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Preface

In the past 20 years, we have been witnessing a revolution in information and
communication technologies, consisting in an astonishing progress in different
research fields. Innovations have been developed not only in the classical fields
of wireless communication (design of high performance codes very close to the
Shannon limit), computer engineering (parallel computing, computer vision, data
mining), bioinformatics (genome interpretation), and VLSI technologies, but also in
new areas such as wireless sensor networks and smart dust, air traffic control, large
scale surveillance, unmanned mobile multi-vehicle systems, biological networks
interpretation, and so on.

All of these problems deal with complex systems and large scale optimization,
and require a prohibitive amount of computational effort even in low dimensions.
The complexity calls for robust and adaptable solutions. In spite of the inherent
difficulties, fundamental contributions have already appeared, based on the principle
that most of complex systems are the result of the interactions of numerous, but
rather simple entities. The complexity is then a consequence of the interactions
architecture, that can be described by a network, and solutions can be developed
from mathematical models that describe how the local rules originate the global
behavior.

The mathematical tools useful to address these new scientific issues come mainly
from combinatorics, probability theory, and statistical mechanics. The concept of
graph plays a prominent role: not only it is the natural model for any communication
network, but also it describes interactions among variables, as exploited, e.g., in
graphical models in modern coding theory.

In particular, random graphs are a suitable model to describe complex networks
(e.g., internet, wireless communication networks, sensor networks). Randomness
enters at different levels, to mimic the development of complex networks, to model
faults or noise in the communication links, or also to find typical codes or algorithms
with good properties. For a deep analysis of such random models, probabilistic
techniques are essential, among which we mention concentration inequalities, large
deviation theory, and percolation. In case of aggregation of simple entities, where
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vi Preface

complexity rises from the network of interactions, statistical mechanics is a natural
approach.

The summer school “Mathematical Foundations of Complex Networked Infor-
mation Systems” was organized by CIME, with the contribution of Newcom++,
in Verrès (Aosta Valley, Italy) in 2009. The aim of the school was to give
an introduction to some of the fundamental scientific issues emerging in these
disciplines. It consisted of four courses, each of 6 h.

The course of Prof. Béla Bollobás focused on random graphs: it provided all
the necessary probabilistic tools and proposed a number of different ways to model
randomness.

The course of Prof. P.R. Kumar focused on communication networks, in partic-
ular on the issues of the transmission of information along a network where there
are simultaneously many potential receivers and many potential transmitters. Prof.
Kumar presented the basic information theoretic aspects of wireless communication
networks.

The other two courses addressed the analysis of distributed algorithms over
networks and, more generally, over graphical models. Particular emphasis was given
to the famous message passing algorithms which have applications in a broad variety
of contexts including artificial intelligence, distributed inferential statistics, coding
theory, and combinatorial optimization. The course of Prof. Riccardo Zecchina
described the statistical physics interpretation of these algorithms with special
attention to applications in classical combinatorial optimization problems. The
course by Prof. Martin J. Wainwright instead focused on the probabilistic aspects
of message passing algorithms and their relation with the relaxation techniques in
optimization theory.

About 70 people from all over the world attended the school. Among them,
there were senior graduate students and post-doc researchers in pure and applied
mathematics, information engineering, and physics.

The overall aim of this book is to record the results presented during the summer
school.

Torino, Italy Fabio Fagnani
Torino, Italy Sophie M. Fosson
Torino, Italy Chiara Ravazzi
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Some Introductory Notes on Random Graphs

Fabio Fagnani, Sophie M. Fosson, and Chiara Ravazzi

1 Introduction

In the last decades, the words complexity and networks have constantly increased
their presence in the scientific literature and have become popular even in our
everyday life. Born in different contexts, nowadays they are often associated to
characterize the so-called complex networked systems, that are of outstanding
importance in our society and range from natural phenomena to technological
models. A common example is the internet network, today accessed by one third
of the world population and in continuous expansion. While most of the internet
users have no deep insight of its architecture, everyone has an idea of its networked
nature and has made experience of its complexity, which affects its use in terms of
bottlenecks and communication delays.

While giving a definition of complex networked system is tricky, it is easy to
provide examples, as they are involved in a number of different fields such as
physics, computer science, economy, finance, biology, epidemiology, sociology.
The common point of such systems is the presence of a large number of objects
(individuals, sensors, computers, cells, molecules) that interact in a way that
presents strong irregularities, e.g., following patterns that vary in time, sometimes
randomly, with unclear modifications of roles and clustering behaviors. It is worth
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2 F. Fagnani et al.

noting that the dimension of the network (that is, the number of interacting
components) does not automatically determine the complexity: if they present good
scalability properties, large networks may be simple. Complexity arises because of
the topology of the interconnections which enhance rapid diffusion of information
and because of the non-linear and probabilistic nature of the interaction laws
guiding the dynamics over the network. In these cases, the global behavior of
the network shows complexity features which by no means can be seen as the
addition of the many individual behaviors. Often, such systems can exhibit transition
phase phenomena with drastic change in their functional modes when even small
and localized perturbations take place. The first seminal work on complexity has
been done by physicists: from gas to chaos theory, they have studied the large
scale consequences of the interactions among a number of small components,
which assumes a networked structure; statistical mechanics is clearly an appropriate
language to describe such large scale networks as well the connection between
the micro and macro observation scales. Analogously, biologists, economists,
anthropologists have analyzed existing systems of their interest considering the
complexity generated by connectivity among organisms or individuals. Complex
infrastructural networks have also attracted the attention of engineers and computer
scientists since a while. The digital revolution has created many new applications:
besides the world wide web, there are the wireless cellular networks, and the more
futurist sensor networks. Other remarkable examples are the electrical networks
including the recent smart grids and transportation networks. In most of these uses,
artificial networks have grown in time so much that a fully faithful representation
of them is not available. Often these infrastructure networks have been optimally
designed for the business-as-usual behavior and they present high fragility to small
perturbations which may lead them to unpredictable and unstable dynamics (e.g.,
cascading failures, blackouts, crashes).

Whatever perspective is considered, it has become fundamental to understand
and efficiently describe complex networked systems, as well to establish new
paradigms for their design and control.

This series of lectures is aimed at introducing the reader to the mathematical
theory of complex networked systems. A few fundamental issues are proposed, that
show how research in this field necessarily has to cope with a double difficulty: the
problem of constructing coherent mathematical models sufficiently rich to be able
to describe the existent complex networks and, on the other side, simple enough
to be amenable for a general mathematical theory. While elegant and complete
mathematical results already exist for certain specific problems, it is true that the
mathematical theory of complex networks is far from being complete and many
outstanding problems still wait for an answer.

The required background is limited to undergraduate-level calculus, linear
algebra, probability theory, information theory and combinatorics. As the concept
of graph plays a fundamental role in every aspect of complex networks, in this
first section, we will provide a brief introduction to graph theory with particular
focus on models of random graphs for their role of furnishing the simplest and
more effective way to exhibit large scale graphs having properties similar to the real
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life networks (like for instance the world wide web). After recalling basic notation
and concepts on graphs, we will consider three different models of random graphs
for their crucial role in the analysis and simulation of large scale networks. We
will make an attempt to present both rigorous mathematical results and applications
examples, without much details, but with precise references to retrieve them. We
will restrict our analysis to specific aspects that are of much interest for us and for
the purpose of this book, in particular we will analyze the asymptotic behavior of
random graphs when the size tends to infinity, in terms of connectivity, existence of
giant components, distances, and local topological structure.

The lecture notes “Statistical physics and network optimization problems” by
Carlo Baldassi, Alfredo Braunstein, Abolfazl Ramezanpour, and Riccardo Zecchina
contain a statistical mechanics approach to analyze phase transitions and opti-
mization problems over complex random structures. First, they show the classical
Potts model in theoretical physics can be of use to analyze percolation (e.g. the
structure of connected components) in random graphs. Afterwards, they show how
more complex combinatorial optimization problems can be studied and solved by
using more advances statistical mechanics techniques like the cavity method and the
message passing algorithms. The presence of phase transitions in such problems is
a key feature which is deeply analyzed in these notes.

Message passing algorithms also constitute the core of “Graphical models and
message-passing algorithms: some introductory lectures” by Martin J. Wainwright,
which discusses how graphical models provide an almost universal framework for
describing statistical dependence in collections of random variables. At their core
lie various correspondences between the conditional independence properties of
a random vector, and the structure of an underlying graph used to represent its
distribution. Message passing algorithms are introduced and analyzed in detail in
their standard form (sum-product and max-product) to solve global computation
tasks over graphical models and, in particular, in their application to solve statistical
inferential problems (e.g., maximum likelihood).

Finally, the lecture notes “Bridging the Gap Between Information Theory
and Wireless Networking” by P.R. Kumar focus on a very important applicative
example: wireless networks. They provide an account of an approach to studying
wireless networks with arbitrary numbers of nodes focusing on the problem of
characterizing their capacity, namely the amount of information that can be globally
simultaneously transmitted among the various nodes. The chapter begins with a
primer on Shannon’s information theory for point-to-point communication, as well
as an account of some networks for which the capacity has been characterized.
Wireless networks are first modeled on the basis of the current radio technology,
providing a framework where capacity can be defined and bound. A key feature
of this approach is that it models the physical context of space and distance which
are very relevant to wireless networks. Next, challenging the technological model,
one attempts to obtain a more definitive characterization of capacity that is not
beholden to a particular technology. In this new context nodes are imagined to
be embedded in space and attenuation is a function of distance. Performance are
analyzed taking into account data rates and distances over which the data are carried,
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obtaining a fundamental connection between the capacity of wireless networks and
the attenuation properties of the medium.

2 Generalities on Graphs

The mathematical model of a network is the graph, which has been studied by
many remarkable pure mathematicians in the last decades. Its definition is incredibly
simple: a graph is a pair of sets G D .V;E/ where E is a subset of V2 [3]. Typically,
V is known as the set of nodes and E as the set of edges that join some nodes.
This is the basis for graph theory, which today envisages different branches and
has reached deep results which, besides being important in complex networks, have
played a pivotal role in other areas of mathematics such as combinatorics, algebra,
and topology.

The purpose of these introductory notes is to help the reader to understand what
are the objects of study, the phenomena, and the mathematical tools addressed by
random graph theory. Roughly speaking, a graph is said to be random when its
properties are determined by probabilistic rules. In the following, we will present
three outstanding models (Erdős and Rényi model, configuration model, and random
geometric graphs) that will clarify this concept.

Before presenting the models, we point out that in the theoretical analysis of the
statistical aspects of graphs two main methodological lines can be distinguished.
The first one concerns the estimation of the proportion of graphs having a certain
property. This approach is deterministic and uses the theory of combinatorial
enumeration (Polya’s enumeration theorems, generating functions, differential oper-
ators) in order to obtain exact formulae and to investigate asymptotic behavior.

The second methodological line, which is the one studied in these notes, is
nowadays more relevant. It was introduced at the beginning of the 1960s by Erdős
and Rényi in their pioneering works [6–9]. Its novelty consists in the use of the
probabilistic method to prove structural properties, or the existence of a graph with
certain properties; in other terms, random graphs are used to prove deterministic
properties of the graphs. A probability space, called graph ensemble, is constructed
and then it is shown that a randomly chosen graph from such space (named typical
graph) satisfies the desired properties with high probability. As explained in the
preface of the prominent book of Bollobás [3], the idea of using probability to tackle
deterministic problems has a long history, and examples can be found throughout
the entire past century in mathematical analysis, combinatorics, number theory, and
geometry. Extending the above mentioned procedure, in general the probabilistic
method aims at proving that “a structure with certain desired properties exists
through the definition of a suitable probability space of structures and then by
showing that the desired properties hold in this space with positive probability”,
as explained in the preface of the book by Alon and Spencer [1] dedicated to the
argument.
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The surprising fact is that “the probabilistic ideas proved to be so important in
the study of such simple finite structure as graph” [3]. But as Bollobás noticed in his
preface, this is likely only the beginning of the diffusion of probabilistic methods to
solve more and more complicated problems far beyond graph theory.

Since the seminal works of Erdős and Rényi, the literature on random graph
theory has been grown exponentially, due also to the spread of networked social
and technological systems in everyday life and to the novel interest for networked
systems present in nature. Different communities are involved in this expansion: if
mathematicians have been attracted by random graph theory from the beginning,
the interest from physicists and biologists has grown due the implications in
their research fields. This has originated a heterogeneous amount of works, where
the more applications’ oriented are from the physics community, and the more
rigorous from mathematics. Providing an exhaustive bibliography is pretty much an
impossible mission: even just making a list of all the survey books on the argument
is a huge work. For the purpose of these notes, we suggest the reader to refer to
the already mentioned book of Bollobás [3], which contains much information and
references. A second, more recent reference is the book by Durrett [5], while for
more tutorial reading we recommend the lecture notes by van der Hofstad [20]. This
is enough to have a good overview on the problem from a rigorous mathematical
viewpoint, while specific references for the single models will be given in the next.

The relationship between random graph models and real complex networks is
analyzed in a very readable survey by Newman [15], which explains how the
research on graphs has changed in the last years due to explosion of large networked
systems in real applications. Networks with millions of nodes and links are now the
object of interest, which drives the study on graphs to new questions, in particular
regarding the behavior of graphs when their size tends to infinity. Moreover, a
number of different properties are now taken in consideration like the presence of
giant components, clustering, resilience, small-world phenomena. In [15] a wide
overview on the most important types of networks is proposed, with distinction
between social, information, technological and biological networks. Afterwards,
some models are analyzed and their mathematical properties are reviewed, in
order to understand how well such models can predict the real complex networks
behaviors and which gaps are still present that do not allow to describe some
observed phenomena. A bibliography of some hundreds of references is finally
provided.

The models presented in the introductory notes will be described through
rigorous mathematical results. We will skip most of the details, but we will supply
precise bibliographic references for each topic. The aspects we will analyze are
those of much interest for the purpose of this book, specifically, the asymptotic
behavior of graphs with size tending to infinity, in terms of connectivity and
existence of giant components. Generalities on these concepts are given in the next
section, which also retrieves the necessary definitions and notations about graphs.
Afterwards, we will introduce large scale networks and finally describe the three
above mentioned random graph models.
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2.1 Basic Definitions and Notation

We now provide some vocabulary and fundamental notations on graphs.
As already sketched, a graph is a pair G D .V;E/ where V D f1; : : : ; ng is

the set of nodes (or vertices) of G, and E � V � V is the set of edges (or arcs),
whose elements are oriented pairs .v;w/ representing the connecting links between
two nodes (v 2 V and w 2 V). The cardinality of the vertex set jVj D n is called
the order of the graph. A graph can be pictorially described by drawing nodes as
dots and edges as arrows: if .v;w/ 2 E, we connect nodes v and w in such a way
v is the tail and w is the head of the arrow. A graph G is said undirected if when
.v;w/ 2 E, then also .w; v/ 2 E. We say that a graph is simple if no self-loop is
present, namely if .v; v/ … E for all v 2 V. We define the in-degree and out-degree
as d in

v D jfw 2 V W .w; v/ 2 Egj and d out
v D jfw 2 V W .v;w/ 2 Egj, respectively.

If G is undirected then d in
v D d out

v D dv . A graph G is said regular if dv is constant.
Given two graphs G D .V;E/ and H D .W;F /, they are said to be isomorphic

if there exists a bijection ' W V!W such that .v;w/ 2 E ” .'.v/; '.w// 2 F
and we write G ' H . Two isomorphic graphs essentially simply differ by a different
labeling of the vertices. Throughout this book we shall consider two isomorphic
graphs as identical.

We define the intersection and the union of two graphs G D .V;E/ and H D
.W;F / as the graphs obtained by G [ H D .V [W;E [ F / and G [ H D
.V \W;E \ F /. On the other hand, we say that a graph H D .W;F / is a
subgraph of G D .V;E/ (H � G) if W � V and F � E. Furthermore, given the
subset W � V the graph G.W/ D .W;E\W�W/ is said to be the W-induced
subgraph .

A path in the graph G is a sequence of vertices ! D .v1; : : : ; v`/ such that
.v1; v2/ 2 E, .v2; v3/ 2 E, . . . ,.v`�1; v`/ 2 E. The path ! is said to connect v1
to v` and ` is the length of the path. A graph G is said to be strongly connected if
8.v;w/ 2 V � V, there exists a !-path in the graph starting in v and ending in
w: If the graph G D .V;E/ is not strongly connected, it is always possible to split
the graph into its strongly connected components. We can consider the partition of
V D V1 [ V2 [ : : :Vm such that if we define Ej D E \ Vi � Vi , the graphs
Gi D .Vi ;Ei / are called the connected components of G.

It is possible to introduce a distance on the vertices of a graph considering
minimal length paths. Precisely, given two vertices u and v in a strongly connected
graph G, we put d.u; v/ D 0 if u D v and equal to the length of the minimal length
path connecting u to v in G. Finally, the diameter of G is defined as

diam.G/ WD max
u;v

d.u; v/:

A cycle in a graph G is a path ! D .v1; : : : ; v`/ where v1 D v`, ` � 3 and all
nodes are distinct. An undirected graph G is called acyclic (or tree) if it does not
possess cycles.
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A graph property Q is called monotone increasing if when G satisfies Q and
G � H then also H satisfies Q. In other terms, property Q is maintained if we
add edges in the graph G: Typical examples of monotone increasing properties are
the strong connectivity or the existence of a specified subgraph in the graph. An
example of a property which is not monotone increasing is acyclicity.

In the next we will use the symbol N and N0 to name, respectively, the set

of positive and non-negative integers. Moreover, we will use
p�! to indicate the

convergence in probability.

2.2 Large Scale Networks

In these notes we will focus on large size graphs, motivated by the plethora
of applications that envisage large networks. Nowadays, on one hand there is
interest in considering large scale infrastructure networks like internet, electrical
grids, wireless sensor networks, or web based social networks like Facebook and
Twitter. On the other hand, large scale graphs naturally appear in the design of
high performance algorithms for coding and compressing signals. Typical networks
encountered in such applications have some common properties about connectivity
and degree which can be accurately detected in real examples; the key point is to
understand how to construct abstract graphs possessing exactly these properties.
The reason is quite evident: simulations in real infrastructure networks or in social
networks are difficult and expensive, and one hopes to be able to use theoretical
simple models to perform numerical simulations.

Two popular properties of large scale networks, like internet and social networks,
are the following:

• the diameter exhibits a slow growth in the number of nodes, typically of
logarithmic type;

• the distribution of the degrees of nodes follows the so-called power law.

The construction of families of graphs exhibiting such properties is thus relevant
for the analysis and simulation purposes of complex networks. In other contexts,
where the graph represents the architecture of an underlying distributed algorithm,
similar requirements occur. For instance, in the design of graphs describing low
density parity check codes, the following issues are fundamental:

• the distribution of degrees of nodes follows some prespecified strict requirement;
• all cycles are all of large length (typically logarithmic in the number of nodes) so

that the graphs locally exhibit a tree-like structure.

A remarkable achievement of modern graph theory is to prove the existence of
families of graphs with specific properties as those discussed above and, even more
important, to give explicit simple recipes to construct them concretely. Random
graph theory is one of the most powerful tools to address such problems.
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3 Erdős-Rényi Model

Roughly speaking, the Erdős-Rényi graph [6, 7] is a random graph Gn;p of order n
in which the edges connecting nodes are included independently with probability
p 2 .0; 1/. More precisely, if G is a specific graph over Vn D f1; : : : ; ng with m
edges then P.Gn;p D G/ D pm.1 � p/.n2/�m. If p D 1=2 then all graphs with n
vertices are chosen with equal probability.

All the results we now present about Erdős-Rényi graphs can be retrieved, with
more details, in a variety of books, e.g., in the comprehensive book [3] and in the
more recent notes [20].

It should be noted that as p increases from 0 to 1, the model becomes more and
more likely to select graphs with more edges (see Fig. 1). The following result is
thus quite intuitive.

Proposition 1 If Q is a monotonic increasing property, then the probability
P.Gn;p satisfies Q/ is an increasing function of p 2 .0; 1/.

Remark Although simple, it is instructive to see a proof of the above proposition,
for which an interesting relationship between Gn;p and Gn;q with 0 � p < q � 1
can be used. It is immediate to notice that the ensemble H D Gn;p [Gn; q�p

1�p
has the

same probability distribution than Gn;q . As Gn;p � H , we conclude that

P.Gn;p satisfies Q/ � P.H satisfies Q/ D P.Gn;q satisfies Q/:
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Fig. 1 Examples of Erdős-Rényi graphs with n D 100 nodes. Left: An edge is drawn with
probability p D 0:05. Right: An edge is drawn with probability p D 0:5
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Main focus in these notes will be on the behavior of random graphs in the so
called large scale limit, namely when the number of vertices n tends to infinity. The
parameter p will be a function of n and, typically, the ensemble will exhibit drastic
change in clue graph properties (e.g. connectivity) as p crosses some threshold.
Given a monotonic increasing propertyQ, we say that a function �.n/ is a threshold
function for Q if the following happens, for n! C1:

• if p >> �.n/, Gn;p satisfies property Q with probability 1;
• if p << �.n/, Gn;p satisfies property Q with probability 0.

When such a threshold function exists, we say that a phase transition occurs
at that threshold. It is a remarkable fact that, for many key properties a threshold
function indeed exists for the Erdős-Rényi ensemble. Below we will study in detail
two important instances of this phenomenon which are the connectivity and the
presence of a giant connected component in the graph.

3.1 Connectivity and Giant Component

Regarding connectivity, the following result holds, which implies that �.n/ D
lnn=n is a threshold function for such property.

Theorem 1 Let !n !C1 for n!C1. The following facts hold true.

1. If p D ln nC!n
n

, then P.Gn;p is connected/
n!C1�! 1.

2. If p D ln n�!n
n

, then P.Gn;p is connected/
n!C1�! 0.

We illustrate this result through numerical simulations in Fig. 2. On the left, the
empirical probability of the event fGn;c ln.n/=n is connectedg is depicted as a function
of the parameter c 2 .0; 2/ averaged over 50 independent graph samples for five
network sizes, i.e., for n 2 f100; 200; 500; 1000; 5000g.
Remark The proof of the above theorem is not particularly difficult. Here we only
illustrate some methodological ideas involved in the proof since they are quite
ubiquitous in such field and also because some striking facts indeed happen.

Let N1 be the number of isolated vertices in Gn;p . It is clearly a random variable
whose mean satisfies

E.N1/ � n.1 � p/n�1: (1)
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Fig. 2 Left: Empirical probability that Gn;c ln.n/=n is connected as a function of the parameter
c 2 .0; 2/ averaged over 30 independent graph samples. Right: Theoretical threshold function
for connectivity

Simple calculus derivations show that

lim
n!C1E.N1/ D

�
0 ifp D ln nC!n

n

C1 ifp D ln n�!n
n

:

This seems to suggest that above the threshold isolated vertices are absent while
there are plenty of them below the threshold. Unfortunately, this computation is by
itself not sufficient to conclude anything rigorous regarding the connectivity. On one
hand, the absence of isolated vertices does not yield connectivity of the graph and,
on the other hand, when E.N1/ blows up, nothing can be concluded on P.N1 > 1/

since Markov inequality only yields P.N1 > 1/ < E.N1/. Below we will briefly
describe the arguments needed to make rigorous conclusions.

Let Nk be the number of connected components of cardinality exactly k inside
Gn;p and notice that

fGn;p is disconnectedg �
nPb n2 c

kD1 Nk � 1
o

fGn;p is connectedg � fN1 D 0g
:

The proof of point 2. in Theorem 1 is obtained by first estimating E.Nk/ by

E.Nk/ �
�
n

k

�
.1 � p/k.n�k/ (2)

This inequality simply comes from counting those subsets of k nodes isolated from
the rest of the graph, and is indeed an equality for k D 1. Markov inequality yields

P.Gn;p is disconnected/ � P

0
@

b n2 cX
kD1

Nk � 1
1
A � E

0
@

b n2 cX
kD1

Nk

1
A (3)
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and result then follows by applying careful asymptotic estimations to (3). The proof
of point 1. in Theorem 1 instead is obtained by Chebyshev inequality:

P.Gn;p is connected/ � P.N1 D 0/ � P
�jN1 � E.N1/j2 � jE.N1/j2

�

� E jN1 � E.N1/j2
jE.N1/j2

by explicitly computing the variance of N1. What is remarkable is the fact that
such simple and apparently rough idea might work: the threshold for connectivity
apparently is the same as the threshold for the disappearance of isolated nodes in
the graph!

Below the threshold of connectivity, isolated vertices appear as well as other
small isolated subgraphs. However, most of the graph remains connected, in
other words the graphs still exhibits the presence of a so called giant component
whose threshold of appearance is sensibly smaller at �.n/ D 1=n. Given a node
x 2 Vn, we denote by Cx the connected component containing x. The following
result captures the phenomenon (and is actually much more informative than just
determining the threshold function).

Theorem 2 The following facts hold true.

1. If p D c
n

with c > 1 then, there exists ˇ > 0 such that

P.jfx 2 Vn s.t. jCx j � ˇ ln ngj D 1/! 1 as n!1:

Moreover, the only component C Nx such that jC Nx j � ˇ lnn, indeed satisfies
jC Nxj 	 �n for some � 2�0; 1Œ.

2. If p D c
n

with c < 1, then for any ˇ > 0 such that

P.max
x2Vn

jCxj � ˇn/! 0 as n!1:

It is important to remark the type of phase transition occurring when we pass the
threshold �.n/ D 1=n. Below it only components of logarithmic size exist, while,
above it, suddenly a giant component containing a non vanishing fraction of nodes
exists while all other components are small and remain of logarithmic size.

The fraction size � of the giant component when we choose p D c
n

with c > 1 is
a function of the parameter c and, quite amazingly, can be analytically characterized
and numerically computed. In Fig. 3 the linear growth rate of the giant component
of the Gn;c=n is shown as a function of the parameter c 2 .0; 4/ averaged over 50
independent samples of the graph.
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Fig. 3 The linear growth rate of the giant component of the Gn;c=n is shown as a function of the
parameter c 2 .0; 4/ averaged over 50 independent samples of the graph

3.2 Branching Processes

The theory of branching processes plays a key role in the proof of Theorem 2 and
also in the next models we will describe. Here, we review the basics of such theory.

Branching processes model the growth of a population of individuals where each
individual reproduces with the same outspring distribution. Formally, let us consider
a family of i.i.d random variables �ti (with indices t 2 N and i 2 N) taking values
over N to be interpreted as the number of descendants of individual i of generation
t . The branching process Zt is a Markov process defined by the recursive formula

ZtC1 D
8<
:

ZtP
iD1

�ti ifZt > 0

0 ifZt D 0

with the initial condition Z0 D 1. The main issue regarding the branching process
is to establish the so called extinction probability, formally defined as

q WD Pf9t 2 N jZt D 0g:

Assuming that E.�ti / D � < C1, a simple conditioning argument, shows that
EŒZt � D �t so that quite a different behavior is showing depending if � < 1 or
� > 1.
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In the first case � < 1, indeed, we have that, by Markov inequality P.Zt � 1/ �
�t and a straightforward application of Borel-Cantelli lemma yields that P.Zt �
1 ;8t/ D 0. Thus, in the case � < 1 we have that q D 1, namely the process will
extinguish in finite time with probability 1.

To analyze the case when � > 1, it is useful to study the evolution of qt WD
P.Zt D 0/ the probability that, by time t , the process has extinguished. Notice that
qt is an increasing sequence converging to q. This sequence allows for a recursive
characterization based on conditioning on the first generation outspring. Put pk D
P.�ti D k/. We have that

qtC1 D
X
k

P.Zt D 0 jZ1 D k/P.Z1 D k/ D
X
k

qkt pk:

If we consider the generating function f .z/ D P
k zkpk , we can rewrite this as

qtC1 D f .qt /. Notice that f 0.z/ � 0 and f 00.z/ � 0 so that f W Œ0; 1�! Œ0; 1� is an
increasing convex function such that f .0/ D p0 and f .1/ D 1. The sequence qt will
converge to the smallest solution of the equation f .z/ D z which thus coincides with
the extinction probability q. Notice that in the case when � > 1, there are always
exactly two solutions to such equation, the smallest of which in Œ0; 1Œ. This implies
that the extinction probability q is always strictly less than one; in other words there
is a non vanishing probability that the process will not die out.

What is the relation between branching processes and Erdős-Rényi random
graphs? Imagine you have fixed a node v and you reveal the graph Gn;p step by step,
starting by v, then considering its first neighbors, then the second neighbors and so
on. Interpreting the neighbors of a node as offspring, we get the connection with
branching processes. More precisely, the number of nodes at distance exactly t from
v can be upper bounded by a branching process Zt with an offspring distribution
given by a binomial B.n � 1; p/. It is not an equality because of two facts: (1)
there may be cycles in the graph corresponding to intersections in the offspring of
different nodes; (2) as we proceed revealing the graph, possible neighbors can only
be drawn from smaller subsets, then the actual offspring is a binomial B.k; p/ with
k < n � 1 (see Fig. 4).

We can thus assert that

jCvj �
X
t

Zt :

In the case when c < 1, the mean� D .n�1/p < 1 and we know that the branching
process will die out with probability 1. This will also imply that the cardinality of
Cv will be bounded, with probability 1, with respect to n. In more informal terms,
in the case when c < 1, if we pick a node and consider the connected component
in Gn;p containing this node, with high probability it will be “small” not growing
when n ! C1. While this fact is not sufficient to prove item 2. in Theorem 2,
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Fig. 4 Approximation of an Erdős-Rényi graph (left) with a branching process (right). The
number of nodes of an Erdős-Rényi graph can be upper bounded by a branching process with
offspring distribution B.n� 1; p/. We have not an equality because in an Erdős-Rényi graph there
can be cycles and also the possible number of nodes decreases while exploring the graph

it is the first step in that direction and it gives an intuitive understanding of the
reason for the absence of a large connected component. In the case when c > 1

the corresponding branching process has an extinction probability q < 1. Since the
one above is only an upper bound, in principle it does not infer anything regarding
the existence of a giant component. More refined arguments who estimate the gap
between the branching process and the real random graph, however allow to prove
also item 1. in Theorem 2. The interesting fact is that the fraction size of the giant
component � is equal to 1 � q the probability that the corresponding branching
process will not extinguish in finite time. Intuitively we can imagine the following
scenario: for every node v you consider the branching process as described above,
with probability 1 � q it will not die out. The average number of nodes having
a non extinguishing branching process will be .1 � q/n: they will form the giant
component of the graph.

3.3 Behavior at the Giant Component Threshold

The regime where p D c
n

where c is a constant > 1 is of particular applicative
importance. Indeed, as seen before, in this regime a giant component appears with
probability 1 as n ! C1. A number of other interesting facts indeed happen and
we are going to review them below. First notice the way degrees behave: given a
node v, its degree dv is a binomial random variable B.n; p/, which, in the regime
considered, converges, when n ! C1, to a Poisson random variable P.c/ having
mean equal to c. Differently from the connectivity threshold, where degrees have
unbounded mean, in this regime degrees are bounded: in many applicative contexts
this property is indeed quite natural to have.
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Another interesting feature of such graphs is the tree-like structure they exhibit.
Indeed, for a fixed node v 2 Vn, let Nk.v/ be the number of cycles of length k
passing through node v in Gn;p . A simple enumerative argument yields

EŒNk.v/� D 1

2
.n � 1/.n � 2/ : : : .n� k C 1/pk:

Using Markov’s inequality, it thus follows that

P.9cycle of length � k containing v/ � 1

n

c3

2

ck�2 � 1
.c � 1/ :

This shows that cycle of logarithmic length through a node are unlikely. Indeed, can
also be rewritten as

P.9 cycle of length � a logn containing v/ � cna log c�1

2.c � 1/
n!C1�! 0 ;

for all a < 1= log c.

4 Configuration Model

The possibility to construct graphs possessing a specified degree distribution is very
useful for its application to real world networks [4]. Real world networks, in fact,
often exhibit power law behavior, which does not show up in the classical Erdős-
Rényi model. This section is devoted to introduce a new random graph model where
the degree distribution can be assigned in an arbitrary way.

Given n 2 N and the sequence d D .d1; : : : ; dn/ such that
Pn

iD1 di is even, the
configuration model is a random graph with n vertices whose degrees are specified
by d. The construction is quite simple: endow each vertex i 2 f1; : : : ; ng with di
half edges (also called stubs) and then match uniformly at random all the half edges
[3]. More precisely, given d, we consider a sequence where node 1 is repeated d1
times, node 2 is listed d2 times, and so on:

1; : : : ; 1„ ƒ‚ …
d1

; 2; : : : ; 2„ ƒ‚ …
d2

; : : : n; : : : ; n„ ƒ‚ …
dn

;

If we then consider a random permutation of the entries of this sequence, and then
take the entries sequentially in pairs, we obtain a random matching of the stubs of
the nodes. Figure 5 shows an instance of the configuration model obtained via stub
matching technique.
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Fig. 5 Example of a graph with n D 100 nodes obtained via stub matching technique with degree
sequence d D 61

In this way, a multigraph is built, that is, a graph in which self-loops and multi-
edges are allowed. However, the number of self-loops and multi-edges is typically
a vanishing fraction when n!1 and can generally be safely ignored. In the next,
we denote such random multigraph by Gn.d/

In the spirit of large scale networks, even in this case we are interested in
considering ensembles when n!C1. To this purpose we fix a discrete probability
distribution over the positive integers .pk/k2N and consider a sequence d.n/ D
.d1; : : : ; dn/ such that

jfi D 1; : : : ; n W di D kgj
n

n!1�! pk:

We will refer to .pk/k2N as to the degree distribution of the ensemble. We put

� WD
1X
kD0

kpk; �2 D
1X
kD0

k2pk

and we assume to be both finite.
In the following sections, we pursue an analysis analogous to what was done for

the Erdős-Renyi model, presenting a number of results studying the threshold for
connectivity and appearance of a giant component.
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4.1 Connectivity and Giant Component

In this section, we study the properties of the configuration model in terms of
connectivity and existence of a giant component. We start with the following
theorem which reformulates Theorem 1 in [14] and characterizes a phase transition
for the existence of a giant component.

We assume we are considering an ensemble of configuration models having
degree distribution .pk/k2N with finite first and second moments � and �2. Put

� WD �2 � �
�

and consider the generating function g.z/ DP1
kD0 pkzk .

Theorem 3 The following facts hold true.

1. If � > 1 then there exists � > 0 such that

P.jfx 2 Vn s.t jCx j � � lnngj D 1/! 1 as n!1:

Moreover the largest connected component C Nx satisfies C Nx 	 .1� g.	//n
where 	 2 Œ0; 1Œ is the unique solution to g0.�/ D ��.

2. If � < 1, then for any ˇ > 0

P.max
x2Vn

jCxj � ˇn/! 0 as n!1:

Remark As for Erdős-Renyi graphs, the growth of clusters can be approximated in
the early stages by a suitable branching process. Below we sketch the basic idea
of this approximation emphasizing the difference with respect to the Erdős-Renyi
model and we give explanation for the role of the parameter � and of the generating
function in the determination of the size of the giant component.

Similarly to the cluster analysis for the Erdős-Renyi graph, let us fix a root v 2 V
randomly uniformly chosen, and explore the graph Gn.d/ step by step, starting from
v, then considering the first neighbors, and so on. The number of nodes at distance
t from v can be upper estimated, as done in Sect. 3.2, by a Branching process which
however, in this case, does not have a homogeneous offspring distribution in time.
Indeed, the first generation neighbors of node v will follows the degree distribution
.pk/ (at least asymptotically in n). However, one moment of thought makes us
realize that the neighbors of v will not possess the same degree statistics; indeed, the
uniform matching of the stubs used in the construction of the configuration model
leads to a non uniform choice of nodes actually privileging high degree ones in a
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way that is proportional to the degree. The correct probability that a neighbor of v
will have k neighbors is thus given by kpk=

P
j jpj (again asymptotically in n).

The right branching process to consider to upper bound the cluster growth is thus a
so-called two-phase branching process Zt defined by the recursive formula

ZtC1 D
(PZt

iD1 �ti if Zt > 0

0 if Zt D 0
with Z0 D 1

in which the first generation has an offspring distribution given by P.�0i D k/ D pk
and the second and later generations generations have offspring distribution

P.�ti D k/ D qk D
.k C 1/pkC1

�

with t � 1. The reason for the index k C 1 is simply due to the fact that the
edge coming from previous generation neighbors is not considered in the offspring.
Notice that, while EŒ�0i � D �, for t � we have that

EŒ�ti � D
X
k

k
.k C 1/pkC1

�
D
X
k

.k � 1/kpk
�

D �2 � �
�

D �:

Therefore, for t � 1, it holds EŒZt � D �t�1�. If � < 1, then EŒ
P1

tD0 Zt � D
1 C �=.1 � �/ and, combining Markov inequality with Borel-Cantelli lemma, we
obtain that P.Zt � 1;8t/ D 0: In this case the process extinguish with probability
one. The case with � > 1 is analyzed by studying the evolution of the sequence
.�t /t2N0 defined by �t D P.Zt D 0/. As in the case of a standard branching process,
conditioning with respect to the first generation offspring allows to express

�tC1 D
X
k

P.ZtC1 D 0jZ1 D k/pk:

Considering that after the first step, our branching process becomes a standard one
with offspring distribution .qk/we have that P.ZtC1 D 0jZ1 D k/ D Q�kt where Q�t is
the extinction probability at time t of a standard branching process having offspring
distribution .qk/. Therefore, using the considerations in previous sections, we can
conclude that the extinction probability �t is governed by the recursive relations

( Q�tC1 D g1. Q�t /
�tC1 D g. Q�t /

where g.z/ D P
k zkpk and g1.z/ D P1

kD0 qkzk D g0.z/=�. The sequence Q�t will
thus converge to the unique solution 	 in Œ0; 1Œ of the equation g1.z/ D z. Since g is
continuous the sequence, �t will converge to g.	/. This allows us to conclude that
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there is a non vanishing probability that the process will not die out. The fraction
of nodes sitting in the giant component is exactly 1 � g.	/ as in the case of the
Erdős-Renyi model.

It can be proved [14] that when no giant component occurs, then there exist a
constant R and a non-negative function !n � n1=8�
 such that the configuration
model has fewer than 2R!2n logn cycles, and no component has more than one
cycle. This states that small components have a tree like structure.

We conclude this discussion by noticing that some previously results about
Erdős-Renyi random graphsGn;p with link formation probabilityp D �=nCo.1=n/
can be obtained from Theorem 3 as a special case. It is well known that for
sufficiently large n, the binomial distribution with parameters n and p D �=n is
close to the Poisson distribution with parameter �. More precisely, we have that

P.di D k/ D e�� �k

kŠ
C o.1/:

Therefore, the giant component emerges when � D �C�2��
�

> 1 or, equivalently,
when � > 1: This fact yields the threshold function �.n/ D 1=n for the emergence
of the giant component.

We now investigate sufficient conditions ensuring the configuration model to be
a connected graph.

Proposition 2 ([20, Theorem 10.14]) Let us assume that di � 3 for every
i 2 Œn� WD f1; : : : ; ng. Then, there exists a constant c > 0 such that

P.Gn.d/ disconnected / � c

n
:

If di � 3 then p1 D p2 D 0, which implies � > 1. Therefore, we
are considering the supercritical regime and Theorem 3 implies that the largest
connected component has size n.1 C o.1// for n ! 1. The proof is based on a
straightforward probabilistic and combinatorial procedure. Let N be the number of
connected components inside Gn.d/. The proof of Proposition 2 is obtained as for
the Erdős-Renyi graph, by first estimating E.N / by

E.N / �
X
˝�Œn�

.
P

i2˝ di /Š.
P

i2Œn�n˝ di /Š
.
P

i2Œn� di /Š

and then by using Markov inequality.
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The relevance of the assertion in Proposition 2 is in the fact that the graph
tends to be connected even if the average degree is bounded, which is a difference
with respect to the Erdős-Renyi graph and is more realistic for many applications.
Moreover, the proposition requires only the degree to be larger than 3 (p1 D p2 D
0), which is a mild condition.

5 Random Geometric Graph

In a random geometric graph, nodes are associated with a position in a d -
dimensional space and are connected when the distance is smaller than a prescribed
radius. Intuitively, this may represent many practical situations. For example, let us
consider the so-called ad hoc networks [12], which are formed by mobile nodes
communicating over wireless channels and without centralized control; a number of
technological applications are envisaged in the ad hoc class, ranging from vehicular
networks to wireless sensor networks. In this field, a fundamental issue is how
much transmission power is necessary to keep the network connected, assuming
that the required power is proportional to the distance between nodes. In particular,
the determination of the critical power, say the minimal power that guarantees
asymptotic connectivity, is much studied [12]. The asymptotic case (say, the number
of nodes tends to infinity) is important because in many applications (for example,
in environmental and habitat monitoring) the number of nodes typically is very
large [19]. In this regime, one can also observe that significant energy savings can
be obtained by disconnecting a small percentage of nodes [17], which attracts the
attention to the study of the largest connected component containing a nonvanishing
fraction of nodes, that is, the giant component.

Motivated by the aforementioned applications, let us now introduce the theory of
random geometric graphs and describe some results about connectivity and presence
of giant components, providing some elements of the mathematical tools used for
the proofs.

Let f be a probability density function on Œ0; 1�d , and let x1; : : : ; xn be
independent and identically distributed points on Œ0; 1�d with common density f .
Given a fixed r > 0, let us consider the graph G.n; r/ D .V;E/ with jVj D n such
that to each vertex v 2 V is associated a position xv in Œ0; 1�d and the edge set is
given by E D f.u; v/ 2 V�V W kxu�xvk2 � rg where k
k2 is the Euclidean norm.
The graph we obtain is symmetric: if .u; v/ 2 E then also .v; u/ 2 E. This model
is called a random geometric graph; other terms which have been used for these
graphs include r-interval graphs (when d D 1), r-disk graphs (when d D 2), and
proximity graphs. To keep the presentation as simple as possible we will review
some results on connectivity, distribution of degrees, and component sizes only
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Fig. 6 Example of a random geometric graph with n D 50 and r D 0:2. Left: x1; : : : ; x50 are
uniformly distributed on Œ0; 1�2. An edge is drawn if two points are at distance below r D 0:2.
Right: the resulting random geometric graph

when the dimension is d D 2 and the points are i.i.d. uniform on the unit square on
Œ0; 1�2. An example of a random geometric graph with n D 50 nodes and r D 0:2 is
provided in Fig. 6.

As in the cases treated in the previous sections, it is difficult to perform precise
computation of probabilities for properties of G.n; r/ except for graphs with a small
size n. Therefore, we consider sequences .rn/n2N and we focus on the asymptotic
properties of graphs G.n; rn/ when n ! 1. In particular, we will compare results
for random geometric graphs with their counterparts in the Erdős-Rényi models.

Before presenting some results, we make some preliminary observations on the
model. If a node v 2 V is placed near the boundary of Œ0; 1�2 (at a distance smaller
than r), then the ball centered at xv of radius r will cover less area then the one
centered in a location point at distance greater than r from the boundary. To avoid
border effects, the region Œ0; 1�2 is meant to form a torus, i.e. points at the border are
assumed to be immediate neighbors of points at the opposite edge of the area.

With this simplification in mind, there exists a link between nodes .v;w/ if and
only if node w lies within a ball centered at xv of radius r . Then the probability
for the existence of the link .v;w/ is given by �r2 (the volume of the ball), which
is independent of location xv ; the degree dv is a binomial random variable B.n �
1; �r2/ with expected degree is .n � 1/�r2, and the expected number of edges is�
n

2

�
�r2.
It is interesting to notice that both random geometric graphs and Erdős-Renyi

graphs Gn;pr2 with edge probability p D �r2 have the same average degree and the
same expected number of edges.
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5.1 Connectivity

The following proposition provides a necessary condition for connectivity [12].

Proposition 3 Let !n ! ! for n! C1 and �r2n D ln nC!n
n

. Then

lim inf
n!1 P.G.n; rn/ is disconnected/ � e�!.1 � e�!/:

Remark Let Nk be the number of connected components of order k. Given a node
v 2 Vn, let us denote by Cv the connected component containing v.

fG.n; rn/ is disconnectedg � fN1 D 1g D
[
v2V

fv is the only isolated node in G.n; rn/g

By the inclusion-exclusion principle we get that

P.G.n; rn/ is disconnected/ �
X
v2V

P.v is an isolated node in G.n; rn// (4)

�
X
v2V

X
w2Vnfvg

P.v;w are isolated nodes in G.n; rn//:

(5)

As already observed the probability of isolation is independent of the node and

P.v is an isolated node in G.n; rn// D .1 � �r2n/.n�1/

and

P.v;w are isolated nodes in G.n; rn// �
�
1 � 2�r2n

�n�2 C 3�r2n
�
1 � 5

4
�r2n

�n�2

(6)

where the first term takes into account the event conditioned to the fact kxv �xwk �
2rn and the second one considers the case with rn � kxw � xvk � 2rn (see Fig. 7).

By substituting these expressions in (4) and estimating them asymptotically we
obtain

P.G.n; rn/ is disconnected/ � e�!.1� e�!/C o.1/; as n!1

which completes the proof of Proposition 3.
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Fig. 7 The upper bound of the probability that v and w are isolated in (6) takes into account both
the cases kxv � xwk � 2rn (left) and rn � kxw � xvk � 2rn (right)
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Fig. 8 Left: Empirical probability that Gn;rn with �r2n D c log.n/=n is connected as a function
of the parameter c 2 .0; 3/ averaged over 60 independent samples of the graph. Right: Threshold
function �r2n D lnn

n
for connectivity

Proposition 3 implies that a necessary condition for asymptotic connectivity is
�r2n D .ln nC !n/=n with !n ! 1. We now present a sufficient condition for
connectivity. More precisely, the following theorem shows that �.n/ D lnn=n is a
threshold function for connectivity (see Fig. 8).

Theorem 4 Let !n !C1 for n!C1. The following facts hold true.

1. If �r2n D ln nC!n
n

, then P.G.n; rn/ is connected/! 1 as n!1:
2. If �r2n D ln n�!n

n
, then P.G.n; rn/ is connected//! 1 as n!1:
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Remark It is surprising that both random geometric graphs G.n; rn/ and Erdős-
Renyi graphs Gn;�r2n have closely related critical thresholds for connectivity.
Although the threshold expression is the same, the proof of asymptotic connectivity
for G.n; rn/ is quite different from that for Erdős-Renyi graphs Gn;�r2n and involves
different tools. This is due to the fact that the event that there are links .v;w/ 2 E
and .w; u/ 2 E is not independent of the event .v; u/ 2 E in the random geometric
graph and, in particular, P..v; u/ 2 E/ < P..v; u/ 2 Ej.v;w/ 2 E; .w; u/ 2 E/.

We start with a simple computation. As already happens in the Erdős-Renyi
model, in the random geometric graphs the main obstruction to being connected is
having a vertex with no neighbours. The numberN1 of isolated vertices is estimated
as follows by

P.N1 � 1/ �
X
v2V

E
�
1.dvD0/

� D nPfd1 D 0g D n.1 � �r2n/n�1: (7)

Then (7) implies that if �r2n D ln nC!n
n

, then

P.N1 � 1/ � e�!nCo.1/ ! 0 as n!1

and suggests P.N1 � 1/ ! 1 as n ! 1 if �r2n D ln n�!n
n

. While it is not hard to
calculate the expected number of isolated vertices, it is difficult to show there are
no other obstructions to connectivity. In fact, the event fN1 D 0g, which is clearly
necessary for connectivity, turns out to be asymptotically sufficient. To prove this
fact, Gupta and Kumar [12] make use of some results of continuum percolation
[10, 13, 16], which plays a crucial role in the graph theory. Introduced in [13], the
continuum percolation theory assumes that the nodes are distributed according to a
Poisson process in R

2 with rate 	 and an edge exists between two nodes if they are
at a distance below r . The goal is to determine a critical threshold for the radius r
such that the origin, which is assumed to be a node of the graph, is connected to an
infinite-order connected component.

5.2 Giant Component

Recently, the emergence of giant components in random geometric graphs has
been studied in different works [11, 16, 18]. Here, we report a result that suits
the assumptions made for out exposition (for d D 2 and points independent and
uniformly distributed over Œ0; 1�2).
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Theorem 5 ([16]) Let rn D �p
n

for any � > 0. Then, there exists a critical

value �c such that the following facts hold true.

1. If � > �c , there exists � > 0 such that

P.jfx 2 Vn s.t. jCxj � �ngj D 1/! 1 as n!1:

2. If � < �c , for any ˇ > 0

P.max
x2Vn

jCxj � ˇn/! 0 as n!1:

In Fig. 9 the average size of the largest cluster of the Gn; �
p

n

without toroidal

boundary conditions is depicted as a function of the parameter � 2 .0; 10/ averaged
over 50 independent samples of the graph. Let �c be the lowest connectivity at which
the fraction of vertices in the largest cluster is greater than 0 in the macroscopic limit.
It should be noted that the critical value is sharply defined and is around �c D 4:52.

The proof of Theorem 5 requires considerable effort (see [16, Chapters 10–11]).
Some simpler proofs have further been provided for subcases of these results. As
an example, in [18] the problem is considered with �r2n D g.n/Cc

n
, where c is any

fixed real number and g.n/ is a positive function such that limn!1 g.n/ D 1 and
limn!1 g.n/

log n D 0: In particular, in [18, Theorem 5], the case of vertices uniformly

distributed over Œ0; 1�2. Its proof is based on percolation arguments.

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 9 The linear growth rate of the giant component of the Gn; �
p

n
is shown as a function of the

parameter � 2 .0; 10/ averaged over 30 independent samples of the graph
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A further recent work on giant components of random geometric graphs is [11].
In [11, Theorem 1] the more general condition c1

n
� r2n � c2 log n

n
, with c1; c2

fixed constants, is assumed to prove the existence of a giant component with high
probability for d D 2. Further suggested readings are [19], where a shadowing
model is considered to investigate more practical transmission power issues, and in
[2], where hyperbolic graphs are studied, in which distances are not Euclidean.
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Statistical Physics and Network Optimization
Problems

Carlo Baldassi, Alfredo Braunstein, Abolfazl Ramezanpour,
and Riccardo Zecchina

The scope of these lecture notes is to provide an introduction to modern statistical
physics mean-field methods for the study of phase transitions and optimization
problems over random structures. We first give a brief introduction to the field using
as tutorial example the percolation problem in random graphs. Next we describe
the so called cavity method and the related message-passing algorithms (Belief
Propagation and variants) which can be used to analyze and solve optimization
problems over random structures.

1 Statistical Physics and Optimization

Equilibrium statistical mechanics and combinatorial optimization have common
roots. Phase transitions are mathematical phenomena which are not limited to
physical systems but are typical of many combinatorial problems, one famous
example being the percolation transition in random graphs. Similarly, the under-
standing of relevant physical problems, such as three dimensional lattice statistics
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or two dimensional quantum statistical mechanics problems, is strictly related to
the question of purely combinatorial origin of solving counting problems over non
planar lattices. Most of the tools and concepts which have allowed to solve problems
in one field have a natural counterpart in the other. While the possibility of solving
exactly physical models is related to the presence of algebraic properties which
guarantee integrability, in the combinatorial approach the emphasis is more on
algorithms that can be applied to specific problem instances.

Many interesting combinatorial optimization problems are NP-hard, implying
that there is no known polynomial algorithm that is able to solve any instance of
the problem. However, there is no a priori reason to assume that instances with real-
world relevance will be specially hard, so the recent years have seen an upsurge
of interest in the theory of typical-case complexity. In practice, hardness can still
be present in random ensembles and one may try to identify those ensembles of
optimization problems which are hard to solve, and the reason for this difficulty.

Combinatorial problems are usually written as Constraint Satisfaction Problems
(CSP): N discrete variables are given which have to satisfy M constraints, all at
the same time. Each constraint can take different forms depending on the problem
under study. Well known examples are the K-Satisfiability (K-SAT) problem in
which constraints are an ‘OR’ function of K variables in the ensemble (or their
negations) and the Graph Q-coloring problem in which constraints simply enforce
the condition that the end points of the edges in the graph must not have the
same color (among the Q possible ones). A generic CSP can be written as the
problem of finding a zero energy ground state of an appropriate energy function
and its analysis amounts at performing a zero temperature statistical physics study.
Hard combinatorial problems correspond to physical model systems with competing
interaction, also called frustrated models.

In these lectures notes we will focus on two tutorial topics. The first one is to
provide a brief introduction to statistical mechanics by showing how it can be used
to study percolation in random graphs. The second is to give an introduction to the
main statistical physics techniques which are used to study optimization problems
over random structures.

2 Elements of Statistical Physics

The objective of statistical physics is to provide a probabilistic description of
the macroscopic behaviour of a system at equilibrium from the knowledge of its
microscopic components.

The implementation of this idea has required the introduction of revolutionary
concepts and the interested reader can consult textbooks e.g. [1–3]. We shall adopt
an operative approach and start from the following postulate.

A configurationC of the system, e.g. the specification of theN particle positions˚
rj
	
, has a probability p .C / to be realized at any time when the system is in

equilibrium. In other words, the probability of observing the system in configuration
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C is given by1

p .C / D 1

Z
exp

�
� 1
T
E .C /

�
: (1)

In the above expression, T is the temperature and E is the energy of the system (a
real-valued function over the set of configurations). The partition functionZ ensures
the correct normalization of the probability distribution p,

Z D
X
C

exp

�
� 1
T
E .C /

�
: (2)

The role of the temperature can be understood by considering two limiting
cases:

1. infinite temperature T D 1: the probability p .C / becomes independent of C
and all configurations are equiprobable. The system is said to be in a “disordered”
phase (physically one may think to a gas or to a paramagnet).

2. zero temperature T D 0: the probability p .C / is concentrated on the minimum
of the energy functionE , called the ground state.

The connection with combinatorics is easily understood by observing that the
normalization factor Z is nothing but the generating function of the configuration
energies.

We may rewrite the partition function (2) as

Z D
X
E

N .E/ exp .�ˇ E/ ; (3)

where N .E/ is the number of configurations C having energies E .C / precisely
equal to E and ˇ D 1

T
. If we set x D exp .�ˇ/ then Z .x/ becomes simply the

generating function of the coefficients N .E/ as usually defined in combinatorics
Z DPE N .E/ xE .

For any configuration C , the entropy is defined as OS .E .C // D logN .E .C //.
This quantity is in general very hard to compute, but in the large size limit N � 1,
and in most cases of interest in statistical physics E is sharply peaked around its
thermal average hEiT , and therefore one can compute the average entropy S 'P

C
OS .E .C // p .C / ' OS .hEiT /, which turns out to be equivalent to the Shannon

entropy of the probability distribution p, as usually defined in information theory,

1Throughout this chapter, we will omit for simplicity the Boltzmann’s constant k; this is always
possible by choosing appropriate measurement units, such that k D 1.
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and which is known as the Gibbs entropy in statistical physics:

S D �
X
C

p .C / logp .C / D � 1
T

�
F .T /� hEiT

�
; (4)

where

F .T / D �T logZ .T / (5)

is called the free-energy of the system. Therefore, it is usual to refer to S simply as
the entropy of the system.

The entropy is an increasing function of temperature, which can be readily
verified by computing the derivative of (4). At zero temperature, it corresponds to
the logarithm of the number of absolute minima of the energy functionE .C /.

The fact that S ' OS .hEiT / is an instance of a more general phenomenon: for
common statistical physics models, intensive statistical quantities such as the energy
density E=N and the entropy density OS=N become essentially fixed, when N is
large, at any given value of T (except at most at phase transition boundaries, where
discontinuities may appear): their probability distribution over the measure p .C /
tends exponentially to a Dirac delta distribution as N !1. This property (known
as concentration of measure in probability theory) allows to study e.g. the entropy
as a function of the energy (by varying T ), the phase transitions of the system, the
structure of the ground states etc. A rigorous treatment of this subject can be found
e.g. in [4].

3 Statistical Physics Approach to Percolation in Random
Graphs

We shall attempt to familiarize with the statistical mechanics approach by describing
its application to the analysis of the famous percolation problem in random graphs
[5, 6]. Consider the complete graphKN over N vertices. GN;NL is the set of graphs
obtained by taking only NL D � N=2 among the

�
N
2

�
edges of KN in all possible

different ways. A randomly chosen element of GN;NL with the flat measure is called
a random graph.

The alternative procedure of deleting edges from KN with probability 1 � �=N
lead to similar family of random graphs. In the large N limit, both families share
common properties and we shall highlight the differences only when necessary.

The connected components of a given graph G are called clusters. Their size
is the number of vertices they contain (e.g. isolated vertices are clusters of size
one). We denote by C .G/ the number of connected components of G and by c .G/
their fractional number, c .G/ D C

N
. When c is small, the random graph G is
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characterized by few large clusters whereas for c approaching unity there are many
clusters of small size.

Percolation theory is concerned with the study of the relationship between the
probability p of two vertices being connected with the typical value of c in the
N !1 limit.

In what follows we show how such a relationship can be analysed by the study
of a statistical mechanics model, the so called Potts model, through a saddle-point
technique.

We denote with P .G/ the probability of generating a random graph G through
the deletion process from the complete graphKN . Given that the edge deletions are
statistically independent, this probability depends on the number of edges NL only,
and factorizes as

P .G/ D pNL.G/.1 � p/N.N�1/
2 �NL.G/; (6)

where 1 � p D 1 � �

N
is the probability of edge deletion. We want to study the

probability density 	 .c/ of generating a random graph with c clusters,

	 .c/ D
X
G

P .G/ ı .c � c .G// ; (7)

where ı indicates the Dirac distribution.
We can introduce a generating function of the cluster probability by

F .q/ D
Z 1

0

dc 	 .c/ qN c

D
Z 1

0

dc qN c
X
G�KN

P .G/ ı .c � c .G//

D
X
G�KN

P .G/ qC.G/ D
X
G�KN

pL.G/ .1 � p/N.N�1/
2 �L.G/ qC.G/ ; (8)

with q being a formal parameter.
In the large size limit, 	 .c/ is expected to be highly concentrated around some

value c .�/ equal to the typical fraction of clusters per vertex and depending only
the average degree of � . Random graphs whose c .G/ differs enough from c .�/will
be exponentially rare in N . Therefore, the quantity

! .c/ D lim
N!1

1

N
log	 .c/ (9)

should vanish for c D c .�/ and be strictly negative otherwise. In the following, we
shall compute ! .c/ and thus obtain information not only on the typical number of
clusters but also on the large deviations.
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Defining the logarithm Qf .q/ of the cluster generating function as

Qf .q/ D lim
N!1

1

N
logF .q/ ; (10)

we obtain from a saddle-point calculation on c, see (8), (9),

Qf .q/ D max
0�c�1



c log q C ! .c/

�
: (11)

Qf and ! are conjugated Legendre transforms and it will turn out that a direct
computation of Qf is easier.

3.1 The Potts Model Representation

We proceed by computing the properties of random graphs by using a mapping of
the generating function of the cluster probability to the so-called Potts model.

The Potts model [7] is defined in terms of an energy function which depends
on N discrete variables 
i (called spins in the physics jargon), one for each vertex
of the complete graph KN , which take q distinct values 
i D 0; 1; : : : ; q � 1. The
energy function is written as

E Œf
i g� D �
X
i<j

ı
�

i ; 
j

�
; (12)

where ı .a; b/ is the Kronecker delta function: ı .a; b/ D 1 if a D b and ı .a; b/ D
0 if a ¤ b. The partition function of the Potts model can be written by summing
over all qN configurations

ZPotts D
X

f
iD0;:::;q�1g
exp

2
4ˇX

i<j

ı
�

i ; 
j

�
3
5 (13)

where ˇ D 1=T is the inverse temperature.
In order to identify the mapping we need to compare the expansion of ZPotts to

the definition of the cluster generating function F .q/ of the random graphs.
Following Kasteleyn and Fortuin [8], we start by rewritingZPotts as a dichromatic

polynomial. Upon posing

v D eˇ � 1; (14)
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one can easily check that (13) can be written in the form

ZPotts D
X
f
i g

Y
i<j

�
1C vı �
i ; 
j �� : (15)

When 
i and 
j take the same value there appears a factor .1C v/ in the product
(corresponding to a term eˇ in (13)); on the contrary, whenever 
i and 
j are
different the product remains unaltered. The expansion of the above product reads

ZPotts D
X
f
i g

2
41 C vX

i<j

ı
�

i ; 
j

�

C v2
X

i<j;k<l=.i;j /¤.k;l/
ı
�

i ; 
j

�
ı .
k; 
l /C 
 
 


3
5 : (16)

We obtain 2
N.N�1/

2 terms each of which composed by two factors, the first one given
by v raised to a power equal to the number of ıs composing the second factor. It
follows that each term corresponds to a possible subset of edges on KN , each edge
weighted by a factor v. There is a one-to-one correspondence between each term
of the sum and the sub-graphs G of KN . The edge structure of each sub-graph is
encoded in the product of the ıs. This fact allows to reinterpret the partition function
as a sum over sub-graphs

ZPotts D
X
f
i g

X
G�KN

2
4vL.G/

L.G/Y
kD0

ı
�

ik ; 
jk

�35 (17)

where L.G/ is the number of edges in the sub-graph G and ik; jk are the vertices
connected by the kth edge of the sub-graph. The order of the summations can be
exchanged to perform the sum over the configurations first. Given a sub-graph
G with L links and C clusters (isolated vertices included), the sum over spins
configurations will give zero unless all the 
s belonging to a cluster of G have
the same value (cfr. the ı functions). In such a cluster, one can set the 
s to any of
the q different values and hence the final form of the partition function reads

ZPotts D
X
G�KN

vL.G/qC.G/: (18)
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By making the identification p D 1�e�ˇ D v= .1C v/, we can rewrite the partition
function as

ZPotts D
X
G�KN

�
p

1 � p
�L.G/

qC.G/

D .1 � p/�N.N�1/
2

X
G�KN

pL.G/ .1 � p/N.N�1/
2 �L.G/ qC.G/: (19)

By extracting the prefactor on the r.h.s. of (19), we thus find ZPotts D e N�2 F .q/, at
the leading exponential order inN . The largeN behaviour of the cluster probability
! .c/ is therefore related to the Potts free-energy,

fPotts .q/ D � lim
N!1

1

ˇ N
logZPotts; (20)

through

� �
2
� fPotts .q/ D max

0�c�1 .c log q C ! .c// : (21)

We are interested in finding the value c? .q/ which maximizes the r.h.s. in (21);
since

d! .c/

dc

ˇ̌
ˇ̌
c?.q/

D � log q (22)

it follows that ! takes its maximum value for q D 1. Differentiating Eq. (21) with
respect to q, we have

� dfPotts

dq
D d

dq
.c log q C ! .c// D @

@c
.c log q C ! .c// @c

@q
C c

q
; (23)

which, in virtue of Eq. (22) becomes:

c? .q/ D �q dfPotts

dq
.q/ : (24)

We have thus shown that the typical fraction of clusters per site, c? .q D 1/, can
be obtained, at a given connectivity � , by computing the Potts free-energy in the
vicinity of q D 1. Since the Potts model is originally defined for integer values of
q, an analytic continuation to real values of q will be necessary.
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A straightforward examination of the energy function (12) shows that the latter
depends on the configurations only through the fractions x .
 I f
i g/ of variables 
i
in the 
 th state (
 D 0; 1; : : : ; q � 1) [9],

x .
 I f
i g/ D 1

N

NX
iD1

ı .
i ; 
/ ; .
 D 0; 1; : : : ; q � 1/ : (25)

Of course,
P


 x .
 I f
i g/ D 1.
Using these fractions, the energy (12) may be rewritten as

E Œf
i g� D �N
2

2

q�1X

D0

x .
 I f
i g/2 C N

2
: (26)

Note that the last term on the r.h.s. of (26) can be neglected with respect to the first
term whose order of magnitude is O

�
N2
�
.

The partition function (13) at inverse temperature ˇ D �=N now becomes

ZPotts D
X

f
iD0;1;:::;q�1g
exp

 
��
2
N

q�1X

D0

x .
; f
i g/2
!

D
.Norm/X

fx
D0;1=N;:::;1g
exp

 
�

2
N

q�1X

D0

x .
/2

!
NŠ

˘
q�1

D0 ŒNx .
/�Š

D
Z 1 .Norm/

0

˘
q�1

D1 dx .
/ exp .�Nf Œfx .
/g�/ (27)

to the leading order in N . The superscript .Norm/ indicates that the sum or the
integral must be restricted to the normalized subspace

Pq�1

D0 x .
/ D 1. The “free-

energy” density functional f appearing in (27) is

f Œfx .
/g� D
q�1X

D0

�
� �
2
Œx .
/�2 C x .
/ logx .
/

�
: (28)

In the limit of large N , the integral in (27) may be evaluated by the saddle-point
method and the Potts free-energy (20) can be evaluated as

fPotts .q/ D min
fx.
/g

f Œfx .
/g� : (29)

From the definition of the problem, each possible value of 
 plays the same
role and f is invariant under the permutation symmetry of the different q values.
However, we should keep in mind that such a symmetry could be broken in a given
minimum. Depending on the value of the connectivity � , the permutation symmetry
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may or may not be broken, leading to a phase transition in the problem which
coincides with the birth a giant component in the associated random graph.

3.1.1 Symmetric Saddle-Point

Consider first the symmetric candidate for an extremum of f ,

xsym .
/ D 1

q
; 8
 D 0; : : : ; q � 1: (30)

We have

f
sym

Potts .q/ D � log q � �

2q
: (31)

Taking the Legendre transform of this free-energy, see (21) and (24), we get for the
logarithm of the cluster distribution density

!sym .c/ D ��
2
� .1 � c/ .1C log � � log Œ2 .1 � c/�/ : (32)

!sym .c/ is maximal and null at csym .�/ D 1 � �

2
, a result that cannot be true for

connectivities larger than two and must break down somewhere below. Comparison
with the rigorous derivation in random graph theory indicates that the symmetric
result is exact as long as � � �c D 1 and is false above the percolation threshold
�c . The failure of the symmetric extremum in the presence of a giant component
coincides with the appearance of symmetry broken saddle points.

To understand the mechanism responsible for the symmetry breaking, one may
look at the local stability of the symmetric saddle-point (30) and compute the
eigenvalues of the Hessian matrix. One finds a non degenerate eigenvalue �0 D
q .q � �/ and another eigenvalue �1 D q � � with multiplicity q � 2. The analytic
continuation of the eigenvalues to real q ! 1 lead to the single value � D 1 � �
which changes sign at the percolation threshold �c . Therefore, the symmetric saddle-
point is not a local minimum of f above �c , showing that a more complicated
saddle-point has to be found.

3.1.2 Symmetry Broken Saddle-Point

The simplest way to break the symmetry of the problem is to look for solutions in
which one among the q values appears more frequently than the others. Therefore
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one can look for a saddle-point of the form

x .0/ D 1

q
Œ1C .1 � q/ s�

x .
/ D 1

q
Œ1 � s� ; .
 D 1; : : : ; q � 1/ : (33)

The symmetric case can be recovered by setting s D 0. The free-energy of the Potts
model is obtained by plugging the fractions (33) into (28). In the limit q ! 1 of
interest,

f Œfx .
/g� D ��
2
C .q � 1/ fPotts .s; �/CO



.q � 1/2

�
(34)

with

fPotts .s; �/ D �

2

�
1 � 1

2
s2
�
� 1C s C .1 � s/ log .1 � s/ (35)

Minimization of fPotts .s; �/ with respect to the order parameter s shows that for
� � 1 the symmetric solution s D 0 is recovered, whereas for � > 1 there exists a
non vanishing optimal value s? .�/ of s that is solution of the implicit equation

1 � s? D exp .�� s?/ : (36)

The stability analysis shows that the solution is stable for any value of � .
The interpretation of s? .�/ is straightforward: s? is the fraction of vertices

belonging to the giant cluster. The average fraction of connected components c .�/
equals�fPotts .s

? .�/ ; �/, see (24), in perfect agreement with exact results by Erdős
and Rényi.

Further results on the properties of random graphs can be extracted from the
previous type of calculation, such as the scaling behaviour at the percolation point
and large deviations. We refer to [10] for details.

4 Statistical Physics Methods for More Complex Problems

More advanced mean-field methods can be used to analyze and solve problems
defined not only over KN as in the previous example but on sparser graphs.
Optimization and constraint satisfaction problems over finite connectivity random
networks are the chief examples [11]. The functional mean field techniques which
are used to study these problems are known as cavity methods with different levels
of possible symmetry breaking. The story of these mathematical approaches is quite
old [12, 13] and they have been rediscovered many times within different disciplines.
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However it is only in the last decade that their algorithmic power has started to be
fully appreciated.

In order to provide a concise presentation we introduce a notation which will
used throughout the rest of this chapter for generic constraint satisfaction problems
and Statistical physics models.

We will denote by s the set of N discrete variables over which the problem is
defined, and use by convention the letters i; j; k; : : : to denote variable indices.
Each variable si can in general take values in a different set Xi , thus s D
fsi 2 Xi ji D 1; : : : ; N g, but it is often the case that Xi D X is common to all
variables.

We will denote by C the set of M hard constraints which characterize the
problem, and use by convention the letters a; b; : : : to denote hard constraint indices;
thereforeC D fCaja D 1; : : : ;M g. We also use the notation @a to indicate the set of
all variable indices involved in the ath constraint (and by s@a the corresponding set
of variables), and @i to denote the set of all constraint indices which involve the i th
variable. So to each given constraint Ca we associate the indicator function Ia .s@a/

which is 1 if the constraint is satisfied, 0 otherwise.
A constraint satisfaction problem can thus be mapped onto a bipartite graph

(factor graph), with variable nodes representing the variables si and factor nodes
representing the constraints Ca; the edges of the graph always connect nodes
of different types and encode the structure of the problem (i.e. the sets @a, or
equivalently @i ). We denote with .ai/ an edge from the factor node a to the variable
node i . We denote the set of all edges of the graph by E.

The problem is deemed satisfiable (SAT) as long as there is a solution satisfying
all the hard constraints, otherwise it is unsatisfiable (UNSAT).

We also introduce soft constraints, associated with either node type, denoted
as Ei .si / for the variable nodes and Ea .s@a/ for the factor nodes. Together, they
provide the energy function E D P

i Ei .si / C
P

a Ea .s@a/, which allows to
differentiate between valid configurations s by favouring those configurations which
have the lowest energy. An external parameter ˇ, which has the role of an inverse
temperature, controls the relative weight of the valid configurations as a function of
their energy; in the limit of ˇ ! 0, all configurations are equally weighted, while
in the zero-temperature limit ˇ ! 1 the soft constraints become equivalent to
hard constraints and only the configurations which realize the minima of the energy
(ground states) are allowed.

This formalism allows us to map any constraint satisfaction problem onto a
statistical physics model defined by the following partition function:

Z D
X

s

Y
a

Ia .s@a/ e
�ˇŒPi Ei .si /C

P
a Ea.s@a/� (37)
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which corresponds to the following probability measure:

�.s/ D 1

Z

Y
a

Ia .s@a/ e
�ˇŒPi Ei .si /C

P
a Ea.s@a/� (38)

As we already noted in Sect. 2, in most common cases intensive statistical
quantities such as the energy density are essentially fixed for almost any given
value of the problem’s parameters, when N � 1. Furthermore, CSPs and
statistical physics models are often considered at the level of ensembles (families) of
problems, where the parameters which describe each problem (the structure of the
factor graph and of the constraints) are extracted from some probability distribution.
A realization of the parameters constitutes the so-called quenched disorder of the
system. When the probability distribution of some quantity, with respect to the
quenched disorder (consider e.g. the thermal average of the energy density as a
function of the model’s parameters) is also peaked around its mean, the quantity
is called self-averaging. This implies that any random instance of a problem is
representative of the whole family, and, conversely, that studying the problem at the
ensemble level is informative about almost all individual instances of the problem.
The percolation transition discussed above is an example of this phenomenon. The
self-averaging property of a given quantity may need to be assessed on a case-by-
case basis, but in some important cases general results can be used (e.g. Talagrand’s
concentration inequality [14], which applies to Lipschitz-continuous functions).

Following are some examples of how some common problems can be mapped
on this formalism:

• In a spin glass (a prototypical problem in statistical physics of disordered
systems) the variables are binary, si 2 f�1;C1g, and all constraints involve
only two distinct variables, so if @a D fi; j g we can make the identification
a � .ij /; hard constraints are moot,8i; j W I.ij /

�
si ; sj

� D 1, and soft constraints
are described by local fields hi and interactions Jij, extracted from some random
distribution: E D �Pi hi si �

P
.ij /2E Jijsi sj .

• In the q-coloring problem the interactions are again pair-wise, a � .ij /, but
the graph structure is typically non-trivial (e.g. may be random), each variable
can take one of q states, si 2 f0; : : : ; q � 1g, and all constraints are hard:
I.ij /

�
si ; sj

� D 1 � ısi ;sj (where ı is the Kronecker symbol).
• In the maximum weight independent set problem the variables are binary, si 2
f0; 1g, the interaction are pair-wise, a � .ij /, and defined on a non-trivial graph,
and we have both hard and soft constraints: I.ij /

�
si ; sj

� D ısi sj ;0 and Ei .si / D
�si .

• In the p-spin model (an extension of the spin glass model) variables are binary,
si 2 f�1;C1g, but each interaction involves p variables, a � �

i1; : : : ; ip
�
, and

we have soft constraints E D �P.i1:::ip/2E Ji1:::ip Qp

lD1 sil . When ˇ ! 1, it
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becomes equivalent to the problem known as p-XORSAT in computer science,
with each energy term corresponding to an XOR hard constraint enforcing the
condition

pX
lD1

�
1C sil

�
2

D
�
1C sign

�
Ji1:::ip

��
2

mod 2 (39)

• In the K-SAT problem the variables are binary, si 2 f�1;C1g, and each hard
constraint Ca involvesK variables: Ia .s@a/ D 1�QK

lD1
�
1 � Jail sil

�
, with Jai 2

f�1;C1g.

5 Bethe Approximation and Message Passing Algorithms

5.1 Belief Propagation

Solving a model described by (37) is in general a hard problem. However, a general
solution is possible when the underlying factor graph structure has no loops, in
which case it is called a tree.2

5.1.1 Marginals

Let us define the local marginals

�i .si / D
X
fsj gj¤i

� .s/ (40)

�a .s@a/ D
X
fsj gj…@a

� .s/ : (41)

We will show that, on a tree, (38) can be written in terms of the above marginals, in
one of the two equivalent forms:

� .s/ D
Y
i

�i .si /
Y
a

�a .s@a/Q
i2@a �i .si /

(42)

D
Y
i

�i .si /
1�j@i j Y

a

�a .s@a/ : (43)

2When the graph does not form a single connected component it is often called a forest, but this
distinction is moot four our purposes.
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The marginals (40) and (41) can be obtained by the so-called Belief Propagation
(or Bethe-Peierls) equations. The procedure consists of writing marginals for a
graph in which either a variable or some factor nodes are removed, as functions
of analogous marginals. These marginals are called cavity marginals, and Belief
Propagation is an example of a cavity method. The resulting system of equations
is then solved by an iterative procedure, and the desired, non-cavity marginals are
finally computed. We indicate with the subscript i ! a the cavity marginals for
variable i when the factor node a is removed from the graph, and with the subscript
a ! i the cavity marginal for variable i when all factor nodes b 2 @i n a are
removed.

The Belief Propagation (BP) equations for the cavity marginals are written as:

�i!a .si / D 1

zi!a

e�ˇEi .si / Y
b2@ina

�b!i .si / (44)

�a!i .si / D 1

za!i

X
s@ani

Ia .s@a/ e
�ˇEa.s@a/ Y

j2@ani
�j!a

�
sj
�

(45)

where zi!a and za!i are normalization constants. These equations are exact on
tree graphs, since, when removing a factor node, all the variables involved in
that node become independent from each other, and their probability distribution
factorizes. They can be solved iteratively by starting from the leaves of the graph
(nodes of connectivity 0 or 1), where their expression becomes trivial, and iterating
inwards; therefore, the time required is at worst of order MKqK , where K is the
maximum degree of the function nodes, and q is the maximum number of states
which a variable can take. The term qK can in some common cases be improved by
exploiting the structure of the functions Ia and Ea.

The cavity marginals are also often called messages, and the iterative procedure
message passing.

It is also useful to introduce the non-normalized message passing equations,
which define the cavity partition functions:

Zi!a .si / D e�ˇEi .si / Y
b2@ina

Zb!i .si / (46)

Za!i .si / D
X
s@ani

Ia .s@a/ e
�ˇEa.s@a/ Y

j2@ani
Zj!a

�
sj
�
: (47)

Using these, we can express the marginals (40) and (41) as:

�i .si / D 1

Z
e�ˇEi .si / Y

a2@i
Za!i .si / (48)

�a .s@a/ D 1

Z
Ia .s@a/ e

�ˇEa.s@a/ Y
i2@a

Zi!a .si / : (49)
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These allow us to write the constraints as functions of the marginals and the
cavity partition functions; introducing them back into Eq. (38) allows us to prove
the relation (42).

It is easy to see that the marginals (40) and (41) can also be written in terms of
the cavity marginals as:

�i .si / D 1

zi
e�ˇEi .si / Y

a2@i
�a!i .si / (50)

�a .s@a/ D 1

za
Ia .s@a/ e

�ˇEa.s@a/ Y
i2@a

�i!a .si / (51)

where again zi and za are normalization constants.
Another useful relationship which immediately follows is:

�i .si / / �i!a .si / �a!i .si / 8a 2 @i: (52)

5.1.2 Free Energy

The cavity partition functions also allow us to express the total free energy and
partition function by:

e�ˇF D Z D
X
si

e�ˇEi .si / Y
a2@i

Za!i .si / 8i: (53)

We can decompose the total free energy as the sum of local contributions expressed
in terms of the cavity messages. Let us define the cavity free energies and free energy
shifts by:

e�ˇFi!a D
X
si

Zi!a .si / (54)

e�ˇFa!i D
X
si

Za!i .si / (55)

e�ˇ�Fi!a D e�ˇ.Fi!a�Pb2@ina Fb!i / D zi!a (56)

e�ˇ�Fa!i D e�ˇ.Fa!i�Pj2@ani Fj!a/ D za!i (57)

and analogously for the non-cavity free energy shifts:

e�ˇ�Fi D zi (58)

e�ˇ�Fa D za: (59)
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Using the BP equations it is easy to see that:

�Fi!a D �Fi ��Fia (60)

�Fa!i D �Fa ��Fia (61)

with [cfr. Eq. (52)]

e�ˇ�Fia D
X
si

�i!a .si / �a!i .si / D zi
zi!a

: (62)

With these, we can rewrite the free energy as:

F D
X
i

�Fi C
X
a

�Fa �
X
.ia/

�Fia (63)

or as:

F D
X
a

 
�Fa C

X
i2@a

�Fi!a

!
�
X
i

.j@i j � 1/�Fi : (64)

The free energy can also be written in terms of the local marginals �i .si / and
�a .s@a/, as:

F D
X
a

Fa �
X
i

.j@i j � 1/Fi (65)

where

Fa D
X
s@a

Ea .s@a/�a .s@a/� 1

ˇ

X
s@a

�a .s@a/ ln�a .s@a/ (66)

Fi D
X
si

Ei .si / �i .si / � 1
ˇ

X
si

�i .si / ln�i .si / : (67)

In the above equations, we adopted the convention that x logx D 0 if x D 0.

5.1.3 Graphs with Loops

The above equations are only exact if the factor graph is a tree. When that is not
the case, expression (42), known as the Bethe approximation, can still provide good
results in a wide range of cases, and even become asymptotically exact in the limit
of large N .
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Preliminarily, we shall note that, on graphs with loops, the procedure for solving
the BP equations must be slightly modified: for example, one could initialize the
cavity messages at random, or uniformly, and update them by using Eqs. (44) and
(45) in random order, until a fixed point for the whole set is eventually found.

With regard to the approximation estimate, the crucial observation is that the
property which was used in the derivation of the BP equations is that the cavity
marginals factorize, i.e. that the connected correlations between any two variables
involved in an interaction a vanish when the interaction a is removed: this is
commonly called the clustering property.

In a graph with loops, the clustering property does not hold in general, but
the correlations which one neglects by assuming that it does (i.e. that the joint
probability of the variables s@a can be factorized if a is removed) can become
asymptotically small as the problem size grows: one common example where this
may happen is that of random graphs in which the typical size of the loops tends to
diverge with the size of the graph. This kind of graphs are called locally tree-like:
removing any factor node a means that the distance along the graph of the variables
in s@a diverges, and we may expect that they become uncorrelated. This is often,
but now always, the case, since there is one additional, more subtle, condition: in
the above derivation, we assumed that the BP equations only have a single solution:
this is always true on trees, but when loops are present there may be no solution at
all, or more than one, even on locally tree-like graphs (see Sect. 5.4). In both cases,
the observed effect is that the iterative procedure does not converge, or that some
normalization constants zi!a or za!i become 0 during the iteration.

In many cases, the BP equations provide reasonable estimates even when the
clustering property doesn’t hold; in particular, they can be exploited to identify
“good” configurations (i.e. low-energy, SAT configurations) for a given instance
of a problem, even when optimality is not strictly guaranteed, as we shall see in
Sect. 5.3.

5.2 The ˇ ! 1 Limit: Minsum Algorithm

The BP equations (44) and (45) can be studied in the limit ˇ ! 1, assuming that
the messages scale as �i!a .si / / e�ˇMi!a.si / and �a!i .si / / e�ˇMa!i .si /. In this
way we obtain:

Mi!a .si / D Ei .si /C
X
b2@ina

Mb!i .si /� Ci!a (68)

Ma!i .si / D min
s@ani WIa.s@a/D1

8<
:Ea .s@a/C

X
j2@ani

Mj!a

�
sj
�
9=
; � Ca!i : (69)
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These are the so called minsum equations. The constants Ci!a and Ca!i enforce
the conditions minsi Mi!a .si / D minsi Ma!i .si / D 0, which are the analogous to
the normalization of the BP messages.

When applied to tree graphs, the resulting minsum algorithm can be ascribed to
the family of dynamic programming algorithms.

The minsum messages can be used to obtain an estimate of the minimum energy
by taking the limit ˇ!1 of the Bethe free energy (63):

E0 D lim
ˇ!1F D

X
i

�Ei C
X
a

�Ea �
X
.ia/

�Eia (70)

where

�Ei D lim
ˇ!1�Fi D min

si

(
Ei .si /C

X
a2@i

Ma!i .si /

)
(71)

�Ea D lim
ˇ!1�Fa D min

s@a WIa.s@a/D1

(
Ea .s@a/C

X
i2@a

Mi!a .si /

)
(72)

�Eia D lim
ˇ!1�Fia D min

si
fMa!i .si /CMi!a .si /g (73)

If the ground state is unique, it can be found from the expression of the marginal
(50):

s?i D argminsi

 
Ei .si /C

X
a2@i

Ma!i .si /

!
: (74)

However, as for the BP equations, this is only guaranteed to be correct on a tree. The
condition of uniqueness of the ground state can be ensured by adding a small noise
perturbation to single site energetic terms Ei: On graphs with loops, the iteration
often fail to converge. A general strategy both to deal with this situation and to find
solutions of CSP at non-zero temperature is presented in the next section.

5.3 Finding a Solution: Decimation and Reinforcement
Algorithms

Suppose we want to find a solution of a constraint satisfaction problem described by
(38), and that we are able to compute (perhaps approximately) the local marginals
�i .si /. We will introduce two heuristic approaches based on message passing:
decimation and reinforcement.
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5.3.1 Decimation

A decimation algorithm works as follows.

1. Compute the �i .si / (via BP, or minsum, or another algorithm).
2. Fix the most biased3 variable imax according to the local marginal: imax D

argmaxi .maxsi �i .si /� sndmaxsi �i .si //, where sndmax is the second max-
imum function: sndmaxxf .x/ D maxx¤argmaxyf .y/ f .x/. Fixing a variable
reduces the problem to a new problem with N � 1 variables.

3. Repeat the above steps until all variables are fixed.

Note that as long as we can compute the local marginals exactly the above
decimation algorithm will end up with the optimal solution, if one solution exists. If
the marginals are approximate, this is not guaranteed, and the actual results depend
on the problem.

An easy modification which can speed up the algorithm is to fix a small fraction
of the variables at a time in step 2, rather than only one.

5.3.2 Reinforcement

Another similar approach is to fix the variables smoothly, by introducing a rein-
forcement field which changes during the iterative message passing propagation.
Let us consider the iterative BP algorithm where messages are initialized at random
(or uniformly) and updated in succession according to Eqs. (44) and (45), and let us
denote with � the iterative step.4 The reinforced BP equations read:

��C1
i!a .si / D

1

z�C1
i!a

eh
�
i .si /e�ˇEi .si / Y

b2@ina
��b!i .si / (75)

��a!i .si / D
1

z�a!i

X
s@ani

Ia .s@a/ e
�ˇEa.s@a/ Y

j2@ani
��j!a

�
sj
�

(76)

where we introduced the reinforcement field h�i :

h�i .si / D r .�/ ln��i .si / (77)

��C1
i .si / D 1

z�C1
i

eh
�
i .si /e�ˇEi .si / Y

a2@i
��a!i .si / : (78)

3Using the most biased variable is a simple and reasonable heuristic which works well in practice,
but other strategies may be considered.
4One step may correspond to one update of all messages (synchronous update scheme), or more
often to the update of the messages associated to one randomly chosen variable or function node
(asynchronous update scheme).
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Here, r .�/ is the reinforcement parameter: it is initialized as r .0/ D 0 and increased
slowly, until the algorithm converges to a single solution of the problem, i.e. until
��i .si / ' ısi ;s?i . The underlying idea is to use the approximate marginals obtained
after � iterations, and use them to bias the problem in the following iterations: rather
like decimation, but in an ongoing fashion. Compared to decimation, this reinforced
iterative scheme has the advantage of being potentially quicker [this depends on the
growth rate of r.�/], and of being applicable in some cases even when the standard
BP equations don’t admit a single fixed point.

The reinforcement scheme can be straightforwardly extended to the minsum
algorithm of Sect. 5.2 by taking the limit ˇ !1.

5.4 Replica Symmetry Breaking and Higher Levels of BP

The multiple-BP-fixed-points situation mentioned at the end of Sect. 5.1 may occur
e.g. when the space of solutions is fragmented in clusters, each one corresponding
to a different fixed point of the BP equations (the clustering property is valid within
each cluster, but not globally). In the context of the statistical physics of disordered
systems, this phenomenon is known under the name of replica symmetry breaking
(RSB), while the situation where the space of solutions forms a single connected
cluster is indicated as replica symmetric (RS). These names originate from the
studies on the typical structure of the phase space in disordered models via the so-
called replica method; the computations are carried over by using the saddle point
method, and the structure of said saddle point is described in terms of its level of
symmetry breaking, with the symmetric solution being called RS and the successive
levels 1RSB, 2RSB, etc., up to full-RSB. When the correct level of RSB is not taken
into account properly, the estimates of the order parameters are only approximate.
The underlying theory (see [12] for a full exposition) is not rigorously proven yet,
but has been highly successful: as yet, its results on a wide class of models (called
mean-field models) have always been in agreement with rigorous theoretical results
(whenever available), and with numerical experiments. Note that the last statement
does not contain a precise conjecture and is somehow tautological, as it is customary
to define mean-field models as the ones that can be resolved by this theory.

The BP equations are apt to describe problems at the RS level, and thus fail to
give correct results when RSB occurs. The cavity method approach is nonetheless
still applicable: for example, a correct description at the 1RSB level can be
obtained by propagating messages which describe probability distributions over BP
messages. Higher levels of RSB can in principle be dealt with in the same way, by
using distributions over distributions of messages, and so on. The detailed procedure
can be in general described as follows: given a constraint satisfaction problem, write
the corresponding BP equations; then, consider the BP messages as the variables of
a new problem, and the BP equations as its constraints over such variables, and write
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higher-level BP equations for this new meta-model.5 Iterate this procedure for the
desired level of symmetry breaking.

More formally, a 1RSB description is obtained by studying the model described
by the following partition function:

Z1RSB D
X

�

e�mˇF .�@i ;�@a/Y
i

Ii .�@i /
Y
a

Ia .�@a/ (79)

where

• �@i D f�i!aja 2 @ig [ f�a!i ja 2 @ig, and analogous for �@a;
• Ii and Ia enforce the BP equations (44) and (45);
• F .�@i ; �@a/ is the Bethe free energy (63);
• m is the so-called Parisi parameter, which can be used to control how the

different clusters of configurations are weighted with respect to each other. The
RS solution corresponds to m D 1, while in the RSB phase m < 1. Setting
m D 0 with ˇ finite amounts at weighting all clusters equally. The limit m! 0,
ˇ ! 1 with y D mˇ finite can be used to weight each cluster ˛ according to
its average energy E˛, as e�yE˛ .

The procedure as sketched above can of course have prohibitive computational
costs, but not necessarily: for example, hard instances of the random K-SAT
problem, where 1-step symmetry breaking occurs, can be efficiently solved by using
the so-called Survey Propagation algorithm, which is equivalent to a simplified
version of a 2-level BP, with a decimation procedure used to identify a solution
(see [15, 16]).
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Graphical Models and Message-Passing
Algorithms: Some Introductory Lectures

Martin J. Wainwright

1 Introduction

Graphical models provide a framework for describing statistical dependencies
in (possibly large) collections of random variables. At their core lie various
correspondences between the conditional independence properties of a random
vector, and the structure of an underlying graph used to represent its distribution.
They have been used and studied within many sub-disciplines of statistics, applied
mathematics, electrical engineering and computer science, including statistical
machine learning and artificial intelligence, communication and information theory,
statistical physics, network control theory, computational biology, statistical signal
processing, natural language processing and computer vision among others.

The purpose of these notes is to provide an introduction to the basic material
of graphical models and associated message-passing algorithms. We assume only
that the reader has undergraduate-level background in linear algebra, multivariate
calculus, probability theory (without needing measure theory), and some basic
graph theory. These introductory lectures should be viewed as a pre-cursor to the
monograph [64], which focuses primarily on some more advanced aspects of the
theory and methodology of graphical models.
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2 Probability Distributions and Graphical Structure

In this section, we define various types of graphical models, and discuss some of
their properties. Before doing so, let us introduce the basic probabilistic notation
used throughout these notes. Any graphical model corresponds to a family of
probability distributions over a random vector X D .X1; : : : ; XN /. Here for each
s 2 ŒN � WD f1; 2; : : : ; N g, the random variable Xs take values in some space Xs ,
which (depending on the application) may either be continuous (e.g., Xs D R)
or discrete (e.g., Xs D f0; 1; : : : ; m � 1g). Lower case letters are used to refer
to particular elements of Xs , so that the notation fXs D xsg corresponds to the
event that the random variable Xs takes the value xs 2 Xs . The random vector
X D .X1;X2; : : : ; XN / takes values in the Cartesian product space

QN
sD1Xs WD

X1�X2�: : :�XN . For any subsetA � ŒN �, we define the subvectorXA WD .Xs; s 2
A/, corresponding to a random vector that takes values in the space XA DQs2AXs .
We use the notation xA WD .xs; s 2 A/ to refer to a particular element of the
space XA. With this convention, note that XŒN � is shorthand notation for the full
Cartesian product

QN
sD1Xs . Given three disjoint subsets A;B;C of ŒN �, we use

XA ?? XB j XC to mean that the random vector XA is conditionally independent
of XB given XC . When C is the empty set, then this notion reduces to marginal
independence between the random vectors XA and XB .

2.1 Directed Graphical Models

We begin our discussion with directed graphical models, which (not surprisingly)
are based on the formalism of directed graphs. In particular, a directed graph

D D .V;�!E / consists of a vertex set V D f1; : : : ; N g and a collection
�!
E of directed

pairs .s ! t/, meaning that s is connected by an edge directed to t . When there
exists a directed edge .t ! s/ 2 E, we say that node s is a child of node t , and
conversely that node t is a parent of node s. We use �.s/ to denote the set of all
parents of node s (which might be an empty set). A directed cycle is a sequence

of vertices .s1; s2; : : : ; s`/ such that .s` ! s1/ 2 �!E , and .sj ! sjC1/ 2 �!E for all
j D 1; : : : ; `�1. A directed acyclic graph, or DAG for short, is a directed graph that
contains no directed cycles. As an illustration, the graphs in panels (a) and (b) are
both DAGs, whereas the graph in panel (c) is not a DAG, since it contains (among
others) a directed cycle on the three vertices f1; 2; 5g.

Any mapping 	 W ŒN � ! ŒN � defines an ordering of the vertex set
V D f1; 2; : : : ; N g, and of interest to us are particular orderings.
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Definition 1 The ordering f	.1/; : : : ; 	.N /g of the vertex set V of a DAG is
topological if for each s 2 V, we have 	.t/ < 	.s/ for all t 2 �.s/.

Alternatively stated, in a topological ordering, children always come after their
parents. It is an elementary fact of graph theory that any DAG has at least one
topological ordering, and this fact plays an important role in our analysis of directed
graphical models. So as to simplify our presentation, we assume throughout these
notes that the canonical ordering V D f1; 2; : : : ; N g is topological. Note that this
assumption entails no loss of generality, since we can always re-index the vertices
so that it holds. With this choice of topological ordering, vertex 1 cannot have any
parents (i.e., �.1/ D ;), and moreover vertex N cannot have any children.

With this set-up, we are now ready to introduce probabilistic notions into
the picture. A directed graphical model is a family of probability distributions
defined by a DAG. This family is built by associating each node s of a DAG
with a random variable Xs , and requiring the joint probability distribution over
.X1; : : : ; XN / factorize according to the DAG. Consider the subset of vertices
.s; �.s// corresponding to a given vertex s and its parents �.s/. We may associate
with this subset a real-valued function fs W Xs � X�.s/ ! RC that maps any given
configuration .xs; x�.s// 2 Xs�X�.s/ to a real number fs.xs; x�.s// � 0. We assume
moreover that fs satisfies the normalization condition

X
xs

fs.xs; x�.s// D 1 for all x�.s/ 2 X�.s/. (1)

Definition 2 (Factorization for Directed Graphical Models) The directed
graphical model based on a given DAG D is the collection of probability
distributions over the random vector .X1; : : : ; XN / that have a factorization
of the form

p.x1; : : : ; xN / D 1

Z

NY
sD1

fs.xs; x�.s//; (2)

for some choice of non-negative parent-to-child functions .f1; : : : ; fN / that
satisfy the normalization condition (1). We use FFac.D/ to denote the set of
all distributions that factorize in the form (2).

In the factorization (2), the quantity Z denotes a constant chosen to ensure that p
sums to one.
Let us illustrate this definition with some examples.
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Fig. 1 (a) The simplest example of a DAG is a chain, which underlies the familiar Markov chain.
The canonical ordering f1; 2; : : : ; N g is the only topological one. (b) A more complicated DAG.
Here the canonical ordering f1; 2; : : : ; 7g is again topological, but it is no longer unique: for
instance, f1; 4; 2; 3; 5; 7; 6g is also topological. (c) A directed graph with cycles (non-DAG). It
contains (among others) a directed cycle on vertices f1; 2; 5g

Example 1 (Markov Chain as a Directed Graphical Model) Perhaps the simplest
example of a directed acyclic graph is the chain on N nodes, as shown in panel
(a) of Fig. 1. Such a graph underlies the stochastic process .X1; : : : ; XN / known
as a Markov chain, used to model various types of sequential dependencies. By
definition, any Markov chain can be factorized in the form

p.x1; : : : ; xN / D p.x1/ p.x2 j x1/ p.x3 j x2/ 
 
 
p.xN j xN�1/: (3)

Note that this is a special case of the factorization (2), based on the functions
fs.xs; x�.s// D p.xs j xs�1/ for each s D 2; : : : ; N , and f1.x1; x�.1// D p.x1/.

|
We now turn to a more complex DAG.

Example 2 (Another DAG) Consider the DAG shown in Fig. 1b. It defines the
family of probability distributions that have a factorization of the form

p.x1; : : : ; x7/

/ f1.x1/f2.x2; x1/f3.x3; x1; x2/f4.x4; x1/f5.x5; x3; x4/f6.x6; x5/f7.x7; x5/:

for some collection of non-negative and suitably normalized functions ffs; s 2 Vg.
|

The factorization (3) of the classical Markov chain has an interesting property,
in that the normalization constant Z D 1, and all the local functions fs are equal
to conditional probability distributions. It is not immediately apparent whether or
not this property holds for the more complex DAG discussed in Example 2, but in
fact, as shown by the following result, it is a generic property of directed graphical
models.
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Proposition 1 For any directed acyclic graph D, any factorization of the
form factorization (2) with Z D 1 defines a valid probability distribution.
Moreover, we necessarily have fs.xs; x�.s// D p.xs j x�.s// for all s 2 V.

Proof Throughout the proof, we assume without loss of generality (re-indexing as
necessary) that f1; 2; : : : ; N g is a topological ordering. In order to prove this result,
it is convenient to first state an auxiliary result.

Lemma 1 For any distribution p of the form (2), we have

p.x1; : : : ; xt / D 1

Z

tY
sD1

fs.xs; x�.s// for each t D 1; : : : ; N . (4)

We first use this result to establish the main claims before returning to prove
it. If we apply Lemma 1 with t D 1, then we obtain that p.x1/ D f1.x1/=Z,
and hence that Z D 1 by the normalization condition on f1. Otherwise, for any
t 2 f2; : : : ; N g, applying the representation (4) to both t and t � 1 yields

p.x1; : : : ; xt /

p.x1; : : : ; xt�1/
D ft .xt ; x�.t// for all .x1; : : : ; xt /.

Since the right-hand side depends only on x�.t/, so must the left-hand side. When the
left-hand side depends only on x�.t/, then it is equal to the conditional p.xt j x�.t//,
and so we conclude that p.xt j x�.t// D ft .xt ; x�.t// as claimed.

It remains to prove Lemma 1. We may assume without loss of generality
(re-indexing as necessary) that f1; 2; : : : ; N g is a topological ordering. Conse-
quently, node N has no children, so that we may write

p.x1; : : : ; xN�1; xN / D 1

Z


 N�1Y
sD1

fs.xs; x�.s//

�
fN .xN ; x�.N//:

Marginalizing over xN yields that

p.x1; : : : ; xN�1/ D 1

Z


 N�1Y
sD1

f.xs; x�.s//

�
 X
xN

fN .xN ; x�.N//

�

D 1

Z

N�1Y
sD1

fs.xs; x�.s//;
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where we have used the facts that xN appears only in one term (since N is a leaf
node), and that

P
xN
fN .xN ; x�.N// D 1. We have thus shown that if the claim

holds for t D N , then it holds for t D N � 1. By recursively applying this same
argument, the claim of Lemma 1 follows. ut

Proposition 1 shows that the terms fi in the factorization (2) have a concrete
interpretation as the child-parent conditional probabilities (i.e., fs.xs; x�.s// is equal
to the conditional probability of Xs D xs given that X�.s/ D x�.s/). This local
interpretability, which (as we will see) is not shared by the class of undirected
graphical models, has some important consequences. For instance, sampling a
configuration . QX1; : : : ; QXN/ from any DAG model is straightforward: assuming
the canonical topological ordering, we first sample QX1 	 f1.
/, and then for
s D 2; : : : ; N , sample QXs 	 fs.
; QX�.s//. This procedure is well-specified: due to
the topological ordering, we are guaranteed that the variable QX�.s/ has been sampled
before we move on to sampling QXs . Moreover, by construction, the random vector
. QX1; : : : ; QXN/ is distributed according to the probability distribution (2).

2.1.1 Conditional Independence Properties for Directed Graphs

Thus far, we have specified a joint distribution over the random vector X D
.X1; : : : ; XN / in terms of a particular parent-to-child factorization. We now turn
to a different (but ultimately equivalent) characterization in terms of conditional
independence. (The reader should recall our standard notation for conditional
independence properties from the beginning of Sect. 2.) Throughout the discussion
to follow, we continue to assume that the canonical ordering f1; 2; : : : ; N g is
topological.

Given any vertex s 2 Vnf1g, our choice of topological ordering implies that the
parent set �.s/ is contained within the set f1; 2; : : : ; s � 1g. Note that for s D 1, the
parent set must be empty. We then define the set �.s/ D f1; 2; : : : ; s�1gn�.s/. Our
basic conditional independence properties are based on the three disjoint subsets
fsg, �.s/ and �.s/.

Definition 3 (Markov Property for Directed Graphical Models) The ran-
dom vector X D .X1; : : : ; XN / is Markov with respect to a directed graph
if

Xs ?? X�.s/ j X�.s/ for all s 2 V. (5)

We use FMar.D/ to denote the set of all distributions that are Markov with
respect to D.

Let us illustrate this definition with our running examples.
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Example 3 (Conditional Independence for Directed Markov Chain) Recall the
directed Markov chain first presented in Example 1. Each node s 2 f2; : : : ; N g has a
unique parent �.s/ D s� 1, so that the (non-trivial) basic conditional properties are
of the form Xs ?? .X1; : : : ; Xs�2/ j Xs�1 for s 2 f3; : : : ; N g. Note that these
basic conditional independence statements imply other (non-basic) properties as
well. Perhaps the most familiar is the assertion that

.Xs;XsC1; : : : ; XN / ?? .X1; : : : ; Xs�2/ j Xs�1 for all s 2 f3; : : : ; N g;

corresponding the fact that the past and future of a Markov chain are conditionally
independent given the present (Xs�1 in this case). |
As a second example, let us now return to the DAG shown in Fig. 1b.

Example 4 (Conditional Independence for a More Complex DAG) For this DAG,
the basic conditional independence assertions (using the canonical ordering) can
again be read off from the graph. In particular, the non-trivial relations are X3 ??
X1 j X2, X5 ?? .X1;X2/ j .X3;X4/, as well as

X6 ?? .X1;X2;X3;X4/ j X5; and X7 ?? .X1;X2;X3;X4;X6/ j X5:

|

2.1.2 Equivalence of Representations

For any directed graph D, we have now defined two families of probability
distributions: the family FFac.D/ of all distributions with a factorization of the
form (2), and the family FMar.D/ of all distributions that satisfy the basic Markov
properties (5). It is natural to ask how these two families are related; pleasingly, they
are equivalent, as shown in the following result.

Theorem 1 (Equivalence for Directed Graphical Models) For any
directed acyclic graph D, we have FFac.D/ D FMar.D/.

Proof The proof of this result is straightforward given our development thus far. We
begin with the inclusion FMar.D/ � FFac.D/. From Lemma 1 used in the proof of
Proposition 1, for any vertex t 2 V, we have

p.x1; : : : ; xt / D
tY

sD1
p.xs j x�.s// D

t�1Y
sD1

p.xs j x�.s// p.xt j x�.t//

D p.x1; : : : ; xt�1/ p.xt j x�.t//:
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By the definition of �.t/, we have f1; : : : ; t � 1g D �.t/ [ �.t/, and consequently
we can write

p.x�.t/; x�.t/; xt /

p.x�.t//
D p.x�.t/; x�.t//

p.x�.t//
p.xt j x�.t// D p.x�.t/ j x�.t// p.xt j x�.t//;

which shows that Xt ?? X�.t/ j X�.t/.
In order to establish the reverse inclusion, suppose that the basic Markov

properties hold, where we are still using f1; 2; : : : ; N g as our topological ordering.
Using the chain rule for probability, we have

p.x1; : : : ; xN / D p.x1/
NY
sD2

p.xt j x1; : : : ; xt�1/

.i/D p.x1/
NY
sD2

p.xt j x�.t//;

where equality (i) follows by applying the Markov properties. ut

2.2 Undirected Graphical Models

We now turn to discussion of undirected graphical models, which are also known as
Markov random fields or Gibbs distributions. Naturally, these models are built using
an undirected graphs, by which we mean a pair G D .V;E/, whereV D f1; : : : ; N g
is the vertex set (as before), and E is a collection of undirected edges, meaning that
there is no distinction between the edge .s; t/ and the edge .t; s/. As before, we
associate a random variable Xs with each vertex s 2 V of graph, and our interest is
in characterizing the joint distribution of the random vector X D .X1; : : : ; XN /.

As with directed graphical models, there are two different ways in which the
probabilistic structure of the random vector X can be linked to the graphical
structure: factorization and conditional independence properties. Let us begin our
exploration with the former property.

2.2.1 Factorization for Undirected Models

For undirected graphical models, the factorization properties are specified in terms
of cliques of the graph. A clique C of an undirected graph G is a fully connected
subset C of the vertex set V (i.e., .s; t/ 2 E for all s; t 2 C ). A clique is maximal
if it is not contained within any other clique. Thus, any singleton set fsg is always a
clique, but it is not maximal unless s has no neighbors in the graph. See Fig. 2a for
an illustration of some other types of cliques.
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Fig. 2 (a) Illustration of cliques in an undirected graph. Sets A D f1; 2; 3g and B D f3; 4; 5g
are 3-cliques, whereas sets C D f4; 6g and D D f5; 7g are 2-cliques (that can be identified with
edges). (b) Illustration of a vertex cutset: removal of the vertices in S breaks the graph into the
separate pieces indexed by subsets A and B

Given an undirected graph, we use C to denote the set of all its cliques. With each
clique C 2 C, we associate a compatibility function  C W XC ! RC: it assigns a
non-negative number  C .xC / to each possible configuration xC D .xs; s 2 C/ 2
XC . The factorization property for an undirected graphical model is stated in terms
of these compatibility functions.

Definition 4 (Factorization for Undirected Graphical Models) A proba-
bility distribution p factorizes over the graph G if

p.x1; : : : ; xN / D 1

Z

Y
C2C

 C .xC /; (6)

for some choice of non-negative compatibility function  C W XC ! RC for
each clique C 2 C. We use FFac.G/ to denote the set of all distributions that
have a factorization of the form (6).

As before, the quantity Z is a constant chosen to ensure that the distribution is
appropriately normalized. (In contrast to the directed case, we cannot take Z D 1

in general.) Note that there is a great deal of freedom in the factorization (6);
in particular, in the way that we have written it, there is no unique choice of
the compatibility functions and the normalization constant Z. For instance, if we
multiply any compatibility function by some constant ˛ > 0 and do the same to Z,
we obtain the same distribution.
Let us illustrate these definitions with some examples.

Example 5 (Markov Chain as an Undirected Graphical Model) Suppose that we
remove the arrows from the edges of the chain graph shown in Fig. 1a; we
then obtain an undirected chain. Any distribution that factorizes according to this
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undirected chain has the form

p.x1; : : : ; x5/ D 1

Z

5Y
sD1

 s.xs/  12.x1; x2/  12.x1; x2/  12.x1; x2/  12.x1; x2/

(7)

for some choice of non-negative compatibility functions. Unlike the directed case,
in general, these compatibility functions are not equal to conditional distributions,
nor to marginal distributions. Moreover, we have no guarantee that Z D 1 in
this undirected representation of a Markov chain. The factorization (7) makes use
of both maximal cliques (edges) and non-maximal cliques (singletons). Without
loss of generality, we can always restrict to only edge-based factors. However, for
applications, it is often convenient, for the purposes of interpretability, to include
both types of compatibility functions. |
Example 6 As a second example, consider the undirected graph shown in Fig. 2a.
Any distribution that respects its clique structure has the factorization

p.x1; : : : ; x7/ D 1

Z
 123.x1; x2; x3/  345.x3; x4; x5/  4:6.x4; x6/  57.x5; x7/;

for some choice of non-negative compatibility functions. In this case, we have
restricted our factorization to the maximal cliques of the graph. |

2.2.2 Markov Property for Undirected Models

We now turn to the second way in which graph structure can be related to
probabilistic structure, namely via conditional independence properties. In the case
of undirected graphs, these conditional independence properties are specified in
terms of vertex cutsets of the graph. A vertex cutset is a subset S of the vertex
set V such that, when it is removed from the graph, breaks the graph into two or
more disconnected subsets of vertices. For instance, as shown in Fig. 2b, removing
the subset S of vertices breaks the graph into two disconnected components, as
indexed by the vertices inA andB respectively. For an undirected graph, the Markov
property is defined by these vertex cutsets:

Definition 5 (Markov Property for Undirected Graphical Models) A ran-
dom vector .X1; : : : ; XN / is Markov with respect to an undirected graph G if,
for all vertex cutsets S and associated components A and B , the conditional
independence condition XA ?? XB j XC holds. We use FMar.G/ to denote
the set of all distributions that satisfy all such Markov properties defined
by G.
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For example, for any vertex s, its neighborhood set

N.s/ WD ft 2 V j .s; t/ 2 Eg (8)

is always a vertex cutset. Consequently, any distribution that is Markov with respect
to an undirected graph satisfies the conditional independence relations

Xs ?? XVnfsg[N.s/ j XN.s/: (9)

The set of variables XN.s/ D .Xt ; t 2 N.s/g is often referred to as the Markov
blanket of Xs, since it is the minimal subset required to render Xs conditionally
independent of all other variables in the graph. This particular Markov property
plays an important role in pseudolikelihood estimation of parameters [11], as well
as related approaches for graphical model selection by neighborhood regression (see
the papers [48, 52] for further details).
Let us illustrate with some additional concrete examples.

Example 7 (Conditional Independence for a Markov Chain) Recall from Exam-
ple 5 the view of a Markov chain as an undirected graphical model. For this chain
graph, the minimal vertex cutsets are singletons, with the non-trivial ones being the
subsets fsg for s 2 f2; : : : ; N � 1g. Each such vertex cutset induces the familiar
conditional independence relation

.X1; : : : ; Xs�1/„ ƒ‚ …
Past

?? .XsC1; : : : ; XN /„ ƒ‚ …
Future

j Xs„ƒ‚…
Present

; (10)

corresponding to the fact that the past and future of a Markov chain are conditionally
independent given the present. |
Example 8 (More Markov Properties) Consider the undirected graph shown in
Fig. 2b. As previously discussed, the set S is a vertex cutset, and hence it induces
the conditional independence propertyXA ?? XB j XS . |

2.2.3 Hammersley-Clifford Equivalence

As in the directed case, we have now specified two ways in which graph structure
can be linked to probabilistic structure. This section is devoted to a classical result
that establishes a certain equivalence between factorization and Markov properties,
meaning the two families of distributions FFac.G/ and FMar.G/ respectively. For
strictly positive distributions p, this equivalence is complete.
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Theorem 2 (Hammersley-Clifford) If the distribution p of random vector
X D .X1; : : : ; XN / factorizes over a graph G, then X is Markov with respect
to G. Conversely, if a random vector X is Markov with respect to G and
p.x/ > 0 for all x 2 XŒN �, then p factorizes over the graph.

Proof We begin by proving that FFac.G/ � FMar.G/. Suppose that the factoriza-
tion (6) holds, and let S be an arbitrary vertex cutset of the graph such that subsets
A and B are separated by S . We may assume without loss of generality that both
A and B are non-empty, and we need to show that XA ?? XB j XS . Let us define
subsets of cliques by CA WD fC 2 C j C \A ¤ ;g, CB WD fC 2 C j C \B ¤ ;g,
and CS WD fC 2 C j C � Sg. We claim that these three subsets form a disjoint
partition of the full clique set—namely, C D CA[CS [CB . Given any clique C , it is
either contained entirely within S , or must have non-trivial intersection with either
A or B , which proves the union property. To establish disjointness, it is immediate
that CS is disjoint from CA and CB . On the other hand, if there were some clique
C 2 CA \ CB , then there would exist nodes a 2 A and b 2 B with fa; bg 2 C ,
which contradicts the fact that A and B are separated by the cutset S .

Consequently, we may write

p.xA; xS ; xB/ D 1

Z

� Y
C2CA

 C .xC /
�

„ ƒ‚ …
� Y
C2CS

 C .xC /
�

„ ƒ‚ …
� Y
C2CB

 C .xC /
�

„ ƒ‚ …
:

�A.xA; xS / �S.xS / �B.xB; xS /

Defining the quantities

ZA.xS/ WD
X
xA

�A.xA; xS /; and ZB.xS/ WD
X
xB

�B.xB; xS /;

we then obtain the following expressions for the marginal distributions of interest

p.xS/DZA.xS/ ZB.xS/
Z

�S.xS/ and p.xA; xS /DZB.xS/
Z

�A.xA; xS / �S.xS /;

with a similar expression for p.xB; xS /. Consequently, for any xS for which
p.xS/ > 0, we may write

p.xA; xS ; xB/

p.xS/
D

1
Z
�A.xA; xS /�S.xS /�B.xB; xS /

ZA.xS / ZB .xS /

Z
�S.xS /

D �A.xA; xS /�B.xB; xS /

ZA.xS/ ZB.xS /
: (11)
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Similar calculations yield the relations

p.xA; xS /

p.xS/
D

ZB.xS /

Z
�A.xA; xS / �S.xS /

ZA.xS /ZB .xS /

Z
�S.xS /

D �A.xA; xS /

ZA.xS /
; and (12a)

p.xB; xS /

p.xS/
D

ZA.xS /

Z
�B.xB; xS / �S.xS /

ZA.xS /ZB.xS /

Z
�S.xS /

D �B.xB; xS /

ZB.xS/
: (12b)

Combining Eq. (11) with Eqs. (12a) and (12b) yields

p.xA; xB j xS/ D p.xA; xB; xS /

p.xS/
D p.xA; xS /

p.xS/

p.xB; xS /

p.xS/

D p.xA j xS/ p.xB j xS/;

thereby showing that XA ?? XB j XS , as claimed.
In order to prove the opposite inclusion—namely, that the Markov property for a

strictly positive distribution implies the factorization property—we require a version
of the inclusion-exclusion formula. Given a set ŒN � D f1; 2; : : : ; N g, let P.ŒN �/ be
its power set, meaning the set of all subsets of ŒN �. With this notation, the following
inclusion-exclusion formula is classical:

Lemma 2 (Inclusion-Exclusion) For any two real-valued functions � and
˚ defined on the power set P.ŒN �/, the following statements are equivalent:

˚.A/ D
X
B�A

.�1/jAnBj�.B/ for all A 2 P.ŒN �/. (13a)

�.A/ D
X
B�A

˚.B/ for all A 2 P.ŒN �/. (13b)

Proofs of this result can be found in standard texts in combinatorics (e.g., [61]).
Returning to the main thread, let y 2 XŒN � be some fixed element, and for each
subset A 2 P.ŒN �/, define the function � W XŒN � ! R via

�A.x/ WD
X
B�A

.�1/jAnBj log
p.xB; yBc /

p.y/
: (14)

(Note that taking logarithms is meaningful since we have assumed p.x/ > 0 for
all x 2 XŒN �.) From the inclusion-exclusion formula, we have log p.xA;yAc /

p.y/
D
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P
B�A �B.x/, and setting A D ŒN � yields

p.x/ D p.y/ exp
˚ X
B2P.ŒN �/�

�B.x/
	
: (15)

From the definition (14), we see that �A is a function only of xA. In order to
complete the proof, it remains to show that �A D 0 for any subset A that is not a
graph clique. As an intermediate result, we claim that for any t 2 A, we can write

�A.x/ D
X

B�Anftg
.�1/jA�Bj log

p.xt j xB; yBcnftg/
p.yt j xB; yBcnftg/

: (16)

To establish this claim, we write

�A.x/ D
X
B�A
B�t

.�1/jAnBj log
p.xB; yBc /

p.y/
C
X
B�A
B3t

.�1/jAnBj log
p.xB; yBc /

p.y/

D
X

B�Anftg
.�1/jAnBj

�
log

p.xB; yBc /

p.y/
� log

p.xB[t ; yBcnftg/
p.y/

�

D
X

B�Anftg
.�1/jAnBj log

p.xB; yBc /

p.xB[t ; yBcnftg/
(17)

Note that for any B � Anftg, we are guaranteed that t … B , whence

p.xB; yBc /

p.xB[t ; yBcnftg/
D p.yt j xB; yBcnftg/
p.xt j xB; yBcnftg/

:

Substituting into Eq. (17) yields the claim (16).
We can now conclude the proof. If A is not a clique, then there must some exist

some pair .s; t/ of vertices not joined by an edge. Using the representation (16), we
can write �A as a sum of four terms (i.e., �A DP4

iD1 Ti ), where

T1.x/ D
X

B�Anfs;tg
.�1/jAnBj logp.yt j xB; yBcnftg/;

T2.x/ D
X

B�Anfs;tg
.�1/jAn.B[ftg/j logp.xt j xB; yBcnftg/

T3.x/ D
X

B�Anfs;tg
.�1/jAn.B[fsg/j logp.yt j xB[fsg; yBcnfs;tg/; and

T4.x/ D
X

B�Anfs;tg
.�1/jAn.B[fs;tg/j logp.xt j xB[fsg; yBcnfs;tg/:
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Combining these separate terms, we obtain

�A.x/ D
X

B�Anfs;tg
.�1/jAnBj log

p.yt j xB; yBcnftg/p.xt j xB[fsg; yBcnfs;tg/
p.xt j xB; yBcnftg/p.yt j xB[fsg; yBcnfs;tg/

:

But using the Markov properties of the graph, each term in this sum is zero. Indeed,
since s … N.t/, we have

p.xt j xB; yBcnftg/ D p.xt j xB[fsg; yBcnfs;tg/; and

p.yt j xB; yBcnftg/ D p.yt j xB[fsg; yBcnfs;tg/;

which completes the proof. ut

2.2.4 Factor Graphs

For large graphs, the factorization properties of a graphical model, whether undi-
rected or directed, may be difficult to visualize from the usual depictions of graphs.
The formalism of factor graphs provides an alternative graphical representation, one
which emphasizes the factorization of the distribution [43, 46].

Let F represent an index set for the set of factors defining a graphical model
distribution. In the undirected case, this set indexes the collection C of cliques,
while in the directed case F indexes the set of parent–child neighborhoods. We
then consider a bipartite graph G D .V;F ;E/, in which V is (as before) an index
set for the variables, and F is an index set for the factors. Given the bipartite nature
of the graph, the edge set E now consists of pairs .s; a/ of nodes s 2 V such that the
fact a 2 N.s/, or equivalently such that a 2 N.s/. See Fig. 3b for an illustration.

1

2

3

4

5

6

7 1

2

3

4

5

6

7

a

b

c

Fig. 3 Illustration of undirected graphical models and factor graphs. (a) An undirected graph on
N D 7 vertices, with maximal cliques f1; 2; 3; 4g, f4; 5; 6g and f6; 7g. (b) Equivalent represen-
tation of the undirected graph in (a) as a factor graph, assuming that we define compatibility
functions only on the maximal cliques in (a). The factor graph is a bipartite graph with vertex
set V D f1; : : : ; 7g and factor set F D fa; b; cg, one for each of the compatibility functions of
the original undirected graph
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3
3

1 2
a b c

1 2 1 2

3

Fig. 4 (a) A three-vertex cycle graph that can be used to represent any distribution over three
random variables. (b) Factor graph representation of the pairwise model (19). (c) Factor graph
representation of the triplet interaction model

For undirected models, the factor graph representation is of particular value
when C consists of more than the maximal cliques. Indeed, the compatibility
functions for the nonmaximal cliques do not have an explicit representation in the
usual representation of an undirected graph—however, the factor graph makes them
explicit. This explicitness can be useful in resolving certain ambiguities that arise
with the standard formalism of undirected graphs. As one illustration, consider the
three-vertex cycle shown in Fig. 4a. Two possible factorizations that are consistent
with this graph structure are the pairwise-only factorization

p.x1; x2; x3/ D 1

Z
 12.x1; x2/  23.x2; x3/  13.x1; x3/; (18)

which involves only the non-maximal pairwise cliques, versus the generic triplet
factorization p.x1; x2; x3/ D 1

Z0

 123.x1; x2; x3/. The undirected graph in panel
(a) does not distinguish between these two possibilities. In contrast, the factor
graph representations of these two models are distinct, as shown in panels (b) and
(c) respectively. This distinction between the pairwise and triplet factorization is
important in many applications, for instance when testing for the presence of ternary
interactions between different factors underlying a particular disease.

3 Exact Algorithms for Marginals, Likelihoods and Modes

In applications of graphical models, one is typically interested in solving one of
a core set of computational problems. One example is the problem of likelihood
computation, which arises in parameter estimation and hypothesis testing with
graphical models. A closely related problem is that of computing the marginal
distribution p.xA/ over a particular subsetA � V of nodes, or similarly, computing
the conditional distribution p.xA j xB/, for disjoint subsets A and B of the vertex
set. This marginalization problem is needed to in order to perform filtering or
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smoothing of time series (for chain-structured graphs), or the analogous operations
for more general graphical models. A third problem is that of mode computation,
in which the goal is to find a configuration Ox 2 XŒN � of highest probability—that
is, Ox 2 maxx2XŒN � p.x/. In typical applications, some subset of the variables are
observed, so these computations are often performed for conditional distributions,
with the observed values fixed. It is straightforward to incorporate observed values
into the algorithms that we discuss in this section.

At first sight, these problems—likelihood computation, marginalization and
mode computation—might seem quite simple and indeed, for small graphical
models (e.g.,N 
 10–20), they can be solved directly with brute force approaches.
However, many applications involve graphs with thousands (if not millions) of
nodes, and the computational complexity of brute force approaches scales very
poorly in the graph size. More concretely, let us consider the case of a discrete
random vector .X1; : : : ; XN / 2 XŒN � such that, for each node s 2 V, the random
variableXs takes values in the state space Xs D f0; 1; : : : ; m�1g. A naive approach
to computing a marginal at a single node—say p.xs/—entails summing over all
configurations of the form fx0 2 Xm j x0

s D xsg. Since this set has mN�1 elements,
it is clear that a brute force approach will rapidly become intractable. Given a graph
with N D 100 vertices (a relatively small problem) and binary variables (m D 2),
the number of terms is 299, which is already larger than estimates of the number of
atoms in the universe. This is a vivid manifestation of the “curse-of-dimensionality”
in a computational sense.

A similar curse applies to the problem of mode computation for discrete random
vectors, since it is equivalent to solving an integer programming problem. Indeed,
the mode computation problem for Markov random fields includes many well-
known instances of NP-complete problems (e.g., 3-SAT, MAX-CUT etc.) as special
cases. Unfortunately, for continuous random vectors, the problems are no easier
and typically harder, since the marginalization problem involves computing a high-
dimensional integral, whereas mode computation corresponds to a generic (possibly
non-convex) optimization problem. An important exception to this statement is the
Gaussian case where the problems of both marginalization and mode computation
can be solved in polynomial-time for any graph (via matrix inversion), and in linear-
time for tree-structured graphs via the Kalman filter.

In the following sections, we develop various approaches to these computational
inference problems, beginning with discussion of a relatively naive but pedagog-
ically useful scheme known as elimination, then moving onto more sophisticated
message-passing algorithms, and culminating in our derivation of the junction tree
algorithm.
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3.1 Elimination Algorithm

We begin with an exact but relatively naive method known as the elimination algo-
rithm. It operates on an undirected graphical model equipped with a factorization of
the form

p.x1; : : : ; xN / D 1

Z

Y
C2C

 C .xC /:

As input to the elimination algorithm, we provide it with a target vertex T 2 V
(or more generally a target subset of vertices), an elimination ordering I, meaning
an ordering of the vertex set V such that the target T appears first; as well as the
collection of compatibility functions f C ;C 2 Cg defining the factorization (6). As
output, the elimination algorithm returns the marginal distribution p.xT / over the
variables xT at the target vertices.

Elimination Algorithm for Marginalization

1. Initialization:

(a) Initialize active set of compatibility functions A D f C ;C 2 Cg.
(b) Initialize elimination ordering I (with the target vertex T appearing

first).

2. Elimination: while card.I/ > card.T /:

(a) Activate last vertex s on the current elimination order:
(b) Form product

�.xs; xN.s// D
Y

 C involving xs

 C .xC /;

where N.s/ indexes all variables that share active factors with s.
(c) Compute partial sum:

Q�N.s/.xN.s// D
X
xs

�.xs; xN.s//;

and remove all f C g that involve xs from active list.
(d) Add Q�N.s/ to active list, and remove s from index set I.

(continued)
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3. Termination: when I D fT g, form the product �T .xT / of all remaining
functions in A, and then compute

Z D
X
xT

�T .xT / and p.xT / D �T .xT /

Z
:

We note that in addition to returning the marginal distribution p.xT /, the algorithm
also returns the normalization constant Z. The elimination algorithm is best
understood in application to a particular undirected graph.

Example 9 (Elimination in Action) Consider the 7-vertex undirected graph shown
in Fig. 2a. As discussed in Example 6, it induces factorizations of the form

p.x1; : : : ; x7/ /  123.x1; x2; x3/  345.x3; x4; x5/  46.x4; x6/  57.x5; x7/;

Suppose that our goal is to compute the marginal distribution p.x5/. In order to do
so, we initialize the elimination algorithm with T D 5, the elimination ordering
I D f5; 4; 2; 3; 1; 6; 7g, and the active set A D f 123;  345;  46;  57g.
Eliminating x7: At the first step, s D 7 becomes the active vertex. Since  57

is the only function involving x7, we form �.x5; x7/ D  57.x5; x7/, and then
compute the partial sum Q�5.x5/ DPx7

 57.x5; x7/. We then form the new active

set A D f 123;  345;  46; Q�5g.
Eliminating x6: This phase is very similar. We compute the partial sum Q�4.x4/ DP

x6
 46.x4; x6/, and end up with the new active set A D f 123;  345; Q�5; Q�4g.

Eliminating x1: We compute Q�23.x2; x3/ D P
x1
 123.x1; x2; x3/, and conclude

with the new active set A D f Q�23;  345; Q�5; Q�4g.
Eliminating x3: In this phase, we first form the product �2345.x2; x3; x4; x5/ DQ�23.x2; x3/ 345.x3; x4; x5/, and then compute the partial sum

Q�245.x2; x4; x5/ D
X
x2

�2345.x2; x3; x4; x5/:

We end up with the active set A D f Q�245; Q�5; Q�4g.
Eliminating x2: The output of this phase is the active set A D f Q�45; Q�5; Q�4g,

where Q�45 is obtained by summing out x2 from Q�245.
Eliminating x4: We form the product �45.x4; x5/ D Q�4.x4/ Q�45.x4; x5/, and then

the partial sum O�.x5/ D P
x4
�45.x4; x5/. We conclude with the active set A D

f Q�5; O�5g.
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After these steps, the index set I has been reduced to the target vertex T D 5. In the
final step, we form the product �5.x5/ D Q�5.x5/ O�5.x5/, and then re-normalize it to
sum to one. |

A few easy extensions of the elimination algorithm are important to note.
Although we have described it in application to an undirected graphical model, a
simple pre-processing step allows it to be applied to any directed graphical model as
well. More precisely, any directed graphical model can be converted to an undirected
graphical model via the following steps:

• remove directions from all the edges
• “moralize” the graph by adding undirected edges between all parents of a given

vertex—that is, in detail

for all s 2 V, and for all t; u 2 �.s/, add the edge .t; u/.

• the added edges yield cliques C D .s; �.s//; on each such clique, define the
compatibility function  C .xC / D p.xs j x�.s//.

Applying this procedure yields an undirected graphical model to which the elimina-
tion algorithm can be applied.

A second extension concerns the computation of conditional distributions. In
applications, it is frequently the case that some subset of the variables are observed,
and our goal is to compute a conditional distribution of XT given these observed
variables. More precisely, suppose that we wish to compute a conditional probability
of the form p.xT j NxO/ where O � V are indices of the observed values XO D NxO.
In order to do so, it suffices to compute a marginal of the form p.xT ; NxO/. This
marginal can be computed by adding binary indicator functions to the active set
given as input to the elimination algorithm. In particular, for each s 2 O, let I sI Nxs .xs/
be a zero-one indicator for the event fxs D Nxsg. We then provide the elimination
algorithm with the initial active set A D f C ;C 2 Cg [ fI s; Nxs ; s 2 Og, so that it
computes marginals for the modified distribution

q.x1; : : : ; xN / /
Y
C2C

 C .xC /
Y
s2O

I s Nxs .xs/;

in which q.x/ D 0 for all configurations xO ¤ NxO. The output of the elimination
algorithm can also be used to compute the likelihood p. NxO/ of the observed data.

3.1.1 Graph-Theoretic Versus Analytical Elimination

Up to now, we have described the elimination algorithm in an analytical form. It
can also be viewed from a graph-theoretic perspective, namely as an algorithm
that eliminates vertices, but adds edges as it does so. In particular, during the
elimination step, the graph-theoretic version removes the active vertex s from the
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current elimination order (as well as all edges involving s), but then adds an edge
for each pair of vertices .t; u/ that were connected to s in the current elimination
graph. These adjacent vertices define the neighborhood set N.s/ used in Step 2(c)
of the algorithm. This dual perspective—the analytical and graph-theoretic—is best
illustrated by considering another concrete example.

Example 10 (Graph-Theoretic Versus Analytical Elimination) Consider the 3 � 3
grid-structured graph shown in panel (a) of Fig. 5. Given a probability distribution
that is Markov with respect to this grid, suppose that we want to compute the
marginal distribution p.x5/, so that the target vertex is T D 5. In order to do so, we
initialize the elimination algorithm using the ordering I D f5; 2; 8; 6; 4; 1; 3; 7; 9g.
Panel (b) shows the graph obtained after eliminating vertex 9, now shown in dotted
lines to indicate that it has been removed. At the graph-theoretic level, we have
removed edges .8; 9/ and .6; 9/, and added edge .6; 9/. At the analytical level, we
have performed the summation over x9 to compute

Q�.x6; x8/ D
X
x9

 69.x6; x9/ 89.x8; x9/;
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Fig. 5 (a) A 3�3 grid graph in the plane. (b) Result of eliminating vertex 9. Dotted vertices/edges
indicate quantities that have been removed during elimination. (c) Remaining graph after having
eliminated vertices f1; 3; 7; 9g. (d) Resulting graph after eliminating vertex 4. (e) Elimination of
vertex 6. (f) Final reconstituted graph: original graph augmented with all edges added during the
elimination process
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and added it to the active list of compatibility functions. Notice how the new
function Q�68 depends only on the variables .x6; x8/, which are associated with the
edge .6; 8/ added at the graph-theoretic level. Panel (c) shows the result after having
eliminated vertices f1; 3; 7; 9g, in reverse order. Removal of the three vertices (in
addition to 9) has a symmetric effect on each corner of the graph. In panel (d), we
see the effect of eliminating vertex 4; in this case, we remove edges .4; 5/, .4; 2/,
and .4; 8/, and then add edge .2; 8/. At the analytical stage, this step will introduce
a new compatibility function of the form Q�258.x2; x5; x8/. Panel (e) shows the result
of removing vertex 6; no additional edges are added at this stage. Finally, panel
(f) shows the reconstituted graph QG, meaning the original graph plus all the edges
that were added during the elimination process. Note that the added edges have
increased the size of the maximal clique(s) to four; for instance, the set f2; 5; 6; 8g
is a maximal clique in the reconstituted graph. This reconstituted graph plays an
important role in our discussion of junction tree theory to follow. |

3.1.2 Complexity of Elimination

What is the computational complexity of the elimination algorithm? Let us do some
rough calculations in the discrete case, when Xs D f0; 1; : : : ; m� 1g for all vertices
s 2 V. Clearly, it involves at least a linear cost in the number of vertices N .
The other component is the cost of computing the partial sums Q� at each step.
Supposing that we are eliminating s, let N.s/ be the current set of its neighbors
in the elimination graph. For instance, in Fig. 5, when we eliminate vertex s D 4,
its current neighborhood set is N.4/ D f2; 5; 8g, and the function Q�258 at this
stage depends on .x2; x5; x8/. Computing Q�258 incurs a complexity of O.m4/, since
we need to perform a summation (over x4) involving m terms for each of the m3

possible instantiations of .x2; x5; x8/.
In general, then, the worst-case cost over all elimination steps will scale as

O.mjN.s/jC1/, where jN.s/j is the neighborhood size in the elimination graph when
eliminating s. It can be seen that the worst-case neighborhood size (plus one) is
equivalent to the size of the largest clique in the reconstituted graph. For instance, in
Fig. 5f, the largest cliques in the reconstituted graph have size 4, consistent with the
O.m4/ calculation from above. Putting together the pieces, we obtain a conservative
upper bound on the cost of the elimination algorithm—namely, O.mcN /, where c
is the size of the largest clique in the reconstituted graph.

A related point is that for any given target vertex T , there are many possible
instantiations of the elimination algorithm that can be used to compute the marginal
p.xT /. Remember that our only requirement is that T appear first in the ordering, so
that there are actually .N � 1/Š possible orderings of the remaining vertices. Which
ordering should be chosen? Based on our calculations above, in order to minimize
the computational cost, one desirable goal would be to minimize the size of the
largest clique in the reconstituted graph. In general, finding an optimal elimination
ordering of this type is computationally challenging; however, there exist a variety
of heuristics for choosing good orderings, as we discuss in Sect. 4.
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3.2 Message-Passing Algorithms on Trees

We now turn to discussion of message-passing algorithms for models based on
graphs without cycles, also known as trees. So as to highlight the essential ideas
in the derivation, we begin by deriving message-passing algorithms for trees with
only pairwise interactions, in which case the distribution has form

p.x1; : : : ; xN / D 1

Z

Y
s2V

 s.xs/
Y
.s;t /2E

 st .xs; xt /; (19)

where T D .V;E/ is a given tree, and f s; s 2 Vg and f st ; .s; t/ 2 Eg are
compatibility functions. For a tree, the elimination algorithm takes a very simple
form—assuming that the appropriate ordering is followed. Recall that a vertex in a
graph is called a leaf if it has degree one.

The key fact is that for any tree, it is always possible to choose an elimination
ordering I such that:

(a) The last vertex in I (first to be eliminated) is a leaf; and
(b) For each successive stage of the elimination algorithm, the last vertex in I

remains a leaf of the reduced graph.

This claim follows because any tree always has at least one leaf vertex [17], so that
the algorithm can be initialized in Step 1. Moreover, in removing a leaf vertex, the
elimination algorithm introduces no additional edges to the graph, so that it remains
a tree at each stage. Thus, we may apply the argument recursively, again choosing a
leaf vertex to continue the process. We refer to such an ordering as a leaf-exposing
ordering.

In computational terms, when eliminating leaf vertex s from the graph, the
algorithm marginalizes over xs , and then passes the result to its unique parent �.s/.
The result Q��.s/ of this intermediate computation is a function of x�.s/; following
standard notation used in presenting the sum-product algorithm, we can represent
it by a “message” of the form Ms!�.s/, where the subscript reflects the direction
in which the message is passed. Upon termination, the elimination algorithm will
return the marginal distribution p.xT / at the target vertex T 2 V; more specifically,
this marginal is specified in terms of the local compatibility function  T and the
incoming messages as follows:

p.xT / /  T .xT /
Y

s2N.r/
Ms!T .xT /:

Assuming that each variable takes at most m values (i.e., jXs j � m for all s 2 V),
the overall complexity of running the elimination algorithm for a given root vertex
scales as O.m2N /, since computing each message amounts to summingm numbers
a total ofm times, and there are O.N / rounds in the elimination order. Alternatively,
since the leaf-exposing ordering adds no new edges to the tree, the reconstituted
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graph is equivalent to the original tree. The maximal cliques in any tree are the
edges, hence of size two, so that the complexity estimate O.m2N / follows from our
discussion of the elimination algorithm.

3.2.1 Sum-Product Algorithm

In principle, by running the tree-based elimination algorithm N times—once for
each vertex acting as the target in the elimination ordering—we could compute
all singleton marginals in time O.m2N 2/. However, as the attentive reader might
suspect, such an approach is wasteful, since it neglects to consider that many of
the intermediate operations in the elimination algorithm would be shared between
different orderings. Herein lies the cleverness of the sum-product algorithm: it re-
uses these intermediate results in the appropriate way, and thereby reduces the
overall complexity of computing all singleton marginals to O.m2N /. In fact, as an
added bonus, without any added complexity, it also computes all pairwise marginal
distributions over variables .xs; xt / such that .s; t/ 2 E.

For each edge .s; t/ 2 E, the sum-product algorithm maintains two messages—
namely, Ms!t and Mt!s—corresponding to two possible directions of the edge.1

With this notation, the sum-product message-passing algorithm for discrete random
variables takes the following form:

Sum-Product Message-Passing Algorithm (Pairwise Tree):

1. At iteration k D 0:
For all .s; t/ 2 E, initialize messages

M0
t!s.xs/ D 1 for all xs 2 Xs and M0

s!t .xt / D 1 for all xt 2 Xt .

2. For iterations k D 1; 2; : : ::
(i) For each .t; s/ 2 E, update messages:

Mk
t!s.xs/ ˛

X
x0

t

�
 st .xs; x

0
t /  t .x

0
t /

Y
u2N.t/=s

M k�1
u!t .x

0
t /

�
; (20)

where ˛ > 0 chosen such that
P

xs
M k
s!s.xs/ D 1.

(continued)

1Recall that the message Ms!t is a vector of jXt j numbers, one for each value xs 2 Xt .
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(ii) Upon convergence, compute marginal distributions:

p.xs/ D ˛s  s.xs/
Y
t2N.s/

Mt!s.xs/; and (21a)

pst .xs; xt / D ˛st  st .xs; xt /
Y

u2N.s/nftg
Mu!s.xs/

Y
u2N.t/nfsg

Mu!t .xt /;

(21b)

where ˛s > 0 and ˛st > 0 are normalization constants (to ensure that
the marginals sum to one).

The initialization given in Step 1 is the standard “uniform” one; it can be seen
that the final output of the algorithm will be same for any initialization of the
messages that has strictly positive components. As with our previous discussion
of the elimination algorithm, we have stated a form of message-passing updates
suitable for discrete random variables, involving finite summations. For continuous
random variables, we simply need to replace the summations in the message
update (20) with integrals. For instance, in the case of a Gauss-Markov chain, we
obtain the Kalman filter as a special case of the sum-product updates.

There are various ways in which the order of message-passing can be scheduled.
The simplest to describe, albeit not the most efficient, is the flooding schedule,
in which every message is updated during every round of the algorithm. Since
each edge is associated with two messages—one for each direction—this protocol
involves updating 2jEj messages per iteration. The flooding schedule is especially
well-suited to parallel implementations of the sum-product algorithm, such as on a
digital chip or field programmable gate array, in which a single processing unit can
be devoted to each vertex of the graph.

In terms of minimizing the total number of messages that are passed, a more
efficient scheduling protocol is based on the following rule: any given vertex s
updates the message Ms!t to its neighbor t 2 N.s/ only after it has received
messages from all its other neighbors u 2 N.s/nftg. In order to see that this protocol
will both start and terminate, note that any tree has at least one leaf vertex. All leaf
vertices will pass a message to their single neighbor at round 1. As in the elimination
algorithm, we can then remove these vertices from further consideration, yielding
a sub-tree of the original tree, which also has at least one leaf node. Again, we see
that a recursive leaf-stripping argument will guarantee termination of the algorithm.
Upon termination, a total of 2jEj messages have been passed over all iterations, as
opposed to per iteration in the flooding schedule.
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Regardless of the particular message-update schedule used, the following result
states the convergence and correctness guarantees associated with the sum-product
algorithm on a tree:

Proposition 2 For any tree T with diameter d.T /, the sum-product updates
have a unique fixed point M �. The algorithm converges to it after at most
d.T / iterations, and the marginals obtained by Eqs. (21a) and (21b) are
exact.

Proof We proceed via induction on the number of vertices. For N D 1, the claim
is trivial. Now assume that the claim holds for all trees with at most N � 1 vertices,
and let us show that it also holds for any tree with N vertices. It is an elementary
fact of graph theory [17] that any tree has at least one leaf node. By re-indexing
as necessary, we may assume that node N is a leaf, and its unique parent is node
1. Moreover, by appropriately choosing the leaf vertex, we may assume that the
diameter of T is achieved by a path ending at node N . By definition of the sum-
product updates, for all iterations k D 1; 2; : : :, the message sent from N to 1 is
given by

M �
N!1.x1/ D ˛

X
xN

 N .xN / N1.xN ; x1/:

(It never changes since vertex N has only one neighbor.) Given this fixed message,
we may consider the probability distribution defined on variables .x1; : : : ; xN�1/
given by

p.x1; : : : ; xN�1/ / M �
N!1.x1/

� N�1Y
sD1

 s.xs/
� Y
.s;t /2Enf.1;N /g

 st .xs; xt /:

Our notation is consistent, in that p.x1; : : : ; xN�1/ is the marginal distribution
obtained by summing out xN from the original problem. It corresponds to an
instance of our original problem on the new tree T 0 D .V0;E0/ with V0 D
f1; : : : ; N � 1g and E0 D Enf.1;N /g. Since the message M �

N!1 remains fixed
for all iterations k � 1, the iterates of the sum-product algorithm on T 0 are
indistinguishable from the iterates on tree (for all vertices s 2 V0 and edges
.s; t/ 2 E0).

By the induction hypothesis, the sum-product algorithm applied to T 0 will
converge after at most d.T 0/ iterations to a fixed point M � D fM �

s!t ;M
�
t!s j

.s; t/ 2 E0g, and this fixed point will yield the correct marginals at all vertices
s 2 V0 and edges .s; t/ 2 E0. As previously discussed, the message from N to 1
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remains fixed for all iterations after the first, and the message from 1 to N will be
fixed once the iterations on the sub-tree T 0 have converged. Taking into account the
extra iteration for node 1 to N , we conclude that sum-product on T converges in at
most d.T / iterations as claimed.

It remains to show that the marginal at nodeN can be computed by forming the
product p.xN / /  N .xN /M

�
1!N .xN /, where

M �
1!N .xN / WD ˛

X
x1

 1.x1/  1N .x1; xN /
Y

u2N.1/nfN g
M �

u!1.x1/:

By elementary probability theory, we have p.xN / D P
x1
p.xN j x1/p.x1/. Since

N is a leaf node with unique parent 1, we have the conditional independence relation
XN ?? XVnf1g j X1, and hence, using the form of the factorization (19),

p.xN j x1/ D  N .xN / 1N .x1; xN /P
xN
 N .xN / 1N .x1; xN /

/  N .xN / 1N .x1; xN /

M �
N!1.x1/

: (22)

By the induction hypothesis, the sum-product algorithm, when applied to the
distribution (22), returns the marginal distribution

p.x1/ /
�
M �
N!1.x1/ 1.x1/

� Y
t2N.1/nfN g

M �
t!1.x1/:

Combining the pieces yields

p.xN / D
X
x1

p.xN j x1/p.x1/

/  N .xN /
X
x1

 1N .x1; xN /

M �
N!1.x1/

�
M �
N!1.x1/ 1.x1/�

Y
k2N.1/nfN g

M �
k!1.x1/

/  N .xN / M �
1!N .xN /;

as required. A similar argument yields that Eq. (21b) yields the correct form of the
pairwise marginal for the edge .1;N / 2 E; we leave the details as an exercise for
the reader. ut

3.2.2 Sum-Product on General Factor Trees

In the preceding section, we derived the sum-product algorithm for a tree with
pairwise interactions; in this section, we discuss its extension to arbitrary tree-
structured factor graphs. A tree factor graph is simply a factor graph without cycles;
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see Fig. 3b for an example. We consider a distribution with a factorization of the
form

p.x1; : : : ; xN / D 1

Z

Y
s2V

 s.xs/
Y
a2F

 a.xa/; (23)

where V and F are sets of vertices and factor nodes, respectively.
Before proceeding, it is worth noting that for the case of discrete random

variables considered here, the resulting algorithm is not more general than sum-
product for pairwise interactions. Indeed, in any distribution over discrete random
variables with a tree-structured factor graph—regardless of the order of interactions
that it involves—can be converted to an equivalent tree with pairwise interactions.
We refer the reader to Appendix E.3 in the monograph [64] for further details on
this procedure. Nonetheless, it is often convenient to apply the non-pairwise form
of the sum-product algorithm directly to a factor tree, as opposed to going through
this conversion.

We use Ms!a to denote the message from vertex s to the factor node a 2 N.s/,
and similarly Ma!s to denote the message from factor node a to the vertex s 2
N.a/. Both messages (in either direction) are functions of xs , where Ma!s.xs/

(respectively Ms!a.xs/) denotes the value taken for a given xs 2 Xs . We let xa D
fxs; s 2 N.a/g denote the sub-vector of random variables associated with factor
node a 2 F . With this notation, the sum-product updates for a general tree factor
graph take the following form:

Sum-Product Updates for Tree Factor Graph:

Ms!a.xs/ ˛  s.xs/
Y

b2N.s/nfag
Mb!s.xs/; and (24a)

Ma!s.xs/ ˛
X

xt ; t2N.a/nfsg

h
 a.xa/

Y
t2N.a/nfsg

Mt!a.xt /
i
: (24b)

Here the quantity ˛ again represents a positive constant chosen to ensure that
the messages sum to one. (As before, its value can differ from line to line.) Upon
convergence, the marginal distributions over xs and over the variables xa are given,
respectively, by the quantities

p.xs/ D ˛  s.xs/
Y

a2N.s/
Ma!s.xs/; and (25a)

p.xa/ D ˛  a.xa/
Y

t2N.a/
Mt!a.xt /: (25b)
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We leave it as an exercise for the reader to verify that the message-passing
updates (24) will converge after a finite number of iterations (related to the diameter
of the factor tree), and when equation (25) is applied using the resulting fixed point
M � of the message updates, the correct marginal distributions are obtained.

3.2.3 Max-Product Algorithm

Thus far, we have discussed the sum-product algorithm that can be used to solve the
problems of marginalization and likelihood computation. We now turn to the max-
product algorithm, which is designed to solve the problem of mode computation. So
as to clarify the essential ideas, we again present the algorithm in terms of a factor
tree involving only pairwise interactions, with the understanding that the extension
to a general factor tree is straightforward.

The problem of mode computation amounts to finding a vector

x� 2 arg max
x2XŒN �

p.x1; : : : ; xN /;

where we recall our shorthand notation XŒN � D X1 � X2 � 
 
 
 � XN . As an
intermediate step, let us first consider the problem of computing the so-called
max-marginals associated with any distribution defined by a tree T D .V;E/. In
particular, for each vertex s 2 V, we define the singleton max-marginal

�s.xs/ WD max
fx02XŒN � jx0

sDxsg
p.x0

1; : : : ; x
0
N /; (26)

For each edge .s; t/ 2 E, the pairwise max-marginal is defined in an analogous
manner:

�ij.xi ; xj / WD max
fx02XŒN � j .x0

i ;x
0

j /D.xi ;xj /g
p.x0

1; : : : ; x
0
N /; (27)

Note that the singleton and pairwise max-marginals are the natural analogs of the
usual marginal distributions, in which the summation operation has been replaced
by the maximization operation.

Before describing how these max-marginals can be computed by the max-
product algorithm, first let us consider how max-marginals are relevant for the
problem of mode computation. This connection is especially simple if the singleton
max-marginals satisfy the unique maximizer condition—namely, if for all s 2 V,
the maximum over �s.xs/ is achieved at a single element, meaning that

arg max
xs2Xs

�s.xs/ D x�
s for all s 2 V. (28)
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In this case, it is straightforward to compute the mode, as summarized in the
following:

Lemma 3 Consider a distribution p whose singleton max-marginals satisfy
the unique maximizer condition (28). Then the vector x� D .x�

1 ; : : : ; x
�
N / 2

XŒN � is the unique maximizer of p.x1; : : : ; xN /.

Proof The proof of this claim is straightforward. Note that for any vertex s 2 V, by
the unique maximizer condition and the definition of the max-marginals, we have

�s.x
�
s / D max

xs2Xs
�s.xs/ D max

x2XŒN �
p.x1; : : : ; xN /:

Now for any other configuration Qx ¤ x�, there must be some index t such that
x�
t ¤ Qxt . For this index, we have

max
x2XŒN �

p.x1; : : : ; xN / D �t .x
�
t /

.i/
> �t . Qxt /

.i i/� p. Qx/;

where inequality (i) follows from the unique maximizer condition, and inequality
(ii) follows by definition of the max-marginal. We have thus established that
p. Qx/ < max

x2XŒN �
p.x/ for all Qx ¤ x�, so that x� uniquely achieves the maximum. ut

If the unique maximizer condition fails to hold, then the distribution p must
have more than one mode, and it requires a bit more effort to determine one. Most
importantly, it is no longer sufficient to extract some x�

s 2 arg maxxs2Xi �i .xs/, as
illustrated by the following toy example.

Example 11 (Failure of Unique Maximizer) Consider the distribution over a pair of
binary variables given by

p.x1; x2/ D
(
0:45 if x1 ¤ x2, and

0:05 otherwise.
(29)

In this case, we have �1.x1/ D �2.x2/ D 0:45 for all .x1; x2/ 2 f0; 1g2, but
only configurations with x1 ¤ x2 are globally optimal. As a consequence, a naive
procedure that looks only at the singleton max-marginals has no way of determining
such a globally optimal configuration. |

Consequently, when the unique maximizer condition no longer holds, it is
necessary to also take into account the information provided by the pairwise max-
marginals (27). In order to do so, we consider a back-tracking procedure that
samples some configuration x� 2 arg maxx2XŒN � p.x/. Let us assume that the tree
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is rooted at node 1, and that V D f1; 2; : : : ; N g is a topological ordering (i.e., such
that �.s/ < s for all s 2 f2; : : : ; N g). Using this topological ordering we may
generate an optimal configuration x� as follows:

Back-Tracking for Choosing a Mode x�

1. Initialize the procedure at node 1 by choosing any x�
1 2 arg max

x12X1
�1.x1/.

2. For each s D 2; : : : ; N , choose a configuration x�
s at vertex s such that

x�
s 2 arg max

xs2Xs
�s;�.s/.xs; x

�
�.s//:

Note that this is a recursive procedure, in that the choice of the configuration x�
s

depends on the previous choice of x�
�.s/. Our choice of topological ordering ensures

that x�
�.s/ is always fixed before we reach vertex s. We establish that this back-

tracking procedure is guaranteed to output a vector x� 2 arg maxx2XŒN � p.x/ in
Proposition 3 below.

Having established the utility of the max-marginals for computing modes, let
us now turn to an efficient algorithm for computing them. As alluded to earlier,
the max-marginals are the analogs of the ordinary marginals when summation is
replaced with maximization. Accordingly, it is natural to consider the analog of the
sum-product updates with the same replacement; doing so leads to the following
max-product updates:

Mt!s.xs/ ˛ max
xt

�
 st .xs; xt /  t .xt /

Y
u2N.t/=s

Mu!t .xt /

�
; (30)

where ˛ > 0 chosen such that maxxs Mt!s.xs/ D 1. When the algorithm converges
to a fixed point M �, we can compute the max-marginals via Eqs. (21a) and (21b).
Let us summarize the properties of the max-product algorithm on any undirected
tree:

Proposition 3 For any tree T with diameter d.T /, the max-product updates
converge to their unique fixed point M � after at most d.T / iterations.
Moreover, Eqs. (21a) and (21b) can be used to compute the max-marginals,
and the back-tracking procedure yields an element x� 2 arg max

x2XŒN �
p.x/.

Proof The proof of convergence and correct computation of the max-marginals is
formally identical to that of Proposition 2, so we leave the details to the reader
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as an exercise. Let us verify the remaining claim—namely, the optimality of any
configuration x� 2 XŒN � returned by the back-tracking procedure.

In order to do so, recall that we have assumed without loss of generality
(re-indexing as necessary) that V D f1; 2; : : : ; N g is a topological ordering, with
vertex 1 as the root. Under this ordering, let us use the max-marginals to define the
following cost function:

J.x1; : : : ; xN I �/ D �1.x1/
NY
sD2

�s �.s/.xs; x�.s//

��.s/.x�.s//
: (31)

In order for division to be defined in all cases, we take 0=0 D 0.
We first claim that there exists a constant ˛ > 0 such that J.xI �/ D ˛ p.x/

for all x 2 XŒN �, which implies that arg maxx2XŒN � J.xI �/ D arg maxx2XŒN � p.x/.
By virtue of this property, we say that � defines a reparameterization of the original
distribution. (See the papers [65, 66] for further details on this property and its utility
in analyzing the sum and max-product algorithms.)

To establish the reparameterization property, we first note that the cost function
J can also be written in the symmetric form

J.xI �/ D
NY
sD1

�s.xs/
Y
.s;t /2E

�st .xs; xt /

�s.xs/�t .xt /
: (32)

We then recall that the max-marginals are specified by the message fixed pointM �
via Eqs. (21a) and (21b). Substituting these relations into the symmetric form (32)
of J yields

J.xI �/ /
hY
s2V

 s.xs/
Y

u2N.s/
M �

u!s.xs/
i h Y

.s;t /2E

 st .xs; xt /

M �
s!t .xt /M

�
t!s.xs/

i

D
Y
s2V

 s.xs/
Y
.s;t /2E

 st .xs; xt /

/ p.x/;

as claimed.
Consequently, it suffices to show that any x� 2 XŒN � returned by the back-

tracking procedure is an element of arg maxx2XŒN � J.xI �/. We claim that for each
vertex s 2 V such that �.s/ ¤ ;,

�s �.s/.x
�
s ; x

�
�.s//

��.s/.x
�
�.s//

� �s �.s/.xs; x�.s//

��.s/.x�.s//
for all .xs; x�.s// 2 Xs �X�.s/. (33)
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By definition of the max-marginals and our choice of x�, the left-hand side is
equal to one. On the other hand, the definition of the max-marginals implies that
��.s/.x�.s// � �s �.s/.xs; x�.s//, showing that the right-hand side is less than or equal
to one.

By construction, any x� returned by back-tracking satisfies �1.x�
1 / � �1.x1/

for all x1 2 X1. This fact, combined with the pairwise optimality (33) and the
definition (31), implies that J.x�I �/ � J.xI �/ for all x 2 XŒN �, showing that x� is
an element of the set arg maxx2XŒN � J.xI �/, as claimed. ut

In summary, the sum-product and max-product are closely related algorithms,
both based on the basic principle of “divide-and-conquer”. A careful examination
shows that both algorithms are based on repeated exploitation of a common
algebraic property, namely the distributive law. More specifically, for arbitrary real
numbers a; b; c 2 R, we have

a 
 .b C c/ D a 
 b C a 
 c; and a 
 maxfb; cg D maxfa 
 b; a 
 cg:

The sum-product (respectively max-product) algorithm derives its power by exploit-
ing this distributivity to re-arrange the order of summation and multiplication
(respectively maximization and multiplication) so as to minimize the number of
steps required. Based on this perspective, it can be shown that similar updates apply
to any pair of operations .˚;˝/ that satisfy the distributive law a ˝ .b ˚ c/ D
a˝b ˚ a˝c, and for which˝ is a commutative operation (meaning a˝b D b˝a).
Here the elements a; b; c need no longer be real numbers, but can be more exotic
objects; for instance, they could elements of the ring of polynomials, where .˝;˚/
correspond to multiplication or addition with polynomials. We refer the interested
reader to the papers [1, 28, 55, 62] for more details on such generalizations of the
sum-product and max-product algorithms.

4 Junction Tree Framework

Thus far, we have derived the sum-product and max-product algorithms, which
are exact algorithms for tree-structured graphs. Consequently, given a graph with
cycles, it is natural to think about some type of graph transformation—for instance,
such as grouping its vertices into clusters—-so as to form a tree to which the fast
and exact algorithms can be applied. It turns out that this “clustering”, if not done
carefully, can lead to incorrect answers. Fortunately, there is a theory that formalizes
and guarantees correctness of such a clustering procedure, which is known as the
junction tree framework.
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Fig. 6 (a) A graph with cycles on five vertices. (b) Associated clique graph in which circular
vertices are maximal cliques of G; square gray boxes sitting on the edges represent separator sets,
corresponding to the intersections between adjacent cliques. (c) One clique tree extracted from the
clique graph. It can be verified that this clique tree fails to satisfy the running intersection property

4.1 Clique Trees and Running Intersection

In order to motivate the development to follow, let us begin with a simple (but
cautionary) example. Consider the graph with vertex set V D f1; 2; 3; 4; 5g shown
in Fig. 6a, and note that it has four maximal cliques—namely f2; 3; 4g, f1; 2g, f1; 5g
and f4; 5g. The so-called clique graph associated with this graph has four vertices,
one for each of these maximal cliques, as illustrated in panel (b). The vertices
corresponding to cliques C1 and C2 are joined by an edge in the clique graph if
and only if C1 \ C2 is not empty. In this case, we label the edge joining C1 and C2
with the set S D C1 \ C2, which is known as the separator set. The separator sets
are illustrated in gray boxes in panel (b). Finally, one possible tree contained within
this clique graph—known as a clique tree—is shown in panel (c).

Now suppose that we were given a MRF distribution over the single cycle in
panel (a); by the Hammersley-Clifford theorem, it would have the form

p.x1; : : : x5/ /  234.x2; x3; x4/ 12.x1; x2/ 15.x1; x5/ 45.x4; x5/: (34)

We can provide an alternative factorization of (essentially) the same model on the
clique graph in panel (b) by making two changes: first, introducing extra copies of
each variable from the original graph appears in multiple places on the clique graph,
and second, introducing indicator functions on the edges to enforce equality between
the different copies. In our particular example, we introduce extra variables x0

s for
s 2 f1; 2; 4; 5g, since these variables appear twice in the clique graph. We then form
a distribution q.x; x0/ D q.x1; x2; x3; x4; x5x0

1; x
0
2; x

0
4; x

0
5/ that factorizes as

q.x; x0/ /  234.x2; x3; x4/ 12.x1; x0
2/ 15.x

0
1; x5/ 45.x

0
4; x5/ �

Y
s2Vnf3g

I Œxs D x0
s �;

(35)

where I Œxs D x0
s � is a f0; 1g-valued indicator function for the event fxs D x0

sg.
By construction, for any s 2 f1; 2; 3; 4; 5g, if we were to compute the distribution
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q.xs/ in the expanded model (35), it would be equal to the marginal p.xs/ from the
original model (34). Although the expanded model (35) involves additional copies
x0
s , the indicator functions that have been added enforce the needed equalities to

maintain model consistency.
However, the clique graph in panel (b) and the distribution (35) are not still

not trees, which leads us to the key question. When is it possible to extract a
tree from the clique graph, and have a factorization over the resulting clique tree
that remains consistent with the original model (34)? Panel (c) of Fig. 6 shows
one clique tree, obtained by dropping the edge labeled with separator set f5g
that connects the vertices labeled with cliques f4; 5g and f1; 5g. Accordingly, the
resulting factorization r.
/ over the tree would be obtained by dropping the indicator
function I Œx5 D x0

5�, and take the form

r.x; x0// 234.x2; x3; x4/ 12.x1; x0
2/ 15.x

0
1; x5/ 45.x

0
4; x5/ �

Y
s2Vnf3;5g

I Œxs D x0
s�;

(36)

Of course, the advantage of this clique tree factorization is that we now have a
distribution to which the sum-product algorithm could be applied, so as to compute
the exact marginal distributions r.xi / for i D 1; 2; : : : ; 5. However, the drawback
is that these marginals will not be equal to the marginals p.xi / of the original
distribution (34). This problem occurs because—in sharp contrast to the clique
graph factorization (35)—the distribution (36) might assign non-zero probability to
some configuration for which x5 ¤ x0

5. Of course, the clique tree shown in Fig. 6c is
only one of spanning trees contained within the clique graph in panel (b). However,
the reader can verify that none of these clique trees have the desired property.

A bit more formally, the property that we require is the clique tree factorization
always have enough structure to enforce the equivalences xs D x0

s D x00
s D : : :,

for all copies of a given variable indexed by some s 2 V. (Although variables
only appeared twice in the example of Fig. 6, the clique graphs obtained from more
complicated graphs could have any number of copies.) Note that there are copies xs
and x0

s of a given variable xs if and only if s appears in at least two distinct cliques,
say C1 and C2. In any clique tree, there must exist a unique path joining these two
vertices, and what we require is that the equivalence fxs D x0

sg be propagated
along this path. In graph-theoretic terms, the required property can be formalized
as follows:

Definition 6 A clique tree has the running intersection property if for any
two clique vertices C1 and C2, all vertices on the unique path joining them
contain the intersection C1 \ C2. A clique tree with this property is known as
a junction tree.
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Fig. 7 (a) A modified version of the graph from Fig. 6a, containing the extra edge .1; 4/. The
modified graph has three maximal cliques, each of size three. (b) The associated clique graph
has one node for each of three maximal cliques, with gray boxes representing the separator sets.
(c) A clique tree extracted from the clique graph; it can be verified that this clique tree satisfies the
running intersection property

To illustrate this definition, the clique tree in Fig. 6 fails to satisfy running
intersection since 5 belongs to both cliques f4; 5g and f1; 5g, but does not belong
to the clique f2; 3; 4g along the path joining these two cliques in the clique tree. Let
us now consider a modification of this example so as to illustrate a clique tree that
does satisfy running intersection, and hence is a junction tree.

Figure 7a shows a modified version of the graph from Fig. 6a, obtained by adding
the extra edge .1; 4/. Due to this addition, the modified graph now contains three
maximal cliques, each of size three. Panel (b) shows the associated clique graph; it
contains three vertices, one for each of the three maximal cliques, and the gray boxes
on the edges represent the separator sets. Panel (c) shows one clique tree extracted
from the clique graph in panel (b). In contrast to the tree from Fig. 6a, this clique
tree does satisfy the running intersection property, and hence is a junction tree. (For
instance, vertex 4 belongs to both cliques f2; 3; 4g and f1; 4; 5g, and to every clique
on the unique path joining these two cliques in the tree.)

4.2 Triangulation and Junction Trees

Thus far, we have studied in detail two particular graphs, one (Fig. 6a) for which it
was impossible to obtain a junction tree, and a second (Fig. 7a) for which a junction
tree could be found. In this section, we develop a principled basis on which to
produce graphs for which the associated clique graph has a junction tree, based
on the graph-theoretic notion of triangulation.

A cycle in a graph is a sequence of vertices .s1; s2; : : : s`; s1/ such that .s`; s1/ 2 E
and .si siC1/ 2 E for all i D 1; : : : ; `�1. The cycle is chordless if there are no edges
in the graph joining non-successive vertices in the cycle—that is, the graph does not
contain any edges apart from those listed above that form the cycle. For example,
the cycle .1; 2; 4; 5; 1/ in the graph from Fig. 6a is chordless, whereas in contrast,
the cycle .1; 2; 3; 4; 5; 1/ contains the chord .2; 4/.
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Definition 7 A graph is triangulated if it contains no chordless cycles of
length greater than three.

Thus, the graph in Fig. 6a is not triangulated (due to the chordless cycle
.1; 2; 4; 5; 1/), whereas it can be verified that the graph in Fig. 7a is triangulated.
We now state the fundamental connection between triangulation and junction trees:

Theorem 3 The clique graph associated with a graph G has a junction tree
if and only if G is triangulated.

We provide a proof of this result as a part of a more general set of graph-
theoretic equivalences in Appendix. The practical significance of Theorem 3 is that
it enables us to construct a modified graph QG—by triangulating the original graph
G—such that the clique graph associated with QG is guaranteed to have at least one
junction tree. There are a variety of algorithms for obtaining triangulated graphs.
For instance, recall the vertex elimination procedure discussed in Sect. 3.1; it takes
as input a graph G D .V;E/ and then processes the vertices in a pre-specified order
so as to produce a new graph.

Lemma 4 The output QG D .V; QE/ of the vertex elimination algorithm is a
triangulated graph.

We leave the proof of Lemma 4 as an exercise for the reader. This fact establishes
that there is a connection between the elimination algorithm and the property of
triangulation.

Example 12 (Triangulation and Junction Tree) To illustrate the triangulation pro-
cedure, consider the 3 � 3 grid shown in Fig. 8a. If we run the vertex elimination
algorithm using the ordering I D f1; 3; 7; 9; 4; 6; 2; 8g, then we obtain the graph
QG shown in panel (b). (Note that the graph would not be triangulated if the

additional edge joining vertices 2 and 8 were not present. Without this edge, the
4-cycle f2; 4; 8; 6; 2gwould lack a chord.) Note that QG has six maximal cliques: two
4-cliques in the middle of the graph, and four 3-cliques on the boundary. The clique
graph associated with QG is illustrated in panel (c), and one clique tree is shown in
panel (d). It can be verified that this clique tree satisfies the running intersection
property, and so is a junction tree. |
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Fig. 8 Illustration of junction tree construction. (a) Original graph is a 3�3 grid. (b) Triangulated
version of original graph. Note the two 4-cliques in the middle. (c) Corresponding clique graph for
triangulated graph in (b), with maximal cliques depicted within ellipses, and separator sets within
rectangles. (d) A junction tree extracted from the clique graph in (c). It is a clique tree that satisfies
the running intersection property

4.3 Constructing the Junction Tree

Given that any triangulated graph has a junction tree (JT), the first step in the
JT procedure is to triangulate the graph. At least in principle, this operation is
straightforward since it entails adding edges so as to remove chordless cycles
from the graph. (However, see the discussion at the end of Sect. 4 for discussion
of optimal triangulations.) The focus of this section is the next step of the JT
procedure—namely, how to form a junction tree from a triangulated graph. Any
graph with cycles has more than one clique tree. Given a triangulated graph, we
are guaranteed that at least one of these clique trees has the running intersection
property, and so is a junction tree. How to find such a junction tree? It turns out that
there is a simple procedure, based on solving a certain maximum weight spanning
tree problem, that is always guaranteed to find a junction tree.

Given a triangulated graph, we again consider the clique graph, as previously
defined. Recall that vertices C1 and C2 (corresponding to cliques from the original
graph) are connected by an edge if and only if the associated separator set
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S D C1 \ C2 is non-empty. Accordingly, for each edge e D .C1; C2/ of the clique
graph, we can associate the positive weight w.e/ D card.C1 \ C2/. We refer to
the resulting object as the cardinality-weighted clique graph. Given this weighted
graph, the maximum weight spanning tree problem corresponds to finding the tree
T (whose vertex set includes every node) such that the weight w.T / WDPe2T w.e/
is maximized.

Proposition 4 Any maximal weight spanning tree of the cardinality-weighted
clique graph is a junction tree for the original graph.

Proof Suppose that the triangulated graph QG has M maximal cliques, so that (by
definition) the weighted clique graph has M vertices. Let us consider an arbitrary
spanning tree T of the weighted clique graph, say with vertices fC1; : : : ; CM g and
an associated edge set fS1; : : : ; SM�1g, where we have identified each edge with its
associated separator set. The weight of this spanning tree can be written as w.T / DPM�1

jD1 card.Sj /. Letting I Œt 2 Sj � be an f0 � 1g-valued indicator function for the
event ft 2 Sj g, we may write card.Sj / DPt2V I Œt 2 Sj �, and hence we have

w.T / D
M�1X
jD1

X
t2V

I Œt 2 Sj � D
X
t2V

M�1X
jD1

I Œt 2 Sj �: (37)

We now claim that for any t 2 V, we have the inequality

M�1X
jD1

I Œt 2 Sj � �
MX
iD1

I Œt 2 Ci � � 1; (38)

with equality if and only if the subgraph induced by t is connected. To establish this
claim, consider the subgraph of T that induced by vertex t—meaning the subgraph
formed by the clique verticesCi that include t , and the associated edges or separator
sets Sj that also include t . Since it is a subgraph of the tree T , it must also be acyclic,
from which the inequality (38) follows. If the subgraph has a single connected
component, then equality holds. When T is actually a junction tree, this equality
will hold for any vertex t .

Substituting the bound (38) into the earlier inequality (37), we conclude that

w.T / �
X
t2V

� MX
iD1

I Œt 2 Ci� � 1
�
;

where equality holds if and only T is a junction tree. Since the given tree T was
arbitrary, the claim follows. ut
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Putting together the pieces of our development, we are led to the following
algorithm:

Junction Tree Algorithm Given an undirected graph G D .V;E/:
1. Run a triangulation procedure to obtain a triangulated graph QG.
2. Form the weighted junction graph, and find a maximum weight spanning

tree via a standard algorithm (e.g., using Kruskal’s algorithm, or Prim’s
algorithm).

3. Given the junction tree, define appropriate compatibility functions on its
vertices and edges to reproduce the original distribution, and run the sum-
product algorithm.

There are various techniques for finding some triangulation of a graph; as noted
in Lemma 4, running the vertex elimination algorithm (using any ordering) yields
a triangulation. Note, however, that the complexity of tree inference depends on
the size of the state spaces at each node in the junction tree, which are determined
by the clique sizes in the triangulated graph. It would be desirable, then, to obtain
a triangulation with minimal maximal clique size, or equivalently, with minimal
treewidth.

Definition 8 The treewidth �.G/ of a undirected graph G is the size of largest
clique (minus one) in the best triangulation.

As an illustration, any ordinary tree has treewidth one, whereas the graph in Fig. 7a
has treewidth two, and the grid in Fig. 8 has treewidth three.

For any fixed treewidth � D �.G/, there are efficient algorithms—meaning
polynomial-time in the graph size—to test whether the graph has treewidth �,
and if so, to determine an associated junction tree (e.g., [16, 60]). However, the
complexity of these algorithms grows exponentially in the treewidth �, so they are
feasible only for graphs of bounded treewidth. For a general graph, the problem
of finding an optimal triangulation is NP-hard [6, 67]. Despite this negative result,
there are a variety of heuristic algorithms for obtaining “good” triangulations of a
graph. Some of most widely studied are the minimum degree and the minimum
fill heuristics [4, 36]. The minimum degree heuristic is based on following the
elimination ordering obtained by choosing a minimum degree vertex (in the partially
reduced graph) at each step. The minimum fill heuristic operates similarly, but
instead is based on choosing a vertex s so as to minimize the total number of edges
required to make the neighborhoodN.s/ a clique, a quantity known as the “fill”.
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5 Basics of Graph Estimation

Up to this point, we have considered various types of “forward problems”, by
which we mean that the graphical model—both the graph and the functions in its
factorization—are known quantities. In this section, we turn our attention to various
classes of “inverse problems”, in which either the functions and/or the structure
of the graph are unknown. Given a black box that generates samples from the
distributions, we consider two possible problems:

• assuming that the clique structure is known, how to estimate the functions in the
factorization?

• given no a priori information, how to estimate the clique structure and the
functions?

The former problem is one of parameter estimation, since it involves estimating
the parameters that specify either the conditional probabilities (for a directed
graphical model) or the compatibility functions (for an undirected graphical model).
In contrast, the latter problem is a form of model selection, since we need to
select the correct graph from competing families of graphs. In the machine learning
community, the latter problem is also known as structure learning. We begin
our discussion with the former problem, as it is simpler both conceptually and
computationally.

5.1 Parameter Estimation for Directed Graphs

The problem of parameter estimation is particularly simple for directed graphical
models, in which case, as long as the data is fully observed, the solution can be
obtained in closed form.

More concretely, for a known directed graph D D .V;
�!
E /, consider the set of

all distributions that factorize in the form

p.x1; : : : ; xN / D
Y
s2V

p.xs j x�.s//;

where �.s/ � V is the parent set of vertex s. Suppose we observe a collection of
n samples, each of the form Xi 	 D .Xi1; : : : ; XiN / 2 XŒN �. Given the collection
of samples Xn	

1	 WD fX1	; X2	; : : : ; Xn	g, our goal is to estimate the conditional
distributions at each vertex s 2 V. In these notes, we focus exclusively on the
case of discrete variables, in particular with Xs D f0; 1; : : : ; m � 1g for all vertices
s 2 V. (The extension to discrete variables with differing numbers of states per
vertex is straightforward.)
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By definition, each conditional distribution can be written as a ratio of two
marginal distributions—namely, as

p.xs j x�.s// D p.xs; x�.s//

p.x�.s//
:

A natural estimate of each marginal distribution are the empirical marginal distri-
butions—namely, the quantities

Op.xs/ D 1

n

nX
iD1

I .Xi s D xs/; and

Op.xs; x�.s// D 1

n

nX
iD1

I .Xi s D xs; Xi �.s/ D x�.s//;

where I .Xi s D xs/ is a zero-one valued indicator function for the event that fXi s D
xsg, with the other indicator similarly defined. In words, the empirical marginal
Op.xs/ is simply the relative fraction of times that Xs D xs in the data.

Given these estimates of the marginal distributions, a natural “plug-in” estimate
of the conditional distribution is given by

Op.xs j x�.s// D Op.xs; x�.s//Op.x�.s// : (39)

(To be clear, we take 0=0 to be equal to 0, since these correspond to configurations
that never appear in the data set.)

5.2 Parameter Estimation for Undirected Graphs

For undirected graphical models, the problem of parameter estimation is not so
simple in general. In particular, given an undirected graph G D .V;E/, consider
the set of all distributions that factorize in the form

p.x1; : : : ; xN I / D 1

Z

Y
C2C

 C .xC /; (40)

where C is the set of all maximal cliques of the graph. In this setting, our goal is to
estimate the unknown compatibility functions  C W XC ! .0;1/ associated with
each clique of the graph. A challenge here is that, at least in general, the compatibil-
ity functions are not directly related to conditional or marginal distributions of the
graph. The exception to this rule is given by undirected trees (and more generally,



Graphical Models and Message-Passing Algorithms: Some Introductory Lectures 93

junction trees), in which case there is always a choice of compatibility functions that
is related to the marginal and/or conditional distributions.

In these notes, we limit our discussion to the method of maximum likelihood
for estimating the compatibility functions. It is based on choosing the compatibility
functions  D f C ;C 2 Cg so as to maximize the (rescaled) log likelihood of the
data, namely the quantity

`. IX1 	; : : : ; Xn	/ D 1

n

nX
iD1

logp.Xi 	I /: (41)

We use O D f O C ;C 2 Cg to denote the maximum likelihood estimate, namely
a choice of compatibility functions that maximize the log likelihood. A remark
about parameterization before proceeding: since we are considering discrete random
variables, the estimate O can be viewed as a vector of real numbers. In particular,
the estimate O C can be represented as a sub-vector of mjC j real numbers, one for
each possible configuration J D fJs; s 2 C g 2 XC that the variables xC may
assume. By concatenating all of these sub-vectors, we obtain a vector O 2 R

D ,
where D D P

C2CmjC j. Consequently, the rescaled log likelihood is a function
from R

D to R.

5.2.1 Maximum Likelihood for Undirected Trees

Let us begin by considering the maximum likelihood problem for an undirected tree
T D .V;E/, say with a factorization of the form

p.x1; : : : ; xN I / D 1

Z

Y
s2V

 s.xs/
Y
.s;t /2E

 st .xs; xt /: (42)

For any tree, we claim that the maximum likelihood estimate O can be expressed in
terms of the empirical marginals at the vertices and edges of the tree—namely, the
quantities

Op.xsDj /D 1
n

nX
iD1

I sIj .Xis/; and Op..xs; xt / D .j; k// D 1

n

nX
iD1

I st Ijk.Xis; Xit /;

(43)

where I sIj .xs/ is a zero-one indicator for the event that fxs D j g, with I st Ijk.xs; xt /
similarly defined. With these empirical marginals computed from the data, the
maximum likelihood estimates of the compatibility functions are given by

O s.xs/ D Op.xs/; and O st .xs; xt / D Op.xs; xt /
Op.xs/ Op.xt / : (44)
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(As before, we take 0=0 D 0 for concreteness.) We prove in the following section,
as a corollary of a more general result, that the relations (44) do in fact define a
global maximizer of the log likelihood (41) for a tree-structured graph.

5.2.2 Maximum Likelihood on General Undirected Graphs

In the case of graphs with cycles, the MLE no longer has a convenient closed-form
expression. In order to appreciate the challenges, it is convenient to discuss the
maximum likelihood objective using an alternative exponential parameterization.
Let us do so for a graph with general clique set C, understanding that the undirected
tree is a special case. For a given cliqueC and configurationJ D fJs; s 2 C g 2 XC ,
we define the function

I C IJ .xC / D
(
1 if xC D J
0 otherwise,

(45)

corresponding to a binary-valued indicator for the event that fxC D J g. Note
that these functions are generalizations of the vertex-based functions I sIj and
edge-based functions I st Ijk discussed previously.

We use I C D fI C IJ ; J 2 XC g to denote the vector all of mjC j such indicator
functions associated with clique C . With this notation, any function  C W XC !
.0;1/ can be parameterized in the log-linear form

log C .xC / D h�C ; I C .xC /i WD
X
J2XC

�C IJ I C IJ .xC /

for some real vector �C D f�C IJ ; J 2 XC g in mjC j dimensions. If we adopt this
parameterization for each clique in the graph, then the overall factorization can be
re-written in the form

p.x1; : : : ; xN I �/ D exp
nX
C2C
h�C ; I C .xC /i � ˚.�/

o
(46)

where � D f�C ; C 2 Cg is a real-valued vector of parameters to be estimated, and

˚.�/ WD log
X
x2XŒN �

exp
nX
C2C
h�C ; I C .xC /i

o
(47)

is the log normalization constant. The representation (46) shows that an undirected
graphical model can be associated with an exponential family, namely one with
sufficient statistics fI C .
/; C 2 Cg and natural parameter � D f�C ; C 2 Cg 2 R

D .
This connection is useful, since there is a rich and classical statistical literature on
the properties of exponential families (e.g., [19, 30, 64]). We make use of some of
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these properties here. Moreover, an attractive property of the maximum likelihood
estimate is its invariance to reparameterizations: namely, if we can compute the
MLE O� in our new, exponential parameterization, then O � exp. O�/ will define the
MLE in the original parameterization. We use this fact freely in the discussion to
follow.

One convenient property of the exponential parameterization is that the log
likelihood `.� IX1	; : : : ; Xn	/ WD 1

n

Pn
iD1 logp.Xi 	I �/ can be written in terms

of the empirical marginals

O�C IJ D 1

n

nX
iD1

I C IJ .XiC /; (48)

at each clique. Note that O�C IJ D Op.xC D J / corresponds to the average
fraction of times that fXC D J g in the data set. Let us define the vector
O�C D f O�C IJ ; J 2 XC g 2 mjC j, as well as the inner product h�C ; O�C i DP
J2XC �C IJ O�C IJ . With this notation, the maximum likelihood estimate O� takes

the form

O� D arg max
�2RD

nX
C2C
h�C ; O�C i �˚.�/

o
: (49)

In order to understand the structure of this optimization problem, we require
some useful properties of the function ˚ :

Lemma 5 The function ˚ is convex and infinitely differentiable on R
D , and

in particular, we have

@˚

@�C IJ
.�/ D

X
x2X

p.xI �/ I C IJ .xC /

„ ƒ‚ …
p.xCDJ I�/

This result shows that taking the partial derivatives of ˚ with respect to the
parameters over clique C yields the marginal distribution over that clique. The proof
of these properties are relatively straightforward, so we leave them as an exercise
for the reader.

Lemma 5 allows us to characterize the structure of the maximum likelihood
estimate (49). First, it shows that the rescaled log likelihood ` is a concave function
of � , and hence has no local optima that can trap an iterative algorithm. Secondly,
it can be used to characterize the stationary conditions that characterize a global
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optimum; more precisely, by taking derivatives of the rescaled log likelihood and
setting them to zero, we find that the MLE O� satisfies the stationary conditions

p.xC D J I O�/ D O�C IJ for all C 2 C, and J 2 XC : (50)

In words, the maximum likelihood estimate O� is such that the marginals computed
under the distribution p.
I O�/ are equal to the empirical marginals determined by
the data. This type of moment-matching condition characterizes the MLE in any
exponential family; see the monograph [64] for further details.

Let us now return to our previously open question: for a tree-structured graph
T with the factorization (42), why does Eq. (44) specify the maximum likelihood
estimate? We simply need to verify that the moment-matching conditions are
satisfied. Given the suggested form of O from Eq. (44), we have

p.x1; : : : ; xN I O / D 1

Z

Y
s2V
Op.xs/

Y
.s;t /2E

Op.xs; xt /
Op.xs/ Op.xt / : (51)

Our claim is that in this factorization, we must necessarily have Z D 1 and
moreover

p.xs I O /D Op.xs/ for all s 2 V, and p.xs; xt I O /D Op.xs; xt / for all .s; t/ 2 E.
(52)

In order to verify this claim, we first observe that any undirected tree can be
converted to an equivalent directed form as follows: first, designate one vertex, say
r , as the root, and then orient all edges away from the root toward the leaves. See
Fig. 9 for an illustration of this procedure.

After this conversion, each vertex s 2 Vnfrg has a unique parent �.s/, and we
can associate the product O s.xs/ O s�.s/.xs; x�.s//with the directed edge .�.s/! s/

a b

Fig. 9 (a) Undirected tree. (b) Conversion of undirected tree to a directed tree rooted at vertex r .
Each vertex s 2 Vnfrg now has a unique parent �.s/. Any given parent may have multiple
children
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and the term O r.xr / with the root vertex. In this way, the factorization (51) can be
written the directed form

p.x1; : : : ; xN I O / D 1

Z
O r.xr /

Y
s2Vnfrg

O s.xs/ O s�.s/.xs; x�.s//

D 1

Z
Op.xr/„ƒ‚…
fr .xr /

Y
s2Vnfrg

Op.xs; x�.s//
Op.x�.s//„ ƒ‚ …
fs.xs; x�.s//

:

Note that this is now a factorization of the general directed form (2), with
functions ffs; s 2 Vg that satisfy the normalization condition (1). Consequently,
an application of Proposition 1 implies that

p.xr I O / D Op.xr/; and
p.xs; x�.s/I O /
p.x�.s/I O /

D Op.xs; x�.s//Op.x�.s// for all �.s/! s.

A recursive argument, moving from the root r out to the leaves, then shows that the
marginal-matching condition (52) holds. We leave the details of this final step as
an exercise for the reader. (Start with the case of a Markov chain to see the general
idea.)

5.2.3 Iterative Proportional Scaling

Thus far, we have seen that in the special case of a tree-structured graph, it is
straightforward to find a set of compatibility functions O (or equivalently, a vector
of parameters O�) that satisfy the moment-matching conditions (50). The same basic
idea can be extended to any triangulated graph, by first building a junction tree, and
then following the analogous procedure on the junction tree.

In contrast, for a general undirected graph (with cycles, not triangulated), the
MLE problem no longer has a closed-form solution, and needs to be solved by
an iterative algorithm. Since the moment-matching conditions (50) characterize the
global optimum of the convex program (49) that defines the MLE, a variety of
standard algorithms from convex programming [9, 18] could be applied. Here we
describe one particular algorithm, attractive due to the simplicity of its updates,
known as iterative proportional scaling, or IPS for short. As we will see, it amounts
to a block co-ordinate ascent of the objective function. The IPS algorithm takes
as input the empirical marginals f O�C ;C 2 Cg, computed from the data set as in
Eq. (48), as well as a particular ordering of clique set.
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Iterative Proportional Scaling (IPS)

1. Initialize estimate � 0
C D 0 for all cliques C 2 C.

2. Cycling over cliques in the given order:

(a) Activate clique A, and given current parameter estimate � 0, compute
marginal probabilities

�0
AIJ D p.xA D J I � 0/ for all J 2 XA, (53)

and form the vector �0
A D f�0

AIJ ; J 2 XAg.
(b) Update the parameter estimate � 0 7! � via

�C D
(
� 0
C for all C 2 CnfAg
� 0
A C log O�A

�0

A
for C D A.

3. Iterate until convergence.

Observe that Step 2(a) of the algorithm requires computation of the marginal dis-
tribution p.xAI � 0/ over the currently active clique A. Doing so requires running the
elimination algorithm, or building a junction tree on which to run a message-passing
algorithm. This step can be computationally expensive if the graph treewidth is high,
in which context approximate methods for marginalization become important (see
the monograph [64] for more details). The update in Step 2(b) fixes the parameter
estimate on all cliques except for the active one A; for this clique, the update can be
equivalently written in the form

e�AIJ D e� 0

AIJ
O�AIJ
�0
AIJ

for all J 2 XA.

This form of the update clarifies the origins of the name “proportional scaling”,
since the parameters are being adjusted by the relative proportions of the empirical
marginal O�AIJ and the current model marginal �0

AIJ .
It is clear from the IPS updates that any fixed point must satisfy the moment-

matching conditions (50), and hence be a global optimum of the log likelihood.
Less clear, however, is whether convergence is guaranteed (though it is assumed in
the statement of Step 3). Among other properties, the following result shows that
the IPS algorithm is indeed guaranteed to converge to the MLE:
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Proposition 5 (IPS Properties) The IPS algorithm has the following prop-
erties:

(a) We have ˚.� 0/ D ˚.�/ over all updates � 0 7! � of the algorithm.
(b) After updating clique A, the estimate � satisfies

p.xA D J I �/ D O�AIJ for all J 2 XA. (54)

(c) The algorithm iterates converge to an MLE solution O� .

Proof (a), (b) By definition of the update, for each J 2 XA, we have

p.xA D J I �/ D
X
x2XŒN �

p.xI �/I AIJ .xA/

D
X
x2XŒN �

p.xI � 0/
e˚.�

0/�˚.�/ O�AIJ
�0
AIJ

I AIJ .xA/

D
nP

x2XŒN � p.xI � 0/I AIJ .xA/
�0
AIJ

o
O�AIJ e˚.�

0/�˚.�/

D O�AIJ e˚.�
0/�˚.�/:

Summing both sides over J 2 XA yields that ˚.� 0/ D ˚.�/ as claimed in part
(a), and we then see that p.xA D J I �/ D O�AIJ as claimed in part (b).

(c) Note that the rescaled log likelihood can be block partitioned in the form
`.� 0

C ; C 2 C/. With � 0 fixed in all co-ordinates except those indexed by A, let us
consider the function

�A 7! `.�A; �
0
C ; C 2 CnA/:

It is a concave function of �A. Moreover, by combining Lemma 5 with the result
of part (b), we see that, after updating cliqueA, the IPS algorithm has maximized
this function over �A. Thus, the IPS algorithm is equivalent to performing
block co-ordinate ascent of the log-likelihood function. By known results on the
convergence of such procedures [9], it follows that IPS converges to a global
optimum. ut
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5.3 Tree Selection and the Chow-Liu Algorithm

In our discussion thus far, we have assumed that the graph structure is known,
and that only the compatibility functions need to be estimated. In this section,
we consider an instance of the more general problem in which neither is known.
As previously mentioned, this problem is known as model selection for graphical
models, or graph structure learning. We limit ourselves to the problem of selecting
tree-structured graphical models. See the bibliographic section for discussion of
other methods suitable for more general forms of graph structure learning.

Given our data set fX1	; : : : ; Xn	g, suppose that our goal is to choose the “best-
fitting” spanning tree graphical model. More formally, let T be the set of all spanning
trees onN vertices. For a given tree T 2 T and a given distribution p.xI �.T // that
is Markov with respect to T , we measure its fit in terms of its rescaled log likelihood
`.�.T // D 1

n

Pn
iD1 logp.Xi 	I �.T //.

In principle, the solution to this problem is straightforward: for each tree T 2 T,
we compute the maximum likelihood estimate

O�.T / D arg max
�.T /

`.�.T //;

thereby obtaining a list f`. O�.T /;T 2 Tg of maximized likelihoods for every tree
T in the set T of all spanning trees. We then choose the tree OT with the highest
maximized likelihood, that is OT D arg maxT2T `. O�.T //. However, a graph with
N vertices has an enormous number of possible spanning trees—NN�2 to be
precise [20]—so that a brute force approach is infeasible. Fortunately, as previously
shown (44), the MLE for a tree-structured graph has a very special structure, which
can be exploited to obtain an efficient algorithm for finding the best-fitting tree.

Chow-Liu Algorithm for Maximum Likelihood Tree

1. Compute the empirical marginals (43) associated with all vertices s 2 V
and all distinct vertex pairs .s; t/.

2. For each distinct pair of vertices .s; t/, compute the empirical mutual
information

OIst D
X

.xs;xt /2Xs�Xt

Op.xs; xt / log
Op.xs; xt /
Op.xs/ Op.xt / : (55)

(continued)
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3. Using f OIst g as edge weights, compute a maximum weight spanning tree

OT D arg max
T2T

X
.s;t /2E.T /

OIst : (56)

4. Return the maximum likelihood estimate O�.T / on the tree from the
previous step:

O�s.xs I OT / D log Ops.xs/ for all s 2 V, and

O�st .xs; xt I OT / D log
Op.xs; xt /
Op.xs/ Op.xt / for all .s; t/ 2 E. OT /.

Note that Step 3 requires solving a maximum weight spanning tree problem. As
mentioned previously during our treatment of the junction tree algorithm, there are
various efficient methods for this problem, including Kruskal’s algorithm and Prim’s
algorithm. See the bibliographic section for further discussion.

We claim that the Chow-Liu algorithm is guaranteed to return a maximum
likelihood tree—namely, one satisfying

OT 2 arg max
T2T `.

O�.T // D arg max
T2T

n
max
�.T /

`.�.T //
o
:

The proof of this claim is straightforward given our previous discussion. For any
fixed tree T , the maximum likelihood solution has the form (44), whence

`. O�.T // D 1

n

nX
iD1

logp.Xi 	I O�.T //

D 1

n

nX
iD1

nX
s2V

log Op.Xis/C
X

.s;t /2E.T /
log

Op.Xis; Xit /
Op.Xis/ Op.Xit /

o

D
X
s2V
Op.xs/ log Op.xs/C

X
.s;t /2E.T /

Op.xs; xt / log
Op.xs; xt /
Op.xs/ Op.xt /

D C C
X

.s;t /2E.T /
OIst ;

where C denotes a constant that is independent of the tree T . Consequently, the
maximum weight spanning tree obtained in Step 3 corresponds to the maximum
likelihood tree.
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Intuitively, one might think that an analogous procedure could be extended to
junction trees, requiring solving a maximum weight spanning hypertree problem
as opposed to a maximum weight spanning tree problem. Unfortunately, unlike the
case of spanning trees, computing a maximum weight hypertree is computationally
expensive, so that in practice, exact methods are limited to ordinary spanning trees,
as in the Chow-Liu algorithm.

6 Bibliographic Details and Remarks

Graphical models were developed independently in a number of different com-
munities. The notion of a Gibbs distribution appeared initially in the statistical
physics literature, a notable example being the Ising model [39] that was introduced
to model ferromagnetism. Other communities in which graphical models were
developed include information theory and coding theory [34, 59], contingency tables
and discrete multivariate analysis [13, 38], image processing [12, 35], and artificial
intelligence [50].

The Hammersley-Clifford theorem derives its name from a manuscript that was
never published (J.M. Hammersley, P. Clifford, 1971, Markov fields on finite graphs
and lattices, unpublished). Besag [10] and Grimmett [37] were the first to publish
proofs of the result; in these notes, we have adapted the latter proof. See Clifford [22]
for some discussion of the history of the result. Lauritzen [44] provides discussion of
how the Markov-factorization equivalence can break down when the strict positivity
condition fails to hold.

Forms of the sum-product and max-product algorithms were independently
developed in many different communities, including the work of Kalman in control
theory [41], work on LDPC codes [34] and Viterbi decoding [32, 63] in error-control
coding, the alpha-beta or forward-backward algorithms in signal processing [51],
Pearl’s work [50] in artificial intelligence, and work on non-serial dynamic pro-
gramming [8]. Dating back to the 1960s, a number of authors (e.g., [49, 54]) studied
the relation between graph triangulation and the vertex elimination algorithm, and
pointed out the connection to the complexity of Gaussian elimination algorithms
for solving linear systems of equations. (In the statistical setting, this problem
can be cast as an inference problem for a multivariate Gaussian.) At the end
of the 1980s, several groups of researchers independently recognized that the
significance of tree decompositions and triangulation extended beyond solving
linear equations to more general classes of graph-theoretic problems [14, 45]. Within
the statistics and artificial intelligence communities, the junction tree framework
was developed by Lauritzen and Spielgelhalter [45]. The paper [15] contains an
extensive description of treewidth and related notions of graph complexity. There
are various algorithms for solving the maximum weight spanning tree problem,
including Kruskal’s algorithm and Prim’s algorithm [23].

Early work on iterative proportional fitting and scaling algorithms include the
papers [27, 31, 58]. These algorithms are actually special cases of more general
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Bregman-based projection algorithms [24–26, 29]; see also the work of Amari [2, 3]
on the information geometry of exponential families. The Chow-Liu algorithm
for finding the maximum likelihood tree appeared in the paper [21]. Karger and
Srebro [42, 57] studied generalizations of this problem to junction trees of higher
treewidth, establishing the hardness of the problem (in a complexity-theoretic sense)
but also proposing an approximation algorithm. There is a very large literature on
methods for graphical model selection, local forms of `1-regularized regression
(e.g., [48, 52]), `1-regularization and global likelihoods (e.g., [7, 33, 47, 53]), as
well as multiple testing and related approaches (e.g., [5, 40, 56]).
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0605165 and CCF-0635372, and AFOSR grant 09NL184.

Appendix: Triangulation and Equivalent Graph-Theoretic
Properties

In this Appendix, we prove Theorem 3 as part of a more general discussion of
triangulation and related graph-theoretic properties. Having already defined the
notions of triangulations and junction tree, let us now define the closely related
notions of decompsable and recursively simplicial. The following notion serves to
formalize the “divide-and-conquer” nature of efficient algorithms:

Definition 9 A graph G D .V;E/ is decomposable if either it is complete,
or its vertex set V can be split into the disjoint union of three sets A[B [ S
such that (a) A and B are non-empty; (b) the set S separates A and B in G,
and is complete (i.e., .s; t/ 2 E for all s; t 2 S ); and (c) A[ S and B [ S are
also decomposable.

Recall from our discussion of the elimination algorithm in Sect. 3.1 that when
a vertex is removed from the graph, the algorithm always connects together all of
its neighbors, thereby creating additional edges in the reduced graph. The following
property characterizes when there is an elimination ordering such that no edges are
added by the elimination algorithm.

Definition 10 A vertex is simplicial if its neighbors form a complete sub-
graph. A non-empty graph is recursively simplicial if it contains a simplicial
vertex, and when s is removed, any graph that remains is recursively
simplicial.



104 M.J. Wainwright

It should be intuitively clear that these four properties—namely, triangulated,
decomposable, recursively simplicial, and having a junction tree—are related. We
now show that all four properties are actually equivalent:

Theorem 4 The following properties of an undirected graph G are all
equivalent:

Property (T): G is triangulated.
Property (D): G is decomposable.
Property (R): G is recursively simplicial.
Property (J): G has a junction tree.

We prove the sequence of implications .T /) .D/) .R/) .J /) .T /.

(T)) (D): We proceed via induction on the graph size N . The claim is trivial for
N D 1, so let us assume it for all graphs with N vertices, and prove that it also
holds for any graph G with N C 1 vertices. If G is complete, then it is certainly
decomposable. Moreover, if G has more than one connected component, each
of which is complete, then it is also decomposable. Otherwise, we may assume
that at least one connected component of G is not complete. (Without loss of
generality in the argument to follow, we assume that G has a single connected
component which is not complete.) Since G is not complete, it contains two non-
adjacent vertices a; b. Let S be a minimal set that separates a and b; the set S
must be non-empty since G has a single connected component. Define A as the
set of all vertices connected to a in VnS , and set B WD Vn.A [ S/. Clearly, S
separates A from B in G.
Now we need to show that S is complete. If jS j D 1, the claim is trivial. Other-
wise, for any two distinct vertices s; t 2 S, there exist paths .s; a1; : : : ; ai ; t/ and
.s; b1; : : : ; bj ; t/ where ak 2 A, bk 2 B and i; j � 1. (This claim relies on the
minimality of S : if there did not exist a path from a to s, then vertex s could be
removed from S. Similar reasoning applies to establish a path from a to t , and
also the paths involving B .)
We claim that s and t are joined by an edge. If not, take the path from s to t
through A with minimal length, and similarly for B . This pair of paths forms a
cycle of length at least four, which must have a chord. The chord cannot be in A
or B , since this would contradict minimality. It cannot be between vertices in A
and B since S separates these two sets. Therefore, s and t are joined, and S is
complete.
Finally, we need to show that A[ S and B [ S are also decomposable. But they
must be triangulated, since otherwise G would not be triangulated, and they have
cardinality strictly smaller than N C 1, so the result follows by induction.
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(D)) (R): Proof by induction on graph size N . Trivial for N D 1. To complete
the induction step, we require the following lemma:

Lemma 6 Every decomposable graph with at least two vertices has at least two
simplicial vertices. If the graph is not complete, these vertices can be chosen to be
non-adjacent.

Proof Proof by induction on graph size N . Trivial for N D 2. Consider a
decomposable graph with N C 1 vertices. If the graph is complete, all vertices
are simplicial. Otherwise, decompose the graph into disjoint sets A, B and S . The
subgraphs A [ S and B [ S are also chordless, and hence we have two simplicial
vertices in A[ S . If A[ S is not complete, these can be chosen to be non-adjacent.
Given that S is complete, one of the vertices can be taken in A. Otherwise, if A[ S
is complete, choose any node in A. Proceed in a symmetric fashion for B . The
simplicial vertices thus chosen will not be connected, since S separates A and B .

ut
Thus, given a decomposable graph, we can find some simplicial vertex s to

remove. We need to show that the remaining graph is also decomposable, so as
to apply the induction hypothesis. In particular, we prove that G decomposable
implies that any vertex-induced subgraph GŒU � is also decomposable. We prove
this induction on jU j. Trivial for jU j D 1. Trivially true if G is complete; otherwise,
break into A[S [B . Removing a node from S leaves Snfsg complete, and A[ S
and B [ S decomposable by the induction hypothesis. Removing a node from A

does not change B [ S , and either leaves A empty (in which case remainderB [ S
is decomposable), or leaves A [ S decomposable by induction.

(R)) (J): Proof by induction on graph size N . Trivial for N D 1. Let s
be a simplicial vertex, and consider subgraph G0 obtained by removing s. By
induction, G0 has a junction tree T 0, which we will extend to a junction tree T
for G. Let C 0 be a maximal clique in T 0 that contains all the neighbors of s; this
must exist since s is simplicial. If C 0 is precisely the neighbors of s, then we can
add s to C 0 so as to obtain T , which is a junction tree for G.
If not (i.e., if C 0 contains the neighbors of s as a proper subset), then we can add
a new clique containing s and its neighbors to T 0, with an edge to C 0. Since s is
in no other clique of T and Cnfsg is a subset of C 0, the tree T 0 is a junction tree
for G>

(J)) (T): Proof by induction on number of vertices M in junction tree. For
M D 1, G is complete and hence triangulated. Consider a junction tree T with
M C 1 vertices. For a fixed leaf C of T , let C 0 be the unique neighbor of C in
T , and let T 0 be the tree that remains when C is removed.

Step 1: If C � C 0, then T 0 is a junction tree for G, and result follows by
induction.

Step 2: IfC\C 0 � C (in a strict sense), then consider the subgraphG0 formed
by removing the non-empty set R WD CnC 0 from V. We claim that it is
chordal. First, observe that R has an empty intersection with every clique in
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T 0 (using junction tree property). (That is, say R \ D ¤ 0 for some clique
nodeD in T 0. Then there exists s 2 C \D, but s … C 0, with violates running
intersection.) Follows that T 0 is a junction tree for G0, and so G0 is chordal (by
applying induction hypothesis).

Step 3: Now claim that G is chordal. Any cycle entirely contained in G0 is
chordless by induction. If the cycle is entirely within the complete subgraph
GŒC �, it is also chordless. Any other cycle must intersectR, C \C 0 and VnC .
In particular, it must cross C \C 0 twice, and since this set is complete, it has
a chord.
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Bridging the Gap Between Information Theory
and Wireless Networking

P.R. Kumar

1 Introduction

In 1948 Shannon [1] addressed the fundamental problem of reliable communication
over an unreliable channel. Shannon made three major contributions. First he
provided the right formulation of the problem. Second, he provided the tools to
study this problem. Third, he provided the answer.

Shannon also addressed the problem of communication between multiple senders
and receivers, called multi-user information theory or more recently network
information theory. However, in this case the answers were not as definitive. Over
the ensuing five decades there has been progress on the subject of multi-user infor-
mation theory for certain problems, but, by and large, definitive characterizations
have continued to be elusive.

Meanwhile, about 40 years ago, the wireline Internet was born, and has now
essentially become pervasive. Alongside, the pioneering efforts in ALOHA [2]
led to the wireless Ethernet [3] and subsequently to the wireless WiFi technology
[4]. Wireless networks interconnecting many sources and destinations have also
attracted much attention. There have been implementations of ad hoc networks,
some deployments in disaster scenarios, several deployments of sensor networks,
and increasing interest in vehicular networks.

Thus, on one hand while theoretical efforts at developing a network information
theory have been stymied, on the other hand technological interest and excitement
has been increasing, with wireless networks possibly on the cusp of a takeoff. There
was therefore a huge gap between information theory and networking practice [5].
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This raised the question of what sort of theory can begin to address the kinds
of networks that are being built and that may soon proliferate. This problem
was addressed in [6], which studied a prevalent technological model of wireless
communication. It attempted to shed light on two questions: how much information
could be communicated over wireless networks with many sources and destinations,
and secondly what sort of strategies were appropriate. A preliminary issue that
needed to be confronted was how to formulate this problem in such a way that some
key relevant issues could be captured. Along the way, it was necessary to address
how one should even measure the information carrying capacity of a network with
many sources and destinations. This work showed that simple models of current
technology, more precisely the shared medium aspect of wireless, could be used to
demonstrate that there were limitations to how much data could be carried. This
work also addressed the issue of scaling laws as the number of nodes in the network
increases.

The work in [6] however only studied the limits and potentials of a particular
mode of utilizing the wireless medium, but left unaddressed and unanswered what
are the fundamental limitations on the potential of the wireless medium. That is, it
left unaddressed what are the limitations of wireless networks that are independent
of technology, but that depend only on the properties of the medium. This problem
was addressed in [7] which studied it in an information-theoretically rigorous
manner. It showed fundamental connections between the attenuation properties of
the wireless medium and the capability of the network to transport data irrespective
of the technology used. In particular it showed that one sort of scaling law holds
in the heavy attenuation regime, while other scaling regimes can occur in the low
attenuation regime.

In this chapter we give a brief account of these results which have been obtained
over the past decade, since 2000.

2 Shannon’s Point to Point Results

It is useful to begin with an understanding of the fundamental results of Shannon
since they provide the right background and context to understand the tradeoffs in
the communication problem.

We begin by modeling a noisy memoryless channel by a conditional probability
distribution p.yjx/, where x 2 X and y 2 Y. The transmitter chooses an element
x from a set X, called the alphabet, and transmits it. The receiver receives y with
probability p.yjx/; see Fig. 1.

Fig. 1 Noisy memoryless
channel
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Fig. 2 Shannon’s model of communication problem

This is a noisy channel since there is not a deterministic one-to-one map-
ping from x to y. It is memoryless in that this conditional probability cap-
tures the behavior of the channel every time it is used. So if on T successive
instants (we adopt a discrete-time model), the transmitter transmits the string
.x.1/; x.2/; : : : ; x.T //, then the receiver receives a string .y.1/; y.2/; : : : ; y.T //,
with probability

QT
tD1 p.y.t/jx.t//. That is, there is no intersymbol interference

in that y.t/ is not influenced by .x.1/; x.2/; : : : ; x.t � 1// or .x.t C 1/; x.t C
2/; : : : ; x.T //.

The question that Shannon studied is: How much information can be reliably
transmitted over such a noisy channel?

Let us suppose that there is a bag of M messages; see Fig. 2.
The transmitter wants to communicate one message from this set to the receiver.

The meaning of the messages is not important, but only the index of the message is.
That is, it suffices for the receiver to know that it was the m-th message from this
set that was communicated. Thus the semantics of the message is determined by its
index or label. For this to be an acceptable model of the communication problem,
it is of course necessary for both the transmitter and receiver to agree beforehand
on the set of all messages as well as how they are labeled. (In fact, in the (not so)
old says, there were some canned messages such “Arrived safely,” “Best wishes
for your wedding,” “Happy Birthday,” that were assigned numbers such as 1, 2 ,3,
respectively, and it was only the number that was transmitted over the telegraph
wire. At the receiving end, when “2” was received the message “Best wishes for
your wedding” was printed out and delivered to the recipient.)

Let us suppose that the transmitter uses the channel T times to send a message
from this bag of M messages. Given a message m that is intended to be sent, the
transmitter transmits a string .xm.1/; xm.2/; : : : ; xm.T // where each xm.t/ 2 X.
For this purpose, there is a mapping from the set f1; 2; : : : ;M � 1;M g of messages
to the set of XT of transmittable strings of length T . This mapping is called an
encoder, and we denote it by E W f1; 2; : : : ;M g ! XT .

The receiver receives a string .y.1/; y.2/; : : : ; y.T //, and, based on that, esti-
mates which message was sent. For this purpose, the receiver has a mapping from
the set of received strings of length T , YT , to the set of messages f1; 2; : : : ;M �
1;M g. We call this map D W YT ! f1; 2; : : : ;M g the decoder.

What the receiver estimates and what the transmitter sends need not be the
same. When they differ we say that there is an error. In the above context this
happens when D..y.1/; y.2/; : : : ; y.T // ¤ m. Let pm.error/ be the probability of
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error when the string corresponding to message m is sent. Also, let p.error/ WD
Max1�m�Mpm.error/ denote the maximum probability of error over all messages.

Clearly, in general it will be impossible make p.error/ equal to zero. So how then
is reliable communication to be achieved?

Shannon’s brilliant idea was to study whether the probability of error could be
made asymptotically zero asM ! C1. Of course, whenM is increased to infinity,
so will T need to be increased too. At what rate should T be increased?

To understand this, it is necessary to recognize that in order to represent the set
of M messages, one needs log2 M bits. That is, every message can be represented
by a unique string of log2 M bits. (We ignore the fact that log2 M may not be an
integer.) Suppose that we use T D R log2 M transmissions to transmit the index of
the message. Let us suppose this is how T increases with M .

Let us now fix R, and suppose that for every M there is an encoder E W
f1; 2; : : : ;M g ! XR log2 M , and decoder D W YR log2 M ! f1; 2; : : : ;M g, such
that the probability of error goes to zero as M ! C1. Then we can say that the
transmitter and receiver can reliably communicate at rate R.

The reason for calling R as the “rate” is just because it effectively takes
R log2 M transmissions to transmits log2 M bits. The reason for saying this can
be done “reliably” is only because the probability of error can be made small by
increasingM .

The capacity of the channel is simply defined as the supremum of the set of rates
at which the transmitter and receiver can reliably communicate:

C WD supfR W The transmitter and receiver can reliably communicate at rate Rg:

Shannon also determined the capacity of the discrete memoryless channel
modeled by p.yjx/. To state his answer, it is necessary to define the notions of
entropy and mutual information.

Definition 1 The entropy of the discrete-valued random variable X with
probability distribution p.x/ for x 2 X, is

H.X/ WD �
X
x2X

p.x/ log2 p.x/ D EŒ� logp.X/�:

It is measured in “bits.”
The conditional entropy of a random variable X given a random variable

Y is

H.X jY / WD �
X

x2X;y2Y
p.x; y/ log2 p.xjy/ D EŒ� logp.X jY /�:

(continued)
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Definition 1 (continued)
The mutual information between two jointly distributed random variables

.X; Y / is the difference between the (unconditional) entropy of X and the
conditional entropy of X given Y :

I.X IY / WD H.X/ �H.X jY /:

Consider now three jointly distributed random variables .X; Y;Z/. The
conditional mutual information between X and Y given the random variable
Z is

I.X IY jZ/ D H.X jZ/�H.X jY;Z/:

Theorem 1 The capacity of the discrete memoryless channel is

C D sup
Probability distributions on X

I.X IY / bits/transmission:

To summarize, Shannon’s contribution consists of precisely formation the prob-
lem, defining the notion of capacity, and then determining what it is.

A very important channel in practice is the additive white Gaussian noise
channel; see Fig. 3. Here a scalar x is transmitted, and it is received after corruption
by additive Gaussian noise. So y D x C e, where e is N.0; 
2/. The transmitter is
restricted to power level P . Here x and y are scalars, so that this is not a discrete
channel. Moreover there is a power constraint on the transmitter. Nevertheless the
above theorem can be generalized:

Fig. 3 The additive white
Gaussian noise channel
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Theorem 2 The capacity of the AWGN channel with power constraintP and
noise variance 
2 is

C D 1

2
log.1C P


2
/ bits/transmission:

This result shows that the capacity grows logarithmically in the signal-to-noise
ratio (SNR) P


2
.

3 The Multiple-Access and Gaussian Broadcast Channels

Since the work of Shannon there has been much attention devoted to the problem of
determining the capacity of networks which consist of more than two nodes.

Success in characterizing the capacity has only been achieved in a few rare cases.
Two notable examples are the multiple access channel and the Gaussian broadcast
channel.

The multiple access channel consists of several users, let us say two users for
simplicity, communicating simultaneously to a common receiver; see Fig. 4.

The channel is a shared medium. When users 1 and 2 transmit x1 2 X1 and
x2 2 X2 at the same time, the receiver receives y 2 Y with probability p.yjx1; x2/.
Suppose each user i wants to communicate at a rate Ri . What rate vectors R D
.R1;R2/ are (reliably, as above) feasible?

Fig. 4 The multiple access
channel
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This has been answered by Ahlswede [8] and Liao [9]:

Theorem 3 The closure of the set of achievable rate vectors is the closed
convex hull of the set of the set of rate vectors that satisfy

R1 � I.X1; Y jX2/;

R2 � I.X2; Y jX1/;

and

R1 CR2 � I..X1;X2/IY /:

over all joint distributions where X1 and X2 are independent random
variables.

The opposite of the multiple-access channel is the broadcast channel. In this
case there is a single transmitter, and, say, two receivers. When the transmitter
transmits x 2 X, the two receivers receive y1 2 Y1 and y2 2 Y2 with probability
p.y1; y2jx/. LetR1 andR2 denote the rates at which the transmitter wants to convey
independent information to the two receivers. What rate vectors R D .R1;R2/ are
reliably feasible?

This problem has not been solved for general memoryless channels. One special
case that has been solved is the Gaussian broadcast channel; see Fig. 5. Suppose
that x is a scalar real number, and that the two receivers obtain versions of x that
are corrupted by additive Gaussian noise. (The case of vector x has been solved
in [10].) That is yi D x C zi where zi is a N.0; 
2i / random variable. Here the
random variables are not discrete random variables, but the theory can be extended
to this case.

Fig. 5 The scalar Gaussian
broadcast channel
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Theorem 4 Suppose 
2 � 
1. Then the closure of the set of achievable rate
vectors is the closed convex hull of the set of rate vectors that satisfy

R1 � 1

2
log.1C �P


21
/;

R2 � 1

2
log.1C .1 � �/P

�P C 
22
/;

for some

0 � � � 1:

The interpretation of this expression is that the transmitter dedicates a fraction
�P of its power P to receiver 1, and the remaining fraction .1 � �/P to receiver
2. Receiver 2 treats the signal intended for receiver 1 as noise, and decodes its own
signal. Receiver 1 first decodes the signal meant for receiver two. It can do this
because its noise is less than receiver 2’s. After this it subtracts the portion of the
receiver signal that was meant for receiver 2, and decodes its own signal.

Both these situations correspond to bottleneck scenarios. In the case of the
multiple-access channel the receiver is the bottleneck, while in the case of the
broadcast channel the transmitter is the bottleneck.

A very important networking scenario of great interest is the relay channel; see
Fig. 6. Here there is a source x1 that wants to send information to a destination y. To
help the source, there is a relay x2. The relay receives a noisy version of x1. After a
delay of one time unit it transmits x2. The destination receives a noisy combination
of what source and relay transmit. This is possibly the simplest generalization of
the point-to-point channel that was solved by Shannon. Nevertheless, after several
decades of research, the capacity of the relay channel is still unknown in general;
see [11].

In general, the capacity of most networks, even simple networks, is not precisely
known. This raises the question of how to make progress in this area, more so how
can we even begin to understand more complex scenarios?

Fig. 6 The relay channel
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4 A Spatial Model of a Wireless Network

Let us eschew information theory for a while.
Let us formulate a network with a physical character by supposing that the nodes

of the network are located on a two-dimensional plane. Let us suppose that nodes
directly choose a range for their transmissions. This can be indirectly done by a
node choosing a power level for its transmission.

A key aspect of a wireless network is that it is a shared medium. Let us simply
suppose that a receiver cannot recover a message when it is subjected to strong
interference.

We can capture the above considerations in a very simple model of communica-
tion, as follows. Let us suppose that there are n nodes located inside a disk of area
A � R2; see Fig. 7. The spatial nature of the network can be used to model when the
interference from a nearby transmission is strong and when it is not. Let us suppose
that when a transmitter wishes to communicate with a receiver at a distance r from
it, then it chooses a power level that gives it a range r . This transmission however
also causes interference to other nodes. We will suppose that the interference region
is a disk of radius .1C�/r around the transmitter; see Fig. 8. Within this region, we
will suppose that no other receiver can receive any other transmission successfully.

To illustrate this, consider the case of two concurrent transmissions, as shown
in Fig. 9. Transmitter T1 transmits to its intended receiver at a range of r1.
Concurrently, transmitter T2 transmits to its intended receiver R2 at a range of r2.
The interference region created by the transmission of T1 is a disk of radius .1C�/r1
centered at T1, while the interference region created by the transmission of T2 is a
disk of radius .1 C �/r2 centered at T2. Then the transmission from T1 to R1 is
successful only if R1 is outside the interference region created by T2. Similarly,
the transmission from T2 is successful only if R2 is outside the interference region
created by T1.

To summarize, a reception from a transmitter to its intended receiver is successful
if and only if the intender receiver is not in the interference region of any other
transmission.

Fig. 7 A geographic model:
n nodes in a disk of area A
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Fig. 8 The interference
region caused by a
transmission of range r

Fig. 9 Two concurrent
transmissions

Let us suppose that when any transmission is successful it transfers data at a rate
of W bits per second from the transmitter to its intended receiver.

We note this is model does not capture more sophisticated notions such as signal-
to-noise-plus-interference ratio. However, as we will see, the results obtained from
this simple model are remarkably robust with respect to the accuracy and details of
the model.

5 Multi-Hop Transport

Suppose that data is to be transferred from source S to its destination D, at
a rate of �i bits/second. We will allow for multi-hop transport. That is, a path
.S D A1;A2; A3; : : : ; Am D D/ is chosen, which connects the source node S to its
destination node D. Then packets are transferred by node Aj broadcasting to node
AjC1, for each j D 1; 2; : : : ; m � 1. Each such transmission from node Aj to node
AjC1 is successful under the conditions outlined in Sect. 4. That is, each nodeAjC1
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has to be outside the interference regions of all other concurrent transmissions when
it is receiving a packet from node Aj .

6 The Transport Capacity

In a network there are usually many source-destination pairs. One question that
arises is: How should we measure the capacity of the network? One answer, which
we have already encountered in Sect. 3, is to simply describe the entire capacity
region, which is defined as the (closure of) the set of all rate vectors that are
(reliably) feasible, where each source-destination’s rate is one element of this rate
vector.

There are several difficulties in pursuing this very ambitious goal. A primary
difficulty is that, in fact, even when n is small the capacity region has stymied efforts
at precise characterization. An example is the relay channel which has only three
nodes, for which one still does not know the supremal rate at which data can be
transferred from one of the three nodes to another. Moreover, the problem can be
even worse. If there are n nodes in the network, then there are n.n � 1/ source-
destination pairs. The rate vector is then potentially of dimension n.n � 1/, which
is a huge number when n is large.

So we pursue a dramatic simplification. Can we describe the capacity roughly by
just a single number? Is there a gross measure of the date pumping rate of a network?
For this purpose we use the performance measure of bit-meters/second. That is, we
multiply the throughput between a source and a destination by the distance between
the source and destination, and sum this over all source-destination pairs.

Specifically, suppose the set of source-destination pairs is f.S1;D1/; .S2;D2/;

: : : ; .Sk;Dk/g. Suppose that data is to be transferred from source Si to its
destination Di , at a rate of �i bits/second. Let 	i be the distance between nodes Si
and Di . Then the above calculation yields

Pk
iD1 �i	i bit-meters/second. We note

that this is reminiscent of how airlines, for example, measure their size in terms of
man-miles flown per year. Our measure is the information-theoretic analog of such
a performance measure.

We will call the supremal bit-meters/second that can be carried by a network as
its transport capacity.

It should be noted that it is a single aggregate number which can capture what
we are after—a gross measure of what a network can achieve.

We will occasionally abuse notation and call the performance measure itself as
the transport capacity; referring, for example, to a particular policy as realizing so
much transport capacity.
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7 Best Case Transport Capacity and Scaling Laws

In the definition of transport capacity, we are required to take the supremum of
the bit meters/second that can be carried over the entire network. This can be a
formidable task since it involves optimization over (1) all spatio-temporal transmis-
sion strategies, since these strategies determine successful passing of information
from one node another, (2) all multi-path routing strategies, since more than one
path can be used to transfer information from a source node to its destination node,
(3) all choices of sets of source-destination pairs, and (4) all feasible rate vectors for
the set of source-destination pairs.

However, we will see that we can simplify this by adding another layer of
optimization: over the locations of the nodes. That is, rather than determining the
transport capacity of a given network with n nodes located in given positions,
we will consider the supremum transport capacity that can be achieved over all
networks of n nodes. We will call this the best case transport capacity.

We will see that one can obtain an upper bound on the best case transport capacity
that is a function of the number n of nodes.

Actually, we take a further step. We will study the behavior of the best transport
capacity as a function of n. We call this a scaling law.

8 An Upper Bound on Transport Capacity

It turns out that one can obtain an upper bound on the best case transport capacity
rather easily. From Fig. 9 it follows that

jR1R2j � jT1R2j � jT1R1j (from the triangle inequality)

� .1C�/r1 � r1
D �r1:

Similarly, interchanging the roles of the links T1R1 and T2R2, it also follows that

jR1R2j � jT2R1j � jT2R2j (from the triangle inequality)

� .1C�/r2 � r2
D �r2:

Hence, in particular,

jR1R2j � 1

2
.�r1 C�r2/:

This inequality is illustrated in Fig. 10.
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Fig. 10 Two disks of radius
1
2
�r1 around R1 and radius
1
2
�r2 around R2 are disjoint

Fig. 11 Disks of radius
1
2
�*Range of transmission

around receivers are disjoint

Since the above holds for every pair of concurrent transmissions, it follows
that around each receiver there is a disk of radius 1

2
.��Range of transmission)

that is disjoint of such disks around all other concurrent receivers of successful
transmissions. This is illustrated in Fig. 11. We can regard this statement as saying
“every transmission consumes area proportional to the square of the range of the
transmission.”

Now, we see in Fig. 11, a portion of the disk may lie outside the domain of area
A square meters. However, each of these disks must have at least one-quarter of its
area within the domain of area A square meters. Hence we see that

n=2X
iD1

��2r2i
16

� A: (1)

In the above summation we allowed for a maximum of n=2 concurrent transmis-
sions, because every transmission must have a corresponding receiver.
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Now we note that the function f .x/ WD x2 is a convex function. For convex
functions we know that if

Pm
iD1 �ixi is a convex combination of fx1; x2; : : : ; xmg,

with
Pm

iD1 �i D 1, �i � 0, then

f .

mX
iD1

�ixi / �
mX
iD1

�if .xi /:

Applied to our context, usingm D n
2
, �i � 2

n
, and xi D ri , this results in

f .
2

n

n=2X
iD1

ri / �
n=2X
iD1

2

n
f .ri /;

i.e.,

0
@2
n

n=2X
iD1

ri

1
A
2

�
n=2X
iD1

2

n
r2i :

Substituting
Pn=2

iD1 r2i � 16A
��2

from (1), we obtain

0
@2
n

n=2X
iD1

ri

1
A
2

� 32A

��2n
;

i.e.,

0
@ n=2X
iD1

ri

1
A
2

� 8An

��2
:

Taking square roots, and multiplying by the date rateW of a successful transmission
gives,

n=2X
iD1

W ri �
r

8

��2
W
p
An: (2)

However, the left hand side above is just the number of bit-meters/second provided
by all the concurrent transmissions. Since the right hand side is an upper bound on
any set of concurrent transmissions, we obtain the following result.
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Fig. 12 A layout that
achieves ˝.

p
n/

bit-meters/second

Theorem 5 The transport capacity of the wireless network is bounded as
follows:

Transport capacity � cWpAn; for some constant c: (3)

Theorem 5 provides an upper bound on the best case. But is it sharp? In fact
the above square-root law is sharp. Consider the layout shown in Fig. 12. The are
n=2 cells. Each cell is a square that has an area about 2A=n square-meters. The
width of the side of each cell is about

p
2A=n meters. Within each such cell there

is a transmitter and a receiver for its transmission, which are separated by about
cp
n

meters. Suppose that the value of � is such that all these pairs of nodes can
concurrently transmit to their intended receivers at W bits/second. Thus we have
n=2 nodes, each transmitting at W bits/second to a neighbor that is cp

n
meters

away. Hence the network as a whole achieves a transport capacity of c0pn bit-
meters/second. This shows that the square-root law is sharp for the best case of a
wireless network, under this model of interference.

9 Implication of Square-Root Law for Transport Capacity

Let us examine the result of Theorem 5 a bit more closely. First we see that the
bound on transport capacity scales linearly with W . This is to be expected because
W is the transmission rate, and so scaling it by a constant should scale the transport
capacity by the same constant. Next we see that the bound on transport capacity
scales as the square-root of the area. This also is to be expected since the right hand
side is measured in meters while area is measured in square-meters.



124 P.R. Kumar

Therefore the only possibly non-obvious feature of the bound is that it scales like
the square-root of the number of nodes, not linearly in the number of nodes.

This square-root scaling law has the following implication. The transport
capacity measures the aggregate pumping capacity of the entire network. If we
now apportion it equally among all the nodes we see that each node can obtain
no more than

Per-node transport capacity � cW
r
A

n
bit-meters/second: (4)

Hence as the number of nodes increases (in a domain of fixed area A), the per-node
share decreases like the square-root of the number of nodes.

Above, we have held the area of the domain fixed, while increasing the number of
nodes located in it. This however will result in the distance between nodes shrinking,
i.e., a dense network.

Instead, if we hold constant the average distance between neighboring nodes, at,
say 1 m, then the area has to grow linearly in the number of nodes, i.e.,

A D c0n:

This is called an expanding network. Substituting this value for A into (2) gives

Per-node transport capacity � c00W bit-meters/second: (5)

Of course, this corresponds to a total transport capacity over all nodes that grows
linearly with n:

Transport capacity � c00W n bit-meters/second: (6)

The central content of the above result (4) can be interpreted as follows.
The bit-meters/second that each node gets is a constant, no more than c00W bit-
meters/second. Now suppose that each node only originates traffic for one of its
nearest neighbors. The distance to such a nearest neighbor is about 1 m. Dividing
the c00W bit-meters/second by 1 m, we get c00W bits/second. Hence each node can
send only a constant bits/second, in particular no more than c00W bits/second, to its
nearest neighbor.

However, suppose that in the above expanding network each node has traffic
destined for a remote node at the other end of the network. Such a node is about

p
n

meters away since the area of the domain is n square meters. In this case, dividing
c00W bit-meters/second by

p
n meters, we get c00Wp

n
bits/second. Hence each node

can only send no more thanO. 1p
n
/ bits/second to such a far away node. In this case

the node consumes more meters for its traffic, and so obtains less bits/second. The
point to note is that since it is bit-meters/second that is fixed, a node can either send
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traffic over a short distance and get more bits/second, or it can send traffic over a
longer distance and get lesser bits/second.

One way to understand the above result is as follows. Consider a node that is
p
n

meters away. Since the distance between nearest neighbors is about 1 meter, a node
can send its traffic to its destination by relaying it over multiple hops, actually aboutp
n hops. But in this case the node is consuming some data rate,O. 1p

n
/ bits/second,

from each of
p
n nearest neighbor transmissions.

Essentially, we see that under this interference model, wireless networks can only
support nearest neighbor traffic if the rate is to not diminish with the total number
of nodes in the network.

10 The Need for an Information-Theoretic Analysis

It should be remembered that the above results are all contingent on the interference
model, the basic premise of which is that concurrent transmissions cause interfer-
ence at a receiver. However, this may not be true.

Consider for example the situation shown in Fig. 13. There are two transmitters
T1 and T2 transmitting concurrently to a common receiverR. Transmitter T1 is using
a large power level, while transmitter T2 is using a low power level. Receiver R
can decode transmitter T1’s transmission since the interfering transmission from T2
is of low power. However, after first decoding T1, the receiver can then subtract
the component of T1’s signal from its received signal, if it knows the channel
gain accurately. Once it does that, the message from T2’s transmission can also be
decoded! This procedure is called “successive interference cancellation.”

In fact, interestingly, the greater the power level of T1’s transmission, the easier
it is to decode T1 and subtract it (provided of course that the channel gain from T1 to
R is known very accurately). Therefore T1 does not destructively interfere with T2’s
transmission even though it is considerably more powerful that T2’s transmission.
This shows that interference need not be destructive.

In fact this suggests that the wireless medium can be more creatively utilized
than the wired medium. Two important characteristics of the wireless medium are

Fig. 13 A strong
transmission need not result
in destructive interference to
a weak transmission
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(1) transmissions are broadcasts, and (2) receptions are superpositions of several
attenuated transmissions. Both these features are characteristic of a shared medium.
Above we have seen the technique of successive interference cancellation. In fact
there are several ways of using the wireless medium and therefore several ways
of operating a wireless network. For example, instead of decoding a message
at each hop, and then re-encoding it and re-transmitting it, a node can simply
amplify whatever it received and rebroadcast it. This technique is called amplify-
and forward. So one could perform relaying by amplify-and-forward rather than
decode-and-forward. There are other even more novel possibilities. A node could
actively cancel interference to help a remote node. This is akin to the strategy used
in noise canceling headsets, where a signal that is effectively the opposite of noise
is transmitted so that it actively cancels the effect of noise at the receiver.

All these possibilities suggest that the technological model used in Sect. 4 needs
to re-examined to see if the results that are obtained based on using technology
in that way are unnecessarily restrictive. That model presumed that information
is conveyed by relaying packets from one node to another. At each such hop, the
information is completely decoded, and then re-encoded and transmitted, i.e., it
is a decode-and-forward strategy. Not only that, the model of interference that
was used assumes that interference is akin to noise. That is, there is no valuable
information content in interference. As a consequence it presumes that interference
is destructive. This set of choices is arbitrary and is only one set of choices in a much
larger infinite-dimensional space of strategies that one can conceive of for operating
wireless networks.

Thus we somehow need to determine what are the fundamental limitations to
information transfer in wireless networks that are not merely self-imposed limita-
tions. To answer this we need to consider wireless networks from an information-
theoretic perspective.

11 Wireless Network Information Theory

We need to model the fact that radio transmissions are broadcast in nature, and
also that what a node receives is a superposition of several suitably attenuated
transmissions.

We will adopt a more geographic model to describe the physical layout of
nodes and the attenuation of signals. In fact the notion of “distance” will play a
fundamental role not only in modeling the system, but also in the performance
measure we continue to adopt—transport capacity.

Consider n nodes on a two-dimensional plane, as shown in Fig. 14. The distance
between nodes i and j is 	ij � 	min > 0.

The attenuation that takes place over a distance 	 is exp.��	/
	ıij

. The numerator

represents absorption by the medium. It is inevitably present except in vacuum; see
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Fig. 14 n nodes in a
two-dimensional plane with
separation distance greater
than 	min

[12], resulting in a value of � > 0. The absorption leads to exponential decrease in
the strength of the received signal. The constant � is called the absorption constant.

Now let us turn to the denominator. When the constant ˛ in the denominator is 1,
then the denominator represents the familiar inverse-square law. The reason is that
power is proportional to the square of the amplitude of the signal, so if the power
decreases by a factor 1

	2
, it corresponds to the amplitude decreasing by a factor 1

	
.

The constant ˛ � 1 is called the path-loss exponent. A value greater than one results,
for example, from a two-ray propagation model that captures the combination of a
direct path as well as a ground reflection path; see [13].

One other physical restriction that we need to impose is some form of transmit
power constraint, for we see from Theorem 2 that when power is unrestricted the
rate is unbounded. Let us entertain two possibilities:

1. Each node is given an individual power allocationPind. So if Pi is the power used
by node i , then

Pi � Pind for all 1 � i � n: (7)

We will call this the individual power constraint.
2. There is total power allocation Ptotal that is to be shared by all the nodes:

nX
iD1

Pi � Ptotal: (8)

We will call this the total power constraint.

We will consider one or the other of these two power constraints.
Consider a discrete-time operation of the network. Suppose that at time t , node i

broadcasts xi .t/. Then receiver j receives a superposition yj .t/ of all the broadcasts
of all the nodes, suitably attenuated, in the presence of noise:

yj .t/ D
X
i¤j

exp.��	ij/

	˛ij
xi .t/C zi .t/: (9)
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Here zi .t/ is assumed to be additive white Gaussian noise of variance 
2.
With the benefit of this quite physical model of the network, we now pursue an

information-theoretic operation. Suppose that each node i wants to send information
to node j at a rate of Rij bits/time unit. The vector

R WD fRij W 1 � i; j � n; with i ¤ j g

is called the rate vector.
As in the point-to-point model of Shannon described in Sect. 2, let T denote a

large block length. In T time units, node i therefore wishes to communicate TRij

bits to node j over the network. Suppose therefore a bag of 2TRij messages, from
which node i picks a particular message mij that it wishes to communicate to node
j . Note that node i therefore may have a set of messages fmij W j ¤ ig that it wishes
to send to all the other nodes in the network.

For this purpose, node i chooses an encoder ET
i . At each time unit 1 � t �

T , the encoder chooses a symbol xi .t/ to transmit which is based on two sets of
information that it possesses at time t :

1. The set of messages fmij W j ¤ ig that it wishes to communicate to the other
nodes. This is the private information that it alone possesses at the beginning of
the block.

2. All the causal information fyi .s/ W 1 � s � t � 1g. that it has acquired from is
receptions up to time t � 1.

Thus

xi .t/ D ET
i .t; fmij W j ¤ ig; fyi.s/ W 1 � s � t � 1g/: (10)

If Pi is the power allocated or to be used by node i , then

1

T

TX
tD1

x2i .t/ � Pi :

The transmissions fxi .t/ W 1 � t � T g have to satisfy whichever of the power
constraints, (7) or (8), that we wish to impose.

At the end of the block of T time-units, each node j has the following
knowledge:

1. Its own set of messages fmjk W k ¤ j g that it wished to communicate to the other
nodes. This is of course the private information that it possessed at the beginning
of the block.

2. All the causal information fyj .s/ W 1 � s � T g. that it acquired from all its
receptions up to time T .

Based on this, node j wishes to decode all the messages fmij W i ¤ j g. For this
purpose it chooses a joint decoderDT

j which produces estimates of all the messages
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from all the other nodes that were destined for it:

Omij.t/ D DT
j .i; fmjk W k ¤ j g; fyj .s/ W 1 � s � T g/ for all i ¤ j: (11)

Let PT
error be the average error probability:

Prob. Omij D mij for all 1 � i; j � n; i ¤ j / D 1 � PT
error:

when the messages are chosen uniformly and independently from their respective
sets of allowed messages.

We will say that a rate vector R is feasible if for each T there is an encoding
strategy fET

i W 1 � i � ng, and a decoding strategy fDT
j W 1 � j � ng, such that

limT!C1PT
error D 0.

The capacity region C is the closure of the set of all feasible rate vectors.
The allowable dependency in (10) of each transmission of each node on all the

information that it initially possessed, or causally acquired up to that time based
on all received signals up to that time, as well as the allowable dependency of
the decoding strategy (11) on all information that is known to a node, are the
reasons for the conclusiveness of information-theoretic results. By allowing for
all such strategies as in (10,11), we do not impose unnecessary restrictions on
the operation of the system. Thus strategies for amplify-and-forward/decode-and-
forward or active noise-cancellation, or successive interference cancellation, and
not just these, other strategies too that we may not even have conceived of as yet,
are all allowed.

12 Information-Theoretic Definition of Transport Capacity

The holy grail is to determine the capacity region C. However, that continues to
elude us.

We can make progress by trying to focus on just the transport capacity CT ,
defined as

CT WD sup
Feasible rate vectors R

X
f.i;j /Wi¤j g

	ijRij bit-meters/time-unit:

Note that 	ij is the distance between nodes i and j . So, just as in Sect. 6, we
are weighting the rates achieved between source-destination pairs by the distances
between the source and destination nodes.

It should be noted that the rate-vectorR is an n.n�1/-dimensional vector. Hence
the capacity region C is a subset of a rather high dimensional space. On the other
hand the transport capacity is just a scalar. Clearly the transpire capacity does not
describe every rate vector that the network is capable of supporting. However it
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provides a quick assessment of what the network is capable of supporting in terms
of its ability to pump information over distance.

13 Information-Theoretic Bounds

The key question is how to obtain an upper bound on transport capacity. To do this
we need to convert it to a more tractable problem.

One of the few general results that has been used to obtain upper bounds (also
called outer bounds) is the cutset bound of network information theory proved in
the Ph.D. dissertation of El Gamal [14].

Consider a cutset that divides the set of all nodes into two subsets S and Sc ,
as shown in Fig. 15. The information flow across the cutset (from left to right) isP

i2S;j2Sc Rij. Let xS WD fxi W i 2 Sg denote the transmissions of the nodes in
S . The cutset bound says that if R is a feasible rate vector, then there exists a joint
probability distribution p.x1; x2; : : : ; xn/ such that

X
i2S;j2Sc

Rij � I.xS IySc jxSc / for all subsets S � f1; 2; : : : ; ng: (12)

So if we can somehow reduce the problem of determining an upper bound on
transport capacity to a one of bounding information flow across cutsets, then we
can obtain an upper bound on the transport capacity. For simplicity, let us suppose
that 	min D 2; that is, nodes are no less than 2 m apart. A reduction to a problem
involving cutsets can then be done by considering a large number of horizontal and
vertical cutsets, separated by 1 m apart; see Fig. 16, due to the following reasons.

Note that each square of side 1 m can contain no more than 1 node since the
minimum separation distance between any two nodes is no less than 2 m. Consider
two nodes i and j separated by 	ij � 2m; as in Fig. 16. Denote by .ai ; bi / the
coordinates of node i . We wish to study the quantity Rij	ij. Let us focus on the
quantity 	ij. This is the length of the straight line connecting nodes i and j , which
is the `2 or Euclidean norm. However, the `2 norm is bounded by a multiple of the

Fig. 15 A cutset and the
information flow across it
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Fig. 16 Vertical and
horizontal cuts separated
by 1 m

`1 norm, i.e., there is a constant c > 0 such that

	ij � c
�jaj � ai j C jbj � bi j� :

In turn,

jaj � ai j � Number of vertical lines cut by the straight line from i to j ;

and

jbj � bi j � Number of horizontal lines cut by the straight line from i to j :

Hence

	ij � c. Number of vertical lines cut by straight line from i to node j

C Number of horizontal lines cut by straight line from node i to j /:

From this it follows that
The nodes i 2 S use power Pi , and the receptions of nodes j 2 Sc have additive

white Gaussian noise of variance 
2. Hence, in a manner similar to the calculations
that lead to Theorem 2, the conditional mutual information I.xS IySc jxSc / can be
computed.

This gives rise to the following bound on transport capacity in terms of the total
transmit power used by all the nodes whenever there is absorption, which is the case
except in a vacuum, or even otherwise when ı > 3.
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Theorem 6 When � > 0, or ı > 3, the transport capacity is bounded by

CT � c1.�; ı; 	min/


2
Ptotal;

where c1 is a constant that depends only on the indicated quantities.

We can proceed to further study the dependence of transport capacity on the
number of nodes n. To do this, simply consider the case of individual power
constraint Pind on all nodes. Then

Ptotal � nPind:

Substituting this in the above theorem gives the following information-theoretic
scaling law.

Theorem 7 When � > 0, or ı > 3, the transport capacity is bounded by

CT � c1.�; ı; 	min/Pind


2
n;

where c1 is a constant that depends only on the indicated quantities.

14 Implication of Information-Theoretic Scaling Law

In the previous section addressing the information-theoretic scaling law we have
considered the case of an expanding network since the minimum distance between
nodes is lower bounded. We can therefore compare this scaling law with the scaling
law (6) that results when we only use multi-hop relaying, with decode-and-forward,
and treating all interference as nose. Both scale linearly with the number of nodes
n. Therefore we can conclude that such restricted operation is order-optimal, i.e.,
optimal to within a multiplicative constant. Thus, through an information-theoretic
analysis we have obtained an architectural conclusion concerning how to order-
optimally operate wireless networks.

Moreover we have determined how transport capacity can scale as the number of
nodes increases.

Both these results hold whenever there is absorption in the medium, which is
generally the case, except in vacuum.
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15 Extensions

The above results can be and have been extended in several ways.
The model of Sect. 4 was initiated in [6], and is called the protocol model. The

sharpest best case results are obtained in [15]. An extension of the protocol model
is the physical model, where the success and/or rate of a transmission depends on
the signal-to-noise-plus-interference ratio. This model too was studied in [6], and
the sharpest results on the best case are obtained in [16].

Instead of the best case, one can consider the random case. Here the nodes are
randomly located in a domain, and source-destination pairs are randomly chosen.
Such networks are called random networks. It is of interest to see how to best operate
such randomly formed networks. The random case version of the protocol model is
studied in [6], where the maximal per-node throughput is sharply characterized up
to order. The random case under the physical model is also studied in [6].

The information-theoretic approach to wireless networks was initiated in [7]. The
results presented in this chapter are from [7].

Subsequent work has focused on how to extend the results in [7]. There have
been two types of attempts. One direction of work has been to determine to what
extent the heavy attenuation regime’s scaling behavior continues to hold [17–20].
This is the regime where the absorption constant � > 0, i.e., there is absorption, or
the path-loss exponent ı is large. (It should be noted that � > 0 except in vacuum.)
The results of [7] have been extended to the case of more general fading models in
[17], and the same scaling laws are shown to hold. The validity of the linear scaling
results for smaller ı than 3 is examined in [18] and [19], with the latter showing that
the regime holds even for � D 0 and ı > 2. The common per-node throughput in a
random network is examined in [20].

Another direction of work has been to address what sorts of cooperation
strategies among the nodes are appropriate in the low attenuation regime. This was
initiated in [7], where counterexamples to linear scaling were demonstrated when
� D 0 and ı is very small. It was shown that one could obtain unbounded transport
capacity for bounded power, and superlinear scaling through other multi-node
cooperation strategies. In [21] it was shown how to achieve superlinear scaling in
a dense network. This was extended in [22] where a novel hierarchical cooperation
strategy is proposed and the range of 1 < ı < 2 was addressed. The value of the
pre-constant was more carefully examined in [23]. The case of arbitrarily spaced
nodes was examined in [24].

Another avenue of work has been to proceed to obtain limitations on the capabil-
ities of wireless networks by examining Maxwell’s equations themselves [25].

The results of the protocol model are extended to the case of function computa-
tion in networks, and not just data transfer, in [26].
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