
Chapter 8
Turing and Non-Turing Patterns
in Two-Dimensional Prey-Predator Models

Malay Banerjee

Abstract Spatial patterns are ubiquitous in nature, and study of spatio-temporal
pattern formation for prey-predator models are initiated based upon the seminal
work of Turing on morphogenesis (Turing, Philos Trans R Soc Lond B 237:37–
72, 1952). Interactions between individuals of different species over a wide range
of spatial and temporal scales often modify the temporal dynamics as well as
stability properties of the population distributed over natural landscape. Segel and
Jackson (J Theor Biol 37:545–559, 1972) first used reaction-diffusion systems to
explain ecological pattern formation by interacting populations. This idea used
afterwards to explain pattern formation in plankton systems, semiarid vegetation
patterns, invasion by exotic species and distribution of prey-predator distribution
over homogeneous space. After the seminal works by Segel and Jackson (J Theor
Biol 37:545–559, 1972) and Levin and Segel (Nature 259:659, 1976), researchers
were interested to study the Turing-type pattern formation, but now a days it
shifted towards non-Turing patterns and spatio-temporal chaos. Empirical evidence
in support of spatio-temporal chaotic patterns in interacting populations remain in
vein but the resulting patterns have similarity with the irregular distribution over
spatial domain. Further, the formation of spatio-temporal chaotic patterns within
Turing-Hopf domain remains a controversial issue, whether it arises near the Turing-
Hopf boundary or away from it. This article aims to review the recent development
of Turing and non-Turing pattern formations in prey-predator models having
prey-dependent and ratio-dependent functional response with special emphasis on
spatio-temporal chaos.

8.1 Introduction

The spatio-temporal models of predator-prey interaction are studied to understand
the role of random mobility of the species, within their habitat, on the stability
and persistence of interacting species. Investigation on spatio-temporal models of
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interacting population reveal that the movement of the individuals of one or more
species some time act as a stabilizing factor and in some cases they are capable
to induce some destabilization. Interestingly, destabilization of homogeneous dis-
tribution of population is not a threat towards the survival of population rather it
may settle down to inhomogeneous distribution of individuals over their habitats
producing localized patches. These localized patches may be time invariant or may
not be. Diffusivity of individuals has power to stabilize as well as destabilize the
coexistence scenario. As a result, researchers are interested to study various types
of stationary and non-stationary spatio-temporal pattern formation by the interacting
populations. Mathematical analysis and numerical simulation of spatio-temporal
models provide the idea that how individuals of certain species are distributed
over two dimensional landscapes or within the aquatic environment. In reality,
the distribution of plant and animal populations is not homogeneous rather they
are packed in localized patches. These localized patches either remain fixed or
change with time [21]. Time invariant patches and the patches moving with time
correspond to stationary and non-stationary patterns. Non-stationary patterns may
be oscillatory, quasi-periodic or chaotic. Various types of resulting patterns can be
classified as spot pattern, labyrinthine pattern, stripe pattern, target pattern, spiral
pattern, tip-splitting pattern and interacting spiral pattern [7, 18].

Significance and importance of spatial aspect towards the stabilization and long
term existence of certain species was first observed by Gause [24]. His observation
was based upon the laboratory experiments to study growth of paramecium and
didinum [9]. Effect of spatial distribution on stability of population and persistence
or extinction properties was studied by Luckinbill [39, 40]. A detailed discussion
on the role of space and mobility of individuals on the interaction of ecological
species are available in the book by Okubo and Levin [48]. All the research works
on spatio-temporal pattern formation due to small perturbation to the homogeneous
distribution of population are based upon the seminal work of Turing [63]. Turing’s
idea of pattern formation in reaction-diffusion system was first applied to justify
ecological pattern formation by Segel and Jackson [57]. The same idea was carried
out to explain to explain patchy distribution in plankton community by Levin
and Segel [37] and for semiarid vegetation patterns by Klausmeier [32]. Now a
days the literature on pattern formation by interacting populations is very rich
as huge number of articles is published in this direction and a wide variety of
spatial patterns are reported [2, 8, 9, 11, 12, 15, 16, 21, 23, 30, 32, 41, 44–46, 51–
53, 58, 59, 66]. Initially the works in this direction was focused on the Turing
patterns only. Recently, attempts are made to study the non-Turing patterns with
special emphasis on spatio-temporal chaos. Few recent works demonstrated the
mechanism of spatio-temporal chaotic patterns which are biologically realistic to
some extent. But empirical evidence and field data supporting spatio-temporal chaos
are not abundant. Rather, existence of chaos in ecological system still remains a
controversial issue. However, spatio-temporal chaotic patterns are able to explain
the irregular distribution of population which is frequently observed in nature.

Majority of literature on spatio-temporal pattern formation in the spatially
extended prey-predator models are focused with the models having prey-dependent
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functional response and death rate of the predators is directly proportional to their
density [23, 41, 51]. These types of models are unable to produce Turing patterns.
But the consideration of prey-predator models with nonlinear death rate for predator
are capable to exhibit Turing patterns [12, 44, 64]. But Turing and non-Turing
pattern formation in case of spatially distributed populations with ratio-dependent
functional response are now getting attention from the researchers [2, 6, 8, 9, 68].
As the temporal models of prey-predator interaction with ratio-dependent functional
response produce much richer dynamics (see [5, 29, 31, 34, 35, 70] and references
cited therein) compared to the models with prey-dependent functional response so
it is expected that the spatial extension of ratio-dependent prey-predator model
will produce a wide variety of patterns. Initially the ratio-dependent functional
response faced strong criticism as it is undefined at the origin [1, 3, 4, 25]. Arditi and
Ginzburg [4] argued that the functional response could be a function of the prey-
to-predator ratio when interaction is characterized by the heterogeneity of space
and time. Further, the dependence of the functional responses upon the densities
of prey and predators are now established by the theoretical biologists. The ratio-
dependent functional response is more suitable when predators have to search for
prey individuals and hence they have to compete among themselves.

Formation of spatio-temporal patterns are obtained by analyzing the partial
differential equation models of prey-predator interaction. Most of the models are
extension of ordinary differential equation models by incorporating diffusion terms
to model the mobility of the individuals of each species. Classical Gause type prey-
predator system is governed by the system of coupled ordinary differential equations

dN

dT
D Q.N; K/N � R.N; P /P;

dP

dT
D eR.N; P /P � M.P /P; (8.1)

subjected to non-negative initial conditions [22]. In above formulation, N � N.T /

and P � P.T / denote the prey and predator population densities respectively at
any instant of time ‘T ’. Q.N; K/ is the density-dependent per capita growth rate of
prey in absence of predator and the positive constant K stands for the environmental
carrying capacity for the prey. Q.N; K/ satisfies some basic properties: Q.K; K/ D
0, Q.0; K/ > 0, lim

K!1 Q.0; K/ < 1, QN .N; K/ < 0, QK.N; K/ � 0,

lim
K!1 QN .N; K/ D 0 and QNK.N; K/ > 0. The sole link between the growth

of prey and predator populations is the functional response R.N; P /, which is a
function of both the prey and predator population and stands for the amount of prey
biomass consumed by per predator per unit of time. Further, it is assumed for a
wide range of prey-predator models that the growth rate of the predators due to prey
consumption is simply proportional to the functional response. The proportionality
constant is e (0 < e < 1) and is known as the conversion efficiency. Several
authors have considered the fact that the consumption of prey biomass by their
predators is solely depend upon the abundance of prey biomass only and hence
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the functional response is a function of prey population only, Q.N; P / � Q.N /.
This type of functional response in known as prey-dependent functional response.
Q.N / always satisfies two properties, Q.N / > 0 for all N > 0 and Q.0/ D 0

and monotonic prey-dependent functional response satisfies additional condition
QN .N / > 0 [19]. There are some non-monotonic functional responses, namely
Holling type-IV [33] and Monod-Haldane type functional response [10, 26, 49].
The ratio-dependent functional response can be obtained from the prey dependent
functional response, replacing N by N=P . The ratio-dependent functional response,
given by Q.N=P /, satisfy additional condition lim

.N;P /!.0;0/
PQ.N=P / D 0 [34].

There are several evidences like field data, laboratory experiments etc. towards
the consideration of functional response as a function of both the prey and the
predator population densities. Beddington-DeAngelis functional response [62],
ratio-dependent functional response [3, 4] are examples of the functional response
involving predator population density also. M.P / is the per capita intrinsic death
rate for the predator and mostly it is assumed to be a constant. The Gause type prey-
predator model is capable to describe the dynamic behavior of specialist predator’s
only as the growth rate of predator population is zero in the absence of the prey [13].

Here we first recall the mathematical criteria for the Turing pattern formation
for spatio-temporal prey-predator model where individuals are assumed to be dis-
tributed over two-dimensional bounded domain. Mathematical model is described
in terms of non-homogeneous parabolic partial differential equations subjected to
positive initial conditions and no-flux boundary conditions. Then we look at the
pattern formation for the models having ratio-dependent functional response terms.
The spatial extension of classical Holling-Tanner model is revisited to show the
transition in pattern formation and sensitivity of patterns to initial conditions. Most
of the results discussed here are already available in literature [8, 9, 65]. Results are
recollected here to ensemble the varieties of patterns produced by the interacting
prey-predator models whose temporal counterpart exhibit very rich dynamics. The
role of temporal instability and spatial instability to induce spatio-temporal chaotic
pattern is discussed in the concluding section.

8.2 Basic Spatio-Temporal Model

A general spatio-temporal prey-predator model is governed by the following system
of two nonlinear coupled partial differential equations

@N.T; X; Y /

@T
D NF.N; P / C DN

�
@2N

@X2
C @2N

@Y 2

�

@P.T; X; Y /

@T
D PG.N; P / C DP

�
@2P

@X2
C @2P

@Y 2

�
(8.2)
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subjected to known non-negative initial distribution of populations,

N.0; X; Y / D N0.X; Y / � 0; P.0; X; Y / D P0.X; Y /; .X; Y / 2 �; (8.3)

and zero-flux boundary conditions

@N

@�
D @P

@�
D 0; .T; X; Y / 2 .0; 1/ � @�: (8.4)

N � N.T; X; Y / and P � P.T; X; Y / denote the density of the prey and the
predators respectively at any instant of time‘T ’ and at the position .X; Y / within the
square bounded domain � having boundary @� . F.N; P / and G.N; P / are the per
capita growth rates of the prey and predator population respectively and DN , DP

are their rate of diffusions. The governing system (8.2) can be written in terms of
dimensionless variables as follows [47]

@n.t; x; y/

@t
D nf .n; p/ C

�
@2n

@x2
C @2n

@y2

�

@p.t; x; y/

@t
D pg.n; p/ C d

�
@2p

@x2
C @2p

@y2

�
(8.5)

subjected to the initial conditions,

n.0; x; y/ D n0.x; y/ � 0; p.0; x; y/ D p0.x; y/; .x; y/ 2 �; (8.6)

and boundary conditions

@n

@�
D @p

@�
D 0; .t; x; y/ 2 .0; 1/ � @�: (8.7)

Here n, p are dimensionless population densities, t , x, y are dimensionless
independent variables and d (D DP =DN ) is the ratio of diffusivities. Majority
of the research works are based upon the dimensionless versions of the nonlinear
coupled partial differential equations as they contain less number of parameters.
The temporal model corresponding to the spatio-temporal model (8.5) is a system
of two nonlinear coupled ordinary differential equations

dn.t/

dt
D nf .n; p/;

dp.t/

dt
D pg.n; p/; (8.8)

with non-negative initial conditions n.0/; p.0/ � 0. This type of system admits a
trivial equilibrium point .0; 0/ (provided f .:/ and g.:/ are defined at .0; 0/), one or
two axial equilibrium points and coexisting equilibrium point(s) is(are) solution(s)



262 M. Banerjee

of the system of algebraic equations f .n; p/ D 0 D g.n; p/ [22, 33]. The number
of axial and interior equilibrium point solely depends upon the functional forms
of f .n; p/ and g.n; p/. Let E�.n�; p�/ denotes interior equilibrium point and for
Turing-instability conditions we need the local asymptotic stability condition of E�
only. The Jacobian matrix for the system (8.8) evaluated at E� is given by

J� � J.n; p/jE�

D
�

j11 j12

j21 j22

�
; (8.9)

where

j11 D n
@f

@n

ˇ̌̌
ˇ
E�

; j12 D n
@f

@p

ˇ̌̌
ˇ
E�

; j21 D p
@g

@n

ˇ̌̌
ˇ
E�

; j22 D p
@g

@p

ˇ̌̌
ˇ
E�

:

Interior equilibrium point E� is locally asymptotically stable whenever the
following conditions are satisfied,

Tr.J�/ D j11 C j12 < 0; (8.10)

Det.J�/ D j11j22 � j12j21 > 0: (8.11)

According to the Routh–Hurwitz criteria [47], Tr.J�/ < 0 and Tr.J�/ > 0

ensure that the two eigenvalues of J� are negative or having negative real parts.
The interior equilibrium point looses stability through Hopf-bifurcation [28] when
Tr.J�/ D 0. Solving the equation Tr.J�/ D 0 in terms any parameter ‘˛’ (say)
involved with the system we can find the Hopf-bifurcation threshold (denoted by
˛H , for convenience) and instability of interior equilibrium point is ensured when
the transversality condition for the Hopf-bifurcation is satisfied. This transversality

condition is
d

d˛
Tr.J�/

ˇ̌̌
ˇ
˛D˛H

¤ 0. Small amplitude periodic solution arises

through Hopf-bifurcation and interior equilibrium point is surrounded by a limit-
cycle. The stability or instability of the limit-cycle is determined through the sign of
first Lyapunov number [36, 50].

The components of interior equilibrium point define a homogeneous steady-state
for the reaction-diffusion system. n.t; x; y/ D n� and p.t; x; y/ D p� satisfy
the system of partial differential equations (8.5) along with the initial and boundary
conditions. The condition under which a small heterogeneous perturbation around
the homogeneous steady-state develop with the advancement of time is known as the
Turing instability condition. The development of small inhomogeneous perturbation
leads to spatio-temporal pattern formation.

To obtain the Turing instability condition, the perturbation around the homoge-
neous steady-state is defined by

n.t; x; y/ D n� C u.t; x; y/; p.t; x; y/ D p� C v.t; x; y/; (8.12)
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where u D �1e�t cos.kxx/ cos.kyy/ and v D �2e
�t cos.kxx/ cos.kyy/. �1 and

�2 are two small non-zero real numbers and k D
q

k2
x C k2

y is the wave number.

Substituting (8.12) into (8.5) and then linearizing the system about .n�; p�/ we get
the following characteristic equation

jJk � �I2j D 0; (8.13)

where

Jk D J� � k2diag.1; d/ I2 D
�

j11 � k2 j12

j21 j22 � dk2

�
: (8.14)

For Turing instability requires that at least one eigenvalue of the matrix Jk must
have positive real root. Violation of at least one of the following two inequalities
imply the onset of Turing instability,

j11 C j12 � .1 C d/k2 < 0; (8.15)

h.k2/ � d.k2/2 � .dj11 C j22/k2 C j12j21 � j12j21 > 0: (8.16)

The condition (8.15) is always satisfied when interior equilibrium point of the
temporal model is locally asymptotically stable and d; k2 > 0. The only relevant
instability condition can be achieved through the violation of the inequality (8.16)
for a range of values of k. h.k2/ attains its minimum at k2 D k2

T , where

k2
T D dj11 C j22

2d
> 0: (8.17)

As j11 C j22 < 0 and kT is a real quantity, the feasible existence of kT demands
that j11 and j22 must be of opposite sign. The models for which j11j22 � 0, one can
not find any Turing pattern. As ‘d ’ is a positive parameter, the conditions j11Cj22 <

0 and dj11Cj22

2d
> 0 are satisfied simultaneously whenever j11 and j22 are of opposite

sign, that is, j11j22 < 0. Substituting k D kT in the expression of h.k2/, we find a
sufficient condition for Turing instability,

0 < 2
p

d
p

j12j21 � j12j21 < dj11 C j22: (8.18)

Turing bifurcation curve is given by h.k2
T / D 0 which defines a boundary in

the parametric space. Turing instability cannot occur in the case of equal diffusivity
(i.e. d D 1). For prey-predator models, in general, j22 � 0 and again one can
not find the situation of Turing instability whenever j22 D 0. For j22 < 0,
the occurrence of Turing instability demands the satisfaction of the restriction
d > � j22

j11
> 1.
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Now h.k2/ is a continuous function of k2, which is a parabola, and for Turing
instability we need h.k2

T / < 0. In this case we find two values of k2 (by
solving (8.16) for k2) which are given by

k2
1;2 D dj11 C j22 � p

.dj11 C j22/2 � 4d.j11j22 � j12j21/

2d
; (8.19)

such that h.k2/ < 0 whenever k2 2 .k2
1 ; k2

2/. This interval gives us range of
unstable wave numbers.

8.3 Turing and Non-Turing Patterns

In this section we explore the structure of Turing bifurcation domains and various
types of stationary and non-stationary patterns exhibited by two dimensional prey
predator models with ratio dependent and prey dependent functional responses. The
classical Gauss type prey-predator models with prey dependent function response
fail to produce any Turing patterns. Temporal dynamics of those models are
governed by the system of nonlinear coupled ordinary differential equations

dn

dt
D nq.n/ � r.n/p;

dp

dt
D er.n/p � mp; (8.20)

subjected to positive initial conditions. q.n/ is per capita growth rate of prey in
the absence of predators, r.n/ denotes the rate of grazing by the predators, e

(0 < e < 1) is the conversion efficiency and ‘m’ is the intrinsic death rate
for predators. Spatio-temporal models with these type of temporal counterpart are
unable to produce Turing patterns as j22 D 0 and hence the condition j11j22 < 0

can not be satisfied.
In the forthcoming subsections, we are going to discuss three different models

for prey-predator interactions which exhibit Turing as well as non-Turing patterns
for specific choices of parameter values. Two ratio-dependent prey-predator models
and Holling-Tanner model with prey-dependent functional response is considered
here as all of them exhibit Turing patterns. To obtain the spatio-temporal patterns,
numerical simulations are performed using the Euler scheme for the reaction part
and five point explicit finite difference scheme for the diffusion part. All the numeri-
cal simulation results presented here are obtained by considering zero-flux boundary
conditions and small amplitude random perturbation around homogeneous steady-
state (if not specified otherwise) [42]. The choices of the lattice size along with
temporal and spatial stepping are mentioned at relevant places. The domain of
integration, for all the simulation results presented here, are taken as square domain.
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8.3.1 Ratio-Dependent Prey-Predator Model

Dynamical interaction between prey and predator species with ratio-dependent
functional response is governed by the following system

@n.t; x; y/

@t
D n.1 � n/ � ˛np

n C p
C

�
@2n

@x2
C @2n

@y2

�
;

@p.t; x; y/

@t
D ˇnp

n C p
� �p C d

�
@2p

@x2
C @2p

@y2

�
; (8.21)

subjected to the initial and boundary conditions as described in the previous section.
The parameters ˛, ˇ, � and d are dimensionless positive parameters and detailed
description of the model can be found in [9]. In [9], we have obtained spatio-
temporal patterns within and outside the Turing domain for specific choices of
parameter values.

The temporal dynamics of the system (8.21) is governed by the following system
of equations

dn.t/

dt
D n.1 � n/ � ˛np

n C p
;

dp.t/

dt
D ˇnp

n C p
� �p; (8.22)

with the initial condition n.0/ n0 � 0 and p.0/ p0 � 0. The function
np

n C p
is not defined at the origin but lim

.n;p/!.0;0/

�
n.1 � n/ � ˛np

n C p

�
D 0 and

lim
.n;p/!.0;0/

�
ˇnp

n C p
� �p

�
D 0. To maintain the continuity of the system in

R2
0C D ˚

.n; p/ 2 R2 W n; p � 0
�
, we can redefine [9] the temporal model

as follows

dn.t/

dt
D n.1 � n/ � ˛np

n C p
;

dp.t/

dt
D ˇnp

n C p
� �p; .n; p/ ¤ .0; 0/;

dn.t/

dt
D dp.t/

dt
D 0; .n; p/ D .0; 0/: (8.23)

In a similar fashion the spatio-temporal model (8.21) can be redefined easily.
The temporal steady-states for the system (8.23) are .0; 0/ (trivial equilibrium),
.1; 0/ (axial equilibrium) and unique interior equilibrium point .n�; p�/ D�

1 � ˛.ˇ � �/

ˇ
;

.ˇ � �/n�
�

�
. The feasibility conditions for the existence of
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interior equilibrium point are given by ˛ <
ˇ

ˇ � �
and � < ˇ. These two

conditions are automatically satisfied for ˛ < 1.
Nature and stability properties of various equilibrium points are available in [9,

17, 35, 70] and references cited therein. Local asymptotic stability condition of E�
is given by

˛ < ˛� � ˇ

ˇ C �

�
� C ˇ

ˇ � �

�
: (8.24)

The stability condition is automatically satisfied for ˛ � 1 and in fact, E� is
a global attractor. For ˛ > 1, interior equilibrium point losses stability when ˛

crosses the threshold magnitude ˛� and limit-cycle arises through Hopf-bifurcation.
Limit cycle encircling the interior equilibrium point is stable and unique [5].

We now discuss the spatio-temporal pattern formation by the model (8.21). To
obtain the Turing patterns, we have to identify the parameter values which satisfy
the conditions (8.10), (8.11) and (8.18). u.t; x; y/ D u� and v.t; x; y/ D v� define
a homogeneous steady-state for the system (8.21). Diffusive instability never sets in

for ˛ � 1 as j11 D .˛ � 1/ � ˛ı2

ˇ2
� 0 and j22 D � .ˇ � ı/ı

ˇ
< 0 (ˇ > ı

whenever E� is feasible). Note that the ratio of diffusivities is always positive and
hence the condition (8.17) can not be satisfied for ˛ � 1. We find Turing patterns
for the model (8.21) only for ˛ > 1 and suitable choice of the parameter ‘d ’.

Our next task is to determine the Turing bifurcation domain and obtain Turing
and non-Turing patterns for the model (8.21). The parameters ˇ and � are fixed at
the values ˇ D 1 and � D 0:6 (hypothetical parameter set [9]) and consider ˛ and
d as bifurcation parameters. For chosen parameter set, the Turing bifurcation curve
and Hopf-bifurcation curves are shown in Fig. 8.1. These two bifurcation curves
divide the domain into four parts and we obtain stationary as well as non-stationary

1.7 1.8 1.9 2 2.1 2.2 2.3 2.4
0

5

10

15

20

25

30

Turing
Domain Turing−Hopf

Domain

Fig. 8.1 Bifurcation diagram is obtained for ˇ D 1 and � D 0:6, blue curve is the Turing-
bifurcation curve and the vertical green line is Hopf-bifurcation curve. Red asterisks represent the
points in the ˛ � d -parametric space corresponding to which the numerical simulations for the
model (8.23) are performed
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Fig. 8.2 Patterns exhibited by prey (left column) and predator (right column) for .˛; d/ D
.1:77; 25/ (upper panel); .˛; d/ D .1:9375; 25/ (middle panel); .˛; d/ D .2:2; 25/ (lower
panel). All the patterns presented here are stationary patterns and obtained at t D 700

spatio-temporal patterns for parameter values taken from the Turing domain and
Turing Hopf-domain respectively.

We fix the ratio of diffusivity at d D 15 and take three different values of
˛, namely ˛ D 1:77; 1:9375; 2:2 and correspondingly the three points lying in
the Turing domain, on the Hopf-bifurcation curve and in the Turing-Hopf domain
respectively of the parameter space (see Fig. 8.1). For these choices of parameter
values, the model (8.21) is simulated over a 400 � 400 lattices and taking �t D
0:01 and �x D �y D 1. To ensure that the reported patterns are free from
numerical artifacts, the same model is simulated with smaller step sizes and the
simulation results remain invariant. Resulting patterns are presented in Fig. 8.2, the
reported patterns are observed at t D 700. For .˛; d/ D .1:77; 25/ we find
cold-spot pattern, these cold spots started coalescing at .˛; d/ D .1:9375; 25/

and ultimately leads to labyrinthine pattern when .˛; d/ D .2:2; 25/. All these
patterns are stationary patterns as they remain unaltered with the further increase
in time. This stationary property is illustrated in Fig. 8.3, where spatial average of
population densities are plotted against time. The labyrinthine pattern sustain for
d D 25 whenever ˛ < 2:5. There is no feasible homogeneous steady-state for
˛ � 2:5. It is important to note here that the temporal steady-state is unstable
and started oscillating for ˛ > 1:9375 (the Hopf-bifurcation threshold for ˇ D 1

and ı D 0:6) but stationary distribution for both the species are obtained here.
One natural question arises here, whether we always get stationary patterns for all
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Fig. 8.3 Plot of spatial averages for prey and predator population for ˛ D 1:77 (blue curve);
˛ D 1:9375 (green curve); ˛ D 2:2 (red curve) and d D 25

parameter values within the Turing-Hopf domain where the system loses its stability
behavior under small amount temporal and spatial perturbation to the homogeneous
steady-state. To answer this question we have to examine the patterns for other
choices of parameter sets within the Turing-Hopf domain.

There is no mechanism by which one can choose the parameter values within
the Turing-Hopf domain for which we find non-stationary patterns. To illustrate
such pattern, we choose ˛ D 2:35 and d D 15. Numerical simulations with this
choice of parameter values reveal spatio-temporal chaos and resulting patterns never
settle down to any stationary inhomogeneous distribution. Rather they continue to
develop irregular patterns which can be classified as spatio-temporal chaotic pattern.
In Fig. 8.4 the spatial distribution of prey and predator species is presented at t D
1;500 along with the spatial average of the two species against time. Phase portrait
for the population density of prey verses predator at the location .200; 200/ is also
plotted in the same figure. The illustrations at the lower panel clearly indicates the
chaotic nature of population distributions.

The spatio-temporal patterns we discussed so far for the model (8.21) are
obtained for the choice of parameter values inside the Turing domain. Now we can
see that the inhomogeneous spatial distribution of prey and predator species can
be obtained for the choice of parameter values outside the Turing domain. For this
purpose, we choose ˛ D 2:05 and d D 1. Numerical simulation reveals that the
resulting pattern is chaotic. From the sake of brevity the spatio-temporal chaotic
nature is not illustrated here. This chaotic nature can be verified in a similar manner
as explained in the last paragraph. In Fig. 8.5, the spatial distributions of prey species
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Fig. 8.4 Upper panel: Spatial distribution of prey (left) and predator (right) at t D 1;500 for
˛ D 2:35 and d D 15. Lower panel: Plot of u.200; 200/ against v.200; 200/ (left) and time
evolution of spatial averages of prey and predator density (right)

Fig. 8.5 Spatio-temporal chaotic pattern is observed for ˛ D 2:05 and d D 1. Spatial
distribution for prey population at t D 500 (upper-left); t D 600 (upper-right); t D 700

(lower-left) and t D 800 (lower-right). It is a dynamic pattern
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at different time is presented to show the continuous change in the distribution of
species. Patterns are presented here for the latest time t D 800, but the existence
of similar patterns are verified with long time simulations. This type of pattern is
classified as interacting spiral pattern and it is a non-Turing pattern.

8.3.2 Ratio-Dependent Holling-Tanner Model

Classical Holling-Tanner type prey-predator was developed to describe the interac-
tion between generalist predator and their most favorable food as prey. Holling-
Tanner type prey-predator model with ratio-dependent functional response was
proposed and analyzed by Liang and Pan [38]. Recently, we have studied the sta-
tionary and non-stationary pattern formation for the spatio-temporal Holling-Tanner
model with ratio-dependent functional response [8]. Spatio-temporal dynamics
of the Holling-Tanner type prey-predator model with ratio-dependent functional
response is governed by the following system of nonlinear coupled parabolic partial
differential equations

@n.t; x; y/

@t
D n.1 � n/ � np

n C ıp
C

�
@2n

@x2
C @2n

@y2

�
;

@p.t; x; y/

@t
D 	

�

 � p

n

�
p C d

�
@2p

@x2
C @2p

@y2

�
; (8.25)

subjected to known positive initial conditions n0.x; y/; p0.x; y/ � 0, .x; y/ 2 �

and zero-flux boundary conditions
@n

@�
D @p

@�
D 0 for .t; x; y/ 2 .0; 1/ � @� .

This model is also undefined at the origin and the reaction kinetics at the origin can
be defined in a similar fashion as described in the previous subsection. The non-zero

homogeneous steady-state is .n�; p�/ D
�

1 � 



ı C 1
; 
n�

�
and the feasibility

condition is 
 < 
ı C 1.
Before going to the pattern formation, here we discuss briefly the local asymp-

totic stability property of interior equilibrium point E�.n�; p�/ for the temporal
model corresponding to the spatio-temporal model (8.25). Calculating the quantities
jrs , r; s D 1; 2 we find,

j11 D 
2ı.1 � ı/ C 2
.1 � ı/ � 1

.ı
 C 1/2
; j12 D � 1

.ı
 C 1/2
; j21 D 
2	; j22 D �
	:

From these expression one can easily verify that the interior equilibrium point
E� is always locally asymptotically stable for ı � 1 and we are unable to find any
Turing pattern for the associated spatio-temporal model as j11j22 � 0. For ı < 1,
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Fig. 8.6 Turing (blue coloured) and Hopf-bifurcation (green coloured) curves are drawn for
.˛; d/ D .0:4; 25/ (left panel) and .˛; d/ D .0:4; 10/ (right panel) respectively. Hopf-
bifurcation curve divides the Turing domain lying above the Turing domain into two regions.
Parameter values for which numerical simulations are performed are marked with red coloured
stars

E� is locally asymptotically stable if 	 >

�
ı
 C 2

.ı
 C 1/2
� 1




�
and small amplitude

periodic solution bifurcates from the coexisting equilibrium point through Hopf-
bifurcation [8, 28]. Clearly, we will look at the Turing patterns for ı < 1.

In the previous subsection, we have considered the ratio of diffusivity as
bifurcation parameter and described various types of pattern formation by taking
different values for d . Here we consider ı and d at some fixed values and consider

 and 	 as bifurcation parameters. In other words, firstly we have to identify Turing
and Turing-Hopf domain in the 
 � 	 parameter space and then look at the various
stationary and non-stationary patterns for the specific choices of parameter values.
In Fig. 8.6 the Turing bifurcation curve and Hopf-bifurcation curve are plotted for
˛ D 0:4 and d D 25 and d D 10 respectively. Numerical simulations are
performed for the parameter values within Turing domain and chosen parameter
values are marked with red coloured stars in the bifurcation diagram. For the
Holling-Tanner model with ratio-dependent functional response we find clod spot
pattern and labyrinthine pattern for parameter values taken from Turing domain and
Turing-Hopf domain respectively. These two patterns are obtained for .	; 
/ D
.0:3; 0:9/ and .	; 
/ D .0:3; 1:3/ respectively and both the patterns presented in
Fig. 8.7 are stationary patterns. Numerical simulations are performed with �t D
0:01, �x D 1 D �y and over 400 � 400 lattice and using zero flux boundary
condition and small random perturbation around homogeneous steady-state as initial
conditions.
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Fig. 8.7 Cold spot (upper panel) and labyrinthine pattern (lower panel) produced by prey (left
column) and predator (right column) species, involved with the ratio-dependent Holling-Tanner
model, at t D 400. Both of these patterns are obtained for fixed ˛ D 0:4, 	 D 0:3, d D 25 and

 D 0:9 and 
 D 1:3 respectively

In the previous subsection we have considered the ratio of diffusivities as bifur-
cation parameter and illustrated how spatio-temporal chaos emerges for parameter
values within and outside the Turing domain. Here it is important to note that the
model under consideration in this subsection is unable to produce chaotic pattern
when d D 25. Spatio-temporal chaotic pattern is obtained for the model (8.25)
when d � 12, (for ˛ D 0:4) and some specific choices of 	 and 
 in the Turing-
Hopf domain. Spatio-temporal chaotic pattern presented in Fig. 8.8 is obtained for
˛ D 0:4, 	 D 0:3, 
 D 1:6 and d D 10. This spatio-temporal chaos is a dynamic
pattern as the distribution of prey and predators over two dimensional space changes
continuously with the advancement of time. Patterns are checked for longer times
also and it is observed that they never settle down to any stationary level. This model
is also capable to produce interacting spiral type spatio-temporal chaotic pattern for
d D 1 and not presented here to avoid repetitions.

8.3.3 Holling-Tanner Model

In the previous two subsections we have observed spatio-temporal patterns produced
by prey-predator models with ratio-dependent functional response. Both the models
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Fig. 8.8 Spatio-temporal chaotic pattern produced by prey (left column) and predator (right
column) for the parameter values ˛ D 0:4, 	 D 0:3, 
 D 1:6 and d D 10. Patterns are
obtained at t D 1;000 (upper panel); t D 1;250 (lower panel) and t D 1;500 (lower panel)
respectively

produce cold spot and labyrinthine patterns as stationary patterns. Here we consider
the spatio-temporal version of classical Holling-Tanner type prey-predator model to
show the transition of Turing pattern from cold spot to hot spot through labyrinthine
pattern and this transition takes place with gradual change in one parameter value.
Turing and travelling wave patterns for this Holling-tanner model is recently
investigated by Upadhyay et al. [65]. Spatio-temporal model for Holling-Tanner
type prey-predator interaction is given by

@n.t; x; y/

@t
D n.1 � n/ � np

n C �
C

�
@2n

@x2
C @2n

@y2

�
;

@p.t; x; y/

@t
D �

�
1 � �p

n

�
p C d

�
@2p

@x2
C @2p

@y2

�
; (8.26)

subjected to the positive initial condition and no-flux boundary condition. Spatio-
temporal pattern formation for this model is investigated in details by Upadhyay
et al. [65] but the populations are labeled as phytoplankton and zooplankton respec-
tively. The dynamical behavior of the temporal counterpart of the model (8.26) is
well-known and available in the literature [43, 47, 62].



274 M. Banerjee

To show the transition if spatio-temporal pattern produced by the system (8.26),
we consider the fixed parameter set � D 0:1, � D 0:25 and consider � as free
parameter. For the chosen parameter set, we find the co-existing homogeneous
steady-state E�.n�; p�/ where

n� D �p�; p� D 9� � 10 C p
121�2 � 180� C 100

20�2
:

The condition for local asymptotic stability of co-existing equilibrium point for the
associated temporal model can be obtained in terms of �. One important observation
is that the equilibrium point loses its stability through Hopf-bifurcation at �H1 D
0:3227 and regains its stability through another Hopf-bifurcation at �H2 D 1:0244.
Hopf-bifurcating limit cycle exist for �H1 � � � �H2.

The model (8.26) is simulated numerically keeping fixed the parameters � D
0:1, � D 0:25 and d D 25. Three different stationary patterns are obtained for
� D 0:28, � D 0:7 and � D 1:15. Numerical simulations are performed with the
same set up as explained in the previous subsections. Three different Turing patterns
are presented in Fig. 8.9.

For the chosen set of parameter values and considering � as parameter we
find that the interior equilibrium point loses and regains the stability through two
consecutive Hopf-bifurcations. The occurrence two successive Hopf-bifurcation

Fig. 8.9 Hot spot (upper panel; � D 0:28), Labyrinthine (middle panel; � D 0:7) and cold spot
(lower panel; � D 1:15) patterns are obtained through numerical simulation for varying � and
keeping other parameters fixed at � D 0:1, � D 0:25 and d D 25. These stationary patterns are
obtained at t D 600
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Fig. 8.10 Distribution of prey species over two dimensional landscape for � D 0:5 (left column)
and � D 0:9 (right column) at t D 500, with � D 0:1, � D 0:25 and d D 25. Patterns
presented in the upper panel are obtained with small random perturbation around homogeneous
steady-state as initial condition and zero flux boundary condition. Patterns presented in the lower
panel are obtained with the pattern obtained at � D 0:9 and � D 0:5 as initial conditions

is here responsible to generate hot spot and cold spot type Turing patterns.
Labyrinthine pattern is observed for the parameter values lying in the Turing-Hopf
domain. There is no spatio-temporal chaotic pattern exhibited by the model (8.26)
for chosen set of parameter values.

An interesting phenomena for pattern formation takes place for this Holling-
Tanner model when parameter values are inside the Turing-Hopf domain. Patterns
produced by the prey and predator population are sensitive to initial conditions.
Sensitivity of spatial pattern is presented in Fig 8.10. At the upper panel, patterns
are obtained for two different values of the parameter � keeping other parameters
fixed at the level as described above and with small random perturbation around the
homogeneous steady-states as the initial conditions. The patterns are obtained for
� D 0:5 and � D 0:9, they are stationary patterns. In order to check the sensitivity
of initial condition, the stationary pattern obtained at � D 0:9 is used as the initial
condition and the spatio-temporal model is simulated numerically with � D 0:5 and
the stationary pattern obtained at t D 500 is presented at the left of lower panel in
Fig. 8.10. Similarly, the pattern obtained for � D 0:5 is used as initial condition to
obtain the pattern when � D 0:9 and we have obtained a different pattern compared
to that was obtained with the usual initial condition used here.
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8.4 Discussion

Autonomous temporal models of prey-predator interaction always results in either
stable stationary coexistence or oscillatory coexistence or extinction of one or both
the species. Spatio-temporal models are developed to take care of the mobility of
individuals over their habitats. Individuals of various species attempt to find out
most favorable habitat as well as patches where availability of their essential foods
is abundant. Again carnivorous predators have to chase their prey to get the food and
hence they have to run faster from their predators. Similarly, the swimming speed of
zooplankton within aquatic environment should be greater than the moving speed
of phytoplankton due to water current within the aquatic environment. All these
requirements are reflected through the condition d > 1, where d is the ratio of
diffusivities of the prey and their predators. At the initial stages of the research on
pattern formation, it was believed that the inequality in the ratio of diffusivity is
essential for spatio-temporal pattern formation. Afterwards, it is revealed that the
spatio-temporal patterns can emerge in case of equal diffusivities also [23, 41, 51].
Most important and interesting cases of pattern formation with equal diffusivities
are biological invasions and travelling wave-train [42, 45, 46, 58, 59, 61, 66, 67].
Recently, few authors have paid their attention towards the spatio-temporal chaotic
pattern formation due to wave of chaos. This scenario arises in most of the cases for
d D 1, (see [51, 64] and references cited therein).

In this chapter we have discussed pattern formation in prey-predator models
within Turing and Turing-Hopf domain with special emphasis on ratio-dependent
functional response. Prey-predator models with prey-dependent functional response
and intrinsic constant per capita death rate for predators are unable to produce
Turing patterns. Three models are considered here, ratio-dependent prey-predator
model, Holling-Tanner model with ratio-dependent functional response and classi-
cal Holling-Tanner model. The classical Holling-Tanner model is also known as
semi-ratio dependent model as the growth equation of the predators contains a
term which is proportional to the ratio of predator to prey. For fist two models,
we have observed that the stationary Turing patterns are cold spot patterns which
indicate the existence of circular patches with lower concentration of prey and
predators. In contrary, the stationary Turing patterns observed for the classical
Holling-Tanner model are of two types, hot spot pattern and cold spot pattern. Hot
spots are generated through the localized circular patches with high concentration of
population density. The labyrinthine pattern is observed for some particular choices
of parameter values within the Turing-Hopf domain. In the first two models, the
stationary cold spot pattern changed to labyrinthine pattern due to coalesce of nearby
circular patches with low concentration of population. This transition takes place as
parameter moves from Turing domain to Turing-Hopf domain. But the generation of
labyrinthine pattern in case of spatio-temporal Holling-Tanner model with Holling
type-II functional response can be explained in two ways. If we consider the increase
in the magnitude of � then labyrinthine pattern is generated by the coalescing of hot
spots and the same can be generated due the merging of nearby cold spots due
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to decrease in the magnitude of �. The three models considered here are capable
to generate another kind of stationary patterns which is a mixture of spot and
labyrinthine pattern. The stationary patterns obtained for the first two models are
independent of initial condition, we have checked this independence numerically
but the results are not presented here. The sensitivity of resulting pattern, or in
other words the dependence of stationary pattern on the choice of initial condition
is illustrated for the spatially extended classical Holling-Tanner model. We have
reported here the spatio-temporal chaotic patterns for parameter values within and
outside the Turing domain. Obviously the spatio-temporal chaotic patterns are not
stationary patterns rather they changes continuously with time and never settle down
to any stationary state.

In reality the spot and labyrinthine patterns obtained within Turing domain
are not realistic for the distribution of prey and predators distributed over two
dimensional landscapes but can be observed for vegetation patterns generated
through the interaction between autotroph and their herbivores. Again the patchy
patterns resulting from spatio-temporal chaos and labyrinthine type distributions
are observed for the vegetation patterns in semiarid regions [8, 14, 45, 69]. Spatio-
temporal chaotic patterns are also observed for the distribution of various plankton
biomass within aquatic environment. The discrepancy in the observed patterns
are either due to the over simplification in the modeling approach or due to the
consideration of distribution of individuals over two dimensional domain as a
continuum media. The patterns obtained for the models under consideration give
us the idea of size and rough shape of stationary patches for the distribution of prey
and predator species. Some times they give indication of colony formation by the
bacterial species and their predators. Apart from this distribution, the stationarity of
patterns provide the information regarding the time invariant distribution of species
over their spatial habitat.

Finally, we have addressed the issue of spatio-temporal chaotic patterns produced
by prey-predator model with ratio-dependent functional response terms. Spatio-
temporal chaotic pattern exists for parameter values within the Turing-Hopf domain
as well as outside the Turing domain. Emergence of spatio-temporal chaos for
parameter values above and below the Turing bifurcation curve ensures that the
interaction between temporal instability and spatial instability is not essential for
the onset of spatio-temporal chaos. Again, we have observed the existence of
stationary patterns for the parameter values within Turing-Hopf domain, it means
the coexistence steady-state of the reaction kinetics is unstable and local kinetics
is oscillatory. These observations ensure the fact that the interaction between the
temporal and spatial instability are unable to drive the system towards spatial and
temporal irregularity under any circumstances. Rather the existence of irregular
distribution of population over space and its continuous change with time depend
upon the complex interaction is taking place over spatial and temporal scale.
There are no unified criteria for the existence of spatio-temporal chaos. Further
the mobility of individuals within their habitat has some role towards the patchy
distribution of interacting populations. Recent works on continuous spatio-temporal
models for interacting populations and vegetation distribution indicate the existence
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of spatio-temporal chaos but the conclusive evidence in favor of chaotic patterns in
realistic ecosystems are not abundant [20, 27, 46, 52, 54–56, 60]. Effect of cross-
diffusion, periodic changes in essential resources, random environmental condition
on the pattern formation for interacting population models with rich temporal
dynamics needs appropriate attention to understand the complex dynamical behav-
ior associated with the spatio-temporal pattern formation. Derivation of necessary
and sufficient analytical conditions for the appearance of spatio-temporal chaotic
patterns remain an open as well as challenging problem.
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