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ESTIMATION OF A MULTIPLICATIVE MODEL FOR LOCATING LARGE RETAIL STORES 

Zahid Y. Khairullah;, & Vinay Panditi', St. Bonaventure University 

Abstract 

A Multiplicative Competitive Interaction Model may 
be used for predicting the sales volumes for new 
locations of large scale stores or shopping cen
ters. The paper reviews the least squares tech
nique far evaluating the parameters of the model. 
Teekcns' approach is applied to obtain the max
imum likelihood estimators for the multiplicative 
competitive interaction model. The minimum var
iance unbiased estimators and limitations of the 
various techniques are discussed. 

Introduction 

The problem of forecasting sales volumes for new 
locations of large scale stores or shopping centers 
has been addressed by several researchers. These 
can be classified into the Analog Models and the 
Gravitational Approaches. Nakanishi and Cooper 
(1974) have proposed a method for estimating the 
parameters of a general form of a Multiplicative 
Competitive Interaction Model (MCI) using the least 
squares approach. We use Teekens' (1972) technique 
for multiplicative models to develop the maximum 
likelihood estimators for the Nakanishi and Cooper 
model. 

The Generalized Least Squares 
Estimators Of The Gravitational Model 

Masao Nakanishi and Lee G. Cooper (1974) have pro
posed a method for estimating the parameters of 
Huff's model and in general for the parameters of 
a general form of a Multiplicative Competitive In
teraction Model (MCI Model) using the least squares 
approach. The general MCI Model is: 

Pij =c~l ::jk) t!j ---(1) 

m 
I 

j=l 

where t''' = 
;, ij 

the specification error term such that 

log ~. is 
lJ 

with mean 0 
independently and normally distributed 
and variance ot. Hence ti< will have 
distribution. ' ij a lognormal 

Pij = the probability that a consumer in choice 
situation i will choose object j. 
xk .. = the kth variable describing object 

lJ 
in 

choice situation i. bk = the parameter for the 
sensitivity of Pij with respect to variable k. 
To develop the least squares estimators it is 
necessary to obtain linear transform of the orig
inal multiplicative model. Nakanishi and Cooper 
succeed in obtaining the linear transformation, 
which is the major contribution of their paper. 
After taking the logarithm of equation (1), sim
plifying and rearranging the equation they obtain 

::eg (f~~~)~n: ~ bk log(>ij\+ log~· ~j) 
'·" J k=1 v ) --- ---(2) 
pl. xki " 

ti 

rv•~ rv 
where Pi' ti and Xki are the geometric means of 

t':'. and 
lJ ~ij' The Pij 's are true probabi-

lities and cannot be observed and instead we ob
serve proportions Pij• 

Let Yij = log(~~ and zkij = log(~:~~ 
using equation (2) we can write: 

Then, 

q 

Yij = I b z + c --- (3) 
k=1 k kij ij 

where i = 1, 2, ... M and j = 1, 2, 3, ... m and cij 
is the stochastic disturbance term which consists 
of two parts: (i) the specification errors pre
presented by t!j and (ii) sampling errors (due to 

the use of proportions Pij instead of the actual 

probabilities Pij) represented by rij· 
. . q 
l.e., cij = Yij -I bk2 k .. 

k=1 lJ 
q 

I bkZk. } 
k=l lJ 

rij + tij Having obtained the linear transform 

of the MCI Model, Nakanishi and Cooper then devel
op expressions for the GLS estimators for the 
following three cases: (i) When there is no 
sampling error (for very large samples) i.e., 
rij = 0, (ii) When there is no specification 

error, i.e. , tij = 0, and (iii) \fuen both sampling 

as well as specification errors are present and 

hence cij rij + tij' 

Teekens' Approach For Multiplicative Models 

R. Teekens (1972) in his book, "Prediction Methods 
In Multiplicative Models" has indicated procedures 
for obtaining GLS, Maximum Likelihood and Minimum 
Variance Unbiased (MVU) estimators for multipli
cative models of the form: 

K 
Yi = IT 

k=1 
where vi are the stochastic error terms, zki are 

the non-stochastic variables and 6 k are unknown 
parameters to be estimated for the model. To 
apply Teekens' procedure to the MCI model we have 
to use another modified transformation technique 
of the type used by Nakanishi and Cooper to obtain 
the linear form. The application of Teekens' re
sults have yet another obstacle for our MCI model: 
consider the log transform of the MCI model as 
given in equation (2). 
Teekens assumes the specification of the original 
error term vi of his model (equivalent to our tij 

in the MCI model) and assumes vi to have a log

normal distribution with mean = E(vi) = 1, 
variance (vi) = w2 (a bounded variance); and vi 
are distributed independently and identically. 
Hence, covariance (vi, vj) = 0 fori f j. 
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This leads to the result that log vi has a normal 
distribution with mean = -1 2 

2 02 and variance o . 

2 
i.e., log vi~ N {-1 0 o 2 }. This is different 

2 
from Nakanishi and Cooper's error term specifica
tion where the properties of the transformed error 
term are specified and we have log t~j distributed 

independently and normally with mean = 0 and var
iance = ot2. 

The error specification is the key decision in ob
taining the parameter estimators. In examining 
the original equation (1) of our MCI model and the 
transformed equation (2), we recognize that the 
distribution of log Pij is not necessarily normal 
since, although 

log tfj is normal, we have the term 

log {~ ( ri x ~~j) 
j =1 k=1 

t ~'. } < 
lJ containing t~ . 

lJ 

summed over j and hence not necessarily normally 
distributed. Thus the distribution of log pij is 

not readily known. This does not allow us to use 
Teekens' approach for obtaining the Maximum Like
lihood or MVU estimators. 

The Maximum Likelihood Estimators 

In order to develop the Maximum Likelihood (ML) 
estimators we must first examine the error dis
tribution. We shall consider the MCI model given 
in equation (1) with the same notation used earl
lier, and t~j ~ N(0,~2) as be:o)re. Using 

equation (2) let tij = log (:ij ;summing over j 

tij 

and dividing by m we obtain: 

m 
This implies that l: t .. 

lJ 

( t~.) j=l 
t .. = log ~ are not all 
lJ ~* 

tij 

m 
1 l: tij =0 
m j=l 

0 and hence the 

independent. They 

are contemporaneously correlated. So, if we 
assume that there is correlation only across the 
j's and not with respect to the i's, then let 
C = E (cc') denote the covariance matrix, which 
will be block diagonal under our preceding 
assumption. C wili have the form: 

(

cl 0 ----- 0 ) 

C = ? l:c 2----- 0 
' , .... : 
' ; l: 
0 0 --- em The equation (3) can be 

written as: { 
where Y = Zb + c } ---(4) 

y= ( ~;- \ z= r;;-\ b=(~~ 1 
Y:~ J Mmxl \~~~) Mmxl b~J qxl 

(

zlil Zzil 

2 i = z~i~ 2 2i2 

2lim 2 2im 

23il ___ zqil ) 

- z~i:-::-- z~i= 
23im--- 2qim mxq 

Further 

'N '"•'nxo)nnd l"~j~J 
Then the multivariate normal distributions' den-
sity func~ion if: -l/ 2, 

(2p)n/2~Lnxnl )e f(x) 

using this result we can write the likelihood 
function for obtaining maximum likelihood esti
mates of the parameters bk for our MCI model as: 

L{bk}=~ / I -11/2 -1/2 (c' c-1 c) 
(2p)Mm 2 C e since c~N(O,C) 

:.log L = -Mm log 2p + 1/2 loglc-1 1 
2 

-1/2 {y'c- 1 y- y' c- 1 zb 

-b'z'c- 1y + b'z'c- 1 Zb} 

For maximum:d1ogL =0=-2z' c-1 y 
__ :J_b_ ML 

' -1 
{bML= (Z CMLZ) 

So, to obtain bML we need CML' Consider then the 

first order condition for maximum taking now the 
derivation with respect to the element wij of the 
Matrix C. First the log likelihood function is 
written as: 
log L = -Mm log 2p + 1/2 log lc- 1 1-1/2 trace c 1s --z- A A' 

where SMmxMm = (y-ZbML) (y-ZbML) = the matrix of 

squared residuals.:.log L = -Mm log 2p + 1/2 log ~-11 
M 2 Mm 

-1/2 ~ l: wij sji 

j=l i=l 

Then for maximum :Jlog L= l/2C~ _ l/2Sji = 0 where 

;)Wij 
~ = the estimated ·co-factor of elements \vij of 

matrix C. Tl;7refore ;_ C~i =~j i is the likelihood es
timate of C~ and (CML = S ). 
F~rther, since Sis symmetric, SA= S: Hence, 

{CML = S}and {S = (y-ZbML) (y-ZbML )} is the M.L. 

estimator of C. So in order to obtain the matrix 
CML we need b and vice versa. 

Hence the procedure to obtain the estimators can 
be split ~nto two phases. In the first phase, we 
estimate b the least squares estimator of b and 
use this estimated b to get the estimator of CML 

which can then be used to obtain a revised maximum 
likelihood estimator of BML of b. This process 

can be repeated recursively if desired to refine 
the values of the estimators until we have con
vergence. AWe can note at this point that the 
extimator CML of C is S, the matrix of the squares 

of the residuals. Hence each element of C is 
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estimated by only one 'square of residual' term. 
This can be considered as a weakness of the pro
cedure since the estimator of C is based on only 
one respective observation. 
Haines, Simon and Alexis (1972) have obtained the 
Maximum likelihood estimators of the restricted 
form of the MCI model: 

s. 
l 

Pij 1~. 
lJ 

m s. 
L: J 
j=l T~j 

They obtain the likelihood function and the first 
order conditions of the log likelihood function 
for the maximum likelihood estimator of b. They 
used a search procedur£ defined by the GROPE pro
gram to obtain the A which maximizes the log 
likelihood function. But this procedure does not 
necessarily identify the global maximum nor is it 
a minimum variance estimator. 

The Minimum Variance Unbiased Estimators 

The least squares estimators and the maximum 
likelihood estimators obtained are consistent and 
also linear unbiased with respect to the trans
formed model (the linear form). The Maximum 
Likelihood estimators are not unbiased >vith res
pect to the original MCI model. This is due to 
the property of the lognormal distribution. If 
·:/~ 

b has a normal distribution with mean = b and 
2 

variance ob and is its least squares estimator, 
•k 

then, E (b) = b. Also, eb has a lognormal dis-

tribution, but E(ef) # eb since eb gives the 
median of the lognormal distribution, not the 
mean. The mean of the lognormal distribution of 

{; . 
e lS 

G ( I 2 
E(e ) = e b + 1 2 ob) In addition, the 

least squares and the maximum likelihood estima
tors are not the minimum variance estimators of 
the original MCI model. 
In practice, the purpose of the estimation is to 
apply the model to prediction problems. So we 
need a Minimum Variance Unbiased (MVU) estimator 
(which may not always exist) for the original 

model. As we have shown, the estimator eb is a 

'median-unbiased' e~timator of eb when eb has log-

normal distributionAand b is the least squares es
timator of b, So e b is not an unbiased estimator 

of eb· Finney (1951) showed how the least squares 
estimator can be adjusted to an unbiased one for 
a particular case, Bradu and Mundlak (1970) ex
tended Finney's approach to accommodate the .gen
eral loglinear model, Let ~s now investigate the 
possibilities of obtaini~g the ~WU estimators for 
our MCI model. 

The model investigated by Bradu and Mundlak is of 
the form: 

kl 

y= !1 
i=l 

a i s ~a 
X· e =\~=1 

l e 

where Xi> 0 and i = 1, 2, 3, ... k are the 

number of explanatory variables. The number of 
obsverations is n. The error term is E and s' 

(t: 1 s 2 ---En) is assumed to have a normal dis-

tribution, 

matrix and 

2 
i.e., E ~ N(O,O In). In = identity 

E(xij Ei) = 0. Taking 

lnY2 ---lnYP); a. ~( Elr, a2 --· a~) and 

X (xij)nxk we have the transformed log ruodel in 

the matrix form: y = X a+ c. 
Now the ordinary least squares estimators (OLS) 
can be obtained, but they will not be mean 
variance unbiased estimators. To develop the MVU 
estimators, Bradu and Mundlak introduce a special 
function: 

0: b 
gml (t)=L: Wp(t)=L: ml (ml+2p) ·(ml \P tP 

p=D p=o {m1 (m1+ 2)--{m1+2P) m1+1) (;;)! 
---(6) 

Further, if we consider two independent random 
variables, a vector z and s2 where z ~N (~, co 2 } 
with c = a known constant and 
s2 = o 2 2 , i.e. , Ms2 has a 2 

X X ml distribution 
ml ml ~ 

with m1 = degrees of freedom, then: 

E(s2P) = m1 (m1 + 2)---(m1 + 2p) 
0 2P ---(7) 

mp (m + 2p) p=0,1,2---
l 

combining (6) and (7) we have: 

p=O 
E{g (AS 2)} = L: 

ml 
+ 1 

Hence, gm (AS2) is an unbiased estimator of 

Also, since ebz is also lognormally 

distributed (as is e 2 ), so 

E(eBZ) = eB~+ l/2B2 Co2 = eBPelf2B2 C02 

Hence, eBz is an unbiased estimator of 

eB ~ + l/2B 2 c 0 2 and from the specifications of 

z and s2 it follows that eB 2 gm1 (AS 2) is an un-

biased estimator of { B ~ +0/2B 2c + ml A ) 2 } 
e ~o. 

ml'l 
Therefore, to obtain an unbiased estimator of the 

form e YJ-1 + 0 0 2 
we adapt the above unbiased es-

2 
timator by putting B=y and A=(m1 +1) (cS-1/2 y c) 

2)Therefore, ~l (AS -gml 

ml 

ml + 1 (cl-1/2 /c)S 2 and 
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T(eYz + 6 o2) : eYZgm1{ ml + 1 (6-l/2Y~)s2} is an 

ml 2 
unbiased estimator of eYz + 6 0 Finney (7) uses 

s 2 as the least squares variance estimator with 

z cc N( w, c o 2 ) and m1S 2 "'x 2 ; and z and s2 being 
ml 

o2 

stochastically independent. 
The computation of the minimum variance unbiased 
estimators requires numerical values of the func
tion gm (t). This function has been tabulated by 

1 
various researchers in econometrics. The gm1 (t) 

function values for positive t are given by 
Aitchison and Brown('66)and the log gml (t) values 

for positive t are given by Thoni(l969). Bradu and 
flundlak have given values of gml (t) for negative 
t values. 
To turn to our MCI model, we can rewrite our equa
tion (3) as follows: 

Let 

Then 

Yij 
q 
L bkZkij + cij 
k:l 

Yij :log Yij log Pij i.e., Yij 

Y·. : lJ 
This is a similar form to that of Bradu and 
Mundlak's model (equation (4)). The big 
difference, however, is the error term is 

---(3) 

Pij 

---cs) 

E cc N(O, o 2In) and our error term is E cc N(O,C). 
In other words we have a variance co-
variance matrix which is block-diagonal and hence 
cannot be written in the form 0 2In. This again 
arises due to the covariance across the j sub
script in the MCI model. 
This implies that we cannot use the Finney-Bradu
Mundlak (1951, 1970) procedure and we cannot util
ize their gml (t) function form to obtain minimum 

variance unbiased estimators for the MCI model. We 
need a further generalization of their procedure, 
i.e., a multivariate generalization of the gml (t) 

function which is not available at present in the 
econometrics literature. 
If we do assume that we have the variance covar
iance matrix C of our MCI model of the form 
( 0 2I), then we can apply the Bradu-Mundlak appro
ach. However, that assumption would still not 
yield MVU estimators since by that assumption we 
have essentially thrown out some information, the 
correlation across the number of store (choices) 
and this would reduce the GLS to the OLS. The 
efficiency of the estimators would be reduced (with 
decreased information) and they would not have 
minimum variance. The assumption could also in
troduce a bias due to improper specification of the 
model. 

Discussion 

In our procedures used for evaluating the potential 
of new store locations we have in all cases used 
proportions (Pij) obtained by aggregating data 
for individuals from the same area i in a sample, 

instead of the true probability values. This 
itself introduces error and the substitution can 
only be justified when the samples are large. 
We throw away a lot of data in our aggregation 
process for proportion estimates. It would be 
perhaps worthwhile from this viewpoint to use an 
analysis on the lines suggested by Daniel McFadden 
(1974) for human choice behavior (which is 
essentially the problem we are addressing in our 
MCI model). McFadden uses the conditional logit 
distribution to analyze the choice behavior and 
the functional form is very close to the MCI form 
(but not the same). 
In our aggregation v;e are assuming population ho
mogeniety over our areas as well as over the en
tire population (all the i: 1, 2, 3 ... M areas) 
when we take the values to be the same for all 
these. We are further assuming the same pro: 
bability distribution for all the population and 
areas. This must be borne in mind as there could 
well be econometric problems of aggregation in
volved. 
Finally, we have the specification problem in
volved when we use distance and size of the store 
as the only two variables determining the under
lying utility function and hence the MCI model. 
Huff gives several arguments for the inclusion of 
these two variables and there is general agreement 
for their inclusion. However, other factors such 
as visibility, accessibility, promotional policies 
and the locality of the store would also influence 
the utility and hence the choice probability. These 
other factors can be included in the general MCI 
form. However, some of these quantities would be 
difficult to quantify and include in the model. 
Apart from the transformed linear form considered 
in this paper, researchers have developed various 
numerical estimation techniques. Urban (1969) 
used an on-line iterative search program which 
used decision maker's judgments as one of the in
puts. Alfred Kuehn, Timothy McGuire and Doyle 
Weiss (1966) used a non-linear least squares method 
which minimized the sum of the squared residuals 
by a direct search technique. Hlavac and Little 
(1966) and Haines, Simon and Alexis (1972) 
attempted to find the maximum likelihood estima
tors by Newton's method or a direct search tech
nique. 
All these techniques suffer from some common draw
backs: (i) none of them guarantee a global mixima 
or m1n1ma, (ii) they are costly in terms of comp
utational efforts needed, (iii) the statistical 
properties of the estimators are not known except 
for the asymptotic properties of the maximum 
likelihood estimators. Haines has shown that 
assuming that the global maxima can be found , the 
maximum likelihood estimators are consistent, but 
they are not minimum variance estimators. 
Following Nakanishi and Cooper's linear transfor
mation of the model allows us to use generalized 
squares and the maximum likelihood methods on the 
transformed model, and in this case the statistics 
of the estimators are known. Further work is 
needed for obtaining the mean variance unbiased 
estimators for the model, and generalizing the 
Finney-Bradu-Mundlak gm1 (t) function to the mul
tivariate case would be an important step towards 
obtaining the mean variance unbiased estimators. 
Obtaining a model developed using conditional 
logit approach would be another interesting area 
to push into. 
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The Multiplicative Competitive Interaction Model 
need not be restricted to a retail store location. 
It is useful over a number of cases, wherever there 
is a choice behavior to be analyzed and the under
lying utility function is the Cobb Douglus type. 
For example, it can be extended into the field of 
production; for warehouse and factory location 
models. The Multiplicative Competitive Inter
action Model as considered by Nakanishi and Cooper 
becomes important due to its generalized form which 
can be applied to a variety of different problems. 
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