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Abstract 

This paper presents the use of the Poisson probability 
distribution for forecasting discrete time series. The 
properties of the weights using the Poisson distribu­
tion are discussed. These weights provide alterna­
tives, not attainable by exponential smoothing models. 
As an introduction to Poisson smoothing process, a con­
stant and linear trend correction models are presented. 
For some of the time series tests, the Poisson fore­
casting models show slightly improved forecast accu­
racies compared to exponential forecasting models. 

Introduction 

The literature on business forecasting models are nu­
merous and varied in nature. The most widely used ap­
proaches in the area of forecasting can be classified 
into exponential, Box-Jenkins, and adaptive forecasting 
methods [1, 2]. Both exponential [3, 4] and Box­
Jenkins approaches are well established as sound tech­
niques for forecasting discrete time series. A de­
tailed description of the model identification, model 
estimation, diagnostic checking, and forecasting can be 
found in the text written by Box and Jenkins. In this 
paper a comparison between exponential and Poisson mod­
els are presented, while the comparison between Poisson 
and Box-Jenkins models is in order for future research. 

The Constant Exponential and Poisson Forecasting Models 

The basic single parameter exponential smoothing pro­
cess is defined as follows: 

Y(t) • aY(t) + (1-a)Y(t-1) 

where, Y(t) = actual time series value for period t 

Y(t) = smoothed time series. value for period t (used 
as the forecast for period t + 1) 

a = smoothing parameter 0 < a < 1. 

(1) 

The above model provides the following weighting scheme 
for t periods of historical time series data: 

(2) 

where 

i = 1,2, ••• ,t (3) 

and 

(4) 

where 

(1-a)t approaches zero as t gets large. 

This paper introduces a Poisson smoothing model which, 
while maintaining most of the advantages of the 
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Exponential Smoothing model, provides a new range of 
weighting scheme alternatives for the t periods of time 
series data. The Poisson Smoothing process is offered 
as an alternative to, rather than a replacement for, 
exponential smoothing. 

The basic single parameter Poisson Smoothing process is 
defined as follows: 

Y(t) • e-A[Y(t) + AY(t-1) + ~Y(t-2) + ••• 

A (t-1) . J 
+ (t-1)!~(1) (S) 

where Y(t) and Y(t) are defined above. 

Given a discrete time series of t periods, the Poisson 
Smoothing model defines the weights for each period as 
follows: 

e-A A(t-i) 
Wi • (t-i)! i - 1,2, ... ,t 

where A = Smoothing parameter, A > 0. 

(6) 

Since these weights are recognizable as the probabil­
ities of the Poisson distribution [S], the forecasting 
model is termed a Poisson Smoothing process. 

-A 
Note that in the above model, e is the weight applied 
to the most recent time series value. The corre­
sponding exponential smoothing model weight for the 
same time series value is a, which in most practical 
forecasting problems is .OS or greater. If we restrict 
our Poisson Smoothing parameter A to cases where e-A is 
also .OS or greater,· it is found that the sum of the 
Poisson weights for the most recent time series obser­
vations rapidly approaches one, This has practical 
significance in that the older time series data carries 
essentially negligible weights and can be removed from 
the model without significantly affecting the smoothed 
time series value Y(t). Thus, while the Poisson 
weights of equation [6] can be defined for any t • 1,2, 
3, ••• , at of 10 accounts for at least .9997 of the 
total weighting of the past data. In fact, as t 
becomes .1arge, it is only necessary to consider the 
weights for the most recent k periods (k < t). 

The Exponential Forecasting Model With 
Linear Trend Correction 

Let a time series have a constant linear trend b. Ap­
plying the constant exponential smoothing model (equa­
tion [1]) to the time series provides the following 
smoothed value expression: 

Y(t) • aV + a(l-a)(V-b) + a(l-a) 2 (V-2b) + ••• 

+ a(l-a)n(V-nb) + •.. 

where 

Y(t) • V 

Y(t-1) • Y(t) - b • V - b 

(7) 



Y(L-2) Y ( t- I ) - b = V - 2h 

Pte·. 

'l'lH·n·fort•, 

Y(t) •• •tV[ I + (1-<t) + (1-cx) 2 + ... ] 

- It ( 1-ct) hI I + 2 ( I -<t) + 1 (l-11) 2 + ... 

+ n(l-a)n-l + ... ] 

,,y l - " ( 1-a) b [ r 1 + (I_,,) + ( 1 -ll) 2 + ... } 
" 

+ {(1-<1) + (1-a) 2 + ... } + ... ] 

aV l_- a(l-l1)b [l + (1-a) + (1-a)2 + 
a a a a .. ·] 

+ ... J I_ [1 + (1-ct) + (1-a) 2 
aV - n(l-a)b -

(1 ct 

=V-~ct)-b 
ct 

Hence the Constant Exponential model lags the linear 

trend or ramp series by _(1~ b. The exponential 
(1 

(8) 

(9) 

smoothed l'stimatl' of the linear trend can be obtained 
a~; follows: 

b(t) = <tb(t) + ct(l-ct)b(t-1) + 

+ a(l-a)nb(t-n) + ... (10) 

where 

b(t) = Y(t) - Y(t-1) (11) 

No<e that· in Pquatlon [101 the trend estimate in period 
t Is d!'filll'd as till• dlf f!'rc'IH'<' betw"en the two most rc­
Cl'nl Hmoolhed estlmall'S of till' Hl'rles. 

'l'lwrefore, tlw smoothed value of the time series in­
cluding the linear trend correction is best given by 
F(t) where 

(12) 

Tlw furc•t·ast for !1. periods in tlw future• (assuming no 
seasonal try) is given by: 

F(t+l) = F(t) + lb(t). 

The· Poisson Forecasting Model With 
Linear Trend Correction 

(13) 

Suppose we lillve a time series with a constant linear 
trend b. Applying the constant complete Poisson 
Smoothing mode I (equat jon (5)) to the time series pro­
vides the following smoothed value expression: 

-A \ 2 
Y(t) = e [V + \(V-b) + -zr(V-2b) + ... 

(14) 

whl' re 

Y(t) = V 
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Y(t-1) = Y(t) - b = V b 

Y(t-2) = Y(t-1) - b = V- 2b 

etc. 

Tlwn•fon•, 

, -A A2 
Y(t) = e V[l + \ + 2T + 

n 
+ ~ + ..• ] 

n! 

2 n 
- e -Ab[\ + ~ + ~ + ] 

2! n! "· · 

-A A -A = e ·v·e - e bA[l + A + ... 

Since eA 

Therefore, 

Y(t) = V - \b 

(15) 

(16) 

Hence the constant Poisson smoothing model lags the 
linear trend or ramp time series by approximately Ab. 
The Poisson smoothed estimate of the linear trend can 
be obtained as follows: 

A A2 
e- [b(t) + Ab(t-1) + Z!bCt-2) + ... 

Ak 
+ 'kTh ( t-k) l (17) 

where 

b(t) = Y(t) - Y(t-1). (18) 

Note that in equation (17) we are applying Poisson 
smoothing to our most recent k + 1 trend estimates 
where the trend estimate in period t is defined as the 
difference between the two most recent smoothed esti-­
mates of the series. 

Therefore, the smoothed value of the time series in­
cluding the linear trend correction is best given by 
F(t) where 

F(t) = Y(t) + Ab(t). (19) 

The forecast for 2 periods in the future (assuming no 
seasonality) is given by: 

F(t+l) = F(t) + Ji.b(t) 

Poisson And Exponential Forecasting 
Models: A Comparison 

(20) 

The Poisson and exponential smoothing models are sim­
ilar in that they are both single parameter models that 
provide weighting schemes for the previous time series 
data. A trial-and-error procedure for finding the best 
smoothing parameter A for the Poisson process would be 
very similar to the procedure used to find the best 
smoothing parameter a for the exponential smoothing 
model. 

With regards to the data handling requirements, the 
exponential smoothing model is superior. The Poisson 



model may require as many as seven more data values 
than the exponential smoothing model. The data han­
dling and storage disadvantages of the Poisson model 
may be compensated for by the fact that this model en­
ables a new variety of weighting scheme alternatives 
for the past data. In particular, the exponential mod­
el is limited to cases where the more recent data al­
ways receives more weight. While the Poisson model can 
also exhibit this behavior, it offers some additional 
rlexibility in that certain values of A will allow the 
older data to receive higher weights than the most re-

cent data. For example, a A of 1.2 with e-A equal to 
.3, provides a weight of .36 for data two periods old 
and a weight of .30 for the most recent observation. 
It seems reasonable and conceivable that the weighting 
scheme flexibility of the Poisson model might improve 
the overall forecasting accuracy for some specific time 
series. Examples of the three possible Poisson 
weighting schemes are shown in Figure 1. 

The overall value of the Poisson model will however 
have to he measured in terms of forecasting accuracy. 
In other words, is there empirical evidence that in 
some cases the Poisson weighting scheme provides 
smaller forecasting errors than the exponential 
smoothing model? To obtain an empirical comparison of 
the two smoothing processes, we have selected in the 
first data set three fairly divergent time series: 
industrial production, stock prices, and unemployment 
rates. These series, which consist of monthly values 
over a ten-year period, are shown in Figure 2. 
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Figure 1. Poisson Weighting Schemes withe-A 
Values of .1, .3, and .5. 
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Figure 2. Time Series Used to Compare the 
Exponential and Poisson Smoothing Models 

The forecasting accuracy, which is evaluated for each 
of three future periods, is measured in terms of the 
mean square error (MSE). The mean square error is de­
fined as follows: 

T 
MSE = l I (y(t+~) - F(t+~)) 2 

~ T t=l 
for ~ • 1,2, 

and 3 (21) 

where 

T • total number of time series values • 

For both the Poisson and exponential smoothing constant 
models, F(t+~) = y(t) for all ~. 

All time series were forecasted using the exponential 
constant and linear trend models and the Poisson con­
stant and linear trend models. Each forecasting model 
was evaluated with nineteen different smoothing para­
meters. For the exponential smoothing models we used 
~ • .05, .10, .15, ... , .90, and .95. For the Poisson 

-A smoothing models we used values of A such that e • 
• 05, .10, .15, •.. , • 90, and . 95. In this way, the 
weight applied to the most current observation y(t) is 
equivalent between the two models and therefore serves 
as a basis for comparing the two models. 

&96 

The best exponential and Poisson forecasting models 
(i.e., the best a and A) were identified for each time 



series. The a and A values which yield the smallest· 
MSE are defi.tw<i to be the "b<'st" a and A values. The 
forecasting accuracies for constant exponential and 
Poisson models are summarized in Table 1. 

TABLE 1 
1~EAN SQUARE ERRORS OF THF. BEST_ FORECASTING 

MODELS FOR TEREE TIME SERIES 

1-ll'nn ~iquarc 
t·:r.ro_r __ 

Jndn11t I !HI 
l'rotluct lon 

f;!.OC'~ J'r lcl'!' 

Utwmp 1 uyuwn t 
!\At 0 

Expon•'lll 111 I C'ouJ:t 11111 

(11 ... ,(,()) 

l'oitll•l•ll C1Jtt~:t aut 

(0 -A .• . (,~,) 

Expont>nl !:1l Con:-; I <tnt 
(n •• . 1:1) 

Poft1fiOIL Conn! nnt 

(.-•- .10) 

F.xpunPntJul Conut11nt 
(ct ... 3~) 

1'(•:' ':~·o1• Cm1Ht .1nl 

(.,-• - . )5) 

J.OB 

1.09 

J8J.69 

179.97 

.05 

.05 

The industrial production series favor the exponential 
constant model; the stock prices series shows the 
Poisson constant model providing the better forecasts; 
the unemployment rate series shows identical results 
for the forecasting models. Overall, based on this 
rather limited empirical comparison, the exponential 
and Poisson smoothing models provide quite similar 
forecasting results. 

Table• 2 summar l?.es the resu] ts for the exponential and 
Poisson I Jnc•.ar trend models for the data set. The 
industrial production series favor the Poisson trend 
correction models for all the three time periods. Ex­
ct•pt for tlu• first pl'riod, the stock prices series 
favor the l'o1sson trend correction model. In the case 
of unemployment rate series, both models indicate the 
same forecasting accuracies. 

TABLE 2 

MEAN SQUARE ERRORS FO THE BEST FORECASTING 
MODELS FOR TilE THREE TIME SERIES 

------ H.!'.~l_!l_.§._'l_t.! a_ r_( · ~~~-~~o_r 

InduHf rlnl 
l'rothH· t I on 

Stm·k l'rll·t•P-; 

Unt!rnploynwut 
R11tt· 

Expon<•nt I ttl Trl'ml 
((t 1 .. ,\~,, a 2 "' .?~i) 

l'uJ ssc10 1'rcrul 
o., .. . J(J, ).I.-~ ,()2) 

l':xpnnt•t·! I n.l Tn•nd 
(ctl- . ?:'i. (11 .. lfl) 

Poitn;on Trent\ 
("I • J. )9, A 2 • ? . 30) 

Exptll\l'll! In I 'l'ro•tHI 
(ttl .. . ~,·}, ttl ... Hl) 

l'oiaRon 1'n•nd 
<•1 •. r.o, •, .. 2.:101 

Cone 1 us:!ons 

J~e r_l n~l _ _! f5'.rJ_o_tl __ 2 )'~·r"tn!~...l. 

l .06 3.15 5. 77 

l.OJ 1.91 5.2~ 

j(J(o,ldl /.2i.Y1 ?OB. 29 

707 .ot, 208.29 J9fl.2'• 

.01 .Oft .05 

.OJ .ot, .05 

This art !cl e introduces the smoothing process based 
upon the l'oisHon probability distribution. There-
sul Is of till' Poisson forecasting models are compared 
wlth tltl»ll' of Lite exponential forecasting models. Even 
though the s 1 ngl e parame t.er Poisson smoothing model re­
qulreH additional data storage, it allows past data 
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weighting scheme alternatives that may in some cases 
yield better forecasting accuracies than those observed 
by similar exponential smoothing models. However, the 
forecasts using this model cannot be updated recur­
sively. This disadvantage is minimized due to the im­
proved data handling and reduced storage costs of the 
available computers. Perhaps more important, the 
Poisson model provides an opportunity to use a weight­
ing logic which does not monotonically decrease the 
weight applied to older observations, and this may have 
some real appeal to the practicing manager who attempts 
to forecast time series values. 
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