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Abstract 

This paper applies a structural equation methodology 
(LISREL) to the evaluation of the results obtained from 
conjoint measurement. Contrary to previous work, the 
results indicated that stress, sign, and prediction 
give consistent evaluations of the results of conjoint 
measurement. The solution given by the LISREL analysis 
was criticized; however, following a Spearman factor 
analysis, the same conclusion was drawn: stress, sign, 
and prediction appear to be measuring the same con­
struct. 

Introduction 

Obviously the best evaluation of conjoint analysis re­
sults is the degree to which they are predictive of 
actual choice behavior. Such an evaluation, however, 
is not always practical; therefore users of conjoint 
analysis frequently rely on other methods--such as 
Kruskal's (1965) stress, counting the number of sign 
violations (Parker and Srinivasan 1976); Scott and 
Wright 1976), or rank prediction; i.e., the degree to 
which judgments are predicted in a holdout profile from 
part-worth functions obtained in an estimation sample 
(Acito and Jain 1980; Green 1974; Jain, Acito, Malhotra, 
and Mahajan 1979). Indeed, the above mentioned evalua­
tion methods are not exhaustive; but, nevertheless they 
are the emphasis of this paper. The purpose of this 
paper is to assess the degree to which sign, stress, and 
rank prediction give consistent evaluation of the results 
of conjoint analysis. 

Prior Research 

Recent research by Acito and Jain (1980) was designed to 
compare the above mentioned evaluation methods: 
Kruskal's (1965) stress, sign violations, and a modi­
fied prediction method proposed by Green (1974). Here­
after, we will refer to these three evaluation methods 
as "stress", "sign", and "prediction". In their study 
249 heads of household were given three conjoint tasks 
(identified as parts A, B, and C) related to health 
maintenance organization's HMO's. For each person on 
each task, the three evaluation measures were obtained. 
In Task A, respondents were presented 27 profiles that 
contained various combinations of convenience attributes 
related to health maintenance organizations. In Task B, 
respondents were presented 16 profiles that contained 
combinations of insurance coverage attributes; Task C 
presented 16 profiles that contained convenience, cover­
age, cost, types of facility, and attributes related to 
selecting physicians. During each task, each respondent 
was required to sort the profiles into three piles ac­
cording to preference; then to rank order the profiles 
from least to most preferred. Additionally, the three 
tasks were presented sequentially--A, B, with C last. 
The "average" respondent took 10-15 minutes to complete 
one task, and the three tasks were part of a larger data 
collection. 

Acito and Jain (1980, p. 106) argued that, "Comparison 
of the (three) methods is important because one needs to 
know whether one evaluation method will lead to the same 
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conclusion as another. If the correlations among the 
evaluation measures are high, the researcher can pick 
any convenient method. If the correlations are low,· 
the researcher can use more than one method, or use 
different methods in different circumstances." 

The results of their research revealed very low corre­
lations among the three methods; hence, they concluded 
that stress, sign, and prediction ought to be used for 
different purposes. This conclusion implies that the 
three evaluation methods evaluate unrelated aspects of 
conjoint results; this conclusion, however, should be 
held with reservation; for, we do not know~ the ob­
served correlations were low. One reason for a low 
correlation between two measures is that they, indeed, 
do measure two unrelated attributes. However, one may 
also obtain a low correlation between two measures that 
measure highly related attributes if the measures are 
highly contaminated with measurement error. Had Acito 
and Jain (1980) obtained reliability coefficients for 
their measures, one could "correct for attenuation"; 
i.e., one could estimate the correlations between the 1 
evaluation methods in the absence of measurement error. 
The purpose of this paper is to report a new analysis 
of this research; the results of this analysis suggest 
that stress, sign, and prediction may be highly cor­
related when measurement error is removed. This con­
clusion stems from a structural equation analysis of 
the correlation matrix reported in Table 1 . 

A Structural Equation Analysis 

The ideal measurement is one which captures true differ­
ences in the attribute one desires to measur~Fre­
quently, however, the observed measure may be "con­
taminated" by both systematic and random error, (cf., 
Churchill 1979, p. 254; Nunnally 1967, p. 206). Sys­
tematic error may derive from a stable but biased mea­
suring instrument or in other stable characteristics 
of the person. It is a constant source of error. Ran­
dom measurement error, however, is neither stable nor 
constant. It may derive from transient influences from 
both the person being measured as well as the measuring 
instrument itself. The correlations reported in Table 
1 were obtained from observed measurements, hence, the 
reported correlations may2be attenuated by both sys­
tematic and random error. We show below that one 
source of systematic error is related with the conjoint 
tasks. 

As noted above, each person responded to three differ­
ent conjoint tasks; hence is it possible that the task 

1Measurement error tends to obscure or "attenuate" the 
true correlation between two attributes. If the reli­
ability of measures are known, however, then observed 
correlations may be "corrected" to estimate the true 
correlation (Nunnally 1976, p. 203-5). 

2Although sign and prediction were logrithmically trans­
formed, they are still observed measures; i.e., they may 
still contain both systematic and random error (see 
Table 1 ). 



TABLE 1 

Correlation Matrix For Sign, Stress, and Prediction For Three Conjoint Tasks a 

A B c 

Stress Sign Prediction Stress Sign Prediction Stress Sign Prediction 

A Stress 1.00 

Signb .15 1.00 

Prediction 
c .22 .20 1.00 

B Stress .11 .23 .03 1.00 

Sign .05 - .01 - .08 .45 1.00 

Prediction .08 .08 .08 .25 .07 1.00 

c Stress .11 .12 .11 .21 .01 .00 1.00 

Sign .00 .07 - .01 .33 .16 .11 .30 1.00 

Prediction .14 .20 .02 .29 .05 .07 .29 .35 1.00 

8 Correlation martix adopted from Actio and Jain (1980, p. 109). 

b"Sign11 is the number of total sign violations; each total was transformed y • ln(l+x) before correlations were 
computed; maximum number of sign violations for task A • 8, task B • 6, and task C • 5. 

c"Prediction" is the absolute value of predicted minus actual rank; each difference score was transformed 
y = ln(l+x) befcire correlations were computed. 

differences had some influence upon the observed mea­
sures of stress, sign, and prediction. Further, stress, 
sign, and prediction may be measuring different but re­
lated attributes. An observed measure of, say, stress 
may be influenced by a factor that is general to stress 
measurements; by a factor that is general to the con­
joint task; and by random measurement error. These 
hypotheses may be tested by the following measurement 
model. 

kl ;..1 K+ ;..2 A+ e:k 
1 

k = ;..3 2 
K+ ;..4 B + e:k 

2 

k3 ;..s K + ;..6 c + e:k 
3 

sl ;..7 

52 ;..9 (1) 

For this model, let k denote the observed stress score, 
s denote the observed sign score, and p denote the ob­
served prediction score. Further, let K denote the 
general stress factor, S the general sign factor, and 
P the general prediction factor. Epsilon, e:, denotes 
random errors of measurement. The matrix structure of 
this model is as follows: 

kl ~1 0 0 A2 0 0 
r·kl 

1<2 ~3 0 0 0 ~4 0 .It 

1<3 As 0 0 0 0 ~6 K • 2 

sl 0 ~7 0 As 0 0 
£ 1<3 

.2 0 ~9 0 0 ~ 10 0 p + :1 (2) 
"2 

s3 0 All 0 0 0 Al2 A £ 

pl Q 0 ~13 ~14 0 0 B £ 
.3 

pl 
Pz 0 0 ~15 0 ~ 16 0 c £ 

p2 
p3 0 0 ~17 0 0 AlB £ 

p3 

Following the notation set forth by Joreskog (1966, 1967, 
1969, 1973, 1977, and Joreskog and3Sorbom, 1978), we may 
write Equation 2 as the following: 

y = A n + e:, 
- -Y 

(3) 

where~· = (k1 , k2, k3 , s1 , .•• p3) = (y1 , y2, Y9) 

is the vector of observed measures; the matrix A is the 
-Y 

(9x6) measurement parameter matrix; n' = (K, S, P, A, B, 

n6) is the vector of factors; i.e., 

unobserved or latent variables; e:' = (e:k , Ek , Ek , 
1 2 3 

(E1 , E2, •.• E9) is the vector of ran-

dom measurement errors. Furthermore, it is assumed that 
E(n) = 0 and that the random errors of measurement, E, 
are uncorrelated with n. It is also assumed that the 
observed measures, y, are expressed as deviations from 
their means so their expectations are also equal to zero. 

Model Specification 

Of particular concern in this analysis are the corre­
lations among the following three factors: stress (K), 

3Bagozzi (1980) presents an excellent 
structural equation (causal) models. 
marketing examples is also given. 

discussion of 
An abundance of 
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sign (S), and prediction (P). To estimate the measure­
ment parameters as well as the correlations between the 
three factors, we employed Joreskog and Sorbom's (1978) 
analysis of linear structural equations by the method 
of maximum likelihood (LISREL). The general LISREL 
model is written as: 

B T) = r 1; + z:;, (4) 

where B and r are coefficient matrices, T) is the vector 

of factors, as defined above; I; is a vector of factors 

that act as independent or exogeneous latent variables, 
and~· = (z:;1 , z:; 2 , ••• z:; 6) is random vector of residuals; 

i.e., erros of equation. The vectors T) and I; are not 

observed; but rather, are derived from the observed 
measurements. For example, as noted above: 

y = A T) + E. 
~ ~Y 

The model we propose does not contain exogeneous latent 
variables, I;; hence Equation 4 reduces to: 

B T) = 1; (S) 

Further, since a causal structure among the T) factors is 

not specified, the coefficient matrix, B, may be sent to 

the identity matrix; thus: 

T) = 1; (6) 

The correlations between the n factors are then equal to 

the correlations among the 1; variables. The matrix of 

s correlations is called the ~ matrix. Additionally, 

since our model states that n 1;, Equation 3 may be 

written as: 

y = A 1; + E, 
~ ~Y 

with the following covariance matrix (J<'ireskog and 
So"rbom 1978, p. 40-43): 

l: 
~YY 

' A ~ A + 0 • 
-Y _E 

(7) 

(8) 

The matrix ~ is the correlation matrix of factors and 
~E is the diagonal matrix of unique measurement error 

variances. Jo"reskog and So"rbom (1978, p. 40-43) have 
termed the above structural equation model a "confirma­
tory (restricted) factor analysis." 

Parameter Estimation 

The parameters of Equations 3 and 7 as well as the cor­
relations between stress (K), sign (S), and prediction 
(P) may be defined in the following three matrices: 
A , ~. and 0 • The structure of A is given above in 
-Y - _E -Y 
Equation 2; the structure of symmetric ~ is given below: 

K s p A B c 
K 1 ~12 '1'13 0 0 0 

'!' s '1'21 1 '1'23 0 0 0 

p '1'31 '1'32 1 0 0 0 

A 0 0 0 1 0 0 

B 0 0 0 0 1 0 

c 0 0 0 0 0 1 

The0 diagonal matrix contains the random measurement 
_E 

error variances. 

Results 

The correlations between factors as well as the obtained 
measurement parameters are presented in Figure 1. The 
correlation between the stress and sign factors is .99; 
between the sign and prediction factors is .94; between 
the stress and prediction factors is .62. These results 
suggest that stress, sign, and prediction correlate 
highly when systematic and random measurement error is 
removed. 

Model Evaluation 

One method of testing how well a structural equation 
model fits the observed correlation (or variance-co­
variance) matrix, is to compare the correlation (or 
variance-covariance) matrix generated from the model 
with the observed correlation (or variance-covariance) 
matrix. The test of the model is obtained by assessing 
whether the reproduced correlation (or variance-co­
variance) matrix is different from the observed cor­
relation (or variance-covariance) matrix. A chi-square 
goodness-of-fit test is used; for the current model: 

x2 = 30.6, df = 21, p = .08. A significant chi-square 
(p<.OS) is sufficient to reject the model. A non­
significant chi-square (p>.OS) indicates the model can­
not be rejected (JO"reskog and So"rbom 1978, p. 37). The 
rationale and mathematics of the chi-square test is 
given in Jo"reskog and SO"rbom (1978, p. 13-15). Another 
indication of goodness of fit is the inspection of the 
residual matrix obtained from the difference between the 
observed correlation matrix and the reproduced correla­
tion matrix.4 Most all of the residual correlations 
are near zero in magnitude; the residual matrix is given 
in Table 2 . An additional measure of fit,is given by 
Tucker and Lewis (1973). Their measure, p, is simply 
the amount of covariation explained by the model divided 
by the amount of possible covariation to b~ explained; 
the coefficient p 2 .72. The coefficient pis similar 
to an unadjusted R ; however, the sampling distribution 
of p is unknown, it is best treated as a descriptive 
rather than a test statistic (Burt 1973). 

Conclusions and Implications for Conjoint Measurement 

When systematic and random error are removed, this study 
demonstrated that stress, sign, and prediction are 
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4visual examination of the residual matrix may enable the 
researcher to determine those observed variables the 
structural equation model was unable to accurately pre­
dict. However, Costner and Schonenberg (1973) have 
demonstrated that the clues given by the residual matrix 
may be misleading in certain cases. 



FIGURE 1 

.62 

A 
2 30.6; df 21; .08; .72 X p p 

TABLE 2 

RESIDUAL CORRELATION MATRIXa 

A c 

Stress Sign Prediction Stress Sign Prediction Stress Sign Prediction 

A Stress -.025 

Sign -.072 -.012 

Prediction .021 .062 .022 

B Stress .015 -.016 .021 .003 

Sign .022 -.083 -.084 .012 .000 

Prediction .071 .044 .078 -.027 -.100 -.034 

Stress .084 . 052 .107 -.017 -.058 -.022 .007 

Sign -.037 -.025 -.015 .010 .066 .063 .018 .014 

Prediction .104 .060 .011 -.020 -.089 -.008 .006 .034 .009 

8 The residual matrix is the difference between the observed matrix and the correlation matrix reproduced by the 

structural equation model. 
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highly correlated. Thus, it can be concluded that the 
low observed correlations given in Table 1 were obscured 
or "attenuated" by measurement error. Moreover, the 
original conclusion that stress, sign, and prediction 
evaluate unrelated aspects of conjoint results must be 
held with reservation. If the correlations between the 
stress, sign, and prediction factors, in Figure 1, were 
near zero--then one could conclude that stress, sign, 
and prediction were, indeed, measuring unrelated aspects 
of conjoint results. However, this was not the case. 

More importantly, the new analysis presented in this 
study calls for a greater effort to minimize measure­
ment error in the collection of conjoint data--this is 
especially important if the results serve as input into 
managerial decisions. Although measurement error can 
probably never be totally removed, Nunnally (1967, pp. 
222-3) gives insight as to how it may be reduced: 

Of course, doing everything feasible to prevent 
measurement error from occuring is far better than 
assessing the effects of measurement error after 
it has occurred. Measurement error is reduced by 
writing items clearly, making test instructions 
easily understood, and adhering closely to the pre­
scribed conditions for administering an instru­
ment. Measurement error because of subjectivity 
of scoring can be reduced by making the rules for 
scoring as explicit as possible and by training 
scorers to do their jobs. 

Discussion of Results and Additional Comments 

This discussion was written some time after the text 
reported above was written. Since then, we have learned 
to treat LISREL results with extreme caution. The above 
discussion of conclusions and implications assumed that 
the LISREL model was valid; however, this may not be the 
case. Despite the "good" chi-square result (x2 = 30.6, 
df = 21, p = .08), a close inspection of the measurement 
parameters indicate an over-all weakness of the solution. 

First of all, note the factor loadings for stress (K), 
sign (S), and prediction (P). Not only are they incon­
sistent (vary), but in general, they are not large: 
K = .11, .91, .25, S = .27, .27, .35, and P = .016, .142, 
and .55. Second, note the negative error variance for 
E2 (= -.11). What is the meaning of a negative error 
variance? It is true that the square root of a negative 
variance gives an imaginary standard deviation; but, as 
far as we know, imaginary standard deviations are un­
acceptable to statisticians. 

With these reservations in mind, the authors sought a 
"better" solution by modeling alternate structural 
models: First, we permitted the task factors (A, B, and 
C) to be correlated; then we relaxed the equality con­
straints for the task factor loading. Other alternate 
models were also tried; all produced the same startling 
result: The chi-square test indicated a near "perfect" 
fit; but the correlations between that factors (S, K, 
and P) were all greater than one! Some as high as 
twenty-five! 

What can one conclude from this? First of all, sole 
reliance on the chi-square test appears to be insuffi­
cient when using LISREL for structural equation modeling. 
This fact has recently been illustrated by Farnell and 
Larcker (1981). Second, alternate tests of the solution 
should be persued. Toward this end, we know of three 
attempts: One by Fornell and Larcker (1981; see 
Bagozzi 1981 for criticisms), a new computer package by 
Schonenberg, (1981) Multiple Indicator Linear Structural 
Models and a new version of LISREL, LISREL V by Jcireskog 
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and Sorbom. 5 The validity of these approaches, however, 
remains to be demonstrated. 

Evaluating The Results of Conjoint Measurement: Another 
Try 

Our dissatisfaction with the outcome of the LISREL anal­
ysis prompted us to do a simple Spearman factor analysis 
(Hunter, 1980). To simplify the analysis, the cor­
relation matrix presented in Table 1  was pooled over 
the three tasks: A, B, and C. Table 3 presents the 
pooled (average) correlations; from Table 3 , we see 
that there is a consistent, but moderate, relationship 
between stress, sign, and prediction. Moreover, if 

TABLE 3 

Pooled Correlation Matrix and Factor 
Loadings For Stress, Sign, and Prediction 

Measure Measure Factor Loading 

Stress Sign Prediction 

Stress (. 36) * .30 .25 .60 

Sign .30 (.25) .21 .so 

Prediction .25 .21 ( .18) .42 

*Diagonal elements in parentheses are the indicator 
reliability coefficients. 

there is a factor common to the three measures, then the 
following is true: 

r 
sp 

r F r F 
s p 

(9) 

That is, the observed correlations may be decomposed as 
the product of their factor loadings, where rsF is the 

factor loading for stress, and F is the common factor. 
Equation 9 has a simple solution; the factor loadings 
may be obtained as: 

rkF = J rk:rkp 

sp 
.60 

r F = jrksrsp 
s rkp 

.50 

r F ~ J rk{sp 
p rks 

.42 

5 As of this writing we have learned that LISREL V has 
been recalled by National Educational Resources, Inc. 
due to "errors in the program ." 



We see, therefore, that stress, sign, and prediction are, 
to some extent, measuring the same thing. The reli­
ability of measurement, however, is somewhat poor. The 
reliabilities of each measure are reported in the diag­
onal of Table 3 ; the reliability for each measure was 
obtained following Hunter (1980): 

reliability of stress = rkk= rkF rkF = r 2F = .36 
k 

reliability of sign = r = r F r F r 2F .25 ss s s s 

reliability of prediction = r r F r F r 2F .18 pp p p p 
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