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    Chapter 10   
 Prediction of Embryo Viability 
by Morphokinetic Evaluation to Facilitate 
Single Transfer 

                Aisling     Ahlström    ,     Alison     Campbell    ,     Hans     Jakob     Ingerslev    , 
and     Kirstine     Kirkegaard    

            Introduction 

 Optimal culture conditions and reliable embryo selection constitute two major 
 challenges for successful IVF treatment. Embryo quality is typically assessed by the 
use of grading systems based on morphological evaluation under a microscope at 
certain, distinct time points. This methodology has several limitations. The inability 
to accurately assess embryo quality constitutes a hindrance for evaluating the impact 
of culture conditions and for estimating the reproductive potential of an embryo. 
The recent development of clinical time-lapse instruments has enabled continuous 
monitoring of human embryos, hereafter referred to as time-lapse imaging (TLI). 
TLI, where consecutive images are obtained during embryo culture by using a 
microscope and a camera, allows for a refi ned evaluation of known morphological 
parameters and represents a new method of evaluating embryo viability. Several 
retrospective studies have demonstrated a correlation between timing of key events 
and developmental or implantation potential, which suggests time-lapse imaging as 
a promising method for a more reliable embryo selection than morphology alone. 
However, as we expand our knowledge of pre-implantation embryo development, it 
becomes increasingly clear that timing is infl uenced by several patient- and 
treatment- related factors. This may complicate the establishment of a prediction 
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model for optimal embryo development that may be applied under a variety of 
 conditions across heterogeneous patient groups. This chapter addresses the use of 
TLI in the evaluation of pre-implantation embryo development and pregnancy 
potential in an effort to provide an overview of the feasibility and potential use of 
TLI in IVF treatment.  

    Scoring of Static vs. Dynamic Parameters 

 Traditionally, the quality and viability of pre-implantation embryos are evaluated by 
a microscopic inspection at a few, well-defi ned discrete time points. There is a well- 
documented close correlation between morphological appearance and developmental 
stage of the embryo at given time points and developmental competence (as reviewed 
by ALPHA and ESHRE [ 1 ]). Due to the simplicity and cost-effectiveness of static 
morphological grading and lack of documentation for existing alternative methods, 
traditional morphological evaluation therefore remains the choice method for embryo 
evaluation. Nevertheless, this approach has several recognized limitations. Firstly, the 
information obtained with a few, discrete time point provides an incomplete picture 
of the inherent dynamic process of embryo development, as illustrated by the obser-
vation that embryo score may change markedly within a few hours [ 2 ]. This limita-
tion is obviously overcome with continuous monitoring. Furthermore, morphological 
scoring of embryos has shown substantial inter- as well as intra-observer variation, 
which in turn has implications for the decision to transfer, cryopreserve, or discard 
the embryos [ 3 – 5 ]. A probable cause for this variation is that assessment in categories 
tends to be rather imprecise. In contrast, the assessment of time-lapse parameters 
appears to have a high degree of intra- and interobserver agreement [ 6 ]. Theoretically, 
this agreement will depend on the instrument used, in particular the resolution, the 
number of focal planes, and the intervals between the photographic recordings. Any 
variation in clinical decision-making remains to be assessed, as no model has pres-
ently been prospectively validated, as discussed in detail below. TLI necessitates peri-
odical light exposure, use of moving devices, and magnetic fi elds that constitute 
potential risks to the embryos. The safety of TLI for IVF has been documented in two 
trials conducted with the same instrument. Embryo development was the primary 
endpoint in both trials [ 7 ,  8 ]. As for any new method introduced in the ART labora-
tory, a suffi ciently powered study using pregnancy rate or live birth rate with pediatric 
follow-up would be preferable before any defi nitive conclusions are drawn. Likewise, 
it must be noted that both trials were conducted using the same TLI instrument and 
that the conclusions may not necessarily extend to include other systems.  

    Introduction to Time-Lapse Parameters 

 While time-lapse monitoring is a rather novel method in the ART lab, the method 
has been used for nearly a century to study embryo development for research pur-
poses [ 9 ]. Prior to the introduction of clinical instruments, research was conducted 
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on embryos from various animal species or more seldom, surplus human embryos. 
Initially, the studies were aimed at describing the process of development, but as IVF 
was introduced, the attention was directed toward the potential use of time- lapse 
imaging to characterize division patterns and dynamic parameters that potentially 
would identify embryos that are viable beyond the time of observation. The follow-
ing section describes typical in vitro development of a pre-implantation human 
embryo and the events that are visible and thus recordable in a time-lapse analysis. 

 Development of a human embryo begins with fertilization. The spermatozoon 
penetrates the extracellular multilayer glycoprotein coat, zona pellucida (ZP) [ 10 ], 
and the spermatozoon membrane fuses with the oocyte membrane [ 10 ]. The associ-
ated formation of the male pronucleus can be visualized with time-lapse monitor-
ing. During normal fertilization the fusion of the two membranes initiates oocyte 
activation, leading to the completion of the second meiotic division of the oocyte. 
This stage is visualized by the extrusion of the second polar body 3–7 h after fertil-
ization [ 11 ] followed by the visible formation of the male and female pronuclei. The 
male and female pronuclei ( pn ) start replicating their DNA as they migrate toward 
each other in the zygote. This process can be visualized morphologically as syn-
gamy/abuttal of  pn  [ 12 ]. After DNA replication, the two nuclear envelopes break 
down, and the 2 pn  are no longer visible. The zygote subsequently enters the fi rst 
mitotic division and cleaves and two embryonic cells, or blastomeres, are formed. 
The process from formation of the cleavage furrow until complete separation of the 
two daughter cells is denoted fi rst cytokinesis [ 13 ,  14 ]. The fi rst cleavage cycle is 
completed with the fi rst division early on “day 2,” 24–29 h after fertilization 
[ 15 – 17 ]. The two embryonic cells divide during the second cleavage cycle, forming 
a 4-cell embryo on day 2. 

 The third cleavage cycle results in the formation of an 8-cell embryo on day 3, 
followed by a fi nal round of cell divisions, before compaction occurs, visualized as 
obscured intercellular boundaries, and the embryo develops into a morula on day 4. 
Shortly after the morula stage a fl uid-fi lled cavity develops. This appearance of this 
cavity, the blastocoel, defi nes the beginning of the early blastocyst stage [ 10 ]. This 
cavity expands until it fi lls most of the embryo (full blastocyst stage). Continued 
expansion leads to a progressive thinning and, eventually, focal rupture of the sur-
rounding zona pellucida (ZP). Escape of the mammalian embryo from the ZP, 
referred to as hatching, is initiated on day 5–6 in vitro. 

 Deviations from the above description of a normal in vitro development are often 
observed and are of particular interest as they presumably represent underlying 
abnormalities. An extreme short duration of the fi rst division cycle (the 2-cell stage), 
referred to as a direct cleavage from one to three cells, is often observed in 
 tri- pronuclear embryos presumably as a result of an excess centriole [ 18 ]. Direct 
cleavage from one to three cells is however also observed in embryos with a pre-
sumed normal chromosomal content where the deviation is associated with a sig-
nifi cantly lower implantation rate compared to embryos with a normal cleavage 
pattern [ 19 ,  20 ]. Likewise, an aberrant fi rst cytokinesis has been correlated to 
decreased developmental potential [ 14 ]. These studies illustrate the potential bene-
fi ts of characterizing not only optimal division patterns but also deviations from the 
normal pattern as a single embryo is selected for transfer.  
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    Predictive Algorithms 

 First to demonstrate the potential of morphokinetic-based predictive models, Wong 
and colleagues [ 14 ] predicted the developmental fate of 4-cell embryos with excep-
tional sensitivity (93 %) and specifi city (94 %). In this model, a combination of 
three morphokinetic parameters (duration of fi rst cytokinesis, interval between fi rst 
and second mitosis, and interval between second and third mitosis) was used suc-
cessfully to predict blastocyst formation or developmental arrest. More recently, 
Conaghan and colleagues chose to reevaluate solely these parameters during devel-
opment of a morphokinetic model for prediction of usable blastocysts (blastocysts 
selected for transfer or frozen storage on day 5) [ 13 ]. In this large study, morphoki-
netic data from fi ve clinical sites were collected from embryos cultured to blasto-
cyst. No patient and treatment selection criteria were used or restrictions to culture 
conditions enforced [ 13 ]. Notably, the resulting predictive algorithm did not achieve 
the same sensitivity as Wong et al., but when validated on a large independent data-
set it was much better at identifying embryos that were less capable of developing 
to usable blastocysts than those that did (specifi city of 84.7 %, sensitivity of 38.0 %, 
PPV 54.7 %, and NPV 73.7 %). 

 Although blastocyst formation and quality has been used as a measure of embryo 
viability in a number of morphokinetic studies and confers a number of practical 
advantages when researching and validating new technologies [ 21 ,  22 ], the informa-
tion generated only becomes useful when translated into pregnancy and live birth 
outcome. Only a few studies have investigated the compatibility between morphoki-
netic prediction of blastocyst formation and quality and prediction of pregnancy 
outcome and these studies have demonstrated confl icting results. The aforemen-
tioned blastocyst prediction model [ 13 ] was subsequently tested on a large combined 
set of transferred embryos with known clinical outcome [ 23 ]. This study demon-
strated that the model was somewhat effective with a relative increase of 30 % for 
implantation in the model-selected group of embryos, but it fell short, as there was a 
concomitant large rejection of embryos from the test cohort, which actually resulted 
in pregnancy. This highlights the limitations of predicting blastulation only. 

 Hlinka et al. [ 24 ] showed that only 26.4 % of timely blastocysts resulted in a suc-
cessful implantation, not surpassing current IVF success rates [ 24 ]. Moreover, both 
Kirkegaard et al. [ 25 ] and Chamoyou et al. [ 26 ] identifi ed several morphokinetic 
parameters as signifi cant predictors of high-quality blastocyst development, but 
these same parameters were unable to discriminate between implanted and unim-
planted embryos [ 25 ,  26 ]. In dramatic contrast, Dal Canto et al. [ 16 ] showed that 
signifi cantly shorter cleavage times from the 2-cell to 8-cell stage were predictive of 
embryos that develop to blastocysts, expand, and implant [ 16 ]. In another study, 
optimal cleavage stage timings proposed for implantation success have also been 
successfully shown to identify a large proportion of embryos that develop to blasto-
cysts with good morphology [ 15 ]. It would seem that further studies are needed to 
elucidate the interpretation of these discrepancies and determine if predictive algo-
rithms trained to predict blastocyst development could be used to predict 
implantation. 
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 The fi rst group to construct a morphokinetic-based model to predict implantation 
potential developed a hierarchical model that uses both morphological observations 
and kinetic timings to rank embryos in 10 different categories of descending implan-
tation potential [ 17 ]. First, embryos are discarded by a set of exclusion criteria 
including poor morphology, direct cleavage from 1 to 3 cells, uneven blastomere 
size at 2-cell stage, and multinucleation at 4-cell stage. Then timings of three mor-
phokinetic parameters were ordered according to predictive strength: time to 5-cell 
stage, time interval between second and third mitosis, and time interval between 
fi rst and second mitosis are used to characterize embryos depending on timings 
lying in or out of acceptable ranges. These optimal time ranges were defi ned by the 
timings of 247 implanting and non-implanting embryos that were fi rst subdivided 
into quartiles and the two consecutive quartiles with the highest number of implant-
ing embryos were then selected as in-range values. Embryos that did not develop 
within these time intervals were considered out of range. This group suggested that 
categorization of embryos from high to low implantation potential according to this 
model was improved when compared to using morphology alone (AUC 0.72 vs. 
0.64). Nevertheless no statistical difference in implantation rate was found between 
embryos in the highest scoring category compared to embryos of highest morpho-
logical grade [ 17 ]. Subsequently, the same group tested the application of this model 
to data collected from 10 clinical sites in a larger retrospective study and suggested 
that a relative improvement to the clinical pregnancy rate of 20.1 % per embryo 
transfer could be achieved compared to a control group of embryos cultured in con-
ventional incubators and selected solely by static morphological grade [ 27 ]. 
However, this study was not randomized and the improved clinical pregnancy rate 
could also be explained by better culture conditions supplied in a time-lapse incuba-
tor compared with the traditional incubator or selection bias. So far no prospective 
controlled trial has been published to determine if embryo selection using this time- 
lapse model can improve IVF success rates. The IVI group has recently completed 
a randomized study. Yet unpublished results report signifi cantly improved ongoing 
pregnancy rate (51.4 % vs. 41.7 %;  p  = 0.01) and implantation rate (44.9 % vs. 
37.1 %;  p  = 0.02) for embryos selected using time-lapse criteria compared with 
selection by standard morphological criteria (Rubio et al. [ 20 ]). It has been demon-
strated, though, that the tested selection model was not transferable from one  clinical 
setting to another without modifi cations [ 28 ], thus underlining the diffi culties in 
determining universal criteria for optimal division patterns. 

 Since these studies were published, similar hierarchical models to predict 
implantation have been described and again quartiles yielding highest number of 
implanting embryos were used to defi ne optimal time ranges and embryos develop-
ing in range have been shown to have higher implantation rates than those embryos 
developing out of range [ 29 ,  30 ]. Additionally, several investigators have confi rmed 
that shorter durations of cell cycles and synchronous divisions of sister blastomeres 
are strongly predictive of implantation and that prolonged durations in one or more 
cell cleavage cycles and aberrant cleavage behavior are characteristics of non- 
implanting embryos [ 16 ,  20 ,  24 ,  30 ]. Most strikingly, abrupt cleavage from one to 
three cells, defi ned by a short 2-cell duration of <5 h, has been shown in a number 
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of studies to be a strong negative marker of implantation [ 17 ,  20 ,  25 ]. This abnormal 
cleavage pattern has largely been unnoticed in static routine observations before the 
introduction of TLI monitoring. It may be argued that the superior ability of mor-
phokinetic models to identify less viable embryos rather than identify embryos of 
highest reproductive potential may create the basis for a strategy of time-lapse based 
embryo selection that will translate into improved clinical outcome. Such an 
approach will have particular relevance in the setting of single embryo transfer. 

 Recently, the correlation between timing of kinetic parameters and embryonic 
aneuploidy, has been the focus of several morphokinetic studies [ 19 ,  29 ,  31 – 33 ]. 
In the past, morphology and sequential embryo scoring systems have had limited 
success at identifying aneuploid embryos [ 34 – 37 ] and static observation of multi-
nucleation on days 2 and 3 has been shown to have a positive association with 
aneuploidy and used routinely to deselect embryos [ 38 ,  39 ]. However, a number 
of preliminary studies suggest that morphokinetic behavior can be used to increase 
the probability of selecting euploid embryos without invasive genetic screening. 
A number of small studies report possible correlations between timings of early 
mitotic divisions and embryonic aneuploidy [ 33 ,  40 – 42 ]. One of these studies 
suggests that delayed fi rst and second cleavage divisions and a prolonged transi-
tion from the 2- to 4-cell stage were signifi cantly correlated to aneuploidy, in 
particular multiple aneuploidies [ 40 ]. This study also confi rmed that embryos 
undergoing abrupt cleavage from 1- to 3-cells and 2- to 5-cells are predominately 
aneuploid. Chavez et al. [ 33 ] observed cell cycle parameters for 45 embryos up to 
the 4-cell stage and found that euploid embryos displayed tightly clustered tim-
ings when compared to aneuploid embryos, which had more widely distributed 
comparative timings. In this study, only 30 % of aneuploid embryos displayed 
normal timings and these normal timings were determined to predict embryonic 
euploidy with 100 % sensitivity and 66 % specifi city [ 33 ]. Most recently, a much 
larger study analyzing the chromosomal content of 504 embryos by blastomere 
biopsy on day 3 and array CGH created a hierarchical model to subdivide embryos 
into four categories (A–D) according to expected risk of aneuploidy [ 29 ]. The two 
morphokinetic variables used in this algorithm included time interval between 2 
and 5 cells (>20.5 h) and duration of the third cleavage cycle (t5–t3) (11–18 h). 
Embryos categorized according to in- or out of range timings suggested by 
this model showed a signifi cant decrease in the percentage of normal embryos 
for each decreasing category (A, 35.9 %, B, 26.4 %, C, 12.1 %, and D 9.8 %; 
 p  < 0.001). Interestingly, this algorithm was better at predicting blastocyst forma-
tion, which was interpreted by the authors as strengthening their fi ndings. The 
area under the curve was 0.634. 

 A similar number of time-lapse studies have not identifi ed an association between 
early cleavage timings and blastocyst aneuploidy as determined by trophectoderm 
biopsy and 24-chromosome analysis [ 19 ,  43 – 45 ]. In contrast, one of these studies 
suggested a simple classifi cation model using timing of initiation of blastulation and 
timing of full blastulation to classify embryos into high-, medium-, or low-risk cat-
egories, with an area under the curve of 0.72 [ 19 ]. An assumption that TLI param-
eters correlate with aneuploidy is hardly justifi ed if the same parameters are not 
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predictive to implantation potential. When this model was tested on a group of 
transferred blastocysts ( n  = 88) from un-selected non-PGS IVF patients and related 
to implantation and live birth outcome, the risk classifi cation was shown to correlate 
to clinical outcome. Interestingly, the relation was consistent, even when accounting 
for an important confounding parameter, such as age [ 31 ,  32 ]. The other signifi cant 
variable identifi ed to differ, between embryos with multiple aneuploidies only and 
euploid embryos in the Campbell study, was the time to the start of compaction 
(tSC) [ 19 ]. Several other small studies considering ploidy and morphokinetics have 
reported peri-compaction and cavitation delays in aneuploid embryos diagnosed by 
comprehensive chromosome screening methods of trophectoderm biopsies. 
Montgomery et al. reported that where the duration of compaction was <22 h, frag-
mented embryos were signifi cantly more likely to produce a euploid blastocyst 
( p  = 0.009) compared with embryos with longer compaction periods [ 46 ]. Melzer 
also reported longer duration of compaction in aneuploidy blastocysts compared 
with euploid, using TLI and blastocyst biopsy techniques ( p  < 0.004) [ 47 ]. Delays in 
later developmental stages were also described by Hong et al. [ 48 ]. This group 
reported longer duration to the start of cavitation in aneuploid embryos. The two 
signifi cant variables providing some discrimination of aneuploidy risk were the 
time from fi rst cytokinesis ( p  = 0.02) or from the 5-cell stage ( p  = 0.01) to the onset 
of cavitation ( p  = 0.01)—when the data were considered in quartiles. Ultimately, 
morphokinetic-based embryo selection models should focus on healthy euploid live 
birth as the outcome measure. A promising study of over 200 embryos with known 
implantation outcome data, which did this, presented an early cleavage algorithm 
with an area under the curve of 0.8 [ 49 ].  

    Limitations for Model Building: Sensitivity, Specifi city, 
and Confounders 

 In summary, a large number of publications confi rm that timing of development 
does indeed differ between viable and nonviable embryos. The challenge is that 
most studies show divergent results and that no consensus therefore exists on which 
parameters are the most predictive. Only a few publications have offered clinically 
applicable models of embryo selection [ 13 ,  17 ,  31 ] and these models remain to be 
validated in randomized trials. 

 Developing valid time-lapse models applicable to heterogeneous patient popula-
tions and in different clinical settings is diffi cult, as multivariate hierarchical selec-
tion models [ 17 ] have been shown not to be transferable from one clinical setting to 
another without modifi cations [ 28 ]. Similarly, in a hypothetical experiment, where 
a blastocyst prediction model [ 13 ] was applied retrospectively on a large set of 
transferred embryos, a theoretical increase of 30.0 % in implantation rate for 
embryos grouped as usable compared with the entire test cohort was demonstrated. 
Notably, 50.6 % of embryos that were categorized as having a low chance of form-
ing usable blastocyst nevertheless resulted in fetal heart beat [ 23 ]. While a part of 
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the explanation may be found in heterogeneous patient populations and different 
clinical settings, it also emphasizes one of the crucial dilemmas in developing diag-
nostic tests in general—the balance between sensitivity and specifi city. The study 
very nicely illustrates the risks of defi ning too narrow time intervals for optimal 
division in order to achieve a high specifi city at the expense of a low sensitivity. It 
thus underlines the importance of carefully considering that a model must not only 
provide a substantial increase in implantation, but equally important, that a low 
rejection rate of viable embryos is secured. 

 Other plausible explanations for the diverging conclusions on which parameters 
are most predictive are most likely to be found in the distinct differences in the popu-
lation of embryos studied, the parameters evaluated, the endpoints chosen, and the 
differences in treatment-related factors and culture conditions between the studies. 

 Embryos from fertile oocyte donors have been shown to proceed faster through 
the fi rst cellular divisions compared to embryos from infertile patients [ 50 ]. 
However, it remains unanswered whether the signifi cant differences in age may 
explain that particular fi nding. In mice, culture in 20 % oxygen signifi cantly delays 
all stages of embryonic development compared to culture in 5 % oxygen [ 51 ] as 
well as infl uences the embryonic metabolism [ 52 ]. In humans, culture in high oxy-
gen appears to delay pre-compaction development [ 53 ]. ICSI-fertilized embryos 
have been reported to display an earlier fi rst cleavage than IVF-fertilized embryos 
[ 16 ,  54 – 56 ]. The observed difference most likely originates from a difference in the 
starting time of registration or oocyte activation [ 57 ], and can therefore be overcome 
by normalization to an early event or durations of events. The difference does, how-
ever, complicate the comparison of absolute time points between IVF and ICSI 
populations which is overcome by using intervals between events. 

 The choice of medium has been shown to infl uence the cleavage rates for human 
embryos [ 58 – 62 ]. Surprisingly, a recent study did not report any correlation [ 63 ], 
which indicates that the impact may depend on the type of medium and perhaps a 
combination with other factors as well. Factors relating to the infertility treatment, 
such as gonadotrophin doses, have been reported to affect timing, with embryos 
from oocyte donors receiving higher doses of gonadotrophin reaching advanced 
developmental stages later than those receiving lower doses [ 64 ]. Since gonadotro-
phin doses were presumably administered according to the treatment response of 
the patient, it could be argued that the fi nding might be correlated with patient- 
related factors, such as age and ovarian response which are both interrelated—and 
correlated to prevalence of aneuploidy—rather than the differences in stimulation 
per se. Finally, studies on time lapse have been conducted using different time-lapse 
systems. A difference in technology could potentially infl uence the assessment of 
the embryo and limit the comparability between studies. 

 These confounding factors become even more important if the time intervals of 
optimal division are defi ned too narrowly, as small displacement in timing may result 
in viable embryos being declared nonviable. Arguably, low sensitivity may be attrib-
uted to the infl uence of many of these confounding factors demonstrated to affect 
embryo kinetics and viability, in particular maternal age, oxygen tension, fertiliza-
tion method, and culture media, which are rarely considered in the predictive models. 
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Albeit even controlling for these confounders during collection of  morphokinetic 
data, moderate predictive values were still attained by some  predictive models [ 25 ].  

    Future Directions 

 An increasing number of studies demonstrate that timing of development differs 
between viable and nonviable embryos, evaluated by blastocyst development, clini-
cal pregnancy, or euploidy. The future challenge is to translate this knowledge into 
clinically useful models that will improve pregnancy rates after single embryo 
transfer. 

 A major challenge is that timing not only refl ects viability but is also infl uenced 
by patient and treatment-related characteristics, which must be considered when 
predictive models are developed. How much of the variation in timing that is 
explained by viability and culture conditions remains to be clarifi ed. The diffi culties 
in transferring a model from one clinic to another may, however, indicate that one 
model does not fi t all. Furthermore, concern must be taken for both sensitivity and 
specifi city. 

 Several studies have reported that shorter durations of cell cycles and synchro-
nous divisions of sister blastomeres are strongly predictive of implantation while 
prolonged durations in one or more cell cleavage cycles and aberrant cleavage 
behavior are characteristic of non-implanting embryos. The superior ability of mor-
phokinetic models to identify less viable embryos by deviations from the normal 
division pattern, rather than to identify embryos of highest reproductive potential by 
defi ning optimal division patterns, may indicate that the true potential for TLI lies 
in de-selection of embryos. The association between poor viability, aneuploidy, and 
certain TLI patterns supports this. Likewise, attention could profi tably be directed 
toward identifying normal and abnormal patterns in embryos from the individual 
patient combined with a traditional evaluation of morphology, rather than focusing 
exclusively on defi ning time points for optimal division, which most likely vary 
depending on external factors. This might be combined with broad intervals for tim-
ing with suffi cient respect for sensitivity and specifi city, in particular perhaps at the 
later stages of development.     
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