
Introducing Probabilities in Controller
Strategies

Jerry den Hartog1(B) and Ilaria Matteucci2

1 Technische Universiteit Eindhoven, Eindhoven, The Netherlands
J.d.Hartog@tue.nl

2 National Research Council, Istituto di Informatica e Telematica (IIT), Pisa, Italy
Ilaria.Matteucci@iit.cnr.it

Abstract. In this paper we propose a basic framework to merge secu-
rity controllers with probabilistic concepts. This framework provides a first
step towards quantitative security achieved by probabilistic controllers. It
extends the framework for specification, analysis, and automatic genera-
tion of security controllers provided in [21,23] by considering probabilis-
tic aspects of the behaviour of both the target process and the controller.
Controllers may actively try to influence the choice of action of the target
system or only passively react to actions the target system tried to per-
form. In a non-probabilistic setting both active and passive controllers can
be expressed by the same model. In a probabilistic setting, however, these
two types of controllers can differ. We respectively use the notions of gen-
erative and reactive processes to capture this distinction and discuss the
different behaviours obtaining in the different settings.

Keywords: Security controller · Probability · Reactive · Generative

1 Overview

The importance of securing software and systems needs little argument in our
ever more connected and information saturated world. Indeed, the security of
systems is one of the main challenges of the last decades in computer science.
With ubiquitous information gathering and sharing of huge amounts of valuable
sensitive data on the Internet and all its connected devices the importance of
security is only growing. Nowadays, each of us is using on a daily bases, devices,
such as smart-phones, that exposes most of the functionalities of a networked
personal computer. The wide range of users, including many with less (security)
skills, adds risks to security. Furthermore, smart-phones are used for multiple
purposes, both for work and leisure activities, exposing the users to a wide range
of attacks that may e.g., leak private data.

This work has been partially supported by the Italian TENACE PRIN Project
(#20103P34XC), ARTEMIS J.U. SESAMO (#295354) and EU FP7 Marie Curie
project MEALS (#295261).

c© Springer International Publishing Switzerland 2015
J. Garcia-Alfaro et al. (Eds.): DPM/SETOP/QASA 2014, LNCS 8872, pp. 233–249, 2015.
DOI: 10.1007/978-3-319-17016-9 15

234 J. Hartog and I. Matteucci

Our increasingly complex devices containing ever more (personal) data incor-
porate software and components with differing levels of trustworthiness, such as
different apps running on a smart-phone. Mechanisms to monitor and enforce secu-
rity policies are thus essential in guaranteeing secrecy, confidentiality, and integrity
of our (private) information. Different approaches, e.g., [4,6,7,22,26] therefore,
aim to formally define and automatically generate enforcement mechanisms able
to guarantee the satisfaction of security policies on systems and devices. In par-
ticular, from a formal perspective, starting from Schneider’s seminal work [26],
a lot of effort has been spent on the characterization the kind of policies can be
monitored and enforced at runtime. This leads to the clear identification of basic
concepts, such as security policy, target (or monitored system), execution traces,
enforcement mechanisms. Initially, this strand of work only considered blocking of
the system as a possible countermeasure but it has since then been refined by con-
sidering several approaches for the correction of execution traces. The kind of secu-
rity policies that can be enforced with these models have been extensively studied
leading to precise characterization of what can be enforced with a certain class of
enforcement mechanisms and under which conditions.

Another research strand related to this work addresses the adoption of for-
malisms such as automata [7,18] or process algebras [22,23], to better define
the interactions between target and enforcement mechanism as well as enforce-
ment capabilities. A main advantage of these approaches is their well studied
properties and associated procedure and results. For instance, it is possible to
formalize the behaviour of a security automata through process algebra oper-
ators. By combining process algebra techniques with concepts from temporal
logic, it is possibly to study the problem of automatically synthesizing enforce-
ment mechanisms for (parts of) targets and policies expressed in logic. The
framework presented in [23], which is based on process algebras, partial model
checking, and satisfiability techniques for logic, finds mechanisms that enforce
global security policies on a system by considering the target as only a subcom-
ponent of this system, thus enabling the possibility to project global security
policies onto local ones.

In those approaches security is often regarded as a binary concept. Behaviour
is either good or bad. Good behaviour is either enforced or not. Thus they
focus on what we call qualitative enforcement, i.e., finding a “good” enforcement
mechanism for a security policy, if possible. However, in many cases perfect
enforcement is not possible or e.g., more costly than the value you are trying
to protect. For instance, if the target system is an airplane, halting it is just
not an option; it may cause failures and deaths (a safety violation). In case like
this, we have to consider more aspects than just two security values. Reality is
much more complex and may force us to consider several quantitative aspects
that play a role in the design and evaluation of enforcement strategies. For
example, a controller may only be likely able to enforce a policy or can cost
less than another one in enforcing a specific security policy, or the benefits of
enforcing a specific policy may fail to counter-balance the disadvantages. We
can also consider the more challenging problem, that we are going to name
hereafter quantitative enforcement, to find the “best” enforcement mechanism for
a security policy and a target, in accordance to some quantitative criteria such

Introducing Probabilities in Controller Strategies 235

as the probability of attack, its cost or precision of enforcement. Quantitative
enforcement could be also seen as an optimization problem to find the best
among all good enforcement mechanisms. It would, thus, be useful to be able to
rank controllers based on different quantitative aspects such as cost.

However, many controllers are incomparable if we do not know the likely
behaviour of the target; often some (possibly unlikely) target behaviour can be
found for which one controller will be more expensive than the other and vice
versa. By taking into account the likely behaviour of a target, such controllers can
be compared by looking at the expected cost of the enforcement. This means that
we have to consider probabilistic behaviour of the target. Similarly a probabilistic
controller strategy will be more powerful than a deterministic strategy and more
readily analysed than a purely non-deterministic strategy. Thus also for the
controller probabilistic behaviour should be considered.

The main goal of this paper is to take a first step towards a formal frame-
work that enables automated generation of probabilistic security controllers by
providing a way for specifying the probabilistic behaviour of such controllers.
In particular, we consider that both controller and target processes behave in a
probabilistic way in order to define probabilistic controlling strategies. In [14],
the authors introduce different models for probabilistic processes, including reac-
tive and generative processes. Starting from these notions, this paper analyses
the different combination of these probabilistic models for both the target and
the controller process. In particular, we consider four types of controls; Accep-
tance, Suppression, and Insertion operators. According to the behaviour of the
considered target, a controller can apply one of these methods. The application
of different rules depends on the probabilistic behaviour of the target and on
the nature of both processes, i.e., whether they are reactive or generative. In
the end, we obtain a complete view of all the cases. This helps us in the next
step of our research stream for the synthesis of the optimal (if any) probabilistic
controlling strategy.

The remainder of this paper is organized as follows: The next section provides
some basic notions about probabilistic process algebra operators and reactive
and generative processes. Section 3 presents semantics definitions of probabilistic
controller operators. In this section, we also discuss different resulting behaviours
that can be obtained by considering reactive/generative controller processes that
control reactive and/or generative target systems. Section 4 compares our app-
roach with respect to related literature. Section 5 draws the conclusion of the
paper and presents some further directions.

2 Basic Probabilistic Process Algebra

In order to analyse how probability affects the interaction between a controller
and a target, hereafter we consider a minimal language that is still sufficient to
address the effect of different types of probabilistic choice on the controller and
target process behaviour. This minimal language contains only actions, proba-
bilistic choice, recursion and the controller process which keeps interpretation of
the processes simple. For practical use this is clearly too restrictive thus we plan
to extend this with e.g., non-deterministic and parallel operators as future work.

236 J. Hartog and I. Matteucci

We start from a set of actions Act , ranged over by a, b, c, We extend
this set with silent action τ and so called control actions CAct = {�a | a ∈
Act} ∪ {⊕a.b | a, b ∈ Act}. We use ζ to range over this extended action set
EAct = Act ∪{τ}∪CAct . A probability ρ is added to obtain probabilistic action
ρ · ζ; i.e., PAct = [0, 1] × EAct .

For the processes given below, we define transition systems with steps between
processes labelled with probabilistic actions. For equivalence of processes we con-
sider probabilistic bisimulation [14] for reactive processes and weak probabilistic
bisimulation [3] for generative processes. We assume it is clear how these can be
derived from the semantic rules we provide. Below we introduce the syntax of our
processes and then in turn explain the different types of processes along with their
semantics.

P:: = 0 | ∑
i∈I ρi · ζi.Pi | ∑

i∈I ζi · ρi.Pi | X | P �K P (1)

A process P can be the empty process 0. This process has no transitions. It
can also be a probabilistic choice between actions ζi followed by a corresponding
process Pi (referred to as the continuation of the process). We omit the

∑
symbol

if there is only one option and also use + as an alternate notation. We consider
both generative and reactive probabilistic choice as explained below.

In a generative choice, denoted by
∑

i∈I ρi · ζi.Pi, the sum of all the proba-
bilities of all possible actions (

∑
i∈I ρi) is one. This corresponds to an “active”

probabilistic choice; it probabilistically chooses which action to execute next.
In a reactive choice, denoted by

∑
i∈I ζi · ρi.Pi, the sum of probabilities per

action is one (for the actions present). This type of choice can be seen as passive;
it waits for one of the offered actions to be selected and then probabilistically
chooses how to continue after that. To emphasise this we place the probability
after the action in the notation of this choice. The choice may also be seen
as being only partially specified; the relative likelihood of actions is omitted.
Control actions �a and ⊕a.b and counted together with the action a. For this
we define ∼ as the smallest equivalence relation on EAct that contains �a ∼ a
and ⊕a.b ∼ a for all actions a, b. The requirement for a reactive choice thus is
that

∑
j∈J,ζi∼ζj

ρj is one for each i ∈ I.
Both generative choice

∑
i∈I ρi · ζi.Pi and reactive choice

∑
i∈I ζi · ρi.Pi can

take a step
ρi·ζi−→ to reach Pi for each i ∈ I. A technical complication in proba-

bilistic transition systems is that when exactly the same transition is obtained
from different branches in a probabilistic choice, as for e.g., 1

2 ·a.0+ 1
2 ·a.0, their

multiplicity becomes important. This can be solved e.g., by counting (turning
the transition relation into a multiset) or by turning the transitions into one
transitions by adding their probabilities. To not clutter the presentation, we
ignore this issue here and implicitly assume equal steps are combined by adding
their probabilities. Thus we obtain 1

2 · a.0 + 1
2 · a.0 1·a−→ 0.

For the remainder of this paper, we assume that a process will not alternate
reactive and generative choices. (This could be relaxed by defining a notion of
similarity for such alternating processes. We could then even combine both types
of options in one choice if we indicate which options are generative and which

Introducing Probabilities in Controller Strategies 237

reactive, for example by splitting actions in reactive and generative ones. See
also Example 1). Formally we thus require a process to be either a reactive or
a generative process which are defined by: 0 is a reactive process, a reactive
choice

∑
i∈I ζi · ρi.Pi is a reactive process when Pi is a reactive processes for

each i ∈ I, a process variable X is a reactive process if its body is and P �K P ′

is a reactive process when both P and P ′ are reactive processes. In turn 0 is a
generative process, a generative choice

∑
i∈I ρi ·ζi.Pi is a generative process if Pi

is a generative process for each i ∈ I, a process variable X is a generative process
if its body is and P �K P ′ is a generative processes when P or P ′ is a generative
process and the other is either a generative or a reactive process. (The reason
for this typing of the control process will be clarified in the next section).

A process variable X is also a process and its steps are those of its body. We
use guarded equations to specify the body associated to a process variable, e.g.,
X = 1 · a.X defines X to be a process that produces an infinite sequence of a
actions.

In [22,23] the definition of possible security controller process algebra opera-
tor, denoted by �, has been provided. We also use this operator in our processes,
writing C �K F for controller process C controlling target process F according
to some strategies denoted by K. The parameter K ranges over {A,S, I}, i.e.,
Acceptance operator, Suppression operator, and Insertion operator. These oper-
ators describe three possible strategies that can be applied in order to control
the behaviour of (possibly untrusted) target components by a control program.
The intuition behind of the definition of these three operator is the following one:
the acceptance operator behaves as a synchronous composition, the suppression
operator models communication through synchronizations, and insertion opera-
tor works as an asynchronous composition made in an asymmetric way.

The semantics of the controller processes is treated in the next section. We
extend the original definition of the operators as it has been provided in [22] to
create a probabilistic version of the controller operators. The informal interpre-
tation of Acceptance, Suppression, and Insertion operators is as follows:

Acceptance Operator (A) constrains the controller and the target to per-
form the same action, in order for it to be observed in the resulting behav-
iour. Given two processes C and F , the semantics of acceptance operator is
equivalent to that of CSP-style parallel composition [16] of C and F , where
synchronisation is forced over all actions of the two processes.

Suppression Operator (S) allows the controller to hide actions of the target.
The target wants to perform the action, but the action is not performed by
the controlled entity and the observed result is a τ action.

Insertion Operator (I) describes the capability of correcting some bad
behaviour of the target, by inserting another action in its execution trace.
It is worth noting that the target does not perform any action, but rather
stays in its current state, as in [7].

Remark 1. The main difference between the controller operators treated here
and the ones reported in [22] is that we do not consider blocking controllers

238 J. Hartog and I. Matteucci

which prevent the target from performing an action at all. A classical example of
a blocking controller is the truncation operator which stops the target to perform
actions upon attempting a disallowed action. The acceptance controller that we
do treat, while disallowing some actions, always allows the process to select one
of the allowed actions. In our setting a process is thus either equivalent to 0 or
it will always perform some action. To model blocking controllers one could add
a notion of failure δ though truncating can also be modelled as suppression of
the action followed by no allowed behaviour (0).

Note that a controller only controls actions (see the rules in the next section)
not e.g., control actions in CAct of the form �a or ⊕a.b . Thus a controller
C will typically not control another controller C ′, e.g., (C �K C ′) �K F is usu-
ally not meaningful (if C ′ is a simple acceptance controller it would technically
be possible), though C may control a process F already controlled by another
controller C ′ as in (C �K (C ′ �K F)).

3 Controlling Probabilistic Processes

In this section, we provide the semantics for the controllers in a probabilistic
setting. Recall that reactive choice models process behaviour which is guided
by the outside such as input to the process; the user selects one of the offered
actions. Generative choice models active process behaviour, where the selection
of an option is driven by the process itself; for example the output generated
by the process. When considering a target process F controlled by a controller
C we can consider both types of choice for either the target and the controller.
Below we treat each of the four combinations for all the three controller operators
giving some intuition on how such processes can be interpreted and thus what
type of systems they may be able to model. First we focus on the interpretation
of reactive and generative choice in the controller and the target process by
considering a probabilistic version of a basic type of controller; the acceptance
controller. Next we extend the discussion by introducing probabilistic versions
of the other types of controllers: the suppression and insertion controllers.

3.1 Probabilistic Acceptance Controller

The acceptance controller specifies which actions a target system is allowed to
take. Any other action along with its continuation is blocked.
The semantics of the probabilistic version of the acceptance operator is given by:

C
ρ·a−→ C ′ F

σ·a−→ F ′

C �A F
ρσ/nA·a−→ C ′ �A F ′

C
ρ·τ−→ C ′

C �A F
ρ/nA·τ−→ C ′ �A F

F
σ·τ−→ F ′

C �A F
σ/nA·τ−→ C �A F ′

where normalization factor nA is 1 if C�AF is a reactive process (i.e., both C and
F are reactive) and otherwise nA =

∑
C

ρ·a−→C′,F σ·a−→F ′ ρσ+
∑

C
ρ·τ−→C′ ρ+

∑
F

σ·τ−→F ′ σ.
This semantics rule states that if F performs action a and this action is allowed
by controller C then C �A F performs action a. The probability of performing
action a is determined by the probabilities for a in C and F and the type of

Introducing Probabilities in Controller Strategies 239

choice (reactive or generative). Both the controller and the target system can
independently perform a silent action τ .

For a generative controlled process C �A F , we use normalization to ensure
the resulting process is again generative; the total probability sums up to one.
The interpretation of this is that if the controller prevents an action selected
through a probabilistic choice from occurring, the system will attempt the choice
again (with the same probabilities). This eventually results in one of the allowed
options being chosen according to the normalized probabilities or in no behaviour
at all (equivalent to the 0 process), in case none of the options are allowed.
Below we illustrate the interpretation of a controlled process for the four possible
combinations of reactive or generative target system and controller.

Reactive target system, reactive controller. Consider the following system:
a building with two doors, one leading to the elevator (door a) and one lead-
ing to the stairs (door b). The simple system that keeps the doors open can be
modelled by reactive process F1 = a · 1.F1 + b · 1.F1

Suppose we want to protect the elevator from overload. A strategy to do
this could be to place a guard who closes the elevator door with probability 1

2
whenever someone enters the elevator and opens it again once someone uses the
stairs. This controller can be modelled by (reactive) process C1 that satisfies:

C1 = a · 1
2 .C1 + a · 1

2 .C ′
1 + b · 1.C1 (2)

C ′
1 = b · 1.C1 (3)

Using controller C1 to control process F1, resulting in process C1 �A F1,
will here actually result in exactly process C1 because at each stage all options
allowed by C1 are offered by F1. Of course this does not have to be the case.
Take for example:

F2 = a · 1
2 .F2 + a · 1

2 .0 + b · 1
3 .F2 + b · 2

3 .0 (4)

C2 = b · 1
2 .C2 + b · 1

2 .0 (5)

The process C2 �A F2 will only perform b steps and after every b step there is
a five in six chance the process stops; only if both F and C decide to continue
will the process be able to take further steps.

As can be seen from examples given above, a reactive target system controlled
by a reactive controller acts as one may expect; the enabled actions are those
allowed by both the system and the controller and, after selection of one of those
controlled actions, the system and controller independently (probabilistically)
choose their strategy for which future actions are offered/allowed. Thus a reactive
controller may disallow certain steps and probabilistically determines its strategy
for future control based on the action that it sees. It, however, does not interfere
with the strategy of the target system in choosing its next state for the actions
that are allowed. The probabilities for allowed actions are unaffected, the others
become zero. The combined process is reactive: the user selects from the enabled
actions, i.e., those offered by the target system and allowed by the controller.
The controller observes the actions that users execute on the system and decides
its control strategy accordingly by disallowing or enabling certain future actions.

240 J. Hartog and I. Matteucci

Generative target system, reactive controller. If the system we are trying to
control is actively making (probabilistic) choices we need to use a generative
model to be able to describe this. Consider, for example, users of the building
from the example above. These users will actively decide which door to take, for
example by randomly selecting one of them. The building and the users together
may be modelled by generative process F3 = 1

2 · a.F3 + 1
2 · b.F3.

Our controller has remained reactive; it only responds to the actions the users
of the building execute. Still, because the users drive the choice of actions, the
controlled process will still actively choose the actions; it is generative. Consider
process C1 �A F3. The users will randomly select a door. If it is the stairs nothing
changes. If it is the elevator (a), the controller may react by disabling that door.
Then, the next user may try the elevator door but will find it blocked so in the
end will have to take the other door (b) with probability 1. The controller will
react to this action by re-enabling door a.

The intuitive interpretation of a generative-reactive combination is also clear;
the generative target process drives the selection of actions amongst those that
are allowed. The reactive controller simply observes which actions the target
system executes and updates its strategy.

Generative target system, generative controller. So far we have considered a “pas-
sive”, reactive controller that can only react to choices being made by updating
its strategy for future actions. However, what if we consider a controller that
actively tries to influence also the current action. Consider, for example, the
guard at the door; the guard knows that taking the stairs is both healthier and
cheaper, so would prefer more people taking the stairs. When people arrive at
the building the guard tries to convince them that taking the stairs is much bet-
ter. These actions and preference of the guard (combined with how successful
she is in convincing users) can be captured by a generative process, for example;
C3 = 1

3 · a.C3 + 2
3 · b.C3.

Now, if again the users randomly select a door (F3), the guard trying to
convince users to take the stairs will influences the overall probability, resulting
in a two third probability of taking the stairs. If, on the other hand, users in a
wheelchair arrive who cannot use the stairs; (F4 = 1 · a.F4) then the preference
of the guard will be ignored; the result will be action a with probability 1. These
cover the two extreme cases for the users; no preference at all or only having
one of the options. In general the preferences of the guard and the user are
combined. For instance, if the users have a preference for the stairs already, it
will be further strengthened by the preference of the guard.

A generative target and a generative controller combined yield a generative
overall system. The target system still drives the choice of the next action among
those allowed by the controller but now the controller is also actively involved
in this choice. The controller can indicate preferences which will influence the
choice of the target system.

Reactive target system, generative controller. If the target system is reactive, it
has not specified a preference for any of the actions. A generative controller can

Introducing Probabilities in Controller Strategies 241

by itself determine the likelihood of next action. As an example, we can consider
the model for the building (without its users) and an active guard that opens
only one door for each user that arrives. As seen above, a generative process
can also indicate ‘no preference’ by giving equal likelihood to each action. When
controlled by a generative controller, a reactive target system, indeed, behaves
exactly the same as such a generative system without preferences. This combina-
tion can thus be seen as a special case of the generative-generative combination.

This intuition for the different controller-target system combinations also
translates to the other types of controller automata. However, the other types of
controller automata include actions that are inherently generative which posses
some restrictions on the processes that can be used. In the next section we discuss
how these controllers can be extended to a probabilistic setting as well as the
required restrictions.

3.2 Probabilistic Suppression, Insertion, and Edit Controllers

The Suppression, Insertion, and Edit controllers enable additional control strate-
gies. Suppression controllers are able to hide target actions to an external observer;
Insertion controllers aim at correcting wrong execution traces by inserting actions
before not allowed action; Edit controllers combine both the functionalities in such
a way to be able to hide actions and correct execution traces.

In order to extend the definitions above with probabilistic versions of these
controllers, we have to consider again the reactive versus the generative choice.
Recall that a reactive process passively reacts to external actions, only proba-
bilistically choosing the continuation after an action. It can also be interpreted
as an incompletely specified choice. A generative process, on the other hand,
actively makes a probabilistic choice between actions to execute.

According to the example of probabilistic acceptance controller, both reactive
and generative choices are useful for modelling different types of target systems
and controllers. However, some types of actions are inherently generative. The
silent τ action, for example, is used to model a change in the system state which
is not (directly) observable by the user. Such an action can obviously not be
“chosen by the user”. The system has to actively choose to execute it.

We may need to deal with inherently generative actions in a reactive setting.
The Suppression controller, for example, may cause an action to be replaced by
silent action τ . In [1], the syntax of the hiding operation, which also replaces
actions by τ , is extended with an additional (probability) label to allow its use
in a reactive setting. The label p determines the generative probability of τ if a
reactive action is hidden and is ignored if a generative action is hidden. This thus
uses the ‘not fully specified choice’ interpretation of reactive choice and provides
the added specification in the syntax in case it is needed. Here we follow a similar
approach; we require that probabilities for inherently generative actions are fully
specified. A choice involving such actions is interpreted as always first making
an active choice between either executing one of the generative actions or, if
present, offering the choice between the reactive options.

242 J. Hartog and I. Matteucci

Example 1. Suppose we add an additional label to the syntax; e.g., let
1
2 a denote

a reactive action a that will be selected with probability 1
2 when suppressed. If a

reactive process with additional label
1
2 a ·1.p1+b ·1.p2+c ·1.p3 is controlled by a

reactive controller that suppresses action a and allows actions b and c the result
is a choice of the form: 1

2 · τ.p1 + 1
2 · (b · 1.p2 + c · 1.p3). Note that this is a choice

between processes rather than between actions or continuations after actions;
as such it is not a (generative or reactive) process as defined in this paper but
rather a stratified choice [14].

We actually do not need to add additional labels to our syntax to model this;
a generative choice has exactly the same expressiveness as a reactive choice with
additional labels. The labels are determined by the relative probabilities of the
first action.

Example 2. The labelled reactive process of the previous example is expressed
by generative process a · 1

2τ.p1 +b · 1
4 .p2 +c · 1

4 .p3. When this process is controlled
by a reactive controller that suppresses action a and allows actions b and c, the
result is generative process: 1

2 · τ.p1 + 1
4 · b.p2 + 1

4 · c.p3.
We can informally write this as a stratified choice 1

2 · τ.p1 + 1
2 · (12 · b.p2 +

1
2 · c.p3) which, by reversing the interpretation from generative probability back
to ‘additional labels’ on the actions b and c, results in the choice 1

2 · τ.p1 + 1
2 ·

(
1
2 b · 1.p2 +

1
2 c · 1.p3). Note that this choice is exactly the same as the result in

the previous example. The ‘additional labels’ for b and c are included but these
are ignored when not needed.

The example above illustrates that generative processes can be used rather
than labelled reactive ones without changing expressiveness or the semantics.
Also, as already seen in the previous section, a uniform generative choice, i.e., one
which assigns equal probability to all initial actions, behaves like a reactive
choice. Thus, having to give a probability to all actions, rather than to only
those that may be suppressed, is not a real restriction; we can ignore/omit the
probabilities if they are equal and the actions are not suppressed. Finally, by
using the interpretation above we can restrict ourselves to generative processes
rather than needing to consider stratified choices.

Probabilistic Suppression Controller. The probabilistic suppression controller
operator is an extension of the acceptance operator. We require that at least one
of the controller or the target is generative. The probabilistic suppression oper-
ator inherits the three rules given for the acceptance operator and, additionally,
has the following rule:

C
ρ·�a−→ C ′ F

σ·a−→ F ′

C �S F
ρσ/nS ·τ−→ C ′ �S F ′

with nS = nA +
∑

C
ρ·�a−→ C′,F σ·a−→F ′ ρσ. The inherited semantics rules allow F , as

with the acceptance operator, to perform the action a �= τ if also performed by
the controller, i.e., if F performs action a and C performs the same action a,
then C �S F performs action a. The inherited rules allow both the controller C
and the target F to independently perform τ actions. The new rule states that

Introducing Probabilities in Controller Strategies 243

the controller is able to hide a possible incorrect action to an external observer
by relabelling a to τ . The normalization factor nS is updated to include this final
possibility to ensure probabilities still add up to 1.

As the action is hidden from outside, a choice involving it clearly has to be
made by the system itself. Hence, it needs to be generative. As such the rule
does not work in the case both controller and target are reactive. In particular,
the rule then does not properly work in the following two cases:

– when the target performs internal action τ ;
– when the controller suppresses more that one action.

In these cases a choice has to be made between actions while their relative
probabilities are not known. The following example illustrates this point. (For
an example of use of suppression in a generative controller see controler CS in
Sect. 3.3.)

Example 3. Consider again the building example used above. We consider a basic
system that allows one entry but through either door. A guard in front of the
doors hides the choice of the user:

F = a · 1.0 + b · 1.0 (6)
C = �a · 1.0 + �b · 1.0 (7)

For this simple system the above rule would give for C �S F :

C �S F = τ · 1.0 + τ · 1.0 = τ · .2.0 (8)

The total probability is more than 1. We cannot scale this probability without
knowing the relative probability to use between the two options.

Probabilistic Insertion Controller. Sometimes actions are not forbidden per se
but they need to be prepared for, e.g., you are allowed to enter the building but
only if a security guard is present in the building. In this case a controller may
want to insert an action (send in guard) before allowing your action (enter build-
ing). The insertion controller operation is used to express this control strategy.
The special action ⊕a.b is used to express that the controller inserts action b
before allowing action a. Also insertion operator inherits the rules of acceptance
operators. In addition to those rules, it has the following key semantic rule:

E
ρ·⊕a.b−→ E′ F

σ·a−→ F ′

E �I F
ρσ/nI ·b−→ E′ �I F

(Note that if F can chose among multiple a transitions the resulting steps of the
controlled process are the same. As mentioned we implicitly assume these steps
are combined by adding their probabilities together.) The normalization factor
is adapted as before to also consider ⊕a.b action; nI = nA+

∑

C
ρ·⊕a.b−→ C′,F σ·a−→F ′ ρσ.

In this rule we assume that the users/controlled systems can change their mind;

244 J. Hartog and I. Matteucci

after inserting the action b, F again gets to make its choice for which action to
execute. It is thus very well possible that action a in the end does not actually
happen (e.g., you do not enter the building after the guard has been sent in.)

Insertion of an action has, like the τ action, an inherent generative nature; it
is the system that decides to insert the action. This rule thus is not valid when
both the controller and target are both reactive processes and the target is able
to perform the same action that the controller has inserted.

Example 4. Coming back to the building example with a target that leaves both
doors open. Consider a reactive controller that always lets the user open the
door to the stairs (b) but if the user tries to take the elevator (a), it blocks her
and first opens the door for the stairs in order to convince her to take the stairs
instead of the elevator.

F = b · 1.0 + a · 1.0 (9)
C = b · 1.0 + ⊕a.b · 1.0 (10)

Hence, C �I F always leaves the stairs door open and hermetically closes the
stairs one. The resulting probabilistic process is as follows:

C �I F = b · 1.0 + b · 1.0 = b · 2.0 (11)

The total probability is more than 1 and we miss the information needed to
normalize.

Probabilistic Edit Controller operator. It is possible, as is done in the quantita-
tive case, to combine the functionalities of suppression and insertion in a single
probabilistic controller, a probabilistic Edit controller. The Edit controller thus
inherits the two semantic rules above along with their restrictions on processes
that can be used.

The non-probabilistic Edit controller operators apply suppression and inser-
tion rules in a mutual exclusive way, i.e., the set of action that can be suppressed
is disjoint from the one of actions that are prevented to be made by inserting
something before. This assumption has been made in order to be able to deter-
ministically apply one rule or the other. For the probabilistic controller we do not
need this assumption; we can use the relative probabilities of controlling actions
�a and ⊕a. For instance consider in the building with users scenario that a check
should be made upstairs before using the elevator. A guard lets people take the
stairs (b) but if they try to take the elevator (a) he either simply forbids this or
sends someone upstairs to make the check: C = b ·1.C+�a · 34 .C+⊕a.b · 14 .C ′ If a
user tries to take the elevator then with probability 3

4 they will be forbidden and
with probability 1

4 someone will be sent up the stairs first (with C ′ presumably
upon confirmation that it is safe allowing use of the elevator.)

3.3 Comparing Probabilistic Operators

Let us consider again the example of the building with two doors, one for the
elevator (door a) and one for the stairs (door b). We have already seen the

Introducing Probabilities in Controller Strategies 245

example of the guard that tries to persuade users to take the stairs expressed
with the probabilistic Acceptance operator: CA = 1

3 · a.CA + 2
3 · b.CA When

people arrive at the building the guard tries to convince them that taking the
stairs is much better. Note that simple locking the elevator door C ′

A = 1 · b.C ′
A

is not an option as the whole system would block when a user unable to use the
stairs arrives.

Guard CA only tries to persuade the user. We can also consider a guard that
wants to force users to not use the elevator. One possible strategy, expressed
using the Suppression operator is CS = �a · 1.CS + b · 1.CS ; the guard allows
anyone to take the stairs but anyone trying to take the elevator is sent away.
This can be combined with persuasion as in C ′

S = 1
3 ·�a.C ′

S + 2
3 ·b.C ′

S ; the guard
tries to convince users to take the stairs. Those that choose the elevator anyway
are sent away.

We can extend any base strategy (C(0)
I) with a guard that will always allow

users to take the stairs but will first send them back a number of times when they
try to use the elevator: C

(i)
I = ⊕a.τ ·1.C

(i−1)
I + b ·1.CI Only users determined to

take the elevator (e.g., because they cannot take the stairs) will reach the base
strategy.

Adding probability to the system description as well as the controller opera-
tors improves the ability to compare different controller strategies and to select
the one with the best (expected) results. To illustrate this we add another fea-
ture to our example as a first glance to our future work. Users can only take the
elevator when an operator is present. Action c expresses deploying the operator
for that day. A controller could choose to insert action c at some point. We want
to allow as many users as possible to enter but deploying the operator incurs
some cost. The result (traces) of the system can thus be quantified by consider-
ing these costs and benefits. While formalizing cost and benefit is part of future
work we consider a basic example in order to show this idea.

Both C ′
S above and Cc below which inserts an operator as soon as needed

achieve the security property that the elevator is not used without an operator.

Cc = ⊕a.c · 1.C ′
c + b · 1.Cc (12)

C ′
c = a · 1.C ′

c + b · 1.C ′
c (13)

If n users arrive without preference for a door, F (n) = 1
2 ·a.F (n−1) + 1

2 · b.F (n−1),
F (0) = 0 the guard C ′

S will convince two thirds of the users to take the stairs.
One third is sent away. Guard Cc on the other hand will allow all users to enter
but with high probability (1− 1

2

n) will incur the cost of c. Thus if (1− 1
2

n)·cost(c)
is less than 1

3 · benefit(a) the later strategy is superior in this scenario. If also
users in a wheelchair arrive who cannot use the stairs; (F = 1 · a.F ′) then C ′

S

will not be able to convince them to take the stairs; such a scenario thus more
quickly favors strategy Cc.

Besides allowing comparison of operators that guarantee a deterministic
property, we can also consider probabilistic requirements, e.g., a limit on the
probability that the elevator is used. To sum up; adding probability to controller
operator introduces a new parameter according to which it is possible to refine

246 J. Hartog and I. Matteucci

and to optimize controlling strategies in order to satisfy the system requirement
as well as possible, and, sometimes in the best way.

4 Related Work

Security and, more specifically, its evaluation, are important topics that have
been receiving a lot of attention in recent years. However, controlling systems
and formally measuring and evaluating (quantitative) security aspects of the
system remains a challenging subject which seems to have received limited study
compared to its importance.

Caravagna et al. consider in [10] the notion of lazy controllers, which only
control the security of a system at some points in time, and based on a proba-
bilistic modelling of the system, quantify the expected risk. Basin et al. consider
in [5] the case where some actions are uncontrollable (i.e., cannot be stopped),
and define what policies can then be enforced, by modelling a controller as a
Deterministic Turing Machine.

In the context of access control, Molloy et al. use a machine learning approach
to predict the decision for a given request [25], and balance the risk of error
against the cost of contacting the real mechanism to get the actual decision.

In a recent approach [20], the authors deal with probabilistic cost enforce-
ment based on input/output automata to model complex and interactive sys-
tems. Associating to each execution trace a probability and a cost measure, it is
possible to evaluate the expected cost of the monitor and of the monitored sys-
tems. Even though Input/output automata are similar to our reactive processes,
our work goes beyond [20] by also considering generative processes as both con-
troller and target. Furthermore, it uses a process algebraic specification of the
controllers which we hope will allow for the automatic generation of controller
automata as in [23]. Also, in [12], a notion of cost to compare correct enforcement
mechanisms (defined as state machines) with different strategies.

Easwaran et al. in [13] aim at finding an optimal control strategy in the
context of software monitoring. A system is represented as a Directed Acyclic
Graph and rewards and penalties with correcting actions are taken into account.
Dynamic programming is then used to find the optimal solution. Similarly, an
encoding of access control mechanisms using Markov Decision Process is pro-
posed in [24], where the optimal policy can be derived by solving the corre-
sponding optimisation problem. Markov chains are used in PRISM [17] in order
to evaluate and validate systems in a quantitative and probabilistic way. From
a different perspective, Bielova and Massacci propose in [8] a notion of distance
among traces, thus expressing that if a trace is not secure, it should be edited
to a secure trace close to the non-secure one, thus characterizing enforcement
strategies by the distance from the original trace they create.

In [9], Buchholz and Kemper propose a generalized process algebra in which
each operators has been extended with the notion of cost modelled through a
semiring. In [11], the authors present a framework for quantitative evaluation of
controller strategies. This framework is based on process algebra to model the

Introducing Probabilities in Controller Strategies 247

behaviour of the process and on semirings to model different measures. Proba-
bility is not considered as an evaluation metric since it cannot be easily modelled
through a semiring.

5 Conclusion and Future Work

In this paper we take a first step towards automated generation of optimal
quantitative controller strategies. This step consists of classifying probabilistic
controller strategies for probabilistic systems. The classification of the strategy
considers reactive and generative processes for both the controller and target
processes. In particular, focusing on a simplified process algebra with only prob-
abilistic choice and a controller operator as its main components, we consider
three possible corrective actions (acceptance, suppression, and insertion) that
can be performed by the controller process. We provide a definition of proba-
bilistic controlling strategies based on these actions and we analyse the different
behaviours according to the reactive and generative nature of both controller
and target processes.

The use of a probabilistic language allows modelling a wide range of strate-
gies applied to different situations. Also many strategies which are incomparable
in a possibilistic analysis can be compared probabilistically. When we want to
compare controllers across multiple systems or we do not know the (exact) prob-
abilities for certain choices (as will often be the case in realistic complex systems)
having a notion of non-determinism in conjunction with probability would be
useful.

To have a language powerful enough for specifying a realistic, complex system
we aim to extend the basic process language considered here with more advanced
controllers, non-deterministic choice and parallelism. We will then also need to
extend our classification by considering different models for the combination of
nondeterminism and probability, e.g. [2,15,19,27].

Another extension of this work that we plan to investigate is the combination
with the notion of cost. In particular, we aim to be able to choice the best control
strategy finding a trade-off between maintaining a security property and the cost
of attack.

References

1. Aldini, A., Gorrieri, R.: Security analysis of a probabilistic non-repudiation proto-
col. In: Hermanns, H., Segala, R. (eds.) PROBMIV 2002, PAPM-PROBMIV 2002,
and PAPM 2002. LNCS, vol. 2399, pp. 17–36. Springer, Heidelberg (2002)

2. Andova, S.: Process algebra with probabilistic choice. In: Katoen, J.-P. (ed.)
AMAST-ARTS 1999, ARTS 1999, and AMAST-WS 1999. LNCS, vol. 1601, pp.
111–129. Springer, Heidelberg (1999)

3. Baier, C., Hermanns, H.: Weak bisimulation for fully probabilistic processes. In:
Grumberg, O. (ed.) Computer Aided Verification. LNCS, pp. 119–130. Springer,
Heidelberg (1997)

248 J. Hartog and I. Matteucci

4. Bartoletti, M., Degano, P., Ferrari, G.L.: Policy framings for access control. In:
Proceedings of the 2005 Workshop on Issues in the Theory of Security, pp. 5–11.
ACM (2005)

5. Basin, D., Jugé, V., Klaedtke, F., Zălinescu, E.: Enforceable security policies revis-
ited. In: Degano, P., Guttman, J.D. (eds.) Principles of Security and Trust. LNCS,
vol. 7215, pp. 309–328. Springer, Heidelberg (2012)

6. Bauer, L., Ligatti, J., Walker, D.: More enforceable security policies. In: Cervesato,
I. (ed.) Foundations of Computer Security: proceedings of the FLoC 2002 workshop
on Foundations of Computer Security, pp. 95–104. DIKU Technical Report (2002)

7. Bauer, L., Ligatti, J., Walker, D.: Edit automata: enforcement mechanisms for
run-time security policies. Int. J. Inf. Secur. 4(1–2), 2–16 (2005)

8. Bielova, N., Massacci, F.: Predictability of enforcement. In: Erlingsson, Ú.,
Wieringa, R., Zannone, N. (eds.) ESSoS 2011. LNCS, vol. 6542, pp. 73–86. Springer,
Heidelberg (2011)

9. Buchholz, P., Kemper, P.: Quantifying the dynamic behavior of process algebras.
In: de Alfaro, L., Gilmore, S. (eds.) Proceedings of the Joint International Work-
shop on Process Algebra and Probabilistic Methods, Performance Modeling and
Verification. LNCS, vol. 2165, pp. 184–199. Springer, Heidelberg (2001)

10. Caravagna, G., Costa, G., Pardini, G.: Lazy security controllers. In: Jøsang, A.,
Samarati, P., Petrocchi, M. (eds.) STM 2012. LNCS, vol. 7783, pp. 33–48. Springer,
Heidelberg (2013)

11. Ciancia, V., Martinelli, F., Ilaria, M., Morisset, C.: Quantitative evaluation of
enforcement strategies: position paper. In: Danger, J.-L., Debbabi, M., Marion,
J.-Y., Garcia-Alfaro, J., Heywood, N.Z. (eds.) FPS 2013. LNCS, vol. 8352, pp.
178–186. Springer, Heidelberg (2014)

12. Drábik, P., Martinelli, F., Morisset, C.: Cost-aware runtime enforcement of security
policies. In: Jøsang, A., Samarati, P., Petrocchi, M. (eds.) STM 2012. LNCS, vol.
7783, pp. 1–16. Springer, Heidelberg (2013)

13. Easwaran, A., Kannan, S., Lee, I.: Optimal control of software ensuring safety and
functionality. Technical report MS-CIS-05-20, University of Pennsylvania (2005)

14. Glabbeek, R.V., Smolka, S., Steffen, B.: Reactive, generative and stratified models
of probabilistic processes. Inform. Comput. 121, 130–141 (1990)

15. den Hartog, J.I., de Vink, E.P.: Mixing up nondeterminism and probability: a
preliminary report. Electr. Notes Theor. Comput. Sci. 22, 88–110 (1999)

16. Hoare, C.: Communicating Sequential Processes, vol. 178. Prentice-hall, Englewood
Cliffs (1985)

17. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic
real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol.
6806, pp. 585–591. Springer, Heidelberg (2011)

18. Ligatti, J., Bauer, L., Walker, D.W.: Enforcing non-safety security policies with
program monitors. In: di Vimercati, S.C., Syverson, P.F., Gollmann, D. (eds.)
ESORICS 2005. LNCS, vol. 3679, pp. 355–373. Springer, Heidelberg (2005)

19. Lowe, G.: Representing nondeterminism and probabilistic behaviour in reactive
processes. Technical report PRG-TR-11-93, Oxforf University Computing Labora-
tory (1993)

20. Mallios, Y., Bauer, L., Kaynar, D., Martinelli, F., Morisset, C.: Probabilistic cost
enforcement of security policies. In: Accorsi, R., Ranise, S. (eds.) STM 2013. LNCS,
vol. 8203, pp. 144–159. Springer, Heidelberg (2013)

21. Martinelli, F.: Analysis of security protocols as open systems. Theor. Comput. Sci.
290(1), 1057–1106 (2003)

Introducing Probabilities in Controller Strategies 249

22. Martinelli, F., Matteucci, I.: Through modeling to synthesis of security automata.
Electr. Notes Theor. Comput. Sci. 179, 31–46 (2007)

23. Martinelli, F., Matteucci, I.: A framework for automatic generation of security
controller. Softw. Test. Verif. Reliab. 22(8), 563–582 (2012)

24. Martinelli, F., Morisset, C.: Quantitative access control with partially-observable
markov decision processes. In: Proceedings of CODASPY 2012, pp. 169–180. ACM
(2012)

25. Molloy, I., Dickens, L., Morisset, C., Cheng, P.C., Lobo, J., Russo, A.: Risk-based
security decisions under uncertainty. In: Proceedings of CODASPY 2012, pp. 157–
168. ACM (2012)

26. Schneider, F.B.: Enforceable security policies. ACM Trans. Inf. Syst. Secur. 3(1),
30–50 (2000)

27. Segala, R.: Modeling and verification of randomized distributed real-time systems.
Ph.D. thesis, Massachusetts Institute of Technology (1995)

	Introducing Probabilities in Controller Strategies
	1 Overview
	2 Basic Probabilistic Process Algebra
	3 Controlling Probabilistic Processes
	3.1 Probabilistic Acceptance Controller
	3.2 Probabilistic Suppression, Insertion, and Edit Controllers
	3.3 Comparing Probabilistic Operators

	4 Related Work
	5 Conclusion and Future Work
	References

