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1 Introduction

Graphical models provide a framework for describing statistical dependencies
in (possibly large) collections of random variables. At their core lie various
correspondences between the conditional independence properties of a random
vector, and the structure of an underlying graph used to represent its distribution.
They have been used and studied within many sub-disciplines of statistics, applied
mathematics, electrical engineering and computer science, including statistical
machine learning and artificial intelligence, communication and information theory,
statistical physics, network control theory, computational biology, statistical signal
processing, natural language processing and computer vision among others.

The purpose of these notes is to provide an introduction to the basic material
of graphical models and associated message-passing algorithms. We assume only
that the reader has undergraduate-level background in linear algebra, multivariate
calculus, probability theory (without needing measure theory), and some basic
graph theory. These introductory lectures should be viewed as a pre-cursor to the
monograph [64], which focuses primarily on some more advanced aspects of the
theory and methodology of graphical models.
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2 Probability Distributions and Graphical Structure

In this section, we define various types of graphical models, and discuss some of
their properties. Before doing so, let us introduce the basic probabilistic notation
used throughout these notes. Any graphical model corresponds to a family of
probability distributions over a random vector X D .X1; : : : ; XN /. Here for each
s 2 ŒN � WD f1; 2; : : : ; N g, the random variable Xs take values in some space Xs ,
which (depending on the application) may either be continuous (e.g., Xs D R)
or discrete (e.g., Xs D f0; 1; : : : ; m � 1g). Lower case letters are used to refer
to particular elements of Xs , so that the notation fXs D xsg corresponds to the
event that the random variable Xs takes the value xs 2 Xs . The random vector
X D .X1;X2; : : : ; XN / takes values in the Cartesian product space

QN
sD1Xs WD

X1�X2�: : :�XN . For any subsetA � ŒN �, we define the subvectorXA WD .Xs; s 2
A/, corresponding to a random vector that takes values in the space XA DQ

s2AXs .
We use the notation xA WD .xs; s 2 A/ to refer to a particular element of the
space XA. With this convention, note that XŒN � is shorthand notation for the full
Cartesian product

QN
sD1Xs . Given three disjoint subsets A;B;C of ŒN �, we use

XA ?? XB j XC to mean that the random vector XA is conditionally independent
of XB given XC . When C is the empty set, then this notion reduces to marginal
independence between the random vectors XA and XB .

2.1 Directed Graphical Models

We begin our discussion with directed graphical models, which (not surprisingly)
are based on the formalism of directed graphs. In particular, a directed graph

D D .V;�!E / consists of a vertex set V D f1; : : : ; N g and a collection
�!
E of directed

pairs .s ! t/, meaning that s is connected by an edge directed to t . When there
exists a directed edge .t ! s/ 2 E, we say that node s is a child of node t , and
conversely that node t is a parent of node s. We use �.s/ to denote the set of all
parents of node s (which might be an empty set). A directed cycle is a sequence

of vertices .s1; s2; : : : ; s`/ such that .s` ! s1/ 2 �!E , and .sj ! sjC1/ 2 �!E for all
j D 1; : : : ; `�1. A directed acyclic graph, or DAG for short, is a directed graph that
contains no directed cycles. As an illustration, the graphs in panels (a) and (b) are
both DAGs, whereas the graph in panel (c) is not a DAG, since it contains (among
others) a directed cycle on the three vertices f1; 2; 5g.

Any mapping � W ŒN � ! ŒN � defines an ordering of the vertex set
V D f1; 2; : : : ; N g, and of interest to us are particular orderings.
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Definition 1 The ordering f�.1/; : : : ; �.N /g of the vertex set V of a DAG is
topological if for each s 2 V, we have �.t/ < �.s/ for all t 2 �.s/.

Alternatively stated, in a topological ordering, children always come after their
parents. It is an elementary fact of graph theory that any DAG has at least one
topological ordering, and this fact plays an important role in our analysis of directed
graphical models. So as to simplify our presentation, we assume throughout these
notes that the canonical ordering V D f1; 2; : : : ; N g is topological. Note that this
assumption entails no loss of generality, since we can always re-index the vertices
so that it holds. With this choice of topological ordering, vertex 1 cannot have any
parents (i.e., �.1/ D ;), and moreover vertex N cannot have any children.

With this set-up, we are now ready to introduce probabilistic notions into
the picture. A directed graphical model is a family of probability distributions
defined by a DAG. This family is built by associating each node s of a DAG
with a random variable Xs , and requiring the joint probability distribution over
.X1; : : : ; XN / factorize according to the DAG. Consider the subset of vertices
.s; �.s// corresponding to a given vertex s and its parents �.s/. We may associate
with this subset a real-valued function fs W Xs � X�.s/ ! RC that maps any given
configuration .xs; x�.s// 2 Xs�X�.s/ to a real number fs.xs; x�.s// � 0. We assume
moreover that fs satisfies the normalization condition

X

xs

fs.xs; x�.s// D 1 for all x�.s/ 2 X�.s/. (1)

Definition 2 (Factorization for Directed Graphical Models) The directed
graphical model based on a given DAG D is the collection of probability
distributions over the random vector .X1; : : : ; XN / that have a factorization
of the form

p.x1; : : : ; xN / D 1

Z

NY

sD1
fs.xs; x�.s//; (2)

for some choice of non-negative parent-to-child functions .f1; : : : ; fN / that
satisfy the normalization condition (1). We use FFac.D/ to denote the set of
all distributions that factorize in the form (2).

In the factorization (2), the quantity Z denotes a constant chosen to ensure that p
sums to one.
Let us illustrate this definition with some examples.
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Fig. 1 (a) The simplest example of a DAG is a chain, which underlies the familiar Markov chain.
The canonical ordering f1; 2; : : : ; N g is the only topological one. (b) A more complicated DAG.
Here the canonical ordering f1; 2; : : : ; 7g is again topological, but it is no longer unique: for
instance, f1; 4; 2; 3; 5; 7; 6g is also topological. (c) A directed graph with cycles (non-DAG). It
contains (among others) a directed cycle on vertices f1; 2; 5g

Example 1 (Markov Chain as a Directed Graphical Model) Perhaps the simplest
example of a directed acyclic graph is the chain on N nodes, as shown in panel
(a) of Fig. 1. Such a graph underlies the stochastic process .X1; : : : ; XN / known
as a Markov chain, used to model various types of sequential dependencies. By
definition, any Markov chain can be factorized in the form

p.x1; : : : ; xN / D p.x1/ p.x2 j x1/ p.x3 j x2/ � � �p.xN j xN�1/: (3)

Note that this is a special case of the factorization (2), based on the functions
fs.xs; x�.s// D p.xs j xs�1/ for each s D 2; : : : ; N , and f1.x1; x�.1// D p.x1/.

|
We now turn to a more complex DAG.

Example 2 (Another DAG) Consider the DAG shown in Fig. 1b. It defines the
family of probability distributions that have a factorization of the form

p.x1; : : : ; x7/

/ f1.x1/f2.x2; x1/f3.x3; x1; x2/f4.x4; x1/f5.x5; x3; x4/f6.x6; x5/f7.x7; x5/:

for some collection of non-negative and suitably normalized functions ffs; s 2 Vg.
|

The factorization (3) of the classical Markov chain has an interesting property,
in that the normalization constant Z D 1, and all the local functions fs are equal
to conditional probability distributions. It is not immediately apparent whether or
not this property holds for the more complex DAG discussed in Example 2, but in
fact, as shown by the following result, it is a generic property of directed graphical
models.
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Proposition 1 For any directed acyclic graph D, any factorization of the
form factorization (2) with Z D 1 defines a valid probability distribution.
Moreover, we necessarily have fs.xs; x�.s// D p.xs j x�.s// for all s 2 V.

Proof Throughout the proof, we assume without loss of generality (re-indexing as
necessary) that f1; 2; : : : ; N g is a topological ordering. In order to prove this result,
it is convenient to first state an auxiliary result.

Lemma 1 For any distribution p of the form (2), we have

p.x1; : : : ; xt / D 1

Z

tY

sD1
fs.xs; x�.s// for each t D 1; : : : ; N . (4)

We first use this result to establish the main claims before returning to prove
it. If we apply Lemma 1 with t D 1, then we obtain that p.x1/ D f1.x1/=Z,
and hence that Z D 1 by the normalization condition on f1. Otherwise, for any
t 2 f2; : : : ; N g, applying the representation (4) to both t and t � 1 yields

p.x1; : : : ; xt /

p.x1; : : : ; xt�1/
D ft .xt ; x�.t// for all .x1; : : : ; xt /.

Since the right-hand side depends only on x�.t/, so must the left-hand side. When the
left-hand side depends only on x�.t/, then it is equal to the conditional p.xt j x�.t//,
and so we conclude that p.xt j x�.t// D ft .xt ; x�.t// as claimed.

It remains to prove Lemma 1. We may assume without loss of generality
(re-indexing as necessary) that f1; 2; : : : ; N g is a topological ordering. Conse-
quently, node N has no children, so that we may write

p.x1; : : : ; xN�1; xN / D 1

Z

� N�1Y

sD1
fs.xs; x�.s//

�

fN .xN ; x�.N//:

Marginalizing over xN yields that

p.x1; : : : ; xN�1/ D 1

Z

� N�1Y

sD1
f.xs; x�.s//

�� X

xN

fN .xN ; x�.N//

�

D 1

Z

N�1Y

sD1
fs.xs; x�.s//;
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where we have used the facts that xN appears only in one term (since N is a leaf
node), and that

P
xN
fN .xN ; x�.N// D 1. We have thus shown that if the claim

holds for t D N , then it holds for t D N � 1. By recursively applying this same
argument, the claim of Lemma 1 follows. ut

Proposition 1 shows that the terms fi in the factorization (2) have a concrete
interpretation as the child-parent conditional probabilities (i.e., fs.xs; x�.s// is equal
to the conditional probability of Xs D xs given that X�.s/ D x�.s/). This local
interpretability, which (as we will see) is not shared by the class of undirected
graphical models, has some important consequences. For instance, sampling a
configuration . QX1; : : : ; QXN/ from any DAG model is straightforward: assuming
the canonical topological ordering, we first sample QX1 � f1.�/, and then for
s D 2; : : : ; N , sample QXs � fs.�; QX�.s//. This procedure is well-specified: due to
the topological ordering, we are guaranteed that the variable QX�.s/ has been sampled
before we move on to sampling QXs . Moreover, by construction, the random vector
. QX1; : : : ; QXN/ is distributed according to the probability distribution (2).

2.1.1 Conditional Independence Properties for Directed Graphs

Thus far, we have specified a joint distribution over the random vector X D
.X1; : : : ; XN / in terms of a particular parent-to-child factorization. We now turn
to a different (but ultimately equivalent) characterization in terms of conditional
independence. (The reader should recall our standard notation for conditional
independence properties from the beginning of Sect. 2.) Throughout the discussion
to follow, we continue to assume that the canonical ordering f1; 2; : : : ; N g is
topological.

Given any vertex s 2 Vnf1g, our choice of topological ordering implies that the
parent set �.s/ is contained within the set f1; 2; : : : ; s � 1g. Note that for s D 1, the
parent set must be empty. We then define the set �.s/ D f1; 2; : : : ; s�1gn�.s/. Our
basic conditional independence properties are based on the three disjoint subsets
fsg, �.s/ and �.s/.

Definition 3 (Markov Property for Directed Graphical Models) The ran-
dom vector X D .X1; : : : ; XN / is Markov with respect to a directed graph
if

Xs ?? X�.s/ j X�.s/ for all s 2 V. (5)

We use FMar.D/ to denote the set of all distributions that are Markov with
respect to D.

Let us illustrate this definition with our running examples.
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Example 3 (Conditional Independence for Directed Markov Chain) Recall the
directed Markov chain first presented in Example 1. Each node s 2 f2; : : : ; N g has a
unique parent �.s/ D s� 1, so that the (non-trivial) basic conditional properties are
of the form Xs ?? .X1; : : : ; Xs�2/ j Xs�1 for s 2 f3; : : : ; N g. Note that these
basic conditional independence statements imply other (non-basic) properties as
well. Perhaps the most familiar is the assertion that

.Xs;XsC1; : : : ; XN / ?? .X1; : : : ; Xs�2/ j Xs�1 for all s 2 f3; : : : ; N g;

corresponding the fact that the past and future of a Markov chain are conditionally
independent given the present (Xs�1 in this case). |
As a second example, let us now return to the DAG shown in Fig. 1b.

Example 4 (Conditional Independence for a More Complex DAG) For this DAG,
the basic conditional independence assertions (using the canonical ordering) can
again be read off from the graph. In particular, the non-trivial relations are X3 ??
X1 j X2, X5 ?? .X1;X2/ j .X3;X4/, as well as

X6 ?? .X1;X2;X3;X4/ j X5; and X7 ?? .X1;X2;X3;X4;X6/ j X5:

|

2.1.2 Equivalence of Representations

For any directed graph D, we have now defined two families of probability
distributions: the family FFac.D/ of all distributions with a factorization of the
form (2), and the family FMar.D/ of all distributions that satisfy the basic Markov
properties (5). It is natural to ask how these two families are related; pleasingly, they
are equivalent, as shown in the following result.

Theorem 1 (Equivalence for Directed Graphical Models) For any
directed acyclic graph D, we have FFac.D/ D FMar.D/.

Proof The proof of this result is straightforward given our development thus far. We
begin with the inclusion FMar.D/ � FFac.D/. From Lemma 1 used in the proof of
Proposition 1, for any vertex t 2 V, we have

p.x1; : : : ; xt / D
tY

sD1
p.xs j x�.s// D

t�1Y

sD1
p.xs j x�.s// p.xt j x�.t//

D p.x1; : : : ; xt�1/ p.xt j x�.t//:
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By the definition of �.t/, we have f1; : : : ; t � 1g D �.t/ [ �.t/, and consequently
we can write

p.x�.t/; x�.t/; xt /

p.x�.t//
D p.x�.t/; x�.t//

p.x�.t//
p.xt j x�.t// D p.x�.t/ j x�.t// p.xt j x�.t//;

which shows that Xt ?? X�.t/ j X�.t/.
In order to establish the reverse inclusion, suppose that the basic Markov

properties hold, where we are still using f1; 2; : : : ; N g as our topological ordering.
Using the chain rule for probability, we have

p.x1; : : : ; xN / D p.x1/
NY

sD2
p.xt j x1; : : : ; xt�1/

.i/D p.x1/
NY

sD2
p.xt j x�.t//;

where equality (i) follows by applying the Markov properties. ut

2.2 Undirected Graphical Models

We now turn to discussion of undirected graphical models, which are also known as
Markov random fields or Gibbs distributions. Naturally, these models are built using
an undirected graphs, by which we mean a pair G D .V;E/, whereV D f1; : : : ; N g
is the vertex set (as before), and E is a collection of undirected edges, meaning that
there is no distinction between the edge .s; t/ and the edge .t; s/. As before, we
associate a random variable Xs with each vertex s 2 V of graph, and our interest is
in characterizing the joint distribution of the random vector X D .X1; : : : ; XN /.

As with directed graphical models, there are two different ways in which the
probabilistic structure of the random vector X can be linked to the graphical
structure: factorization and conditional independence properties. Let us begin our
exploration with the former property.

2.2.1 Factorization for Undirected Models

For undirected graphical models, the factorization properties are specified in terms
of cliques of the graph. A clique C of an undirected graph G is a fully connected
subset C of the vertex set V (i.e., .s; t/ 2 E for all s; t 2 C ). A clique is maximal
if it is not contained within any other clique. Thus, any singleton set fsg is always a
clique, but it is not maximal unless s has no neighbors in the graph. See Fig. 2a for
an illustration of some other types of cliques.
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Fig. 2 (a) Illustration of cliques in an undirected graph. Sets A D f1; 2; 3g and B D f3; 4; 5g
are 3-cliques, whereas sets C D f4; 6g and D D f5; 7g are 2-cliques (that can be identified with
edges). (b) Illustration of a vertex cutset: removal of the vertices in S breaks the graph into the
separate pieces indexed by subsets A and B

Given an undirected graph, we use C to denote the set of all its cliques. With each
clique C 2 C, we associate a compatibility function  C W XC ! RC: it assigns a
non-negative number  C .xC / to each possible configuration xC D .xs; s 2 C/ 2
XC . The factorization property for an undirected graphical model is stated in terms
of these compatibility functions.

Definition 4 (Factorization for Undirected Graphical Models) A proba-
bility distribution p factorizes over the graph G if

p.x1; : : : ; xN / D 1

Z

Y

C2C
 C .xC /; (6)

for some choice of non-negative compatibility function  C W XC ! RC for
each clique C 2 C. We use FFac.G/ to denote the set of all distributions that
have a factorization of the form (6).

As before, the quantity Z is a constant chosen to ensure that the distribution is
appropriately normalized. (In contrast to the directed case, we cannot take Z D 1

in general.) Note that there is a great deal of freedom in the factorization (6);
in particular, in the way that we have written it, there is no unique choice of
the compatibility functions and the normalization constant Z. For instance, if we
multiply any compatibility function by some constant ˛ > 0 and do the same to Z,
we obtain the same distribution.
Let us illustrate these definitions with some examples.

Example 5 (Markov Chain as an Undirected Graphical Model) Suppose that we
remove the arrows from the edges of the chain graph shown in Fig. 1a; we
then obtain an undirected chain. Any distribution that factorizes according to this
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undirected chain has the form

p.x1; : : : ; x5/ D 1

Z

5Y

sD1
 s.xs/  12.x1; x2/  12.x1; x2/  12.x1; x2/  12.x1; x2/

(7)

for some choice of non-negative compatibility functions. Unlike the directed case,
in general, these compatibility functions are not equal to conditional distributions,
nor to marginal distributions. Moreover, we have no guarantee that Z D 1 in
this undirected representation of a Markov chain. The factorization (7) makes use
of both maximal cliques (edges) and non-maximal cliques (singletons). Without
loss of generality, we can always restrict to only edge-based factors. However, for
applications, it is often convenient, for the purposes of interpretability, to include
both types of compatibility functions. |
Example 6 As a second example, consider the undirected graph shown in Fig. 2a.
Any distribution that respects its clique structure has the factorization

p.x1; : : : ; x7/ D 1

Z
 123.x1; x2; x3/  345.x3; x4; x5/  4:6.x4; x6/  57.x5; x7/;

for some choice of non-negative compatibility functions. In this case, we have
restricted our factorization to the maximal cliques of the graph. |

2.2.2 Markov Property for Undirected Models

We now turn to the second way in which graph structure can be related to
probabilistic structure, namely via conditional independence properties. In the case
of undirected graphs, these conditional independence properties are specified in
terms of vertex cutsets of the graph. A vertex cutset is a subset S of the vertex
set V such that, when it is removed from the graph, breaks the graph into two or
more disconnected subsets of vertices. For instance, as shown in Fig. 2b, removing
the subset S of vertices breaks the graph into two disconnected components, as
indexed by the vertices inA andB respectively. For an undirected graph, the Markov
property is defined by these vertex cutsets:

Definition 5 (Markov Property for Undirected Graphical Models) A ran-
dom vector .X1; : : : ; XN / is Markov with respect to an undirected graph G if,
for all vertex cutsets S and associated components A and B , the conditional
independence condition XA ?? XB j XC holds. We use FMar.G/ to denote
the set of all distributions that satisfy all such Markov properties defined
by G.
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For example, for any vertex s, its neighborhood set

N.s/ WD ft 2 V j .s; t/ 2 Eg (8)

is always a vertex cutset. Consequently, any distribution that is Markov with respect
to an undirected graph satisfies the conditional independence relations

Xs ?? XVnfsg[N.s/ j XN.s/: (9)

The set of variables XN.s/ D .Xt ; t 2 N.s/g is often referred to as the Markov
blanket of Xs, since it is the minimal subset required to render Xs conditionally
independent of all other variables in the graph. This particular Markov property
plays an important role in pseudolikelihood estimation of parameters [11], as well
as related approaches for graphical model selection by neighborhood regression (see
the papers [48, 52] for further details).
Let us illustrate with some additional concrete examples.

Example 7 (Conditional Independence for a Markov Chain) Recall from Exam-
ple 5 the view of a Markov chain as an undirected graphical model. For this chain
graph, the minimal vertex cutsets are singletons, with the non-trivial ones being the
subsets fsg for s 2 f2; : : : ; N � 1g. Each such vertex cutset induces the familiar
conditional independence relation

.X1; : : : ; Xs�1/„ ƒ‚ …
Past

?? .XsC1; : : : ; XN /„ ƒ‚ …
Future

j Xs„ƒ‚…
Present

; (10)

corresponding to the fact that the past and future of a Markov chain are conditionally
independent given the present. |
Example 8 (More Markov Properties) Consider the undirected graph shown in
Fig. 2b. As previously discussed, the set S is a vertex cutset, and hence it induces
the conditional independence propertyXA ?? XB j XS . |

2.2.3 Hammersley-Clifford Equivalence

As in the directed case, we have now specified two ways in which graph structure
can be linked to probabilistic structure. This section is devoted to a classical result
that establishes a certain equivalence between factorization and Markov properties,
meaning the two families of distributions FFac.G/ and FMar.G/ respectively. For
strictly positive distributions p, this equivalence is complete.
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Theorem 2 (Hammersley-Clifford) If the distribution p of random vector
X D .X1; : : : ; XN / factorizes over a graph G, then X is Markov with respect
to G. Conversely, if a random vector X is Markov with respect to G and
p.x/ > 0 for all x 2 XŒN �, then p factorizes over the graph.

Proof We begin by proving that FFac.G/ � FMar.G/. Suppose that the factoriza-
tion (6) holds, and let S be an arbitrary vertex cutset of the graph such that subsets
A and B are separated by S . We may assume without loss of generality that both
A and B are non-empty, and we need to show that XA ?? XB j XS . Let us define
subsets of cliques by CA WD fC 2 C j C \A ¤ ;g, CB WD fC 2 C j C \B ¤ ;g,
and CS WD fC 2 C j C � Sg. We claim that these three subsets form a disjoint
partition of the full clique set—namely, C D CA[CS [CB . Given any clique C , it is
either contained entirely within S , or must have non-trivial intersection with either
A or B , which proves the union property. To establish disjointness, it is immediate
that CS is disjoint from CA and CB . On the other hand, if there were some clique
C 2 CA \ CB , then there would exist nodes a 2 A and b 2 B with fa; bg 2 C ,
which contradicts the fact that A and B are separated by the cutset S .

Consequently, we may write

p.xA; xS ; xB/ D 1

Z

� Y

C2CA
 C .xC /

�

„ ƒ‚ …

� Y

C2CS
 C .xC /

�

„ ƒ‚ …

� Y

C2CB
 C .xC /

�

„ ƒ‚ …

:

�A.xA; xS / �S.xS / �B.xB; xS /

Defining the quantities

ZA.xS/ WD
X

xA

�A.xA; xS /; and ZB.xS/ WD
X

xB

�B.xB; xS /;

we then obtain the following expressions for the marginal distributions of interest

p.xS/DZA.xS/ ZB.xS/
Z

�S.xS/ and p.xA; xS /DZB.xS/
Z

�A.xA; xS / �S.xS /;

with a similar expression for p.xB; xS /. Consequently, for any xS for which
p.xS/ > 0, we may write

p.xA; xS ; xB/

p.xS/
D

1
Z
�A.xA; xS /�S.xS /�B.xB; xS /

ZA.xS / ZB .xS /

Z
�S.xS /

D �A.xA; xS /�B.xB; xS /

ZA.xS/ ZB.xS /
: (11)
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Similar calculations yield the relations

p.xA; xS /

p.xS/
D

ZB.xS /

Z
�A.xA; xS / �S.xS /

ZA.xS /ZB .xS /

Z
�S.xS /

D �A.xA; xS /

ZA.xS /
; and (12a)

p.xB; xS /

p.xS/
D

ZA.xS /

Z
�B.xB; xS / �S.xS /

ZA.xS /ZB.xS /

Z
�S.xS /

D �B.xB; xS /

ZB.xS/
: (12b)

Combining Eq. (11) with Eqs. (12a) and (12b) yields

p.xA; xB j xS/ D p.xA; xB; xS /

p.xS/
D p.xA; xS /

p.xS/

p.xB; xS /

p.xS/

D p.xA j xS/ p.xB j xS/;

thereby showing that XA ?? XB j XS , as claimed.
In order to prove the opposite inclusion—namely, that the Markov property for a

strictly positive distribution implies the factorization property—we require a version
of the inclusion-exclusion formula. Given a set ŒN � D f1; 2; : : : ; N g, let P.ŒN �/ be
its power set, meaning the set of all subsets of ŒN �. With this notation, the following
inclusion-exclusion formula is classical:

Lemma 2 (Inclusion-Exclusion) For any two real-valued functions � and
˚ defined on the power set P.ŒN �/, the following statements are equivalent:

˚.A/ D
X

B�A
.�1/jAnBj�.B/ for all A 2 P.ŒN �/. (13a)

�.A/ D
X

B�A
˚.B/ for all A 2 P.ŒN �/. (13b)

Proofs of this result can be found in standard texts in combinatorics (e.g., [61]).
Returning to the main thread, let y 2 XŒN � be some fixed element, and for each
subset A 2 P.ŒN �/, define the function � W XŒN � ! R via

�A.x/ WD
X

B�A
.�1/jAnBj log

p.xB; yBc /

p.y/
: (14)

(Note that taking logarithms is meaningful since we have assumed p.x/ > 0 for
all x 2 XŒN �.) From the inclusion-exclusion formula, we have log p.xA;yAc /

p.y/
D
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P
B�A �B.x/, and setting A D ŒN � yields

p.x/ D p.y/ exp
˚ X

B2P.ŒN �/�
�B.x/

�
: (15)

From the definition (14), we see that �A is a function only of xA. In order to
complete the proof, it remains to show that �A D 0 for any subset A that is not a
graph clique. As an intermediate result, we claim that for any t 2 A, we can write

�A.x/ D
X

B�Anftg
.�1/jA�Bj log

p.xt j xB; yBcnftg/
p.yt j xB; yBcnftg/

: (16)

To establish this claim, we write

�A.x/ D
X

B�A
B�t

.�1/jAnBj log
p.xB; yBc /

p.y/
C

X

B�A
B3t

.�1/jAnBj log
p.xB; yBc /

p.y/

D
X

B�Anftg
.�1/jAnBj

�

log
p.xB; yBc /

p.y/
� log

p.xB[t ; yBcnftg/
p.y/

�

D
X

B�Anftg
.�1/jAnBj log

p.xB; yBc /

p.xB[t ; yBcnftg/
(17)

Note that for any B � Anftg, we are guaranteed that t … B , whence

p.xB; yBc /

p.xB[t ; yBcnftg/
D p.yt j xB; yBcnftg/
p.xt j xB; yBcnftg/

:

Substituting into Eq. (17) yields the claim (16).
We can now conclude the proof. If A is not a clique, then there must some exist

some pair .s; t/ of vertices not joined by an edge. Using the representation (16), we
can write �A as a sum of four terms (i.e., �A DP4

iD1 Ti ), where

T1.x/ D
X

B�Anfs;tg
.�1/jAnBj logp.yt j xB; yBcnftg/;

T2.x/ D
X

B�Anfs;tg
.�1/jAn.B[ftg/j logp.xt j xB; yBcnftg/

T3.x/ D
X

B�Anfs;tg
.�1/jAn.B[fsg/j logp.yt j xB[fsg; yBcnfs;tg/; and

T4.x/ D
X

B�Anfs;tg
.�1/jAn.B[fs;tg/j logp.xt j xB[fsg; yBcnfs;tg/:
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Combining these separate terms, we obtain

�A.x/ D
X

B�Anfs;tg
.�1/jAnBj log

p.yt j xB; yBcnftg/p.xt j xB[fsg; yBcnfs;tg/
p.xt j xB; yBcnftg/p.yt j xB[fsg; yBcnfs;tg/

:

But using the Markov properties of the graph, each term in this sum is zero. Indeed,
since s … N.t/, we have

p.xt j xB; yBcnftg/ D p.xt j xB[fsg; yBcnfs;tg/; and

p.yt j xB; yBcnftg/ D p.yt j xB[fsg; yBcnfs;tg/;

which completes the proof. ut

2.2.4 Factor Graphs

For large graphs, the factorization properties of a graphical model, whether undi-
rected or directed, may be difficult to visualize from the usual depictions of graphs.
The formalism of factor graphs provides an alternative graphical representation, one
which emphasizes the factorization of the distribution [43, 46].

Let F represent an index set for the set of factors defining a graphical model
distribution. In the undirected case, this set indexes the collection C of cliques,
while in the directed case F indexes the set of parent–child neighborhoods. We
then consider a bipartite graph G D .V;F ;E/, in which V is (as before) an index
set for the variables, and F is an index set for the factors. Given the bipartite nature
of the graph, the edge set E now consists of pairs .s; a/ of nodes s 2 V such that the
fact a 2 N.s/, or equivalently such that a 2 N.s/. See Fig. 3b for an illustration.

1
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4

5

6

7 1

2

3

4

5

6

7

a

b

c

Fig. 3 Illustration of undirected graphical models and factor graphs. (a) An undirected graph on
N D 7 vertices, with maximal cliques f1; 2; 3; 4g, f4; 5; 6g and f6; 7g. (b) Equivalent represen-
tation of the undirected graph in (a) as a factor graph, assuming that we define compatibility
functions only on the maximal cliques in (a). The factor graph is a bipartite graph with vertex
set V D f1; : : : ; 7g and factor set F D fa; b; cg, one for each of the compatibility functions of
the original undirected graph
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3
3

1 2
a b c

1 2 1 2

3

Fig. 4 (a) A three-vertex cycle graph that can be used to represent any distribution over three
random variables. (b) Factor graph representation of the pairwise model (19). (c) Factor graph
representation of the triplet interaction model

For undirected models, the factor graph representation is of particular value
when C consists of more than the maximal cliques. Indeed, the compatibility
functions for the nonmaximal cliques do not have an explicit representation in the
usual representation of an undirected graph—however, the factor graph makes them
explicit. This explicitness can be useful in resolving certain ambiguities that arise
with the standard formalism of undirected graphs. As one illustration, consider the
three-vertex cycle shown in Fig. 4a. Two possible factorizations that are consistent
with this graph structure are the pairwise-only factorization

p.x1; x2; x3/ D 1

Z
 12.x1; x2/  23.x2; x3/  13.x1; x3/; (18)

which involves only the non-maximal pairwise cliques, versus the generic triplet
factorization p.x1; x2; x3/ D 1

Z0
 123.x1; x2; x3/. The undirected graph in panel

(a) does not distinguish between these two possibilities. In contrast, the factor
graph representations of these two models are distinct, as shown in panels (b) and
(c) respectively. This distinction between the pairwise and triplet factorization is
important in many applications, for instance when testing for the presence of ternary
interactions between different factors underlying a particular disease.

3 Exact Algorithms for Marginals, Likelihoods and Modes

In applications of graphical models, one is typically interested in solving one of
a core set of computational problems. One example is the problem of likelihood
computation, which arises in parameter estimation and hypothesis testing with
graphical models. A closely related problem is that of computing the marginal
distribution p.xA/ over a particular subsetA � V of nodes, or similarly, computing
the conditional distribution p.xA j xB/, for disjoint subsets A and B of the vertex
set. This marginalization problem is needed to in order to perform filtering or
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smoothing of time series (for chain-structured graphs), or the analogous operations
for more general graphical models. A third problem is that of mode computation,
in which the goal is to find a configuration Ox 2 XŒN � of highest probability—that
is, Ox 2 maxx2XŒN � p.x/. In typical applications, some subset of the variables are
observed, so these computations are often performed for conditional distributions,
with the observed values fixed. It is straightforward to incorporate observed values
into the algorithms that we discuss in this section.

At first sight, these problems—likelihood computation, marginalization and
mode computation—might seem quite simple and indeed, for small graphical
models (e.g.,N 	 10–20), they can be solved directly with brute force approaches.
However, many applications involve graphs with thousands (if not millions) of
nodes, and the computational complexity of brute force approaches scales very
poorly in the graph size. More concretely, let us consider the case of a discrete
random vector .X1; : : : ; XN / 2 XŒN � such that, for each node s 2 V, the random
variableXs takes values in the state space Xs D f0; 1; : : : ; m�1g. A naive approach
to computing a marginal at a single node—say p.xs/—entails summing over all
configurations of the form fx0 2 Xm j x0

s D xsg. Since this set has mN�1 elements,
it is clear that a brute force approach will rapidly become intractable. Given a graph
with N D 100 vertices (a relatively small problem) and binary variables (m D 2),
the number of terms is 299, which is already larger than estimates of the number of
atoms in the universe. This is a vivid manifestation of the “curse-of-dimensionality”
in a computational sense.

A similar curse applies to the problem of mode computation for discrete random
vectors, since it is equivalent to solving an integer programming problem. Indeed,
the mode computation problem for Markov random fields includes many well-
known instances of NP-complete problems (e.g., 3-SAT, MAX-CUT etc.) as special
cases. Unfortunately, for continuous random vectors, the problems are no easier
and typically harder, since the marginalization problem involves computing a high-
dimensional integral, whereas mode computation corresponds to a generic (possibly
non-convex) optimization problem. An important exception to this statement is the
Gaussian case where the problems of both marginalization and mode computation
can be solved in polynomial-time for any graph (via matrix inversion), and in linear-
time for tree-structured graphs via the Kalman filter.

In the following sections, we develop various approaches to these computational
inference problems, beginning with discussion of a relatively naive but pedagog-
ically useful scheme known as elimination, then moving onto more sophisticated
message-passing algorithms, and culminating in our derivation of the junction tree
algorithm.
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3.1 Elimination Algorithm

We begin with an exact but relatively naive method known as the elimination algo-
rithm. It operates on an undirected graphical model equipped with a factorization of
the form

p.x1; : : : ; xN / D 1

Z

Y

C2C
 C .xC /:

As input to the elimination algorithm, we provide it with a target vertex T 2 V
(or more generally a target subset of vertices), an elimination ordering I, meaning
an ordering of the vertex set V such that the target T appears first; as well as the
collection of compatibility functions f C ;C 2 Cg defining the factorization (6). As
output, the elimination algorithm returns the marginal distribution p.xT / over the
variables xT at the target vertices.

Elimination Algorithm for Marginalization

1. Initialization:

(a) Initialize active set of compatibility functions A D f C ;C 2 Cg.
(b) Initialize elimination ordering I (with the target vertex T appearing

first).

2. Elimination: while card.I/ > card.T /:

(a) Activate last vertex s on the current elimination order:
(b) Form product

�.xs; xN.s// D
Y

 C involving xs

 C .xC /;

where N.s/ indexes all variables that share active factors with s.
(c) Compute partial sum:

Q�N.s/.xN.s// D
X

xs

�.xs; xN.s//;

and remove all f C g that involve xs from active list.
(d) Add Q�N.s/ to active list, and remove s from index set I.

(continued)
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3. Termination: when I D fT g, form the product �T .xT / of all remaining
functions in A, and then compute

Z D
X

xT

�T .xT / and p.xT / D �T .xT /

Z
:

We note that in addition to returning the marginal distribution p.xT /, the algorithm
also returns the normalization constant Z. The elimination algorithm is best
understood in application to a particular undirected graph.

Example 9 (Elimination in Action) Consider the 7-vertex undirected graph shown
in Fig. 2a. As discussed in Example 6, it induces factorizations of the form

p.x1; : : : ; x7/ /  123.x1; x2; x3/  345.x3; x4; x5/  46.x4; x6/  57.x5; x7/;

Suppose that our goal is to compute the marginal distribution p.x5/. In order to do
so, we initialize the elimination algorithm with T D 5, the elimination ordering
I D f5; 4; 2; 3; 1; 6; 7g, and the active set A D f 123;  345;  46;  57g.
Eliminating x7: At the first step, s D 7 becomes the active vertex. Since  57

is the only function involving x7, we form �.x5; x7/ D  57.x5; x7/, and then
compute the partial sum Q�5.x5/ DP

x7
 57.x5; x7/. We then form the new active

set A D f 123;  345;  46; Q�5g.
Eliminating x6: This phase is very similar. We compute the partial sum Q�4.x4/ DP

x6
 46.x4; x6/, and end up with the new active set A D f 123;  345; Q�5; Q�4g.

Eliminating x1: We compute Q�23.x2; x3/ D P
x1
 123.x1; x2; x3/, and conclude

with the new active set A D f Q�23;  345; Q�5; Q�4g.
Eliminating x3: In this phase, we first form the product �2345.x2; x3; x4; x5/ DQ�23.x2; x3/ 345.x3; x4; x5/, and then compute the partial sum

Q�245.x2; x4; x5/ D
X

x2

�2345.x2; x3; x4; x5/:

We end up with the active set A D f Q�245; Q�5; Q�4g.
Eliminating x2: The output of this phase is the active set A D f Q�45; Q�5; Q�4g,

where Q�45 is obtained by summing out x2 from Q�245.
Eliminating x4: We form the product �45.x4; x5/ D Q�4.x4/ Q�45.x4; x5/, and then

the partial sum O�.x5/ D P
x4
�45.x4; x5/. We conclude with the active set A D

f Q�5; O�5g.
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After these steps, the index set I has been reduced to the target vertex T D 5. In the
final step, we form the product �5.x5/ D Q�5.x5/ O�5.x5/, and then re-normalize it to
sum to one. |

A few easy extensions of the elimination algorithm are important to note.
Although we have described it in application to an undirected graphical model, a
simple pre-processing step allows it to be applied to any directed graphical model as
well. More precisely, any directed graphical model can be converted to an undirected
graphical model via the following steps:

• remove directions from all the edges
• “moralize” the graph by adding undirected edges between all parents of a given

vertex—that is, in detail

for all s 2 V, and for all t; u 2 �.s/, add the edge .t; u/.

• the added edges yield cliques C D .s; �.s//; on each such clique, define the
compatibility function  C .xC / D p.xs j x�.s//.

Applying this procedure yields an undirected graphical model to which the elimina-
tion algorithm can be applied.

A second extension concerns the computation of conditional distributions. In
applications, it is frequently the case that some subset of the variables are observed,
and our goal is to compute a conditional distribution of XT given these observed
variables. More precisely, suppose that we wish to compute a conditional probability
of the form p.xT j NxO/ where O � V are indices of the observed values XO D NxO.
In order to do so, it suffices to compute a marginal of the form p.xT ; NxO/. This
marginal can be computed by adding binary indicator functions to the active set
given as input to the elimination algorithm. In particular, for each s 2 O, let I sI Nxs .xs/
be a zero-one indicator for the event fxs D Nxsg. We then provide the elimination
algorithm with the initial active set A D f C ;C 2 Cg [ fI s; Nxs ; s 2 Og, so that it
computes marginals for the modified distribution

q.x1; : : : ; xN / /
Y

C2C
 C .xC /

Y

s2O
I s Nxs .xs/;

in which q.x/ D 0 for all configurations xO ¤ NxO. The output of the elimination
algorithm can also be used to compute the likelihood p. NxO/ of the observed data.

3.1.1 Graph-Theoretic Versus Analytical Elimination

Up to now, we have described the elimination algorithm in an analytical form. It
can also be viewed from a graph-theoretic perspective, namely as an algorithm
that eliminates vertices, but adds edges as it does so. In particular, during the
elimination step, the graph-theoretic version removes the active vertex s from the
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current elimination order (as well as all edges involving s), but then adds an edge
for each pair of vertices .t; u/ that were connected to s in the current elimination
graph. These adjacent vertices define the neighborhood set N.s/ used in Step 2(c)
of the algorithm. This dual perspective—the analytical and graph-theoretic—is best
illustrated by considering another concrete example.

Example 10 (Graph-Theoretic Versus Analytical Elimination) Consider the 3 � 3
grid-structured graph shown in panel (a) of Fig. 5. Given a probability distribution
that is Markov with respect to this grid, suppose that we want to compute the
marginal distribution p.x5/, so that the target vertex is T D 5. In order to do so, we
initialize the elimination algorithm using the ordering I D f5; 2; 8; 6; 4; 1; 3; 7; 9g.
Panel (b) shows the graph obtained after eliminating vertex 9, now shown in dotted
lines to indicate that it has been removed. At the graph-theoretic level, we have
removed edges .8; 9/ and .6; 9/, and added edge .6; 9/. At the analytical level, we
have performed the summation over x9 to compute

Q�.x6; x8/ D
X

x9

 69.x6; x9/ 89.x8; x9/;
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Fig. 5 (a) A 3�3 grid graph in the plane. (b) Result of eliminating vertex 9. Dotted vertices/edges
indicate quantities that have been removed during elimination. (c) Remaining graph after having
eliminated vertices f1; 3; 7; 9g. (d) Resulting graph after eliminating vertex 4. (e) Elimination of
vertex 6. (f) Final reconstituted graph: original graph augmented with all edges added during the
elimination process
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and added it to the active list of compatibility functions. Notice how the new
function Q�68 depends only on the variables .x6; x8/, which are associated with the
edge .6; 8/ added at the graph-theoretic level. Panel (c) shows the result after having
eliminated vertices f1; 3; 7; 9g, in reverse order. Removal of the three vertices (in
addition to 9) has a symmetric effect on each corner of the graph. In panel (d), we
see the effect of eliminating vertex 4; in this case, we remove edges .4; 5/, .4; 2/,
and .4; 8/, and then add edge .2; 8/. At the analytical stage, this step will introduce
a new compatibility function of the form Q�258.x2; x5; x8/. Panel (e) shows the result
of removing vertex 6; no additional edges are added at this stage. Finally, panel
(f) shows the reconstituted graph QG, meaning the original graph plus all the edges
that were added during the elimination process. Note that the added edges have
increased the size of the maximal clique(s) to four; for instance, the set f2; 5; 6; 8g
is a maximal clique in the reconstituted graph. This reconstituted graph plays an
important role in our discussion of junction tree theory to follow. |

3.1.2 Complexity of Elimination

What is the computational complexity of the elimination algorithm? Let us do some
rough calculations in the discrete case, when Xs D f0; 1; : : : ; m� 1g for all vertices
s 2 V. Clearly, it involves at least a linear cost in the number of vertices N .
The other component is the cost of computing the partial sums Q� at each step.
Supposing that we are eliminating s, let N.s/ be the current set of its neighbors
in the elimination graph. For instance, in Fig. 5, when we eliminate vertex s D 4,
its current neighborhood set is N.4/ D f2; 5; 8g, and the function Q�258 at this
stage depends on .x2; x5; x8/. Computing Q�258 incurs a complexity of O.m4/, since
we need to perform a summation (over x4) involving m terms for each of the m3

possible instantiations of .x2; x5; x8/.
In general, then, the worst-case cost over all elimination steps will scale as

O.mjN.s/jC1/, where jN.s/j is the neighborhood size in the elimination graph when
eliminating s. It can be seen that the worst-case neighborhood size (plus one) is
equivalent to the size of the largest clique in the reconstituted graph. For instance, in
Fig. 5f, the largest cliques in the reconstituted graph have size 4, consistent with the
O.m4/ calculation from above. Putting together the pieces, we obtain a conservative
upper bound on the cost of the elimination algorithm—namely, O.mcN /, where c
is the size of the largest clique in the reconstituted graph.

A related point is that for any given target vertex T , there are many possible
instantiations of the elimination algorithm that can be used to compute the marginal
p.xT /. Remember that our only requirement is that T appear first in the ordering, so
that there are actually .N � 1/Š possible orderings of the remaining vertices. Which
ordering should be chosen? Based on our calculations above, in order to minimize
the computational cost, one desirable goal would be to minimize the size of the
largest clique in the reconstituted graph. In general, finding an optimal elimination
ordering of this type is computationally challenging; however, there exist a variety
of heuristics for choosing good orderings, as we discuss in Sect. 4.
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3.2 Message-Passing Algorithms on Trees

We now turn to discussion of message-passing algorithms for models based on
graphs without cycles, also known as trees. So as to highlight the essential ideas
in the derivation, we begin by deriving message-passing algorithms for trees with
only pairwise interactions, in which case the distribution has form

p.x1; : : : ; xN / D 1

Z

Y

s2V
 s.xs/

Y

.s;t /2E
 st .xs; xt /; (19)

where T D .V;E/ is a given tree, and f s; s 2 Vg and f st ; .s; t/ 2 Eg are
compatibility functions. For a tree, the elimination algorithm takes a very simple
form—assuming that the appropriate ordering is followed. Recall that a vertex in a
graph is called a leaf if it has degree one.

The key fact is that for any tree, it is always possible to choose an elimination
ordering I such that:

(a) The last vertex in I (first to be eliminated) is a leaf; and
(b) For each successive stage of the elimination algorithm, the last vertex in I

remains a leaf of the reduced graph.

This claim follows because any tree always has at least one leaf vertex [17], so that
the algorithm can be initialized in Step 1. Moreover, in removing a leaf vertex, the
elimination algorithm introduces no additional edges to the graph, so that it remains
a tree at each stage. Thus, we may apply the argument recursively, again choosing a
leaf vertex to continue the process. We refer to such an ordering as a leaf-exposing
ordering.

In computational terms, when eliminating leaf vertex s from the graph, the
algorithm marginalizes over xs , and then passes the result to its unique parent �.s/.
The result Q��.s/ of this intermediate computation is a function of x�.s/; following
standard notation used in presenting the sum-product algorithm, we can represent
it by a “message” of the form Ms!�.s/, where the subscript reflects the direction
in which the message is passed. Upon termination, the elimination algorithm will
return the marginal distribution p.xT / at the target vertex T 2 V; more specifically,
this marginal is specified in terms of the local compatibility function  T and the
incoming messages as follows:

p.xT / /  T .xT /
Y

s2N.r/
Ms!T .xT /:

Assuming that each variable takes at most m values (i.e., jXs j 
 m for all s 2 V),
the overall complexity of running the elimination algorithm for a given root vertex
scales as O.m2N /, since computing each message amounts to summingm numbers
a total ofm times, and there are O.N / rounds in the elimination order. Alternatively,
since the leaf-exposing ordering adds no new edges to the tree, the reconstituted
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graph is equivalent to the original tree. The maximal cliques in any tree are the
edges, hence of size two, so that the complexity estimate O.m2N / follows from our
discussion of the elimination algorithm.

3.2.1 Sum-Product Algorithm

In principle, by running the tree-based elimination algorithm N times—once for
each vertex acting as the target in the elimination ordering—we could compute
all singleton marginals in time O.m2N 2/. However, as the attentive reader might
suspect, such an approach is wasteful, since it neglects to consider that many of
the intermediate operations in the elimination algorithm would be shared between
different orderings. Herein lies the cleverness of the sum-product algorithm: it re-
uses these intermediate results in the appropriate way, and thereby reduces the
overall complexity of computing all singleton marginals to O.m2N /. In fact, as an
added bonus, without any added complexity, it also computes all pairwise marginal
distributions over variables .xs; xt / such that .s; t/ 2 E.

For each edge .s; t/ 2 E, the sum-product algorithm maintains two messages—
namely, Ms!t and Mt!s—corresponding to two possible directions of the edge.1

With this notation, the sum-product message-passing algorithm for discrete random
variables takes the following form:

Sum-Product Message-Passing Algorithm (Pairwise Tree):

1. At iteration k D 0:
For all .s; t/ 2 E, initialize messages

M0
t!s.xs/ D 1 for all xs 2 Xs and M0

s!t .xt / D 1 for all xt 2 Xt .

2. For iterations k D 1; 2; : : ::
(i) For each .t; s/ 2 E, update messages:

Mk
t!s.xs/ ˛

X

x0t

�

 st .xs; x
0
t /  t .x

0
t /

Y

u2N.t/=s
M k�1

u!t .x
0
t /

�

; (20)

where ˛ > 0 chosen such that
P

xs
M k
s!s.xs/ D 1.

(continued)

1Recall that the message Ms!t is a vector of jXt j numbers, one for each value xs 2 Xt .
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(ii) Upon convergence, compute marginal distributions:

p.xs/ D ˛s  s.xs/
Y

t2N.s/
Mt!s.xs/; and (21a)

pst .xs; xt / D ˛st  st .xs; xt /
Y

u2N.s/nftg
Mu!s.xs/

Y

u2N.t/nfsg
Mu!t .xt /;

(21b)

where ˛s > 0 and ˛st > 0 are normalization constants (to ensure that
the marginals sum to one).

The initialization given in Step 1 is the standard “uniform” one; it can be seen
that the final output of the algorithm will be same for any initialization of the
messages that has strictly positive components. As with our previous discussion
of the elimination algorithm, we have stated a form of message-passing updates
suitable for discrete random variables, involving finite summations. For continuous
random variables, we simply need to replace the summations in the message
update (20) with integrals. For instance, in the case of a Gauss-Markov chain, we
obtain the Kalman filter as a special case of the sum-product updates.

There are various ways in which the order of message-passing can be scheduled.
The simplest to describe, albeit not the most efficient, is the flooding schedule,
in which every message is updated during every round of the algorithm. Since
each edge is associated with two messages—one for each direction—this protocol
involves updating 2jEj messages per iteration. The flooding schedule is especially
well-suited to parallel implementations of the sum-product algorithm, such as on a
digital chip or field programmable gate array, in which a single processing unit can
be devoted to each vertex of the graph.

In terms of minimizing the total number of messages that are passed, a more
efficient scheduling protocol is based on the following rule: any given vertex s
updates the message Ms!t to its neighbor t 2 N.s/ only after it has received
messages from all its other neighbors u 2 N.s/nftg. In order to see that this protocol
will both start and terminate, note that any tree has at least one leaf vertex. All leaf
vertices will pass a message to their single neighbor at round 1. As in the elimination
algorithm, we can then remove these vertices from further consideration, yielding
a sub-tree of the original tree, which also has at least one leaf node. Again, we see
that a recursive leaf-stripping argument will guarantee termination of the algorithm.
Upon termination, a total of 2jEj messages have been passed over all iterations, as
opposed to per iteration in the flooding schedule.
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Regardless of the particular message-update schedule used, the following result
states the convergence and correctness guarantees associated with the sum-product
algorithm on a tree:

Proposition 2 For any tree T with diameter d.T /, the sum-product updates
have a unique fixed point M �. The algorithm converges to it after at most
d.T / iterations, and the marginals obtained by Eqs. (21a) and (21b) are
exact.

Proof We proceed via induction on the number of vertices. For N D 1, the claim
is trivial. Now assume that the claim holds for all trees with at most N � 1 vertices,
and let us show that it also holds for any tree with N vertices. It is an elementary
fact of graph theory [17] that any tree has at least one leaf node. By re-indexing
as necessary, we may assume that node N is a leaf, and its unique parent is node
1. Moreover, by appropriately choosing the leaf vertex, we may assume that the
diameter of T is achieved by a path ending at node N . By definition of the sum-
product updates, for all iterations k D 1; 2; : : :, the message sent from N to 1 is
given by

M �
N!1.x1/ D ˛

X

xN

 N .xN / N1.xN ; x1/:

(It never changes since vertex N has only one neighbor.) Given this fixed message,
we may consider the probability distribution defined on variables .x1; : : : ; xN�1/
given by

p.x1; : : : ; xN�1/ / M �
N!1.x1/

� N�1Y

sD1
 s.xs/

� Y

.s;t /2Enf.1;N /g
 st .xs; xt /:

Our notation is consistent, in that p.x1; : : : ; xN�1/ is the marginal distribution
obtained by summing out xN from the original problem. It corresponds to an
instance of our original problem on the new tree T 0 D .V0;E0/ with V0 D
f1; : : : ; N � 1g and E0 D Enf.1;N /g. Since the message M �

N!1 remains fixed
for all iterations k � 1, the iterates of the sum-product algorithm on T 0 are
indistinguishable from the iterates on tree (for all vertices s 2 V0 and edges
.s; t/ 2 E0).

By the induction hypothesis, the sum-product algorithm applied to T 0 will
converge after at most d.T 0/ iterations to a fixed point M � D fM �

s!t ;M
�
t!s j

.s; t/ 2 E0g, and this fixed point will yield the correct marginals at all vertices
s 2 V0 and edges .s; t/ 2 E0. As previously discussed, the message from N to 1
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remains fixed for all iterations after the first, and the message from 1 to N will be
fixed once the iterations on the sub-tree T 0 have converged. Taking into account the
extra iteration for node 1 to N , we conclude that sum-product on T converges in at
most d.T / iterations as claimed.

It remains to show that the marginal at nodeN can be computed by forming the
product p.xN / /  N .xN /M

�
1!N .xN /, where

M �
1!N .xN / WD ˛

X

x1

 1.x1/  1N .x1; xN /
Y

u2N.1/nfN g
M �

u!1.x1/:

By elementary probability theory, we have p.xN / D P
x1
p.xN j x1/p.x1/. Since

N is a leaf node with unique parent 1, we have the conditional independence relation
XN ?? XVnf1g j X1, and hence, using the form of the factorization (19),

p.xN j x1/ D  N .xN / 1N .x1; xN /
P

xN
 N .xN / 1N .x1; xN /

/  N .xN / 1N .x1; xN /

M �
N!1.x1/

: (22)

By the induction hypothesis, the sum-product algorithm, when applied to the
distribution (22), returns the marginal distribution

p.x1/ /
�
M �
N!1.x1/ 1.x1/

� Y

t2N.1/nfN g
M �
t!1.x1/:

Combining the pieces yields

p.xN / D
X

x1

p.xN j x1/p.x1/

/  N .xN /
X

x1

 1N .x1; xN /

M �
N!1.x1/

�
M �
N!1.x1/ 1.x1/�

Y

k2N.1/nfN g
M �
k!1.x1/

/  N .xN / M �
1!N .xN /;

as required. A similar argument yields that Eq. (21b) yields the correct form of the
pairwise marginal for the edge .1;N / 2 E; we leave the details as an exercise for
the reader. ut

3.2.2 Sum-Product on General Factor Trees

In the preceding section, we derived the sum-product algorithm for a tree with
pairwise interactions; in this section, we discuss its extension to arbitrary tree-
structured factor graphs. A tree factor graph is simply a factor graph without cycles;
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see Fig. 3b for an example. We consider a distribution with a factorization of the
form

p.x1; : : : ; xN / D 1

Z

Y

s2V
 s.xs/

Y

a2F
 a.xa/; (23)

where V and F are sets of vertices and factor nodes, respectively.
Before proceeding, it is worth noting that for the case of discrete random

variables considered here, the resulting algorithm is not more general than sum-
product for pairwise interactions. Indeed, in any distribution over discrete random
variables with a tree-structured factor graph—regardless of the order of interactions
that it involves—can be converted to an equivalent tree with pairwise interactions.
We refer the reader to Appendix E.3 in the monograph [64] for further details on
this procedure. Nonetheless, it is often convenient to apply the non-pairwise form
of the sum-product algorithm directly to a factor tree, as opposed to going through
this conversion.

We use Ms!a to denote the message from vertex s to the factor node a 2 N.s/,
and similarly Ma!s to denote the message from factor node a to the vertex s 2
N.a/. Both messages (in either direction) are functions of xs , where Ma!s.xs/

(respectively Ms!a.xs/) denotes the value taken for a given xs 2 Xs . We let xa D
fxs; s 2 N.a/g denote the sub-vector of random variables associated with factor
node a 2 F . With this notation, the sum-product updates for a general tree factor
graph take the following form:

Sum-Product Updates for Tree Factor Graph:

Ms!a.xs/ ˛  s.xs/
Y

b2N.s/nfag
Mb!s.xs/; and (24a)

Ma!s.xs/ ˛
X

xt ; t2N.a/nfsg

h
 a.xa/

Y

t2N.a/nfsg
Mt!a.xt /

i
: (24b)

Here the quantity ˛ again represents a positive constant chosen to ensure that
the messages sum to one. (As before, its value can differ from line to line.) Upon
convergence, the marginal distributions over xs and over the variables xa are given,
respectively, by the quantities

p.xs/ D ˛  s.xs/
Y

a2N.s/
Ma!s.xs/; and (25a)

p.xa/ D ˛  a.xa/
Y

t2N.a/
Mt!a.xt /: (25b)
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We leave it as an exercise for the reader to verify that the message-passing
updates (24) will converge after a finite number of iterations (related to the diameter
of the factor tree), and when equation (25) is applied using the resulting fixed point
M � of the message updates, the correct marginal distributions are obtained.

3.2.3 Max-Product Algorithm

Thus far, we have discussed the sum-product algorithm that can be used to solve the
problems of marginalization and likelihood computation. We now turn to the max-
product algorithm, which is designed to solve the problem of mode computation. So
as to clarify the essential ideas, we again present the algorithm in terms of a factor
tree involving only pairwise interactions, with the understanding that the extension
to a general factor tree is straightforward.

The problem of mode computation amounts to finding a vector

x� 2 arg max
x2XŒN �

p.x1; : : : ; xN /;

where we recall our shorthand notation XŒN � D X1 � X2 � � � � � XN . As an
intermediate step, let us first consider the problem of computing the so-called
max-marginals associated with any distribution defined by a tree T D .V;E/. In
particular, for each vertex s 2 V, we define the singleton max-marginal

�s.xs/ WD max
fx02XŒN � jx0sDxsg

p.x0
1; : : : ; x

0
N /; (26)

For each edge .s; t/ 2 E, the pairwise max-marginal is defined in an analogous
manner:

�ij.xi ; xj / WD max
fx02XŒN � j .x0i ;x0j /D.xi ;xj /g

p.x0
1; : : : ; x

0
N /; (27)

Note that the singleton and pairwise max-marginals are the natural analogs of the
usual marginal distributions, in which the summation operation has been replaced
by the maximization operation.

Before describing how these max-marginals can be computed by the max-
product algorithm, first let us consider how max-marginals are relevant for the
problem of mode computation. This connection is especially simple if the singleton
max-marginals satisfy the unique maximizer condition—namely, if for all s 2 V,
the maximum over �s.xs/ is achieved at a single element, meaning that

arg max
xs2Xs

�s.xs/ D x�
s for all s 2 V. (28)
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In this case, it is straightforward to compute the mode, as summarized in the
following:

Lemma 3 Consider a distribution p whose singleton max-marginals satisfy
the unique maximizer condition (28). Then the vector x� D .x�

1 ; : : : ; x
�
N / 2

XŒN � is the unique maximizer of p.x1; : : : ; xN /.

Proof The proof of this claim is straightforward. Note that for any vertex s 2 V, by
the unique maximizer condition and the definition of the max-marginals, we have

�s.x
�
s / D max

xs2Xs
�s.xs/ D max

x2XŒN �
p.x1; : : : ; xN /:

Now for any other configuration Qx ¤ x�, there must be some index t such that
x�
t ¤ Qxt . For this index, we have

max
x2XŒN �

p.x1; : : : ; xN / D �t .x
�
t /

.i/
> �t . Qxt /

.i i/� p. Qx/;

where inequality (i) follows from the unique maximizer condition, and inequality
(ii) follows by definition of the max-marginal. We have thus established that
p. Qx/ < max

x2XŒN �
p.x/ for all Qx ¤ x�, so that x� uniquely achieves the maximum. ut

If the unique maximizer condition fails to hold, then the distribution p must
have more than one mode, and it requires a bit more effort to determine one. Most
importantly, it is no longer sufficient to extract some x�

s 2 arg maxxs2Xi �i .xs/, as
illustrated by the following toy example.

Example 11 (Failure of Unique Maximizer) Consider the distribution over a pair of
binary variables given by

p.x1; x2/ D
(
0:45 if x1 ¤ x2, and

0:05 otherwise.
(29)

In this case, we have �1.x1/ D �2.x2/ D 0:45 for all .x1; x2/ 2 f0; 1g2, but
only configurations with x1 ¤ x2 are globally optimal. As a consequence, a naive
procedure that looks only at the singleton max-marginals has no way of determining
such a globally optimal configuration. |

Consequently, when the unique maximizer condition no longer holds, it is
necessary to also take into account the information provided by the pairwise max-
marginals (27). In order to do so, we consider a back-tracking procedure that
samples some configuration x� 2 arg maxx2XŒN � p.x/. Let us assume that the tree
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is rooted at node 1, and that V D f1; 2; : : : ; N g is a topological ordering (i.e., such
that �.s/ < s for all s 2 f2; : : : ; N g). Using this topological ordering we may
generate an optimal configuration x� as follows:

Back-Tracking for Choosing a Mode x�

1. Initialize the procedure at node 1 by choosing any x�
1 2 arg max

x12X1
�1.x1/.

2. For each s D 2; : : : ; N , choose a configuration x�
s at vertex s such that

x�
s 2 arg max

xs2Xs
�s;�.s/.xs; x

�
�.s//:

Note that this is a recursive procedure, in that the choice of the configuration x�
s

depends on the previous choice of x�
�.s/. Our choice of topological ordering ensures

that x�
�.s/ is always fixed before we reach vertex s. We establish that this back-

tracking procedure is guaranteed to output a vector x� 2 arg maxx2XŒN � p.x/ in
Proposition 3 below.

Having established the utility of the max-marginals for computing modes, let
us now turn to an efficient algorithm for computing them. As alluded to earlier,
the max-marginals are the analogs of the ordinary marginals when summation is
replaced with maximization. Accordingly, it is natural to consider the analog of the
sum-product updates with the same replacement; doing so leads to the following
max-product updates:

Mt!s.xs/ ˛ max
xt

�

 st .xs; xt /  t .xt /
Y

u2N.t/=s
Mu!t .xt /

�

; (30)

where ˛ > 0 chosen such that maxxs Mt!s.xs/ D 1. When the algorithm converges
to a fixed point M �, we can compute the max-marginals via Eqs. (21a) and (21b).
Let us summarize the properties of the max-product algorithm on any undirected
tree:

Proposition 3 For any tree T with diameter d.T /, the max-product updates
converge to their unique fixed point M � after at most d.T / iterations.
Moreover, Eqs. (21a) and (21b) can be used to compute the max-marginals,
and the back-tracking procedure yields an element x� 2 arg max

x2XŒN �
p.x/.

Proof The proof of convergence and correct computation of the max-marginals is
formally identical to that of Proposition 2, so we leave the details to the reader
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as an exercise. Let us verify the remaining claim—namely, the optimality of any
configuration x� 2 XŒN � returned by the back-tracking procedure.

In order to do so, recall that we have assumed without loss of generality
(re-indexing as necessary) that V D f1; 2; : : : ; N g is a topological ordering, with
vertex 1 as the root. Under this ordering, let us use the max-marginals to define the
following cost function:

J.x1; : : : ; xN I �/ D �1.x1/
NY

sD2

�s �.s/.xs; x�.s//

��.s/.x�.s//
: (31)

In order for division to be defined in all cases, we take 0=0 D 0.
We first claim that there exists a constant ˛ > 0 such that J.xI �/ D ˛ p.x/

for all x 2 XŒN �, which implies that arg maxx2XŒN � J.xI �/ D arg maxx2XŒN � p.x/.
By virtue of this property, we say that � defines a reparameterization of the original
distribution. (See the papers [65, 66] for further details on this property and its utility
in analyzing the sum and max-product algorithms.)

To establish the reparameterization property, we first note that the cost function
J can also be written in the symmetric form

J.xI �/ D
NY

sD1
�s.xs/

Y

.s;t /2E

�st .xs; xt /

�s.xs/�t .xt /
: (32)

We then recall that the max-marginals are specified by the message fixed pointM �
via Eqs. (21a) and (21b). Substituting these relations into the symmetric form (32)
of J yields

J.xI �/ /
h Y

s2V
 s.xs/

Y

u2N.s/
M �

u!s.xs/
i h Y

.s;t /2E

 st .xs; xt /

M �
s!t .xt /M

�
t!s.xs/

i

D
Y

s2V
 s.xs/

Y

.s;t /2E
 st .xs; xt /

/ p.x/;

as claimed.
Consequently, it suffices to show that any x� 2 XŒN � returned by the back-

tracking procedure is an element of arg maxx2XŒN � J.xI �/. We claim that for each
vertex s 2 V such that �.s/ ¤ ;,

�s �.s/.x
�
s ; x

�
�.s//

��.s/.x
�
�.s//

� �s �.s/.xs; x�.s//

��.s/.x�.s//
for all .xs; x�.s// 2 Xs �X�.s/. (33)
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By definition of the max-marginals and our choice of x�, the left-hand side is
equal to one. On the other hand, the definition of the max-marginals implies that
��.s/.x�.s// � �s �.s/.xs; x�.s//, showing that the right-hand side is less than or equal
to one.

By construction, any x� returned by back-tracking satisfies �1.x�
1 / � �1.x1/

for all x1 2 X1. This fact, combined with the pairwise optimality (33) and the
definition (31), implies that J.x�I �/ � J.xI �/ for all x 2 XŒN �, showing that x� is
an element of the set arg maxx2XŒN � J.xI �/, as claimed. ut

In summary, the sum-product and max-product are closely related algorithms,
both based on the basic principle of “divide-and-conquer”. A careful examination
shows that both algorithms are based on repeated exploitation of a common
algebraic property, namely the distributive law. More specifically, for arbitrary real
numbers a; b; c 2 R, we have

a � .b C c/ D a � b C a � c; and a � maxfb; cg D maxfa � b; a � cg:

The sum-product (respectively max-product) algorithm derives its power by exploit-
ing this distributivity to re-arrange the order of summation and multiplication
(respectively maximization and multiplication) so as to minimize the number of
steps required. Based on this perspective, it can be shown that similar updates apply
to any pair of operations .˚;˝/ that satisfy the distributive law a ˝ .b ˚ c/ D
a˝b ˚ a˝c, and for which˝ is a commutative operation (meaning a˝b D b˝a).
Here the elements a; b; c need no longer be real numbers, but can be more exotic
objects; for instance, they could elements of the ring of polynomials, where .˝;˚/
correspond to multiplication or addition with polynomials. We refer the interested
reader to the papers [1, 28, 55, 62] for more details on such generalizations of the
sum-product and max-product algorithms.

4 Junction Tree Framework

Thus far, we have derived the sum-product and max-product algorithms, which
are exact algorithms for tree-structured graphs. Consequently, given a graph with
cycles, it is natural to think about some type of graph transformation—for instance,
such as grouping its vertices into clusters—-so as to form a tree to which the fast
and exact algorithms can be applied. It turns out that this “clustering”, if not done
carefully, can lead to incorrect answers. Fortunately, there is a theory that formalizes
and guarantees correctness of such a clustering procedure, which is known as the
junction tree framework.
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Fig. 6 (a) A graph with cycles on five vertices. (b) Associated clique graph in which circular
vertices are maximal cliques of G; square gray boxes sitting on the edges represent separator sets,
corresponding to the intersections between adjacent cliques. (c) One clique tree extracted from the
clique graph. It can be verified that this clique tree fails to satisfy the running intersection property

4.1 Clique Trees and Running Intersection

In order to motivate the development to follow, let us begin with a simple (but
cautionary) example. Consider the graph with vertex set V D f1; 2; 3; 4; 5g shown
in Fig. 6a, and note that it has four maximal cliques—namely f2; 3; 4g, f1; 2g, f1; 5g
and f4; 5g. The so-called clique graph associated with this graph has four vertices,
one for each of these maximal cliques, as illustrated in panel (b). The vertices
corresponding to cliques C1 and C2 are joined by an edge in the clique graph if
and only if C1 \ C2 is not empty. In this case, we label the edge joining C1 and C2
with the set S D C1 \ C2, which is known as the separator set. The separator sets
are illustrated in gray boxes in panel (b). Finally, one possible tree contained within
this clique graph—known as a clique tree—is shown in panel (c).

Now suppose that we were given a MRF distribution over the single cycle in
panel (a); by the Hammersley-Clifford theorem, it would have the form

p.x1; : : : x5/ /  234.x2; x3; x4/ 12.x1; x2/ 15.x1; x5/ 45.x4; x5/: (34)

We can provide an alternative factorization of (essentially) the same model on the
clique graph in panel (b) by making two changes: first, introducing extra copies of
each variable from the original graph appears in multiple places on the clique graph,
and second, introducing indicator functions on the edges to enforce equality between
the different copies. In our particular example, we introduce extra variables x0

s for
s 2 f1; 2; 4; 5g, since these variables appear twice in the clique graph. We then form
a distribution q.x; x0/ D q.x1; x2; x3; x4; x5x0

1; x
0
2; x

0
4; x

0
5/ that factorizes as

q.x; x0/ /  234.x2; x3; x4/ 12.x1; x0
2/ 15.x

0
1; x5/ 45.x

0
4; x5/ �

Y

s2Vnf3g
I Œxs D x0

s �;

(35)

where I Œxs D x0
s � is a f0; 1g-valued indicator function for the event fxs D x0

sg.
By construction, for any s 2 f1; 2; 3; 4; 5g, if we were to compute the distribution
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q.xs/ in the expanded model (35), it would be equal to the marginal p.xs/ from the
original model (34). Although the expanded model (35) involves additional copies
x0
s , the indicator functions that have been added enforce the needed equalities to

maintain model consistency.
However, the clique graph in panel (b) and the distribution (35) are not still

not trees, which leads us to the key question. When is it possible to extract a
tree from the clique graph, and have a factorization over the resulting clique tree
that remains consistent with the original model (34)? Panel (c) of Fig. 6 shows
one clique tree, obtained by dropping the edge labeled with separator set f5g
that connects the vertices labeled with cliques f4; 5g and f1; 5g. Accordingly, the
resulting factorization r.�/ over the tree would be obtained by dropping the indicator
function I Œx5 D x0

5�, and take the form

r.x; x0// 234.x2; x3; x4/ 12.x1; x0
2/ 15.x

0
1; x5/ 45.x

0
4; x5/ �

Y

s2Vnf3;5g
I Œxs D x0

s�;

(36)

Of course, the advantage of this clique tree factorization is that we now have a
distribution to which the sum-product algorithm could be applied, so as to compute
the exact marginal distributions r.xi / for i D 1; 2; : : : ; 5. However, the drawback
is that these marginals will not be equal to the marginals p.xi / of the original
distribution (34). This problem occurs because—in sharp contrast to the clique
graph factorization (35)—the distribution (36) might assign non-zero probability to
some configuration for which x5 ¤ x0

5. Of course, the clique tree shown in Fig. 6c is
only one of spanning trees contained within the clique graph in panel (b). However,
the reader can verify that none of these clique trees have the desired property.

A bit more formally, the property that we require is the clique tree factorization
always have enough structure to enforce the equivalences xs D x0

s D x00
s D : : :,

for all copies of a given variable indexed by some s 2 V. (Although variables
only appeared twice in the example of Fig. 6, the clique graphs obtained from more
complicated graphs could have any number of copies.) Note that there are copies xs
and x0

s of a given variable xs if and only if s appears in at least two distinct cliques,
say C1 and C2. In any clique tree, there must exist a unique path joining these two
vertices, and what we require is that the equivalence fxs D x0

sg be propagated
along this path. In graph-theoretic terms, the required property can be formalized
as follows:

Definition 6 A clique tree has the running intersection property if for any
two clique vertices C1 and C2, all vertices on the unique path joining them
contain the intersection C1 \ C2. A clique tree with this property is known as
a junction tree.
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Fig. 7 (a) A modified version of the graph from Fig. 6a, containing the extra edge .1; 4/. The
modified graph has three maximal cliques, each of size three. (b) The associated clique graph
has one node for each of three maximal cliques, with gray boxes representing the separator sets.
(c) A clique tree extracted from the clique graph; it can be verified that this clique tree satisfies the
running intersection property

To illustrate this definition, the clique tree in Fig. 6 fails to satisfy running
intersection since 5 belongs to both cliques f4; 5g and f1; 5g, but does not belong
to the clique f2; 3; 4g along the path joining these two cliques in the clique tree. Let
us now consider a modification of this example so as to illustrate a clique tree that
does satisfy running intersection, and hence is a junction tree.

Figure 7a shows a modified version of the graph from Fig. 6a, obtained by adding
the extra edge .1; 4/. Due to this addition, the modified graph now contains three
maximal cliques, each of size three. Panel (b) shows the associated clique graph; it
contains three vertices, one for each of the three maximal cliques, and the gray boxes
on the edges represent the separator sets. Panel (c) shows one clique tree extracted
from the clique graph in panel (b). In contrast to the tree from Fig. 6a, this clique
tree does satisfy the running intersection property, and hence is a junction tree. (For
instance, vertex 4 belongs to both cliques f2; 3; 4g and f1; 4; 5g, and to every clique
on the unique path joining these two cliques in the tree.)

4.2 Triangulation and Junction Trees

Thus far, we have studied in detail two particular graphs, one (Fig. 6a) for which it
was impossible to obtain a junction tree, and a second (Fig. 7a) for which a junction
tree could be found. In this section, we develop a principled basis on which to
produce graphs for which the associated clique graph has a junction tree, based
on the graph-theoretic notion of triangulation.

A cycle in a graph is a sequence of vertices .s1; s2; : : : s`; s1/ such that .s`; s1/ 2 E
and .si siC1/ 2 E for all i D 1; : : : ; `�1. The cycle is chordless if there are no edges
in the graph joining non-successive vertices in the cycle—that is, the graph does not
contain any edges apart from those listed above that form the cycle. For example,
the cycle .1; 2; 4; 5; 1/ in the graph from Fig. 6a is chordless, whereas in contrast,
the cycle .1; 2; 3; 4; 5; 1/ contains the chord .2; 4/.
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Definition 7 A graph is triangulated if it contains no chordless cycles of
length greater than three.

Thus, the graph in Fig. 6a is not triangulated (due to the chordless cycle
.1; 2; 4; 5; 1/), whereas it can be verified that the graph in Fig. 7a is triangulated.
We now state the fundamental connection between triangulation and junction trees:

Theorem 3 The clique graph associated with a graph G has a junction tree
if and only if G is triangulated.

We provide a proof of this result as a part of a more general set of graph-
theoretic equivalences in Appendix. The practical significance of Theorem 3 is that
it enables us to construct a modified graph QG—by triangulating the original graph
G—such that the clique graph associated with QG is guaranteed to have at least one
junction tree. There are a variety of algorithms for obtaining triangulated graphs.
For instance, recall the vertex elimination procedure discussed in Sect. 3.1; it takes
as input a graph G D .V;E/ and then processes the vertices in a pre-specified order
so as to produce a new graph.

Lemma 4 The output QG D .V; QE/ of the vertex elimination algorithm is a
triangulated graph.

We leave the proof of Lemma 4 as an exercise for the reader. This fact establishes
that there is a connection between the elimination algorithm and the property of
triangulation.

Example 12 (Triangulation and Junction Tree) To illustrate the triangulation pro-
cedure, consider the 3 � 3 grid shown in Fig. 8a. If we run the vertex elimination
algorithm using the ordering I D f1; 3; 7; 9; 4; 6; 2; 8g, then we obtain the graph
QG shown in panel (b). (Note that the graph would not be triangulated if the

additional edge joining vertices 2 and 8 were not present. Without this edge, the
4-cycle f2; 4; 8; 6; 2gwould lack a chord.) Note that QG has six maximal cliques: two
4-cliques in the middle of the graph, and four 3-cliques on the boundary. The clique
graph associated with QG is illustrated in panel (c), and one clique tree is shown in
panel (d). It can be verified that this clique tree satisfies the running intersection
property, and so is a junction tree. |
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Fig. 8 Illustration of junction tree construction. (a) Original graph is a 3�3 grid. (b) Triangulated
version of original graph. Note the two 4-cliques in the middle. (c) Corresponding clique graph for
triangulated graph in (b), with maximal cliques depicted within ellipses, and separator sets within
rectangles. (d) A junction tree extracted from the clique graph in (c). It is a clique tree that satisfies
the running intersection property

4.3 Constructing the Junction Tree

Given that any triangulated graph has a junction tree (JT), the first step in the
JT procedure is to triangulate the graph. At least in principle, this operation is
straightforward since it entails adding edges so as to remove chordless cycles
from the graph. (However, see the discussion at the end of Sect. 4 for discussion
of optimal triangulations.) The focus of this section is the next step of the JT
procedure—namely, how to form a junction tree from a triangulated graph. Any
graph with cycles has more than one clique tree. Given a triangulated graph, we
are guaranteed that at least one of these clique trees has the running intersection
property, and so is a junction tree. How to find such a junction tree? It turns out that
there is a simple procedure, based on solving a certain maximum weight spanning
tree problem, that is always guaranteed to find a junction tree.

Given a triangulated graph, we again consider the clique graph, as previously
defined. Recall that vertices C1 and C2 (corresponding to cliques from the original
graph) are connected by an edge if and only if the associated separator set
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S D C1 \ C2 is non-empty. Accordingly, for each edge e D .C1; C2/ of the clique
graph, we can associate the positive weight w.e/ D card.C1 \ C2/. We refer to
the resulting object as the cardinality-weighted clique graph. Given this weighted
graph, the maximum weight spanning tree problem corresponds to finding the tree
T (whose vertex set includes every node) such that the weight w.T / WDP

e2T w.e/
is maximized.

Proposition 4 Any maximal weight spanning tree of the cardinality-weighted
clique graph is a junction tree for the original graph.

Proof Suppose that the triangulated graph QG has M maximal cliques, so that (by
definition) the weighted clique graph has M vertices. Let us consider an arbitrary
spanning tree T of the weighted clique graph, say with vertices fC1; : : : ; CM g and
an associated edge set fS1; : : : ; SM�1g, where we have identified each edge with its
associated separator set. The weight of this spanning tree can be written as w.T / DPM�1

jD1 card.Sj /. Letting I Œt 2 Sj � be an f0 � 1g-valued indicator function for the
event ft 2 Sj g, we may write card.Sj / DP

t2V I Œt 2 Sj �, and hence we have

w.T / D
M�1X

jD1

X

t2V
I Œt 2 Sj � D

X

t2V

M�1X

jD1
I Œt 2 Sj �: (37)

We now claim that for any t 2 V, we have the inequality

M�1X

jD1
I Œt 2 Sj � 


MX

iD1
I Œt 2 Ci � � 1; (38)

with equality if and only if the subgraph induced by t is connected. To establish this
claim, consider the subgraph of T that induced by vertex t—meaning the subgraph
formed by the clique verticesCi that include t , and the associated edges or separator
sets Sj that also include t . Since it is a subgraph of the tree T , it must also be acyclic,
from which the inequality (38) follows. If the subgraph has a single connected
component, then equality holds. When T is actually a junction tree, this equality
will hold for any vertex t .

Substituting the bound (38) into the earlier inequality (37), we conclude that

w.T / 

X

t2V

� MX

iD1
I Œt 2 Ci� � 1

�

;

where equality holds if and only T is a junction tree. Since the given tree T was
arbitrary, the claim follows. ut
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Putting together the pieces of our development, we are led to the following
algorithm:

Junction Tree Algorithm Given an undirected graph G D .V;E/:
1. Run a triangulation procedure to obtain a triangulated graph QG.
2. Form the weighted junction graph, and find a maximum weight spanning

tree via a standard algorithm (e.g., using Kruskal’s algorithm, or Prim’s
algorithm).

3. Given the junction tree, define appropriate compatibility functions on its
vertices and edges to reproduce the original distribution, and run the sum-
product algorithm.

There are various techniques for finding some triangulation of a graph; as noted
in Lemma 4, running the vertex elimination algorithm (using any ordering) yields
a triangulation. Note, however, that the complexity of tree inference depends on
the size of the state spaces at each node in the junction tree, which are determined
by the clique sizes in the triangulated graph. It would be desirable, then, to obtain
a triangulation with minimal maximal clique size, or equivalently, with minimal
treewidth.

Definition 8 The treewidth �.G/ of a undirected graph G is the size of largest
clique (minus one) in the best triangulation.

As an illustration, any ordinary tree has treewidth one, whereas the graph in Fig. 7a
has treewidth two, and the grid in Fig. 8 has treewidth three.

For any fixed treewidth � D �.G/, there are efficient algorithms—meaning
polynomial-time in the graph size—to test whether the graph has treewidth �,
and if so, to determine an associated junction tree (e.g., [16, 60]). However, the
complexity of these algorithms grows exponentially in the treewidth �, so they are
feasible only for graphs of bounded treewidth. For a general graph, the problem
of finding an optimal triangulation is NP-hard [6, 67]. Despite this negative result,
there are a variety of heuristic algorithms for obtaining “good” triangulations of a
graph. Some of most widely studied are the minimum degree and the minimum
fill heuristics [4, 36]. The minimum degree heuristic is based on following the
elimination ordering obtained by choosing a minimum degree vertex (in the partially
reduced graph) at each step. The minimum fill heuristic operates similarly, but
instead is based on choosing a vertex s so as to minimize the total number of edges
required to make the neighborhoodN.s/ a clique, a quantity known as the “fill”.
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5 Basics of Graph Estimation

Up to this point, we have considered various types of “forward problems”, by
which we mean that the graphical model—both the graph and the functions in its
factorization—are known quantities. In this section, we turn our attention to various
classes of “inverse problems”, in which either the functions and/or the structure
of the graph are unknown. Given a black box that generates samples from the
distributions, we consider two possible problems:

• assuming that the clique structure is known, how to estimate the functions in the
factorization?

• given no a priori information, how to estimate the clique structure and the
functions?

The former problem is one of parameter estimation, since it involves estimating
the parameters that specify either the conditional probabilities (for a directed
graphical model) or the compatibility functions (for an undirected graphical model).
In contrast, the latter problem is a form of model selection, since we need to
select the correct graph from competing families of graphs. In the machine learning
community, the latter problem is also known as structure learning. We begin
our discussion with the former problem, as it is simpler both conceptually and
computationally.

5.1 Parameter Estimation for Directed Graphs

The problem of parameter estimation is particularly simple for directed graphical
models, in which case, as long as the data is fully observed, the solution can be
obtained in closed form.

More concretely, for a known directed graph D D .V;
�!
E /, consider the set of

all distributions that factorize in the form

p.x1; : : : ; xN / D
Y

s2V
p.xs j x�.s//;

where �.s/ � V is the parent set of vertex s. Suppose we observe a collection of
n samples, each of the form Xi � D .Xi1; : : : ; XiN / 2 XŒN �. Given the collection
of samples Xn�

1� WD fX1�; X2�; : : : ; Xn�g, our goal is to estimate the conditional
distributions at each vertex s 2 V. In these notes, we focus exclusively on the
case of discrete variables, in particular with Xs D f0; 1; : : : ; m � 1g for all vertices
s 2 V. (The extension to discrete variables with differing numbers of states per
vertex is straightforward.)
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By definition, each conditional distribution can be written as a ratio of two
marginal distributions—namely, as

p.xs j x�.s// D p.xs; x�.s//

p.x�.s//
:

A natural estimate of each marginal distribution are the empirical marginal distri-
butions—namely, the quantities

Op.xs/ D 1

n

nX

iD1
I .Xi s D xs/; and

Op.xs; x�.s// D 1

n

nX

iD1
I .Xi s D xs; Xi �.s/ D x�.s//;

where I .Xi s D xs/ is a zero-one valued indicator function for the event that fXi s D
xsg, with the other indicator similarly defined. In words, the empirical marginal
Op.xs/ is simply the relative fraction of times that Xs D xs in the data.

Given these estimates of the marginal distributions, a natural “plug-in” estimate
of the conditional distribution is given by

Op.xs j x�.s// D Op.xs; x�.s//Op.x�.s// : (39)

(To be clear, we take 0=0 to be equal to 0, since these correspond to configurations
that never appear in the data set.)

5.2 Parameter Estimation for Undirected Graphs

For undirected graphical models, the problem of parameter estimation is not so
simple in general. In particular, given an undirected graph G D .V;E/, consider
the set of all distributions that factorize in the form

p.x1; : : : ; xN I / D 1

Z

Y

C2C
 C .xC /; (40)

where C is the set of all maximal cliques of the graph. In this setting, our goal is to
estimate the unknown compatibility functions  C W XC ! .0;1/ associated with
each clique of the graph. A challenge here is that, at least in general, the compatibil-
ity functions are not directly related to conditional or marginal distributions of the
graph. The exception to this rule is given by undirected trees (and more generally,
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junction trees), in which case there is always a choice of compatibility functions that
is related to the marginal and/or conditional distributions.

In these notes, we limit our discussion to the method of maximum likelihood
for estimating the compatibility functions. It is based on choosing the compatibility
functions  D f C ;C 2 Cg so as to maximize the (rescaled) log likelihood of the
data, namely the quantity

`. IX1 �; : : : ; Xn�/ D 1

n

nX

iD1
logp.Xi �I /: (41)

We use O D f O C ;C 2 Cg to denote the maximum likelihood estimate, namely
a choice of compatibility functions that maximize the log likelihood. A remark
about parameterization before proceeding: since we are considering discrete random
variables, the estimate O can be viewed as a vector of real numbers. In particular,
the estimate O C can be represented as a sub-vector of mjC j real numbers, one for
each possible configuration J D fJs; s 2 C g 2 XC that the variables xC may
assume. By concatenating all of these sub-vectors, we obtain a vector O 2 R

D ,
where D D P

C2CmjC j. Consequently, the rescaled log likelihood is a function
from R

D to R.

5.2.1 Maximum Likelihood for Undirected Trees

Let us begin by considering the maximum likelihood problem for an undirected tree
T D .V;E/, say with a factorization of the form

p.x1; : : : ; xN I / D 1

Z

Y

s2V
 s.xs/

Y

.s;t /2E
 st .xs; xt /: (42)

For any tree, we claim that the maximum likelihood estimate O can be expressed in
terms of the empirical marginals at the vertices and edges of the tree—namely, the
quantities

Op.xsDj /D 1
n

nX

iD1
I sIj .Xis/; and Op..xs; xt / D .j; k// D 1

n

nX

iD1
I st Ijk.Xis; Xit /;

(43)

where I sIj .xs/ is a zero-one indicator for the event that fxs D j g, with I st Ijk.xs; xt /
similarly defined. With these empirical marginals computed from the data, the
maximum likelihood estimates of the compatibility functions are given by

O s.xs/ D Op.xs/; and O st .xs; xt / D Op.xs; xt /
Op.xs/ Op.xt / : (44)
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(As before, we take 0=0 D 0 for concreteness.) We prove in the following section,
as a corollary of a more general result, that the relations (44) do in fact define a
global maximizer of the log likelihood (41) for a tree-structured graph.

5.2.2 Maximum Likelihood on General Undirected Graphs

In the case of graphs with cycles, the MLE no longer has a convenient closed-form
expression. In order to appreciate the challenges, it is convenient to discuss the
maximum likelihood objective using an alternative exponential parameterization.
Let us do so for a graph with general clique set C, understanding that the undirected
tree is a special case. For a given cliqueC and configurationJ D fJs; s 2 C g 2 XC ,
we define the function

I C IJ .xC / D
(
1 if xC D J
0 otherwise,

(45)

corresponding to a binary-valued indicator for the event that fxC D J g. Note
that these functions are generalizations of the vertex-based functions I sIj and
edge-based functions I st Ijk discussed previously.

We use I C D fI C IJ ; J 2 XC g to denote the vector all of mjC j such indicator
functions associated with clique C . With this notation, any function  C W XC !
.0;1/ can be parameterized in the log-linear form

log C .xC / D h	C ; I C .xC /i WD
X

J2XC
	C IJ I C IJ .xC /

for some real vector 	C D f	C IJ ; J 2 XC g in mjC j dimensions. If we adopt this
parameterization for each clique in the graph, then the overall factorization can be
re-written in the form

p.x1; : : : ; xN I 	/ D exp
n X

C2C
h	C ; I C .xC /i � ˚.	/

o
(46)

where 	 D f	C ; C 2 Cg is a real-valued vector of parameters to be estimated, and

˚.	/ WD log
X

x2XŒN �
exp

n X

C2C
h	C ; I C .xC /i

o
(47)

is the log normalization constant. The representation (46) shows that an undirected
graphical model can be associated with an exponential family, namely one with
sufficient statistics fI C .�/; C 2 Cg and natural parameter 	 D f	C ; C 2 Cg 2 R

D .
This connection is useful, since there is a rich and classical statistical literature on
the properties of exponential families (e.g., [19, 30, 64]). We make use of some of
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these properties here. Moreover, an attractive property of the maximum likelihood
estimate is its invariance to reparameterizations: namely, if we can compute the
MLE O	 in our new, exponential parameterization, then O � exp. O	/ will define the
MLE in the original parameterization. We use this fact freely in the discussion to
follow.

One convenient property of the exponential parameterization is that the log
likelihood `.	 IX1�; : : : ; Xn�/ WD 1

n

Pn
iD1 logp.Xi �I 	/ can be written in terms

of the empirical marginals

O
C IJ D 1

n

nX

iD1
I C IJ .XiC /; (48)

at each clique. Note that O
C IJ D Op.xC D J / corresponds to the average
fraction of times that fXC D J g in the data set. Let us define the vector
O
C D f O
C IJ ; J 2 XC g 2 mjC j, as well as the inner product h	C ; O
C i D
P

J2XC 	C IJ O
C IJ . With this notation, the maximum likelihood estimate O	 takes
the form

O	 D arg max
	2RD

n X

C2C
h	C ; O
C i �˚.	/

o
: (49)

In order to understand the structure of this optimization problem, we require
some useful properties of the function ˚ :

Lemma 5 The function ˚ is convex and infinitely differentiable on R
D , and

in particular, we have

@˚

@	C IJ
.	/ D

X

x2X
p.xI 	/ I C IJ .xC /

„ ƒ‚ …
p.xCDJ I	/

This result shows that taking the partial derivatives of ˚ with respect to the
parameters over clique C yields the marginal distribution over that clique. The proof
of these properties are relatively straightforward, so we leave them as an exercise
for the reader.

Lemma 5 allows us to characterize the structure of the maximum likelihood
estimate (49). First, it shows that the rescaled log likelihood ` is a concave function
of 	 , and hence has no local optima that can trap an iterative algorithm. Secondly,
it can be used to characterize the stationary conditions that characterize a global
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optimum; more precisely, by taking derivatives of the rescaled log likelihood and
setting them to zero, we find that the MLE O	 satisfies the stationary conditions

p.xC D J I O	/ D O
C IJ for all C 2 C, and J 2 XC : (50)

In words, the maximum likelihood estimate O	 is such that the marginals computed
under the distribution p.�I O	/ are equal to the empirical marginals determined by
the data. This type of moment-matching condition characterizes the MLE in any
exponential family; see the monograph [64] for further details.

Let us now return to our previously open question: for a tree-structured graph
T with the factorization (42), why does Eq. (44) specify the maximum likelihood
estimate? We simply need to verify that the moment-matching conditions are
satisfied. Given the suggested form of O from Eq. (44), we have

p.x1; : : : ; xN I O / D 1

Z

Y

s2V
Op.xs/

Y

.s;t /2E

Op.xs; xt /
Op.xs/ Op.xt / : (51)

Our claim is that in this factorization, we must necessarily have Z D 1 and
moreover

p.xs I O /D Op.xs/ for all s 2 V, and p.xs; xt I O /D Op.xs; xt / for all .s; t/ 2 E.
(52)

In order to verify this claim, we first observe that any undirected tree can be
converted to an equivalent directed form as follows: first, designate one vertex, say
r , as the root, and then orient all edges away from the root toward the leaves. See
Fig. 9 for an illustration of this procedure.

After this conversion, each vertex s 2 Vnfrg has a unique parent �.s/, and we
can associate the product O s.xs/ O s�.s/.xs; x�.s//with the directed edge .�.s/! s/

a b

Fig. 9 (a) Undirected tree. (b) Conversion of undirected tree to a directed tree rooted at vertex r .
Each vertex s 2 Vnfrg now has a unique parent �.s/. Any given parent may have multiple
children
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and the term O r.xr / with the root vertex. In this way, the factorization (51) can be
written the directed form

p.x1; : : : ; xN I O / D 1

Z
O r.xr /

Y

s2Vnfrg
O s.xs/ O s�.s/.xs; x�.s//

D 1

Z
Op.xr/„ƒ‚…
fr .xr /

Y

s2Vnfrg

Op.xs; x�.s//
Op.x�.s//

„ ƒ‚ …
fs.xs; x�.s//

:

Note that this is now a factorization of the general directed form (2), with
functions ffs; s 2 Vg that satisfy the normalization condition (1). Consequently,
an application of Proposition 1 implies that

p.xr I O / D Op.xr/; and
p.xs; x�.s/I O /
p.x�.s/I O /

D Op.xs; x�.s//Op.x�.s// for all �.s/! s.

A recursive argument, moving from the root r out to the leaves, then shows that the
marginal-matching condition (52) holds. We leave the details of this final step as
an exercise for the reader. (Start with the case of a Markov chain to see the general
idea.)

5.2.3 Iterative Proportional Scaling

Thus far, we have seen that in the special case of a tree-structured graph, it is
straightforward to find a set of compatibility functions O (or equivalently, a vector
of parameters O	) that satisfy the moment-matching conditions (50). The same basic
idea can be extended to any triangulated graph, by first building a junction tree, and
then following the analogous procedure on the junction tree.

In contrast, for a general undirected graph (with cycles, not triangulated), the
MLE problem no longer has a closed-form solution, and needs to be solved by
an iterative algorithm. Since the moment-matching conditions (50) characterize the
global optimum of the convex program (49) that defines the MLE, a variety of
standard algorithms from convex programming [9, 18] could be applied. Here we
describe one particular algorithm, attractive due to the simplicity of its updates,
known as iterative proportional scaling, or IPS for short. As we will see, it amounts
to a block co-ordinate ascent of the objective function. The IPS algorithm takes
as input the empirical marginals f O
C ;C 2 Cg, computed from the data set as in
Eq. (48), as well as a particular ordering of clique set.
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Iterative Proportional Scaling (IPS)

1. Initialize estimate 	 0
C D 0 for all cliques C 2 C.

2. Cycling over cliques in the given order:

(a) Activate clique A, and given current parameter estimate 	 0, compute
marginal probabilities


0
AIJ D p.xA D J I 	 0/ for all J 2 XA, (53)

and form the vector 
0
A D f
0

AIJ ; J 2 XAg.
(b) Update the parameter estimate 	 0 7! 	 via

	C D
(
	 0
C for all C 2 CnfAg
	 0
A C log O
A


0

A
for C D A.

3. Iterate until convergence.

Observe that Step 2(a) of the algorithm requires computation of the marginal dis-
tribution p.xAI 	 0/ over the currently active clique A. Doing so requires running the
elimination algorithm, or building a junction tree on which to run a message-passing
algorithm. This step can be computationally expensive if the graph treewidth is high,
in which context approximate methods for marginalization become important (see
the monograph [64] for more details). The update in Step 2(b) fixes the parameter
estimate on all cliques except for the active one A; for this clique, the update can be
equivalently written in the form

e	AIJ D e	 0AIJ O
AIJ

0
AIJ

for all J 2 XA.

This form of the update clarifies the origins of the name “proportional scaling”,
since the parameters are being adjusted by the relative proportions of the empirical
marginal O
AIJ and the current model marginal 
0

AIJ .
It is clear from the IPS updates that any fixed point must satisfy the moment-

matching conditions (50), and hence be a global optimum of the log likelihood.
Less clear, however, is whether convergence is guaranteed (though it is assumed in
the statement of Step 3). Among other properties, the following result shows that
the IPS algorithm is indeed guaranteed to converge to the MLE:
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Proposition 5 (IPS Properties) The IPS algorithm has the following prop-
erties:

(a) We have ˚.	 0/ D ˚.	/ over all updates 	 0 7! 	 of the algorithm.
(b) After updating clique A, the estimate 	 satisfies

p.xA D J I 	/ D O
AIJ for all J 2 XA. (54)

(c) The algorithm iterates converge to an MLE solution O	 .

Proof (a), (b) By definition of the update, for each J 2 XA, we have

p.xA D J I 	/ D
X

x2XŒN �
p.xI 	/I AIJ .xA/

D
X

x2XŒN �
p.xI 	 0/

e˚.	
0/�˚.	/ O
AIJ

0
AIJ

I AIJ .xA/

D
n

P
x2XŒN � p.xI 	 0/I AIJ .xA/


0
AIJ

o
O
AIJ e˚.	

0/�˚.	/

D O
AIJ e˚.	
0/�˚.	/:

Summing both sides over J 2 XA yields that ˚.	 0/ D ˚.	/ as claimed in part
(a), and we then see that p.xA D J I 	/ D O
AIJ as claimed in part (b).

(c) Note that the rescaled log likelihood can be block partitioned in the form
`.	 0

C ; C 2 C/. With 	 0 fixed in all co-ordinates except those indexed by A, let us
consider the function

	A 7! `.	A; 	
0
C ; C 2 CnA/:

It is a concave function of 	A. Moreover, by combining Lemma 5 with the result
of part (b), we see that, after updating cliqueA, the IPS algorithm has maximized
this function over 	A. Thus, the IPS algorithm is equivalent to performing
block co-ordinate ascent of the log-likelihood function. By known results on the
convergence of such procedures [9], it follows that IPS converges to a global
optimum. ut
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5.3 Tree Selection and the Chow-Liu Algorithm

In our discussion thus far, we have assumed that the graph structure is known,
and that only the compatibility functions need to be estimated. In this section,
we consider an instance of the more general problem in which neither is known.
As previously mentioned, this problem is known as model selection for graphical
models, or graph structure learning. We limit ourselves to the problem of selecting
tree-structured graphical models. See the bibliographic section for discussion of
other methods suitable for more general forms of graph structure learning.

Given our data set fX1�; : : : ; Xn�g, suppose that our goal is to choose the “best-
fitting” spanning tree graphical model. More formally, let T be the set of all spanning
trees onN vertices. For a given tree T 2 T and a given distribution p.xI 	.T // that
is Markov with respect to T , we measure its fit in terms of its rescaled log likelihood
`.	.T // D 1

n

Pn
iD1 logp.Xi �I 	.T //.

In principle, the solution to this problem is straightforward: for each tree T 2 T,
we compute the maximum likelihood estimate

O	.T / D arg max
	.T /

`.	.T //;

thereby obtaining a list f`. O	.T /;T 2 Tg of maximized likelihoods for every tree
T in the set T of all spanning trees. We then choose the tree OT with the highest
maximized likelihood, that is OT D arg maxT2T `. O	.T //. However, a graph with
N vertices has an enormous number of possible spanning trees—NN�2 to be
precise [20]—so that a brute force approach is infeasible. Fortunately, as previously
shown (44), the MLE for a tree-structured graph has a very special structure, which
can be exploited to obtain an efficient algorithm for finding the best-fitting tree.

Chow-Liu Algorithm for Maximum Likelihood Tree

1. Compute the empirical marginals (43) associated with all vertices s 2 V
and all distinct vertex pairs .s; t/.

2. For each distinct pair of vertices .s; t/, compute the empirical mutual
information

OIst D
X

.xs;xt /2Xs�Xt

Op.xs; xt / log
Op.xs; xt /
Op.xs/ Op.xt / : (55)

(continued)



Graphical Models and Message-Passing Algorithms: Some Introductory Lectures 101

3. Using f OIst g as edge weights, compute a maximum weight spanning tree

OT D arg max
T2T

X

.s;t /2E.T /
OIst : (56)

4. Return the maximum likelihood estimate O	.T / on the tree from the
previous step:

O	s.xs I OT / D log Ops.xs/ for all s 2 V, and

O	st .xs; xt I OT / D log
Op.xs; xt /
Op.xs/ Op.xt / for all .s; t/ 2 E. OT /.

Note that Step 3 requires solving a maximum weight spanning tree problem. As
mentioned previously during our treatment of the junction tree algorithm, there are
various efficient methods for this problem, including Kruskal’s algorithm and Prim’s
algorithm. See the bibliographic section for further discussion.

We claim that the Chow-Liu algorithm is guaranteed to return a maximum
likelihood tree—namely, one satisfying

OT 2 arg max
T2T `.

O	.T // D arg max
T2T

n
max
	.T /

`.	.T //
o
:

The proof of this claim is straightforward given our previous discussion. For any
fixed tree T , the maximum likelihood solution has the form (44), whence

`. O	.T // D 1

n

nX

iD1
logp.Xi �I O	.T //

D 1

n

nX

iD1

n X

s2V
log Op.Xis/C

X

.s;t /2E.T /
log

Op.Xis; Xit /
Op.Xis/ Op.Xit /

o

D
X

s2V
Op.xs/ log Op.xs/C

X

.s;t /2E.T /
Op.xs; xt / log

Op.xs; xt /
Op.xs/ Op.xt /

D C C
X

.s;t /2E.T /
OIst ;

where C denotes a constant that is independent of the tree T . Consequently, the
maximum weight spanning tree obtained in Step 3 corresponds to the maximum
likelihood tree.
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Intuitively, one might think that an analogous procedure could be extended to
junction trees, requiring solving a maximum weight spanning hypertree problem
as opposed to a maximum weight spanning tree problem. Unfortunately, unlike the
case of spanning trees, computing a maximum weight hypertree is computationally
expensive, so that in practice, exact methods are limited to ordinary spanning trees,
as in the Chow-Liu algorithm.

6 Bibliographic Details and Remarks

Graphical models were developed independently in a number of different com-
munities. The notion of a Gibbs distribution appeared initially in the statistical
physics literature, a notable example being the Ising model [39] that was introduced
to model ferromagnetism. Other communities in which graphical models were
developed include information theory and coding theory [34, 59], contingency tables
and discrete multivariate analysis [13, 38], image processing [12, 35], and artificial
intelligence [50].

The Hammersley-Clifford theorem derives its name from a manuscript that was
never published (J.M. Hammersley, P. Clifford, 1971, Markov fields on finite graphs
and lattices, unpublished). Besag [10] and Grimmett [37] were the first to publish
proofs of the result; in these notes, we have adapted the latter proof. See Clifford [22]
for some discussion of the history of the result. Lauritzen [44] provides discussion of
how the Markov-factorization equivalence can break down when the strict positivity
condition fails to hold.

Forms of the sum-product and max-product algorithms were independently
developed in many different communities, including the work of Kalman in control
theory [41], work on LDPC codes [34] and Viterbi decoding [32, 63] in error-control
coding, the alpha-beta or forward-backward algorithms in signal processing [51],
Pearl’s work [50] in artificial intelligence, and work on non-serial dynamic pro-
gramming [8]. Dating back to the 1960s, a number of authors (e.g., [49, 54]) studied
the relation between graph triangulation and the vertex elimination algorithm, and
pointed out the connection to the complexity of Gaussian elimination algorithms
for solving linear systems of equations. (In the statistical setting, this problem
can be cast as an inference problem for a multivariate Gaussian.) At the end
of the 1980s, several groups of researchers independently recognized that the
significance of tree decompositions and triangulation extended beyond solving
linear equations to more general classes of graph-theoretic problems [14, 45]. Within
the statistics and artificial intelligence communities, the junction tree framework
was developed by Lauritzen and Spielgelhalter [45]. The paper [15] contains an
extensive description of treewidth and related notions of graph complexity. There
are various algorithms for solving the maximum weight spanning tree problem,
including Kruskal’s algorithm and Prim’s algorithm [23].

Early work on iterative proportional fitting and scaling algorithms include the
papers [27, 31, 58]. These algorithms are actually special cases of more general
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Bregman-based projection algorithms [24–26, 29]; see also the work of Amari [2, 3]
on the information geometry of exponential families. The Chow-Liu algorithm
for finding the maximum likelihood tree appeared in the paper [21]. Karger and
Srebro [42, 57] studied generalizations of this problem to junction trees of higher
treewidth, establishing the hardness of the problem (in a complexity-theoretic sense)
but also proposing an approximation algorithm. There is a very large literature on
methods for graphical model selection, local forms of `1-regularized regression
(e.g., [48, 52]), `1-regularization and global likelihoods (e.g., [7, 33, 47, 53]), as
well as multiple testing and related approaches (e.g., [5, 40, 56]).
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Appendix: Triangulation and Equivalent Graph-Theoretic
Properties

In this Appendix, we prove Theorem 3 as part of a more general discussion of
triangulation and related graph-theoretic properties. Having already defined the
notions of triangulations and junction tree, let us now define the closely related
notions of decompsable and recursively simplicial. The following notion serves to
formalize the “divide-and-conquer” nature of efficient algorithms:

Definition 9 A graph G D .V;E/ is decomposable if either it is complete,
or its vertex set V can be split into the disjoint union of three sets A[B [ S
such that (a) A and B are non-empty; (b) the set S separates A and B in G,
and is complete (i.e., .s; t/ 2 E for all s; t 2 S ); and (c) A[ S and B [ S are
also decomposable.

Recall from our discussion of the elimination algorithm in Sect. 3.1 that when
a vertex is removed from the graph, the algorithm always connects together all of
its neighbors, thereby creating additional edges in the reduced graph. The following
property characterizes when there is an elimination ordering such that no edges are
added by the elimination algorithm.

Definition 10 A vertex is simplicial if its neighbors form a complete sub-
graph. A non-empty graph is recursively simplicial if it contains a simplicial
vertex, and when s is removed, any graph that remains is recursively
simplicial.
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It should be intuitively clear that these four properties—namely, triangulated,
decomposable, recursively simplicial, and having a junction tree—are related. We
now show that all four properties are actually equivalent:

Theorem 4 The following properties of an undirected graph G are all
equivalent:

Property (T): G is triangulated.
Property (D): G is decomposable.
Property (R): G is recursively simplicial.
Property (J): G has a junction tree.

We prove the sequence of implications .T /) .D/) .R/) .J /) .T /.

(T)) (D): We proceed via induction on the graph size N . The claim is trivial for
N D 1, so let us assume it for all graphs with N vertices, and prove that it also
holds for any graph G with N C 1 vertices. If G is complete, then it is certainly
decomposable. Moreover, if G has more than one connected component, each
of which is complete, then it is also decomposable. Otherwise, we may assume
that at least one connected component of G is not complete. (Without loss of
generality in the argument to follow, we assume that G has a single connected
component which is not complete.) Since G is not complete, it contains two non-
adjacent vertices a; b. Let S be a minimal set that separates a and b; the set S
must be non-empty since G has a single connected component. Define A as the
set of all vertices connected to a in VnS , and set B WD Vn.A [ S/. Clearly, S
separates A from B in G.
Now we need to show that S is complete. If jS j D 1, the claim is trivial. Other-
wise, for any two distinct vertices s; t 2 S, there exist paths .s; a1; : : : ; ai ; t/ and
.s; b1; : : : ; bj ; t/ where ak 2 A, bk 2 B and i; j � 1. (This claim relies on the
minimality of S : if there did not exist a path from a to s, then vertex s could be
removed from S. Similar reasoning applies to establish a path from a to t , and
also the paths involving B .)
We claim that s and t are joined by an edge. If not, take the path from s to t
through A with minimal length, and similarly for B . This pair of paths forms a
cycle of length at least four, which must have a chord. The chord cannot be in A
or B , since this would contradict minimality. It cannot be between vertices in A
and B since S separates these two sets. Therefore, s and t are joined, and S is
complete.
Finally, we need to show that A[ S and B [ S are also decomposable. But they
must be triangulated, since otherwise G would not be triangulated, and they have
cardinality strictly smaller than N C 1, so the result follows by induction.
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(D)) (R): Proof by induction on graph size N . Trivial for N D 1. To complete
the induction step, we require the following lemma:

Lemma 6 Every decomposable graph with at least two vertices has at least two
simplicial vertices. If the graph is not complete, these vertices can be chosen to be
non-adjacent.

Proof Proof by induction on graph size N . Trivial for N D 2. Consider a
decomposable graph with N C 1 vertices. If the graph is complete, all vertices
are simplicial. Otherwise, decompose the graph into disjoint sets A, B and S . The
subgraphs A [ S and B [ S are also chordless, and hence we have two simplicial
vertices in A[ S . If A[ S is not complete, these can be chosen to be non-adjacent.
Given that S is complete, one of the vertices can be taken in A. Otherwise, if A[ S
is complete, choose any node in A. Proceed in a symmetric fashion for B . The
simplicial vertices thus chosen will not be connected, since S separates A and B .

ut
Thus, given a decomposable graph, we can find some simplicial vertex s to

remove. We need to show that the remaining graph is also decomposable, so as
to apply the induction hypothesis. In particular, we prove that G decomposable
implies that any vertex-induced subgraph GŒU � is also decomposable. We prove
this induction on jU j. Trivial for jU j D 1. Trivially true if G is complete; otherwise,
break into A[S [B . Removing a node from S leaves Snfsg complete, and A[ S
and B [ S decomposable by the induction hypothesis. Removing a node from A

does not change B [ S , and either leaves A empty (in which case remainderB [ S
is decomposable), or leaves A [ S decomposable by induction.

(R)) (J): Proof by induction on graph size N . Trivial for N D 1. Let s
be a simplicial vertex, and consider subgraph G0 obtained by removing s. By
induction, G0 has a junction tree T 0, which we will extend to a junction tree T
for G. Let C 0 be a maximal clique in T 0 that contains all the neighbors of s; this
must exist since s is simplicial. If C 0 is precisely the neighbors of s, then we can
add s to C 0 so as to obtain T , which is a junction tree for G.
If not (i.e., if C 0 contains the neighbors of s as a proper subset), then we can add
a new clique containing s and its neighbors to T 0, with an edge to C 0. Since s is
in no other clique of T and Cnfsg is a subset of C 0, the tree T 0 is a junction tree
for G>

(J)) (T): Proof by induction on number of vertices M in junction tree. For
M D 1, G is complete and hence triangulated. Consider a junction tree T with
M C 1 vertices. For a fixed leaf C of T , let C 0 be the unique neighbor of C in
T , and let T 0 be the tree that remains when C is removed.

Step 1: If C � C 0, then T 0 is a junction tree for G, and result follows by
induction.

Step 2: IfC\C 0 � C (in a strict sense), then consider the subgraphG0 formed
by removing the non-empty set R WD CnC 0 from V. We claim that it is
chordal. First, observe that R has an empty intersection with every clique in
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T 0 (using junction tree property). (That is, say R \ D ¤ 0 for some clique
nodeD in T 0. Then there exists s 2 C \D, but s … C 0, with violates running
intersection.) Follows that T 0 is a junction tree for G0, and so G0 is chordal (by
applying induction hypothesis).

Step 3: Now claim that G is chordal. Any cycle entirely contained in G0 is
chordless by induction. If the cycle is entirely within the complete subgraph
GŒC �, it is also chordless. Any other cycle must intersectR, C \C 0 and VnC .
In particular, it must cross C \C 0 twice, and since this set is complete, it has
a chord.
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