. Android surpassed 80% market share in the third quarter of
2013 [17] and it is the most targeted OS by the cyber criminals with more than
98% of malware applications [9]. This is due to the prevalence of third party
app stores (48 billion apps have been installed from the Google Play store in
May 2013 [19]). These applications are used to capture, store, manipulate, and
access to data of a sensitive nature in mobile phone. An attacker can launch
control flow attacks to compromise confidentiality of the Android system and
can leak private information without user authorization. In the study presented
c© Springer International Publishing Switzerland 2015
F. Cuppens et al. (Eds.): FPS 2014, LNCS 8930, pp. 337–346, 2015.
DOI: 10.1007/978-3-319-17040-4 22

338 M. Graa et al.

Fig. 1. Implicit flow example.

in the Black Hat conference, Daswani [21] analyzed the live behavior of 10,000
Android applications and showed that more than 800 of them were found to
be leaking personal data to an unauthorized server. Therefore, there is a need
to provide adequate security mechanisms to control the manipulation of private
data by third-party apps. Many mechanisms are used to protect sensitive data
in the Android system, such as the dynamic taint analysis that is implemented
in TaintDroid [9].

The principle of dynamic taint analysis is to “taint” some of the data in a sys-
tem and then propagate the taint to data for tracking the information flow in the
program. Two types of flows are defined: explicit flows such as x = y, where we
observe an explicit transfer of a value from x to y, and implicit flows (control flows)
shown in Fig. 1 were there is no direct transfer of value from a to b, but when the
code is executed, b would obtain the value of a. The dynamic taint analysis mech-
anism does not detect control flows which can cause an under tainting problem
i.e. that some values should be marked as tainted, but are not. The under taint-
ing problem can cause a failure to detect a leak of sensitive information. Thus,
malicious applications can bypass the Android system and get privacy sensitive
information through control flows. In a previous work [12], we have proposed an
approach that combines static and dynamic taint analysis to propagate taint along
control dependencies and to track implicit flows in the Google Android operat-
ing system. Our approach enhances the TaintDroid approach by tracking control
flows in the Android system to solve the under-tainting problem. In this paper,
we present implementation details and experimental results of the proposed app-
roach. We show effectiveness of our approach to propagate taint in the conditional
structures of real Android applications and to detect leakage of sensitive informa-
tion. This paper is organized as follows: Sect. 2 presents a motivating example. We
discuss related work about static and dynamic taint analysis and we analyze exist-
ing solutions to solve the under tainting problem in Sect. 3. Section 4 describes the
proposed approach and the corresponding implementation details. We analyse a
number of Android applications to test the effectiveness of our approach and we
study our approach taint tracking overhead in Sect. 5. Finally, Sect. 6 concludes
with an outline of future work.

2 Motivating Example

An attacker can exploit an indirect control dependencies to leak private data.
Let us consider the control dependence attack shown in Fig. 2. The variable

Detection of Illegal Control Flow in Android System 339

Fig. 2. Control dependence attack

X contains the private data that is the user contact. The attacker tries to get
the user contact name by comparing it with symboles of Ascii table in the second
loop. He stored the character of private data founded in Y . At the end of the loop,
the variable Y contains the correct value of the user contact and it is not tainted
because taint is not propagated in the control flow statement. The attacker
exploits untainted variable that should be tainted (under tainting problem) to
leak private data. Thus, Y is leaked through the network without being detected.
Therefore, an attacker can leak a sensitive information by exploiting control
flows.

3 Related Work

Many security mechanisms are used to protect sensitive data in smartphones.
TaintDroid [9], an extension of the Android mobile-phone used to control in
realtime the manipulation of users personal data by third-party applications.
It implements a dynamic taint tracking and analysis system to track the infor-
mation flow and to detect when sensitive data leaves the system. AppFence
[15] extends Taintdroid to implement enforcement policies. One limit of Taint-
Droid and AppFence approaches is that they cannot propagate taint in control
dependencies. The methods proposed in [5,8,11] statically analyze third party
application code for detecting data leaks. But, these static analyses approaches
cannot capture all runtime configuration. Some approaches combine static and
dynamic analysis to solve the under-tainting problem. BitBlaze [20] presents a
novel fusion of static and dynamic taint analysis techniques to track all infor-
mation flow. DTA++ [16] uses Bitblaze and enhances the dynamic taint analy-
sis to limit the under-tainting problem. However DTA++ is evaluated only on

340 M. Graa et al.

benign applications. Trishul [18] correctly identifies control flow to detect a leak
of sensitive information. Furthermore, these approaches are not implemented in
smartphones application. Fenton [10] defined a Data Mark Machine, an abstract
model, to handle control flows. This model does not take into account the implicit
flow when the branch is not executed. Denning [7] enhances the run time mecha-
nism used by Fenton with a compile time mechanism to solve the under-tainting
problem. Denning inserts updating instructions whether the branch is taken or
not. We draw our inspiration from the Denning approach, but we define formally
a set of taint propagation rules to solve the under-tainting problem. In [12], we
propose a hybrid approach that tracks control flows in smartphones. We define
a set of formal propagation rules to solve the under-tainting problem. We prove
the correctness and completeness of these rules and we propose a correct and
complete algorithm to solve the under tainting problem [13]. In [14], we show
that our approach can resist to code obfuscation attacks based on control depen-
dencies in the Android system using the taint propagation rules. But, we do not
evaluate the overhead and effectiveness of our approach and do not test a real
Android applications. We provide test exprimental results and we evaluate the
overhead and the false positives of our approach. We show that it successfully
detects sensitive information leakage by untrusted Android applications.

4 Approach Overview and Implementation

Our objective is to detect private information leakage by untrusted smartphone
applications exploiting implicit flows. We control the manipulation of private
data by third party application in realtime.

Our approach consists of two main components: the StaticAnalysis compo-
nent and the DynamicAnalysis component (see Fig. 3). We implement our pro-
posed approach in the TaintDroid operating system. We add a StaticAnalysis
component in the Dalvik virtual machine verifier that statically analyzes instruc-
tions of third party application Dex code at load time. Also, we modify the Dalvik
virtual machine interpreter to integrate the DynamicAnalysis component.

Fig. 3. Our Approach Architecture

Detection of Illegal Control Flow in Android System 341

We implement the two additional rules using native methods that define the
taint propagation.

4.1 Static Analysis Component

In this component, we check the instructions of methods to create the control
flow graph (CFG). A CFG is composed of basic blocks and edges. The basic
blocks represent nodes of the graph. The directed edges represent jumps in the
control flow. For each control instruction, we insert a BasicBlock at the end of
the basic blocks list. Then, we specify the target of basic blocks. We perform
the post dominator analysis (A node v is post-dominated by a node w in the
control flow graph G if every path from v to Exit, not including v, contains w)
on the control flow graph to determine the flow of the condition dependencies
from different blocks. After this, we allocate a BitmapBits for tracking condition
dependency. We store the control flow graph using the DOT language of graphviz
tool [4] in the data directory of the smartphone.

4.2 Dynamic Analysis Component

The dynamic analysis is performed at run time by instrumenting the Dalvik
virtual machine interpreter. We assign a context taint to each basic block. The
context taint includes the taint of the condition on which the block depends. We
compare arguments in the condition using the following instruction: res cmp=
((s4) GET REGISTER(vsrc1) cmp (s4) GET REGISTER(vsrc2)). Based on
the comparison result, we verify wether the branch is taken or not. We Combine
the taints of different variables of the condition as follows: SET REGISTER
TAINT (vdst,(GET REGISTER TAINT (vsrc1)|GET REGISTER TAINT
(vsrc2))) to obtain the Context Taint. If res cmp is not null then the branch is
not taken. Thus, we adjust the ordinal counter to point to the first instruction of
the branch by using the function ADJUST PC(2). Otherwise, it is the second
branch (else) which is not taken then we adjust the ordinal counter to point
to the first instruction in this branch by using the function ADJUST PC(br)
where br represents the branch pointer. We instrument different instructions in
the interpreter to handle conditional statements. For each instruction, we taint
the variable to which we associate a value (destination register). In the case
of for and while loops, we process by the same way but we test whether the
condition is still true or not in each iteration. We make a special treatment for
Switch instructions. We deal with all case statements and all instructions which
are defined inside Switch instructions. Note that, we only taint variables and
do not modify their values. Once we handle all not taken branches, we restore
the ordinal counter to treat the taken branches and we assign taints to modified
variables in this branch. We make a special exception handling to avoid leaking
information. If the type of exception that occurred is listed in a catch block, the
exception is passed to the catch block. So, an edge is added in the CFG from
the throw statement to the catch block to indicate that the throw statement
will transfer control to the appropriate catch block. If an exception occurs, the

342 M. Graa et al.

current context taint and the exception’s taint are stored. The variables assigned
in any of the catch blocks will be tainted depending on the exception’s taint.

5 Evaluation

In this section, we analyse a number of Android applications to test the effec-
tiveness of our approach. Then, we study our taint tracking approach overhead
using standard benchmarks. We evaluate the false positives that could occur
using our approach. We use a Nexus One mobile device running Android OS
version 2.3 enhanced to track implicit flows.

5.1 Effectiveness

To evaluate the effectiveness of our approach, we analyse 27 free Android appli-
cations downloaded from the Android Market [1] that manipulated private data.
As shown in Table 1, five applications require permissions for contacts and five
applications require permissions for camera at install time.

Most of these applications access to locations and phones identity. Also, our
analysis showed that these permissions are acquired by the implicit or explicit
consent of the user. For example, in the weather application, when the user
selects the option “use my location”, she gives permission to the application to
use and to send this information to the weather server. We found that 14 of these
25 analyzed Android applications (marked with * in the Table 1) leak private
information:

– The IMEI numbers that identify a specific cell phone on a network is one of
the information that is transmitted by 11 applications. Nine of them do not
present an End User License Agreement (EULA).

– Two applications transmitted the device’s phone number, the IMSI and the
ICC-ID number to their server.

Table 1. Third party applications grouped by the requested permissions (L: location,
Ca: camera, Co: contacts, P: phone state)

Third party applications Permissions

L Ca Co P

The Weather Channel∗; Cestos; Solitaire; Babble; Manga
Browser (5)

x

Bump; Traffic Jam; Find It∗; Hearts; Blackjack; Alchemy;
Horoscope∗; Bubble Burst Free; Wisdom Quotes Lite∗;
Paper Toss∗; Classic Simon Free; Astrid∗ (12)

x x

Layar∗; Knocking∗; Coupons∗; Trapster∗; ProBasketBall (5) x x x

Wertago∗; Dastelefonbuch∗; RingTones∗; Yellow Pages∗;
Contact Analyser (5)

x x x

Detection of Illegal Control Flow in Android System 343

Table 2. Third party applications used control flows

Category Application name Leaked data

Contact and Phone Identity Wertago x

Dastelefonbuch x

Yellow Pages x

Camera Knocking x

ProBasketBall

Location and Phone Identity The Weather Channel x

Cestos

Classic Simon Free

Bubble Burst Free

Bump

Traffic Jam

Horoscope x

Paper Toss x

Find It x

– The location information is leaked by 15 third-party applications to adver-
tisement servers. These applications do not require implicit or explicit user
consent. Just two applications require an EULA.

We use dex2jar tool [2] to translate dex files of different applications to jar
files. Then, we use jd-gui [3] to obtain the source code that will be analysed.
As shown in Table 2, we found that 14 of tested Android applications listed by
types of accessed sensitive data use control flows to transfer private information.
Eight of them leaked private data. Sensitive data is used in the if , for and while
control flow instructions. We verify that variables to which a value is assigned
in these instructions and that depend on a condition containing private data are
not tainted using TaintDroid. Our approach has succesfully propagated taint in
these control instructions and detected leakage of tainted sensitive data that is
reported in the alert messages.

5.2 Performance

In this part of the paper, we study our taint tracking approach overhead. The
static analysis is performed at load and verification time. At load time, our
approach adds 33% overhead with respect to the unmodified system. At verifi-
cation and optimization time, our approach adds 27% overhead with respect to
the unmodified system. This time increase is due to the verification of method
instructions and the construction of the control flow graphs in the static analy-
sis phase. We install the CaffeineMark application [6] in our Nexus One mobile
device to determine the java microbenchmark. Note that the CaffeineMark scores
roughly correlate with the number of Java instructions executed per second and

344 M. Graa et al.

Fig. 4. Microbenchmark of java overhead

do not depend significantly on the amount of memory in the system or on the
speed of a computers disk drives or internet connection [6].

Figure 4 presents the execution time results of a Java microbenchmark. We
propagate taint in the conditional branches especially in the loop branches and
we add instructions in the processor to solve the under tainting problem. Then,
the loop benchmark in our approach presents the greatest overhead. We taint
results of arithmetic operations in explicit and control flows. Thus, the arith-
metic operations present the greatest overhead. The string benchmark difference
between unmodified Android system and our approach is due to the additional
memory required in the string objects taint propagation. We observe that the
unmodified Android system had an overall score of 3625 Java instructions exe-
cuted per second. Whereas, our approach had an overall score of 2937 Java
instructions executed per second. Therefore, our approach has a 19 % overhead
with respect to the unmodified system.

5.3 False Positives

Our analysis and tests indicated that almost of 50 % of studied Android appli-
cations use control flows and leak sensitive data. Our approach generates 25 %
of false positives. We detect an IMSI leakage vulnerability when it is really used
as a configuration parameter in the phone. Also, we detect that the IMEI is
transmitted outside of smartphone but it is the hash of the leaked IMEI. Thus,
we can not treat these applications as privacy violations.

6 Conclusion

In order to detect the leakage of sensitive information by third-party apps exploit-
ing control flows in smartphones, we have proposed a hybrid approach that prop-
agates taint along control dependencies to solve under-tainting problem. We have

Detection of Illegal Control Flow in Android System 345

analysed 27 free Android applications to evaluate the effectiveness of our app-
roach. We found that 14 applications use control flows to transfer sensitive data
and 8 leak private information. We showed that our approach generates significant
false positives that can be reduced by considering expert rules (ad hoc rules). Also,
we can use an access control approach to authorize or not the transmission of the
data outside the system. Our approach incurs 19 % performance overhead that
is due to the propagation of taint in the control flow. To improve performance of
our system, we suggest implementing the taint propagation mechanism in Just
In Time Compiler (JIT) that provides better performance than the interpreter
such as a minimal additional memory usage. By implementing our approach in
Android systems, we successfully protect sensitive information and detect most
types of software exploits caused by control flows.

References

1. Android. http://www.android.com/
2. dex2jar. http://code.google.com/p/dex2jar/
3. Java decompiler. http://jd.benow.ca/
4. AT&T Research: Graphviz. http://www.graphviz.org/
5. Chin, E., Felt, A.P., Greenwood, K., Wagner, D.: Analyzing inter-application com-

munication in android. In: Proceedings of the 9th International Conference on
Mobile Systems, Applications, and Services. pp. 239–252. ACM (2011)

6. P.S. Corporation: Caffeinemark 3.0. http://www.benchmarkhq.ru/cm30/
7. Denning, D.: Secure information flow in computer systems. Ph.D. thesis, Purdue

University (1975)
8. Egele, M., Kruegel, C., Kirda, E., Vigna, G.: PiOS: detecting privacy leaks in

iOS applications. In: Proceedings of the Network and Distributed System Security
Symposium (2011)

9. Enck, W., Gilbert, P., Chun, B., Cox, L., Jung, J., McDaniel, P., Sheth, A.:
Taintdroid: an information-flow tracking system for realtime privacy monitoring
on smartphones. In: Proceedings of the 9th USENIX Conference on Operating
Systems Design and Implementation. pp. 1–6. USENIX Association (2010)

10. Fenton, J.: Memoryless subsystem. Comput. J. 17(2), 143–147 (1974)
11. Fuchs, A.P., Chaudhuri, A., Foster, J.S.: Scandroid: automated security certifica-

tion of android applications. Manuscript, University of Maryland (2009). http://
www.cs.umd.edu/∼avik/projects/scandroidascaa

12. Graa, M., Cuppens-Boulahia, N., Cuppens, F., Cavalli, A.: Detecting control flow
in smarphones: combining static and dynamic analyses. In: Xiang, Y., Lopez, J.,
Jay Kuo, C.-C., Zhou, W. (eds.) CSS 2012. LNCS, vol. 7672, pp. 33–47. Springer,
Heidelberg (2012)

13. Graa, M., Cuppens-Boulahia, N., Cuppens, F., Cavalli, A.: Formal characterization
of illegal control flow in android system. In: 9th International Conference on Signal
Image Technology & Internet Systems (2013)

14. Graa, M., Cuppens-Boulahia, N., Cuppens, F., Cavalli, A.: Protection against Code
obfuscation attacks based on control dependencies in android systems. In: 8th
International Workshop on Trustworthy Computing (2014)

http://www.android.com/
http://code.google.com/p/dex2jar/
http://jd.benow.ca/
http://www.graphviz.org/
http://www.benchmarkhq.ru/cm30/
http://www.cs.umd.edu/~avik/projects/scandroidascaa
http://www.cs.umd.edu/~avik/projects/scandroidascaa

346 M. Graa et al.

15. Hornyack, P., Han, S., Jung, J., Schechter, S., Wetherall, D.: These aren’t the droids
you’re looking for: retrofitting android to protect data from imperious applications.
In: Proceedings of the 18th ACM Conference on Computer and Communications
Security, pp. 639–652. ACM (2011)

16. Kang, M., McCamant, S., Poosankam, P., Song, D.: Dta++: dynamic taint analy-
sis with targeted control-flow propagation. In: Proceedings of the 18th Annual
Network and Distributed System Security Symposium, San Diego, CA (2011)

17. Rob van der Meulen, J.R.: Gartner says smartphone sales accounted for 55 percent
of overall mobile phone sales in third quarter of 2013 (2013). http://www.gartner.
com/newsroom/id/2623415

18. Nair, S., Simpson, P., Crispo, B., Tanenbaum, A.: A virtual machine based informa-
tion flow control system for policy enforcement. Electron. Notes Theoret. Comput.
Sci. 197(1), 3–16 (2008)

19. News, B.: Bbc google activations and downloads update, May 2013. http://www.
bbc.com/news/technology-22542725

20. Song, D., Brumley, D., Yin, H., Caballero, J., Jager, I., Kang, M., Liang, Z.,
Newsome, J., Poosankam, P., Saxena, P.: Bitblaze: A new approach to computer
security via binary analysis. In: Information Systems Security, pp. 1–25 (2008)

21. Wilson, T.: Many android apps leaking private information, July 2011. http://
www.informationweek.com/security/mobile/many-android-apps-leaking-private-
inform/231002162

http://www.gartner.com/newsroom/id/2623415
http://www.gartner.com/newsroom/id/2623415
http://www.bbc.com/news/technology-22542725
http://www.bbc.com/news/technology-22542725
http://www.informationweek.com/security/mobile/many-android-apps-leaking-private-inform/231002162
http://www.informationweek.com/security/mobile/many-android-apps-leaking-private-inform/231002162
http://www.informationweek.com/security/mobile/many-android-apps-leaking-private-inform/231002162

A Responsive Defense Mechanism Against
DDoS Attacks

Negar Mosharraf1,2(&), Anura P. Jayasumana1,2,
and Indrakshi Ray2(&)

1 Department of Electrical and Computer Engineering,
Colorado State University, Fort Collins, CO 80523, USA

negar@engr.colostate.edu,

anura.jayasumana@colostate.edu
2 Department of Computer Science, Colorado State University,

Fort Collins, CO 80523, USA
iray@cs.colostate.edu

Abstract. Distributed Denials of Service (DDoS) attacks are among the most
serious threats on the Internet. With large-scale DDoS attacks, it is necessary to
stop malicious traffic closer to the attack sources with minimal disruption of
legitimate traffic. A responsive defense mechanism that filters potential attack
traffic and prevents it from reaching the victim network is developed. First we
investigate the features of network traffic that can be used for discriminating
attacks from normal traffic, and then use the identified features to develop an
accurate and robust signature-based filtering model that forms the basis of a
responsive defense mechanism. A Bloom filter based mechanism is proposed to
efficiently implement and disseminate the signature-based model; it helps reduce
the communication overhead and the computation and storage requirements at
the upstream routers that check for malicious traffic. The approach is verified
and evaluated using the DARPA dataset. Experimental results show the effec-
tiveness of the proposed scheme in blocking attack traffic and allowing most of
the legitimate traffic at upstream routers.

1 Introduction

Distributed Denial-of-Service (DoS) attacks on Internet based systems and infrastruc-
ture have become quite common. Multiple machines, which typically are compromised
themselves, flood the victim at fast rates. Detecting these machines and isolating the
attacks in a timely manner is non-trivial. From the incidents of DDoS attacks against
commercial websites like Yahoo, E-bay and E*Trade, it is evident that all the computer
systems connected to the Internet are vulnerable to DDoS attacks [11]. A coordinated
DDoS attack within a single day on Yahoo, eBay, Amazon.com, E*trade, ZDnet, buy.
com, the FBI and several other websites resulted in millions of dollars in damages and
inconveniences [14]. Recent examples include a record 400 Gbit/s DDoS attack against
CloudFlare, a rate about 100 Gbit/s more than the largest previously seen DDoS attack
[15]. The trends indicate Terabps DDoS attacks in the near future. The impact of DDoS
attacks that prevent legitimate users from using the network may vary from minor
inconvenience to disastrous consequences. The frequencies and the impact of DDoS

© Springer International Publishing Switzerland 2015
F. Cuppens et al. (Eds.): FPS 2014, LNCS 8930, pp. 347–355, 2015.
DOI: 10.1007/978-3-319-17040-4_23

attacks have motivated the Internet security community to provide techniques for pre-
venting, detecting, and surviving such attacks [2]. Yet, as the magnitude of the attacks
scale, new approaches are needed to protect the victim as well as reduce the impact on
the networking infrastructure. Towards this end, we demonstrate an effective method to
distinguish attack traffic from legitimate traffic closer to attack sources and allow
legitimate traffic access to the victim node in the event of an attack.

Researchers have worked on providing mechanisms that use traffic features to dis-
tinguish attack traffic from legitimate ones. These mechanisms are able to detect only the
attacks having those specific features [1, 3]. Moreover, an attacker who knows the
features that are of interest to the detection mechanism can develop strategies that
bypass the detection mechanisms. For example, consider the scheme based on the abrupt
change [5,7,9]. In this approach, the attacker can bypass the detection mechanism by
sending out attack flow to change the statistics of the traffic. Moreover, a major draw-
back of these approaches is that they cannot discriminate flash crowd traffic from DDoS
attack traffic. History-based IP Filtering (HIF) [11] is an efficient approach proposed to
discriminate good traffic from bad traffic. This approach is based on monitoring the
number of the new source IP addresses instead of the volume of the traffic. HIF keeps a
history of the legitimate IP addresses that have appeared before and applies filters based
on this history at the edge routers. However, an adversary can bypass this mechanism by
starting to send packets with its IP address frequently and establish TCP connections.
Therefore, we need a more robust and efficient defense mechanism. The goal of this
paper is to introduce and evaluate a responsive defense mechanism against DDoS
attacks. The first challenge is how to detect attack traffic without misclassifying legit-
imate traffic. We look into multiple features of DDoS attacks and normal traffic to extract
characteristics that provide information about the occurrence of the DDoS attack. These
features and their relationships are used to establish a high confidence IP address history.
The high confidence IP history will be used to create filters. When the attack is blocked
by an efficient and good filtering mechanism, the victim node can continue to receive
most of the normal traffic and remain operational. This feature makes filtering technique
a desirable solution; however, filtering has additional overheads. During an attack, the
filters must be propagated to the upstream routers and these routers must check each
packet to determine whether it is legitimate or not. Towards this end, we propose an
efficient approach based on Bloom filter data structure, which facilitates a distributed
response from routers closer to attack nodes and serves to prohibit attack packets from
reaching the victim node while allowing the legitimate traffic to pass through.

The rest of the paper is organized as follows. Section 2 describes the proposed
method to discriminate DDoS attacks from normal traffic in details. Section 3 validates
our model using DARPA dataset. Section 4 concludes the paper with pointers to future
directions.

2 Responsive Defense Mechanism

In this section, we explain our approach for classifying normal and attack traffic. To
successfully respond to attack the approach must accurately detect the attacks and respond
by minimally blocking legitimate traffic. It should also have low communication,

348 N. Mosharraf et al.

computation, and storage overheads. An unusually high traffic volume may not be a good
indicator of a DDoS attack, as it can occur due to flash crowds as well. We need to consider
other features that help distinguish DDoS attacks from normal traffic. During bandwidth
attacks, most source IP addresses are new to the victim, whereas most IP addresses in a
flash crowd have appeared at the victim before [4]. Peng et al. [10] advocate the use of
network connection history to distinguish good packets from bad ones. Many enterprises,
e.g., universities, banks, etc., also have a large fraction of users that access their services
regularly. Although the user base fluctuates with new additions and deletions, such a base
changes at a much slower time scale compared to attacks and disruptions. These obser-
vations often form the basis of mechanisms to filter out the attack traffic. However, the
attacker can bypass the history-based IP filtering if the attacker establishes a history by
communicating with the victim prior to conducting the attack. We address this problem by
using multiple features that help distinguish normal and attack traffic and by developing
accurate normal traffic signatures and a scoring mechanism based on these features.

2.1 Feature Selection

We investigated DDoS attacks in details in order to find the features that help distin-
guish between attacks and normal traffic. Lee et al. [6] mention some parameters such
as source/destination IP address, port number, and packet type (ICMP, TCP, UDP) that
have been used to detect DDoS attacks. We will use them together with packet size to
form the features in our identification model. The other feature is the frequency of an IP
address. Recall that, Jung et al. [4] determined that most source IP addresses are new to
the victim during bandwidth attacks, whereas with flash crowd traffic known source IP
addresses are most common. Moreover, since our goal is in creating a history based
only on legitimate and valid IP addresses, we only consider those IP addresses with a
successful TCP handshake. Note that, a spoofed IP address will not have a complete
three-way handshake [10]. Our approach uses a much more comprehensive set of
features compared to existing identification approaches, and use them in an integrated
manner to create filters as described later in Sect. 2.2.

2.2 History Capture

With the set of relevant parameters p ¼ fpiji 2 ½0; n�g, our model maintains the fre-
quency and Cumulative Distribution Function (CDF) metrics.

1. Frequency: The frequency fi is the fraction of packets matching parameter pi within
a time window to create a signature.

fi ¼ Fi

Pn

j¼1
Fj

ð1Þ

Fi is the number of packets that matches on the basis of parameter Pi during the
window. The frequency distribution is then defined as f ¼ f1; . . .; fnf g.

A Responsive Defense Mechanism Against DDoS Attacks 349

2. Cumulative Distribution Function (CDF): The CDF CX (x) measures the probability
that the variable X takes on a value less than or equal to x

CDFCX xð Þ ¼ P X6xð Þ ð2Þ

Our goal is to define a good signature to make the IP address database accurate and
robust and make it hard to pass by an attacker. A key observation that can be used for
defense against DDoS attack is that the DDoS attacks tend to use randomly spoofed IP
addresses [12] and the other packet features, such as, port number and size of packet,
which are selected randomly as well. Moreover, the interaction of these features also
exhibits some anomaly when compared to that of the normal traffic. Therefore, we
make use of the individual features, and also the interactions, in defining the signature.
The signature is based on the CDF of each parameter’s frequency during the training
period. For instance, the signature of port number is CDF of each port number’s
frequency and measure the probability that the each port number’s frequency can take
value equal or less than it. This signature for each feature determines which frequent
value is more reliable during normal traffic conditions. This signature assists us in
selecting reliable IP addresses during the training period. The next step is assigning
scores to packets in the training period and generating the source IP address history.
The score value for each packet depends on the frequencies and the signatures of its
selected features. Frequency threshold aj, which indicates the level of reliability in our
model, for the various levels and the corresponding scores are presented in Table 1. If
the value of a selected feature is more than aj in the related signature, it is assigned a
score bj indicating the confidence level. Four levels b4 > b3 > b2 > b1 (Table 1) are
defined to select different levels of reliable IP addresses,). In our model, aj defined as
70 %, 50 %, and 30 % indicate how the selected feature follows the signature of normal
traffic condition and different cases are presented in Table 1. Note the value of fre-
quency threshold aj can be adjusted dynamically for each victim node. According to
our model, when the selected feature follows the signature of normal traffic more
strongly, we provide it a higher weight by assigning the score b4.

si is defined as the score value for each IP address i and is determined according to
the frequency distribution fi and confidence degree bj in Eq. 3 and the overall score SIP
is computed from Eq. 4. Where the n is the number parameters.

Table 1. The score manager

350 N. Mosharraf et al.

Si ¼ fi � bj ð3Þ

SIP ¼
Xn

i¼1

Si ð4Þ

The IP addresses that have an overall score SIP higher than a threshold m are
selected as legitimate IP addresses.

Since the filtering mechanism is to be applied closer to the victim point, and the
network bandwidth may already be saturated during an attack, transferring the entire
history and looking it up in the upstream routers during the attack may be extremely
high cost to pay since upstream routers must also process all the packets targeted
towards the victim node. This will impose an additional overhead on the routers. To
overcome this problem, we use the Bloom filter [8] mechanism to represent efficiently
the filtering mechanism. This way, the victim node does not transfer the full list of IP
addresses in the history to the upstream routers, but instead transfers a Bloom filter that
represents the contents of the IP address history. It causes a significant reduction of
message traffic and introduces an efficient filtering mechanism. This approach reduces
the overhead cost significantly in the ingress routers since every packet that comes to a
victim node during attack must be checked.

3 Model Validation

The objective of this experiment is to evaluate the accuracy and robustness of our
filtering model to protect against DDoS attacks. To illustrate the effect of signature to
distinguish attack and normal traffic we examined the DARPA 1998 Intrusion
Detection dataset [15]. It contains 7 weeks of training datasets to generate signatures
and establish an IP address history and 2 weeks of testing data set to evaluate our
technique. The training part of the dataset consists of normal traffic as well as labeled
attacks. This data set therefore provides features important for our evaluation as our
goal is evaluate how signature and score mechanism is robust in discriminating
malicious and normal traffic without misclassifying them.

3.1 Results

The first step is to create the IP address history from the training dataset according to the
generated signatures and the overall score of selected features. The second step con-
structs the Bloom filter based on the results of the first step. In the first step, the signature
of the port number, the size of the packet and IP address’s frequency rate are created for
each traffic type (ICMP, TCP, UDP) separately. In the next step, the IP address history is
created based on the overall score and threshold value of m. In our experiment, m is
determined to be 0.36. This value means the signature of at least two selected features
should have aj more than 50 % and one should have it more than 30 % at training time;
however, this value can be set to a higher value for more protection. The value of m is a
trade-off among history size, history accuracy, and protection rate. I Increasing the value

A Responsive Defense Mechanism Against DDoS Attacks 351

of increases the size of history and protection rate, while decreasing the accuracy of
history to pass legitimate traffic. Signature-based IP address history is evaluated on the
basis of these parameters: (i) Attack detection rate (ii) Normal traffic detection rate (iii)
False negative rate. Figure 1 shows the effectiveness of using signature to distinguish
attack and normal traffic for different types of traffic. It is interesting to see that the false
negative rate is around 1 % for TCP, UDP and ICMP when we consider all selected
features in our model. We evaluate the effectiveness of each selected feature to create
accurate and robustness filtering as well. As shown in Fig. 1, the false negative rate
decreases as we use more features. Note that, in the figures simple history refers to
creating history just based on frequency of IP addresses that were presented in [10]. It
shows how the signature and score mechanism could be more effective for determining
an accurate filter compared with another existing approach.

The Bloom filter is evaluated with 2 weeks testing DARPA dataset. As shown in
Fig. 2, attack detection rate is around 99.2 % for TCP traffic and 99.6 % and 99.8 % for
UDP and ICMP traffic if we consider all selected features to create the history. Note
that, the attack detection rate decreases if we consider fewer features and it goes down
to 88 % for simple history condition.

The other important parameter to consider is how many normal packets can pass
through the Bloom filter. As shown in Fig. 3, normal traffic detection rate is around
70 % for TCP and UDP traffic and it is more than 82 % for ICMP. This demonstrates
that the signature based IP address performance is highly reliable for aborting malicious
packets and withholding only little legitimate traffic. Normal traffic detection rate
increases to around 75 % to 85 % if fewer features are used to generate IP address
history, but the attack detection rate decreases at the same time. Thus, there is a tradeoff
between accuracy of the attack detection rate and normal traffic detection rate. The
evaluation part shows effective results in successful filtering of attack traffic and

(a) (b)

(c)

Fig. 1. False Negative Rate: (a) TCP, (b) UDP, (c) ICMP

352 N. Mosharraf et al.

permitting the normal traffic during the attack time. The experiment result verifies that
our signature mechanism can be deployed in real networks as it has addressed some
critical drawbacks of the previous approaches.

(a) (b)

 (c)

Fig. 2. Percentage of attack that can pass filtering (a) TCP, (b) UDP, (c) ICMP

(a) (b)

 (c)

Fig. 3. Normal traffic detection rate (a) TCP, (b) UDP, (c) ICMP

A Responsive Defense Mechanism Against DDoS Attacks 353

4 Conclusion

We presented a responsive defense mechanism to defend against denial of service attacks.
We introduced a signature-based filtering mechanism that distinguishes attacks from
normal traffic. We have demonstrated how to form a history based filter that takes into
account a rich set of header fields of traffic.We then presented a filtering mechanism based
on Bloom filter structure that can be rapidly distributed to responsive points closer to
attack sources. Our experiment indicates that our filtering model can protect the victim
node from 99 % of attack traffic while allowing 70 % of legitimate traffic. In addition, it
shows that the filtering mechanism can detect 99 % of attacks that want to bypass the
filtering during the normal traffic. In contrast to existing DDoS attack detection techniques
such as HIF, our scheme is more reliable and accurate, and also has a lower overhead. An
mechanism to determine how bloom filters can distribute through the network to stop the
attack close to the source of attack is our next step and will be presented in future
publication. as a future work, we plan to test the efficacy of our approach on real networks.
In addition, our future work includes extending our scheme for IPv6.

References

1. Beitollahi, H., Deconinck, G.: Analyzing well known countermeasures against distributed
denial of service attacks. Comput. Commun. 35(11), 1312–1332 (2012)

2. Cabrera, J.B.D., Lewis, L.M., Qin, X.Z., Lee, W., Mehra, R.K.: Proactive intrusion detection
and distributed denial of service attacks - a case study in security management. J. Netw.
Syst. Manage. 10(2), 225–254 (2002)

3. Cheng, J., Yin, J., Liu, Y., Cai, Z., Wu, C.: DDoS attack detection using IP address feature
interaction. In: Proceedings of 1st International Conference Intelligent Networking and
Collaborative Systems, pp. 113–118 (2009)

4. Jung, J., Krishnamurthy, B., Rabinovich, M.: Flash crowds and denial of service attacks:
characterization and implications for CDNs and web sites. In: Proceedings of 11th World
Wide Web conference, Honolulu, Hawaii (2002)

5. Lakhina, A., Crovella, M., Diot, C.: Diagnosing network-wide traffic anomalies. In:
Proceedings of 2004 Conference on Applications, Technologies, Architectures, and
Protocols for Computer Communications, Portland, Oregon, USA (2004)

6. Lee, K., Kim, J., Kwon, K.H., Han, Y., Kim, S.: DDoS attack detection method using cluster
analysis. Expert Syst. Appl. 34, 1659–1665 (2007)

7. Manikopoulos, C., Papavassiliou, S.: Network intrusion and fault detection: a statistical
anomaly approach. IEEE Commun. Mag. 40(10), 76–82 (2002)

8. Mitzenmacher, M.: Compressed bloom filters. In: Proceedings of the 20th Annual ACM
Symposium on Principles of Distributed Computing, Newport, Rhode Island, pp. 144–150
(2001)

9. Noh, S., Jung, G., Choi, K., Lee, C.: Compiling network traffic into rules using soft
computing methods for the detection of flooding attacks. J. Appl. Soft Comput. 8(3),
1200–1210 (2008)

10. Peng, T., Leckie, C., Ramamohanarao, K.: Protection from distributed denial of service
attack using history-based IP filtering. In: Proceedings of IEEE International Conference on
Communications, Anchorage, Alaska, pp. 482–486 (2003)

354 N. Mosharraf et al.

11. Peng, T., Leckie, C., Ramamohanarao, K.: Proactively detecting distributed denial of service
attacks using source ip address monitoring. In: Mitrou, N.M., Kontovasilis, K., Rouskas, G.
N., Iliadis, I., Merakos, L. (eds.) NETWORKING 2004. LNCS, vol. 3042, pp. 771–782.
Springer, Heidelberg (2004)

12. Peng, T., Leckie, C., Ramamohanarao, K.: Survey of network-based defense mechanisms
countering the DoS and DDoS problems. ACM Comput. Surv. 39(1), 1–42 (2007)

13. RioRey, Inc.: 2009–2012, RioRey Taxonomy of DDoSAttacks, RioRey_Taxonomy_
Rev_2.3_2012 (2012). http://www.riorey.com/x-resources/2012/RioRey_Taxonomy_DDoS_
Attacks2012.eps

14. Waikato Applied Network Dynamics Research Group. Auckland university data traces.
http://wand.cs.waikato.ac.nz/wand/wits/

15. http://www.darkreading.com/attacks-and-breaches/ddos-attack-hits-400-gbit-s-breaks-
record/d/d-id/1113787

A Responsive Defense Mechanism Against DDoS Attacks 355

http://www.riorey.com/x-resources/2012/RioRey_Taxonomy_DDoS_Attacks2012.eps
http://www.riorey.com/x-resources/2012/RioRey_Taxonomy_DDoS_Attacks2012.eps
http://wand.cs.waikato.ac.nz/wand/wits/
http://www.darkreading.com/attacks-and-breaches/ddos-attack-hits-400-gbit-s-breaks-record/d/d-id/1113787
http://www.darkreading.com/attacks-and-breaches/ddos-attack-hits-400-gbit-s-breaks-record/d/d-id/1113787

Automated Extraction of Vulnerability
Information for Home Computer Security

Sachini Weerawardhana, Subhojeet Mukherjee,
Indrajit Ray(B), and Adele Howe

Computer Science Department, Colorado State University,
Fort Collins, CO 80523, USA

{sachini,mukherje,indrajit,howe}@cs.colostate.edu

Abstract. Online vulnerability databases provide a wealth of informa-
tion pertaining to vulnerabilities that are present in computer application
software, operating systems, and firmware. Extracting useful informa-
tion from these databases that can subsequently be utilized by applica-
tions such as vulnerability scanners and security monitoring tools can
be a challenging task. This paper presents two approaches to informa-
tion extraction from online vulnerability databases: a machine learning
based solution and a solution that exploits linguistic patterns elucidated
by part-of-speech tagging. These two systems are evaluated to compare
accuracy in recognizing security concepts in previously unseen vulner-
ability description texts. We discuss design considerations that should
be taken into account in implementing information retrieval systems for
security domain.

Keywords: Security · Vulnerability · Information extraction · Named
entity recognition

1 Introduction

Hardening a home computer against malicious attacks requires identifying the
different ways in which the system can be attacked, and then enacting secu-
rity controls to prevent these attacks. This, in turn, requires deeper analysis
to understand the contribution of different vulnerabilities towards an attack
on the system, the role of a specific system configuration, the actions that an
attacker must take to exploit the vulnerabilities, and, perhaps most importantly,
the advertant / inadvertent contributions that home-user activities make in a
successful exploit.

Researchers, including our group, have been investigating ways to capture
these relationships and merge them into models of system security risk. On-line
vulnerability databases, such as the National Vulnerability Database (NVD -
http://nvd.nist.gov), contain a wealth of information that is needed for creating

This material is based upon work supported by the National Science Foundation
under Grant No. 0905232.

c© Springer International Publishing Switzerland 2015
F. Cuppens et al. (Eds.): FPS 2014, LNCS 8930, pp. 356–366, 2015.
DOI: 10.1007/978-3-319-17040-4 24

http://nvd.nist.gov

Automated Extraction of Vulnerability Information 357

these system risk models. Unfortunately, these vulnerability databases (VDs)
have been created by humans primarily for the use of humans. A major prob-
lem is that VDs store vulnerability descriptions as natural language plaintexts.
Important information, such as attacker actions and user actions, are seldom
explicitly stated but rather remain implicit. A human expert is able to infer this
from the description but this is challenging for an automated tool. Automating
the extraction is further complicated by the fact that these descriptions vary
significantly in how they describe the different pieces of information.

Roschke et al. [12] investigate the problem of extracting vulnerability infor-
mation from semi-structured plaintexts with a goal of comparing and merging
vulnerability information from multiple sources. However, this scheme requires
developing customized extraction rule-sets for each individual databases, and is
limited in its ability to extract information buried in natural language phrases.
Urbanska et al. [15] also describe a similar approach for extracting information
from VDs, based on designing customized extraction filters. Although this app-
roach is able to extract crucial information such as attacker actions, it performs
very poorly in extracting user action information. Moreover, the accuracy of the
approach is heavily dependent on the quality of filters developed, which is a
manual process.

A Named Entity Recognition (NER) system, employing a large corpus of
hand annotated data extracted from different sources (vulnerability databases,
blogs and news articles) is described in [5,11]. A Conditional Random Fields
(CRF) classifier [17] is trained on the corpus to identify portions of the text
describing the concepts. Each portion is then processed to build associations
between the concepts using an IDS Ontology specifically created for the security
domain. A problem with this approach is that it is not able to extract information
such as user or attacker actions. A bootstrapping algorithm called PACE is used
for NER in computer security [10]. Its learning algorithm is pre-trained on a
small set of known entity names (Exploit Effect, Software Name, Vulnerability
Potential Effects, Vulnerability Category) and known patterns. A limitation of
this approach is that the model needs to be trained on a large corpus (usually
in the millions).

In this paper, we describe our efforts to design a tool to automatically extract
severity information from natural language descriptions. Our work is designed
to populate a model that we had proposed earlier [16], called the Personalized
Attack Graph (PAG). Our approach is based on designing a NER that identi-
fies key PAG parameters embedded in the text of a vulnerability description:
software name, version, impact, attacker action, and user action. We exper-
iment with two different NER approaches, one using machine-learning (ML)
techniques, and the other exploiting lexical patterns in a parts-of-speech (POS)
tagged text. The two approaches are then evaluated to compare their accuracy in
recognizing security concepts embedded within newly encountered vulnerability
descriptions.

Two labeled corpora are available for security vulnerability descriptions [1,5].
We use Joshi et al.’s corpus [5] to validate the performance of one of our
approaches that is similar to their approach. However, the PAG representation
requires identification of security concepts not supported by Joshi et al.’s corpus,

358 S. Weerawardhana et al.

most notably attacker and user actions. We, therefore, constructed our own cor-
pus comprising of 210 randomly selected vulnerability descriptions taken from
NVD as of April 2014. We used the BRAT web based annotation tool [7] to man-
ually annotate the descriptions with the labels required for our PAG model. The
annotation task was done by a computer science graduate student with substan-
tial knowledge of computer security. We chose BRAT because it could be easily
configured to allow for annotation of custom entity types. Our corpus consists
of 8409 labeled tokens: 3821 default label tokens and 4588 security concept label
tokens.

2 Our Approach to Extracting Computer
Vulnerability Information

We implemented two independent NER solutions: a machine learning module
and a part-of-speech, rule-based component. Machine learning is less brittle and
may be able to accommodate examples never before seen. However, it requires
training examples and a well selected set of features to support generalization.
Rule systems can be efficient and well tailored to the domain; however, the
accuracy drops quickly when new examples fail to match previous ones.

2.1 Machine Learning Module

The process of producing a machine-learning (ML) model for the task can be
divided into two parts: feature selection and model training.

Feature Selection: We adopted the same features as in [5]: Taggy-sequences,
N-grams, UsePrev, UseNext, Word-pairs, and Gazette. For the gazette, we com-
piled a list of software and operating systems consisting of 48709 entries using
the product information repository available at www.secunia.com.

Model Training: We chose the Stanford Named Entity Recognizer (Stanford
NER), that implements a CRF classifier [4]. It has the chosen features already
built-in, and its CRF classifier has been widely adopted for custom NERs [13].
CRF takes into account contextual information by considering sequences of
tokens, a property that can be specifically exploited by the structure of vul-
nerability descriptions.

2.2 Part-of-Speech Tagging

POS tagging allowed us to discover patterns in the grammatical structure of a
vulnerability description and define a set of rules.

Identifying Software Names and Versions: POS tagging labels a word in
text based on its role in the sentence (e.g., noun, verb, adjective, etc.) and the
context in which it is used. We manually analyzed a sample of 30 vulnerability
descriptions from NVD to identify persistent patterns of POS. We found that

www.secunia.com

Automated Extraction of Vulnerability Information 359

software names are typically tagged as NNP (proper nouns) and version numbers
are tagged as CD (cardinal numbers). This rule was applicable to 100 % of the
sample.

Software names are often followed by an IN tag (a preposition or subordi-
nating conjunction), e.g., “Adobe Reader before 10.3”. About half (45 %) of the
descriptions followed this rule. A variation to this rule happens when a software
name is preceded by an IN tag and followed by another IN tag (e.g., “index.html
in Mozilla Firefox 5.4 through 6.0”), which accounted for another 30 % of the
examples. For 17 %, a software name is immediately followed by a CD tag (e.g.,
“Adobe Reader 9.3”). The remaining 6 % were rare or erroneous structures (e.g.,
software name without a version number), which suggests that it would be dif-
ficult to achieve 100 % accuracy.

Our POS tag processing algorithm is based on the observed patterns. We
use 3-grams because they best match the length of common software names
(e.g., “Adobe Acrobat Reader”). The Stanford coreNLP POS Tagger [14] provide
the POS mappings. For each sequence of 3-grams, the algorithm checks for the
specific patterns. If one of the patterns is found, then a gazette (see Sect. 2.1)
lookup is performed to identify the selected NNP tag as a software name. If none
of the conditions are satisfied, a regular expression matching is performed. The
3-grams are then processed to identify any tokens tagged as CDs to find version
numbers.

Identifying File Names, Modifiers and Vulnerability Type: File names
in vulnerability descriptions typically denote a specific system artifact in which
vulnerabilities are present. We try to identify modifiers, i.e., words that are used
to indicate specific information about vulnerable software versions, as well as
vulnerability types. File names are matched to a regular expression for

base name.file extension:
[[A-Z][a-z]{1, }]∗[-]?[[A-Z][a-z]{1,}0-9]∗\\. [A-Z]?[a-z]{1,4}

Modifiers typically follow version numbers (e.g. “version 4.0 through 5.1”)
and are tagged as IN. Each description is separated into POS Tag - Value
pairs (e.g. {before, IN},{2.0, CD}). To find phrases with version numbers,
the description is scanned to find words that have been tagged as CD. If a word
tagged as CD is found in the description, POS tag of the word preceding a ver-
sion number is checked. If this POS tag is of type IN, then the associated word
is identified as a modifier. Identifying vulnerability type was done by search-
ing for keywords: “vulnerability”, “vulnerabilities” and “in”. Then, the adjacent
adjectives (POS tag JJ) are extracted.

Identifying Attacker Actions, Impacts, User Actions: To extract attacker,
user actions and impact entities, we first partition a description into separate
sentences and then discard information such as “aka Bug id ...”,“related to ..vul-
nerability” etc., which we know for sure can not be included as a part of the
final result.

Identifying human actors is a two step process, which includes the use of
the Stanford Parser [6], the Stanford Typed Dependency Representation [9], and

360 S. Weerawardhana et al.

WordNet Glosses [3], via the API RiWordNet(http://rednoise.org/rita/reference/
RiWordNet.html). First, we identify actors as the nominal subject, agent or the
direct object of a verb. In case of a passive nominal subject dependency, we
consider the passive agent as an indirect actor. We extract the WordNet Glosses
[3] for these subjects, and if the glosses contain terms like “human”,“person”
or“someone”, we classify these as human actors.

However, at this point, we do not have enough evidence to identify the indi-
rect actors as humans. Hence, we perform a search across the generated parsed
dependency tree, pushing verbs into a stack, if they are directly related to both
the passive nominal subjects and their governing verbs. As each verb is popped
from the stack, it is verified whether its dependent is a non-human nominal sub-
ject or agent. If so, the concerned indirect actor is considered non-human and
the iteration ends; else the verb is added to the stack and the iteration continues.
If at the end of the search process, an indirect actor is found to have no direct
or indirect relation with another non-human subject or agent, it is added to the
list of human actors for further processing.

Each actor is attributed with a set of verbs and modifiers which are directly
or indirectly related to this actor. If the actor is indirect, the set of verbs
and modifiers for that actor can be enumerated as: humanActor.V erbList ←
{governing verb, open clausal complements of governing verb} and
humanActor.ModifierList ← {adjective modifiers for direct object of
governing verb} respectively, else, as humanActor.V erbList ← {governing
verb, reduced non − finite verbal modifiers of the dependent, open clausal
complements of governing verb} and humanActor.ModifierList ← {adjective
modifiers for direct object of governing verb, adjective modifiersof the
dependent} respectively.

Since, in vulnerability summaries, the actor is not always referred to as
“attacker”, our next step involves identifying the actor as a “malicious attacker”
or a “benign user”/“victim.” In these cases, we analyze the sentiment value,
obtained using SentiWordNet [2], of each of the verbs and modifiers attributed
to the actor. This step assumes that the actors are malicious if the set of verbs
or modifiers attributed to them contains at least one verb or modifier with a
negative sentiment. We assign such actors as attackers, and others as victims.

To identify attacker actions, impact, and user actions, we consider each verb
that has been attributed to each actor and identify the minimal verb phrases or
sub-sentences they belong to. The term “minimal phrases/sub-sentence” refers to
phrases or sub-sentences that do not contain any nested phrases or sub-sentences
of the same type. Each phrase/sub-sentence is then considered individually and
added to the impacts; any nested minimal verb and/or preposition phrase is
extracted from it. The nested verb phrases are tested for starting verbs like
“resulting” and “using” to denote them as impact or attacker-action respectively.
The preposition phrases are first extended to the end of the verb-phrase/sub-
sentence, and then verified for a starting preposition like “by”, “through”, “with”,
“via”, etc. to be judged as attacker-action.

Finally, we perform a clean-up procedure. In this phase, for all actors, and
for the three categories – user actions, impacts, and attacker actions – we verify

http://rednoise.org/rita/reference/RiWordNet.html
http://rednoise.org/rita/reference/RiWordNet.html

Automated Extraction of Vulnerability Information 361

whether any of these strings is a complete sub-string of another. If so, we com-
pletely remove the smaller string from the larger string. However, we do not
remove an attacker action from a different attacker action if both of them belong
to the same actor. If any of these strings contain a minimal noun phrase enclos-
ing the noun that identifies the actor, that section is also removed. Also, if the
final strings start or end with stopwords and/or whitespaces/punctuations we
remove them.

3 Evaluating the Extraction

A completely automatic extraction process requires a level of natural language
understanding that is not currently feasible. Our evaluation focuses on what
can currently be done. Thus, we ran two experiments to examine the following
questions: What is the accuracy of the two approaches? How much can we rea-
sonably automate? Are some concepts harder to automate than others? Are the
two approaches complementary, favoring a hybrid approach as was done in [5]?
The experiments were:

1. Validate that the performance of the re-implementation of the NER solution
is similar to results reported by authors in [5].

2. Compare the performance of the two approaches with a focus on identifying
trade-offs and possible complementarity.

We compute precision (Prec), recall (Rec) and F-measure (F1) [8] on a particular
testing data set and for different entity labels to determine whether some labels
are more difficult to automatically extract and whether the approaches differ in
how accurately they extract each type.

3.1 Validate Implementation

The performance reported in [5] was computed on their own corpus (referred to
as “Joshi corpus”.) As the first part of validation, we computed the performance
of our ML approach using the “Joshi corpus” and following their procedure (five-
fold cross-validation) as closely as possible. Next, we trained our ML approach on
our corpus and compared the performance to see whether the corpora differences
led to significant differences in performance.

The most salient difference between the two corpora was in the labels
extracted; because our labels were derived from the PAG model, our token set
and “Joshi corpus”’s were not identical although had considerable overlap. Per-
formance was calculated based only on the labels in the intersection: software,
operating system, file name, NER-modifier, and consequence/impact.

Validation Experiment Setup: The Joshi corpus was partitioned into five
equal sized sets: four sets for training and one set for testing. This corpus
comprised four different sources – NVD, security blogs, Microsoft product spe-
cific vulnerabilities, and Adobe product specific vulnerabilities; the partitioning

362 S. Weerawardhana et al.

ensured that each source contributed uniformly to the set of descriptions in each
partition. Our corpus (which we call “NVD”) included labels from 210 vulner-
ability descriptions extracted from NVD. Both corpora were trained using the
CRF Classifier with 5-fold cross validation..

Validation Experiment Results: Table 1 shows the results reported in [5]
(“Orig”) compared to the results of our ML approach (mean and standard devi-
ation over the five folds) when trained/tested on different corpora. Our solution
on the Joshi corpus performs similarly to the reported results on Operating Sys-
tem and File (difference is less than the standard deviation); our precision was
lacking on NER-Modifier and Impact.

For each metric (precision, recall and F1) we ran two-tailed t-tests to test
for statistically significant differences in the accuracies. At the α < 0.05 level,
we found significant differences in eight out of 15; however, a Bonferroni adjust-
ment would reduce the threshold to 0.003 leading to significant differences on
only NER-Modifier and F1 for File. While we cannot use this analysis to con-
firm that there is no difference, it is likely that the differences were due to the
disparate sizes of the corpora and to differences in the sources. Performance on
NER-Modifier and Impact were improved on our corpus, while the others were
worsened.

Table 1. Accuracy metrics and t-test results for validation. Orig is as reported in [5].

Joshi Corpus NVD Corpus t-test

Label Metric Orig Mean SD Mean SD P <

File Prec 1.00 1.00 0.00 0.96 0.09 0.35

Rec 1.00 1.00 0.00 0.35 0.22 0.36

F1 1.00 1.00 0.00 0.58 0.14 0.002

Impact Prec 0.71 0.45 0.08 0.58 0.08 0.20

Rec 0.69 0.57 0.09 0.79 0.11 0.01

F1 0.70 0.54 0.08 0.67 0.09 0.04

NER Modifier Prec 0.79 0.48 0.15 0.94 0.02 0.002

Rec 0.67 0.61 0.12 0.82 0.40 0.002

F1 0.72 0.52 0.13 0.96 0.01 0.001

Operating System Prec 0.95 0.91 0.04 0.54 0.40 0.25

Rec 0.95 0.97 0.01 0.63 0.40 0.29

F1 0.95 0.94 0.03 0.56 0.39 0.24

Software Prec 0.86 0.65 0.05 0.53 0.05 0.008

Rec 0.84 0.81 0.08 0.75 0.03 0.13

F1 0.85 0.72 0.06 0.62 0.04 0.01

Automated Extraction of Vulnerability Information 363

3.2 Compare Approaches

The second experiment compares the relative merits of our two approaches for
the labels needed to represent our PAG model.

Comparison Experiment Setup: Essentially, the same procedure was fol-
lowed for the ML approach as in the validation experiment. To assess the POS
approach, we followed the same procedure except that no training was required;

Table 2. Accuracy metrics and t-test results for the two approaches on our corpus.
“Diff” is the ML minus POS – difference between the two approaches on that metric;
“Max” is the maximum value for the two.

ML POS t-test

Label Metric Mean SD Mean SD Diff Max P <

File Prec 0.96 0.09 0.72 0.15 0.24 0.96 0.015

Rec 0.35 0.22 0.96 0.06 -0.60 0.96 0.001

F1 0.58 0.14 0.81 0.12 -0.24 0.81 0.021

Impact Prec 0.58 0.08 0.94 0.06 -0.36 0.94 0.001

Rec 0.79 0.11 0.80 0.11 -0.01 0.80 0.880

F1 0.67 0.09 0.86 0.08 -0.19 0.86 0.007

NER-Modifier Prec 0.94 0.02 0.99 0.01 -0.05 0.99 0.003

Rec 0.82 0.40 0.97 0.02 -0.14 0.97 0.132

F1 0.96 0.01 0.98 0.01 -0.02 0.98 0.108

Operating System Prec 0.54 0.40 0.26 0.08 0.28 0.54 0.348

Rec 0.63 0.40 0.90 0.10 -0.26 0.90 0.377

F1 0.56 0.39 0.40 0.10 0.16 0.56 0.551

Software Prec 0.53 0.05 0.71 0.06 -0.17 0.71 0.001

Rec 0.75 0.03 0.77 0.07 -0.02 0.77 0.509

F1 0.62 0.04 0.74 0.04 -0.11 0.74 0.003

Attacker Prec 0.12 0.12 0.94 0.04 -0.82 0.94 0.001

Rec 0.30 0.30 0.76 0.07 -0.46 0.76 0.001

F1 0.17 0.17 0.84 0.05 -0.67 0.84 0.001

User Prec 0.00 0.00 0.48 0.69 -0.48 0.48 0.158

Rec 0.00 0.00 0.60 0.55 -0.60 0.60 0.040

F1 0.00 0.00 0.27 0.27 -0.27 0.27 0.054

Version Prec 0.90 0.05 0.94 0.02 -0.05 0.94 0.070

Rec 0.97 0.03 0.90 0.03 0.07 0.97 0.006

F1 0.93 0.04 0.92 0.03 0.01 0.93 0.572

Vulnerability Prec 0.31 0.11 0.59 0.11 -0.28 0.59 0.004

Rec 0.62 0.14 0.73 0.06 -0.11 0.73 0.133

F1 0.42 0.12 0.65 0.08 -0.24 0.65 0.007

364 S. Weerawardhana et al.

the POS approach was tested on the test set for each of the five folds. The label
set was expanded to encompass other labels in our corpus : attacker action (e.g.,
send a crafted image file), user action (e.g., opens a crafted image file), version
and vulnerability (e.g., buffer overflow).

Comparison Results: Table 2 shows the results for each token type and app-
roach. Component has been omitted because it was not implemented for POS;
the reason was that there was no unique POS pattern to identify “components”
in vulnerability descriptions. For ML, Prec = .22, Rec = .29 and F1 = .25. As
shown by “Diff”, POS is usually more accurate (in 22 out of 27 cases Diff is
negative). ML has better precision for File and Operating System, better recall
for Version and better F1 for Operating System and Version. This is somewhat
surprising given that POS was constructed based on analyzing a small number of
descriptions and encoding the observed patterns. On the other hand, it is using
considerable knowledge about the language.

A two-tailed t-test on each of the metrics comparing the accuracy of the two
approaches overall shows statistically significant differences in 15 out of 27 using
α = 0.05 and 6 out of 27 using a Bonferroni adjustment of 0.002. Although
using POS is most often effective, the five cases where ML excels suggest that
the combination may lead to slightly high accuracy. Overall the accuracy is good;
max ranges from 0.27 for F1 for User to 0.99 for Precision for NER-Modifier.

Both approaches had difficulty in identifying user-action concepts. This is
because vulnerability descriptions we analyzed do not explicitly mention user
action in the description. For this reason, from the dataset we collected to train
and test the learning model, we observed precision, recall and F1 measures of 0.
However, false positives were generated in some of the scenarios for both machine
learning and POS solutions. The reason for this, in the case of the POS tagging
solution, is inaccurate sentiment values obtained from SentiNet 3.0. Since we
rely on sentiments corresponding to verbs related to an actor in a sentence or
its modifiers, if the sentiment of each word is either positive or neutral, even
though the subject “user” in the sentence acts as the attacker, the action of that
subject is classified as user action rather than attacker action.

4 Conclusion and Future Work

This work presents two approaches to automatically extracting information
related to vulnerabilities that is buried in the natural language plaintexts in vul-
nerability databases – a machine learning approach and a POS tagging approach.
Our experiments show that the POS approach is generally better (Prec. and
F1) at identifying implicit entities in vulnerability descriptions such as attacker
action and impact. These implicit entities exhibit limited presence in vulnerabil-
ity descriptions, which affects the model training. POS solution overcomes this
weakness because it relies on grammatical patterns in the sentence and not its
frequency of occurrence. In addition, the POS solution outperforms the machine
learning solution in identifying explicit entities such as file names (better Rec.

Automated Extraction of Vulnerability Information 365

and F1), software names (better Prec., Rec. and F1) and versions (better Prec.).
Therefore, we can conclude that POS tagging approach provides a feasible alter-
native to ML in security domain without the need for creating and maintaining
large corpora.

References

1. Bridges, R.A., Jones, C.L., Iannacone, M.D., Goodall, J.R.: Automatic labeling for
entity extraction in cyber security. Computing Research Repository (2013). http://
arxiv.org/abs/1308.4941

2. Esuli, A., Sebastiani, F.: SentIWordNet: A publicly available lexical resource for
opinion mining. In: Proceedings of the 5th Conference on Language Resources and
Evaluation, Genoa, Italy, May 2006

3. Fellbaum, C.: WordNet: An Electronic Lexical Database. Bradford Books,
Cambridge (1998)

4. Finkel, J.R., Grenager, T., Manning, C.: Incorporating non-local information into
information extraction systems by Gibbs sampling. In: Proceedings of the 43rd
Annual Meeting on Association for Computational Linguistics, Ann Arbor, MI,
June 2005

5. Joshi, A., Lal, R., Finin, T., Joshi, A.: Extracting cybersecurity related linked data
from text. In: Proceedings of the 7th IEEE International Conference on Semantic
Computing, Irvine, CA, September 2013

6. Klein, D., Manning, C.D.: Accurate unlexicalized parsing. In: Proceedings of
the 41st Annual Meeting on Association for Computational Linguistics, Sapporo,
Japan, July 2003

7. Lab, N.: BRAT annotation tool (2010). http://brat.nlplab.org/
8. Makhoul, J., Kubala, F., Schwartz, R., Weischedel, R.: Performance measures for

information extraction. In: Proceedings of DARPA Broadcast News Workshop,
Herndon, VA, March 1999

9. de Marneffe, M.C., et al.: Generating typed dependency parses from phrase struc-
ture parses. In: Proceedings of the International Conference on Language Resources
and Evaluation, Genoa, Italy, May 2006

10. McNeil, N., Bridges, R.A., Iannacone, M.D., Czejdo, B.D., Perez, N.: PACE: Pat-
tern accurate computationally efficient bootstrapping for timely discovery of cyber-
security concepts. Computing Research Repository (2013). http://arxiv.org/abs/
1308.4648

11. Mulwad, V., Li, W., Joshi, A., Finin, T., Viswanathan, K.: Extracting informa-
tion about security vulnerabilities from web text. In: Proceedings of the 2011
IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent
Agent Technology, Lyon, France, August 2011

12. Roschke, S., Cheng, F., Schuppenies, R., Meinel, C.: Towards unifying vulner-
ability information for attack graph construction. In: Samarati, P., Yung, M.,
Martinelli, F., Ardagna, C.A. (eds.) ISC 2009. LNCS, vol. 5735, pp. 218–233.
Springer, Heidelberg (2009)

13. Settles, B.: Biomedical named entity recognition using conditional random fields
and rich feature sets. In: Proceedings of the International Joint Workshop
on Natural Language Processing in Biomedicine and Its Applications, Geneva,
Switzerland, August 2004

http://arxiv.org/abs/1308.4941
http://arxiv.org/abs/1308.4941
http://brat.nlplab.org/
http://arxiv.org/abs/1308.4648
http://arxiv.org/abs/1308.4648

366 S. Weerawardhana et al.

14. Toutanova, K., Manning, C.D.: Enriching the knowledge sources used in a max-
imum entropy part-of-speech tagger. In: Proceedings of the 2000 Joint SIGDAT
Conference on Empirical Methods in Natural Language Processing and Very Large
Corpora, Hong Kong, October 2000

15. Urbanska, M., Ray, I., Howe, A., Roberts., M.: Structuring a vulnerability descrip-
tion for comprehensive single system security analysis. In: Rocky Mountain Cele-
bration of Women in Computing, Fort Collins, CO, USA, November 2012

16. Urbanska, M., Roberts, M., Ray, I., Howe, A., Byrne, Z.: Accepting the inevitable:
Factoring the user into home computer security. In: Proceedings of the Third ACM
Conference on Data and Application Security and Privacy, San Antonio, TX, USA,
February 2013

17. Wallach, H.M.: Conditional random fields: An introduction. CIS Technical report
MS-CIS-04-21, University of Pennsylvania (2004)

A Formal Approach to Automatic Testing
of Security Policies Specified in XACML

Mohamed H.E. Aouadi(B), Khalifa Toumi, and Ana Cavalli

Télécom SudParis, 91011 Evry, France
{mohamed.aouadi,khalifa.toumi,Ana.Cavalli}@it-sudparis.eu

Abstract. Nowadays, security policies are the key point of every mod-
ern infrastructure. The specification and testing of such policies are the
fundamental steps in the development of a secure system. To address
both challenges, we propose a framework that automatically generates
test sequences to validate the conformance of a security policy. The func-
tional behavior of the system is specified using a formal description tech-
nique based on Extended Finite-State Machines (EFSMs), while security
requirements are specified using XACML. We develop specific algorithms
to integrate the security rules into the functional system specification.
In this way, we obtain a complete specification of the secured system.
Then, automatic test generation is performed using a dedicated tool
called TestGen-IF which was developed in our laboratory. This genera-
tion is based on the security properties as test objectives. Finally, a case
study is presented to demonstrate the reliability of our framework.

1 Introduction

Nowadays, ensuring that detailed information can be securely exchanged between
different platforms is a real and pressing need. To maintain a certain level of
security, the system behavior must be restrained by a security policy. A security
policy [1,2] is a set of rules that defines the desired behavior of a user within an
information system. The main objective of this policy is to describe how data
and other critical system resources are protected. Generally, a security policy is
written by means of a natural language specification containing statements such
as “this file must be accessible to regular users between 9:00 am and 5:00 pm”
or“only premium users can access the DRP.” The main problem is how to verify
whether system implementation conforms to its policy. However, if one cannot
ensure this conformance, global security can no longer be guaranteed.

In this paper, we propose an approach that makes it possible to validate
security rules. Our approach manipulates three different inputs: a functional
specification of the system based on a well-known mathematically based formal-
ism, the Extended Finite State Machine; a specification of the security policy
(based on XACML [3]) that we wish to apply to this system; and an implementa-
tion of the system. Our solution provides a new specification of the system that
takes into account the security policy (we call it secure functional specification),

c© Springer International Publishing Switzerland 2015
F. Cuppens et al. (Eds.): FPS 2014, LNCS 8930, pp. 367–374, 2015.
DOI: 10.1007/978-3-319-17040-4 25

368 M.H.E. Aouadi et al.

and then it generates tests to check whether the implementation of the system
conforms with the secure functional specification.

The main contributions of this paper are as follows:

– The specification and implementation of an approach to integrate XACML
security rules into a functional model described by an EFSM.

– The proposition of a method to automatically derive test sequences from a
set of rules. The test generation is automatically driven through a dedicated
test generation tool developed by our team.

– The application of our solution in a case study to demonstrate its reliability.

The rest of this paper is organized as follows. In Sect. 2 we discuss related
work. In Sect. 3, we explain the approach to integrating these security rules with
an existing specification in EFSM as well as related algorithms. In Sect. 4, we
present a case study, a DRP service with security features, as well as the results
through the generated test cases for the validation of security rules and the
experimental results. Finally, Sect. 5 presents our conclusions and some directions
for future work.

2 Related Work

Most previous work has focused either on the description of the policy itself or
on the verification of rules. Security rules are defined with modalities (such as
permission, prohibition, and obligation) that express possible constraints on the
behavior of the system.

In [4] the authors propose a testing strategy for automatically deriving test
requests fromanXACMLpolicy anddescribe their pilot experience in test automa-
tion using this strategy. In [5] the authors give an overview of existing security test-
ing approaches and, based on that, develop a novel classification for model-based
security tests along two dimensional-risk and automated test generation. In other
works [6,7], the authors propose approaches based on active testing.

Our approach distinguishes itself from these propositions by assumptions on
the policy and the method used to generate test sequences. First, we make no
assumption about the description language of the policy. Instead, we propose a
framework to specify rules in XACML so that we can apply them to our mathemat-
ical model. XACML supports Attribute-Based Access Control (ABAC) and can
implement an access control model based on RBAC or OrBAC models, making our
study more general than [8] where authors use OrBAC and than [9] where authors
use O2O. Then, we generate a whole set of test cases automatically using a differ-
ent test generation tool developed in our laboratory. This latter is well adapted to
the EFSM formalism which makes our approach different from [7] and [8].

3 Integration Methodology

3.1 Permission Integration

This process of the algorithm begins by seeking for transitions with a permission
rule to integrate. Once this transition is found, the algorithm can either create

A Formal Approach to Automatic Testing of Security Policies 369

a new predicate or strengthen an existing predicate depending on the existence
or the absence of a predicate in that transition. The strengthening or creation of
a predicate is done by adding the conditions in the XACML security rule. This
algorithm is described below.

Algorithm 1. Permissions integration

Require: The transition Tr that maps the permissions.
Each permissioni applies to a conditioni

1: if (∃ associated predicate P) then
2: P := P ∧ (∨i (conditioni))
3: else
4: create predicateP := ∨i (conditioni)
5: end if

Figure 1 gives an example. In the left transition, the system can pass from S1
to S2 when it receives input A. If the permission involves a condition C, the
transition is modified by creating a predicate, as in the left transition. This
predicate returns “true” if the condition is satisfied.

Fig. 1. Permission integration

3.2 Prohibition Integration

This process of the algorithm begins by seeking for transitions with a prohibition
rule to integrate. Once this transition is found, the algorithm can either create
a new predicate or strengthen an existing predicate depending on the existence
or the absence of a predicate in that transition. The strengthening or creation
of a predicate is done by adding the opposite of each condition in the XACML
security rule. This algorithm is described below.

Algorithm 2. Prohibition integration

Require: The transition Tr that maps the prohibitions.
1: if (∃ associated predicate P) then
2: P := P ∧ (∨i (¬conditioni))
3: else
4: create predicateP := ∨i (¬conditioni)
5: end if

An example is shown in the Fig. 2. In the left transition, the system can pass
from S1 to S2 when it receives input A. If the rule specifies that the system is

370 M.H.E. Aouadi et al.

prohibited from sending output X in condition C, the transition is modified by
the creation of a corresponding predicate, as in the left transition.

Fig. 2. Prohibition integration

4 Case Study

4.1 DRP Description

In order to demonstrate the reliability of our approach, we conduct a case study.
Supported by the INTER-TRUST project, this case study is an application to a
service called Dynamic Route Planning (DRP). The user (driver) wants to reach
his destination by the optimal route. Therefore, he must activate the service
through his client interface. Then, he must activate only the DRP service. Once
the service is activated, the infrastructure (modeled as the control center) must
check if the user is authorized to access the service. Here we consider at first
a simple service with various features, such as those commonly used in GPS
devices. First of all, the service is open to anyone. Without using the security
policy, any user can access the service with premium-user privileges. Such access
causes different security problems, such as denial of service and malicious use of
shared data.

To tackle this problem, we specify a security rule that protects information
within the organization by preventing illegitimate users from using the DRP
service.

We model the specification of this system by the EFSM shown in Fig. 3. This
EFSM models the initial system without security properties. This EFSM has
three states S1, S2, and S3. S1 presents the initial state of the server before any
interaction with the user. S2 shows that the server is connected to the user and
waiting for the desired destination from the user. S3 shows that the service is
monitoring the navigation of the user, indicating that it already calculated the
optimal route and is just waiting for any other request from the user to stop the
service or to calculate another route.

The transitions marked t1, t2, and t3 are defined as follows:

– t1: ask access(login, password,GPSposition) / access authorised
– t2: ask for route(destination,class) / response(optimalRoute)
– t3: exit service / exit ok

A Formal Approach to Automatic Testing of Security Policies 371

Fig. 3. Initial model of the server

4.2 Security Policy Specification

In this case study, we implement some security properties to get a secure system
that considers security issues. In the security policy, services must be accessed
only by authorized users. To access the DRP service, the user must introduce a
valid login and password and must have a valid GPS position. Once connected to
the service, the regular user can use only basic functionalities. For example, the
user cannot use international navigation, which is reserved for premium users.
This security policy is described in XACML. Each security rule contains one or
more conditions. We can summarize the conditions as follows:

– C1 - GPS position is in France
– C2 - login and password are valid
– C3 - the user’s class is PREMIUM
– C4 - the user’s class is REGULAR
– C5 - GPS position is valid
– C6 - GPS position is not in France
– C7 - destination is not in France
– C8 - destination is in France

Thus, the security policy contains the three following rules:

– Rule 1: The server grants access to a user if he has a valid couple (login,
password) and a valid GPS position.

– Rule 2: The server gives an international optimal route for PREMIUM users.
– Rule 3: The server does not give an international optimal route for REGU-

LAR users.

4.3 Security Policy Integration

By applying our algorithm to the initial model and the security policy described
in Subsect. 4.2 we obtain a secured model of the system that takes into account
the security policy. This model is presented by the EFSM shown in Fig. 4.

The final model contains the same states, but some transitions are modified
and other transitions are added. We have two new transitions:

372 M.H.E. Aouadi et al.

Fig. 4. Final (secure) model of the server

– t4: ask access (login, password, GPSposition) / access denied
– t5: ask for route(destination, class) / need premium class

Moreover, two transitions are modified, and two conditions are added to t1
and t2. Table 1 compares the model before and after security policy integration.

Table 1. Initial model of the Server

Model Number of states Number of transitions Number of signals

Initial model 3 3 6

Final model 3 5 8

4.4 Experimental Results

Fixing Test Objectives. The test cases are generated by using an automatic
test case generation tool, TestGen-IF [10], which is based on the Hit-Or-Jump
[11] algorithm. The tool generates a test case guided by predefined test purposes
which are sequences of conditions. A test purpose verifies that when the server
communicates with its environment and if a security rule is satisfied, the server
behaves as specified by the security rule. In order to validate the security between
the server and its environment, we define for each security rule the corresponding
test purpose and obtain seven test cases that cover all of the security policy. The
first step in the experimentation is the specification of the system into an IF
code format.

While defining the test purposes, we notice that in some cases, we need more
than one condition in a test purpose to verify a security rule. For example, when
a user tries to access a DRP service in a foreign country, the server should check

A Formal Approach to Automatic Testing of Security Policies 373

if the user’s class is premium before granting an access. In this case, we define
the test purpose as a sequence of two conditions. The first condition verifies that
the user is in a foreign country. The second condition verifies that the user’s
class is premium.

Test Case Generation. Using the TestGen-IF tool we are able to generate
a test sequence that verifies the two conditions. Figure 5 shows the test case
generated for Rule 3 (presented in 4.2). Note that the inputs and outputs are
applied and observed by the tester.

Fig. 5. Test case related to security rule 3

5 Conclusions

In this paper, we present a formal approach to testing security rules specified in
XACML. We propose a method to integrate security rules in a functional model
represented by an EFSM. A detailed study is carried out to specify the transitions
into which a security rule has to be integrated. The resulting functional model
is used to test the security rules. Our method can be used to integrate any
security policy specified with the same modality as XACML. A detailed case
study is provided along with results. We plan to extend our work to consider
timed security policies and to improve our approach to consider interoperability
security policies.

References

1. Damianou, N., Dulay, N., Lupu, E.C., Sloman, M.: The ponder policy specifica-
tion language. In: Sloman, M., Lobo, J., Lupu, E.C. (eds.) POLICY 2001. LNCS,
vol. 1995, pp. 18–38. Springer, Heidelberg (2001)

2. Toumi, K., Cavalli, A., El Maarabani, M.: Role based interoperability security poli-
cies in collaborative systems. In: 2012 International Conference on Collaboration
Technologies and Systems (CTS), pp. 471–477. IEEE (2012)

3. Godik, S., Anderson, A., Parducci, B., Humenn, P., Vajjhala, S.: Oasis extensible
access control 2 markup language (XACML) 3, Technical report, OASIS, Technical
Report (2002)

4. Bertolino, A., Daoudagh, S., Lonetti, F., Marchetti, E., Schilders, L.: Automated
testing of extensible access control markup language-based access control systems.
IET Softw. 7(4), 203–212 (2013)

374 M.H.E. Aouadi et al.

5. Felderer, M., Agreiter, B., Zech, P., Breu, R.: A classification for model-based
security testing. In: The Third International Conference on Advances in System
Testing and Validation Lifecycle, VALID 2011, pp. 109–114 (2011)

6. Li, K., Mounier, L., Groz, R., Test generation from security policies specified in
or-bac. In: 31st Annual International Computer Software and Applications Con-
ference, COMPSAC 2007, vol. 2. IEEE, pp. 255–260 (2007)

7. Senn, D., Basin, D., Caronni, G.: Firewall conformance testing. In: Khendek,
F., Dssouli, R. (eds.) TestCom 2005. LNCS, vol. 3502, pp. 226–241. Springer,
Heidelberg (2005)

8. Mallouli, W., Orset, J.-M., Cavalli, A., Cuppens, N., Cuppens, F.: A formal app-
roach for testing security rules. In: Proceedings of the 12th ACM symposium on
Access control models and technologies, pp. 127–132. ACM (2007)

9. El Maarabani, M., Hwang, I., Cavalli, A.: A formal approach for interoperability
testing of security rules. In: 2010 Sixth International Conference on Signal-Image
Technology and Internet-Based Systems (SITIS), pp. 277–284. IEEE (2010)

10. Hwang, I., Lallali, M., Cavalli, A., Verchere, D.: Modeling, validation, and verifi-
cation of PCEP using the IF language. In: Lee, D., Lopes, A., Poetzsch-Heffter, A.
(eds.) FMOODS 2009. LNCS, vol. 5522, pp. 122–136. Springer, Heidelberg (2009)

11. Cavalli, A., Lee, D., Rinderknecht, C., Zäıdi, F.: Hit-or-jump: An algorithm for
embedded testing with applications to in services. In: Wu, J., Chanson, S.T., Gao,
Q. (eds.) Formal Methods for Protocol Engineering And Distributed Systems, pp.
41–56. Springer, Ney York (1999)

Author Index

Adams, Carlisle 3, 279
Adi, Kamel 131
Alkhojandi, Naelah 35
Antignac, Thibaud 65
Aouadi, Mohamed H.E. 367
Assels, Michael J. 168

Bonfante, Guillaume 112
Bouhaddi, Myria 131
Bringer, Julien 92

Carrara, Brent 3
Cavalli, Ana 337, 367
Chabanne, Hervé 92
Chu, Bill 85
Cuppens, Frédéric 337
Cuppens-Boulahia, Nora 337

Debbabi, Mourad 168

Erradi, Mohammed 221

Graa, Mariem 337

Haddadi, Fariba 329
Howe, Adele 356

Imine, Abdessamad 49

Jamet, Raphaël 262
Jayasumana, Anura P. 347

Kassem, Ali 247
Kerr, Joel 85
Khoumsi, Ahmed 221
Korak, Thomas 17
Krombi, Wadie 221

Lafourcade, Pascal 247, 262
Lakhnech, Yassine 247
Laud, Peeter 294

Le, Thanh-Ha 92
Logrippo, Luigi 205

Makrakis, Dimitrios 279
Marion, Jean-Yves 112
Martinelli, Fabio 239
Miri, Ali 35
Mokhov, Serguei A. 168
Mosharraf, Negar 347
Mukherjee, Subhojeet 356

Nguyen, Hiep H. 49

Ortiz-Yepes, Diego A. 147
Osborn, Sylvia L. 187

Paquet, Joey 168
Portner, Joe 85
Potet, Marie-Laure 92
Puys, Maxime 92

Radjef, Mohammed Saïd 131
Ray, Indrajit 356
Ray, Indrakshi 347
Rivière, Lionel 92
Rusinowitch, Michaël 49

Santini, Francesco 239
Servos, Daniel 187

Ta, Thanh Dinh 112
Ta, Vinh-Thong 65
Toumi, Khalifa 367

Vaidya, Binod 279

Waage, Tim 311
Weerawardhana, Sachini 356
Wen, Wen 279
Wiese, Lena 311
Willemson, Jan 294

Zincir-Heywood, A. Nur 329

	Preface
	Organization
	Contents
	Attacks and Vulnerabilities
	On Acoustic Covert Channels Between Air-Gapped Systems
	1 Introduction
	2 Related Work
	3 Acoustic Channel
	3.1 Environments Studied and System Requirements
	3.2 Measured Channel Characteristics in Our Environments

	4 Experiments and Results
	5 Protection Mechanisms
	6 Conclusion
	References

	Location-Dependent EM Leakage of the ATxmega Microcontroller
	1 Introduction
	1.1 Related Work
	1.2 Our Contribution
	1.3 Outlook

	2 Used Microcontroller
	3 AES Implementations
	3.1 Description of AES
	3.2 Software AES Implementation
	3.3 AES Crypto Engine

	4 Practical SCA Experiments
	4.1 Measurement Setup
	4.2 Experiment Descriptions
	4.3 Results for Software Implementation
	4.4 Results for AES Crypto Engine

	5 Discussion of the Results
	6 Conclusion
	References

	Privacy
	Privacy-Preserving Public Auditing in Cloud Computing with Data Deduplication
	1 Introduction
	2 Problem Statement
	2.1 System Model:
	2.2 Threat Model:
	2.3 Design Goals:

	3 Proposed Protocols
	3.1 Case 1: Two Users Have the Same File
	3.2 Case 2: Two Users Have Identical Blocks
	3.3 Support for Batch Auditing

	4 Evaluation
	4.1 Security Analysis
	4.2 Performance Analysis

	5 Conclusions
	References

	A Maximum Variance Approach for Graph Anonymization
	1 Introduction
	2 Related Work
	2.1 Anonymization of Deterministic Graphs
	2.2 Mining Uncertain Graphs

	3 Preliminaries
	3.1 Uncertain Graph
	3.2 (k,)-obfuscation and Its Limitations

	4 Maximum Variance Approach
	4.1 Observation #1: Maximum Degree Variance
	4.2 Variance of Edit Distance
	4.3 Observation #2: Nearby Potential Edges

	5 Algorithms
	5.1 Overview
	5.2 Graph Partitioning
	5.3 Quadratic Programming

	6 Quantifying Framework
	6.1 Privacy Measurement
	6.2 Utility Measurement

	7 Evaluation
	7.1 Effectiveness and Efficiency
	7.2 Comparative Evaluation

	8 Conclusion
	A Proof of Theorems
	A.1 Proof of Theorem 1

	References

	Privacy by Design: On the Conformance Between Protocols and Architectures
	1 Introduction
	2 Architecture Level
	3 Protocol Level
	3.1 Syntax of the Modified Applied -Calculus
	3.2 Semantics of the Modified Applied -Calculus

	4 From Protocols to Architectures
	5 Related Works
	6 Conclusions and Future Works
	References

	Software Security and Malware Analysis
	Moving Target Defense Against Cross-Site Scripting Attacks (Position Paper)
	Abstract
	1 Introduction
	2 Moving Target Defense Against XSS
	2.1 JavaScript Language Mutation
	2.2 Deploying MDX
	2.3 Browser Implementation

	3 Discussions
	Acknowledgment
	References

	Combining High-Level and Low-LevelApproaches to Evaluate SoftwareImplementations Robustness AgainstMultiple Fault Injection Attacks
	1 Introduction
	1.1 Fault Injection Attacks Threats
	1.2 A Coarse-Grained Process
	1.3 Actual Challenges
	1.4 Our Contributions

	2 High-level Robustness Evaluation
	2.1 The Lazart Approach
	2.2 Results Analysis

	3 Low-Level Robustness Evaluation
	3.1 The EFS Approach
	3.2 Results Analysis

	4 Case Study
	4.1 Secured VerifyPIN implementation
	4.2 Vulnerabilities Detected by Lazart
	4.3 Vulnerabilities Detected by the EFS
	4.4 Synthesis

	5 Combining Lazart and the EFS to Improve theVulnerability Detection
	6 Conclusion
	References

	Malware Message Classification by Dynamic Analysis
	1 Introduction
	2 Background
	2.1 Execution Tree

	3 Input Messages Analysis
	3.1 Dynamic Tainting Analysis
	3.2 Trace Formula Construction
	3.3 Message Execution Tree
	3.4 Message Decomposition

	4 Message Classification
	4.1 Message Automaton
	4.2 Minimal Message Automaton

	5 Implementation and Experiments
	5.1 Experiments

	6 Conclusion
	References

	Network Security and Protocols
	A Game Approach for an Efficient Intrusion Detection System in Mobile Ad Hoc Networks
	1 Introduction
	2 Related Work
	3 Problem Statement and Proposed Model
	3.1 Game Theoretic Model for Leader Selection
	3.2 Intruder-Defender Game Theoretical Model

	4 Simulation
	4.1 Simulation Results
	4.2 Approach Evaluation

	5 Conclusion
	References

	Optimizing TLS for Low Bandwidth Environments
	1 Introduction
	2 Optimizing the TLS Handshake
	2.1 Resumed vs. Full Handshake
	2.2 Client Hello
	2.3 Certificates
	2.4 Certificate Request
	2.5 Combining the Handshake Optimizations

	3 Reducing TLS Handshake Certificate Exchange Overhead
	3.1 End Point Certificate Caching
	3.2 Using Card Verifiable Certificate (CVC) with TLS

	4 Related Work
	5 Conclusions and Future Work
	A Transport Layer Security (TLS)
	A.1 TLS Goals
	A.2 TLS Requirements
	A.3 Benefits of Using TLS
	A.4 TLS Handshake
	A.5 TLS Record Protocol
	A.6 TLS Alert Protocol

	References

	Automating MAC Spoofer Evidence Gathering and Encoding for Investigations
	1 Introduction
	2 Methodology
	2.1 MAC Spoofer RT Alert
	2.2 Report Analysis by Human Experts
	2.3 Automated Algorithm
	2.4 Use and Misuse Cases
	2.5 False Positives
	2.6 Components

	3 Conclusion
	References

	Access Control Models and Policy Analysis
	HGABAC: Towards a Formal Model of Hierarchical Attribute-Based Access Control
	1 Introduction
	2 Related Work
	3 HGABAC Model
	3.1 Formal Model
	3.2 Policy Language

	4 Examples and Evaluation
	4.1 Example: The Library
	4.2 Evaluation

	5 Emulating Traditional Models
	5.1 DAC Style Configuration
	5.2 MAC Style Configuration
	5.3 RBAC Style Configuration

	6 Conclusions and Future Work
	References

	Logical Method for Reasoning About Access Control and Data Flow Control Models
	Abstract
	1 Introduction
	2 Literature Review
	3 Basic Concepts for Our Logical Method
	4 Coalitions
	5 Upward Multi-level Models (UML)
	6 Downward Multi-level Models (DML)
	7 Domain Powerset Models (DP)
	8 Domain Powersets with Conflicts (DPC)
	9 Role-Based Access Control (RBAC)
	10 High Water Mark (HWM)
	11 Chinese Wall (ChW)
	12 Future Research: Variations and Combinations of the Models
	13 Conclusions
	Acknowledgment
	References

	A Formal Approach to Verify Completeness and Detect Anomalies in Firewall Security Policies
	1 Introduction
	2 Related Work
	3 Preliminaries on Firewall Security Policies
	4 Synthesis Procedure
	4.1 Step 1: Automaton for Each Filtering Rule
	4.2 Step 2: Uniform Intervals
	4.3 Step 3: Product and Association of Actions

	5 Verifying Completeness
	6 Anomaly Categorization, General Anomaly Detection
	6.1 Categories of Anomalies
	6.2 Detecting General Anomalies

	7 Detecting Anomalies with Conflict
	7.1 Detecting Shadowing Anomaly
	7.2 Detecting Generalization Anomaly
	7.3 Detecting Correlation Anomaly

	8 Redefining and Detecting Redundancy Anomaly
	8.1 Definition and Detection of LP-Redundancy Anomaly
	8.2 Definition and Detection of MP-Redundancy Anomaly
	8.3 Difference with [1]

	9 Space and Time Complexities
	10 Conclusion and Future Work
	References

	Protocol Verification
	Debating Cybersecurity or Securing a Debate?
	1 Introduction
	2 Preliminaries
	2.1 Decision-Making with Arguments

	3 An Example for Adopting Cybersecurity Countermeasures
	3.1 Forgery of a Discussion

	4 From Raw Data to Decision
	5 Related Work
	6 Conclusion
	References

	Formal Verification of e-Reputation Protocols
	1 Introduction
	2 Modelling
	3 Security Properties
	3.1 Privacy Properties
	3.2 Authentication Properties
	3.3 Verifiability Properties

	4 Case Study
	5 Conclusion and Future Work
	References

	(In)Corruptibility of Routing Protocols
	1 Introduction
	2 Definitions
	2.1 Routing Protocols
	2.2 Message Lifecycle and Routes

	3 Examples of Routing Protocols
	4 Incorruptibility
	4.1 Attacker
	4.2 Measuring How Routing Protocols Operate
	4.3 Routing Similarity
	4.4 Incorruptibility of a Protocol
	4.5 Bounded Corruptibility

	5 Conclusion
	References

	Cryptographic Technologies
	Decentralized CRT-Based Efficient Verifiable (n, t, n) Multi-secret Sharing Scheme
	Abstract
	1 Introduction
	2 Background
	2.1 Shamir's Secret Sharing Scheme
	2.2 Asmuth-Bloom's Secret Sharing Scheme
	2.3 (t, n)-Consistency Test

	3 Architecture and Previous Related Work
	3.1 (n, t, n) Secret Sharing Architecture
	3.2 (n, t, n) Multi-secret Sharing Scheme [13]
	3.3 Security Analysis

	4 Proposed Efficient Decentralized (n, t, n) Multi-secret Sharing Scheme Based on CRT
	4.1 Detailed Scheme
	4.2 Security and Verification

	5 Conclusion and Future Work
	References

	Composable Oblivious Extended Permutations
	1 Introduction
	2 Related Work
	3 Preliminaries
	4 Our OEP Functionality
	5 Converting a Private Vector to an OEP
	6 Benchmarks
	7 Discussion
	References

	Benchmarking Encrypted Data Storage in HBase and Cassandra with YCSB
	1 Introduction
	1.1 Organization of the Article

	2 The Data Stores
	3 Java Cryptography API and the Bouncy Castle Provider
	4 YCSB Benchmark
	5 Running YCSB on Encrypted Data
	6 Results
	6.1 Test 1: Increasing Number of Parallel Worker Threads
	6.2 Test 2: Increasing the Target Number of Operations per Second
	6.3 Test 3: Increasing the Number of Operations
	6.4 General Observations

	7 Related Work
	8 Conclusion and Future Work
	References

	Short Papers
	Data Confirmation for Botnet Traffic Analysis
	1 Introduction
	2 Related Work
	3 Methodology
	4 Evaluation
	4.1 First Step--Analysis via Flow Measurements
	4.2 Second Step--Post-classification Analysis via Decision Tree

	5 Conclusion
	References

	Detection of Illegal Control Flow in Android System: Protecting Private Data Used by Smartphone Apps
	1 Introduction
	2 Motivating Example
	3 Related Work
	4 Approach Overview and Implementation
	4.1 Static Analysis Component
	4.2 Dynamic Analysis Component

	5 Evaluation
	5.1 Effectiveness
	5.2 Performance
	5.3 False Positives

	6 Conclusion
	References

	A Responsive Defense Mechanism Against DDoS Attacks
	Abstract
	1 Introduction
	2 Responsive Defense Mechanism
	2.1 Feature Selection
	2.2 History Capture

	3 Model Validation
	3.1 Results

	4 Conclusion
	References

	Automated Extraction of Vulnerability Information for Home Computer Security
	1 Introduction
	2 Our Approach to Extracting Computer Vulnerability Information
	2.1 Machine Learning Module
	2.2 Part-of-Speech Tagging

	3 Evaluating the Extraction
	3.1 Validate Implementation
	3.2 Compare Approaches

	4 Conclusion and Future Work
	References

	A Formal Approach to Automatic Testing of Security Policies Specified in XACML
	1 Introduction
	2 Related Work
	3 Integration Methodology
	3.1 Permission Integration
	3.2 Prohibition Integration

	4 Case Study
	4.1 DRP Description
	4.2 Security Policy Specification
	4.3 Security Policy Integration
	4.4 Experimental Results

	5 Conclusions
	References

	Author Index

