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Abstract 

When employing factor analysis a major problem 
confronting researchers is the determination of 
how many components to retain for subsequent in
vestigation. Many marketing scholars address this 
issue by automatically invoking the Kaiser
Guttman, or eigenvalue-greater-than-one, proce
dure. Yet this procedure is not without certain 
limitations. The authors therefore propose an 
alternative measure, a probability test for the 
significance of eigenvalues, based upon a random 
intercepts model. Preliminary results of the 
application of the model on marketing and psy
chology data are presented. 

Introduction 

Despite the variety of multivariate techniques 
available to the marketing researcher, factor 
analytic procedures remain among the most commonly 
utilized. The popularity of factor analysis as a 
marketing tool has, however, been tainted by a 
number of problematical issues. Certain of these 
issues concern the inappropriate application of 
factor analysis in assorted marketing studies 
(Stewart 1981), while others revolve around the 
development and refinement of factor analytic 
nethods per se (Acito and Anderson 1980; Acito, 
Anderson and Engledow 1980). With regard to the 
latter, Stewart (1981, p. 58) has remarked that: 
"Perhaps no problem has generated more controversy 
and misunderstanding than the number of factors 
problem." This view is shared by others (e.g., 
Hakstian and Muller 1973). The essence of this 
problem may be summarized by asking the following 
related questions: How many factors should be 
extracted from a correlation matrix? When should 
factoring cease? What is the "best" or "correct" 
number of factors to retain for further analysis 
and rotation? Such questions acquire great im
portance because of their obvious theoretical 
implications, and because of the fact that rota
tion is not particularly robust to the number of 
initial factors obtained. 

Principal components and factor analysis are 
frequently thought of as being similar insofar as 
both methods are concerned with data reduction. 
They are different however. Factor analysis pre
supposes the existence of an underlying hypothet
ical causal model, and as such is theoretically 
capable of prespecifying the number of factors to 
be extracted. Principal component analysis, on 
the other hand, is more empirically oriented and 
focuses upon the linear transformation of a set 
of observed data. This paper is concerned with 
principal component analysis. 

In the absence of powerful marketing (or other) 
theories which would define the number of factors 
to be extracted, a series of tests and rules of 
thumb have understandably been formulated to 
address this critical issue. By far the most 
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routinely employed criterion for factor extraction 
is the Kaiser-Guttman (or eigenvalue-greater-than
one rule, roots criterion) rule. This rule, 
together with a number of its drawbacks, is dis
cussed below. 

The Kaiser-Guttman Rule 

The Kaiser-Guttman (hereafter KG) rule is so ubiq
uitous that it is usually incorporated as an auto
matic default option in most statistical packages. 
This rule is identified with Kaiser's (1960; 1970; 
1974) so-called "Little Jiffy." Little Jiffy 
describes a factor analytic approach which pro
ceeds with a principal component analysis of a 
correlation matrix, followed by the retention of 
components whose eigenvalues exceed or are equal 
to unity, and whose final solution is determined 
by varimax rotation. Based on a survey of JMR 
articles published between November 1964 an~ 
February 1978, in which factor analysis was the 
predominant investigative tool, Acito and Anderson 
(1980) were able to conclude that Little Jiffy was 
the most frequently adopted factor analytic 
strategy. 

The logic underlying the KG criterion can be ex
plained by considering a correlation matrix of full 
rank N which is being analyzed. In general, this 
matrix would yield N principal components and the 
sum of the eigenvalues associated with these com
ponents would be equal to the trace of the correla
tion matrix. If Ai is the eigenvalue of the ith 
principal component, it can be demonstrated that 
Ai/N is the proportion of the variance in the 
standardized data that can be explained by the 
principal component. Even if the principal com
ponents are produced by random grouping of the 
variables, each component on an average would be 
expected to account for 1/N of the variance in the 
data. It would therefore have an eigenvalue of 
one. And so, if the eigenvalue of a factor is 
equal to unity, it contributes its "average" share 
to the explanation of the variance in the data. 
Such factors, together with those whose eigen
values exceed unity, are therefore considered to 
be of explanatory significance. 

Notwithstanding the popularity of the KG rule, it 
should be noted that several limitations accompany 
its usage. First, the choice of one or greater as 
the cut-off point for component retention is too 
arbitrary a criterion. In any principal component 
analysis a score of one is by definition the 
average value of all the eigenvalues involved. It 
therefore follows that certain eigenvalues will 
necessarily exceed unity, while others will not. 
Consequently, some eigenvalues greater than unity 
must occur irrespective of the "significance," in 
either a statistical or a substantive sense, of 
their associated components. Rather than employ
ing a criterion that forces acceptance of some 
components as significant and others as not, it 
appears preferable to develop a measure which is 



not constrained in this fashion. 

Second, the eigenvalue rule is based on the as
sumption that a population correlation matrix is 
being factored (Stewart 1981). Otherwise ex
pressed, no sampling errors exist in the data 
being analyzed. But the majority of marketing 
studies are conducted on the basis of samples, 
and are thereby subject to sampling errors in the 
correlation matrix which will be expected to dis
tort the resultant eigenvalues. Therefore the 
significance of eigenvalues should be assessed 
via probabilistic tests, which the KG criterion 
does not provide. 

Third, prompted by continuing advances in factor 
analytic methodology, Kaiser himself has acknowl
edged the need to modify Little Jiffy. He com
ments that (Kaiser 1970, p. 403): "Little Jiffy, 
that seemingly reliable workhorse for exploratory 
studies, is old, and in need of an overhaul." 
Fourth, Stewart (1981), citing various studies 
from the psychology literature, maintains that 
the most damaging criticism leveled against the 
KG rule originates from Monte Carlo work with the 
method. More specifically, he notes that this 
criterion is at best an approximate one which 
frequently generates an exorbitant number of 
factors. 

It is clear that room for optional procedures to 
assist with the number of factors problem current
ly exist. We therefore propose an alternative 
test to the KG criterion. The test itself, 
which we feel has many beneficial qualities, is 
derived from the random intercepts or random par
titions model (Feller 1966; Pandit 1978). 

Random Intercepts Model 

In some cases the random intercepts (henceforth 
RI) test may supplant the roots criterion, while 
in others it may supplement it. Regardless, the 
test is sufficiently versatile such that it can 
readily be employed in conjunction with the KG 
rule should this be desired. Viewed in this 
manner, application of the RI test is perhaps 
consonant with requests that Little Jiffy requires 
some modifications (Acito and Anderson 1980; 
Kaiser 1970). Again, the RI approach, concerned 
as it is with principal component analysis, 
appears well-suited to mainstream marketing factor 
analytic situations (Green 1978). Finally, the RI 
model is flexible enough to accommodate aspects of 
the under-over factoring controversy by allowing 
the researcher reasonable latitude to specify dif
ferent significance levels for component ex·trac
tion. 

The relationship between principal components 
analysis and the RI model becomes clear when we 
consider the following null hypothesis: 

H : 
0 

Principal components analysis generates 
a random grouping of variables. 

That is, eigenvalues occur as a result of the 
functioning of random phenomena. Note: although 
the average eigenvalue will still be one, as in 
the roots criterion, we pay explicit attention to 
the distribution of the eigenvalues. This 
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distribution follows from the operation of the RI 
model. 

Principal components analysis yields a 
grouping of variables that is not the result 
of random processes. 

In other words, the magnitude of an eigenvalue 
should be sufficiently large so as to preclude 
random grouping. The discussion below is con
cerned with the development of the random inter
cepts model itself. 

Consider a line of length N portraying the sum of 
the eigenvalues connected with a matrix of rank N 
(Figure 1). N-1 random and independent intercepts 
arrayed on this line will result in segments of 
length Ai which would represent eigenvalues asso
ciated with random components (N ~ ~A i). Recall 

i~l 
that the eigenvalue of a component is equal to the 
variance accounted for by that component. There
fore, our examination of eigenvalues is formally 
equivalent to an investigation of the variance in 
the data. 

As Figure 1 illustrates, the leftmost segment (or 
eigenvalue) is assumed to be of magnitude Al, and 
will be considered to be significant if it is 
longer than some predetermined value A*. A* 
itself, which is derived below, is defined as the 
smallest significant eigenvalue. 

FIGURE 1 
HYPOTHETICAL RANDOM PARTITIONING 

OF THE SUM OF EIGENVALUES 

N 

If the intercepts are generated at random, with 
uniform distribution over N, the probability that 
a cut appears to the left of Al is denoted by 
Al/N. Similarly, the probability that any inter
cept would fall to the right of Al would then be 
(N- A 1) /N. Since Al is the length of the leftmost 
segment, all N-1 intercepts will necessarily be to 
the right of A1 . Furthermore, it follows that the 
probability that all intercepts will lie to the 
right of Al is given by: 

And (1) is also synonymous with the probability 
that the leftmost segment (eigenvalue) is at 
least of length Al. 

(1) 

In order to accept this length, Al, as significant 
it should be greater than or equal to some pre
specified value A*, where: 

P(A*,N) 
(N;A*)N-l~a 

(2) 



Alpha (a) would be a probability specification 
similar to a level of significance employed in 
conventional statistical tests. Given values of 
a (the level of significance) and N (the number of 
segments/eigenvalues generated), we can compute 
the test length A* for comparison with the gener
ated length Al· If Al~ A*, we accept the length 
of the segment/eigenvalue as significant. We 
therefore solve (2) in order to obtain our values 
for A*: 

The distribution of segment proportions (A/N) 
resulting from N-1 random intercepts on a line of 
length N can be shown to be of the form: 

f(A/N,N) (N-1)(1-~N-2 
N 

Preliminary Testing of the RI Rule 

(4) 

Using (3) we calculate values of A* for various 
levels of a and N. These values are listed in 
Table 1. 

(3) 
In order to illustrate how component extraction via 
the RI rule compares with the KG criterion, the 
authors conducted preliminary tests by subjecting 
eight data sets to a complete principal components 
analysis. Four of these sets were from marketing 
sources (Hornik 1980; Mukherjee 1971; Perreault, 
Jr. and Russ 1976; Stephenson 1963) and four were 

Number 
of 

Vari
ables 

TABLE 1 
SIGNIFICANT EIGENVALUES (A*)a 

Probabilities 

0.500 0.400 0.300 0.200 0.100 0.050 0.040 0.030 0.020 0.010 0.005 0.001 

2 1.001 1.201 1.401 1.601 1.801 1.901 1.921 1.941 1.961 1.981 1.991 1.999 

4 0.826 1.053 1.323 1.661 2.144 2.527 2.633 2.758 2.915 3.139 3.317 3.601 

6 0.777 1.005 1.284 1.652 2.215 2.705 2.849 3.025 3.257 3.612 3.921 4.493 

8 0.755 0.982 1.265 1.644 2.243 2.786 2.949 3.153 3.426 3.857 4.248 5.018 

10 0.742 0.968 1.253 1.638 2.258 2.832 3.007 3.227 3.526 4.006 4.450 5.359 

20 0.717 0.942 1.229 1.625 2.283 2.918 3.117 3.371 3.722 4.305 4.868 6.097 

30 0.709 0.934 1.220 1.620 2.290 2.945 3.152 3.417 3.786 4.405 5.010 6.359 

40 0.705 0.929 1.216 1.618 2.294 2.958 3.169 3.440 3.818 4.456 5.082 6.493 

50 0.703 0.927 1.214 1.616 2.296 2.966 3.180 3.454 3.837 4.486 5.125 6.575 

60 0.701 0.925 1.212 1.615 2.297 2.971 3.186 3.463 3.850 4.506 5.154 6.630 

70 0.700 0.924 1.211 1.614 2.298 2.975 3.191 3.469 3.859 4.520 5.174 6.669 

80 0.699 0.923 1.210 1.614 2.299 2.977 3.195 3.474 3.866 4.531 5.190 6.699 

90 0.699 0.922 1.210 1.613 2.299 2.979 3.197 3.478 3.871 4.539 5.202 6.722 

100 0.698 0.922 1.209 1.613 2.300 2.981 3.200 3.480 3.875 4.546 5.212 6.740 

200 0.696 0.919 1.207 1.612 2.301 2.989 3.210 3.494 3.894 4.576 5.255 6.824 

300 0.695 0.918 1.206 1.611 2.302 2.991 3.213 3.498 3.900 4.586 5.270 6.852 

400 0.695 0.918 1.206 1.611 2.302 2.992 3.214 3.500 3.903 4.591 5.277 6.866 

500 0.695 0.918 1.205 1.611 2.302 2.993 3.215 3.502 3.905 4.594 5.281 6.874 

1000 0.694 0.917 1.205 1.610 2.303 2.995 3.217 3.504 3.909 4.600 5.290 6.891 

aAccept an eigenvalue as significant if it is equal to, or exceeds, A*. 
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taken from the psychology literature (Davis 1944; 
Fleishman and Hempel Jr. 1954; Harman 1976; Karlin 
1941). At this juncture no claim is made that 
these initial results are necessarily generaliz
able. Further testing is obviously warranted be
fore such conclusions can be offered. Table 2 
presents the findings of the eight principal com
ponents analyses. 

For purely illustrative purposes consider the 
second data set (Harman 1976). Consulting Table 2 
we find in this case that three components, col
lectively accounting for some 98 percent of the 
variance in the data, are identified when the KG 
rule is invoked. To ascertain how many components 
are considered to be significant when adopting the 
RI rule, we refer to Table 1. With twenty vari
ables and a desired significance level of, say, 
.01, an eigenvalue of magnitude 4.305 must be 
obtained. The first component, with an associated 
eigenvalue of 12.62, is clearly significant at 
this level. Similarly the second and third com
ponents are found to be significant at the .02 and 
.OS levels respectively. Both the KG and RI rules 
produced three significant components in this 
particular instance. 

However, further inspection of Table 2 reveals 
that, in general, there are differences between 
the KG and RI rules with respect to the number of 
components each method generates. Compared with 
the KG criterion, the RI rule displays a tendency 
to underfactor correlation matrices. Whereas on 
average the KG rule elicits 2.5 components per 
study, the RI method produces only 1.5. Further
more, in empirical research the weight of opinion 

tends to err in favor of the overfactoring of a 
ma trix by one or two components should the under
over factoring controversy emerge (Cattell 1952; 
Stewart 1981). 

Nevertheless, a number of points are in order. 
First, there is nothing sacred about the KG rule, 
and we have cited earlier a number of shortcomings 
connected with it. Second, the predominant usage 
of the KG rule in empirical works in marketing and 
psychology frequently appears to be of a nescient 
character. As Cattell and Vogelmann (1977, pp. 
322-23) note: 

"The practice of building the KG into factoring 
programs, because of its extreme cheapness, and 
proceeding with no break for the investigator to 
apply other checks for number of factors (leaving 
the novice even unaware of the basis of the 
decision) is quite indefensible." 

Third, to say that the RI rule appears to under
factor is only to say that it underfactors in com
parison with the KG criterion. Otherwise expressed 
"underfactoring" is a relative term. Indeed there 
is evidence to indicate that the KG rule is sus
ceptible to charges of overfactoring (Cattell and 
Vogelmann 1977; Hakstian, Rogers, and Cattell 1982; 
Stewart 1981) . This suggests that a "conservative" 
test such as that embodied in the RI model is not 
without its merits. Moreover, since the logic 
underlying the KG and RI rules is different, we 
should anticipate that the two approaches will 
yield different results. 

TABLE 2 
PRINCIPAL COMPONENTS ANALYSES OF EIGHT DATA SETS: KG vs. RI 

% Variance 
II of ComEonents Extracted "ExElained" 

Data Set N n KG (Eigenvalues~ l) RI RI/KG KG RI 

Fleishman/Hempel, Jr. 26 197 4 10.99***, 2.97* 2 0.5 63.3 42.3 

1.40, 1.09 

Harman 20 60 3 12.62***, 4.04tt, 3 1.0 98.2 98.2 

2.98* 

Karlin 19 120 5 4.37**, 2.93* 2 0.4 56.9 38.2 

l. 37. 1.14, 1.06 

Mukherjee 14 94 1 10.64*** 1 1.0 76.0 76.0 

Hornik 11 145 2 7.39***, 1.50 1 0.5 88.9· 73.9 

Perreault/Russ 10 216 2 5.19**, 1.16 1 0.5 63.5 51.9 

Stephenson 10 38 2 4.04**, 1.50 1 0.5 55.4 40.4 

Davis 9 421 l 5.20*** l 1.0 57.7 57.7 

N = variable numbers; n = sample cize. *** ** tt, and * indicates significance at the .001, .01, .02, . , . 
and • OS levels, respectively. 
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Fourth, the RI approach seems to yield parsimo
nious results. Thus when employing the KG rule 
it takes, on an average over all eight studies, 
2.5 components to account for seventy percent of 
the variance in the data. On t he other hand the 
Rl rule, which extracts an average of only 1.5 
components per study, nevertheless explains some 
sixty percent of data variation. That is, the 
RI approach picks up dominant eigenvalues and 
their components rather than peripheral ones. 
For example, in the Fleishman and Hempel, and 
Karlin studies, eigenvalues of 1.09 and 1.06 
respectively are considered significant according 
to the KG procedure. These eigenvalues are ig
nored by the RI rule. Thus it is worthwhile 
reiterating that the KG criteri on will accept 
~ eigenvalue as significant if its magnitude 
exceeds unity, that is the average value of all 
the eigenvalues involved in the study. In 
essence we have developed a procedure which 
insures that it is not sufficient to exceed a 
given average value, but rather that one should 
signif icantly exceed this value. And we have 
anchored this procedure in probabilistic prin
ciples. The advantage of adopting the Rl rule 
is that it provides a probability level for sig
nificant component retention that the KG criterion 
cannot match. 

Conclusions 

We fee l that the l ogic embodied in the RI model , 
originally developed by Pandit (1978), represents 
an appropriate alternative to the KG criterion. 
By considering the probability of obtaining 
certain magnitudes of eigenvalues, the RI model 
supplies a test for determining the significance 
of eigenvalues, and thus a more rational justifi
cation for identifying significant principal 
components . A word of cauti on is appropri a t e at 
this j uncture . The RI test suffers from the fact 
that it is not based on any e rror theory or 
sampling distribution. This problem is currently 
being addressed. In any event it appears reason
able to suggest that, whether used separately or 
in concert with the KG rule, the RI al t ernative 
warrants further attention in market ing s tudies. 
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