
Chapter 3
Small Scale Hydrodynamics

Matteo Colangeli

Abstract The purpose of this work is to offer a brief survey of some of the
mathematical methods useful to bridge different levels of description, i.e. from the
set-up of classical kinetic theory of gases to hydrodynamics. Most of the standard
mathematical techniques, in this field, stem from the seminal Chapman–Enskog
expansion, which constitutes an important success in kinetic theory, as it made
possible to formally derive the Navier-Stokes hydrodynamics from the Boltzmann
equation. Yet, almost a century of effort to extend the hydrodynamic description
beyond the Navier-Stokes-Fourier approximation failed even in the case of small
deviations around the equilibrium, due to the onset of instabilities which also cause
the violation of the H-Theorem. A different route, in kinetic theory, is represented
by the recent Invariant Manifold method. The latter technique allows one to restore
stability in the hydrodynamic equations, which remain thus applicable even at short
length scales, under the hypothesis of validity of the Local Equilibrium condition.

3.1 Introduction

A certain number of techniques have been designed, in kinetic theory of gases, to
derive macroscopic time evolution equations from the Boltzmann equation. Most of
these methods require the single-particle distribution function to be parameterized
by a set of distinguished fields, such as the standard hydrodynamic ones: the
number (or mass) density, momentum vector, and temperature. This stands as a
plausible assumption as long as the microscopic dynamics enjoys a vast separation
of time and length scales, and provided that the condition of Local Equilibrium is
granted. Furthermore, the derivation of hydrodynamics from kinetic theory is often
understood in terms of the so-called hydrodynamic limit of the Boltzmann equation.
Loosely speaking, one is interested, typically, in the scaling of the Boltzmann
equation with respect to some reference macroscopic length and time scales, which
are expected to largely dominate the intrinsic kinetic scales. Nonetheless, it makes
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sense to consider the extension of the hydrodynamic description even beyond
the purely hydrodynamic limit, so as to take into account reference scales which
may happen to be comparable with the kinetic ones. This is the subject dealt
with by the theory of generalized hydrodynamics [1–4]. There are several delicate
aspects hindering this line of investigation. A first, natural, objection points to the
fact that, below a certain length scale, the notion itself of “Local Equilibrium”,
which is brought about by a sufficiently large number of particle collisions, is
questionable. Moreover, from the technical side, one typically deals, in this context,
with perturbative methods, such as Hilbert’s procedure or the Chapman–Enskog
(CE) technique, which, at a certain order of truncation, may give rise to artificial
instabilities [5, 6]. In particular, the CE method introduces an expansion of the
distribution function in terms of a parameter, the Knudsen number, defined as the
ratio of the mean free path to a representative macroscopic length. For small values
of the Knudsen number, the CE method recovers the standard Navier-Stokes-Fourier
(NSF) equations of hydrodynamics. In more refined approximations, referred to as
the Burnett and super-Burnett hydrodynamics, the hydrodynamic modes become
polynomials of higher order in the wavevector. In such an extension, the resulting
hydrodynamic equations may become unstable and violate the H-Theorem, as first
shown by Bobylev [5] for a particular case of Maxwell molecules. This indicates that
the CE theory can not be immediately trusted, away from the hydrodynamic limit.
Thus, while the mathematical framework concerning the hydrodynamic limit of the
Boltzmann equation is well-established [7, 8], there is no consolidated counterpart
addressing the short scales domain. Thus, developing a theory of Microfluidics, is
a novel challenge for theorists, and has also been fostered by recent technological
trends [9, 10], which call for an extension of the hydrodynamic description to the
regime of finite Knudsen numbers. In this work we describe the application of the
Invariant Manifold theory, which makes it possible to derive the equations of exact
linear hydrodynamics from the Boltzmann equation. The adjective “exact” refers
to the fact that the method allows one to perform an exact summation of all the
contributions of the CE expansion. We will show, through the analysis of some
solvable model, that the divergences of the hydrodynamic modes can be actually
removed by taking into account also the very remote terms of the expansion. This is
made possible by solving a closed integral equation, called invariance equation,
which connects the microscopic evolution of the distribution function with its
“projected” (in a sense to be specified below) dynamics, triggered by the set of
hydrodynamic fields.

This work is structured as follows. In Sect. 3.2 we will outline some stan-
dard model reduction techniques, which allow to derive hydrodynamics from the
Boltzmann equation. In Sect. 3.3 we will derive the equations of linear hydrody-
namics from certain kinetic models of the Boltzmann equation, thus providing the
desired bridge between the kinetic and the hydrodynamic descriptions, valid even at
short length scales. Conclusions will be drawn in Sect. 3.4.
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3.2 Bridging Time and Length Scales: From Kinetic Theory
to Hydrodynamics

In this section we will offer a bird’s eye view on some of the analytical methods
which yield approximate solutions of the Boltzmann equation. In particular, we will
outline the structure of the Hilbert and Chapman–Enskog perturbation techniques
and will also comment on the essential features of the Invariant Manifold method
[1, 2], which is based on the assumption of time scale separation and applies also
beyond the strict hydrodynamic limit.

Before introducing the wealth of different techniques, we shortly review the
notion of hydrodynamic limit of the Boltzmann equation, and shed also light on
the role of the (often invoked) time scale separation, which is one of the main
ingredients underpinning the onset of a collective behavior in a many-particle
system.

3.2.1 Hydrodynamic Limit of the Boltzmann Equation

Let f .r; v; t/ denote the single-particle distribution function, depending on the
position r, on the velocity v and on time t , which describes the statistics of a
dilute gas made of N particles of mass m, inside a box ƒ" with volume V . In
absence of external forces, we assume that the distribution f obeys the Boltzmann
equation [8]

@tf .r; v; t/C v � @f
@r
f D Q.f; f / ; (3.1)

where Q.f; f / denotes a nonlinear integral collision operator whose detailed
analytical structure is not relevant here. We just need to recall that Q.f; f /
vanishes when the distribution function attains the so-called local Maxwellian
structure:

f LM D n.r; t/
�

m

2�kBT .r; t/

� 3
2

e
�m.v�u.r;t //2

2kB T .r;t / ; (3.2)

which is parameterized by the fields n (number density, i.e. number of particles
per unit volume), u (bulk velocity of the fluid), and T (temperature). A point of
remarkable interest, in kinetic theory, concerns the study of the scaling properties of
the Boltzmann equation (3.1). In particular, one may investigate the structure of the
solutions of the Boltzmann equation in the so-called hydrodynamic limit, which is
obtained by taking the limitsN ! 1, V ! 1, withN=V finite. Following [7], we
introduce a small parameter ", and let the side of the boxƒ" be proportional to "�1.
We assume, then, that the total number of particles contained in the box, obtained
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by integrating f over ƒ" and over the whole velocity space, is proportional to the
volume of the box itself:

Z
ƒ"�R3

f .r; v; t/drdv D "�3 ; (3.3)

and introduce the following scaling:

Or D "r; � D "t ; (3.4)

with Or 2 ƒ D Œ0; 1�, and

Of .Or; v; �/ D f .r; v; t/ : (3.5)

It is readily seen that the rescaled distribution Of .Or; v; �/ describes the statistics of
particle system on the scale of the box, and is normalized to unity:

Z
ƒ�R3

Of .Or; v/d Ordv D 1 : (3.6)

While the description afforded in terms of the distribution f is called mesoscopic
(or kinetic), the description provided by the rescaled distribution Of can be thought
of as a macroscopic one, because it describes the particle system in the limit of large
length and time scales. Using (3.4) and (3.5), the Boltzmann equation, in the absence
of external forces, can be shown to attain the following rescaled structure [8]

@� Of .Or; v; �/C v � rOr Of D 1

"
Q. Of ; Of / ; (3.7)

which will be the starting point of the methods of reduced description to be
described below.

3.2.2 The Bogoliubov Hypothesis and Macroscopic Equations

Let us denote by Mf D ŒM1;M2;M3� the lower-order moments of the distribution
function f , defined as:

Mf .r; t/ D
Z
 .v/f .r; v; t/dv ; (3.8)

where  .v/ are known as the collisional invariants:

 .v/ D Œ 1; 2;  3� ; (3.9)
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with

 1 D m;  2 D mv;  3 D m

2
v2 ; (3.10)

and v � jvj. Thus, by integrating, one finds:

M1 D �.r; t/ D
Z
mf.r; v; t/dv ;

M2 D �.r; t/u.r; t/ D
Z
mvf .r; v; t/dv ;

M3 D 1

2
�.r; t/u2 C �.r; t/e.r; t/ D

Z
m

2
v2f .r; v; t/dv ; (3.11)

where �.r; t/ D mn.r; t/ is the mass density, and

e.r; t/ D 3

2

kB

m
T .r; t/ ;

denotes the internal energy per unit mass, which is related, via the equipartition
theorem, to the temperature T . The hydrodynamic fields Œ�;u; T � are thus related to
the moments Mf via:

� D M1; u D M�1
1 M2; T D 2m

3kBM1

�
M3 � 1

2
M�1
1 M2 � M2

�
: (3.12)

We consider, from here onwards, a special class of distribution functions called
normal solutions of the Boltzmann equation [8]. These are distribution functions
whose dependence on the variables .r; t/ is parameterized by a set of fields x.r; t/,
which may correspond to the hydrodynamic fields themselves, but in certain models
may also include higher-order moments of the distribution function [11–13]. Thus,
we start writing the single-particle distribution function in the form:

f .r; v; t/ D f .x.r; t/; v/ : (3.13)

A physical rationale behind Eq. (3.13) can be traced back to the Bogoliubov
hypothesis [14–16]. In his seminal work, Bogoliubov introduced three different time
scales, labeled �int; �mf and �macro: the time interval �int is the time during which
two molecules are in each other’s interaction domain, �mf denotes the mean time
between collisions, and �macro corresponds to the average time needed for a molecule
to traverse the container in which the gas is confined. The Bogoliubov hypothesis
thus states that the existence of a vast time scale separation

�int � �mf � �macro (3.14)
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Table 3.1 Bogoliubov length and time intervals for a gas with mean molecular speed of 300m/s
at standard conditions (container edge length �macro D 3 cm), cf. [15]

�int �mf �macro

cm 3� 10�8 3� 10�5 3

�int �mf �macro

s 10�12 10�9 10�4

Table 3.2 Epochs in the
Bogoliubov hypothesis

t < �int Initial stage

�int < t < �mf Kinetic stage

t � �macro Hydrodynamic stage

When describing the particle system
on time intervals t < �int, the full
phase space description is required. If
the description is confined between �int

and �mf , one can employ the framework
of kinetic theory and the Boltzmann
equation provides an efficient statistical
description of the dynamics of a suffi-
ciently dilute particle system. Finally,
for t ' �macro, the dynamics of the
distribution function is driven by the
evolution of the hydrodynamic fields

is a prerequisite underpinning the relaxation of a gas towards equilibrium and the
onset of a hydrodynamic behavior. In a similar fashion, it is possible to introduce
three corresponding displacements, denoted as �int; �mf ; �macro. The displacement
�int corresponds the range of particle interaction, �mf is the mean free path and
�macro denotes a macroscopic reference length, such as the edge length of the
confining container. Typical values of these parameters are listed in Table 3.1.

The Bogoliubov hypothesis addresses the structural form of the phase space
density F.z1; : : : ; zN ; t/ (we used the shorthand notation z D .r; v/) pertaining
to three different stages during the relaxation of the gas to equilibrium, cf. also
Table 3.2.

In the initial interval there is no collisional exchange between the particles, and
the gas experiences no equilibrating force. Therefore, Bogoliubov conjectured that,
in such initial stage, the full N-particle density is required to properly describe
the state of the gas. In the kinetic stage, the molecules experience a sequence of
collisions, which give rise to the onset of Local Equilibrium in the gas. According to
Bogoliubov’s hypothesis, during this stage all s-particle marginals may be expressed
as functionals of the single-particle density, i.e.

Fs D Fs.z1; : : : ; zs; F .z1; t// ; (3.15)
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where the time dependence of Fs is entirely contained in F1.z1; t/. For instance, if
the particles are statistically independent from each other, Fs factorizes as follows:

Fs D
sY
iD1

F1.zi ; t/ : (3.16)

Finally, in the hydrodynamic stage, the relevant time scale is �macro, which charac-
terizes the time evolution of the macroscopic variables x.r; t/. It is worth noticing
that, in the course of the relaxation, a crucial loss of information occurs [15]: while,
in the initial stage, the microscopic state of the particle system is described by the
full phase space density, close to equilibrium the statistical description is suitably
afforded only in terms of the single-particle distribution function, parameterized by
the variables x.

We also remark that the condition �int � �mf is essential in order to write the
Boltzmann equation in the form (3.1). The distribution function f .r; v; t/ must be
regarded as an average of the single-particle distribution in a time interval dt, with

�int < dt < �mf : (3.17)

This condition, in fact, allows one to disregard the variation experienced by the
distribution function of the hitting particle, f .r; v1; t/, during the time �int of
interaction with the target particle. If the condition (3.17) does not hold, one
should use, in Eq. (3.1), the distribution function f .r; v1; t � �int/ evaluated at an
earlier time and the rate of change of f at time t would depend not only on
the instantaneous value of f , but also on its previous history [17]. This would
make the Boltzmann equation a non-markovian process. We see, hence, that the
separation between �int and �mf makes it possible to identify an intermediate
scale dt, which guarantees the markovian character of the Boltzmann equation.
We can also conceive one further time scale, which we denote by �t , which
corresponds to the characteristic “mesoscopic” time scale characterizing the onset
of Local Equilibrium. A macroscopic description of a particle system, based on the
hydrodynamic fields x.r; t/, can be obtained by confining the description to time
scales not shorter than �t , which is typically intermediate between �mf and �macro.
The role of the time scale �t can be better evinced by introducing a partition of the
volume of the gas into mesoscopic cells of linear size `meso, as portrayed in Fig. 3.1.
Local equilibrium is reached, within each cell, after the time interval�t . Therefore,
although the hydrodynamic variables may vary over macroscopic length and time
scales, within each cell they obey, after the time interval �t , the usual relations of
equilibrium thermodynamics [18].

The dimensionless parameter " is the Knudsen number [8, 19] and is defined as
the ratio of �mf to �macro. The aim of a generalized hydrodynamic theory is, hence,
to extend the macroscopic description to finite Knudsen numbers, well beyond the
standard hydrodynamic limit (corresponding to " � 1). This, in turn, requires a
proper estimate, for the model under consideration, of the magnitude of the length
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�meso

τmf

Δt

Fig. 3.1 The onset of Local Equilibrium in mesoscopic cells of size `meso, taking place after a
time interval �t . Local Equilibrium results from a large number of collisions, occurring on time
scales of the order of �mf . The hydrodynamic fields attain a local value within each of the cells, and
evolve on a time scale �macro (not shown in the picture) much larger than�t , according to the time
scale separation hypothesis

scale `meso, below which Local Equilibrium no longer holds. Thus, if we consider
macroscopic length and time scales compatible, respectively, with `meso and �t , it
makes sense to discuss the derivation of macroscopic equations from the Boltzmann
equation and to investigate their properties. To this aim, we integrate Eq. (3.1),
multiplied by the collision invariants (3.9), over the velocity space, and obtain:

@t� D �rr.�u/ ;

@t .�u/ D rr � .�uu C P/ ;

@t

�
�

�
1

2
u2 C e

��
D �rr �

�
�u

�
1

2
u2 C e

�
C P � u C q

�
; (3.18)

where the non-hydrodynamic fields P and q, called pressure tensor and heat flux,
are defined as:

P D
Z
m.v � u/.v � u/f .r; v; t/dv ; (3.19)

q D
Z
m.v � u/.v2 � 2v � u C u2/f .r; v; t/dv : (3.20)

The pressure tensor can be written as P D pI C � , where I is the identity matrix,
the scalar p, defined as:

p D 1

3
tr ŒP� D nkBT D 2

3
�e ; (3.21)

corresponds to the hydrostatic pressure and � is a symmetric tensor (it is also,
typically, a traceless one, depending on the magnitude of the bulk viscosity, defined
below). A visible feature of Eq. (3.18) is that the equations are not closed, because of
the presence of the non-hydrodynamic fields � and q. As discussed by C. Cercignani
in [8], [Eq. (3.18)] “constitute an empty scheme, since there are 5 equation for 13
quantities. In order to have useful equations, one must have some expressions for
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� and q in terms of �, u and e. Otherwise, one has to go back to the Boltzmann
equation (3.1) and solve it; and once it has been done, everything is done, and
Eq. (3.18) are useless!”. This corresponds to the well known problem of seeking a
suitable closure to the macroscopic equations. This problem can be tackled either
from the kinetic theory standpoint, i.e. by employing some model reduction or
coarse-graining techniques [11], or from a purely macroscopic perspective, i.e. by
employing macroscopic balance or phenomenological relations which disregard
the underlying particle-like picture. In particular, the following set of constitutive
equations, written in component notation,

� i;j D 0 ; (3.22)

qi D 0 ; (3.23)

with i; j D 1; 2; 3, yields the so-called Euler equations of inviscid hydrodynamics,
which can be also derived from the Boltzmann equation by retaining only the
Maxwellian contribution to the distribution function. The Navier-Stokes-Fourier
(NSF) equations, instead, are obtained from the following constitutive equations:

� i;j D ��
�
@ui
@rj

C @uj
@ri

�
C

�
2

3
�� 	

�
@uk
@rk

ıij ; (3.24)

qi D ��@T
@ri

; (3.25)

where we used the repeated index summation convention and �; 	; � correspond to
the transport coefficients called, respectively, shear viscosity, bulk viscosity (usually
negligible) and thermal conductivity. The NSF equations deserve a special mention
in fluid dynamics, because Eqs. (3.24) and (3.25) may be derived not only from the
macroscopic principles of conservation of mass, momentum, and energy, but also,
rigorously, from kinetic theory [8, 19, 20]. The latter derivation can be performed by
using some perturbative schemes, such as those discussed in the next section, which
refer to the hydrodynamic limit of the Boltzmann equation.

3.2.3 The Hilbert and the Chapman–Enskog Methods

We provide, here, an overview about the Hilbert and the Chapman–Enskog (CE)
methods of solution of the Boltzmann equation in the hydrodynamic limit. The
reader is referred to [2, 8] for an exhaustive treatment of the subject. To simplify
the notation, we omit, hereafter in this section, the hat over the single-particle
distribution referring to a rescaled Boltzmann equation of the form (3.7), introduced
in Sect. 3.2.1.
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In the Hilbert method, the normal solutions are expanded in powers of the
Knudsen number ", i.e.:

f D
1X
iD0


if .i/ ; (3.26)

which, substituted in Eq. (3.7), yields a sequence of integral equations

Q
�
f .0/; f .0/

� D 0 ; (3.27)

L f .1/ D .@t C v � rr/ f
.0/ ; (3.28)

L f .2/ D .@t C v � rr/ f
.1/ � 2Q �

f .0/; f .1/
�

; (3.29)

to be solved order by order. Here L denotes the linearization of collision integralQ
in (3.1). From Eq. (3.27) it follows that f .0/ corresponds to the local Maxwellian
distribution [19]. The Fredholm alternative, applied to (3.28), results in [2]:

• Solvability condition,

Z
.@t C v � rr/ f

.0/ .v/dv D 0 ; (3.30)

which corresponds to the Euler equations described by Eqs. (3.22) and (3.23);
• General solution f .1/ D f .1/;1 C f .1/;2, where f .1/;1 denotes the special

solution to the linear integral equation (3.28) and f .1/;2 a yet undetermined linear
combination of the summational invariants;

• Solvability condition, when applied to Eq. (3.29), yields f .1/;2 which is obtained
from solving the linear hyperbolic differential equations

Z
.@t C v � rr/

�
f .1/;1 C f .1/;2

�
 .v/dv D 0 : (3.31)

Hilbert showed that this procedure can be applied up to an arbitrary order n, so
that the function f .n/ is determined from the solvability condition applied at the
.n C 1/-th order [2]. Loosely speaking, the description provided by the Hilbert
method is essentially in terms of the Euler equations, but it is supplemented by
corrections which can by computed by solving linearized equations [8]. It is also
worth remarking that the Hilbert method can not provide uniformly valid solutions,
as it can be evinced by noticing the singular manner in which the Knudsen number
enters the rescaled Boltzmann equation (3.7). Nevertheless, a truncated Hilbert
expansion can reproduce, with arbitrary accuracy, the solution of the Boltzmann
equation in a properly chosen region of time-space, provided that " is sufficiently
small.
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The CE approach, developed by D. Enskog and S. Chapman, is based, instead,
on an expansion of the time derivatives of the hydrodynamic variables, rather than
seeking the time-space dependence of these functions, as in the Hilbert method. Also
the CE method starts with the singularly perturbed Boltzmann equation (3.7), and
with the expansion (3.26). Nevertheless, the procedure of evaluation of the functions
f .i/ is different, and reads as follows:

Q
�
f .0/; f .0/

� D 0; (3.32)

L f .1/ D �Q �
f .0/; f .0/

� C
�
@
.0/
t C v � rr

	
f .0/ : (3.33)

Equation (3.32) implies, as in the Hilbert method, that the function f .0/ is the local
Maxwellian. The operator @.0/t is defined from the expansion of the right hand side
of the hydrodynamic equations,

@
.0/
t Mf D �

Z
 .v/v � rrf

.0/dv : (3.34)

Equation (3.34) correspond to the inviscid Euler equations, and @.0/t acts on various
functions g.�; �u; e/ according to the chain rule

@
.0/
t g D @g

@�
@
.0/
t � C @g

@.�u/
@
.0/
t �u C @g

@e
@
.0/
t e ; (3.35)

whereas the time derivatives @.0/t of the hydrodynamic fields are expressed using
the right hand side of (3.34). Finally, the method requires that the hydrodynamic
variables, obtained by integrating over the velocity space the function f .0/ C "f .1/,
coincide with the parameters of the local Maxwellian f .0/:

Z
 .v/f .1/dv D 0 : (3.36)

Thus, one finds that the first correction, f .1/, adds the terms

@
.1/
t Mf D �

Z
 .v/v � rrf

.1/dv (3.37)

to the time derivatives of the hydrodynamic fields. These novel terms yield the
dissipative NSF hydrodynamics. However, higher-order corrections of the CE
method, which result in hydrodynamic equations with higher derivatives (the so-
called Burnett and super-Burnett hydrodynamics) are affected by severe difficulties,
mainly related to the onset of instabilities of the solutions [5, 21, 22].
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3.2.4 The Grad’s Moment Method

An alternative technique to solve the Boltzmann equation was proposed by H. Grad,
and is known as the Grad’s moment method [12]. The essence of the method relies
on the time scale separation hypothesis, introduced in Sect. 3.2.2:

• During the fast evolution, which occurs on a time scale of the order of the
mesoscopic time scale �t , a set of distinguished moments x, cf. Sect. 3.2.2, does
not change significantly in comparison to the rest of higher-order “fast” moments
of f , denoted as y.

• Towards the end of the fast evolution, the values of the moments y become
determined by the values of the distinguished moments x.

• During a time interval of the order of �macro, the dynamics of the distribution
function is governed by the dynamics of the distinguished moments, while the
rest of moments remain to be determined by the distinguished moments [2].

In the Grad’s moment method, the distribution function is expanded as:

f .x; v/ D f LM.�;u; e; v/

"
1C

NX
kD1

ak.x/Hk.v � u/

#
; (3.38)

where Hk.v � u/ are Hermite tensor polynomials, orthogonal with respect to a
weight given by the Maxwellian distribution f LM , whereas the coefficients ak are
known functions of the distinguished moments x. The fast moments y are assumed
to be functions of x, i.e. y D y.x/. By inserting Eq. (3.38) into the Boltzmann equa-
tion (3.1) and by using the orthogonality of the Hermite polynomials with respect
to the Maxwellian distribution f LM , one can determine the time evolution of the set
of distinguished moments x. According to Grad’s argument, this approximation can
be refined by extending the set of distinguished moments x, as done, for instance in
the Grad’s 13 moment approximation [12], which set the stage to the development
of the theory of Extended Irreversible Thermodynamics [2, 11, 13].

3.2.5 The Invariant Manifold Theory

The Invariant Manifold method can be considered as a generalization of the theory
of normal solutions, which is inherent in the Hilbert and CE expansions [2]. The
method is based on a projector operator formalism [23–25], which confines the
dynamics onto a manifold of slow motion and disregards the fluctuations of the fast
variables. The same approach is also at the basis of Haken’s slaving principle and
of the procedure of adiabatic elimination of fast variables in stochastic processes
[26, 27]. The description of the time evolution of the system resembles the picture
given in Sect. 3.2.4: from the initial condition, the system quickly approaches a
small neighbourhood of the invariant manifold, and, from then onwards, it proceeds
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Ω

dx/dt

F
F

U

x

w

Δ = (1 − P )J(w)

w + kerP

J(w)

Tw

PJ(w)

X

Fig. 3.2 The geometrical structures of the Invariant Manifold method: U is the space of
distribution functions, J.w/ is the vector field of the system under consideration, � is an ansatz
manifold, X is the space of macroscopic variables (coordinates on the manifold), the map F maps
points x 2 X into the corresponding points w D F.x/, Tw is the tangent space to the manifold �
at the point w, PJ.w/ is the projection of the vector J.w/ onto tangent space Tw, dx=dt describes
the induced dynamics on X ,� is the defect of invariance, and the affine subspace w C kerP is the
plain of fast motions [2]

slowly along such manifold with a characteristic time scale of the order of �macro.
The main geometrical structures which characterize the Invariant Manifold theory
are illustrated in Fig. 3.2.

We summarize, below, the essential mathematical framework of the method. Let
U be the phase space, and � � U an ansatz manifold, which corresponds to the
current approximation to the invariant manifold to be sought. We denote by J.w/
the vector field

dw

dt
D J.w/; w 2 U; (3.39)

which generates the dynamics in U . Let X be the linear space of the macroscopic
variables x, which act as coordinates on the manifold �, described as the image of
the map F W X ! U . We remark that the choice of the space X of macroscopic
variables is a crucial step of the method: the corrections of the current ansatz
manifold correspond to the images of various maps F for a given X . Let us also
denote by

DxF D @w

@x
jwDF.x/ (3.40)

the derivative of the map F with respect to the set of distinguished variables. We
indicate by … W U ! X a regular map which fulfills the condition

… ı F D 1 ; (3.41)
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with 1 the identity operator, and by Dw… the functional derivative of the map
x D ….w/ computed at the point w. Thus, the time evolution of the distinguished
variables x reads:

dx
dt

D Dw…J.F.x// ; (3.42)

where dx=dt is an element of the tangent space to X . Therefore, joining Eqs. (3.40)
and (3.42), one obtains:

dw

dt
jwDF.x/ D DxF � dx

dt
D ŒDxF ıDw…�J.F.x// D PJ .F.x// ; (3.43)

where the operator

P D DxF ıDw…

projects J.f / onto Tw, which denotes the tangent space to the manifold � at the
point w. In particular, the projector P determines a decomposition of the motion
near�: w C kerŒP � is the plane of fast motion and Tw the plane of slow motion. We
call slow invariant manifolds those maps F which fulfill the condition (3.41) and
solve the invariance equation:

�.F / D .1 � P/J.F / D 0 ; (3.44)

which is a differential equation for the unknown map F . The solutions of Eq. (3.44)
are “invariant” in the sense that the vector field J.F / is tangent to the manifold
� D F.X/ for each point w 2 �. A crucial aspect of the method concerns the
definition of the projector P . Gorban et al. introduced, in [2], the Thermodynamic
Projector, which characterizes, in a thermodynamic sense, the plane of fast motion
w C kerP: the physical entropy grows during the fast motion and the point w is the
point of entropy maximum along the plane w C kerP.

The geometrical setting described above can be readily adapted to the Boltzmann
equation theory. To this aim, one identifies w with the single-particle distribution
function f , x D ….f / denotes a set of distinguished fields which parameterize
f and F becomes a “closure”, i.e. a distribution function parameterized by the
variables x. Moreover, the vector field J.f / attains the form:

J.f / D �v � rrf CQ.f; f / ;

whereasDf… reads:

Df…Œ�� D
Z
 .v/Œ��dv ;



3 Small Scale Hydrodynamics 79

with  .v/ defined in (3.10). Therefore, the Thermodynamic Projector P , which
depends on f , attains, in this case, the structure:

P Œ�� D @f

@x
�
Z
 .v/Œ��dv : (3.45)

The invariance equation (3.44) constrains the kinetic evolution of the distribution
function to coincide with its “macroscopic” evolution, ruled by the projector
P (3.45) and driven by the dynamics of the distinguished variables x. It should
be noticed that the method does not require the smallness of the parameter ", hence
it is not restricted to the strict hydrodynamic limit. A straightforward application of
the formalism described above is obtained by considering an ansatz manifold,�LM ,
given by the locally five-dimensional manifold of local Maxwellians (3.2). We take,
hence, the set Mf of moments (3.11) as the coordinates x on this manifold. The
manifold �LM is commonly referred to as the quasi-equilibrium manifold for the
set of moments x, because f LM corresponds to the unique solution of the variational
problem:

H.f / ! min ;

with H.f / D R
f logfdv denoting the celebrated H-function. We thus define the

projector Pf LM onto the tangent space Tf LM as:

Pf LMJ
�
f LM

� D @f LM

@Mf

�
Z
 .v/J.f LM/dv : (3.46)

Returning to the hydrodynamic variables Œ�;u; T � via the transformations (3.12),
one obtains [2]:

�
�
f LM .�;u; T /

� D f LM .�;u; T /
��
m.v � u/2

2kBT
� 5

2

�
.v � u/rr.ln T /C

C m

kBT

�
.v � u/ .v � u/ � 1

3
.v � u/2 I

�
rru

�
(3.47)

Equation (3.47) reveals that the quasi-equilibrium manifold is not an invariant
manifold of the Boltzmann equation, because temperature and bulk velocity It is
worth remarking that, strictly speaking, the statistics of the many-particle system is
actually not driven towards the local Maxwellian distribution, or, if it accidentally

starts in that state, it moves away from it, due to the flow term
�

v � @f
@r f

	
in

the Boltzmann equation. The effect of the latter term is, in fact, to smooth out
the spatial inhomogeneities [17]. Nevertheless, for small Knudsen numbers, such
term acts over time scales much larger than the collisions. Consequently, at all
times, the instantaneous single-particle distribution function is very close to the
local Maxwellian one, described by Eq. (3.2). The latter may, hence, be regarded
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as the standard reference distribution when relying on perturbation theories which
are concerned with the hydrodynamic limit of the Boltzmann equation.

3.3 Linear Hydrodynamics from the Boltzmann Equation

Several solution techniques have been introduced in the literature to obtain approxi-
mate solutions of the Boltzmann equation. In particular, the CE method extends the
hydrodynamics beyond the NSF approximation in such a way that the decay rate
of the next order approximations (Burnett and super-Burnett) are polynomials of
higher order in k [2, 21, 22]. In such an extension, relaxation rates may become com-
pletely unphysical (amplification instead of attenuation), as first shown by Bobylev
[5] for a particular case of Maxwell molecules. Therefore, several regularization
techniques have been proposed to restore the thermodynamic admissibility of the
generalized hydrodynamic equations [28–30]. A promising route, in particular, is
based on the notion of Invariant Manifold [2], introduced in Sect. 3.2.5. The method
requires a neat separation between hydrodynamic and kinetic (time and length)
scales, and postulates the existence of a stable Invariant Manifold in the space
of distribution functions, parameterized by the values of the hydrodynamic fields.
Following the approach traced in [31], we will employ, here, the Invariant Manifold
technique to determine the hydrodynamic modes and the transport coefficients
beyond the standard hydrodynamic regime. In particular, we expect to recover the
asymptotic form of the dynamic structure factor in the free-particle regime and
to shed light on the properties of the hydrodynamic equations in the intermediate
regime of finite Knudsen numbers.

This section is structured as follows.
We will review, in Sect. 3.3.1, the eigenvalue problem associated with the

linearized Boltzmann equation. In Sect. 3.3.2, we will derive the invariance equation
for the Boltzmann equation equipped with an arbitrary linearized collision operator.
In Sect. 3.3.3 we will introduce a suitable coordinate system which allows one to
highlight the symmetries of the solutions of the invariance equation. In Sect. 3.3.4
we will, then, solve the invariance equation for the linearized BGK model [32].
In Sect. 3.3.5 we will investigate the properties of the solution of the invariance
equation for a gas of Maxwell molecules. We will, hence, comment on the structure
of the obtained hydrodynamic modes and cast the generalized transport coefficients
in the Green-Kubo formalism [33]. We will, finally, determine the spectrum of
the density fluctuations and discuss some relevant features of the resulting short
wavelength hydrodynamics.

3.3.1 Eigenfrequencies of the Boltzmann Equation

In this section we consider the eigenvalue problem for the linearized Boltzmann
equation. Namely, for a inhomogeneous gas, the eigenvalues correspond to k-
dependent frequencies (i.e. inverse of characteristic collision rates). The connection
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between the fluctuations of the macroscopic variables and the underlying charac-
teristic kinetic rates is a central problem in statistical mechanics [34, 35] which
still demands a conclusive understanding. In order to appreciate the problem, we
recall that in the NSF approximations, the hydrodynamic modes are quadratic
in the wave vector [36] and are unbounded. On the other hand, Boltzmann’s
collision term features equilibration with finite characteristic rates. Hence, such
“finite collision frequency” is at variance with the arbitrary decay rates in the NSF
approximation: intuitively, the hydrodynamic modes at large k cannot relax faster
than the collision frequencies. In his seminal work [37] on the eigenfrequencies
of the Boltzmann equation, Resibois provided an explicit connection between the
generalized frequencies of the linearized Boltzmann equation and the decay rate of
the hydrodynamic fluctuations. He tackled the problem by solving, perturbatively,
the eigenvalue problem associated to the Boltzmann equation and to the NSF
equations of hydrodynamics.

Let us rewrite the Boltzmann equation (3.1):

@tf D �v � rf CQ.f; f / : (3.48)

We introduce the dimensionless peculiar velocity c D .v � u0/=vT and the equi-
librium values of hydrodynamic fields: equilibrium particle number n0, equilibrium
mean velocity u0 D 0, and equilibrium temperature T0. The global Maxwellian
reads: f GM D .n0=v

3
T /f0.c/where f0.c/ D ��3=2e�c2 is a Gaussian in the velocity

space (c D jcj). We linearize (3.48) by considering only small disturbances from
the global equilibrium. Moreover, we write the nonequilibrium distribution function
(cf. also Table 3.3) as:

f .r; c; t/ D f LM C ıf; (3.49)

where f LM denotes the local Maxwellian to be made precise in Sect. 3.3.2, and
ıf the deviation from local equilibrium. An alternative notation is introduced via
ıf D f GMı'. We also consider a reference frame moving with the flow velocity

Table 3.3 Notation used in this manuscript

f = f LM + ıf‚ …„ ƒ
= f GM + f GM'0 + f GMı'

= f GM C f GMX.0/ � x + f GMıX � x„ ƒ‚ …
= f GM C f GM4X � x
= f GM C 4f

Terms have been grouped and abbreviated as depicted in this table. f GM and f LM denote global
and local Maxwellian, respectively, and 4f and ıf their “distance” from f . The third row informs
about the closure discussed in this manuscript, while x is a set of distinguished (lower-order)
moments of f
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and linearize the collision operator around global equilibrium. When passing over
to Fourier space, we seek solutions of the form:

f .r; c; t/ D e!t eik�rf .k; c; !/ ;

where ! is a complex-valued frequency and k is a real-valued wavevector. Thus, the
Boltzmann equation (3.48) reduces to:

1

vT
@tf .k; c; !/ D �ik � cf C OLıf .k; c; !/ ; OL D 1

vT
L ; (3.50)

where we made use of the fact that Lf LM D 0. In the sequel of this section, we will
investigate the spectrum of the operatorƒ � OL� ik � c, which determines the time
evolution of the single-particle distribution function [38]. This is readily seen by
inspection of the inverse Laplace transform:

f .k; c; t/ D
�
1

2�i

I
ezt

.z �ƒ/dz

�
f .k; c; 0/ ; (3.51)

where the closed path encircles the poles of the function inside the integral.
According to the Spectral Theorem, these poles correspond to the spectrum of ƒ.
The flow term �ik � cf is treated, here, as a small perturbation [17] (this amounts to
considering small gradients in the real space). Equation (3.50) can be, hence, written
in the form:

ƒf D !f : (3.52)

The investigation of the spectrum of the operator ƒ, in Eq. (3.52), is a formidable
mathematical problem, which can be tackled by considering, first, the hydrodynamic
limit k ! 0. In this limit, Eq. (3.52) reads:

OL‰i.c/ D �i‰i .c/ : (3.53)

The linear operator OL can be shown to be self-adjoint with respect to a suitably
defined scalar product [1], hence the corresponding eigenfunctions are (or can be
made) orthogonal and constitute a complete set. In particular, a subset of them is
related to the fivefold degenerate zero eigenvalue. These functions correspond to
the collision invariants f GMX.0/, with X.0/ denoting a set of lower-order Sonine (or
associated Laguerre) polynomials:

X.0/ D
�
1; 2c;

�
c2 � 3

2

��
: (3.54)

One, also, typically assumes that the eigenvalues of OL other than 0 have no accu-
mulation point at the origin. This assumption is always implicit in any calculation
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of transport coefficients based on kinetic theory. Physically, it corresponds to
invoking a separation between the kinetic time scale ��1

i , and the hydrodynamic
time scale .vtk/�1, as discussed in Sect. 3.2.2. For finite values of k, there will
be a set of eigenvalues of ƒ, denoted by !˛ , with ˛ D 1; : : : ; 5, which, in the
k ! 0 limit, reduce to the aforementioned degenerate zero eigenvalue. Hence, we
shortly review, here, the results of a perturbative method, outlined in [37], which
allows one to determine the dependence of the set !˛ from k. Denoting by ‰˛.k/
the eigenfunctions corresponding to !˛.k/, the yet unknown eigenfunctions and
eigenvalues can be expanded in powers of the wavevector k:

‰˛ D ‰.0/
˛ C k‰.1/

˛ C k2‰.2/
˛ C : : : ;

!˛ D !.0/˛ C k!.1/˛ C k2!.2/˛ C : : : ; (3.55)

where‰.0/
˛ are linear combinations of the collision invariants (3.54), whose detailed

expression is not relevant here (cf. [39] for details). The use of a Rayleigh-
Schödinger perturbation theory leads to the following polynomial expression for
the set f!˛g:

!1 D ic0k � k2


‰
.0/
1

ˇ̌̌
ˇ
�
.cx � c0/ 1OL.cx � c0/

�
‰
.0/
1

�
;

!2 D �ic0k � k2


‰
.0/
2

ˇ̌
ˇ̌ �
.cx C c0/

1

OL.cx C c0/

�
‰
.0/
2

�
;

!3 D �k2


‰
.0/
3

ˇ̌̌
ˇ
�
cx
1

OLcx
�
‰
.0/
3

�
;

!4 D �k2


‰
.0/
4

ˇ̌
ˇ̌ �
cx
1

OLcx
�
‰
.0/
4

�
;

!5 D �k2


‰
.0/
5

ˇ̌
ˇ̌ �
cx
1

OLcx
�
‰
.0/
5

�
; (3.56)

where c0 denotes the speed of sound.
On the other hand, in Fourier space, the linearized NSF equations read:

!nk D �in0 .k � uk/ ;

!uk D ��k2uk �
�
1

3
�C 	

�
.k � uk/ k � ic20�

�1��1
0 knk � ic20�

�1˛kTk ;

!Tk D � �

�0cv
k2Tk � i

� � 1
˛

.k � uk/ ; (3.57)

The condition of a non-trivial solvability of the linear system (3.57) with respect
to the variables Œnk.!/;uk.!/; Tk.!/�, yields the dispersion relation !.k/, i.e. the
normal mode frequencies of the system. It can be shown, in particular, that the real
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part of these modes is quadratic in the wavevector [2, 37, 39]:

Re.!/ / �k2 ;

which can be regarded, in fact, as the hallmark of the NSF approximation.
By requiring the equivalence of the hydrodynamic frequencies with the set of
kinetic frequencies !˛ , given in Eq. (3.56), leads to approximate expressions for
the transport coefficients, which can be shown to be equivalent to the reduced
expressions determined by many-body autocorrelation functions [37]. As also
pointed out in [17], the results obtained by Resibois, based on the correspondence
between hydrodynamic modes and kinetic frequencies, reveals that, in the limit of
long wavelengths, the possible modes of motion of the gas correspond to rather
ordered motions, such as a sound wave propagation. These modes are referred to,
in the literature, as collective modes, because they involve the coordinate action of
a huge number of particles. The onset of such an ordered motion as a result of the
underlying chaoticity of the individual motion of the particles is a striking feature
of statistical mechanics. The reason of this can be traced back to the effect of the
collisions, which drive very quickly the system towards the local equilibrium state,
that is a highly organized one. From then onwards, the flow term produces slow
variations in space and time of this basic state, which reduce the local gradients of
the hydrodynamic fields. In the sequel of this section, we will employ the Invariant
Manifold theory to obtain a generalization of the pioneering approach developed by
Resibois.

3.3.2 The Invariant Manifold Technique

Following the notation of Sect. 3.2, we denote by U and x.r; t/, respectively, the
space of single-particle distribution functions and a set of distinguished moments of
the latter. We then introduce the locally finite-dimensional manifold � � U as the
set of functions f .x.r; t/; c/ whose dependence on the space-time variables .r; t/
is parameterized through x.r; t/. In this section, we will identify the distinguished
moments x.r; t/ with the hydrodynamic fields. Moreover,P is the Thermodynamic
Projection operator which, as discussed in Sect. 3.2.5, allows to decompose the
dynamics into a fast motion on the affine subspace f C kerŒP � and a slow motion,
which occurs along the tangent space Tf . The use of the Thermodynamic Projector
guarantees the persistence of dissipation: it can be shown [2] that the entropy
production rate is unaltered when the dynamic is projected along the manifold of
slow motion.
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In order to derive exact hydrodynamic equations from the general eigenvalue
problem (3.50), we proceed as follows:

1. We determine the invariant manifold, i.e. the distribution function solving the
invariance equation

.1 � P/ƒ�f D 0 ; (3.58)

where 4f � f � f GM (cf. also Table 3.3).
2. We derive the equations of linear hydrodynamics by integrating the kinetic

equation (3.50), with f given by the solution of Eq. (3.58). By construction, the
hydrodynamic modes coincide, then, with the set !˛ of eigenfrequencies of the
Boltzmann equation, which vanish in the limit k ! 0.

We also denote by xk the Fourier components of the dimensionless hydrodynamic
fluctuations Œ Qn; Qu; QT �: Qn � .n � n0/=n0 D (particle number perturbation), Qu �
u=vT D (velocity perturbation) and QT � .T � T0/=T0 (temperature perturbation).
Further, we split the mean velocity Qu uniquely as Qu D ukek C u?e?, where the
unit vector ek is parallel to k, and e? orthonormal to ek, i.e., e? lies in the plane
perpendicular to k. Due to isotropy, u? alone fully represents the twice degenerated
(shear) dynamics. By linearizing around the global equilibrium, we write the local
Maxwellian contribution to f in (3.49) as f LM D f GM.1 C '0/ where '0 takes a
simple form, '0 D X.0/ � x (linear quasi equilibrium manifold), where X.0/.c/ was
defined in Eq. (3.54). It is conveniently considered as four-dimensional vector using
the four-dimensional version xk D Œ Qnk; uk; QTk; u?�, and is then given by (3.68).
It proves convenient to introduce a vector of velocity polynomials, �.c/, which is
similar to X0 and defined below in Eq. (3.69), such that:

h�jX.0/
� i D ı�� :

Hence, the fields xk are obtained as h�.c/if LM D xk, where averages are defined,
here, as:

h�.c/if D 1

n0

Z
�.c/f .c/dv : (3.59)

We introduce yet unknown fields ıX.c;k/ which characterize the part ıf of the
distribution function. As long as deviations from the local Maxwellian are small,
we seek a nonequilibrium manifold which is also linear in the hydrodynamic fields
x themselves. Therefore, we set:

ı' D ıX � xk : (3.60)

The “eigen”-closure (3.60), which formally and very generally addresses the
fact that we wish to not include other than hydrodynamic variables, implies
a closure between moments of the distribution function, to be worked out in
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detail below. By using the above form (3.60) for ıf D f GMı', with OLıf D
f GMLŒıX� �xk , and the canonical abbreviations 4X � X0.c/CıX.c;k/, Eq. (3.52)
reads:

!f GM4X � xk D ƒ�f D �ik � cf GM4X � xk C f GM OLıX � xk : (3.61)

The microscopic projected dynamics is obtained through the projector P , which,
when acting upon the vector field J.f / D ƒ�f , gives:

Pƒ�f D Dxk�f �
Z
�.c/ƒ�fdv ; (3.62)

where Dxk�f � @�f=@xk and the quantity inside the integral in (3.62) represents
the time evolution equations for the moments xk . These are readily obtained by
integration of the weighted (3.52) as

!h�.c/if D �ik � h�.c/cif C h�.c/i OLıf : (3.63)

Due to the eigen-closure (3.60), cf. also Table 3.3, one finds Dxk�f D f GM4X ,
whereas (3.63) is linear in xk and can be written as:

!xk D M � xk : (3.64)

Equation (3.64) defines the matrix M of hydrodynamic coefficients, whose explicit
structure will be made clear in Eq. (3.74). Using (3.64), Eq. (3.62) can be cast in the
form:

Pƒ�f D f GM4X � M � xk : (3.65)

In the derivation of (3.65), one needs to take into account the constraints
h�.c/iıf D 0 (because the fields xk are defined through the local Maxwellian part
of the distribution function only) and h�.c/i OLıf D 0 (conservation laws). The
dependence of the matrix elements of M upon moments of ıf is explicitly given
in Table 3.4. Combining (3.61) and (3.65), and requiring that the result holds for
any xk (invariance condition), we obtain a closed, singular integral equation (the
invariance equation) for complex-valued ıX,

�X � M D �ik � c 4X C OLıX : (3.66)

Notice that ıX D �X � X.0/ vanishes for k D 0, which implies that, in the limit
k ! 0, the invariant manifold is given by the set of local Maxwellians f LM. The
implicit equation (3.66) for ıX (or�X, as X.0/ is known) is identical with the eigen-
closure (3.60), and is our main and practically useful result.
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Table 3.4 Symmetry
adapted components of
(nonequilibrium) stress tensor
� k and heat flux qk ,
introduced in (3.72)
and (3.73)

�
k

1 �
k

2 �
k

3 �4

h�kıX1i h�kıX2i h�kıX3i hc
k

c
?

ıY4i
�k2B ikA �k2C ikD

Real, ˚ Imag., ˚ Real, ˚ Imag., �
q

k

1 q
k

2 q
k

3 q4

h�kıX1i h�kıX2i h�kıX3i h.c2 � 5
2
/c

?

ıY4i
ikX �k2Z ikY �k2U
Imag., � Real, � Imag., � Real, ˚

Row 2: Microscopic expression of these components
(averaging with the global Maxwellian). Short-hand
notation used: �k D c2

k

� c2

3
and �k D .c2 � 5

2
/c

k

.
Row 3: Expression of the components in terms of
(as we show, real-valued) functions A–Z (see text).
Row 4: Parity with respect to z—symmetric (˚) or
antisymmetric (�)—of the part of the corresponding
ıX entering the averaging in row 2, and whether this
part is imaginary or real-valued (see Fig. 3.7). Row 3
is an immediate consequence of row 4

3.3.3 Coordinate Representation and Symmetries

In order to calculate the averages occurring in Sect. 3.3.2, we switch to spherical
coordinates. For each (at present arbitrary) wave vector k D kek, we choose the
coordinate system in such a way that its (vertical) z-direction aligns with ek and that
its x–direction aligns with e?. The velocity vector we had been decomposed earlier
as Qu D ukek Cu?e?. We can then express c, over which we are going to perform all
integrals, in terms of its norm c, a vertical variable z and plane vector e� (azimuthal
angle e� � e? D cos�; the plane contains e?) for the present purpose as:

c=c D
p
1 � z2 e� C zek ; (3.67)

as shown in Fig. 3.3.
The local Maxwellian, linearized around global equilibrium, takes the form:

f LM=f GM D 1 C '0 D 1 C X.0/ � xk , where the four-dimensional X.0/, and the
related vector �, employing four-dimensional xk D Œ Qnk; uk; QTk; u?�, are given by
the expressions

X.0/.c/ D
�
1; 2ck; .c2 � 3

2
/; 2c?

�
; (3.68)

�.c/ D
�
1; ck;

2

3
.c2 � 3

2
/; c?

�
: (3.69)
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Fig. 3.3 Schematic drawing introducing a orthonormal frame e
k

, e
?

, and e
?

�e
k

which is defined
by the wavevector k k e

k

and the heat flux q (not shown), which lies in the e
k

–e
?

–plane. Shown
is the velocity vector c (3.67) relative to this frame (characterized by length c, coordinate z, and
angle �) and its various components. The integration over dc D c2dcdzd� is done in spherical
coordinates with respect to the local orthonormal basis

Here, we introduced, for later use, the abbreviations

ck � c � ek; c? � c � e?; c� � c � e� D c?
e? � e�

; (3.70)

such that ik � c D ikck. We can then rewrite (3.67) as c D c�e� C ckek with ck D
cz and c� D c

p
1 � z2. The latter two components, contrasted by c? (and e�),

do not depend on the azimuthal angle. We further introduced yet unknown fields
ıX.c;k/ which characterize the nonequilibrium part of the distribution function,
ı' D ıf=f GM.

By analogy with the structure of the local Maxwellian, we postulate that, close
to equilibrium, ı' depends linearly on the hydrodynamic fields xk themselves.
Equation (3.60) can, hence, be cast in the form:

ı' D ıX � xk D ıX1 Qnk C ıX2u
k C ıX3 QTk C ıX4u

? : (3.71)

The functions ıX1;2;3, which are associated to the longitudinal fields, inherit the full
rotational symmetry of the corresponding Maxwellian components, i.e. ıX1;2;3 D
ıX1;2;3.c; z/, whereas ıX4 factorizes as ıX4.c; z; �/ D 2ıY4.c; z/

P1
mD1 ym cosm�.

In this context it is an important technical aspect of our derivation to work with a
suitable orthogonal set of basis functions to represent ıf uniquely. The matrix M
in (3.65) contains the non-hydrodynamic fields: the heat flux qk � hc.c2� 5

2
/if and

the stress tensor � k � h cc if , where s denotes the symmetric traceless part of a
tensor s [40], s D 1

2
.s C sT /� 1

3
tr.s/I, where I is the identity matrix. Using (3.60)

and the above mentioned angular dependence of the ıX functions (the only term in
ıX4 playing a role in our calculations is the first order term cos�, with y1 D 1),
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constraints, such as the required decoupling between longitudinal and transversal
dynamics of the hydrodynamic fields, are automatically dealt with correctly when
performing integrals over �.

More explicitly, the stress tensor and heat flux uniquely decompose as follows:

� k D �k 3
2

ekek C �? 2 eke? ; (3.72)

qk D qk ek C q? e?; (3.73)

with the moments �k D .�
k
1 ; �

k
2 ; �

k
3 / � . Qnk; uk; QTk/ and �? D �4u?, and similarly

for qk (see Row 2 of Table 3.4).
The prefactors arise from the identities ekek W ekek D 2

3
and eke? W

eke? D 1
2
. We note in passing that, while the stress tensor has, in general, three

different eigenvalues, in the present symmetry adapted coordinate system it exhibits
a vanishing first normal stress difference. Since the integral kernels of all moments
in (3.72) do not depend on the azimuthal angle, these are actually two-dimensional
integrals over c 2 Œ0;1� and z 2 Œ�1; 1�, each weighted by a component of
2�c2f GMıX.

Stress tensor and heat flux can yet be written in an alternative form, defined by
Row 3 of Table 3.4, in terms of the functionsA–Z, which correspond to moments of
the nonequilibrium distribution function and are related to the generalized transport
coefficients, see [4, 31, 36] and below.

Due to fundamental symmetry considerations, the hereby introduced generalized
transport coefficients A–Z are real-valued. To show this, we use the functionsA–Z
to split M into parts as M D Re.M/ � i Im.M/,

M D k2

0
BB@
0 0 0 0

0 A 0 0
2
3
X 0 2

3
Y 0

0 0 0 D

1
CCA � ik

0
BB@
0 1 0 0
QB 0 QC 0

0 QZ 0 0

0 0 0 0

1
CCA ; (3.74)

with abbreviations QB � 1
2

� k2B , QC � 1
2

� k2C , and QZ � 2
3
.1 � k2Z/. The

checkerboard structure of the matrix M (3.74) is particularly useful for studying
properties of the hydrodynamic equations (3.65), such as hyperbolicity and stability
[21, 22], once the functionsA–Z are explicitly evaluated. Moreover, we remind the
reader that we use orthogonal basis functions (irreducible moments, cf. Table 3.4)
to solve (3.66). In order to show how the above functions enter the definition of the
M matrix, we first notice that its elements are—a priori—complex valued. We wish,
then, to make use of the fact that all integrals over z vanish for odd integrands. To
this end we introduce abbreviations ˚ (�) for a real-valued quantity which is even
(odd) with respect to the transformation z ! �z. One notices X.0/ D .˚;�;˚;˚/,
and we recall that A–Z are integrals over either even or odd functions in z, times
a component of ıX (see Table 3.4). Let us prove the consistency of the specified
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symmetry of M and the invariance condition: start by assuming A–Z to be real-
valued functions. ThenM�� D ˚ if �C � is even, and M�� D i˚ otherwise. This
implies ıX1 D ˚ C i�, ıX2 D � C i˚, ıX3 D ˚ C i�, and ıX4 D ˚ C i�, i.e.,
different symmetry properties for real and imaginary parts. With these “symmetry”
expressions for X.0/, ıX, and M at hand, and by noticing that symmetry properties
for ıX take over to OL.ıX/ because the  r;l are (i) symmetric (antisymmetric) in
z for even (odd) l and (ii) eigenfunctions of OL, we can insert into the right hand
side of the equation, OL.ıX/ D .X.0/ C ıX/ � .M C i � I/, which is identical with
the invariance equation (3.66). There are only two cases to consider, because M
has a checkerboard structure, i.e., only two types of columns: Columns � D 1 and
� D 3: ıX� D ˚ C i� becauseM1�3;4 D 0; Columns � 2 f2; 4g: ıX� D ˚ C i�
if M�;1�3 D 0 (which is the case for column 4) and � C i˚ if M�;4 D 0 (which is
the case for column 2). These observations complete the proof.

3.3.4 The BGK Kinetic Model

The solution of the invariance equation (3.66) can be obtained in some simple cases
amenable to an analytic or numerical treatment. In this section we focus on the
linearized version of the BGK kinetic model, which remains popular in applications
[8] and is characterized by a single collision frequency. The invariance equation
for this model is readily obtained from Eq. (3.66) by using OL.ıX/ D �ıX, which,
hence, yields:

ıX D X.0/ � �
M C Œikck C 1�I

��1 � X.0/: (3.75)

Notice that ıX vanishes for k D 0, and that (3.75) is supplemented with the
basic constraint h�iıf D 0, which, however, is automatically dealt with if we only
evaluate anisotropic (irreducible) moments with ıf , such as those listed in Table 3.4.

The non-perturbative derivation is made possible with an optimal combination
of analytical and numerical approaches to solve the invariance equation. The result
for the hydrodynamic modes is demonstrated in Fig. 3.4. It is clear from Fig. 3.4
that the relaxation of none of the hydrodynamic modes is faster than ! D �1
which is the collision frequency in the units adopted in this section. Thus, the result
for the exact hydrodynamics indeed corresponds to the following intuitive picture:
the hydrodynamic modes, at large k, cannot relax faster than the (single) collision
frequency itself.

We iteratively calculated (i) ıX directly from (3.75) for each k in terms of M,
(ii) subsequently calculate moments from ıX by either symbolical or numerical
integration (both approaches produce same results within machine precision, we
found simple numerical integration on a regular 500�100 grid in c; z-space with grid
spacing 0:01 on both axes sufficient to reproduce analytical results). Importantly, the
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fix point of the iteration (i)–(ii)–(i)-.. is unique for each k, i.e., does not depend on
the initial values for moments A–Z.

In addition, two other computational strategies were implemented: First, we used
continuation of functions A–Z from their values at k D 0 to solve (3.75) with an
incremental increase of k, where the solution at k was used as the initial guess for
k C dk. Second, we used also a continuation “backwards” in which the solution at
some k (obtained by convergent iterations with a random initial condition) was used
as the initial guess for a solution at k � dk. Both these strategies returned the same
values of functionsA–Z as computed by iterations from arbitrary initial condition.

The solution ıX allows one to calculate the whole distribution function f

via (3.60) as illustrated by Fig. 3.5. For the resulting moments A–Z, for a wide
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Fig. 3.6 Moments A–Z vs. wave number k obtained with the solution of (3.75)

range of k-values, see Fig. 3.6. With the result for the functions A–Z at hand, the
extended hydrodynamic equations are closed.

Let us briefly discuss the pertinent properties of this system. First, the generalized
transport coefficients are given by the nontrivial eigenvalues of �k�2Re.M/: �2 D
�A (elongation viscosity), �3 D � 2

3
Y (thermal diffusivity), and �4 D �D

(shear viscosity). All these generalized transport coefficients are non-negative (see
Fig. 3.6). Second, computing the eigenvalues of matrix M, we obtain the dispersion
relation !.k/ of the corresponding hydrodynamic modes already presented in
Fig. 3.4. Third, a suitable transform of the hydrodynamic fields, zk D T � xk,
where T is a real-valued matrix, can be established such that the transformed
hydrodynamic equations read @tzk D M0 � zk, where M0 D T � M � T�1 is manifestly
hyperbolic and stable; Im.M0/ is symmetric, Re.M0/ is symmetric and non-positive
semidefinite. The corresponding transformation matrix T can be easily read off
the results obtained in [21] for Grad’s systems since the structure of the matrix
M (3.74) is identical to the one studied in [21, 22]. It can be explicitly verified that
matrix T with the functions A–Z derived herein is real-valued and thus render the
transformed hydrodynamic equations manifestly hyperbolic and stable.

We note that this result—hyperbolicity of exact hydrodynamic equations—
strongly supports a recent suggestion by Bobylev to consider a hyperbolic regu-
larization of the Burnett approximation [30]. Similarly, using the hyperbolicity, an
H -theorem is elementary proven as in [22, 30]. Finally, using the accurate data
for functions A–Z, we can write analytic approximations for the corresponding
hydrodynamic equations in such a way that hyperbolicity and stability is not
destroyed in such an approximation [21].

In conclusion, we derived exact hydrodynamic equations from the linearized
Boltzmann-BGK equation [36]. The main novelty is the numerical non-perturbative
procedure to solve the invariance equation. In turn, the highly efficient approach
is made possible by choosing a convenient coordinate system and establishing
symmetries of the invariance equation. The invariant manifold in the space of
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distribution functions is thereby completely characterized, that is, not only equations
of hydrodynamics are obtained but also the corresponding distribution function is
made available.

The predicted smoothness and extendibility of the spectrum to all k is expected
to have some implications for micro-resonators where the quality of the resonator
becomes better at very high frequency: that is compatible with our prediction. The
damping of all the modes saturates while the imaginary part of the acoustic modes
frequency grows. The pertinent data can be used, in particular, as a much needed
benchmark for computation-oriented kinetic theories such as lattice Boltzmann
models, as well as for constructing novel models [41].

It is worth remarking that the above derivation of hydrodynamics is done under
the standard assumption of local equilibrium, however the assumption itself is open
to further study [42].

3.3.5 The Maxwell Molecules Gas

In this section we investigate another kinetic model for which an exact solution of
the invariance equation (3.66) can be obtained: the Maxwell molecules gas, i.e. a
gas constituted by particles repelling each other with a force proportional to the
inverse fifth power of the distance. Wang Chang and Uhlenbeck [43] provided an
analytical solution to the eigenvalue problem for the linearized collision operator L
pertaining to this case. For the Maxwell molecules gas, the collision probability per
unit time, g�.g; �/, is independent of the magnitude of the relative velocity g. Since
the collision operator is spherically symmetric in the velocity space, the dependence
of the eigenfunctions upon the direction of c is expected to be spherically harmonic.
Indeed, the eigenvalue problem admits the following solutions:

OLŒ r;l .c; z/� D �r;l r;l .c; z/ ;

 r;l .c; z/ D
s
rŠ.l C 1

2
/
p
�

.l C r C 1
2
/Š
clPl.z/S

.r/

lC 1
2

.c2/ ; (3.76)

where S.r/lC1=2.x/ are Sonine polynomials, and Pl.z/ are Legendre polynomials
which act on the azimuthal component of the peculiar velocity c. The Legendre
and Sonine polynomials are each orthogonal sets, i.e.:

Z 1

�1
Pl .z/Pn.z/ dz D 2

2l C 1
ıln ;

2�

Z 1

0

c2e�c2c2lS.r/
lC 1

2

.c2/S
.p/

lC 1
2

.c2/ dc D �.l C 1
2

C r/Š

rŠ
ırp :
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Accordingly, the  r;l are normalized to unity with the weight factor f0.c/:

ırr0ıll0 D 2��1=2
Z 1

�1

Z 1

0

c2e�c2 r;l .c; z/ r 0 ;l 0.c; z/ dcdz

� ��3=2
Z
e�c2 r;l .c/ r 0;l 0.c/ dc : (3.77)

The corresponding eigenvalues for Maxwell molecules are given by:

�r;l D 2�

Z �

0

sin.�/F.�/Trl.�/ d� ;

Trl.�/ � cos2rCl
�
�

2

�
Pl

�
cos

�

2

�
C sin2rCl

�
�

2

�
Pl

�
sin

�

2

�
� .1C ır0ıl0/ :

The collision operator OL is negative semidefinite, i.e. all eigenvalues are negative
except �0;0, �0;1, and �1;0 which are zero and correspond to the elementary collision
invariants. As shown by Wang Chang and Uhlenbeck [43], the spectrum of OL for
Maxwell molecules is discrete and, for r ! 1, the eigenvalues �r;l tend to �1.
Chang and Uhlenbeck’s investigation on the dispersion of sound in a Maxwell
molecules gas was based upon writing the deviation from the global equilibrium as:

.'0 C ı'/ D
1X

fr;lgD0
a.r;l/ r;l .c/ ; (3.78)

so that (3.52) reduces to an algebraic equation for the coefficients a.r;l/:

!a.r;l/ D �ik �
1X

fr 0;l 0gD0
Cr;l;r 0;l 0a

.r 0;l 0/ C �r;la
.r;l/ ; (3.79)

with:

Cr;l;r 0;l 0 D h r;l jc  r 0;l 0i :

The hydrodynamic modes for the Maxwell-molecules gas are determined, as seen in
Sect. 3.3.1, from the condition of non-trivial solvability of the linear system (3.79).
This approach allows to solve the eigenvalue problem (3.50) for an arbitrary number
of modes, which is made possible just by tuning the number of eigenfunctions taken
into account in (3.78).
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Another approach [31] is based, instead, on the expansion of the functions
ŒX.0/; ıX� in terms of the orthonormal basis  r;l D  r;l .c; z/:

X.0/
� .c; z/ D

NX
r;l

a.0/.r;l/�  r;l .c; z/ ; (3.80)

ıX�.k; c; z/ D
NX
r;l

a.r;l/� .k/ r;l .c; z/ : (3.81)

The equilibrium coefficients a.0/� are known, and can be determined, by taking
advantage of the orthogonality of the eigenfunctions, as follows:

a.0/.r;l/� D �� 3
2

Z
e�c2 r;l .c; z/X.0/

� .c; z/ dc : (3.82)

Inserting (3.80) and (3.81) into the invariance equation (3.66), we obtain the
following nonlinear set of algebraic equations for the unknown coefficients
a
.r;l/
� .k/:

b.r;l/� M�� D �ik �
NX
r 0;l 0

b.r
0;l 0/

� C.r;l;r 0;l 0/ C
NX
r 0;l 0

a.r
0;l 0/

� L.r;l;r 0;l 0/ ; (3.83)

with, 8�;r;l , b
.r;l/
� D

�
a
.0/.r;l/
� C a

.r;l/
�

	
, and

L.r;l;r 0;l 0/ D h r;l j OL  r 0;l 0i :

For any order of expansion, the solutions of (3.83) characterize an invariant manifold
in the phase space. The matrix elements L.r;l;r 0;l 0/ can be easily evaluated in few
kinetic models, such as the linearized BGK model [36] and Maxwell molecules
[31]. In particular, the Maxwell molecules case is recovered by setting:

L.r;l;r 0;l 0/ D �r;l ır;r 0ıl;l 0 :

whereas the linearized BGK model is recovered by setting all nonvanishing
eigenvalues equal to � D �1. The calculation of the coefficients a.r;l/, via
the reformulated invariance equation (3.83), is easily achieved. Through these
coefficients, the invariant manifold is fully characterized: the distribution function
is determined and the corresponding matrix M of linear hydrodynamics as well as
moments A–Z, are made accessible.

Solving the invariance equation (3.66) and thus obtaining the distribution
function via the coefficients a.r;l/, cf. Fig. 3.7, required minor computational effort
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[31]. The components A–Z of M are related to the coefficients a.r;l/ by the
expressions:

A D � ia
.0;2/
2p
3k

; B D � a
.0;2/
1p
3k2

; C D � a
.0;2/
3p
3k2

;

X D � i
p
5a

.1;1/
1

2k
; Y D � i

p
5a

.1;1/
3

2k
; Z D �

p
5a

.1;1/
2

2k2
;

D D � i
k

NX
r;l

a
.r;l/
4 hckc� j r;l i ; U D � 1

k2

NX
r;l

a
.r;l/
4


�
c2 � 5

2

�
c?j r;l

�
:

(3.84)

In the regime of large Knudsen numbers the coefficients a.r;l/ may be used to, e.g.,
directly calculate phoretic accelerations onto moving and rotating convex particles
[44], while in the opposite limit of small k we recover the classical hydrodynamic
equations.

3.3.6 Hydrodynamic Modes and Transport Coefficients

With M at hand, the hydrodynamic modes are obtained from the condition of non-
trivial solvability of the linear system (3.64). Figure 3.8 illustrates the damping rates
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Fig. 3.8 Hydrodynamic modes ! of the Boltzmann kinetic equation with Maxwell molecules
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of the fluctuations given by the real part of the hydrodynamic modes, obtained by
truncating the series (3.80) and (3.81) at the fourth order. The picture does not
qualitatively change upon further increase of the order N . For any given order of
expansion, the modes extend smoothly over all the wavevector domain and, for
large k, they attain an asymptotic value, which is clearly in agreement with the
asymptotic behavior of the hydrodynamic modes obtained for the linearized BGK
model discussed in Sect. 3.3.4.

The generalized transport coefficients are obtained by the nontrivial eigenvalues
of �k2Re.M/: �2 D �A (elongation viscosity), �3 D � 2

3
Y (thermal diffusivity)

and �4 D �D (shear viscosity). In the limit k ! 0, one recovers the hydrodynamic
limit. This limit had been worked out in detail in [21, 22]. In that limit, the
generalized transport coefficients A–Z become the classical transport coefficients.
As can be seen from Fig. 3.9, and by also inspecting the invariance equation (3.66),
in the limit of small k, all moments A–Z approach constant values in the limit of
small k. These constants are compatible with those obtained in [21, 22] for the case
of Navier-Stokes equations and the Burnett correction [45].

The stress tensor and heat flux are given in terms of these moments in Table 3.4.
For example, the parallel component of the stress tensor related to density fluctua-
tions, �k

1 , cf. Eq. (3.72), is given by �k2B , so that it approaches �k2 for small k, as
it results from the Burnett approximation [2].

Moreover, under suitable assumptions, one may also cast the matrix of hydrody-
namic coefficients M in the structure of a Green-Kubo formula [33]. We summarize
below the main steps of the proof given in [46], to which we refer the reader for
an exhaustive derivation. From Eqs. (3.64) and (3.66), the time evolution of the
hydrodynamic fields can be formally written as:

xk.�/ D eM�xk.0/ D


�

ˇ̌
ˇ̌eƒ�ıX

�
xk.0/ ; (3.85)
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where we skipped, for brevity, the spatial dependence of the fields. In Eq. (3.85) the
time � is of the order of �macro, which denotes a characteristic time scale related to
the evolution of the hydrodynamic fields. As discussed in Sect. 3.2.2, the presence of
a definite time scale separation, in a particle system, entails that �macro 	 �mf , where
�mf denotes a kinetic time scale (i.e. the mean time between collisions). Hence, by
invoking the Bogoliubov hypothesis of time scale separation, the time � becomes
large with respect to the characteristic time scale of the dynamics of the distribution
function (r.h.s. of the second equality in (3.85)). Thus, from Eq. (3.85), we can write
the matrix of hydrodynamic coefficients in the form:

M D lim
�!1

1

�
log



�

ˇ̌
ˇ̌eƒ�ıX

�
(3.86)

Next, we use the operator identity:

eƒ� D 1Cƒ� Cƒ�

�
1

�

Z �

0

.� � t/eƒtdt

�
ƒ ; (3.87)

and make the following assumptions:

(i) The underlying kinetic evolution is such that the term between square brackets,
in Eq. (3.87), can be approximated, for large � , by

R 1
0
eƒtdt.

(ii) The expansion of the logarithm to first order in � is a valid approximation before
the limit � ! 1 is taken.

Thus, using the symmetry of the operator ƒ, and neglecting, for simplicity,
kinematic contributions [46] of the form h�.0/jƒıX.0/i, Eq. (3.86) can be finally
written in the form:

M D
Z 1

0

D P�.0/ PıX.t/
E
f GM

dt : (3.88)
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Equation (3.88) allows one to extend the Green-Kubo formalism, which relates the
response function to a suitable time correlation function, to the short wavelength
domain. Moreover, it can be evinced from an inspection of Fig. 3.9 that in the free-
particle regime, k ! 1, the transport coefficients vanish and dissipative effects
fade off. This observation finds a sound confirmation in [18]: “Operationally, of
course, transport coefficients cannot even be defined for a gas of non-interacting
particles. A measurement of the thermal conductivity, for example, is only possible
if we can apply, quasi-statically, a temperature gradient and maintain it while
we measure the heat current. However, only for a system with a finite mean free
path can a temperature gradient be maintained quasi-statically. A free gas would
“run away”, and the standard measurements of transport coefficients cannot be
performed. Still, it may be satisfying for some that, in this case, the Kubo expressions
give the most sensible result: zero.”

3.3.7 Short Wavelengths Hydrodynamics

The existence of collective modes at short wavelengths, in real fluids, is a long-
standing issue in fluid dynamics [48, 49]. In their seminal work [50], Ford et al.
illustrated, on the basis of a model kinetic equation approximating the linearized
Boltzmann equation, that the sound modes extended to length scales comparable
with the mean free path in the gas. Similarly, our analysis showed that hydrodynamic
modes and the generalized transport coefficients extend smoothly over the whole k
domain. Therefore, the Invariant Manifold technique allows to refine the hydro-
dynamic description beyond the strictly hydrodynamic regime. Our results also
strengthen those previously reported in [3, 51, 52] on dense fluids, which revealed
that the hydrodynamic laws provide a sensible description of fluids even at length
scales comparable with �mf .

It would be interesting, hence, to investigate the features of the equations of
generalized hydrodynamics we obtained in the regime of finite frequencies and
wavevectors. In Fig. 3.10a comparison is shown about inverse phase velocity and
damping for acoustic waves between our results, former approaches [12, 29] and
experimental data performed by Meyer and Sessler [47]. As it is seen, our results are
very close to the predictions of the regularized 13 (Reg13) moments method [29]
and closer to experimental data than (Reg13) concerning the phase spectrum. Our
theory also predicts a phase speed which remains finite also at high frequencies, a
property which is not enjoyed by any hydrodynamics derived from the CE expansion
[28].

A further clue about the features of our model at finite frequencies and wavevec-
tors can be achieved by investigating the spectrum of density fluctuations, SQn;Qn [4]
From the knowledge of the functionsA–Z, it is possible to compute the coefficients
DT and � , related to the damping, respectively, of thermal and pressure fluctuations
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subsequently Eq. (3.65) for w.k/ with complex-valued k and real-valued !) are compared with
previous approaches including Navier Stokes (NS), regularized 13 moment (Reg13) [29], Grad’s
13 moment (Grad13), and experimental data presented in [47]. (b) Phase spectrum, i.e, real part of
k times velocity of sound c0 and divided by ! vs. the negative logarithm of !. Again, we compare
with reference results

in fluids. In the limit of small k, and following standard textbooks [39], they
read:

DT D 2

5
.X � Y / ;

� D �
�
1

2
AC 1

5
X C 2

15
Y

�
:

It is worth pointing out that, unlike standard treatments of hydrodynamic fluctua-
tions, the generalized transport coefficientX enters the expression of the coefficients
DT and � , even though its contribution, as it is evident from Fig. 3.9 is fairly small.
The calculation of SQn;Qn is a standard textbook exercise [39, 53]. We give, hence, the
final result:

SQn;Qn.k; !/ D 1

2�
SQn;Qn.k/

�
2

5

2DT k
2

!2 C .DT k2/2
C 3

10

2�k2

.! ˙ c0k/2 C .�k2/2

�
:

(3.89)

Representative plots of S.k; !/ are shown in Fig. 3.11a, b. For small k (hydrody-
namic limit), the obtained spectrum recovers the usual results of neutron (or light)
scattering experiments and consists of the three Lorentzian peaks. The one centered



3 Small Scale Hydrodynamics 101

−2 −1 0 1 2

−5

−4

−3

−2

−1

0

1

2

 
log

10
k

2

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

ω

 S
(k

,ω
)

−10 0 5-5
0

0.5

1

ω

1

 S
(k

,ω
)

2DTk2

2Γk2

2DTk2

large k 

small k 
a

b

ωσ

c

lo
g

10
 p

ea
k 

w
id

th

4th             8th
order

k*(8)k*(4)

Fig. 3.11 (a) Dynamic structure factor S
Qn;Qn.k; !/ vs. ! for a small k D 0:4 and (b) large k D 100.

!s D c0k denotes the hydrodynamic predicted sound mode of the spectrum, and the widths are
related to the moments A–Z (see Fig. 3.9). For small k, these are given by DT D 2

5
.X � Y /

and � D �. 1
2
A C 1

5
X C 2

15
Y /, where A is the generalized longitudinal kinetic viscosity, Y the

generalized thermal diffusion coefficient and X is a cross-coupling transport coefficient, relating
heat flux to density gradients. (c) Width D2

Tk of the Rayleigh peak vs. k (double-logarithmic). At
small k,D2

Tk / k2 as all moments A–Z, except X , reach a finite value in this limit. The inflection
point at k D k�.N / � 1 (shown to be increasing with the order of expansion N ) denotes the
onset of departure from the ideal Maxwellian behavior, where the width of the peak starts to behave
sublinearly in k, and is used to quantify the range of validity for results obtained at finite order

in ! D 0 is the Rayleigh peak, which corresponds to the diffusive thermal mode.
The two side peaks centered in ! ˙ c0k are the Brillouin peaks, and represent the
two propagating sound waves.

By increasing the wave-vector, one enters an “intermediate” regime, in which
the structure of (3.89) is unchanged, except that the generalized coefficients DT

and � must then be replaced by more complicate expressions [31]. The net effect
observed is that sound waves get damped and disappear, whereas the central
Rayleigh peak decreases and broadens. Density fluctuations are, therefore, driven
only by a diffusive thermal mode for large enough k. A deeper look about the
behavior of the width at half maximum of the central Rayleigh peak with increasing
wavevectors allows us to bridge, hence, the gap between the hydrodynamic and the
free-particle regimes. For k � 1 the width of the central peak increases with the
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square wavevector, / k2, whereas, in the opposite regime, k 	 1 the width of the
central peak is expected to grow up linearly in k.

Our results, see Fig. 3.11, predict a width which is truly quadratic for small
enough k, reaches the regime of linear behavior for large k and terminates, for
some large k, with a sub-linear dependence on k. The onset of the terminal regime
at k D k�.N / marks the range of validity which can be accessed at a given finite
order of expansion N . Increasing N does not alter the overall picture obtained at a
moderate order of expansion, and, more generally, results obtained with N C 1 will
not change those obtained with N below k�.N /, cf. Fig. 3.11c.

By varying the parameter N in the expansions (3.80) and (3.81) one is able to
tune the number of nonequilibrium contributions to be included into the distribution
function, thus refining the hydrodynamic description to an arbitrary level of
accuracy.

The onset of a critical length scale marking the limit of the hydrodynamic
description is reminiscent of the discussion made in Sect. 3.2. Namely, we know that
hydrodynamics is founded on the notion of Local Equilibrium. Thus, for a givenN ,
one may be tempted to link the length scale at which hydrodynamics breaks down,
Œk�.N /��1, with the mesoscopic scale `meso. Further investigation is called for to
shed light on this proposal: should such connection be true, this would then endow
the generalized hydrodynamic equations obtained via the Invariant Manifold theory
with a deeper thermodynamic content.

3.4 Conclusions

In this work, we described the use of the Invariant Manifold technique to derive
closed hydrodynamic equations from some kinetic models. The main novelty of
our approach stems from the use of a non-perturbative technique, which makes it
possible to sum up exactly the classical Chapman–Enskog expansion. The method
postulates a separation between slow and fast moments, and allows one to extract
the slow invariant manifold in the space of distribution functions.

The obtained equations of exact hydrodynamics, derived by solving the invari-
ance equation, are hyperbolic and admit a H-Theorem. Our solution of the invari-
ance equation was considerably simplified by considering linear deviations from
global equilibrium.

The generalized transport coefficients have been numerically determined and
settled into expressions which recover the Green-Kubo formulae. Finally, by also
comparing with available experimental data and previous approaches, we discussed
the range of validity of our approach, which turned out to be amenable of extending
the hydrodynamic scenario to length scales comparable with the mean free path.
Our approach may help shedding new light on the investigation about the transition
between the kinetic, particle-like, description of matter and the macroscopic,
“continuum”, one.
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