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Abstract. Present malicious threats have been consolidated in past few
years by incorporating diverse stealthy techniques. Detecting these mal-
wares on the basis of their dynamic behavior has become a potential
approach as it suppresses the shortcomings of static approaches raised
due to the obfuscated malware binaries. Additionally, existing behav-
ior based malware detection approaches are resilient to zero–day mal-
ware attacks. These approaches rely on isolated analysis environment
to monitor and capture the run–time malware behavior. Malware bun-
dled with environment–aware payload may degrade detection accuracy
of such approaches. These malicious programs detect the presence of
execution environment and thus inspite of having their malicious pay-
load they mimic a benign behavior to avoid detection. In this paper,
we have presented an approach using system–calls to identify a mal-
ware on the basis of their malignant and environment–reactive behav-
ior. The proposed approach offers an automated screening mechanism
to segregate malware samples on the basis of aforementioned behaviors.
We have built a decision model which is based on multi–layer perceptron
learning with back propagation algorithm. Our proposed model decides
the candidacy of a sample to be put into one of the four classes (clean,
malignant, guest–crashing and infinite–running). Clean behavior denotes
benign sample and rest of the behaviors denote the presence of malware
sample. The proposed technique has been evaluated with known and
unknown instances of real malware and benign programs.

1 Introduction

Widespread use of the Internet and communication technologies has leveraged
the malicious attackers to carry out their evil intentions. These malware gener-
ated threats disrupt our system services, sensitive information and communica-
tion infrastructure. Distribution of these threats makes our system a source of
infection spread. To avoid these infections, security researchers across the globe
have developed numerous malware detection techniques which rely on signatures
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or pattern matching (either static or dynamic). The dynamic behavior–based
malware detection (DBMD) approaches have an upper hand as compared to
static signature based techniques [1]. The behavior based approaches are capa-
ble of capturing the polymorphic, metamorphic, obfuscated and packed vari-
ant of known malware. Also, these techniques allow to detect unseen malware
attacks [10]. A standard procedure is adopted to monitor the run–time behav-
ior of malware in the most of these DBMD approaches. During the monitoring
process, a safe and isolated environment set–up is established to protect the host
from any malware generated side–effects. Variety of sandboxing, virtualization
and emulator based tools are available to create such set–ups. These controlled
environments imitate a real runtime environment. But a full imitation of real
system cannot be achieved as these environments differ in CPU semantics (CPU
semantic attacks) and in instruction execution time (timing attacks) as com-
pared to uninstrumented host [1]. The detection–aware malware exploits these
variations and ensures that it is being analyzed. Rutkowska developed a tech-
nique Red Pill [22] which shows that incorporating CPU semantic attack using
SIDT (Store Interrupt Descriptor Table) is an effortless task. On the other hand,
the timing attacks are deployed using TSC (Time Stamp Counter) register. In
virtual machines, the instruction execution time is more than the real machines
and this difference can be captured using TSC. Thus, by employing these attacks
malware senses the existence of non–real environments and portrays an incor-
rect picture of itself. Existing plethora of DBMD techniques [10,18,21] do not
address this category of malware. These techniques rely on run–time traces and
perform the analysis on acquired logs. This form of analysis is not sufficient to
alleviate the current environment–aware malware threats. There is a need of an
automated approach which can infer the strand of malware infection from their
environment–reactive behavior. These observed behaviors can be used to detect
and categorize the unknown detection–aware malware instances.

Environment–Reactive Malware Behaviors: Present detection–aware mal-
ware carries multiple payloads to remain invisible to any protection system and
to persist for longer period of time. The environment–aware payloads deter-
mine originality of running environment, if environment is not real then the
actual malicious payload is not delivered. After detecting the presence of virtual
or emulated environment, malware either terminates its execution or mimics
a benign/unusual behavior. In literature, different terms have been utilized to
address this category of malware such as environment–sensitive, environment–
resistant, environment–aware and split–personality. We have used environment–
reactive term for the same. Malware with environment–reactive behavior
incorporates two activities (1) sensing the presence of virtual environment and
(2) responding to this environment sensing by showing an unusual behavior.
We closely monitored these environment–reactive behaviors and labeled each
malware binary during training phase. These behaviors are discussed in Sect. 3.

Contributions: In this paper, we have proposed a multi–class model which
can identify the environment–reactive behavior of malware binaries. The focus
of our proposed approach is to predict the behavior class of a test sample by
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neural network based learning algorithm. We have also considered the execution
logs of malware and benign executables which do not encapsulate environment–
reactive behavior. Using these behavior traits, we have discriminated between
clean and malicious applications. Following are the contributions of our proposed
approach:

(a) Devised a mechanism which transforms the manual behavior screening into
the automated one. Our proposed approach exploits malware’s tactics of
evading detection to predict its reactive and malicious behavior under a
host–based virtualized environment (Ether [7]). Though the proposed app-
roach is specific to a given monitoring environment but can be generalized
by applying same methodology with other environments also.

(b) Construction of input vector that is best suited for our learning model. The
input vector consists of transition probabilities of two consecutive system–
calls.

(c) Creation of an unbiased neural–network based multi–class decision model.
We have constructed four networks based on multi–layer perceptron learning
algorithm with back propagation. Each network is trained and tested in
parallel to reduce the performance overhead.

(d) Our experimental results indicate that the proposed model is capable of
(1) finding the known and unknown instances of malware binaries which are
environment–reactive (2) improving the monitoring mechanism of Ether by
analyzing the detected binaries.

The rest of the paper is organized as follows. Section 2 briefly outlines the related
work in analysis–aware malware detection. Section 3 outlines the basic building
blocks of our approach. The experimental setup and results are explained in
Sect. 4. Section 5 explores the limitations of our approach. Finally, the concluding
remarks are presented in Sect. 6.

2 Related Work

The desirable property of any malware detector is that it must be capable of
detecting unknown malicious attacks. Modern malware is analysis–aware there-
fore it contains various other payloads which try to evade the existing detection
mechanism. To remain undetected, these malware apply various checks during
their execution prior to delivery of the actual payload. Techniques have been
illustrated in literature that address the detection of analysis–aware malware.

2.1 Feasibility of Analysis–Aware Malware

Bethencourt et al. [3] have demonstrated the feasibility of PIR (Private Infor-
mation Retrieval)–based malware (specifically worms). The authors discussed
that these malicious programs are analysis–resistant and bundled with crpto–
computing techniques. They have shown that these malicious codes covertly
retrieve the sensitive information from infected computing nodes while hiding
their presence from any analysis environments.
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2.2 Behavior Divergence Due to Analysis Environment

Chen et al. have proposed an approach in [5] to identify the malware behav-
ior under three different environment (virtual, debugger and real). They have
compared the behavior of a sample using linear least squares fitting and Mean
Squared Error (MSE) to capture malware having anti–debugging and anti–
virtualization behavior. Similar work has been proposed in [14,24]. In former
approach, the authors have detected the malware which employ anti–VM tech-
nique. They have calculated the behavioral distance of a sample using Levesthein
distance. The calculated distance depicts the divergence in malware behavior in
real and virtual environments. The authors in latter approach have proposed a
tool DISARM, to detect the malware with evasive behavior. They have shown
that same sample does not constitute similar behavior if executed in different
environments. They have calculated a distance score using Jaccard index to
explore the change in malware behavior in four different sandboxing environ-
ments. Balzarotti et al. [2] and Kang et al. [11] have analyzed the difference in
execution traces of a malware in different analysis. In [2], authors have described
the split–personality behavior of malware in virtual and uninstrumented ref-
erence host. Any sample having non–similar system–call traces in these two
environments are termed as split–personality malware. Kang et al. [11] have
compared the behavior difference of run–traces of malware in real and emulated
environments to detect malware with anti–emulation techniques.

Our proposed approach differs from existing approaches as:

– It does not execute a sample in multiple environments which reduces our
execution monitoring time and efforts. We detect the environment–reactive
malware behavior from a single execution trace of malware in a single analysis
environment.

– It does not incorporate anyfingerprintmatching or distancematching technique.
We developed a multi–class behavior model which detects and categorizes the
benign and malicious (Non–environment reactive and environment–reactive)
program behavior.

3 Approach Overview

Main objective of our approach is to identify the malware’s environment–reactive
behaviors. In addition to that, our approach also discriminates the benign and
malware (Non environment–reactive) executables. To achieve these objectives,
we executed binaries in a virtualized environment using Ether and noted inter-
action of binary with Kernel in terms of system–calls. On the basis of noted
behaviors, we have classified samples in four categories. Figure 1 outlines pro-
posed classification framework details of which are as follows.

3.1 Analysis Framework

The analysis framework plays an important role in analyzing behavior of mali-
cious binaries. It must provide an isolated and transparent environment setup
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Fig. 1. Proposed classification framework

which does not relay any side–effects to host. We have used Ether as our dynamic
analysis framework. It offers a complete and accurate execution sequence by uti-
lizing native CPU instruction and out–of–the guest monitoring [19]. We preferred
Ether over other platforms (BitBlaze, Anubis, CWSandbox, Cuckoo) as it has
the capability of providing solutions against anti–detection attacks incorporated
by malware binaries [1]. These anti–detection attacks include anti-debugging,
anti–emulation, anti–sandboxing and host–modification. Our approach relies on
Ether for behavior monitoring and labeling of benign and malware executables.

Behavior Monitoring: Ether [7] produces a page fault or exception to inter-
cept the system–call made by the target application. Whenever this application
requires a system service, it executes SYSENTER. The SYSENTER transfers the con-
trol from user space to kernel space where it copies the value (address) stored in
a special register SYSENTER EIP MSR into instruction pointer (IP). Ether sets this
value of SYSENTER EIP MSR to a default value. Accessing this value causes a page
fault and in this way Ether knows that a system–call has been made. The value
SYSENTER EIP MSR is changed back to its original value and the target applica-
tion continues its execution. Ether mediates all access to the SYSENTER EIP MSR
register and can therefore hide any modifications of the register from the analy-
sis target [7]. To generate system–call logs, each sample is permitted to execute
for 10 min. According to [20], five minute is enough duration for the execution
monitoring. We doubled this execution time to capture the malware equipped
with capability of carrying out time–out attacks.

Behavior Labeling: According to [7] Ether is capable of capturing execution
traces of all malware and remains invisible to the target application being mon-
itored. We have noticed that there are samples for which no logs are generated
which indicate that Ether is not completely transparent. Also, Pek et al. [19]
have shown in their approach (nEther) that Ether is prone to timing attack. In
such situations, when Ether is detected by an application the acquired logs can-
not be trusted. So, we applied a close manual monitoring of malware behavior of
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training samples and utilized these noted behavior to detect the maliciousness of
an unknown sample. In training phase, we adapted following definition of clean
and malicious behavior of benign and malware binaries.

P =
{

Suspicious {β | β ε {M, G, I}}
Clean Otherwise (1)

A program P is said to be suspicious or clean if it depicts a behavior β in
one of the four forms (1) Malignant (M), (2) Guest–crashing (G), (3) Infinite–
running (I) and (4) Clean (C). All four are discussed as follows:

– Malignant (Non Environment–Reactive): This class of malware depicts the
non environment–reactive behavior of malware binary. These malicious pro-
grams generate system–call logs within our specified timeframe and do not
constitute any visible abnormal activity which alters the guest OS state.

– Guest–crashing (Environment–Reactive): Guest–crashing behavior is marked
for those samples which crash the guest OS to terminate the execution–
monitoring process. To incorporate such a mechanism in the malware source
code is not a difficult task. The system can be crashed by causing a page fault,
exception and access violation [15].

– Infinite–running (Environment–Reactive): We labeled a malware sample as
having infinite running behavior if the target sample does not terminate in
10 min and logs show repetitions. Malware binaries eagerly wait just for a sin-
gle chance of execution and if granted it will try to infect the machine as soon
as possible. The infinite running behavior indicates that malware is running
in an infinite loop and try to add non–malicious sequence in generated logs.

– Clean (Non Environment–Reactive): We marked each benign application with
this behavior. The benign executables do not reflect any system crash or
infinite running behavior. Our benign dataset does not include any large setup
and installation files having execution time more than 10 min.

3.2 Behavior Representation

We have utilized system–calls to model program behavior during execution.
System–calls are the interface by which an user application can interact with
kernel to access the system services. A program behavior is speculated from the
OS state. Any alternation in OS state cannot be made without using system–calls
as these are non–bypassable interface [23]. In our approach, the acquired system–
call sequences are transformed as system–call graph which is based on Markov
model. Markov model based graph representation enables the consolidated com-
parisons in two dimensional space and maintains the sequential nature of data [1].
Representing system–call sequences in this way hampers malware author’s aim
of evading detection of any system–call based approach. As the malware authors
can very conveniently re–arrange or insert irrelevant system–calls in their mal-
ware source code [13]. According to [9] and our traces, there are 284 unique
system–calls that can be invoked by any running application in Windows XP.
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Fig. 2. System–call graph and TPM: an example

System–Call Graph: Let ξ is an execution trace of a sample which represents
the set of system–calls invoked by the sample. ξ is further transformed into
weighted directed graph G = {V,E}, where V is a finite set of 284 unique
system–calls and E represents set of edges in G. Every edge eij indicates a
transition from node i to j with transition probability ρij . Applying Markov
property (Eq. 2), we built our Transition Probability Matrix (TPM).

284∑
j=1

ρij =
{

0 if all entries in ith row is zero
1 otherwise

}
(2)

For example, consider the execution trace ξ={S1, S2, S3, S1, S4, S6, S2, S2, S3, S1}
of a program P. Figure 2 shows the corresponding graph and matrix for this exam-
ple. Here, program P invokes 5 unique system–calls (S1, S2, S3, S4, S6) and call S5

is not utilized in its execution path. The graph contains 5 connected nodes and one
isolated node. Edges are directed (showing transition direction) and labeled with
transition probability ρij . The matrix representation of P shows a 6 × 6 square
matrix called as TPM. Every row in TPM is summed to either 1 or 0. In our exper-
imentation, we have constructed 284×284 TPM for each benign and malware exe-
cutable. These individual TPMs are used to form a composite matrix of a dataset
as shown in Eq. 3. Here, composite matrix (R.H.S.) is constructed by adding two
TPMs (L.H.S.) and then dividing each cell (i, j) of resultant matrix by number of
samples (2 in this case). In similar manner we have created composite matrix of
our datasets which is further used to construct our input vector. Each cell in this
matrix can have a value ranging from 0 to 1 which indicates the average transition
from one state to other in a dataset.⎧⎨

⎩
a11 a12 a13

a21 a22 a23

a31 a32 a33

⎫⎬
⎭+

⎧⎨
⎩

b11 b12 b13
b21 b22 b23
b31 b32 b33

⎫⎬
⎭ =

1
2

⎧⎨
⎩

(a11 + b11) (a12 + b12) (a13 + b13)
(a21 + b21) (a22 + b22) (a23 + b23)
(a31 + b31) (a32 + b32) (a33 + b33)

⎫⎬
⎭ (3)

3.3 Decision Model

We used neural network [8,17] model to categorize the aforementioned behaviors.
This model has ability of learning non–linear discriminant function and recog-
nizing patterns in high–dimensional feature space. It can be structured using
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either single–layer or Multi–Layer Perceptron (MLP). Our initial experiments
with single–layer perceptron indicate that our data is not linearly separable. For
this reason, we adopted MLP [8] model with error back propagation algorithm for
our classification methodology. We applied one–against–all (OAA) [17] pattern
modeling over one–against–one (OAO) and P–against–Q (PAQ) because other
two modeling methods require more number of network structures and shall
result into a computational overhead. Applying OAA, our network becomes a
bi–class model and therefore we developed four different networks for each of
the behaviors (C vs. All, M vs. All, G vs. All and I vs. All).

Fig. 3. Decision model

Figure 3(a) shows our decision model (200:8:32:1). The architecture of our
proposed network is described by one input vector, two hidden layers and one
output layer. We constructed input vector using state transition probabilities
discussed later in Sect. 4.2. The proposed classification model was designed with
two hidden layers instead of one according to the findings of the work in [6].
We adopted hit and trial strategy to select the number of neurons in the hidden
layer as low and high neuron count may result into under–fitting and over–fitting
which further lead towards poor learning of training sets. In this quest, we per-
formed an extensive experimentation by using neuron count from 4 to 40 at both
the hidden layers. We observed best results with 200:8:32:1 in terms of accuracy
and training time and hence decided for 8 neurons in the first hidden layer and
32 neurons in the second hidden layer. At the output layer, a single neuron is
sufficient in our case, since for each network, we need a single value which gives a
measure of how closely an input sample relates with the corresponding behavior.

Besides these structural issues there are factors which play a crucial role in
designing a decision neural network. These factors are described as follows.

Activation Function: Every neuron is associated with a bias value and makes
use of an activation function to transform the value of the activation level into
an output signal. If the learning algorithm is back propagation, it is necessary
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for the activation function to be differentiable. For our model, we have selected
tanh(x)

No. of neurons in the layer as the activation function as (i) it is highly differen-
tiable and leads to good gradient descend on error, (ii) it requires less mathe-
matical computations on each neuron, and (iii) it gives output in the range −1
to +1. We have trained our neural network in a way that a positive value is
expected for a positive class and negative value for negative class.

Learning Rate and Momentum Rate: Learning rate is a numerical factor
by which weights are updated in each iteration. Lower the learning rate, finer
tuned are the weights, but it requires more iterations, thereby leading to a high
training time. Higher learning rate results in less overall training time with lesser
accuracy of detection. Also, during the learning process a momentum factor is
introduced to reduce the sensitivity of the network to a local minima with respect
to weights and increases the convergence speed. For our model, we have observed
good classification results and appreciable training time with 0.01 as the value
of the learning rate and 0.5 as the momentum factor value.

Decision Function: When a sample is to be classified, its output from each
network is generated and passed through a decision function for a final classi-
fication. A high positive output from a network indicates a close match of the
input sample to the corresponding behavior. Figure 3(b) illustrates the process
of determining class of a input test sample. The sample is supplied into all four
networks and four output values NC , NM , NG, and NI are generated in paral-
lel with respect to each network. It is labeled with behavior β where β is the
maximum value out of four generated values.

4 Experimental Setup and Results

The experiments were performed on Intel Core i7 2.30 GHz with 8 GB, 1600 MHz
DDR3 RAM Macbook Pro. Implementation code is written in JAVA (eclipse
IDE) and executed in JRE environment with 2.5 GB and 3.0 GB of heap space.

4.1 Dataset Preparation

We have used malware and benign executables as input. Total 1150 Benign
executables are gathered from Windows/system32 directory of freshly installed
Windows system. Our proposed model relies on the system–call sequence gath-
ered from a target binary while it is being executed in Windows XP platform.
Although Microsoft abandons its support to Windows XP yet this will not affect
our proposed model because (i) the target malicious binaries (win32 PE) affect
the all Windows platform, (ii) system–call sequence used in Windows XP is a
subset of those used in Windows 7 [9].

Our malware dataset consists of 1120 samples collected from on line sources
and user agencies. All malicious samples are then applied to three different AV
scanners (Norton, Quick Heal, AVG) to segregate them into their respective
malware families (Worm, Trojan, Virus). The training (70 %) and known test
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sets (30 %) are formed from both the benign and malware datasets. The known
test set consists of samples whose behavior is known but these are not used for
training. We labeled each known malware and benign sample with their respec-
tive behavior. We labeled 1150 samples as Clean, 505 samples as Malignant,
329 samples as Guest–crashing and 286 samples as Infinite–running. It is clear
that more than 50 % of malware samples depict environment–reactive behavior
reinforcing our motive of detecting environment–reactive malware. Furthermore,
we have used one unknown test set, samples of which is not labeled with any
behavior to check whether our model makes an accurate behavior prediction for
unknown instances.
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4.2 Input Vector Construction

Input vector plays a key role in designing a decision network which yields into a
better detection accuracy. We have chosen transition states of composite matrix
to be used as input in our constructed input vector. Composite matrix is a
284×284 matrix so our state space will have total 284×284 transitions. This state
space is very large and applying it to our model will degrade its performance.
Therefore, to decide the appropriate transition states and size of the input vector
we adopted following two strategies.

1. Construct four input vectors w.r.t. each behavior network using four com-
posite matrices corresponding to each of the behavior datasets. (Strategy 1)

2. Construct one input vector for all four behavior networks using one composite
matrices created from training samples of all behavior datasets. (Strategy 2)

We selected top 50, 100, 150, 200, 250 and 300 transition states for both
the strategies. After this, we applied TPMs of our samples and trained all four
networks for fixed 10000 iterations with these strategies. The main aim of this
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experiment is to select the suitable strategy and size for our input vector. Figure 4
shows results of this experiment in terms of overall error rate with respect to each
of the 12 (two strategies and six sizes) experiments. We found that Strategy 2
outperforms the Strategy 1 as the individual choice of input vector trains the
model for relevant behavior class and ignores the global knowledge. Though,
there is a marginal difference in the error rate but for any malware detection
system this difference cannot be avoided. Therefore, we considered Strategy 2
for our experimentation. The minimum error rate is obtained at input size 200
for Strategy 2. We observed that the error rate increases as we increase the input
size. Because adding more state to our input vector will also increase the noise in
the data and as a result it will lead to poor detection accuracy. Also, we observed
that the training time is directly proportional to input size. But, we decided to
sacrifice training time over detection accuracy and fixed the input vector size
as 200.
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4.3 Training Results

In training phase, we randomized samples after each epoch to avoid the bias-
ness in the adjusted weights. Figure 5 shows the plot of error rate vs. number
of iterations. This figure indicates that our model has been trained in just 5000
iterations as the overall error rate get stabilized from this point onwards. It
will allow us to fix the number of iterations to 5000 for our testing phase. As
discussed earlier, the training time increases as we increase the number of itera-
tions therefore selecting low number of iteration for our model will improve the
running performance of the model. But, this selection cannot assure an accu-
rate decision model as the error stability is must in such type of networks. We
can ignore the training time as it is one time cost to achieve higher detection
accuracy for unknown test samples.
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We evaluated our proposed model’s performance using TPR, FPR, TNR,
FNR, Accuracy and Error [25]. Table 1 illustrates performance of constructed
trained neural networks. A high value of TPR and low value of FPR indicates
that developed model is performing well. Our model discriminates the clean
and malignant behavior with higher accuracy of 99.9 % and 99.24 %. The false–
alarm rate in these cases is negligible which indicates that our selected input
vector is significantly diverse in identifying samples with clean and malignant
behavior. Remaining two behavior classes indicate the categorization within a
malware class, so here we expected the overlapping. The infinite–running and
guest–crashing are two environment–reactive behaviors which do not reflect its
malicious behavior instead these categories of malware try to mimic the clean
behavior. Therefore, we are observing a false–alarm rate in these two cases.

Table 1. Performance evaluation with training and known test datasets

Dataset Network TPR FPR TNR FNR Accuracy

Training C vs All 99.8 0 100 0.2 99.9

M vs All 98.56 0.09 99.91 1.44 99.24

I vs All 95.12 0.92 99.08 4.88 97.1

G vs All 97.01 0.24 99.76 2.99 98.39

Test C vs All 97.22 3.4 96.6 2.78 96.91

M vs All 97.12 1.59 98.41 2.88 97.76

I vs All 95.56 3.04 96.96 4.44 96.26

G vs All 92.8 5.53 94.47 7.2 93.64

4.4 Testing Phase

We conducted testing for our known and unknown test datasets. As illustrated
earlier, the known test samples are labeled with their respective behavior but are
not utilized during the training phase. Table 1 shows the results of our known
test dataset. We observed that the testing results are quite similar to the training
results. There is a tolerable difference in detection accuracy of our training and
test datasets because of our model is trained with less number of guest–crashing
and infinite–running samples as compared to benign samples. We have observed
that overall testing accuracy of 96.125%.

Table 2 shows our testing results with unknown test set. We supplied this set
to verify the correctness of proposed model with unknown unlabeled instances of
binaries. From statistics, we can deduce that our model is capable in categorizing
the unknown instances. We confirmed the assigned behavior labels of unknown
test samples by monitoring these samples in Ether. With an error rate of 4.6 %,
we found that designed model automates our manual behavior labeling process.
This proves that the proposed model can determine the environment–reactive
behavior of unknown instances also.
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Table 2. Detection accuracy with unknown test dataset

Behavior class # Samples # Correct instances # Incorrect instances

Clean 265 258 7

Malignant 103 102 1

Guest–crashing 36 34 2

Infinite–running 19 17 2

4.5 Performance Evaluation

To evaluate the performance of the proposed supervised learning model we con-
sidered three factors. These factors are described as follows.

Detection Rate: The detection rate determines the accuracy of a proposed
model. The proposed model addresses the malware detection problem which cat-
egorizes the malware instances according to their suspicious (Non–environment–
reactive and environment–reactive) behavior. This detection problem is sensitive
therefore the high true positive rate and low false positive rate is desirable. We
obtained high TPR and low FPR in Table 1.

Generality: Generality determines how well the trained model performs on test
data. According to [17] we cannot achieve the generality with smaller (as in our
case) and imbalanced datasets. However, our experimental results contradict this
and indicate significant uniformity in testing and training results. For instance
the FNR value with both training and test samples tables are more as compared
to FPR. The reasons for this achieved generality are that (i) our constructed
input vector includes such patterns which can identify the diversity in all four
behavior classes and (ii) our dataset is not completely imbalanced. To check
whether the dataset is balanced or not we applied an imbalance measure derived
in [17]. Let Ω be an imbalance measure for OAA. Equation 4 decides the value
of Ω. Here K = 4 denotes the number of classes and ni is the total number of
samples in ith class. If Ω tends to zero means the dataset is imbalanced and
the maximum value for Ω will be 1/(K − 1) which denotes that the dataset
is balanced. In our case, Ω is 0.15 which indicates that our training set is not
completely imbalanced and thus we have achieved uniformity in training and
testing results.

Ω = min

{
ni∑k

j=1, i�=j nj

∣∣∣∣∣ i = 1, .....,K

}
(4)

Training Time: We created neural networks equal to the number of behaviors
to be detected, which in our case is 4. In order to achieve a high efficiency with
respect to training time, we trained all these four networks in parallel by making
use of JAVA threads. Hence, training of each network occurs in parallel and the
overall training time becomes equal to the maximum value of the time taken by
all four networks. We obtained training time in the range of 17–1096 s for 100–
10000 iterations respectively with heap space 3 GB. We also trained the designed
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model with heap space 2.5 GB (training time ranges from 22 to 1536 s) and
observed a significant speed up (1.45 for 5000 iterations) with the former. This
speedup is achieved due to the lower execution frequency of the JAVA garbage
collector in higher heap space. The obtained training time is not a big issue to
be considered. But when our proposed method applied with larger datasets this
time will increase drastically. To reduce the training time with larger dataset we
can increase the heap space memory of the system and can acquire a significant
speed up without making any modifications into our developed model.

5 Limitations

We have shown that our approach can detect real unknown malware on the basis
of their environment–reactive behavior. Also we have observed that most of the
current malware depicts these behaviors. However, malware portraying behavior
other than malignant, guest–crashing and infinite cannot be detected by our
decision model. To overcome this, the proposed model can be trained again to
detect the new behavior as well. In this section, we describe cases which restrict
our detection and categorization approach.

Tracing and behavior screening of malware binaries completely depend on
Ether. So, the limitations associated with Ether are inherited into our approach.
The malware with root privileges can detect Ether framework as it utilizes the
emulated version of Bochs virtual machine [12] for BIOS data strings. Our pro-
posed model does not deal with these obscure malware as Ether cannot gen-
erate their execution logs. Second, analyzing executables from Ether is a time
consuming task. Ether uses exceptions whenever a running application makes
a system–call to access system service. These exceptions result into significant
performance overhead.

Our approach does not consider multiple execution paths of running bina-
ries. Exploring multiple execution path of a single sample can detect the trigger–
based malware. The trigger–based malware delivers its malicious payload only if
certain trigger conditions are met. These triggers include certain system state,
timestamp (a particular date, day or even time), URL and certain keywords
[4,16]. Our single–execution path based approach may miss this category of
malware. However, our approach can detect a fraction of these trigger–based
malware which prefer environment–sensitive payload over trigger–based payload
in its execution path. Also, our experimental results deduce that a single execu-
tion path of an executable is sufficient to detect its benign or malignant nature.

6 Conclusion

Emerging malicious threats are detection–aware therefore the current DBMD
approaches are in getting out–of–date. New generation of malware can detect the
presence of analysis–environment and do not reflect malignant behavior. Ether
which is a hardware–based virtualization framework can also be detected by
these new–generation malware samples. In our proposed approach, we developed
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a decision model for identifying and categorizing the behavior of a sample during
its execution in virtualized environment. The proposed model automates our
behavior screening and labeling process and captures the environment–reactive
and non–environment–reactive behavior of malware. It makes use of execution
sequence generated in a single analysis environment and this log sequence is used
to predict the behavior class of malware. We evaluated our proposed model with
known and unknown real instances and discovered that the proposed model is
effective in detecting these instances.
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